A Process Algebra for Wireless Mesh Networks

used for

Modelling, Verifying and Analysing AODV

Ansgar Fehnker Rob van Glabbeek Peter Hofner
NICTA* NICTA* NICTA*
Sydney, Australia Sydney, Australia Sydney, Australia
Computer Science and Engineering Computer Science and Engineering Computer Science and Engineering
University of New South Wales University of New South Wales University of New South Wales
Sydney, Australia Sydney, Australia Sydney, Australia
Annabelle Mclver Marius Portmann Wee Lum Tan
Department of Computing NICTA* NICTA*
Macquarie Univer§ity Brisbane, Australia Brisbane, Australia
Sydney, Australia Information Technology and Information Technology and
NICTA* Electrical Engineering Electrical Engineering
Sydney, Australia University of Queensland University of Queensland
Brisbane, Australia Brisbane, Australia

Route finding and maintenance are critical for the perforreasf networked systems, particularly
when mobility can lead to highly dynamic and unpredictalniemnments; such operating contexts
are typical in wireless mesh networks. Hence correctnesgiaad performance are strong require-
ments of routing protocols.

In this paper we propose AWN (Algebra for Wireless Networlesprocess algebra tailored to
the modelling of Mobile Ad hoc Network (MANET) and Wirelesslgh Network (WMN) protocols.

It combines novel treatments of local broadcast, conditionicast and data structures.

In this framework, we present a rigorous analysis of the Ad ®n-Demand Distance Vector
(AODV) protocol, a popular routing protocol designed for METs and WMNSs, and one of the four
protocols currently defined as an RFC (request for commégt)e IETF MANET working group.

We give a complete and unambiguous specification of thiopodtthereby formalising the RFC
of AODV, the de facto standard specification, given in Ergfgsose. In doing so, we had to make
non-evident assumptions to resolve ambiguities occuinntat specification. Our formalisation
models the exact details of the core functionality of AODWMCIs as route maintenance and error
handling, and only omits timing aspects.

The process algebra allows us to formalise and (dis)praveiarproperties of mesh network
routing protocols such as loop freedom and packet delivéfy.are the first to provide a detailed
proof of loop freedom of AODV. In contrast to evaluationsngssimulation or other formal methods
such as model checking, our proof is generic and holds fopasgible network scenario in terms of
network topology, node mobility, traffic pattern, etc. Doeaimbiguities and contradictions the RFC
specification allows several readings. For this reason,naé/ae multiple interpretations. In fact we
show for more than 5000 interpretations whether they ane foee or not. Thereby we demonstrate
how the reasoning and proofs can relatively easily be adaptprotocol variants.

Using our formal and unambiguous specification, we find sdmoetsomings of AODV that can
easily affect performance. Examples are non-optimal soestablished by AODV and the fact that
some routes are not found at all. These problems are anafyské@mprovements are suggested.
As the improvements are formalised in the same processralgedrrying over the proofs is again
relatively easy.

*NICTA is funded by the Australian Government through the &émpent of Communications and the Australian
Research Council through the ICT Centre of Excellence Rrogr

Technical Report 5513 NICTA, 2013 © A. Fehnker, R.J. van Glabbeek, P. Hofner,
http://www.nicta.com.au/pub?id=5513 A. Mclver, M. Portmann & W.L. Tan

http://www.nicta.com.au/pub?id=5513

ii Modelling, Verifying and Analysing AODV

Contents
L Introduction| 1
- | 4
.1 _BasicProtochl 4
2.2 Detailed EXaMPIES e 4
3__Abstractions Choseh 8
B Timind. 8
ional Protocol FEAUreS v o vt ot e e 8
%E ... 9
4__A Process Algebra for Wireless Mesh Routing Protocdls 10
4.1 A Language for Sequential Processes« .ot o i 10
4.2 Alanguage for Parallel Processest 13
4.3 Alanguage for Networks 14
4.4 Results onthe Process Algebra e 16
4.5 Optional Augmentation to Ensure Non-Blocking Broadicas 17
4.6 lllustrative Exampleo 18
5 Data Structure for AODV 20

SIS . . e e e 34

papessgRae Ragyits .
6.5 Receiving ROUtE EITOrS v 37
6.6 __The Message Queue and Synchronisation 37
6.7 Initial State 38
[7_Invariantd 38
[Z.1 State and Transition Invariants o oo 38
[7.2_ Notions and NOtatioNS . « .+« o v v oo 39
[z.3_ Basic Prooertlbs 40

- S e e e e e e e e e 46

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan iii

102
103
104
107
114
116

119
119
123

126
129
135
136
137
138

1 Modelling, Verifying and Analysing AODV

1 Introduction

Wireless Mesh Networks (WMNSs) have gained considerableljaojpy and are increasingly deployed in
a wide range of application scenarios, including emergeasponse communication, intelligent trans-
portation systems, mining, video surveillance, etc. Theysalf-organising wireless multi-hop networks
that can provide broadband communication without relyin@avired backhaul infrastructure, a benefit
for rapid and low-cost network deployment. WMNs can be abersid a superset of Mobile Ad hoc
Networks (MANETS), where a network consists exclusivelyrafbile end user devices such as laptops
or smartphones. In contrast to MANETSs, WMNSs typically alsoitain stationary infrastructure devices
called mesh routers.

An important characteristic of WMNSs is that they operatenpredictable environments with highly
dynamic network topologies—due to node mobility and théal@e nature of wireless links. Because of
this, route finding and maintenance are critical for theqrenbince of WMNSs. Usually, a routing protocol
is used to establish and maintain network connectivity uglopaths between source and destination
node pairs. As a consequence, the routing protocol is ofeddy factors determining the performance
and reliability of WMNs. One of the most popular routing mools that is widely used in WMNSs is
the Ad hoc On-Demand Distance Vector (AODV) routing protd@®]. It is one of the four protocols
currently standardised by the IETF MANET working group, a@nalso forms the basis of new WMN
routing protocols, including HWMP in the IEEE 802.11s wisd mesh network standafd [53]. The
details of the AODV protocol are laid out in the requestdomments-document (RFC 3561 [79]), a
de facto standard. However, due to the use of English prbsespecification contains ambiguities and
contradictions. This can lead to significantly differenpiementations of the AODV routing protocol,
depending on the developer’s understanding and readingedd®DV RFC. In the worst case scenario,
an AODV implementation may contain serious flaws, such asngiloops.

Traditional approaches to the analysis of AODV and manyro&@DV-based protocols [81, 53,
[89,/99,83] are simulation and test-bed experiments. Whisé are important and valid methods for
protocol evaluation, in particular for quantitative perfance evaluation, they have limitations in regards
to the evaluation of basic protocol correctness properfiperimental evaluation is resource intensive
and time-consuming, and, even after a very long time of exelan, only a finite set of network scenarios
can be considered—no general guarantee can be given abmdtquotocol behaviour for a wide range
of unpredictable deployment scenarids [5]. This probleitiustrated by recent discoveries of limitations
in AODV-like protocols that have been under intense scyubver many years [72].

We believe that formal methods can help in this regard; tfwypement simulation and test-bed
experiments as methods for protocol evaluation and veliicaand provide stronger and more general
assurances about protocol properties and behaviour. Téralbgoal is to reduce the “time-to-market”
for better (new or modified) WMN protocols, and to increase taliability and performance of the
corresponding networks.

Thefirst contributionof this paper is AWN (Algebra of Wireless Networks), a pracatgebra that
provides a step towards this goal. It combines novel treatsnaf data structures, conditional unicast and
local broadcast, and allows formalisation of all importaspects of a routing protocol. All these features
are necessary to model “real life” WMNs. Data structuresumed to store and maintain information
such as routing tables. The conditional unicast constilmiva us to model that a node in a network
sends a message to a particular neighbour, and if this fédisexample because the receiver has moved
out of transmission range—error handling is initiated. aflyy the local broadcast primitive, which al-
lows a node to send messages to all its immediate neighboodgls the wireless broadcast mechanism
implemented by the physical and data link layer of wireldasdards relevant for WMNs. The formal-

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 2

isation assumes that any broadcast messagereived by all nodes within transmission raﬂgé’his
abstraction enables us to interpret a failure of route disigo(see our eighth contribution below) as
an imperfection in the protocol, rather than as a result di@en formalism not ensuring guaranteed
receipt.

As asecond contributionwe give a complete and accurate formal specification of tihe ftinction-
ality of the AODV routing protocol using AWN. Our model cogeall core components of AODV, but
none of the optional features, and abstracts from timingeiss The algebra provides the right level of
abstraction to model key features such as unicast and astdchile abstracting from implementation-
related details. As its semantics is completely unambiguspecifying a protocol in such a framework
enforces total precision and the removal of any ambiguity.

Thethird contributionis to demonstrate how AWN can be used to support reasoning gbatocol
behaviour and to provide rigorous proofs of key protocopemties, using the examples of route correct-
ness and loop freedom. In contrast to what can be achievedbglmhecking or test-bed experiments,
our proofs apply to all conceivable dynamic network top@sg Route correctness is a minimal sanity
requirement for a routing protocol; it is the property tha routing table entries stored at a node are
entirely based on information on routes to other nodes fttagrels currently valid or was valid at some
point in the past. Loop freedom is a critical property for aayting protocol, but it is particularly rel-
evant and challenging for WMNs. Descriptions aslinl [32] aa@tthe common understanding of loop
freedom: “A routing-table loop is a path specified in the r®deuting tables at a particular point in time
that visits the same node more than once before reachingtéradied destination.” Packets caught in a
routing loop, until they are discarded by the IP Time-Tod {f TL) mechanism, can quickly saturate the
links and have a detrimental impact on network performatigs therefore critical to ensure that proto-
cols prevent routing loops. We show that loop freedom canuaeagteed only if sequence numbers are
used in a careful way, considering further rules and assongbn the behaviour of the protocol. The
problem is, as shown in the case of AODV, that these additiah@s and assumptions are not explicitly
stated in the RFC, and that the RFC has significant ambiguitieegards to this. To the best of our
knowledge we are the first to give a complete and detailedf mblmop freedonf This is ourfourth
contribution

As afifth contribution we show details of several ambiguities and contradictfonad in the AODV
RFC, and discuss which interpretations (plausible andistamg readings of the RFC) will lead to routing
loops, and which are loop free. In fact we analyse more th@® hfterpretations. Hereby we demon-
strate how our reasoning and proofs can relatively easilgdagpted to protocol variants. In particular,
our sixth contribution we demonstrate that routing loops can be created—whilg ¢aimplying with
the RFC, and making reasonable assumptions when the RR@sallifferent interpretations. As our
next contribution, we also analyse five key implementatioindhe AODV protocol and show that three
of them can produce routing loops.

As aneighth contribution we apply linear-time temporal logic (LTL) to formulate tporal prop-
erties of routing protocols, such asute discovery “if a route discovery process is initiated in a state
where the source node is connected to the destination aimdhis process no (relevant) link breaks,

1in reality, communication is only half-duplex: a singladrface network node cannot receive messages while sending
and hence messages can be lost. However, the CSMA protoedlatghe link layer—not modelled by AWN—keeps the
probability of packet loss due to two nodes (within range)dseg at the same time rather low. Since we are examining
imperfect protocols, we first of all want to establish howytlehave under optimal conditions. For this reason we atistra
from probabilistic reasoning by assuming no message loafl,aather than working with a lossy broadcast formalismat th
offers no guarantees that any message will ever arrive.

2| oop freedom of AODV has been “proven” at least twicel [82.]166t the proof in[[82] is not correct, and the onelin [106]
is based on a simple subset of AODV only, not including théetimediate route reply” feature—a most likely source opo

3 Modelling, Verifying and Analysing AODV

then the source will eventually discover a route to the datitn” andpacket deliverysaying that under
certain circumstances a packet will surely be deliveredstdestination. We moreover show that AODV
does not satisfy these properties.

In order for the last result to be meaningful, we first devedapeneral method to augment a protocol
specification with dairness componerhat requires that certain fairness properties are metappty
this method to our specification of AODV. We also adapt the adins of LTL in order to make a
protocol specification satisfy natural progress and jisstpeoperties. Without ensuring these properties,
temporal properties like route discovery and packet dsfiveould trivially fail to hold. The same would
apply if we had not assumed guaranteed receipt of broadcassages by nodes within transmission
range (cf. Footnotg] 1).

Last but not least, we discuss several limitations of the MQibotocol and propose solutions to
them. We show how our formal specification can be used to sedlye proposed modifications and
show that the resulting AODV variants are loop free.

The rigorous protocol analysis discussed in this paperthmpdtential to save a significant amount
of time in the development and evaluation of new networkaqarols, can provide increased levels of as-
surance of protocol correctness, and complements sironlatid other experimental protocol evaluation
approaches.

This paper is organised as follows: Secfidon 2 gives an inéintroduction to AODV. Sectiohl3 de-
scribes which features of the AODV protocol are modellechia paper, and which are not. In Sectidn 4
we introduce the process algebra AWISectior 6 provides a detailed formal specification of AODV in
AWNH To achieve this, we present the basic data structure nee@s=ttiori b. In Sectidd 7 we formally
prove some properties of AODV that can be expressed asamtariin particular loop freedom and route
correctnest.

In Section[8 we discuss and formalise many ambiguities,radittions and cases of unspecified
behaviour in the RFC, and present an inventory of their jideisesolutions. Combining the resolutions
of the various ambiguities leads to 5184 possible integtiats of the RFC. We show which of these
interpretations lead to routing loops or other unacceptaélehaviour. For the remaining interpretations
we show loop freedom and route correctness, through smegitations in the proofs given in Sectidn 7.
We also analyse five implementations of AOfv.

In Sectiori ® we propose a general framework to ensure pmdesess and justness properties, and
apply the proposal to augment our AODV specification withian&ss component. Subsequently, we for-
mulate two temporal properties (route discovery and pad&tvery) that AODV-like protocols should
satisfy, and demonstrate that AODV does not enjoy theseegpiiep. Sectioh 10 discusses several short-
comings of AODV and proposes five ways in which the protocal lsa improved. All improvements
are formalised in AWN, and we show that they enjoy loop freednd route correctneBsSectior Tl
describes related work, and in Section 12 we summarise alin§is and point at work that is yet to be
done.

SMajor parts of this section have been published in “A Progdgebra for Wireless Mesh NetworksEUZ@].

“4Parts of the specification are publishedin/[26], in “AutoethAnalysis of AODV using UPPAALT[Z5] and in “A Rigorous
Analysis of AODV and its Variants’[[ZlEﬂ.

5The references i [26, 48] to Prop 7.10(b), Sect. 8 and Seichf@his paper, are now to Prdp. 7114(b), SEkt. 9 and B&kt. 8.

6A sketch of the loop freedom proof is given [n]26] and[in][48].

7A summary of this section appeared in “Sequence Numbers D&MNarantee Loop Freedom—AODV Can Yield Routing
Loops” [39].

8Two of the improvements from this section are presentedgh [4

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 4

@ O (b)

Figure 1: Example network topology

2 Ad hoc On-Demand Distance Vector Routing Protocol

AODV [79] is a widely-used routing protocol designed for MENs, and is one of the four protocols
currently standardised by the IETF MANET working gruplt also forms the basis of new WMN
routing protocols, including the upcoming IEEE 802.11sel¢iss mesh network standard|[53].

2.1 Basic Protocol

AODV is a reactive protocol: routes are established only emahd. A route from a source node

to a destination nodé is a sequence of nodésny,...,ng,d], wheren, ..., ng are intermediate nodes
located on the path fromito d. Its basic operation can best be explained using a simplagegopology
shown in Figuréll(a), where edges connect nodes withinrtrsion range. We assume nasl@ants

to send a data packet to nodebut s does not have a valid routing table entry tbrNodes initiates a
route discovery mechanism by broadcasting a route reqREEQ) message, which is receivegﬂ%
immediate neighbouraandb. We assume that neithamor b knows a route to the destination n
Therefore, they simply re-broadcast the message, as shofigure[1(b). Each RREQ message has a
unique identifier which allows nodes to ignore duplicate RRBessages that they have handled before.

When forwarding the RREQ message, each intermediate natbtagits routing table and adds a
“reverse route” entry t@, indicating via which next hop the nodecan be reached, and the distance in
number of hops. Once the first RREQ message is received byettimation nodel (we assume via),

d also adds a reverse route entry in its routing table, sayiagrtodes can be reached via node at a
distance of 2 hops.

Noded then responds by sending a route reply (RREP) message baddés, as shown in Fig-
ure[d(c). In contrast to the RREQ message, the RREP is uni@stt is sent to an individual next-hop
node only. The RREP is sent frothto a, and then tcs, using the reverse routing table entries created
during the forwarding of the RREQ message. When procesbi®dRREP message, a node creates a
“forward route” entry into its routing table. For exampl@an receiving the RREP vi@ nodes creates
an entry saying thadl can be reached via, at a distance of 2 hops. At the completion of the route
discovery process, a route has been establishedstord, and data packets can start to flow.

In the event of link and route breaks, AODV uses route err@RR) messages to inform affected
nodes. Sequence numbers are another important aspect of,AD® are used to indicate the freshness
of routing table entries for the purpose of preventing mgitoops.

2.2 Detailed Examples

Each nodap stores and maintains its own sequence number and its owingdable, which consists of
exactly one entry for each known destinatidip. In this paper we represent a routing table entry as a
tuple (dip,dsn, dsk; flag, hops, nhip, pre), indicating thanhip is the next hop on a route tiip of length

9ht‘cp ://datatracker. ietf.org/wg/manet/charter/
101n case an intermediate node knows a route, tiv directly sends a route reply back.

http://datatracker.ietf.org/wg/manet/charter/

5 Modelling, Verifying and Analysing AODV

hops dsnis a sequence number measuring the freshness of this ifformahe flagdskindicates if the
sequence number is knowknlo) or unknown {ink). In the former case the sequence numisrcan
be used to measure the freshness; in the latter the valdenaannot be used since one cannot “trust”
the value. The fladlag indicates if the route igalid (val)—it can be used to forward packets—or if it
is outdated {nv). Finally, preis the set of neighbours who are “interested” in the routdipe—they are
expected to usi as the next hop in their own routesdip.

We illustrate the AODV routing protocol in the example of &ig2, where AODV is used to establish
a route between nodesandc. The small numbers inside the nodes denote the nodes’ segjnembers.
Initially all these numbers are set to 1. For simplicity, veave out the last componepite of routing
table entries; hence each entry is a 6-tuple here.

Figure[2(a) shows the initial state. We assume that reodents to send a data packet to node
c. First, a checks its routing table and finds that it does not have ad)vatiuting table entry for the
destination node. In fact its routing table is empty. Therefore it initiatescaite discovery process by
generating a RREQ message. For ease of explanation, weseapithe generated RREQ message as
rreq(hops rreqid, dip,dsn,dsk, oip,osn,sip), indicating that the route request originates from noige
with sequence numbearsn searching for a route to destinatidip with sequence number at leafsn
This sequence number is taken from the entrydiprin the routing table maintained by node If no
entry fordip is available,dsnis set to 0. If there is no entry fatip or the sequence number is marked
as unknown in the routing tableskis set tounk (“unknown”); otherwise it is set t&no (“known”).
In addition,hopsis the number of hops the message has already travelleddimmnreqid is the unique
identifier of the route request, asi denotes the sender of the mess{%e.

When generating a new RREQ message, the originator node inastnent its own sequence
number before copying it into the RREQ message. Thereftie,RREQ message from nodeis
rreq(0,rreqid,c,0,unk,a,2,a). This RREQ message is broadcast to all its neighbours (Elig(i)).

(a)awants to send a packet to (b) abroadcasts a new RREQ message;
nodes, d receive the RREQ and update their RT|s.

[7)

(a,2,kno,val,1,a)

(a,2,kno,val,1,a)

(c) d forwards the RREQ; nodereceives it; (d) c unicasts a RREP messagéehto
b forwards the RREQ; nodesc receive it.
(a,2,kno,val,1,a)
(a,2,kno,val,2,b) (¢,1,kno,val,1,c)
(a,2,kno,val,1,a) (b,0,unk,val,1,b) (a,2,kno,val,2,b)

(b,0,unk,val,1,b)

(b,0,unk,val,1,b)
(d,0,unk,val,1,d) (b,0,unk,val,1,b)

(d,0,unk,val,1,d)

(a,2,kno,val,1,a)

(a,2,kno,val,1,a)

Figure 2: Simple example

11rollowing the RFC specification of AODV, the sender addrsipss not part of the message itself; however a node that
receives a message is able to obtain it from the source IRsslfield in the IP header of the message.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 6

(e) b unicasts the RREP &

(a,2,kno,val,1,a)

(c,1,kno,val,1,c)
(a,2,kno,val,2,b)
(b,0,unk,val,1,b)

(b,0,unk,val,1,b)
(c,1,kno,val,2,b)
(d,0,unk,val,1,d)

(a,2,kno,val,1,a)

Figure 2 (cont'd): Simple example

Nodesh andd receive the request and update their routing tables totiaseentry for nodea. Since
nodesb andd do not know a route to node(they have no routing table entry with destinationthey
both re-broadcast the RREQ message, as shown in FijureB&foye forwarding the message, nodes
andd increment théhopsinformation in the RREQ message from 0 to 1, meaning thatistartte toca
is now 1.

The forwarded RREQ messages from noteandd are then received by nodge Through these
messages node knows that nodeb andd are 1-hop neighbours, but nodedoes not know their se-
guence numbers, hence they are set to “unknown”. Therefodga creates routing table entries for its
neighbours, but with unknown sequence number 0, and seegumaber-status flag set tmk. Apart
from this, since noda is the originator of the RREQ, it will ignore these messages.

The same RREQ message forwarded by noealso received by node Nodec reacts by creating
routing table entries for both its previous-hop neighbawdeb) and the originator of the RREQ (node
a). It then responds by generating a RREP message. Againaser & explanation, we represent the
RREP message asep(hops dip,dsn,oip,sip), wherehopsnow indicates the distance dip. As before,
sipis the sender of the message. Since the destination nodgiersee number specified in the received
RREQ message is unknowdsph= 0 anddsk= unk), nodec copies its own sequence number into the
RREP message. Hence the RREP message fromaisdeep(0,c,1,a,c).

From nodec, the RREP message is unicast back to its previous-hopmaethe path back towards
the originator node (Figure[2(d)). Nodé processes the RREP message and updates its routing table
to insert an entry for node. It also increments theopsinformation in the RREP message from 0 to 1
before forwarding it to node (Figure[2(e)). When noda receives the RREP message, this completes
the route discovery process and a route is now establisloed fiiodea to nodec. Data packets from
nodea can now be sent to node

We next describe a more interesting example of how AODV dpsria a changing network topology.
In this example, we will show that due to the changing netwogdology and subsequent updates to the
routing table, a route reply message is not necessarilylsait to the node which had forwarded the
route request previously.

Figure[3(a) shows the initial network topology, and theiahistate of the nodes in the topology. We
assume that nodewants to send a data packet to naitjehence it generates and broadcasts a route
request message RRE@req(0,rreqid,d,0,unk,s,2,s)), as shown in Figuriel 3(b).

Next, the network topology changes whereby nede now within transmission range of node
This change in the network topology can be due to node mplfile., nodes moves into transmission
range of nodel), or due to the improved quality of the wireless link betweedess andd. Figure[3(d)
shows a situation where nod@ants to send a data packet to nagdthereby generating and broadcasting
a new route request message RRHE€req(0,rreqid,a,0,unk,s, 3,s)) destined to noda. Note that

7 Modelling, Verifying and Analysing AODV

RREQ is received by nodd, which results in the insertion of an entry for nagleith sequence number
3 in noded’s routing table. At the same time, the previous route regR&EQ is forwarded to nodé
on its path towards nod#

(a) The initial state. (b) sbroadcasts a new RREQ message destined to

(c) Network topology changesmoves into the transmission rangedof
(d) sbroadcasts a new RREQ message destined tde) d forwards RREQ; nodesa, b, sreceive it;
RREQ is forwarded. b updates its routing table entry o

(d,0,unk,val,1,d)
(s,2,kno,val,2,x*) (s,3,kno,val,2,d)

RREQ;

RREQo)
1

s,3,kno,val,1,s]) (d,0,unk,val,1,d)
(s,3,kno,val,1,s) (d,0,unk,val, 1,d) (5,3 Jnoval,1,s) (0 OV

(f) All steps that would follow as a reaction to RREQre skipped, because they are not important here.
(g) b forwards RREQ; it is received by nodd. (h)d generates a reply to RRE
this reply isnot sentback tob; it is sent tos.

(d,0,unk,val,1,d) (d,0,unk,val,1,d)
(s,3,kno,val,2,d) (s,3,kno,val,2,d)

a

4,0,unk.val,1,d 4,0, unk.val,1,d
(d,0,unk,val,1,d) (b,0,unk,val,1,b) (40-unkval,1,d) (d,1,kno,val,1,d) (b,0,unk,val,1,b) 55,3,220,321,2,43

(s.3.kno.val1,s) (5:3,kno,val,2,d) (s5.3.kno.val.1.s)

Figure 3: An example with changing network topology

Figure[3(e) shows that nodkforwards RREQ, which is received by nodes b, ands. The sub-
sequent steps in response to RREE. the generation of a RREP message by repdend its unicast
to noded and subsequent forwarding to the originator nedare not shown in Figurld 3 as they do not
contribute towards the objective of this example.

Figure[3(g) shows that RREQs forwarded by nod® and finally received by the destination node
d. Since the destination sequence number for rodd&RREQ, (dsn= 2) is older than the corresponding
destination sequence number information in nddeouting table entry for nodg(dsn= 3), the routing
table entry for nodes is not updated. Nodd then generates a RREP message in response to RREQ
The destination nodd searches in its routing table for a reverse route entry falerspand finds that
the next homhip for the route towards nodeis nodes itself. Therefore, the RREP message is not sent
back to nodé (from which the RREQ message is received), but instead is sent back directlyde 10
(Figure[3(h)).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 8

3 Abstractions Chosen

Our formalisation of AODV tries to accurately model the jpail as defined in the IETF RFC 3561
specification[[78]. The model focusses on layer 3 of the paltetack, i.e., the routing and forwarding
of messages and packets, and abstracts from lower layeprkepwotocols and mechanisms such as
the Carrier Sense Multiple Access (CSMA) protocol. The @nésd formalisation includes all core
components of the protocol, but, at the moment, abstraota fiming issues and optional protocol
features. This keeps our specification manageable. Ounplanextend our model step by step. Even
though our model currently does not cover all aspects,atelus to point to shortcomings in AODV and
to discuss some possible improvements. The model alsosaliswo reason about protocol behaviour
and to prove critical protocol characteristics.
In this section, we list all items that are not yet part of cunnfial model.

3.1 Timing

We abstract fronall timing issues Surely, this is a big decision and there are good reasorgddime
as a next step. However, this abstraction makes the veidficaf properties much easier:

No entry of a routing table or route reply message has thelfietine that maintains the expiration
or deletion time of the route in AODV. Informally this mearmat no valid route is set to invalid due to
timing, that no invalid route disappears from the routinglea(except when it is overwritten), and that
we never delete elements of the seéqgs of already seen requests (described in Se€fidn 5.6). Irstefm
the RFC that means thaCTIVE_ROUTE_TIMEOUT, DELETE_PERIOD andPATH_DISCOVERY_TIME are
set to infinity.

3.2 Optional Protocol Features

A route may bdocally repairedif a link break in a valid route occurs. In that case, the nooltneam of
that break may choose to initiate a local repair if the destim was no farther thamAX_REPAIR_TTL
hops away. Local repair is optional; therefore we do not rhtide feature here.

To avoid unnecessary network-wide dissemination of RREEs originating node should use an
expanding ring searckechnique. This is again an optional feature, which is nodelled here; we can
say that theRING_TRAVERSAL_TIME is set to infinity.

A route request may be sent multiple times. This happensafia rafter broadcasting a RREQ, does
not receive the corresponding RREP within a given amouritred.tin that case the node may broadcast
another RREQ, up to a maximum RREQ_RETRIES. Since the default value fRREQ_RETRIES is only
two, and moreover this whole procedure is optional, we haxenmodelled this resending of RREQ
messages.

If a route discovery has been attempBRREQ_RETRIES times without receiving any RREPdesti-
nation unreachable messaghould be delivered to the client (application) hooked ughatoriginator.
This interaction between different layers of the protodatk has not been modelled here since it is not
a core part of the protocol itself.

When a node wants to increment its sequence number, butrfestaossible number{2— 1) has
already been assigned to its@agquence number rolloveas to be accomplished. This rollover violates the
property that sequence numbers are monotonically inalleager time; therefore it would be possible to
create routing loops. It appears that loops as a consequénckover are rare in practice and therefore
we decided to model sequence numbers by the unbounded ssticilmumbers.

Interfaces as part of routing table entries, store information conicgy the network link, e.g., that
the node is connected via Ethernet. This is because AODMdloperate smoothly over wired as well as

9 Modelling, Verifying and Analysing AODV

wireless networks. Here we assume that nodes have only pa@tyetwork interface and consequently
leave out this field.

Another phenomenon which may yield complications and pbgsouting loops, are node crashes.
For now, we have neither modelled crashesawiions after reboot

By default, our process algebra establishes only bidoeati link&3. we will point out how by a
trivial change it can model unidirectional links (Sectidn We have decided not to make this our default
here, since, by doing so, fundamental properties such &s couectness would not hold for AODV any
longer (see Sectidn_7.7). Unidirectional links come alorith viblacklist” sets, which we also do not
model.

We further do not model the optional support for aggregateadks and the use of AODV with other
networks, as loosely discussed in Sections 7 and 8 of the AGBE [79].

Finally, hello messagesan be used as an optional feature to offer connectivityrinédion to a
node’s neighbours. Since in our model all optional partss&ieped, we do not model hello messages
either; information about 1-hop neighbours is establighedeceiving AODV control messages.

3.3 Flags

Following the RFC[[79], AODV control messages and routirlgjgaentries have to maintain a series of
state and routing flags such as the repair flag, the unknowmerseq number flag, and the gratuitous
RREP flag. For most of these flags there is no compulsion toseténem. An exception is theaknown
sequence number (‘U’) flagin some implementations, such as AODV-UU [2], this flag isitted in
favour of a special element denoting the unknown sequenc®eu In our model, we follow the RFC
and model the sequence number as well as the ‘U’ flag. We speadeguence-number-status flagth
values “known” and “unknown”.

Besides the ‘U’ flag, each route request hagoie('J’), the repair (‘R’), the gratuitous RRER'G’)
and thedestination only('D") flag. The ‘J’ and ‘R’ flag are reserved fanulticast an optional feature
not fully specified in the RFC. We do not model the multicastdiee, and hence ignore these two flags.
The ‘G’ flag indicates whether a gratuitous RREP should beastj by an intermediate node answering
the RREQ message, to the destination node of the originadagesthe ‘D’ flag indicates that only the
destination may respond to this RREQ. Both flags may be set @hequest is initiated. Since this is
also optional, we have decided to skip these features fantmaent. However, their inclusion should be
straightforward.

A route reply carries two flags: thepair (‘R’) flag, used for the multicast feature, and eknowl-
edgmen(‘A) flag, which indicates that a route reply acknowledgment message be sent in response
to a RREP message. We do not model these flags: the formenginde not model multicast at all; the
latter since this flag is optional. Consequently, we haveaemrio model theoute reply acknowledgment
(RREP-ACK) messagahich—next to RREQ, RREP and RERR—constitutes a fourtd khAODV
control message.

Finally, an error message only maintains tiiedelete('N’) flag. It is set if a node has performed a
local repair. Since we do not model local repair, we are abkbstract from that flag.

Flags pertaining to local repair, but stored in the routiables, are theepairable and thebeing
repaired flags For the same reasons, we skip these flags as well.

12 bidirectional link means that if a nodeis in transmission range @f(a can send messageshp thena is also in range
of b. A bidirectional link doesiot mean that ifa knows a route td, thenb knows a route ta.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 10

4 A Process Algebra for Wireless Mesh Routing Protocols

In this section we propose AWN (Algebra of Wireless Netwrlksprocess algebra for the specification
of WMN routing protocols, such as AODV. It is a variant of sdand process algebrés [71, 47/ 4, 8],
adapted to the problem at hand. For example, it allows us teedrdata structures. In AWN, a WMN
is modelled as an encapsulated parallel composition ofar&tmodes. On each node several sequential
processes may be running in parallel. Network nodes conwateivith their direct neighbours—those
nodes that are in transmission range—using either broadcasicast. Our formalism maintains for
each node the set of nodes that are currently in transmisaimge. Due to mobility of nodes and vari-
ability of wireless links, nodes can move in or out of transsion range. The encapsulation of the entire
network inhibits communications between network nodesthadutside world, with the exception of
the receipt and delivery of data packets from or to clféhes the modelled protocol that may be hooked
up to various nodes.

4.1 A Language for Sequential Processes

The internal state of a process is determined, in part, by#hees of certain data variables that are
maintained by that process. To this end, we assume a datauserwith several types, variables ranging
over these types, operators and predicates. First orddicpte logic yields terms (atata expressions
and formulas to denote data values and statements aboufdh@or data structure always contains the
typesDATA, MSG, IP and #(IP) of application layer datamessagedP addresses-or any other node
identifiers—andsets of IP addresse¥Ve further assume that there is a functigiwpkt : DATA x IP —
MSG that generates a message with new application layer datagdarticular destination. The purpose
of this function is to inject data to the protocol; detaildlWwe given later.

In addition, we assume a ty@PROC of sequential processeand a collection oprocess names
each being an operator of ty@&PE; x - -- x TYPE,, — SPROC for certain data typeSYPE;. Each process
nameX comes with alefining equation

X(vary,...,varp) aef P,

in which, for eachi = 1,...,n, varj is a variable of typ&YPE; and p a sequential process expression
defined by the grammar beloy.may contain the variablesar; as well asX; however, all occurrences
of data variables irp have to bebound™ The choice of the underlying data structure and the process
names with their defining equations can be tailored to anyigodar application of our language; our
decisions made for modelling AODV are presented in Secfibasd 6. The process names are used to
denote the processes that feature in this application,tiviin argumentsar; binding the current values
of the data variables maintained by these processes.

Thesequential process expressian® given by the following grammar:

SP:=X(exp,,....exm) | [p]ISP | [var :=exd SP | SP+SP | a.SP | unicast(dest ms).SP» SP
o ::=broadcast(ms) | groupcastdestsms) | sendms) | deliver(datg | receivegmsg)

HereX is a process namexp a data expression of the same typeras;, ¢ a data formulayar:=exp
an assignment of a data expressexpto a variablevar of the same typegest dests dataandms data
expressions of typekP, &7 (IP), DATA andVMSG, respectively, andsg a data variable of typESG.

13The application layer that initiates packet sending andtaweceipt of a packet.

145 operators we also allopartial functions with the convention that any atomic formula camity an undefined subterm
evaluates tdalse.

15An occurrence of a data variable|iris boundif it is one of the variablesar;, a variablensg occurring in a subexpression
receive(msg).q, a variablevar occurring in a subexpressidivar := exg g, or an occurrence in a subexpressfgrq of a
variable occurring free ig. Hereqis an arbitrary sequential process expression.

. Modelling, Verifying and Analysing AODV
& broadcastms).p broadeasté(ms), ¢ 1,

E,groupcasl(destsmsj.p groupcast(& (dest$,& (ms)) E p

&, unicast(dest ms).p p q Uncasté(destE(m9), g

&, unicast(dest ms).p » q —unicast(& (des},& (ms), £.q

& sendms).p =8, £ p

& deliver(datg.p Severé(daa) &

&, receive(msg).p Teceive(m), Emsg:=m|,p (Vm e MSG)

£ [var := exd p 5 &[var := & (exp], p

Olvar; := &(exp)]’ . p—= ¢,/

def
& X(exp,....exp) =, p (X(vary,...,vary) = p) (Va e Act)

Ep—=0.p &9, ¢
Ep+a-57,p &Epta-2l.q E[oplp——¢.p

(Vace Act)

Table 1:Structural operational semantics for sequential procegg&ssions

Given a valuation of the data variables by concrete dataesalilne sequential procegg]p acts as
pif ¢ evaluates tarue, and deadlocks i evaluates tfalse. In case¢ contains free variables that
are not yet interpreted as data values, values are assigrtbeéde variables in any way that satisfies
¢, if possible. The sequential procepsar := exf p acts asp, but under an updated valuation of the
data variablerar. The sequential procegs+ g may act either ap or asq, depending on which of the
two processes is able to act at all. In a context where botlalasleeto act, it is not specified how the
choice is made. The sequential procesp first performs the actioar and subsequently acts psThe
actionbroadcast(ms) broadcasts (the data value bound to the expressisiy the other network nodes
within transmission range, whereasicast(dest ms).p » g is a sequential process that tries to unicast
the messageisto the destinatiomlest if successful it continues to act @asand otherwise ag. In other
words,unicast(dest ms).p is prioritised overm; only if the actionunicast(dest ms) is not possible, the
alternativeq will happen. It models an abstraction of an acknowledgnoémeceipt mechanism that is
typical for unicast communication but absent in broadcastraunication, as implemented by the link
layer of relevant wireless standards such as IEEE 802.1&.pfdcesgroupcast dests ms).p tries to
transmitmsto all destinationglests and proceeds gsregardless of whether any of the transmissions is
successful. Unlikeinicastandbroadcast the expressiogroupcastdoes not have a unique counterpart
in networking. Depending on the protocol and the implent#onait can be an iteratively unicast, a
broadcast, or a multicast; thgsoupcast abstracts from implementation details. The acsend ms)
synchronously transmits a message to another processiguonithe same network node; this action
can occur only when this other sequential process is ablecwwe the message. The sequential process
receivgmsg).p receives any message(a data value of typesG) either from another node, from another
sequential process running on the same node or from thet tieked up to the local node. It then
proceeds ap, but with the data variabhesg bound to the valuen. The submission of data from a client
is modelled by the receipt of a messagsipkt(d,dip), where the functiomewpkt generates a message
containing the datd and the intended destinatialip. Data is delivered to the client leliver(datg.

The internal state of a sequential process described bymassionp in this language is determined
by p, together with avaluation ¢ associating data valuéqvar) to the data variablesar maintained

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 12

by this process. Valuations naturally extendtaloseddata expressions—those in which all variables
are either bound or in the domain &f The structural operational semantics of Tdble 1 is in tike st
of Plotkin [85] and describes how one internal state canveviito another by performing aactio

The set Act of actions consists bfoadcastm), groupcast(D ,m), unicast(dip, m), ~unicast(dip, m),
sendm), deliver(d), receive(m) and internal actions, for each choice ofneMsG, dipe IP, D € #(IP)
anddeDATA. Here,—unicast(dip, m) denotes a failed unicast. Moreov&jvar := v| denotes the val-
uation that assigns the valweo the variablevar, and agrees witlj on all other variables. The empty
valuation 0 assigns values to no variables. Henged) := vi|! ; is the valuation thabnly assigns
the valuesy; to the variablesvar; for i = 1,...,n. The rule for process names in Table 1 (Line 9)
says that a process, nam&d has the same transitions as the baulyf its defining equation. In

a /
CCS [71], such a rule is% . Adding data variables as arguments of process names waltt y
—

Ep=¢.p
&, X(vary,...,vary) 27,p
data expressions filled in for these variables. This netzggsia translation from a given valuatiérof
the variables that may occur in these data expressions tw aalaation&* of the variablessar; that
occur in the defining equation of:

. However, a sequential process expression may call a groeese with

&# X(vary,...,vary) = ¢, ¢
EX(exp,...,exp) > P

Here&#(var;) = & (exp). Moreover, in defining * we drop all bindings of variables other than ther;.

Example 4.1 Given the defining equation
X(numa) & sendnuma + 1) .receive(numb) . X (numa + numb)

and the valuation given b§(numa) = 3 andé (numb) = 4, with numa andnumb data variables of type

IN, we have send8) _
&, X(numa + numb) ——= {,receive(numb) . X (numa + numb) ,

where{ (numa) = 7 and{ (numb) is undefined.
Ev p[exn/vari]inzl i> Z> p/

& X(expy,....exp) >, p
whereplexn/var;|!_; denotes the expressigrin which each variablear; is replaced by the expression

exp, fori=1,...,n. This would modify the derivation of Examgle #.1 into

&, X (numa + numb) sends), &, receivgnumc) . X (numa + numb + numc) ,

An alternative and more traditional rule for process nameslavbe

in which one appliesr-conversionwhen renaming the argumentmb of receive into numc to avoid
a name clash. In this paper we avoid casual applicatiom-obnversion, since in our invariant proofs
in Section[¥ we track the value of variables that are idedtibig name only. With this in mind we
formulated our rule for process names.

The rules defining the choice operator (TdBle 1, Line 10) @medard and imply immediately that
is associative.

Finally, & £> { says that{ is an extension o€, i.e., a valuation that agrees wiéon all variables
on which¢ is defined, and valuates the other variables occurring free such that the formulg holds
under. All variables not free inp and not evaluated b§ are also not evaluated Ildy

16Eight of the transition rules feature statements of the fétexp) whereexpis a data expression. Here the application of
the rule depends o&(exp) being defined. In cas&(exp) is undefined—either becaus&p contains a variable that is not in
the domain of or becausexp contains a partial function that is given an argument foralhii is not defined—the transition
cannot be taken, possibly leading to a deadlock of the repted process.

13 Modelling, Verifying and Analysing AODV

P2 P) Q _a, Q
PlQ L P (Q (I g A
receive(m), sendm),
S— Q Q (Vm e MSG)

P{Q—P(Q
Table 2:Structural operational semantics for parallel processresgions

Example 4.2 Let & (numa) = 7 andé (numb), & (numc) be undefined. Then the sequential process given
by the pairé, [numa = numb + numc] p admits several transitions of the form

&, [numa = numb + numc|p — ¢, p

such as the one with(numb) = 2 and{ (numc) = 5. On the other hand,, [numa = numb + 8] p admits
no transitions, sincaumb € IN.

4.2 A Language for Parallel Processes

Parallel process expressiomse given by the grammar
PP = &,SP| PP{(PP

whereSPis a sequential process expression &ralvaluation. An expressio, p denotes a sequential
process expression equipped with a valuation of the vasalil maintains. The proce$3((Q is a
parallel composition oP andQ, running on the same network node. As formalised in Tabl& 2ctéion
receivem) of P synchronises with an actiosendm) of Q into an internal actiort. These receive
actions ofP and send actions d cannot happen separately. All other actiong?adnd Q, including
receive actions of and send actions &, occur interleaved iR ((Q. Thus, in an expressiaiP ((Q) (R,
for example, the send and receive action®ofan communicate only witR andR, respectively, but
the receive actions dR, as well as the send actions Bf remain available for communication with
the environment. Therefore, a parallel process expresiontes a parallel composition of sequential
processesg , P with information flowing from right to left. The variables dffferent sequential processes
running on the same node are maintained separately, anddahost be shared.

Instead of introducing the novel operat@r we could have used the partially synchronous parallel
composition operatoff of ACP [4], | of CCS [71] or||a of CSP [77]. However, those operators are
normally used in conjunction with restriction and/or coalogent operators, which are not needed when
using ((. In ACP arestriction or encapsulationoperator is used to prevent read and send actions of
the components of a parallel composition to occur by themsewithout synchronising with an action
from another other component. Furthermoreoacealmenbr abstractionoperator is used to convert
the results of successful synchronisation into internabas, thereby making sure that they will not take
part in further synchronisations with the environment. @S the concealment operator is not needed,
as the parallel composition directly produces internabastas the results of synchronisation; however,
the restriction operator is indispensable. In CSP, on therdband, the restriction operator is made
redundant by incorporating its function within the paratlemposition. In this framework matching
read and send actions have the same name, which is also tleeofidine result of their synchronisation.
This makes the concealment operator indispensable. laappe be impossible to combine the ideas
of CCS and CSP directly to make both the restriction and thmeealment operator redundant, while
maintaining associativity of the parallel composition.r@perator((is the first that does not need such
auxiliary operators, sacrificing commutativity, but nos@sativity, to make this possible.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 14

Though{((only allows information flow in one direction, it reflects liggof WMNSs. Usually two
sequential processes run on the same nBdeQ. The main procesB deals with all protocol details of
the node, e.g., message handling and maintaining the dataasuouting tables. The procég3snanages
the queueing of messages as they arrive; it is always abézéive a message everriis busy. The use
of message queueing in combination witlis crucial, since otherwise incoming messages would be lost
when the process is busy dealing with other mesgm;\ich would not be an accurate model of what
happens in real implementations.

4.3 A Language for Networks

We model network nodes in the context of a wireless mesh mktlwp node expressionsf the form
ip : PP: R. Hereip € IP is theaddressof the nodePPis a parallel process expression, &d & (IP)
is therangeof the node—the set of nodes that are currently within trassion range oip.

P broadcastm) p/ P groupcast(D,m) p/
ip: P: R RICSUM, 4y pro R ip: p: R RDeastm, ;- pro g
P unicast(dip,m) p/ dip cR P —unicast(dip,m) = dip € R
ip : p; R ldipkreastm), 4y pr - g ip:P:R—5ip:P:R
P deliver(d) p/ P receive(m) p/
ip:P:RMip:P’:R ip:P:Rwﬂp:P’:R
P L> P’ 0—{ip} :arrive (m)

ip:P:R—1"=—""=ip:P:R
ip:P:R—5ip:P:R P P

connectip,ip’) disconnectip,ip’)

ip:P:R=/""—"" % ip:P:RU{ip'} ip:P:R————="%ip:P:R—{ip'}

ip: P RCMCPLR) iy pRU(ip'} ip: P RSCOMECRND) - p R fip/)
ip & {ip’,ip"} ip & {ip’,ip"}
ip : P : R COMECRYPTL 5y - p R ip : p; R discomectip’ip’) ;- p . g

Table 3:Structural operational semantics for node expressions

A partial networkis then modelled by aarallel composition|| of node expressions, one for every
node in the network, and @mplete networks a partial network within aencapsulation operatoy]
that limits the communication of network nodes and the detsvorld to the receipt and the delivery of
data packets to and from the application layer attachedetoribdelled protocol in the network nodes.
This yields the following grammar for network expressions:

N ::= [M] M:= ip:PP:R | M|M.

The operational semantics of node and network expressiofsbtes 3 and4 uses transition labels
R:*cast(m), H-K:arrive (m), connec{ip,ip’), disconnectip,ip’), ip:newpkt(d,dip), ip:deliver(d)
and 1. As before,m € MSG, d € DATA, Re Z(1IP), andip,ip’ € IP. Moreover,H,K € Z(IP) are

17assuming that one employs the optional augmentation of &8

15 Modelling, Verifying and Analysing AODV

M R:*cast(m) M N H-K:arrive (m) N/ H-K:arrive (m) M N R:*cast(m) N/

RN (-5 i E ("=)
ok KNR=0 o KNR=0
M||N R:*cast(m) M [N N M||N R:*cast(m) M [N N
M H-K :arrive (m) M N H’-K’:arrive (m) N/
|V|||N (HUH")~(KUK’) : arrive (m) M/HN’
ip: deliver(d) / ip:deliver(d) T / T /
M —m=M N ——=N M — M N — N
MN ip: deliver (d) M/[[N MN ip: deliver(d) M |N/ M||N LN M’||N M||IN LI M ||N
M connect(ip,ip’), M N connectip,ip’), N/ M disconnectip,ip’) M N disconnectip,ip’), N/
|V|||N connect(ip,ip’) |V|’||N’ |V|||N disconnectip,ip’) M/HN/
M connecyip,ip’) M’ M disconnectip,ip’), M’ M R:*cast(m) M/ M L> M/
M] connect(ip,ip’) /] M] disconnectip,ip’) /] [M] LN [M/] [M] LN [M]
M ip: deliver(d) M’ M {ip}—K:arrive (newpkt (d,dip)) M’
[M] ip: deliver(d) [M’] [M] ip: newpkt(d,dip) [M’]

Table 4:Structural operational semantics for network expressions

sets of IP addresses. The actRrFcast(m) casts a messagethat can be received by the $ebf net-
work nodes. We do not distinguish whether this message faslir@adcast, groupcast or unicast—the
differences show up merely in the valueRfRecall thatD € #7(IP) denotes a set of intended destina-
tions, anddip € IP a single destination. A failed unicast attempt on the paitsgprocess is modelled
as an internal actiom on the part of a node expression. The acendm) of a process does not give
rise to any action of the corresponding node—this action éguential process cannot occur without
communicating with a receive action of another sequentiatgss running on the same node.

The actionH—K: arrive (m) states that the messagesimultaneously arrives at all addresges H,
and fails to arrive at all addressigs= K. The rules of Tablgl4 let R: *cast(m)-action of one node syn-
chronise with ararrive (m) of all other nodes, where thesrive (m) amalgamates the arrival of message
m at the nodes in the transmission rarigyef the *cast(m), and the non-arrival at the other nodes. The
rules forarrive (m) in Table[3 state that arrival of a message at a node happend iy if the node
receives it, whereas non-arrival can happen at any times @rhbodies our assumption that, at any time,
any message that is transmitted to a node within range ofahdes is actually received by that node.
(The eighth rule in Tablgl3, having no premises, may appeaayahat any node has the option to
disregard any message at any time. However, the encapsutgterator (below) prunes away all such
disregard-transitions that do not synchronise with a ca&rafor whichip is out of range.)

Internal actionsr and the actiorip:deliver(d) are simply inherited by node expressions from the
processes that run on these nodes, and are interleaveddartikl composition of nodes that makes up
a network. Finally, we allow actionsonnectip,ip’) anddisconnectip,ip’) for ip,ip’ € IP modelling a
change in network topology. Each node needs to synchroritbesuch an action. These actions can be
thought of as occurring nondeterministically, or as adimstigated by the environment of the modelled
network protocol. In this formalisation nod is in the range of nod#, meaning thaip’ can receive
messages sent hiy, if and only ifip is in the range ofp’. To break this symmetry, one just skips the
last four rules of Tablg]3 and replaces the synchronisatiées forconnectanddisconnectin Table[4
by interleaving rules (like the ones fdeliver andr).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 16

The main purpose of the encapsulation operator is to ensatend messages will be received that
have never been sent. In a parallel composition of netwodespany actiomeceive(m) of one of the
nodesip manifests itself as an actidd—K:arrive (m) of the parallel composition, witip € H. Such
actions can happen (even) if within the parallel compasititey do not communicate with an action
*cast(m) of another component, because they might communicate witast(m) of a node that is
yet to be added to the parallel composition. However, onteales of the network are accounted
for, we need to inhibit unmatched arrive actions, as othesvaiur formalism would allow any node at
any time to receive any message. One exception however @se #rrive actions that stem from an
actionreceivenewpkt(d, dip)) of a sequential process running on a node, as those actipreseait
communication with the environment. Here, we use the fonatewpkt, which we assumed to ex.

It models the injection of new dathfor destinationdip.

The encapsulation operator passes through internal actaanwell as delivery of data to destina-
tion nodes, this being an interaction with the outside wortdast(m)-actions are declared internal
actions at this level; they cannot be steered by the outs@hidwThe connect and disconnect actions
are passed through in Talile 4, thereby placing them undérotai the environment; to make them
nondeterministic, their rules should haverdabel in the conclusion, or alternativegonnectip,ip’)
anddisconnectip,ip’) should be thought of as internal actions. Finally, actiarméve (m) are simply
blocked by the encapsulation—they cannot occur withoutlssanising with a*cast(m)—except for
{ip}—K:arrive (newpkt(d,dip)) with d € DATA anddip € IP. This action represents new datahat is
submitted by a client of the modelled protocol to ngalefor delivery at destinationip.

4.4 Results on the Process Algebra

Our process algebra admits translation into one withow siatictures (although we canr®scribethe
target algebra without using data structures). The idealiggdlace any variable by all possible values it
can take. Formally, processésp are replaced by’ (p), where.7; is defined inductively by

T (broadcast(ms) . p) = broadcast(é (ms)). 7z (p) ,

T (groupcast(destsms) . p) = groupcast(é (dest$, &(ms)). T¢(p) ,

T (unicast(dest ms) . p » q) = unicast(& (desy, & (ms)). Tz (p) » J:(q) ,

T (sendms). p) = send&(ms). Z (p) ,

T (deliver(datg . p) = deliver(& (data) . Tz (p) ,

T (receive(nsg) . p) = ¥ meuss ECENEM) . T jnog:—m (P) .

Te([var :=exd p) = T-fZ‘[var::E(exp)](p) ,
p+a) = Zz(p)+ 7 (q) ,

o~~~ o~ o~ o~ o~ o~

7

The last equation requires the introduction of a processengifor every substitution instandgof the
arguments oK. The resulting process algebra has a structural operatenaantics in thale Simone
format, generating the same transition system—up to stbosiqnilarity, <= —as the original. Only the
rules for sequential process expressions are differeasetlare displayed in Tallé¢ 5. It follows thkat
and many other semantic equivalences, are congruences tanguage.

Theorem 4.3 Strong bisimilarity is a congruence for all operators of danguage.

This is a deep result that usually takes many pages to estaelig.,[[94]). Here we get it directly from
the existing theory on structural operational semantissa gesult of carefully designing our language
within the disciplined framework described by de Simdné€].[20 O

18 To avoid the functiomewpkt we could have introduced a new primitimewpkt, which is dual tadeliver.

17 Modelling, Verifying and Analysing AODV

broadcast(m). p 2readeastm, sendm).p =04,
groupcast(D,m).p Z2POM, b geliver(d).p 2}
unicast(dip, m).p » g icastdipm, receive(m).p ECEvEm,
unicast(dip, m).p » ¢ —unicastdipm, o rp-Dp
a a N .
)F:z E)l’ =) piq—gjp’ p4q_q_>iq>/q/ Zij :ip; o (Va € Act)

Table 5:Structural operational semantics for sequential processter elimination of data structures

Theorem 4.4 ((is associative, an¢ is associative and commutative, upto

Proof. The operational rules for these operators fit a format ptegan [17], guaranteeing associativity
up to2. The ASSOC-de Simone formatt [17] applies to all transition system specifications ($5i8
de Simone format, and allows 7 different types of rules (réddzer) for the operators in question. Our
TSS is in De Simone format; the three rules foof Table[2 are of types 1, 2 and 7, respectively. To be
precise, it has rules,for a € Act — {receive(m) | me MSG}, rules 2 for a € Act— {sendm) | meMSG},
and rules ¢, for (a,b) € {(receive(m),sendm)) | meMSG}. Moreover, the partiatommunication
functiony: Act x Act — Act is given byy(receive(m),send m)) = 7. The main result of [17] is that an
operator is guaranteed to be associative, providedyttsgassociative and six conditions are fulfilled. In
the absence of rules of types 3, 4, 5 and 6, five of these conditire trivially fulfilled, and the remaining
one reduces to

7(a.b) = (la@ zb) A (Za <~ 2y(a.b)) A (1b <~ 1y(a,b)) :
Here 1, says that rule lis present, etc. This condition is met f@rbecause the antecedent holds only
when taking(a, b) = (receive(m),send'm)) for somemeMSG. In that case Jis false, 2 is false, and 2,
2:, 1y and % are true. Moreovely(y(a,b),c) andy(a, y(b,c)) are never defined, thus makipdrivially
associative. The argument fhbeing associative proceeds likewise. Here the only nefatrtondition
is the associativity of, given by

y(R:*cast(m),H—K:arrive (m)) = y(H—-K:arrive (m), R: *cast(m)) = R:*cast(m) ,
providedH C RandK "R= 0, and
y(H-K:arrive (m),H’=K’:arrive (m)) = (H UH")~(KUK/) : arrive (m) .

Commutativity of|| follows by symmetry. O

4.5 Optional Augmentation to Ensure Non-Blocking Broadcas

Our process algebra, as presented above, is intended foonkstin which each node imput en-
abled[61], meaning that it is always ready to receive any messageable to engage in the transition
receive(m) for anym € MSG. In our model of AODV (Sectiofi]6) we will ensure this by equippeach
node with a message queue that is always able to accept medsadater handling—even when the
main sequential process is currently busy. This makes odlehmmn-blocking meaning that no sender
can be delayed in transmitting a message simply becausef dime potential recipients is not ready to
receive it.

However, the operational semantics does allow blockingnd would (mis)use the process algebra
to model nodes that are not input enabled. This is a logicadeguence of insisting that any broadcast
messagés received by all nodes within transmission range.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 18

Since the possibility of blocking can regarded as a bad ptpmd broadcast formalisms, one may
wish to take away the expressiveness of the language tloatsathodelling a blocking broadcast. This
is the purpose of the following optional augmentations af@perational semantics.

The first possibility is the addition of the rule

P receive(m),

ip: p: R pIZQ:amve(m, ;- 5. g

It states that a message may arrive at a ripdegardless whether the node is ready to receive it; if it is
not ready, the message is simply ignored, and the processguan the node remains in the same state.
A variation on the same idea stems from @eculus of Broadcasting Syste@BS) [88]. It consists
in eliminating the negative premise in the above rule in enaf actionggnore(m) € Act—in [88] called
discardactionsw: —which can be performed by a process exactly when it is rmaty¢o do aeceive(m).

The rule above then becomes .
P ignore(m) p/

ip: p: R RIz0:amve(m, ;- - g
and we need the extra rules:

&, broadcastms).p 2", & proadcastms).p

&.groupcast dests ms).p ‘9", & groupcastdests ms).p

& . unicast(dest ms).p » q 2™, & unicast(dest ms.p » q

&,sendms).p 9, & sendms).p

& . deliver(datg.p ‘2™, & deliver(datg.p

ignore(m

E [var:=exgp=——> E [var:=exdp
<, [¢]p ‘gnorelml £ 16]p

£.p ignore(m E p E q Agnore(m), ignore(m E q

£.p+q 2™ g pig
for all me MSG. Furthermore, the first rule fgt from Table[3 is replaced by

P-4 P
P{Q-"P(Q

These rules ensure that for Bllandmwe always haveP 2™, o« (Q = P P E¥eM) - After
elimination of the data structures as described in Settiinthis operational semantics is again in the
de Simone format.

Either of these two optional augmentations of our semaagfies rise to the same transition system.
Moreover, when modelling networks in which all nodes areutngnabled—as we do in this paper—
the added rule for node expressions will never be used, andetulting transition system is the same
whether we use augmentation or not.

(Va # receivgm), ignore(m)).

4.6 |lllustrative Example

To illustrate the use of our process algebra AWN, we congidextwork of two nodea andb (a,b € IP)
on which the same process is running, although starting fierdint states. The process describes a

19 Modelling, Verifying and Analysing AODV

simply (toy-)protocol: whenever a new data packet for desibndip “appears@ the data is broadcast
through the network until it finally reachesp. A node alternates between broadcasting, and receiving
and handling a message. THata stemming from a message received by ngdeill be delivered to

the application layer if the message is destinedgatself. Otherwise the node forwards the message.
Every message travelling through the network and handletthdyrotocol has the formg(data dip),
wheredatac DATA is the data to be sent awlip € IP is its destination. The behaviour of each node can
be modelled by:

X(ip,data,dip) &ef broadcastmg(data,dip)).Y(ip)

Y(ip) &ef receive(m).([m=mg(data,dip) A dip=ip|deliver(data).Y(ip)

+[m=mg(data,dip) Adip#ip|X(ip, data,dip)) .
If a node is in a staté(ip , data, dip), whereip € IP is the node’s stored value of its ow IP address, it
will broadcastng(data dip) and continue in staté(ip), meaning that all information about the message
is dropped. If a node in statip) receives a message—a value that will be assigned to the variable
m—it has two ways to continue: process-{mg(data,dip) A dip=ip] deliver(data).Y(ip) is enabled
if the incoming message has the fomg(data dip) and the node itself is the destination of the message
(dip=ip). Inthat case the data distilled fromwill be delivered to the application layer, and the process
returns tor (ip). Alternatively, if m=mg(data,dip) Adip#ip], the process continues afp , data dip),
which will then broadcast another message with contdataanddip. Note that calls to processes use
expressions as parameters.

Let us have a look at three scenarios. First, assume thabttesa andb are within transmission
range of each other; noden stateX(a, d,a), and nodé in Y(b). This is formally expressed éa:X(a,
d,a):{b}||b:Y(b):{a}], although for compactness of presentation, we just i@, d,a) || Y(b)] below.

In this case, noda broadcasts the messagg(d, a) and continues as(a). Nodeb receives the message,
and continues (after evaluation of the messag&)lasd,a). Nextb broadcasts (forwards) the message,
and continues a$(b), while nodea receiveang(d,b), and, due to evaluatiomlelivers d and continues
asY(a). Formally, we get transitions from one state to the other:

X(a,d,a) | (b)) 2eestnedal T, 1y(a) | x(b, d,a)) 2castinelda)), T, adelver(d, iy) ||y(b)].

Here, ther-transitions are the actions of evaluating one of the twaodgiaf a proces¥, and we left out
three intermediate expressions.

Second, assume that the nodes are not within transmissigie,ravith the initial process a and
b the same as above; formallg:[X(a, d,a):0| b:Y(b):0]. As before, node broadcastsg(d,a) and
continues iry (a); but this time the message is not received by any node; hemoeessage is forwarded
or delivered and both nodes end up running prodess

For the last scenario, we assume thandb are within transmission range and that they have the
initial statesx(a, d,b) andx(b, e,a). Without the augmentation of Sectibnl4.5, the network esgion
[X(a,d,b)||X(b, e,a)] admits no transitions at all; neither node can broadcastéssage, because the
other node is not listening. With the optional augmentatassuming that nodesends first:

X(a,d.b)|[X(b, e,a)] *E=EEC [v(@) (b, e,a)] P L, SEREE, [y(a) | ¥(b)].

Unfortunately, nodé is initially in a state where it cannot receive a messagg'smessage “remains
unheard” and will never deliver that message. To avoid this behavioud @msure that both messages
get delivered, as happens in real WMNSs, a message queue taindaiced (see Sectign 6.6). Using a
message queue, the optional augmentation is not needed,asig node is always in a state where it can
receive a message.

1991 this small example, we assume that new data packets jpsaapmagically”; of course one could use the message
newpkt(data,dip) instead.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 20

5 Data Structure for AODV

In this section we set out the basic data structure needdtidatetailed formal specification of AODV.
As well as describingypesfor the information handled at the nodes during the exenudighe protocol
we also define functions which will be used to describe theipedntention—and overall effect—of the
various update mechanisms in an AODV implementation. Tfieitlens are grouped roughly according
to the various “aspects” of AODV and the host network.

5.1 Mandatory Types

As stated in the previous section, the data structure alwagsists of application layer data, messages,
IP addresses and sets of IP addresses.

(a) The ultimate purpose of AODV is to delivapplication layer data The typeDATA describes a set
of application layer data items. An item of data is thus aipaldr element of that set, denoted by
the variabledata € DATA.

(b) Messagesire used to send information via the network. In our spetificave use the variablesg
of the typeMSG. We distinguish AODV control messages (route requesteroejly, and route error)
as well agddata packetsmessages for sending application layer data (see Séc8yn 5

(c) The typeIP describes a set of IP addresses or, more generalyt af node identifiersn the RFC
3561 [79], 1P is defined as the set of all IP addresses. We assume that edehhas a unique
identifierip € IP. Moreover, in our model, each nogemaintains a variablep which always has
the valuep. In any AODV control message, the variaklep holds the IP address of the sender, and
if the message is part of threute discovery processa route request or route reply message—we
useoip anddip for the origin and destination of the route sought. Furtl@enrip denotes an
unreachable destination andip the next hop on some route.

5.2 Sequence Numbers

As explained in Sectidn 2, any node maintains its @@guence number the value of the variablen—
and a routing table whose entries describe routes to otld@snorhe value ofn increases over time.
AODV equips each routing table entry with a sequence nunibeomstitute a measure approximating
the relative freshness of the information held—a smallenloer denotes older information. All sequence
numbers of routes tdip € IP stored in routing tables are ultimately derived fralip’'s own sequence
number at the time such a route was discovered.

We denote the set of sequence numbers@y and assume it to be totally ordered. By default we
takeSQN to be IN, and use standard functions such as max. The ingtalence number of any node is
1. We reserve a special elemert BQN to be used for the sequence number of a route, whose semantics
is that no sequence number for that route is known. Sequambers are incremented by the function

inc :SQN — SQN
inc(sn) = sn+1 ifsn# 0
sn otherwise.

The variablessn, dsn andrsn of type SQN are used to denote the sequence numbers of routes leading
to the node®ip, dip andrip.
AODV tags sequence numbers of routes as “known” or “unknowiils indicates whether the value
of the sequence number can be trusted. The sequence-nataherflag is set to unknownr(k) when
a routing table entry is updated with information that is equipped with a sequence number itself. In

21 Modelling, Verifying and Analysing AODV

such a case the old sequence number of the entry is maintdierde the valuank does not indicate
that no sequence number for the entry is known. Here we ussetite= {kno,unk} for the possible
values of the sequence-number-status flag; we use the leadigibto range over typé&.

5.3 Modelling Routes

In a network, pairgipo,ipk) € IP x IP of nodes are considered to be “connectedpif can send tapy
directly, i.e.,ipg is in transmission range @by and vice versa. We say that such nodes are connected
by a singlehop. Whenipg is not connected t@qy then messages froiipg directed toipkx need to be
“routed” through intermediate nodes. We say thabwate (from ipp to ipk) is made up of a sequence
[iPo,ip1,ip2, ... ,iPk_1,iPk], where(ipi,ipi+1),1 =0,...,k—1, are connected pairs; thengthor hop count

of the route is the number of single hops, and any ripdaeeds only to know the “next hop” address
ipi;1 in order to be able to route messages intended for the finehd#@en ipy.

In operation, routes to a particular destination are retgdesnd, when finally established, need to be
re-evaluated in regard to their “validity”. Routes may beedsnvalid if one of the pairgip;,ipj;+1) in the
hop-to-hop sequence gets disconnected. Then AODV may ineokeid, as the need arises, to discover
alternative routes. Meanwhile, an invalid route remainglid until fresh information is received which
establishes a valid replacement route.

In addition to the next hop and hop count, AODV also “tags” ateawith its validity, sequence num-
ber and sequence-number status. For every route, a nodeveostores a list gbrecursors modelled
as a set offP addresses. This set collects all nodes which are curreatgngial users of the route, and
are located one hop further “upstream”. When the interestladr nodes emerges, these nodes are added
to the precursor ligtl; the main purpose of recording this information is to infdlmse nodes when the
route becomes invalid.

In summary, following the RFC, a routing table entry (or grior short) is given by 7 components:

(a) The destination IP address, which is an elemenppf
(b) The destination sequence number—an elemesQwf
(c) The sequence-number-status flag—an element of the-sékno, unk};

(d) Aflag tagging the route as being valid or invalid—an elat# the seF = {val,inv}. We use the
variableflag to range over type;

(e) The hop count, which is an element of IN. The variables ranges over the type IN and we make
use of the standard functionl,;

(f) The next hop, which is again an elementi®f and

(g) A precursor list, which is modelled as an eIement%(IP) We use the variablere to range
over Z(IP).

We denote the type of routing table entriesfyyise the variable, and define a generation function
(Cyoymymymy—y—) i IPXSQN X K X F X IN XIP x Z(IP) — R.

A tuple (dip, dsn,dsk, flag, hops, nhip, pre) describes a route tdip of length hopsand validity flag;

the very next node on this route ip; the last time the entry was updated the destination seguenc
number wagslsn dskdenotes whether the sequence number is “outdated” or caseloketo reason about
freshness of the route. Finallgre is a set of all neighbours who are “interested” in the routdipo A

20The RFC does not mention a situation where nodes are droppexttie list, which seems curious.
21The word “precursor list” is used in the RFC, but no propertiélists are used.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 22

node being “interested” in the route is somewhat sketclefingd as one which has previously used the
current node to route messageslip. Interested nodes are recorded in case the roudgtshould ever
become invalid, so that they may subsequently be informee.u¥¢ projectionss, ... 7 to select the
corresponding component from the 7-tuple: For examme R — IP determines the next hop.

5.4 Routing Tables

Nodes store all their information about routes in theirting tables a nodeip’s routing table consists of
a set of routing table entries, exactly one for each knowtirt®n. Thus, a routing table is defined as
a set of entries, with the restriction that each has a diftedestinatiordip, i.e., the first component of
each entry in a routing table is unid@Formally, we define the typgT of routing tables by

RT := {rt|rte Z[R) AVr,sert:r#s=1(r)#m(s)}.

In the specification and implementation of AODV during rofiiteling nodes choose between alternative
routes if necessary to ensure that only one route per déstinands up in their routing table. In our
model, each nodp maintains a variablet, whose value is the current routing table of the node.

In the formal model (and indeed in any AODV implementatior® meed to extract the components
of the entry for any given destination from a routing table. tfiis end, we define the following partial
functions—they are partial because the routing table neetave an entry for the given destination. We
begin by selecting the entry in a routing table correspapdiina given destinatiodip:

Oroute- RT X IP — R

; r ifrert A m(r)=di
Oroute(rt, dip) = { (r) p

undefined otherwise

Through the projections, .. ., 7%, defined above, we can now select the components of a sekatigd
(a) Thedestination sequence numlretative to the destinatiodip:

sqn :RT X IP — SQN

sqn(rt, dip) = { gz(oroute(rt,dlp)) gtggm(sré,mp) is defined

(b) The“known” status of the sequence number of a route:

sqnf :RT X IP — K

sqni(rt,dip) = { T8(Oroute(rt, dip)) if Oroute(rt, dip) is defined

unk otherwise

(c) Thevalidity statusof a recorded route:

flag: RTXIP — F
flag(rt,dip) := mm(0route(rt,dip))

(d) Thehop countof the route from the current node (hostiryto dip:

dhops :RTxIP — N
dhops(rt,dip) := 75(0route(rt,dip))

22As an alternative to restricting the set, we could have definating tables as partial functions frafg to R, in which case
it makes more sense to define an entry as a 6-tuple, not ingjukle the destination IP as the first component.

23 Modelling, Verifying and Analysing AODV

(e) Theidentity of the next node on the route to difpsuch a route is known):

nhop:RT x IP — IP
nhop(rt,dip) := 7&(0route(rt,dip))

(f) The set ofprecursorsor neighbours interested in using the route fripnto dip:

precs :RTx IP — Z(IP)
precs(rt,dip) := TH(Oroute(rt,dip))

The domain of these partial functions changes during theatipe of AODV as more routes are dis-
covered and recorded in the routing taltle The first two functions are extended to be total functions:
whenever there is no route dip inside the routing table under consideration, the sequeuac®er is set
to “unknown” (0) and the sequence-number-status flag is set to “unkngutk), respectively. In the
same style each partial function could be turned into a twtal However, in the specification we use
these functions only when they are defined.

We are not only interested in information about a singleepbtt also in general information on a
routing table:

(a) The set of destination IP addressesvialid routes inrt is given by

vD:RT — 2(IP)

vD(rt) := {dip| (dip,x,*,val, x, *, %) €rt}
(b) The set of destination IP addressesifwalid routes inrt is

iD:RT — Z(IP)

iD(rt) := {dip| (dip,*,*,inv *, %,) € rt}
(c) Last, we define the set of destination IP addressesnfmvnroutes by

kD:RT — Z(IP)
kD(rt) := vD(rt) UibD(rt) = {dip| (dip,=,*,% % %, %) € rt}

Obviously, the partial functiongyoyte, £1ag, dhops, nhop andprecs are defined fort anddip exactly
whendip € kD(rt).

5.5 Updating Routing Tables

Routing tables can be updated for three principal reasdms fifist is when a node needs to adjust its list
of precursors relative to a given destination; the secondhisn a received request or response carries
information about network connectivity; and the last whiefoimation is received to the effect that a
previously valid route should now be considered invalid. d&&ne an update function for each case.

5.5.1 Updating Precursor Lists

Recall that the precursors of a given nageelative to a particular destinatiaifip are the nodes that
are “interested” in a route tdip via ip. The functionaddpre takes a routing table entry and a set of IP
addresseapreand updates the entry by addingreto the list of precursors already present:

addpre:Rx Z(IP) — R
addpre((dip, dsn, dsk, flag, hops nhip,pre),npre) := (dip,dsn,dsk flag, hops nhip, preunpre) .

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 24

Often it is necessary to add precursors to an entry of a giveting table. For that, we define the
function addpreRT, which takes a routing table:, a destinatiordip and a set of IP addressepre and
updates the entry with destinatidlip by addingnpreto the list of precursors already present. It is only
defined if an entry for destinaticdip exists.

addpreRT :RT x IP x &#(IP) — RT
addpreRT(rt,dip,npre) = (rt — {Oroute(rt,dip)}) U {addpre(oroute(rt,dip) ,npre)} .
Formally, we remove the entry with destinatidip from the routing table and insert a new entry for that
destination. This new entry is the same as before—only theupsors have been added.

5.5.2 Inserting New Information in Routing Tables

If a node gathers new information about a route to a destinalip, then it updates its routing table
depending on its existing information on a routalip. If no route todip was known at all, it inserts a new
entry in its routing table recording the information reeely If it already has some (partial) information
then it may update this information, depending on whethemiiw route is fresher or shorter than the
one it has already. We define an update functipdate(rt,r) of a routing tablet with an entryr only
whenr is valid, i.e.,mu(r) = val, /(r) = 0 < 18(r) = unk, and7s(r) = unk = 7B(r) = 1A
update:RT xR — RT
rtu{r} if e (r
nrtu{nr} if m(r) € kD
(
(

& kD(rt)
(rt) (

nrtU{nr} if m(r) € kD(rt) Asqn(rt,m(r)) = 7&(r) A dhops(rt, m(r)) > 76(r)
(rt) (
(rt)

r

update(rt,r) =

~—_— — ' —

nrtu{nr} if m(r) € kD
nrtu{nr'} if mm(r) € kD
nrtu{ns} otherwise ,
wheres = oOroute(rt, Ta(r)) is the current entry in the routing table for the destinatdm (if it exists),
andnrt := rt — {s} is the routing table without that entry. The entny:= addpre(r, 1%(s)) is identical

to r except that the precursors frosnare added ands:= addpre(s, 1%(r)) is generated frons by
adding the precursors from Lastly, nr’ is identical tonr except that the sequence number is replaced
by the one from the route More preciselynr’ := (dipy,, 7&(S) , dsk, , flagn, , hops, , nhipn , preny) if

nr = (dippr,*,dsky, flagnr,hops, Nhipnr,prene). In the situation wheregn(rt, 7 (r)) = m&(r) both routes

nr andnr’ are equal. Therefore, though the cases of the above ddfimitenot mutually exclusive, the
function is well defined.

The first case describes the situation where the routing @tks not contain any information on a
route todip. The second case models the situation where the new route dra@siter sequence number.
As a consequence all the information from the incoming imf@tion is copied into the routing table.
In the third and fourth case the sequence numbers are the aaineannot be used to identify better
information. Hence other measures are used. The routeeirib&l routing table is only replaced if
either the new hop count is strictly smaller—a shorter rdwate been found—or if the route inside the
routing table is marked as invalid. The fifth case deals wWithdituation where a new route to a known
destination has been found without any information on itgisace numberrg(r) = OA 7B(r) = unk).

In that case the routing table entry to that destinationigsgé updated, but the existing sequence number
is maintained, and marked as “unknown”.

Note that we do not update if we receive a new entry where theesee number and the hop count
are identical to the current entry in the routing table. &wlhg the RFC, the time period (till the valid
route becomes invalid) should be reset; however at the mowedo not model timing aspects.

23 After we have introduced our specification for AODV in Senff) we will justify that this definition is sufficient.

25 Modelling, Verifying and Analysing AODV

5.5.3 Invalidating Routes

Invalidating routes is a main feature of AODV,; if a route ig malid any longer its validity flag has to
be set to invalid. By doing this, the stored information abitne route, such as the sequence number
or the hop count, remains accessible. The process of iatalgl a routing table entry follows four
rules: (a) any sequence number is incremented by 1, excegtdgliruly unknown sequence number
(sgn= 0, which will only occur ifdsk= unk) is not incremented, (c) the validity flag of the entry is
set toinv, and (d) an invalid entry cannot be invalidated again. Haxewn exception to (a) and (b),
when the invalidation is in response to an error messagentbssage also contains a new (and already
incremented) sequence number for each destination to bidated.

The function for invalidating routing table entries takesaaguments a routing table and a set of
destinationsdestsc #7(IP x SQN). Elements of this set ar@ip,rsn)-pairs that not only identify an
unreachable destinatiaip, but also a sequence number that describes the freshndssfalitty route.

As for routing tables, we restrict ourselves to sets thaet@vmost one entry for each destination; this
time we formally definelestsas apartial functionfrom IP to SQN, i.e. a subset ofP x SQN satisfying

(rip,rsn), (rip,rsn’) € dests= rsn=rsn’ .

We use the variabléests to range over such sets. When invokingvalidate we either distildests
from an error message, or determitiestsas a set of pairérip, inc(sqn(rt,rip)), where the operator
inc (from Sectioni 5.R) takes care of (a) and (b). Moreover, wedistil or constructdestsin such a way
that it only lists destinations for which there is a validrgnn the routing table—this takes care of (d).

invalidate :RT x (IP — SQN) — RT
invalidate(rt,destg := {r|rert A (1m(r),*) ¢ destg
U {(mm(r),rsn, 1e(r), inv, 78(r), 76(r), 7%(r)) | T € 1t A (1(r),rsh) € destg

All entries in the routing table for a destinatioip in destsare modified. The modification replaces the
valueval by inv and the sequence number in the entry by the correspondingeiseg number from
dests

Copying the sequence number fralastdeaves the possibility that the destination sequence numbe
of an entry is decreased, which violates one of the fundashassumption of AODV and may vyield
unexpected behaviour (cf. Sectionl8.1). To guarantee arase of the sequence numhsn in Line
3 of the above definition could be replaced by taking the marmof the sequence number that was
already in the routing table-1, and the sequence number froestsi.e.,max(inc(7k(r)),rsn).

5.6 Route Requests

A route request—RREQ—for a destinatidip is initiated by a node (with routing tabke) if this node
wants to transmit a data packetdp but there is no valid entry fodip in the routing table, i.edip ¢
vD(rt). When a new route request is sent out it contains the ideotitiie originating nodeip, and a
route request identifigfRREQ ID); the type of all such identifiers is denotedRBREQID, and the variable
rreqid ranges over this type. This information does not changey even the request is re-broadcast by
any receiving node that does not already know a route to theested destination. In this way any request
still circulating through the network can be uniquely idBetl by the pair(oip, rreqid) € IP x RREQID.

For our specification we seREQID = IN. In our model, each node maintains a variatieqgs of type

2 (IP x RREQID)

of sets of such pairs to store the sets of route requests gette node so far. Within this set, the node
records the requests it has previously initiated itself. elsure a fresinreqid for each new RREQ it

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 26

generates, the nodje applies the following function:

nrreqid: Z(IP x RREQID) x IP — RREQID
nrreqid(rregs,ip) := maxn| (ip,n) € rreqs} +1,

where we take the maximum of the empty set to be 0.

5.7 Queued Packets

Strictly speaking the task of sending data packets is nardegl as part of the AODV protocol—however,
failure to send a packet because either a route to the déstiria unknown, or a previously known
route has become invalid, prompts AODV to be activated. inmodelling we describe this interaction
between packet sending and AODV, providing the minimakistiructure for our specification.

If a new packet is submitted by a client of AODV to a node, it magd to be stored until a route to
the packet’s destination has been found and the node is sgtdaurying out other AODV tasks. We use
a queue-style data structure for modelling the store of gigckt a node, noting that at each node there
may be many data queues, one for each destination. In gewerdenote queues of tyfl&PE by [TYPE],
denote the empty queue lbly and make use of the standard (partial) functinaesd : [TYPE| — TYPE,
tail : [TYPE| — [TYPE| andappend : TYPE x [TYPE| — [TYPE] that return the “oldest” element in the
gueue, remove the “oldest” element, and add a packet to #gequespectively.

The data type

STORE = {store

storec Z2(IP x P x [DATA|) A
((dip, p,q), (dip, p',) € store= p=p Aq={)

describes stores of enqueued data packets for variousatistis, wher® := {no-req,req}. An ele-
ment(dip, p,q) € IP x P x [DATA] denotes the quewgof packets destined fatip; the request-required
flag p is req if a new route discovery process fdip still needs to be initiated, i.e., a route request
message needs to be sent. The vaktereq indicates that such a RREQ message has been sent already,
and either the reply is still pending or a routedip has been established. The flag is setdq when a
routing table entry is invalidated.

As for routing tables, we require that there is at most oneydnt every IP address. In our model,
each node maintains a varialseore of type STORE to record its current store of data packets.

We define some functions for inspecting a store:

(&) Similar togroute, We need a function that is able to extract the queue for angiestination.

Oqueue: STORE X IP — [DATA]

) if (dip,*,q) € store
Oqueudstore,dip) = { ?] otf]err\)lvisg)

(b) We define a functioD to extract the destinations for which there are unsent pgacke

gD : STORE — Z(IP)
aD(store) := {dip| (dip, *,*) € store} .

Next, we define operations for adding and removing data padi@nm a store.
(c) Adding a data packet for a particular destination to eesi®defined by:

add : DATA x IP x STORE — STORE
storeU {(dip,req,append(d,[]))} if (dip,*,x*) ¢ store
add(d,dip, store) := store— {(dip, p,q)}
U{(dip, p,append(d,q))} if (dip, p,q) € store.

27 Modelling, Verifying and Analysing AODV

Informally, the process selects the entdip, p,q) € storee STORE, wheredip is the destination of
the application layer datd, and appendd to the queue of dip in that triple; the request-required
flag p remains unchanged. In case there is no entrgijpin storg the process creates a new queue
[d] of stored packets that only contains the data packet undeideration and inserts it—together
with dip—into the store; the request-required flag is setdq, since a route request needs to be sent.

(d) To delete the oldest packet for a particular destindtiom a store , we define:

drop: IP x STORE — STORE

store— {(dip, *,q) } if tail(q) =]
drop(dip,store) := { store— {(dip, p,q)}

U{(dip,p,tail(q))} otherwise,

whereq = gqueud store, dip) is the selected queue for destinatidip. If dip ¢ gqD(store) theng = [].
Thereforetail(qg) and hence alsé@rop(dip,store) is undefined. Note that il is the last queued
packet for a specific destination, the whole entry for theidason is removed fronstore

In our model of AODV we use onlydd anddrop to update a store. This ensures that the store will
never contain a triplédip, %, []) with an empty data queue, i.e.,

dip € gD(store) = ggueudstore, dip) # [] . 1)

Finally, we define operations for reading and manipulatimgrequest-required flag of a queue.

(e) We define a partial functiod 54 to extract the flag for a destination for which there are unsen
packets:
Op-flag: STOREX IP — P
R A o if (dip, p,*) € store
Tp-flag(Store, dip) = { undefined otherwise

(f) We define functionsetRRF andunsetRRF to change the request-required flag. After a route request
for destinationdip has been initiated, the request-required flagdiprhas to be set tao-req.

unsetRRF : STORE X IP — STORE

store— {(dip, *,q) } U{(dip,no-req,q)} if {(dip,*,q)} € store

unsetRRF(store,dip) = { store otherwise

In case that there is no queued data for destinatipnthe storeremains unchanged.

Whenever a route is invalidated the corresponding reqeegtired flag has to be set t@q; this
indicates that the protocol might need to initiate a newedaliscovery process. Since the function
Lnvalidatelinvalidates sets of routing table entries, we define a fonawith a set of destinations
destse Z(IP x SQN) as one of its arguments (annotated with sequence numberd) are not used
here).

TORE

S
{(dip,p,q) | (dip, p,q) € storeA (dip, x) ¢ destg
{(dip,req,q) | (dip, p,q) € storeA (dip, *) € destg .

setRRF : STORE x (IP — SQN) —
setRRF(store, dests =

U

5.8 Messages and Message Queues

Messages are the main ingredient of any routing protoca. riiéssage types used in the AODV protocol
are route request, route reply, and route error. To gendrages messages, we use functions

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 28

rreq: IN XxRREQID x IP x SQN x K x IP x SQN x IP — MSG
rrep: IN xIP x SQN x IP x IP — MSG
rerr : (IP — SQN) x IP — MSG .24

The functionrreq(hopsrreqid,dip,dsn dsk oip,osn sip) generates a route request. Hérepsindicates
the hop count from the originat@ip—that, at the time of sending, had the sequence nude+to the
sender of the messag#; rreqid uniquely identifies the route requedsnis the least level of freshness of
a route to dip that is acceptabledip—it has been obtained by incrementing the latest sequenobemu
received in the past byip for a route towardslip; anddskindicates whether we can trust that number.
In case no sequence number is knodsnis set to 0 andiskto unk. By rrep(hops, dip,dsn,oip,sip)
a route reply message is obtained. Originally, it was geedrydip—wheredsndenotes the sequence
number ofdip at the time of sending—and is destined top; the last sender of the message was the
node with IP addressip and the distance betweelip andsip is given byhops The error message is
generated byerr(dests sip), wheredests: IP — SQN is the list of unreachable destinations asid
denotes the sender. Every unreachable destinafiocomes together with the incremented last-known
seqguence numbesn.
Next to these AODV control messages, we use for our spedditatso data packets: messages that

carry application layer data.

newpkt : DATA X IP — MSG

pkt : DATA x IP x IP — MSG

Although these messages are not part of the protocol itkelf,are necessary to initiate error messages,
and to trigger the route discovery processwpkt(d,dip) generates a message containing new applica-
tion layer datad destined for a particular destinatialip. Such a message is submitted to a node by a
client of the AODV protocol hooked up to that node. The fuoietpkt(d, dip,sip) generates a message
containing application layer dath that is sent by the sendsip to the next hop on the route towardip.

All messages received by a particular node are first storedjimeue (see Sectién b.6 for a detailed
description). To model this behaviour we use a message gdeuneted by the variablesgs of type
[MSG]. As for every other queue, we will freely use the functiarad, tail andappend.

5.9 Summary
The following table describes the entire data structure se u
Basic Type Variables Description
IP ip, dip, oip, rip, sip, nhip node identifiers
SQN dsn, osn, rsn, sn sequence numbers
K dsk sequence-number-status flag
F flag route validity
IN hops hop counts
R r routing table entries
RT rt routing tables
RREQID rreqid request identifiers
P request-required flag
DATA data application layer data
STORE store store of queued data packets
MSG msg messages

24The ordering of the arguments follows the RFC.

29 Modelling, Verifying and Analysing AOD
Complex Type Variables Description
[TYPE] gueues with elements of ty&PE
[MsG] msgs message queues
P (TYPE) sets consisting of elements of typePE
P (1IP) pre sets of identifiers (precursors, destinations, .. .)
P (IP x RREQID) | rreqgs sets of request identifiers with originator IP
TYPE; — TYPE, partial functions fronTYPE; to TYPE,
IP — SQN dests sets of destinations with sequence numbers
Constant/Predicate Description
0:sQN, 1:3SQN unknown, smallest sequence number
< C SQN x SQN strict order on sequence numbers
kno,unk : K constants to distinguish known and unknown sqng

val,inv:@F
no-req,req.P

O0:IN, 1:IN, <CINxIN
[]:[TYPE], O : (TYPE)
€ C TYPE x Z(TYPE)

constants to distinguish valid and invalid routes
constants indicating whether a RREQ is required
standard constants/predicates of natural numbers
empty queue, empty set

membership, standard set theory

Function

Description

head : [TYPE] — TYPE

tail : [TYPE] — [TYPE]

append : TYPE x [TYPE| — [TYPE]

drop : IP X STORE — STORE

add : DATA x IP x STORE — STORE
unsetRRF : STORE X IP — STORE
setRRF : STORE x (IP — SQN) — STORE
Oqueue: STORE x IP — [DATA]

Op-flag: STORE x TP — P

Oroute: RT X IP =R

(Cyoyoyy—y—y—) IPXSQNXKXFx IN xIPx & (IP) —R
inc: SQN — SQN

max :SQN x SQN — SQN

sqn : RT x IP — SQN
sqnf :RT X IP — K

flag :RT X IP —~F

+1:N— N

dhops :RT x IP — IN

nhop :RT X IP — IP

precs :RT x IP — Z(IP)

vD,iD,kD : RT — Z(IP)

gD : STORE — #(1IP)

N, U, U}, -

addpre:Rx Z(IP) >R

addpreRT: RT x IP x Z(IP) — RT
update:RT X R —RT

invalidate:RT x (IP — SQN) — RT
nrreqid: Z2(IP x RREQID) x IP — RREQID
newpkt : DATA X IP — MSG

pkt : DATA x IP x IP — MSG

rreq: IN XRREQIDXIPXxSQNXKxXIPxSQNxIP — MSG
rrep: IN xXIP x SQN x IP x IP — MSG
rerr: (IP — SQN) x IP — MSG

returns the “oldest” element in the queue
removes the “oldest” element in the queue

inserts a new element into the queue

deletes a packet from the queued data packets
adds a packet to the queued data packets

set the request-required flagdo-req

set the request-required flagteq

selects the data queue for a particular destination
selects the flag for a destination from the store
selects the route for a particular destination
generates a routing table entry

increments the sequence number

returns the larger sequence number

returns the sequence number of a particular route
determines whether the sequence number is knoy
returns the validity of a particular route
increments the hop count

returns the hop count of a particular route

returns the next hop of a particular route

returns the set of precursors of a particular route
returns the set of valid, invalid, known destinationg
returns the set of destinations with unsent packets
standard set-theoretic functions

adds a set of precursors to a routing table entry
adds a set of precursors to an entry inside a table
updates a routing table with a route (if fresh enoug
invalidates a set of routes within a routing table
generates a new route request identifier
generates a message with new application layer d
generates a message containing application layer
generates a route request

generates a route reply

"4

vn

h)

ata
data

generates a route error message

Table 6:Data structure of AODV

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 30

6 Modelling AODV

In this section, we present a specification of the AODV protagsing process algebra. The model
includes a mechanism to describe the delivery of data psickebugh this is not part of the protocol
itself it is necessary to trigger any AODV activity. Our modensists of 7 processes, namagbvV,
NEWPKT, PKT, RREQ, RREP, RERR andQMSG:

e The basic processdDV reads a message from the message queue and, dependingypetbithe
message, calls other processes. When there is no messaltljadngoing on, the process initiates
the transmission of queued data packets or generates a nésvreguest (if packets are stored
for a destination, no route to this destination is known andaute request for this destination is
pending).

e The processeBEWPKT andPKT describe all actions performed by a node when a data packet is
received. The former process handles a newly injected padkee latter describes all actions
performed when a node receives data from another node vigobecol. This includes accepting
the packet (if the node is the destination), forwarding theket (if the node is not the destination)
and sending an error message (if forwarding fails).

e The proces8REQ models all events that might occur after a route request éas teceived. This
includes updating the node’s routing table, forwardingrthee request as well as the initiation of
a route reply if a route to the destination is known.

e Similarly, theRREP process describes the reaction of the protocol to an inapnoute reply.

e The proces®ERR models the part of AODV which handles error messages. Incpéat, it de-
scribes the modification and forwarding of the AODV error sagge.

e The last proces§MSG concerns message handling. Whenever a message is redeiigeftirst
stored in a message queue. If the corresponding node iscalidetlle a message it pops the oldest
message from the queue and handles it. An example where aisod¢ ready to process an
incoming message immediately is when it is already handlingessage.

In the remainder of the section, we provide a formal spetifinafor each of these processes and
explain them step by step. Our specification can be split tintee parts: the brown lines describe
updates to be performed on the node’s data, e.g., its rotaiolg; the black lines are other process
algebra constructs (cf. Sectibh 4); and the blue lines atimary comments.

6.1 The Basic Routine

The basic process0DV either reads a message from the corresponding queue, send=uad data
packet if a route to the destination has been establisheijtiates a new route discovery process in
case of queued data packets with invalid or unknown routbss @rocess maintains five data variables,
ip, sn, rt, rreqs andstore, in which it stores its own identity, its own sequence numisrcurrent
routing table, the list of route requests seen so far, armmlitent store of queued data packets that await
transmission (cf. Sectidd 5).

The message handling is described in Linds 1-20. First, #wsage has to be read from the queue
of stored messagesCeivemsg)). After that, the process0DV checks the type of the message and calls
a process that can handle the message: in case of a newliedhjgata packet, the proce$BWPKT is
called; in case of an incoming data packet, the proe&sss called; in case that the incoming message
is an AODV control message (route request, route reply otrereuror), the node updates its routing
table. More precisely, if there is no entry to the messag&islersip, the receiver-node creates an entry

31 Modelling, Verifying and Analysing AODV

with the unknown sequence number 0 and hop count 1; in case ihalready a routing table entry
(sip,dsm, *,*,*,* pre), then this entry is updated {8ip,dsn,unk,val,1 sip,pre) (cf. Lines[I0[I#
andI8). Afterwards, the proces®REQ, RREP andRERR are called, respectively.

Process 1The basic routine

AODV(ip,sn,rt,rregs,store) def
1. receivgmsg) .
/* depending on the message, the node calls different psesed
(
[msg = newpkt(data,dip)] /* new DATA packet */
NEWPKT(data,dip, ip,sn,rt,rregs,store)
+ [msg = pkt(data,dip,oip)] /* incoming DATA packet */
PKT(data,dip,oip, ip,sn,rt,rregs,store)
+ [msg = rreq(hops,rreqid,dip,dsn,dsk,oip,osn,sip)] /* RREQ */
/* update the route teip in rt */
[rt :=update(rt,(sip,0,unk,val,1,sip,0))] /* 0is used since no sequence number is known */
RREQ(hops ,rreqid,dip,dsn,dsk,oip,osn,sip, ip,sn,rt,rreqgs, store)
+ [msg = rrep(hops,dip,dsn,oip,sip)] /* RREP */
[* update the route teip in rt */
[rt :=update(rt,(sip,0,unk,val,l sip,0))]
RREP(hops,dip,dsn,oip,sip,ip,sn,rt,rregs,store)
+ [msg = rerr(dests,sip)] /* RERR */
/* update the route teip in rt */
18. [rt :=update(rt,(sip,0,unk,val,l sip,0))]
19. RERR(dests,sip, ip,sn,rt,rregs,store)
20,)
21. + [Letdip € gD(store)NvD(rt)] /* send a queued data packet if a valid route is known */
22. [data:=head(0oqueudstore,dip))]
23, unicast(nhop(rt,dip),pkt(data,dip,ip)) .

© ® N o o b~ WD

R T S
N o o M 0w NP O

24, [store :=drop(dip,store)] [* drop data from thestore for dip if the transmission was successful */
25, AODV(ip,sn,rt,rreqs,store)

26. » /* an error is produced and the routing table is updated */

27. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip)=nhop(rt,dip)}]

28. [rt :=invalidate(rt,dests)]

29. [store := setRRF(store,dests)]

30. [pre :=U{precs(rt,rip)|(rip,*) € dests}]

3L [dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]

32. groupcast(pre ,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)

33. + [Letdip € gD(store) —vD(rt) A O'p_ﬂag(store ,dip) = req] [* a route discovery process is initiated */

3. [store :=unsetRRF(store,dip)] [* set request-required flag tw-req */

3. [sn:=inc(sn)] [* increment own sequence number */

3. [*updaterreqgs by adding(ip,nrreqid(rregs,ip)) */

37. [rreqid:=nrreqid(rregs,ip)]

38. [rregs :=rreqsU{(ip,rreqid)}]

39. broadcast{rreq(0,rreqid,dip,sqn(rt,dip),sqnf(rt,dip),ip,sn,ip)) . AODV(ip,sn,rt,rreqs,store)

The second part oA0DV (Lines[21£3R) initiates the sending of a data packet. Far, thdas
to be checked if there is a queued data packet for a destingtimt has a known and valid route
in the routing table D(store) NvD(rt) # 0). In case that there is more than one destination with
stored data and a known route, an arbitrary destination @sesh and denoted byip (Line IZ])
Moreoverdata is set to the first queued data packet from the applicatioerl#lyat should be sent
(data:= head(dqueue{store,dip))) This data packet is unicast to the next hop on the routs o

25AIthough the word “let” is not part of the syntax, we add it teess the nondeterminism happening here.
26F0llowing the RFC, data packets waiting for a route shoulthiféered “first-in, first-out” (FIFO).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 32

If the unicast is successful, the data paaketa is removed fromstore (Line[24). Finally, the process
calls itself—stating that the node is ready for handling & ngessage, initiating the sending of another
packet towards a destination, etc. In case the unicast suacessful, the data packet has not been trans-
mitted. Thereforelata is not removed fronstore. Moreover, the node knows that the link to the next
hop on the route tdip is faulty and, most probably, broken. An error message tmted. Generally,
route error and link breakage processing requires theviollp steps: (a) invalidating existing routing
table entries, (b) listing affected destinations, (c) dateing which neighbours may be affected (if any),
and (d) delivering an appropriate AODV error message to sieiphbours[[79]. Therefore, the process
determines all valid destinatior®sts that have this unreachable node as next hop (Cihe 27) andsmark
the routing table entries for these destinations as invlide [28), while incrementing their sequence
numbers (Lin€27). In Line29, we set, for all invalidatedting table entries, the request-required flag
to req, thereby indicating that a new route discovery process negyl o be initiated. In Line_30 the
recipients of the error message are determined. Theseepeabursors of the invalidated destinations,
i.e., the neighbouring nodes listed as having a route to bt @ffected destinations passing through the
broken link. Finally, an error message is sent to them (LB I&ting only those invalidated destinations
with a non-empty set of precursors (Ling 31).

The third and final part oh0DV (Lines[33£39) initiates a route discovery process. Thisoised
when there is at least one queued data packet for a destingifloout a valid routing table entry, that
is not waiting for a reply in response to a route request @®aatiated before. Following the RFC, the
process generates a new route request. This is achievedristéps: First, the request-required flag is
set tono-req (Line[34), meaning that no further route discovery processethis destination need to be
initiated?1 Second, the node’s own sequence number is increased byel3Bin Third, by determining
nrreqid(rreqgs,ip), @ new route request identifier is created and stored—tegeitith the node's p—
in the setrreqgs of route requests already seen (Liné 38). Fourth, the messsajf is sent (Liné_39)
using broadcast. In contrast tmicast, transmissions vidroadcastare not checked on success. The
information inside the message follows strictly the RFQpéamticular, the hop count is set to 0, the route
request identifier previously created is used, etc. This émelinitiation of the route discovery process.

6.2 Data Packet Handling

The processeBEWPKT andPKT describe all actions performed by a node when a data packgeded
by a client hooked up to the local node or received via theopait respectively. For the proce®KT, this
includes the acceptance (if the node is the destinatioa)ottwarding (if the node is not the destination),
as well as the sending of an error message in case somethimgwang. The proces$EWPKT does not
include the initiation of a new route request; this is parthaf procesa0DV. Although packet handling
itself is not part of AODV, it is necessary to include it in dormalisation, since a failure to transmit a
data packet triggers AODV activity.

The processlEWPKT first checks whether the node is the intended addressee dathepacket. If
this is the case, it delivers the data and returns to the lbastme AODV. If the node is not the intended
destination dip # ip, Line[3), thedata is added to the data queue ftp (Line IZ) which finishes
the handling of a newly injected data packet. The furthedhag of queued data (forwarding it to the
next hop on the way to the destination in case a valid routbaalestination is known, and otherwise
initiating a new route request if still required) is the resgpibility of the main processoDV.

27The RFC does not describe packet handling in detail; heneeeatuest-required flag is not part of the RFC's RREQ
generation process.

28If no data for destinatiodip was already queued, the functigfd creates a fresh queue faip, and set the request-
required flag tareq; otherwise, the request-required flag keeps the value ialvaddy.

33 Modelling, Verifying and Analysing AODV

Process ZRoutine for handling a newly injected data packet

NEWPKT(data,dip, ip,sn,rt,rregs,store) def

1 [dip=ip] /* the DATA packet is intended for this node */
deliver(data) . AODV(ip,sn,rt,rregs,store)
.+ [dip#ip] [* the DATA packet is not intended for this node */
[store := add(data,dip,store)] . AODV(ip,sn,rt,rregs,store)

> wn

Similar to NEWPKT, the proces®KT first checks whether it is the intended addressee of the data
packet. If this is the case, it delivers the data and retuwrise basic routin@0DV. If the node is not the
intended destinationdfp # ip, Line[3) more activity is needed.

In case that the node has a valid route todhea’s destinationdip (dip € vD(rt)), it forwards the
packet using a unicast to the next hipop(rt,dip) on the way todip. Similar to the unicast of the
processA0DV, it has to be checked whether the transmission is successfdilirther action is necessary
if the transmission succeeds, and the node returns to theroasne AODV. If the transmission fails, the
link to the next homhop(rt,dip) is assumed to be broken. As before, all destinati#sts that are
reached via that broken link are determined (Lihe 9) andraltyrsors interested in at least one of these
destinations are informed via an error message (Line 14)yeMer, all the routing table entries using
the broken link have to be invalidated in the node’s routiagleé rt (Line [10), and all corresponding
request-required flags are setrtey (Line[11).

In case that the node has no valid route to the destinatipr(dip ¢ vD(rt)), the data packet is lost
and possibly an error message is sent. If there is an (iNuvalitde to thedata’s destinationdip in the
routing table (Liné_11B), the possibly affected neighbowns lbe determined and the error message is sent
to these precursors (Liel20). If there is no informationuilzoroute towardgip nothing happens (and
the basic processDV is called again).

Process Routine for handling a received data packet

PKT(data,dip,oip, ip,sn,rt,rreqs,store) def
1. [dip=1ip] /* the DATA packet is intended for this node */
2. deliver(data) . AODV(ip,sn,rt,rreqgs,store)
.+ [dip#ip] [* the DATA packet is not intended for this node */

3

4

5 [dip € vD(rt)] [* valid route todip */

6. [* forward packet */

7 unicast(nhop(rt,dip),pkt(data,dip,oip)) . AODV(ip,sn,rt,rreqgs,store)

8 » /* If the packet transmission is unsuccessful, a RERR messagenerated */

9 [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,dip)}]

10. [rt:=invalidate(rt,dests)]

11, [store := setRRF(store,dests)]

12, [pre := U{precs(rt,rip)|(rip,*) € dests}]

13, [dests :={(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
14. groupcast(pre ,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
15. + [dip € vD(rt)] /* no valid route todip */

16. /* no local repair occurs; data is lost */

17.

18. [dip € iD(rt)] /* invalid route todip */

10. /* if the route is invalid, a RERR is sent to the precursors */

20. groupcastprecs(rt,dip),rerr({(dip,sqn(rt,dip))},ip)) . AODV(ip,sn,rt,rreqgs,store)
21. +[dip ¢ iD(rt)] [* route not inrt */

22, AODV(ip,sn,rt,rregs,store)

23)

24.)

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 34

6.3 Receiving Route Requests

The proces&REQ models all events that may occur after a route request hasrbeeived.

The process first reads the unique identifietp, rreqid) of the route request received. If this pair
is already stored in the node’s dataeqgs, the route request has been handled before and the message
can silently be ignored (Lings [1-2).

Process ARREQ handling

def
RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip, ip,sn,rt,rregs,store) =
1. [(oip, rreqid) € rregs] /* the RREQ has been received previously */
2. AODV(ip,sn,rt,rregs,store) [* silently ignore RREQ, i.e. do nothing */

3. +[(oip,rreqid) ¢ rregs] [* the RREQ is new to this node */

4. [rt:=update(rt,(oip,osn,kno,val, hops +1,sip,0))] [* update the route teip in rt */

5. [rregs:=rreqsU{(oip,rreqid)}] [* updaterreqs by adding(oip , rreqid) */

6. (

7 [dip=1ip] /* this node is the destination node */

8 [sn:= max(sn,dsn)] [* update the sgn ofp */

9 /* unicast a RREP towardsip of the RREQ */

10. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) . AODV(ip,sn,rt,rreqgs,store)

11. » /* If the transmission is unsuccessful, a RERR message isrgead */

12. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip)=nhop(rt,oip)}]
13, [rt :=invalidate(rt,dests)]

14. [store := setRRF(store,dests)]

15. [pre := U{precs(rt,rip)| (rip,*) € dests}]

16. [dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]

17. groupcastpre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)

18. +[dip#ip] /* this node is not the destination node */

19. (

20. [dipevD(rt) Adsn<sqn(rt,dip) A sqnf(rt,dip) =kno] [*valid route todip that is fresh enough*/
21. /* updatert by adding precursors */
22. [rt := addpreRT(rt,dip,{sip})]
23. [rt := addpreRT(rt,oip,{nhop(rt,dip)})]
24, /* unicast a RREP towards thep of the RREQ */
25. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .
26. AODV(ip,sn,rt,rreqs,store)
27. » /* If the transmission is unsuccessful, a RERR message isrgead */
28. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]
29. [rt :=invalidate(rt,dests)]
30. [store := setRRF(store,dests)]
3L [pre := U{precs(rt,rip)|(rip,*) € dests}]
32. [dests :={(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
33. groupcastpre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
34, + [dip¢vD(rt) Vsqn(rt,dip) < dsnV sqnf(rt,dip) =unk] /*no valid route that is fresh enough*/
35. /* no further update oft */
36. broadcastrreq(hops+1,rreqid,dip,maxXsqn(rt,dip),dsn),dsk,o0ip,osn,ip)) .
37. AODV(ip,sn,rt,rreqs,store)
38.)
39.)

If the received message is new to this nofleip, rreqid) € rregs, Line[3), the node establishes
a route of lengtthops+1 back to the originatosip of the message. If this route is “better” than the
route tooip in the current routing table, the routing table is updatethi/route (Liné#). Moreover the
unique identifier has to be added to theseiqgs of already seen (and handled) route requests (line 5).

After these updates the process checks if the node is thediededestinationdip = ip, Line[?). In
that case, a route reply must be initiated: first, the nod&sience number is—according to the RFC—
set to the maximum of the current sequence number and theatest sequence number in the RREQ

35 Modelling, Verifying and Analysing AODV

packet (Line[BE Then the reply is unicast to the next hop on the route backaotiginatoroip of the
route request. The content of the new route reply is as falldive hop count is set to 0, the destination
and originator are copied from the route request receivedtlam destination’s sequence number is the
node’s own sequence numbat; of course the sender’s IP of this message has to be set todeésap.

As before (cf. Sectioris 8.1 ahd b.2), the process invakdidie corresponding routing table entries, sets
request-required flags and sends an error message to afineferecursors if the unicast transmission
fails (LinesI2E1l).

If the node is not the destinatiaiip of the message but an intermediate hop along the path from
the originator to the destination, it is allowed to genegateute reply only if the information in its own
routing table is fresh enough. This means that (a) the nodeahalid route to the destination, (b) the
destination sequence number in the node’s existing roteipig entry for the destinatiosdn(rt,dip))
is greater than or equal to the requested destination seguamberdsn of the message and (c) the
sequence numbesqn(rt,dip) is known, i.e.,sqnf(rt,dip) = kno. If these three conditions are
satisfied—the check is done in Libe]20—the node generatesvamee reply and sends it to the next
hop on the way back to the originatotip of the received route requ@. To this end, it copies the
sequence number for the destinatiip from the routing table-t into the destination sequence number
field of the RREP message and it places its distance in hopstfie destinationdhops(rt,dip)) in
the corresponding field of the new reply (Ling 25). The uricaight fail, which causes the usual error
handling (Line$ 26=33). Just before transmitting the wticthe intermediate node updates the forward
route entry tadip by placing the last hop nodeip into the precursor list for the forward route entry
(Line[22). Likewise, it updates the reverse route entrpip by placing the first homhop(rt,dip)
towardsdip in the precursor list for that entry (Li

If the node is not the destination and there is either no rautiee destinatiodip inside the routing
table or the route is not fresh enough, the route requesivestdas to be forwarded. This happens
in Line[38. The information inside the forwarded request stly copied from the request received.
Only the hop count is increased by 1 and the destination segusumber is set to the maximum of the
destination sequence number in the RREQ packet and thextseguence number faip in the routing
table. In caseip is an unknown destinatiosgn(rt,dip) returns the unknown sequence number 0.

6.4 Receiving Route Replies

The proces®KREP describes the reaction of the protocol to an incoming rogfdyr Our model first
checks if a forward routing table entry is going to be createdgpdated (Lin€l1). This is the case if (a) the
node has no known route to the destination, or (b) the degtinaequence number in the node’s existing
routing table entry for the destinatiordn(rt,dip)) is smaller than the destination sequence number
dsn in the RREP message, or (c) the two destination sequenceensraie equal and, in addition, either
the incremented hop count of the RREP received is strictgllemthan the one in the routing table, or the
entry fordip in the routing table is invalid. Hence Lifé 1 could be repthbg

[dip € kD(rt) Vsqn(rt,dip) <dsnV (sqn(rt,dip) =dsn A (dhops(rt,dip) >hops+1V flag(rt,dip) =inv))] A

29According to I. Chakeres on the IETF MANET mailing ligitftp://www.ietf.org/mail-archive/web/manet/
current/msg02589.html) Line[d ought to be replaced Hfysn := max(sn, inc(dsn))].

30This next hop will often, but not always, keip; see Figur€l3 in Sectidd 2.

31This is a mistake in the RFC; it should have be@pp(rt ,oip).

32Unless thegratuitous RREP flags set, which we do not model in this paper, this update ieraikeless, as the precursor
nhop(rt,dip) in general is not aware that it has a routeip.

33 |n casedip ¢ kD(rt), the termsdhops(rt,dip) andflag(rt,dip) are not defined. In such a case, according to the
convention of Footnote14 in Sectibh 4, the atomic formdlasps(rt,dip) >hops+1 andflag(rt,dip) = inv evaluate to
false. However, in case one would use lazy evaluation of the oustulisjunction, the evaluation of the expression would be
independent of the choice of a convention for interpretindafined terms appearing in formulas.

http://www.ietf.org/mail-archive/web/manet/current/msg02589.html
http://www.ietf.org/mail-archive/web/manet/current/msg02589.html

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 36

Process SRREP handling

def
RREP(hops,dip,dsn,oip,sip,ip,sn,rt,rregs,store) =
1. [rt # update(rt,(dip,dsn,kno,val hops+1,sip,0))] /* the routing table has to be updated */
2. [rt:=update(rt,(dip,dsn,kno,val, hops+1,sip,0))]

. (

4. [oip=ip] /* this node is the originator of the corresponding RREQ */

5. /* a packet may now be sent; this is done in the proaesy */

6. AODV(ip,sn,rt,rreqs,store)

7. +[oip#ip] /* this node is not the originator; forward RREP */

8.

0. [oip € vD(rt)] [* valid route tooip */

10. /* add next hop towardsip as precursor and forward the route reply */
11. [rt := addpreRT(rt,dip, {nhop(rt,oip)})]

12, [rt := addpreRT(rt,nhop(rt,dip),{nhop(rt,oip)})]

13. unicast(nhop(rt,oip),rrep(hops+l,dip,dsn,oip,ip)) .

14. AODV(ip,sn,rt,rreqgs,store)

15. » /* If the transmission is unsuccessful, a RERR message isrgead */
16. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip)=nhop(rt,oip)}]
17. [rt :=invalidate(rt,dests)]

18. [store := setRRF(store,dests)]

19. [pre := U{precs(rt,rip)| (rip,*) € dests}]
20. [dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
21. groupcastpre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
22. +[oip & vD(rt)] /* no valid route tooip */
23 AODV(ip,sn,rt,rreqs,store)
24,)
25)

26. + [rt =update(rt,(dip,dsn,kno,val,hops+1,sip,0))] /* the routing table is not updated */
AODV(ip,sn,rt,rreqs,store)

N
~

In case that one of these conditions is true, the routingtablipdated in LinEl2. If the node is the
intended addressee of the route reply{ = ip) the protocol returns to its basic procagdVv. Otherwise
(oip # ip) the message should be forwarded. Following the REC [79th# current node is not the
node indicated by the Originator IP Address in the RREP ngesa8alD a forward route has been created
or updated [...], the node consults its route table entrytferoriginating node to determine the next hop
for the RREP packet, and then forwards the RREP towards thmator using the information in that
route table entry.” This action needs a valid route to thgioatoroip of the route request to which the
current message is a replyifp € vD(rt), Line[d). The content of the RREP message to be sent is mostly
copied from the RREP received; only the sender has to be elditgs now the node’sp) and the hop
count is incremented. Prior to the unicast, the naitlep(rt,o0ip), to which the message is sent, is added
to the list of precursors for the routesdop (Line[11) and to the next hop on the routedtop (Line[12).
Although not specified in the RFC, it would make sense to atlsbaaprecursor to the reverse route by
[rt := addpreRT(rt,oip,{nhop(rt,dip)})]. As usual, if the unicast fails, the affected routing table
entries are invalidated and the precursors of all routeggusie broken link are determined and an error
message is sent (Lines]16121). In the unlikely situatiomn aha@ply should be forwarded but no valid
route is known by the node, nothing happens. Following th€ R precursor has to be notified and no
error message has to be sent—even if there is an invalid.route

If a forward routing table entry is not created nor updathd,reply is silently ignored and the basic
process is called (Linés P63427).

37 Modelling, Verifying and Analysing AODV

6.5 Receiving Route Errors

The proces®ERR models the part of AODV which handles error messages. A engssage consists
of a setdests of pairs of an unreachable destination IP addteigsand the corresponding unreachable
destination sequence numhen.

Process BRERR handling

def
RERR(dests,sip, ip,sn,rt,rreqs,store) =

1. /*invalidate broken routes */

2. [dests := {(rip,rsn)|(rip,rsn) € dests A rip € vD(rt) A nhop(rt,rip) =sip A sqn(rt,rip) < rsn}]
3. [rt :=invalidate(rt,dests)]

4. [store := setRRF(store,dests)]

5. [* forward the RERR to all precursors faet entries for broken connections */

6. [pre :={precs(rt,rip)|(rip,*) € dests}]

7. [dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]

8. groupcastpre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)

If a node receives an AODV error message from a neighbourrferar more valid routes, it has—
under some conditions—to invalidate the entries for thasges in its own routing table and forward
the error message. The node compares thelsets of unavailable destinations from the incoming
error message with its own entries in the routing table. df thuting table lists a valid route with a
(rip,rsn)-combination fromdests and if the next hop on this route is the sendep of the error
message, this entry may be affected by the error messageur lfommnalisation, we have added the
requirementsqn(rt,rip) < rsn, saying that the entry is affected by the error message drilyei
“incoming” sequence number is larger than the one storelddrrduting table, meaning that it is based
on fresher informatiofd In this case, the entry has to be invalidated and all precsitthis particular
route have to be informed. This has to be done for all affectetes.

In fact, the process first determines @tlip, rsn)-pairs that have effects on its own routing table
and that may have to be forwarded as content of a new erroragesgking 2). After that, all entries to
unavailable destinations are invalidated (Lihe 3), andsamiwhen routing table entries are invalidated,
the request-required flags are set#g (Line[d). In Linel6 the set of all precursors (affected neigins)
of the unavailable destinations are summarised in th@set Then, the seiests is “thinned out” to
only those destinations that have at least one precursofy-tluese destinations are transmitted in the
forwarded error message (Libk 7). Finally, the messagenis(kae[8).

6.6 The Message Queue and Synchronisation

We assume that any message sent by a sigde a noddp that happens to be within transmission range
of sipis actually received byp. For this reasonip should always be able to perform a receive action,
regardless of which state it is in. However, the main pro@@sd’ that runs on the nod can reach a
state, such aBKT, RREQ, RREP or RERR, in which it is not ready to perform a receive action. For this
reason we introduce a proce@4sSG, modelling a message queue, that runs in parallel Wothv or any
other process that might be called. Every incoming messafijesi stored in this queue, and piped from
there to the procegs0DV, wheneve) 0DV is ready to handle a new message. The progess is always
ready to receive a new message, even WA@YV is not. The whole parallel process running on a node
is then given by an expression of the form

(¢,A0DV(ip,sn,rt,rreqgs,store)) {(({,QMSG(msgs)) .

34This additional requirement is in the spirit of Section 6f2he RFC [79] on updating routing table entries, but in cantr
diction with Section 6.11 of the RFC on handliRBRR messages. In Sectifih 8 we will show that the reading of Seétibl
of the RFC gives rise to routing loops.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 38

Process Message queue

def
QMSG(msgs) =

1. [* store incoming message at the endhefs */
receivgmsg) . QMSG(append(msg,msgs))
.+ [msgs #[]] [* the queue is not empty */

sendhead(msgs)) . QMSG(tail(msgs))
[* or receive and store an incoming message */

2
3
4.
5. [* pop top message and send it to another sequential protess *
6
7
8 + receivemsg) . QMSG(append(msg ,msgs))

9

6.7 Initial State

To finish our specification, we have to define an initial statbe initial network expression is an en-
capsulated parallel composition of node expressipnd : R, where the (finite) number of nodes and
the rangeR of each node expression is left unspecified (can be anythidgyvever, each node in the
parallel composition is required to have a unique IP addpesBhe initial proces® of ip is given by the
expressior(é,AODV(ip,sn,rt,rreqgs,store)) ((({,QMSG(msgs)), with

E(ip)=ip A é(sn)=1 A &(rt) =0 A &(rreqs) =0 A &(store) =0 A {(msgs)=[]. (2)

This says that initially each node is correctly informed athits own identity; its own sequence number
is initialised with 1 and its routing table, the list of RRE&=en, the store of queued data packets as well
as the message queue are empty.

7 Invariants

Using our process algebra for wireless mesh networks anattposed model of AODV we can now for-
malise and prove crucial properties of AODV. In this sectiomverify properties that can be expressed
as invariants, i.e., statements that hold all the time wherptotocol is executed.

The most important invariant we establishla®p freedom most prior results can be regarded as
stepping stones towards this goal. Next to that we also fiisenand discusgute correctness

7.1 State and Transition Invariants

A (state) invariantis a statement that holds for all reachable states of our mbléee states are network
expressions, as defined in Section 4.3. An invariant is ysuatified by showing that it holds for all
possible initial states, and that, for any transitn> N’ between (encapsulated) network expressions
derived by our operational semantics, if it holds for stdtéhen it also holds for stats’.

Besides (state) invariants, we also establish statememtsalltransition invariants A transition
invariant is a statement that holds for each reachableitiam®l — N’ between (encapsulated) network
expressions derived by the operational semantics (Tabléndgstablishing a transition invariant for a
particular transition, we usually assume it has already lmdxtained for alprior transitions those that
occurred beforehand. Since the transition system gemketateour operational semantics may have
cycles, we need to give a well-founded definition of “bef@nedi’. To this end we treat a statement about
a transition as one aboutnsition occurrencedefined as a path in our transition system, stating in an
initial state, and ending with the transition under constlen. This way the induction is performed on
the length of such a path. We speakmafuction on reachability

39 Modelling, Verifying and Analysing AODV

To facilitate formalising transition invariants, we prasa taxonomy of the transitions that can be
generated by our operational semantics, along with sonadiont the label of a transitionN LN
can be eitheconnect{ip,ip’), disconnectip,ip’), ip:newpkt(d, dip), ip:deliver(d) or . We are most
interested in the last case. A transitibih—— N’ either arises from a transitioR: *cast(m) performed
by a network nodép, synchronising with receive actions of all nod#ip € R in transmission range, or
stems from a-transition of a network nodip.

In the former case, we writhl mip N’. This means thal = [M] andN’ = [M'] are network
expressions such thaut Rreast(m), M’, and the cast action is performed by ndde This transition
originates from an actiobroadcastms), groupcast dests ms), or unicast(dest ms) (cf. Sectior[#).
Each such action can be identified by a line number in one gbtheesses of Sectidmn 6.

In the latter case, a-transition of a nodép stems either from a failed unicast, an evaluafigh an
assignmenfvar := exqd), or a synchronisation of two actiosend ms) andreceivgmsg) performed by
sequential processes running on that node. In our moded fhresesses arDV andQMSG, and these
actions can also be identified by line numbers in the prosess8ection b.

The following observations are crucial in establishing ynahour invariants.

Proposition 7.1

(a) With the exception of new packets that are submitted tode oy a client of AODV, every message
received and handled by the main routine of AODV has to be grdome node before. More
formally, we consider an arbitrary patiy 2N N1 Ly Ly Nk with Ng an initial state in our
model of AODV. If the transitiorNk_1 iy Nk results from a synchronisation involving the action
receive(msg) from Line[of Pro[l1—performed by the noge—, where the variablesg is assigned
the valuem, then eithem=newpkt(d,dip) or one of the/; with i < k stems from an actiotcast(m)
of a nodeip’ of the network.

(b) No node can receive a message directly from itself. Ugliegformalisation above, we must have
ip #ip’.

Proof. The only way Lind Il of Prd.]1 can be executed, is through a spmisation of the main process
A0DV with the message que@®SG (Pro.[6) running on the same node. This involves the ast@m)

of QMSG. Herem s popped from the message queisgs, which started out empty. So at some point
QMSG must have performed the actioeceivem). However, this action is blocked by the encapsulation
operator|_] of Table[4, except whem has the formnewpkt(d,dip) or when it synchronises with an
action*cast(m) of another node. O

At first glance Part(b) does not seem to reflect reality. Ofseuan application running on a local node
has to be able to send data packets to another applicatimmguon the same node. However, in any
practical implementation, when a node sends a messageel ite message will be delivered to the
corresponding application on the local node without evendoéseen” by AODV or any other routing
protocol. Therefore, from AODV'’s perspective, no node aaeive a message (directly) from itself.

7.2 Notions and Notations

Before formalising and proving invariants, we introducensauseful notions and notations.

All processes exceMSG maintain the five data variable$, sn, rt, rreqs andstore. Next to
thatQMSG maintains the variablesgs. Hence, these 6 variables can be evaluated at any time. Mareo
every node expression in the transition system looks like

ip: (&P (({,QMSG(msgs)) : R,

whereP is a state in one of the following sequential processes:

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 40

AODV(ip,sn,rt,rreqs,store),

NEWPKT(data,dip, ip,sn,rt,rregs,store),

PKT(data,dip,o0ip, ip,sn,rt,rregs,store),

RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip, ip,sn,rt,rreqgs,store),

RREP(hops,dip,dsn,oip,sip, ip,sn,rt,rreqgs,store) or

RERR(dests,sip, ip,sn,rt,rreqs,store) .
Hence the state of the transition system for a nipdis determined by the procegs the rangeR, and
the two valuation€ and({. If a network consists of a (finite) sé#® C IP of nodes, a reachable network
expressiorN is an encapsulated parallel composition of node expressiame for eaclp € IP. In this
section, we assumi andN’ to be reachable network expressions in our model of AODV. i§dlld
current information about a node fraW we define the following projections:

Pl'\lp :=P, whereip: (x,P (%, %) : * is a node expression f ,

Rl =R, whereip: (x,* ((x,*) :R is a node expression &f ,

E,i\,p =&, whereip: (&, ((*,%):* is anode expression of

Z,i\,p :={, whereip: (x,%({({,*):* is anode expression of .
For exampIePIi\lp determines the sequential process the node is currentkingpin, R}S denotes the set
of all nodes currently within transmission rangeipf and E,i\,p(rt) evaluates the current routing table
maintained by nod@ in the network expressioN. In the forthcoming proofs, when discussing the
effects of an action, identified by a line number in one of thecpsses of our mode{, denotes the
current valuatiorf,'\,p, whereip is the address of the local node, executing the action urtdeigeration,
andN is the network expression obtained right before this aatiocurs, corresponding with the line
number under consideration. When consider the effectsvefakactions, corresponding to several line
numbers,é is always interpreted most locally. For instance, in theopaf Propositior 7Z.I4{a), case

we write

Hence ..ip. ;= &(ip) = ip and Eli\lpC =& (by (3)). At Line[4 we update the routing table
usingr := &(oip,osn,kno,val, hops+1,sip,0) as new entry. The routing table does not
change between Linés$ 4 and 36; nor do the values of the vesiatyps, oip andosn.

Writing Nk for a network expression in which the local ndgas about to execute Link, this passage
can be reworded as

Hence ..ip; := & (i) =D andé,\136 & (by @)).
E,'\,ps(rt) = Em(update(rt (oip,osn,kno,val,hops+1,sip,0)))
= wpaanelR(ee) (8 0tp) & osm).) | |
&N (rt) = &, (1t) A &N, (hops) = &, (hops) A &y, (0ip) = & (0ip) A &, (osn) = & (osn).

In all of casdPro. 4, Line 38 through the statement of the propositidhis bound toNss, so thaté,? =
EN36

In Sectior 5.4 we have defined functions that work on evatLiateting tablefl\I (rt), such 3.31h0p
To ease readablllty, we abbrewatﬁop(EN (rt),dip) by nhopN(dlp) Similarly, we us&squ f (dip),
dhopsN(dlp) flagpy (dip), arouteN(d|p) kD'ﬁ,vDKlJ andlD',ff for sqn(&y (rt) d|p) dhops (& (rt),dip),
flag(&y (rt),dip), Oroute(&y (rt),ip), kKD(&N (rt)), vD(&Y (rt)) andiD(& (rt)), respectively.

7.3 Basic Properties

In this section we show some of the most fundamental inverigor AODV. The first one is already
stated in the RFC[79, Sect. 3].

41 Modelling, Verifying and Analysing AODV

Proposition 7.2 Each sequence number of any glven nqcmlmcreases monotonically, i.e., never de-
creases, and is never unknown. That is,ipof IP, if N 5 N’ then 1< &x (sn) < &0 (sn).

Proof. In all initial states the invariant is satisfied, as all semgenumbers of all nodes are set to 1
(seel(?) in Section 8.7). The Procedsds 1-7 of Sellion 6 ehkmngde’s sequence number only through
the functionsinc and max. This occurs at two places only:

Pro.[D, Line[38: Here&P(sn) < inc(&P(sn)) = &P (sn).

Pro.@, Line[: Here&(sn) < max(&¥ (sn),) = &7 (sn).

From this and the fact that all sequence numbers are isgi@iwith 1 we get K Eli\lp(sn). O
The proof strategy used above can be generalised.

Remark 7.3 Most of the forthcoming proofs can be done by showing thersimt for each initial state
and then checking all locations in the processes where thdityaof the invariant is possibly changed.
Note that routing table entries are only changed by the fionsfupdate] invalidatel or faddpreRT]
Thus we have to show that an invariant dealing with routifgea is satisfied after the execution of these
functions if it was valid before. In our proofs, we go througjhoccurrences of these functions. In case
the invariant does not make statements about precursagutittionaddpreRT need not be considered.

Proposmon 7.4 The set of known destinations of a node increases monothniddnat is, forip € IP,
if N - N’ thenkDy] C kD],

Proof. None of the functions used to change routing tables remavesiay altogether. O

Proposition 7 5 The set of already seen route requests of a node increasedanimally. That is, for
ipelP, if N -5 N/ thenEN (rregs) C EN,(rreqs)
Proof. None of the functions used in the specification ever remomem#ry fromrregs. O

Proposition 7.6 In each node’s routing table, the sequence number for amngiestination increases
monotonically, i.e., never decreases. That isjfodip< IP, if N LN thensqu(d|p) < squ,(d|p)

Proof. The only function that can decrease a sequence numliaivislidatel When invalidating
routing table entries using the functidmvalidate(rt,dests), sequence numbers are copied from
dests to the corresponding entry int. It is sufficient to show that for allrip,rsn) € &\ (dests)
squ(rlp) <rsn, as all other sequence numbers in routing table entriesinaimahanged.

Pro.[, Line[28; Pro.[3, Line[10; Pro[4, Lines 18, 29; Prd.]5, lie[17:
The setdests is constructed immediately before the invalidation prared For(rip,rsn) €
\ (dests), we havesqgny| (rip) < inc(sqng(rip)) = rsn.

Pro.[g, Line[3: When constructinglests in Line[2, the side conditior&,i\E(sqn(rt ,rip)) < E,i\,‘;(rsn)
is taken into account, which immediately yields the claim(fip, rsn) € &\ (dests). O

Our next invariant tells that each node is correctly infodnabout its own identity.
Proposition 7.7 For eachp € IP and each reachable st&teve haveé,i\,p(ip) =ip.

Proof. According to Sectio 617 the claim is assumed to hold for daitlal state, and none of our
processes has an assignment changing the value of thelgainpab O

This proposition will be used implicitly in many of the praato follow. In particular, for alip’,ip” € IP
¥ (ap) =ip” = ip'=ip" A &Y =& 3)

Next, we show that every AODV control message contains thedti?ess of the sender.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 42

Proposition 7.8 If an AODV control message is sent by noipec IP, the node sending this message

identifies itself correctly: .
N Rreastim N/ = ip = ipe

where the messagais eitherrreq(x,*, % % % *,ipc), rrep(*,*, %, *,ipc), Or rerr(x*,ipc).

The proof is straightforward: whenever such a message isrsene of the processes of Sectidréfip)
is set as the last argument. O

Corollary 7.9 At no point will the variablesip maintained by nodg have the valuép.
& (sip) #1p

Proof. The value ofsip stems, through Lindg 8,112 br]16 of Pid. 1, from an incoming AQidntrol
message of the fory, (rreq(x,*,*,,%,%,%,5ip)), &4 (rrep(*,*,*,%,sip)), or & (rerr(*,sip))
(Pro.[1, Line[1); the value ofip is never changed. By Propositibn 7.1, this message mustheae
sent before by a nodg’ # ip. By Propositiod 78& (sip) = ip’. O

Proposition 7.10 All routing table entries have a hop count greater or equat th
(%, %,%, %, hops x, %) € E,i\lp(rt) = hops>1 4)

Proof. All initial states trivially satisfy the invariant sincelabuting tables are empty. The functions
[nvalidatel andfaddpreRT| do not affect the invariant, since they do not change the lymtcof a
routing table entry. Therefore, we only have to look at thgliaption calls ofupdate] In each case, if
the update does not change the routing table entry beyopeeitsirsors (the last clausefgidate), the
invariant is trivially preserved; hence we examine the sdlsat an update actually occurs.

Pro.[d, Lines[I0[T4 18:All these updates have a hop count equals to 1; hence théanva preserved.

Pro.[, Line[; Pro.[8, Line[2: Here, & (hops) + 1 is used for the update. Sinég¢hops) € IN, the in-
variant is maintained. O

Proposition 7.11

(a) If aroute request with hop count 0 is sent by a nipde IP , the sender must be the originator.

N R:*cast(rreq(07*7*7*7*70ip;7*7ipc)) |p N/ = Olp; _ Ipc(: Ip) (5)

(b) If a route reply with hop count 0 is sent by a nagdec IP, the sender must be the destination.

N R*cast(rrep(0,dip,*,*,ipc))

ip N’ = dip. = ipc(=ip) (6)

Proof.

(a) We have to check that the consequent holds whenever @ megiiest is sent. In all the processes
there are only two locations where this happens.

Pro.[, Line[39: A request with conten€ (0, *,*,*,*,ip,*,ip) is sent. Since the sixth and the
eighth component are the sandd{p)), the claim holds.

Pro.[4, Line[38: The message has the formeq(& (hops)+1,x*,%,%,%,*,%,x). Since (hops) € N,
& (hops) + 1 # 0 and hence the antecedent does not hold.

(b) We have to check that the consequent holds wheneveramgply is sent. In all the processes there
are only three locations where this happens.

43 Modelling, Verifying and Analysing AODV

Pro.[, Line[IQ: A reply with content (0,dip,*,*,ip) is sent. By Liné7 we hav&(dip) = & (ip),
so the claim holds.

Pro.[, Line[28: The message has the fotrrep(dhops(rt,dip),*,*,*,x). By Propositioi 7.10,
dhops(rt,dip) > 0, so the antecedent does not hold.

Pro.[5, Line[13: The message has the forfxrep(& (hops)+1,*,*,*,%). Sinceé(hops) € N,
& (hops) + 1 # 0 and hence the antecedent does not hold. 0

Proposition 7.12

(a) Each routing table entry with O as its destination segeetumber has a sequence-number-status
flag valued unknown. _
(dip,0,f,%,%,%,%) € &v (rt) = f=unk (7)

(b) Unknown sequence numbers can only occur at 1-hop cdonsct

(,%,unk, , hops *, %) € &P(rt) = hops=1 8)
(c) 1-hop connections must contain the destination as r@xt h

(dip, *, %, %,1,nhip, %) € &P(rt) = dip = nhip 9)

(d) If the sequence number 0 occurs within a routing tableygtite hop count as well as the next hop
can be determined.

(dip,0,f,*,hops nhip,) € E,i\,p(rt) = f=unk A hops=1 A dip=nhip (20)

Proof. Atthe initial states all routing tables are empty. Sifia€@aTlidatelandaddpreRT|change neither
the sequence-number-status flag, nor the next hop or thedwp of a routing table entry, and—by
Proposition_Z6—cannot decrease the sequence number aftinadien, we only have to look at the
application calls ofipdate] As before, we only examine the cases that an update acballys.

(a) Function calls of the for always preserve the invariant: in caggdate is given an
argument for which it is not defined, the process algebrakisleand no change of the routing table

is performed (cf. Footnofe 16 in Sectibh 4); in case one ofitsefour clauses in the definition of
is used, this follows becausgdate(rt,r) is defined only wheni(r) = 0 < 75(r) = unk;

in case the fifth clause is used it follows becams@) = unk; and in case the last clause is used, it
follows by induction, since the invariant was already vélafore the update.

(b) Pro.[, Lines[10[1#[1B:All these updates have an unknown sequence number and hopezpual
to 1. By Clause 5 dfipdate], these sequence-number-status flag and hop count arestraasf
literally into the routing table; hence the invariant is sgeved.

Pro.[4, Line[4 and Pro.[, Line[2: In these updates the sequence-number-status flag is seb.to
By the definition ofupdate] this value ends up in the routing table. Hence the assumpfio
the invariant to be proven is not satisfied.

(c) Pro.[, Lines[I0[T#[18:The new entries§(sip,0,unk,val,1 sip,0)) satisfy the invariant; even
if the routing table is actually updated with one of the neutes, the invariant holds afterwards.
Pro.[4, Line[d; Pro.[3, Line[2: The route which might be inserted into the routing table has h

counthops+1, hops € IN. It can only be equal to 1 if the received message had hoptcou
hops = 0. In that case Invarianf](5), respl (6), guarantees thahtagiant remains unchanged.

(d) Immediate from Partgi(a) toi(c). O

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 44

Proposition 7.13

(&) Whenever an originator sequence number is sent as parbote request message, it is known, i.e.,
it is greater or equal than 1.

N Ri*cast(rreq (s, s s, 08N,))

ip N = osn.>1 (11)

(b) Whenever a destination sequence number is sent as arbofe reply message, itis known, i.e., it
is greater or equal than 1.

N Rcast(rrep (s dsiy.) p N = dsn,>1 (12)

Proof.

(a) We have to check that the consequent holds whenevereaneguest is sent.

Pro.[d, Line[39: A route request is initiated. The originator sequence nuristecopy of the node’s
own sequence number, i.esn, = & (sn). By Propositio 7.2, we getsn, > 1.

Pro.[, Line[38: Here, osn. := &(osn). &(osn) is not changed within Prdl] 4; it stems, through
Line[d of Pro[1, from an incoming RREQ message (Pro. 1, Oiné-aj this incoming RREQ
message, using PropositionIfil(a) bnd induction on redithpthe invariant holds and hence
the claim follows immediately.

(b) We have to check that the consequent holds whenever e meplly is sent.

Pro.[4, Line[10: The destination initiates a route reply. The sequence nuislecopy of the node’s
own sequence number, i.esn. = & (sn). By Propositioi 7.2, we getsn, > 1.

Pro.[, Line[28: The sequence number used for the message is copied fromutiegreable; its
value isdsn. := sqn(&(rt),&(dip)). By Line[20, we know thatlag(&(rt),&(dip)) = kno
and hence, by Invariantl(7dsn, > 1. Thus the invariant is maintained.

Pro.[5, Line[13: Here,dsn. := &(dsn). &(dsn) is not changed within Pr@]5; it stems, through
Line[12 of Pro[1, from an incoming RREP message (Bro. 1,[[Jn&dr this incoming RREP
message the invariant holds and hence the claim follows uiratedy. O

Proposition 7.14

(a) If a route request is sent (forwarded) by a nggaifferent from the originator of the request then
the content ofip.’s routing table must be fresher or at least as good as theniaftion inside the
message.

N R:*cast(rreq(hopg,,x,x,x,0ip,0S,ip:))

: : ip N' A ipc # oipe
= oip € kD A (sqnf(oip;) > osn, ‘ (13)
V (sqnyf(0ip;) = osn, A dhopsf(0ip:) < hops A flag{f(oip;) = val))

(b) If a route reply is sent by a nodle., different from the destination of the route, then the contd
ipc’s routing table must be consistent with the informationndeshe message.

N R:*cast(rrep(hopsg,dip:,dsr,«,ipc)) in N/ A ipc 7& dip;

= dip € XD A sqnf(dip) = dsn A dhops)©(dip) = hops A flaglF(dip) = val (14)

Proof.

(a) We have to check all cases where a route request is sent:

45 Modelling, Verifying and Analysing AODV

Pro.[, Line[33: A new route request is initiated with; = oip. := & (ip) = ip. Here the antecedent
of (I3) is not satisfied.
Pro.[, Line[38: The broadcast message has the form

& (rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .

Hencehops := & (hops)+1, 0, := & (0ip), 0Sn, = & (osn), ipe := & (ip) = ip andé&y® = &
(by (3)). At Linel4 we update the routing table using- & (oip, osn,kno,val, hops+1,sip,0)

as new entry. The routing table does not change between Hines[36; nor do the values of
the variablesops, oip andosn. If the new (valid) entry is inserted into the routing takiteen
one of the first four cases in the definitionigidate] must have applied—the fifth case cannot
apply, sincerg(r) = kno. Thus, using thadip; # ipc,

sany (0ift) = san(&(xt),&(0ip)) = &(osn) = osn
dhops;\ﬁ’c(oipc) = dhops(&(rt),&(oip)) = &(hops)+1 = hops
flagi’(oip) = flag(&(rt),&(oip)) = &(val) = val.

In case the new entry is not inserted into the routing talile @ixth case dfipdate]), we

havesqnil{ljc(oipc) = sqn(E(rt) &(oip)) > & (osn) = osn, and in case thatqn{F (oip;) = osn,
we see thatihops,°(0ip;) = dhops(&(rt), & (oip)) < &(hops)+1 = hops and moreover
flagN (oip;) = val. Therefore the invariant holds.
(b) We have to check all cases where a route reply is sent.

Pro.[, Line[1Q: A new route reply withip. := & (ip) = ip is initiated. Moreover, by LinEl dip. :=
¢(dip) = &(ip) = ip and thusipc = dip.. Hence, the antecedent bf[14) is not satisfied.

Pro.[, Line[28: We haveip, := & (ip) = ip, S0&* = €. This time, by Lind IBdip. := & (dip) #
&(ip) = ipc. By Line[20 there is a valid routing table entry foip. := & (dip).

dsn. := sqn(&(rt),&(dip)) = squ (dlpc)
hops := dhops(&(rt),&(dip)) = dhops{F(dip) .

Pro.[H, Line[13: The RREP message has the form
&(rrep(hops+1,dip,dsn,oip,ip)) .

Hencehops := & (hops)+1, dip. := &(dip), dsn, := & (dsn), ipc := & (ip) = ip andéy® = €.
Using (& (dip), & (dsn),kno,val, & (hops)+1,&(sip), D) as new entry, the routing table is up-
dated at Liné 2. With exception of its precursors, which am@évant here, the routing table
does not change between Lifés 2 13; nor do the values wdtiiableshops, dip anddsn.
Line[d guarantees that during the update in Lihe 2, the newy éninserted into the routing

table, so _
sqn;\rl’c(dipc) = sqn(é(rt),&(dip)) = &(dsn) = dsn
dhopsI (dip;) = dhops(&(rt),&(dip)) = &(hops)+1 = hops
flagy(dip) = flag(é(rt),&(dip)) = &(val) = val. 0

Proposition 7.15 Any sequence number appearing in a route error message fstaman invalid des-
tination and is equal to the sequence number for that déistinia the sender’s routing table at the time
of sending.

N Rcast(zerz(destsipy)) i N’ A (ripc,rsne) € dests = ripe € 1D A rsne = sqnlh (ripe) (15)

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 46

Proof. We have to check that the consequent holds whenever a raoteneessage is sent. In all the
processes there are only seven locations where this happens

Pro.[, Line[32: The seidests is constructed in LinE31 as a subse€(f (dests) = &\, (dests). For
each pair(ripc, rsre) € &y, (dests) one hagipe = &\ (rip) € vDY . Then in Ling 28, using the
functioninvalidate] flag(&(rt),ripc) is set toinv and sqn(é(rt),ripe) to rsn.. Thus we
obtainrip, € iDy; andsqnf (ripc) = rsn.

Pro.[3, Line[14; Pro.[4, Lined17[3B; Pra.b, Lin€21; Prd.]6, lre[8: Exactly as above.

Pro.[3, _I_ine: The setdestg contains only one sin_gle element_. Hengw .= E,i\,p(dip) andrsng ;.=
&N (san(rt,dip)). By Line[IB, we haveip. = &\ (dip) € iDy. The remaining claim follows by
rsnc = &y (sqn(rt,dip)) = sqn(&y (rt), & (dip)) = sqny (rip). 0

7.4 \Well-Definedness

We have to ensure that our specification of AODV is actuallyl defined. Since many functions intro-
duced in Sectiofl5 are only partial, it has to be checked Hesset functions are either defined when they
are used, or are subterms of atomic formulas. In the latss,dhose formula would evaluatefialse
(cf. Footnotd I¥ on Pagel10).

The first proposition shows that the functions defined ini8e respect the data structure. In fact,
these properties are required (or implied) by our data &trac

Proposition 7.16
(a) In each routing table there is at most one entry for eashragion.
(b) In each store of queued data packets there is at most tmeukeue for each destination.

(c) Whenever a set of paifsip,rsn) is assigned to the variabfests of type IP — SQN, or to the first
argument of the functiomerr, this set is a partial function, i.e., there is at most oneyefutp, rsn)
for each destinationp.

Proof.

(a) Inallinitial states the invariant is satisfied, as airgytable starts out empty (séé (2) in Secfiod 6.7).
None of the ProcessEB[1-7 of Secfibn 6 changes a routingdiaditly; the only way a routing table
can be changed is through the functi@ifgiate] Anvalidatel andladdpreRT. The latter two only
change the sequence number, the validity status and therpoes of an existing route. This kind of
update has no effect on the invariant. The first functionrissenew entry into a routing table only if
the destination is unknown, that is, if no entry for this destion already exists in the routing table;
otherwise the existing entry is replaced. Therefore thariant is maintained.

(b) In any initial state the invariant is satisfied, as eacinesbf queued data packets starts out empty.
In Processels| [3-7 of Sectibh 6 a store is updated only thrdwgfunctiongaddl anddrop, These
functions respect the invariant.

(c) Thisis checked by inspecting all assignmentgdsts in Processds] [1-7.

Pro.[, Line[18: The messagé (msg) is received in Ling¢1l, and hence, by Proposifionirg.1(a), sent
by some node before. The content of the message does notectiarigg transmission, and
we assume there is only one way to read a meséégeg) asrerr((dests),(sip)). By
induction, we may assume that when the other node composaddhksage, a partial function
was assigned to the first arguméntlests) of rerr.

47 Modelling, Verifying and Analysing AODV

Pro.[d, Line[27; Pro.[3, Line[9; Pro[4, Lined 1P 28; Prd.]5, Lie[18: The assigned sets have the
form {(&(rip),inc(sqn(&(rt),&(rip)))) | ...}). Sinceinc andsqn are functions, for each
& (rip) there is only one paifé (rip), inc(sqn(é (rt), & (rip)))).

Pro.[d, Line[31; Pro.[3, Line[13; Pro[4, Lines 1A, 32; Prd.]5, lie[20; Pro[®, LineT: In each of
these cases a séfdests) constructed four lines before is used to construct a newBsethe
invariant to be proven, these sets are already partial ifumet From these sets some values
are removed. Since subsets of partial functions are agaiialpinctions, the claim follows
immediately.

Pro.[d, Line[2: Similar to the previous case except that the&etests) to be thinned out is not
constructed before but stems from an incoming RERR message.

Pro.[3, Lines[20: The set is explicitly given and consists of only one eleméhirs the claim is
trivial. O

Property [(a) is stated in the RFC[79].

Proposition 7.17 In our specification of AODV, the functiongoyid andfIaglare only used when they
are defined.

Proof. In our entire specification we do not use these functionslathey are only used for defining
other functions. O

Proposition 7.18 In our specification of AODV, the functid@hops]is only used when it is defined.

Proof. The functiondhops(rt,dip) is defined iffdip € kD(rt).
Pro.[, Line[28: By Line[20¢& (dip) € vD(&(rt)) CkD(&(rt)); sodhops(&(rt),&(dip)) is definedd

Proposition 7.19 In our specification of AODV, the functidahop]is either used within formulas or if it
is defined; hence it is only used in a meaningful way.

Proof. As in Propositiofi 7,118, the functiathop(rt,dip) is defined iffdip € kD(rt).
Pro.[, Line[27; Pro.[3, Line[9; Pro[4, Lines 1P 28; Prd.]5, Lie[18; Pro[®, Line[2: The function is

used within a formula.
Pro.[I, Line[23: Line[2] state< (dip) € vD(&(rt)); hencenhop(é (rt),&(dip)) is defined.
Pro.[3, Line[?: By Line[3,¢&(dip) € vD(&(rt)).
Pro.[4, Lines[10[25b: In Line[4 the entry for destinatioé(oip) is updated; by thig (oip) e kD(&(rt)).
Pro.[, Line[23: By Line[20¢ (dip) € vD(&(rt)).
Pro.[3, Lines[11[1B:By Line[d & (oip) € vD(&(rt)).

Pro.[3, Line[12: In Line[2 the entry for destinatio&(dip) is updated; by thig (dip) €kD(£(rt)). By
Line[@¢ (oip) € vD(&(xt)).

If nhop is used within a formula, themmhop(rt,rip) may not be defined, namelyrifp ¢ kD(rt). In such
a case, according to the convention of Footifofe 14 in Seldidine atomic formula in which this term
occurs evaluates ttalse, and thereby is defined properly. O

If one chooses to use lazy evaluation for conjunction, [if&p]is only used where it is defined.
Proposition 7.20 In our specification of AODV, the functigprecs)is only used when it is defined.
Proof. As in Propositiori 7.118, the functiasrecs(rt,dip) is defined iffdip € kD(rt).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 48

Pro.[1, Line[30; Pro.[3, Line[12; Pro[4, Lines1H, 31; Prd.]5, lie[19: Three lines before therecs
is used, the sef(dests is created containing only pai(g (rip),*) with & (rip) € vD(&(rt)).

Pro.[d, Line[31; Pro.[3, Line[13; Prol4, Lined 1M, 32; Prd.15, lie[20: Four lines before therecs is
used, the sef (destg is created containing only pai(§ (rip),) with {(rip) € vD(&(rt)).

Pro.[3, Line[20: Line[18 states thaf (dip) € iD(&(rt)) CkD(&(rt)).

Pro.[d, Line[@: Similar to Pro[1, Lin¢ 30; the sét(dests) is created under the assumptibfrip) €
vD(&(rt)) in Line[2. O

Proposition 7.21 In our specification of AODV, the functidapdate]is only used when it is defined.

Proof. update(rt,r) is defined only under the assumptiongr) = val, 7&(r) =0 <« 7B(r) =unk and

mB(r) = unk = 76(r) = 1. In Pro.[d, Lines~T0. 14 arld 18, the enfysip,0,unk,val,l,sip,0) is

used as second argument, which obviously satisfies the ptisms The function is used at four other
locations:

Pro.[4, Line[4: Here, the entr¥ (oip,osn,kno,val, hops+1,sip,0) is used as to update the routing
table. This entry fulfilsy(r) = val. Sincers(r) = kno, it remains to show that(r) = & (osn) >
1. The sequence numb&fosn) stems, through Ling 8 of Piid. 1, from an incoming RREQ message
and is not changed within Pid. 4. Hence, by Invariant (£1)sn) > 1.

Pro.[H, Lines[1[2[26: The update is similar to the one of Pid. 4, L[de 4. The onlyedéhce is that
the information stems from an incoming RREP message andtiaiting table entry td (dip)
(instead ofé (oip)) is established. Therefore, the proof is similar to the ohro.[4, Line[4;
instead of Invarian{(11) we use Invariaht(12). 0

Proposition 7.22 In our specification of AODV, the functiqaddpreRT]is only used when it is defined.

Proof. It suffices to check that for any calidpreRT(rt,dip, x) the destination has an entry in the routing

table, i.e.dip € kD(rt).

Pro.[4, Line[22: Line[20 shows thaf (dip) € vD(&(rt)) C kD(&(rt)).

Pro.[4, Line[23: In Line[an entry t& (oip) is updated. In case there was no entry before, itis inserted;
hence we know (oip) € kD(& (rt)).

Pro.[§, Line[11: Similar to the previous case: Libé 2 updates a routing entéy(dip).

Pro.[§, Line[12: Line[2 updates the routing table entry with destinafddip). By Line[it is known

that the entryé (dip,dsn,kno,val,hops + 1,sip,0) is inserted; hencehop(é (rt),&(dip)) =
&(sip). Arouting table entry fo€ (sip) exists by Liné 14 of Prd.]1. 0

ad andtaillare only used when they

Proposition 7.23 In our specification of AODV, the functioriise
are defined.

Proof. These functions are defined if the list given as argumentrisaropty.

Pro.[d, Line[22: The functionhead tries to return the first element ofyeud & (store),& (dip)), which
is, by Line[21 € (dip) € qD((store))) and 1), not empty.

Pro.[7, Line[8: Here, the functions work on the li§tmsgs); Line[3 shows thaf (msgs) # []. O

Proposition 7.24 In our specification of AODV, the functidéirop|is only used when it is defined.

Proof. The functiondrop is only used in Prd.]1, Line24. It tries to delete the oldeskpaqueued for
destination (dip); the function is defined if at least one packet &dtip) is stored iné (store)—this
is guaranteed by Lirle 21, which sta®8lip) € qD(£(store)), and [2). |

Proposition 7.25 In our specification of AODV, the functi is only used within formulas. 0O

The function is called only in Prg] 1 in Lide B3 usiog fiag(¢ (store), & (dip)). Again, if one would
use lazy evaluation for conjunction, t is used where it is defined.

49 Modelling, Verifying and Analysing AODV

7.5 The Quality of Routing Table Entries

In this section we define a total preordggi, on routing table entries for a given destinatidip. Entries
are ordered by thquality of the information they provide. This order will be definedsunch a way that
(a) the quality of a node’s routing table entry ftip will only increase over time, and (b) the quality of
valid routing table entries along a routedip strictly increases every hop (at least prior to reactulipy.
This order allows us to proMeop freedonof AODV in the next section.

A main ingredient in the definition of the quality preordethge sequence number of a routing table
entry. A higher sequence number denotes fresher informaiowever, it generally is not the case that
along a route talip found by AODV the sequence numbers are only increasing. islsghce AODV
increases the sequence number of an entry at an intermad@d¢evhen invalidating it. To “compensate”
for that we introduce the concept ohat sequence numbdit is defined by a functionsqn : R — SQN

_ [() if m(r)=val vV m(r)=0
nsan(r) = { m(r)—1 otherwise

Forn e IN definen= 1 := max(n—1,0), so thafincln) = 1=n. Thennsqn(r) =7(r) > 1if m(r)=inv.

To model increase in quality, we defifngy, by first comparing the net sequence numbers of two
entries—a larger net sequence number denotes fresher gimet ljuality information. In case the net
sequence numbers are equal, we decide on their hop courgsentty with the least hop count is the
best. This yields the following lexicographical order:

Assume two routing table entries’ € R with 5(r) = ma(r) = dip. Then

I Caip I’ i< nsqn(r) <nsqn(r') V (nsqn(r) =nsqn(r’) A m(r) > m(r')) .

To reason about AODV, net sequence numbers and the quaditydar is lifted to routing tables. As
for sgmwe define a total function to determine net sequence numbers.

nsqgn :RT X IP — SQN
nsqn(rt, dip) = { gsqn(aroute(rt,dlp)) gt;fg)rﬁ(sret),dlp) is defined
| saqn(rt,dip) if £lag(rt,dip) =val Vv sqn(rt,dip)=0
~ | sqn(rt,dip)—1 otherwise

If two routing tablest andrt’ have a routing table entry wip, i.e.,dip € kD(rt) NkD(rt’), the preorder
can be lifted as well.

rt Caip 1t :< Oroute(rt,dip) Caip Troute(rt’, dip)
< nsqn(rt,dip) < nsan(rt’,dip) v
nsqn(rt,dip) =nsqn(rt’,adip) A dhops(rt,dip) > dhops(rt’,dip
di " di di " di

For all destinationslip € IP, the relationCgp on routing tables with an entry fatip is total preorder.
The equivalence relation induced by, is denoted byxp.
As with sqn, we shortemsqgn: nsqnfj(dip) :=nsqn(&g (rt),dip). Note that

sqni,\ﬁ’(dip) 21< nsqni,\ﬁ’(dip) < sqnilfl](dip) . (16)

After setting up this notion of quality, we now show that ingttables, when modified by AODV, never
decrease their quality.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 50

Proposition 7.26 Assume a routing tablg € RT with dip € kD(rt).

(a) Anfapdate]of rt can only increase the quality of the routing table. Thatasall routesr such that
update(rt,r) is defined (i.e.ju(r) = val, (r) = 0 < 18(r) = unk and7g(r) = unk = 75(r) = 1)

we have rt Cgip update(rt,r) . a7
(b) An[invalidatelonrt does not change the quality of the routing table if, for e@gh rsn) € dests
rt has a valid entry forip, and
e rsnis the by one incremented sequence number from the routireg, @r
e bothrsnand the sequence number in the routing table are O.

That is, for all partial functionslests(subsets of P x SQN)

((rip,rsn) € dests=> rip € vD(rt) A rsn=inc(sqn(rt,rip)))

18
= It ~gpp invalidate(rt,dests . (18)

(c) If precursors are added to an entryrigfthe quality of the routing table does not change. That is, fo
all dip € IP and sets of precursorprec Z(IP),

It ~gip addpreRT(rt,dip,npre) . (29)

Proof. For the proof we denote the routing table after the update’by

(a) By assumption, there is an en{ip, dsny, *, fr, hopst, *, %) for dip in rt. In caserq(r) # dip the
quality of the routing table w.r.dip stays the same, since the entry diip is not changed.
We first assume that:= (dip, 0,unk, val, 1, *,x*). This means that the Clause 5 in the definition of
is used. The updated routing table entrylip has the form(dip, dsny,unk, val, 1, ,x). SO

nsqn(rt,dip) < sqn(rt,dip) = dsn; = nsqn(rt’, dip) , and
dhops(rt,dip) = hops; > 1 = dhops(rt’,dip) .

The first inequality holds by (16); the penultimate step byatiant [4).
Next, we assume that the sequence number is known and treeteéoroute used for the update has
the formr = (dip,dsnkno, val,hopsx*,*) with dsn> 1. After the performed update the routing
entry fordip either has the fornidip, dsn, , fi1,hopst, *, %) or (dip,dsnkno, val,hops,x). In the
former case the invariant is trivially preserved; in thedgtwe know, by definition ofipdate, that
either (i) dsn; < dsn (ii) dsny = dsnA hops: > hops or (iii) dsrny = dsnAf; = inv holds. We
complete the proof of the invariant by a case distinction.
(i) holds: First,nsqn(rt,dip) < dsn; < dsn= sqn(rt’,dip) = nsqn(rt’,dip). Sincedsn; is strictly
smaller thamsqn(rt’, dip), there is nothing more to prove.
(i) holds: We havensqn(rt,dip) = dsn; = 1 < dsn= sqn(rt’,dip) = nsqn(rt’,dip). The inequality
holds since eithedsrny = 1=0< 1 < dsnordsry = 1=dsn; —1 < dsnt = dsn
(i) holds but (iii) does not: Thenf = val. In this case the update does not change the net se-
guence number fadip:))
nsqn(rt,dip) = dsn; = dsn=nsqn(rt’,dip) .
By (ii), the hop count decreases:
dhops(rt,dip) = hopst > hops= dhops(rt’,dip) .
(b) Assume thafinvalidatel modifies an entry of the fornirip,dsn x,flag,*,x*,x). Let (rip,rsn) €
deststhenflag=val and the update results in the enfrip, inc(dsn), ,inv, *,*,*). By definition
of net sequence numbers,

nsqn(rt,rip) = sqn(rt,rip) = dsn= inc(dsn) = 1 = nsqn(rt’, rip).

Since the hop count is not changedinwalidate, we also havelhops(rt,rip) = dhops(rt’, rip),
and hencet ~gi, invalidate(rt,dests.

51 Modelling, Verifying and Analysing AODV

(c) The functiorfaddpreRT| only modifies a set of precursors; it does not change the segquaimber,
the validity, the flag, nor the hop count of any entry of thetirmgitablert. O

We can apply this result to obtain the following theorem.

Theorem 7.27 In AODYV, the quality of routing tables can only be increaseelyer decreased.
AssumeN —5 N/ andip,dipeIP. If dip € kD , thendip € kD',f,’, and

&0 (rt) Caip & (xrt) .

Proof. If dip € kDY, thendip € kDf, follows by Propositio 74. To shod¥ (rt) Caip & (rt), by

RemarK7Z.B and Proposition 7126(a) and (c) it suffices tokchéicalls ofinvalidatel

Pro.[d, Line[28; Pro.[3, Line[10; Pro[4, Lines 13, 29; Prd.]5, lbe[17:
By construction ofdests (immediately before the invalidation calljip,rsn) € EN (dests) =
rip € vD(EI'\lp(rt)) A rsn=inc(sqn(& (rt),rip)) and hence, by Propositién 7126(B (rt) ~ip
invalidate(&y (rt), EN (dests)) = &L (rt).

Pro.[g, Line[3: Assume thainvalidatel modifies an entry of the fornirip,dsn «,flag, x, %,). Let
(rip,rsn) € dests then the update results in the entrip, rsn, x, inv, x, *,*). Moreover, by Liné P
of Pro.[6,flag=val. By definition of net sequence numbers,

nsqn(fli\lp(rt),rip)—sqn(P(rt),rip) <rsn=> l—nsqn(EN,(rt) rp).

The second step holds, since, by Lleszl,n(ENz(rt) rip) < rsn. Since the hop count is not
changed bynvalidate, we also havehops(&y (rt),rip) = dhops(EN, (rt),rip), and therefore
¥ (rt) Caip &0 (rt). O

Theoreni7.27 states in particular thaNit--s N’ thennsqni,f,’(dip) < nsqni,[f,(dip).

Proposition 7.28 If, in a reachable network expressibl) a noddp € IP has a routing table entry tdip,
then also the next hophip towardsdip, if not dip itself, has a routing table entry @ip, and the net
sequence number of the latter entry is at least as large &gftthee former.

dip € kDY A nhip+dip = dip € kD" A nsqn{f (dip) < nsqnfy™*(dip) , (20)

wherenhip := nhop/ (dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transitsgastem and then check all locations in
Processels| [3-7 where a routing table might be changed. Faitiahmetwork expression, the invariant
holds since all routing tables are empty. _

A modification of&)\"™P(rt) is harmless, as it can only increasz|" (cf. Propositio 71) as well as
nsqny "P(dip) (cf. TheoreniZ.27).

Adding precursors t(f (rt) does not harm since the invariant does not depend on presuro
remains to examine all calls ffpdate andinvalidate to &7 (rt). Without loss of generality we
restrict attention to those appllcatlons@date or invalidate that actually modify the entry fadip,
beyond its precursors; ifpdate only adds some precursors in the routing table, the inveravhich is
assumed to hold before—is maintainediifralidate occurs, the next hophipis not changed. Since
the invariant has to hold before the execution, it followat thip € kD" also holds after execution.

Pro.[, Lines[I0[T#[18:The entryé (sip,0,unk,val,1,sip,0) is used for the update; its destination
is dip := & (sip). Sincedip = & (sip) = nhopy (& (sip)) = nhopy (dip) = nhip, the antecedent of
the invariant to be proven is not satisfied.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 52

Pro.[, Line[28; Pro.[3, Line[10; Pro[2, Line$ 18 29; Prd.15, lie[17:
In each of these cases, the preconditior_of (18) is satisfi¢iebexecutions of the line immediately
before the call ofinvalidate (Pro.[1, Line[2V, Prd.]3, Lingl9; Prbl 4, Lines] 12] 28; Rio. 5,
Line[I8). Thus, the quality of the routing table w.dip, and thereby the net sequence number of
the routing table entry fadip, remains unchanged. Therefore the invariant is maintained

Pro.[, Line[4: We assume that the entéfoip, osn,kno,val, hops + 1,sip,*) is inserted intc§ (rt).
Sodip := &(oip), nhip := &(sip), nsqny(dip) := &(osn) and dhops|(dip) := & (hops) + 1.
This information is distilled from a received route requesssage (cf. Lindd 1 ahdl 8 of Prd. 1).

By Propositior 7L this message was sent before, say inlstatey Propositiori 7.8 the sender of
this message i§(sip).

By Invariant [13), withp; := & (sip) = nhip, oip. ;=& (oip) =dip, osrb & (osn) and hopg :=
& (hops), and using thaip; = nhip # dip = oip;, we get thatip € kD“ P and

sqnnh'p(dip) = sqni,g?(oip;) > osn. = &(osn), Or
sqnnh'p(dlp) = &(osn) A flagnh'p(dip) = val.

We first assume that the first line holds. Then, by Thedrem &n2i{16),
nsqny (dip) > nsqn])iP(dip) > sqny;P(dip) * 1> & (osn) = nsqnf(dip) .
We now assume the second line to be valid. From this we coeclud
nsqny P(dip) > nsqn])iP(dip) = sqny1P(dip) = & (osn) = nsqn (dip).

Pro.[H, Line[2: The update is similar to the one of Pid. 4, Lide 4. The onlyedéhce is that the infor-
mation stems from an incoming RREP message and that a raatieg entry tof (dip) (instead
of £(oip)) is established. Therefore, the proof is similar to the ohEro.[4, Line[4; instead of
Invariant [13) we use Invariarit (114).

Pro.[6, Line[3: Let N3 andN be the network expressions right before and right after wieg Pro[6,
Line[3. The entry for destinatiotip can be affected only ifdip, dsn) E,'\lr;(de_sts) for somedsne
SQN. In that case, by Linel2dip,dsn E,'\lpz(dests), dip € vD',ﬂz, andnhop',gz(dip) ENZ(Slp)
By definition ofinvalidate, sqny,(dip) = dsnandflag);(dip) = inv, SO

nsqni,ﬂ(dip) = squ f(dip)=1=dsn*1.

Hence we need to show théén 1 < nsqnfy""(dip).

The vaIuesENZ(dests) and ENZ(s1p) stem from a received route error message (cf. Lldes 1
and[16 of_ProEIl). By Proposit_idﬂﬂ(a), a transition ladgbR: *cast(rerr(dests,ip:)) with
dests := & ,(dests) andip; = & ,(sip) must have occurred before, say in stife By Propo-
sition[78, the node casting this messagepd& ENz(s1p) = nhopy, (dip) = nhopy; (dip) = nhip.

The penultimate equation holds since the next hogipds not changed during the execution of
Pro[6.

By Propositio 7.15 we hawdip € iD\;” anddsn< sqn(&)(rt),dip). Hence
nsqny "P(dip) > nsqny;"(dip) = nsqn(£4*(rt) dip) = sqn(&P(rt) dip) * 1> dsn* 1,

where the first inequality follows by Theorém 7.27. 0

53 Modelling, Verifying and Analysing AODV

To prove loop freedom we will show that on any route establishy AODV the quality of routing tables
increases when going from one node to the next hop. Here rédueder is not sufficient, since we need
a strict increase in quality. Therefore, on routing tabteandrt’ that both have an entry tdip, i.e.,
dip € kxD(rt) NkD(rt’), we define a relatiot gip by

tCaiprt’ 1< 1t Caip It A rtsgiprt’ .
Corollary 7.29 The relationC g is irreflexive and transitive.

Theorem 7.30 The quality of the routing table entries for a destinatitynis strictly increasing along a
route towardglip, until it reaches eithedip or a node with an invalid routing table entrydp.

dip € vD NvDY™ A nhip#dip = &P(rt) Caip &LP(rt) (21)

whereN is a reachable network expression autnip := nhop f(dip) is the IP address of the next hop.

Proof. As before, we first check the initial states of our transiigstem and then check all locations in
Processels| [3-7 where a routing table might be changed. Faitiahmetwork expression, the invariant
holds since all routing tables are empty. Adding precurso&’ (rt) or &]"°(rt) does not affect the
invariant, since the invariant does not depend on precsirsar it suffices to examine all modifications
to &P (rt) or £)"P(rt) usinglapdate] or (ovalidatel Moreover, without loss of generality we restrict
attention to those applications @pdate or invalidate that actually modify the entry fadip, beyond
its precursors; ifipdate only adds some precursors in the routing table, the invesisrhich is assumed
to hold before—is maintained. _

Applications ofinvalidate to either&P(rt) or &"™P(rt) lead to a network state in which the
antecedent of (21) is not satisfied. Now consider an appitaif update to ¢ ”h'p(t). We restrict
attention to the case that the antecedenf df (21) is satlsgbdafter the update, so that right before the
update we havdip € vD Anhip# dip. In the special case that1n” 'p(dip) = O right before the update,
we havensqn”h'p(dip) 0 and thusnsqnf) (dip) = 0 by Invariant [2D). Since1aglf(dip) = val, this
implies sqn P (dip) = 0. By Propositioi 7.12{d) we hawehip = dip, contradicting our assumptions. |
follows that right before the updaten|""(dip) > 0, and hencasqnnh'p(dip) < sqniP(dip).

An application ofupdate to & ”h'p(rt) that changes1agl™"(dip) from inv to val cannot decrease
the sequence number of the entrydip and hence strictly increases its net sequence number. Be-
fore theupdate we hadnsqu (dip) < nsqu ®(dip) by Invariant [2D), so afterwards we must have
nsqu(dlp) < nsqn""(dip), and henceé” (rt) Cgip £4""(rt). Anupdate to &7 P(rt) that maintains
flag” 'p(dlp) = val can only increase the quality of the entrydip (cf. Theoren("Z.27), and hence
maintains Invarian{(21). _

It remains to examine thepdates to &y (rt).

Pro.[D, Lines[I0[T1#[18:The entryé (sip,0,unk,val,1,sip,D) is used for the update; its destination
is dip := & (sip). Sincedip = nhop',f}(dip) = nhip, the antecedent of the invariant to be proven is
not satisfied.

Pro.[, Line[4: We assume that the entf)(01p,osn kno,val,hops+1,sip,1) is inserted intcE (rt).
Sodip := &(oip), nhip:= &(sip), nsqny(dip) := & (osn) and dhopsy(dip) := & (hops) + 1.
This information is distilled from a received route requesssage (cf. Lindd 1 ahdl 8 of Prd. 1).
By Propositior 711 this message was sent before, say inlstatey Propositiori 7.8 the sender of
this message i§(sip).
By Invariant [I3), withip; := & (sip) = nhip, oip; := & (oip) =dip, osn.:= & (osn) and hops :=
¢ (hops), and using thaip, = nhip # dip = oip,, we get that

sqnnh'p(dlp) = squT(Olpc) > osi. = &(osn), Or
sqnnh'p(dlp) = &(osn) A dhopsnh'p(dlp) < &(hops) A flagnh'p(dip) = val.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 54

We first assume that the first line holds. Then, by the assomgip € vD(£""(rt)), the definition
of net sequence numbers, and Propos(iioh 7.6,

nsqn&h'p(dip) = sanl\]lh'p(dlp) > sqnnh'p(dlp) > &(osn) = nsqu(dlp)

and hencé " (rt) Caip &7 (rt).
We now assume the second line to be valid. From this we coaclud

nsqnnh'p(dlp) = sqnnh'p(dip) =¢&(osn) = nsqni,\'?(dip) .

Moreover, dhopsnh'p(dip) < &(hops) < &(hops)+1 = dhops £ (dip) .
HenceEi (rt) Caip E”h'p(t). Together with Theoreiin 7.27 and the transitivityafip this yields
N (xt) Caip &4 ().

Pro.[H, Line[2: The update is similar to the one of Pid. 4, Lide 4. The onlyedéhce is that the infor-
mation stems from an incoming RREP message and that a raatieg entry toé (dip) (instead
of £(oip)) is established. Therefore, the proof is similar to the ohBro.[4, Line[4; instead of
Invariant [I3) we use Invariarfi (114). 0

7.6 Loop Freedom

The “naive” notion of loop freedom is a term that informatheans that “a packet never goes round in
cycles without (at some point) being delivered”. This dymadefinition is not only hard to formalise, it

is also too restrictive a requirement for AODV. There araaibns where packets are sent in cycles, but
which are not considered harmful. This can happen when th@dgy keeps changing.

Loops within a Topology that Changes Forever @
The following example shows that data packets can travey4in c

cles without being delivered. However, it is our belief tliais @
example is not a loop that should be avoided by a good routing .
protocol. e 0

The example consists of a “core” network built up by the
nodess, a andb, which form a ring topology. All links between
these three nodes are stable. Naodis part of the network and
keeps moving around the core such that it is always connégated
only one of the nodes at a time; see Fidgure 4. In the initidesta
is connected ta and nodes wants to send a data packetdo

Sinces does not have a routing table entrydoit generates and broadcasts a RREQ message, which
is received byd via nodea (Figure[5 (a)ﬁ In Figure[%(b)d sends a RREP message back (via a).

Sinces now has a routing table entry fo; it sends the data packet #e—the next hop on the route
to d (Figure[®(c)). In the meantime, nodenas moved away from node and is now connected to node
b. In Figure[®(d), node detects the link break (e.g. while trying to send the dat&etaftom nodes to
noded), and proceeds to do a local re@rThe data packet is buffered while waiting for the local repai

Figure 4: Loop considered harmless

35The “snapshots” in this figure are slightly different fronetbnes presented before; in Figurés 2 @hd 3 (as well@s in 6),
each snapshot presents the system in a state after an AOD\dlamessage or data packet has been received and alredlgy par
handled (e.g., the routing tables are updated). Here, thiggswes describe the system when each message has either bee
handled completely or has been received and stored in tffier bodfitnot yet handled.

36Even though we do not model the local repair feature, we User to illustrate scenarios where data packets can travel i
cycles. Itis easy to modify the presented example into orleout local repair; however the modified example would regjui
error handling and hence would be longer.

55 Modelling, Verifying and Analysing AODV

process to complete. To repair the link break, nadenerates a new RREQ message, which is received
by noded via nodeb.

In Figure[B(e), nodel sends a RREP message back to na@ea nodeb), thus enabling noda to
repair its routing table entry to no

With a valid entry in its routing table for nod#, nodea can now send the buffered data packet to
nodeb—the next hop on the route towards nadiéFigure[5(f)). If noded now moves away from node
b and into the transmission range of na&j¢he events of Parts (d)—(f) will repeat. This will continas
long as the destination nodekeeps moving “around” nodess a andb. The data packet will then travel
through a loopp—b-s-a. Though this is a loop, it is not undesirable behaviour siheedata packet is
always travelling on the shortest path towards nddi is due to the movement of nodkthat the data
packet is never delivered. O

(a)sbroadcasts a new RREQ message destineld t

(a,0,unk,val,1,a)
(b,0,unk,val,1,b)

(a,0,unk,val,1,a)
(s,2,kno,val,1,s)

qb)d updates its RT and unicasts a RREP.

(a,0,unk,val,1,a)
(s,2,kno,val,2,a)

,0,unk,val,1,b)
,1,kno,val,1,d)
,2,kno,val,1,s)

ol

&
(a,0,unk,val,1,a) Q‘}“
(b,0,unk,val,1,b)
(d,1,kno,val,2,a)

(a,0,unk,val,1,a)
(s,2,kno,val,1,s)

(c) The topology changes;
ssends the data packetdo
(b,0,unk,val,1,b)

(d,1,kno,val,1,d)
(s,2,kno,val,1,s)

(a,0,unk,val,1,a)
(b,0,unk,val,1,b)
(d,1,kno,val,2,a)

(a,0,unk,val,1,a)
(s,2,kno,val,1,s)

(a,0,unk,val,1,a)
(s,2,kno,val,2,a)

(d) a detects the link break;
it initiates new RREQ (local repair).
(b,0,unk,val,1,b)

(d,2,kno,inv,1,d)
(s,2,kno,val,1,s)

(a,2,kno,val,1,a)
(b,0,unk,val,1,b)
(d,1,kno,val,2,a)

(a,2,kno,val,1,a)
(s,2,kno,val,1,s)

(a,0,unk,val,1,a)
(s,2,kno,val,2,a)

(e)d updates its RT and unicasts a RREP back to

(b,0,unk,val,1,b)
(d,2,kno,val,2,b)
(s,2,kno,val,1,s)

(a,2,kno,val,1,a)
(b,0,unk,val,1,b)
(d,1,kno,val,2,a)

(a,2,kno,val,1,a)
(d,2,kno,val,1,d)
(s,2,kno,val, 1, s)

G
%
&
©

(a,2,kno,val,2,b)
(b,0,unk,val,1,b)

QQ@@
2 (s,2,kno,val,2,a)

(f) aforwards data packet to
the topology changes.

(b,0,unk,val,1,b)
(d,2,kno,val,2,b)
(s,2,kno,val,1,s)

(a,2,kno,val,1,a)
(d,2,kno,val,1,d)
(s,2,kno,val,1, s)

(a,2,kno,val,1,a)
(b,0,unk,val,1,b)
(d,1,kno,val,2,a)

(a,2,kno,val,2,b)
(b,0,unk,val,1,b)
(s,2,kno,val,2,a)

Figure 5: A “dynamic loop”

3"\We simplify the description of the local repair process hé&arther details are available in the RECI[79].

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 56

Due to this dynamic behaviour, the sense of loop freedom ishnbetter captured by a static invariant,
saying that at any given time the collective routing tabléshe nodes do not admit a loop. Such a
requirement does not rule out the dynamic loop exemplifieay@b However, in situations where the
topology remains stable sufficiently long it does guaranted packets will not keep going around in
cycles. In the above example the packet would actually bizete as soon as the topology stops
changing—it does not matter when.

To this end we define theuting graphof network expressioiN with respect to destinatiodip by
Zn(dip):=(IP,E), where all nodes of the network form the set of vertices amtktis an ar¢ip,ip’) € E
iff ip£dip and(dip, *,,val,*,ip’,%) € &P (rt).

An arc in a routing graph states thptis the next hop on a valid route ¢t known byip; a path in a
routing graph describes a route towadis discovered by AODV. We say that a network expres$ics
loop freeif the corresponding routing grapl#y (dip) are loop free, for altlipeIP. A routing protocaol,
such as AODV, idoop freeiff all reachable network expressions are loop free.

Using this definition of a routing graph, Theorém 7.30 stétes along a path towards a destination
dip in the routing graph of a reachable network expresslpantil it reaches eithedip or a node with an
invalided routing table entry to dip, the quality of the rioigt table entries fodip is strictly increasing.
From this, we can immediately conclude

Theorem 7.31 The specification of AODV given in Secti¢n 6 is loop free.

Proof. If there were a loop in a routing grap#iy (dip), then for any edgéip, nhip) on that loop one has
&P (rt) Caip &1"P(rt), by TheoreniZ30. Thus, by transitivity ofgp, one hasé,P(rt) Caip &P (xt),
which contradicts the irreflexivity af g (cf. Corollary(7.29). O

According to Theoreni_7.31 any route to a destinatilyp established by AODV—i.e. a path in
2\ (dip)—ends after finitely many hops. There are three possible wawsich it could end:

(1) by reaching the destination,
(2) by reaching a node with an invalid entrydip, or
(3) by reaching a node without any entrydip.

(@) is what AODV attempts to accomplish, wherdds (2) is avoidable due to link breaks in a dynamic
topology. It follows directly from Proposition 7.P8 thai) (@an never occur.

7.7 Route Correctness

The creation of a routing table entry at nagefor destinationdip is no guarantee that a route fram
to dip actually exists. The entry is created based on informatagheged from messages received in the
past, and at any time link breaks may occur. The best one cegldre of a protocol like AODV is that
routing table entries are based on information that waselsome point in the past. This is the essence
of what we callroute correctness

We define distoryof an AODV-like protocol as a sequenee= NgN; . .. Nk of network expressions,
whereNp is an initial state of the protocol, and for<li < k there is a transitiom;_1 LN Ni; we call
H a historyof the stateNy. Theconnectivity graptof a historyH is ¢ :=(IP,E), where the nodes of
the network form the set of vertices and there is an(grgp’) € E iff ip’ € R}f’h for some 0<i <k, i.e.
if at some point during that history nodg’ was in transmission range gf. A protocol satisfies the
propertyroute correctness for every historyH of a reachable stafé and for every routing table entry
(dip, %, *, *,hops,nhip,) € &7 (rt) there is a pathip — nhip — --- — dip in %4 from ip to dip with
hopshops and (ifhops> 0) next hopnhip

38A path with 0 hops consists of a single node only.

57

Modelling, Verifying and Analysing AODV

Theorem 7.32 Let H be a history of a network stab¢é.
(a) Foreach routing table entfglip, , x, *, hops nhip, %) € E,i\lp(rt) there is a patip — nhip— --- — dip

(b)

()

in 6y from ip to dip with hopshops and (ihhops> 0) next hopnhip.
For each route request sent in stdtthere is a corresponding path in the connectivity grapH of

N R*cast(rreq(NOpS,*,#,,*,0ifk,*,iP)), in N/

= thereis a patlip; — - -- — oip: in % from ip. to oip; with hopsg hops (22)

For each route reply sent in stdethere is a corresponding path in the connectivity grapH of

N R*cast(rrep(hops,dip,,,ipc)) 0 N/
= thereis a patlip; — - -- — dip. in %y from ip. to dip: with hopsg hops

(23)

Proof. In the course of running the protocol, the set of edgem the connectivity graptéy only
increases, so the properties are invariants. We prove tlyesimultaneous induction.

(a) In an initial state the invariant is satisfied becauserdéing tables are empty. Since routing table

(b)

entries can never be removed, and the functitdpreRT andinvalidate do not affecthopsand
nhip, it suffices to check all application callsf@pdate] In each case, if the update does not change
the routing table entry beyond its precursors (the lastselaaffupdate)), the invariant is trivially
preserved; hence we examine the cases that an updateyaotalfs.

Pro. [, Lines[I0[14[1B:The update changes the entry iff¢sip,*,unk,val,1 sip,*); hence
hops=1 andnhip = dip := &(sip). The valueé(sip) stems through Lines] 8112 prl16 of
Pro.[1 from an incoming AODV control message. By Proposiffah this message was sent
before, say in statdl™; by Propositiori 718 the sender of this messag&(isip) = nhip. Since
in stateN™ the message must have reached the queue of incoming mes$agegip, it must
be thatip € Rﬂlﬂ'p. In our formalisation of AWN the connectivity graph is alveagymmetric:
nhipe RY, iff ip Rmp. It follows that (ip, nhip) € E, so there is a 1-hop path #}; from ip to
dip.

Pro.[, Line[: Heredip := & (oip), hops:= & (hops)+1 andnhip := &(sip). These values stem
from an incoming RREQ message, which must have been sentbafud, say in stafd’. As
in the previous case we obtafip, nhip) € E. By Invariant [22), withoip; := & (oip) = dip,
hops := & (hops) andip; := & (sip) = nhip, there is a patmhip — --- — dip in % from ipc
to oip; with hops hops. It follows that there is a paih — nhip— --- — dip in ¢4 fromip to
dip with hopshops and next hophip.

Pro.[, Line[2: Heredip := &(dip), hops:= & (hops)+1 andnhip:= &(sip). The reasoning is
exactly as in the previous case, except that we deal with@ming RREP message and use
Invariant [23).

We check all occasions where a route request is sent.

Pro.[D, Line[33: A new route request is initiated witlp; = oip, := &(ip) = ip and hops := 0.
Indeed there is a path iy from ip to oip, with O hops.
Pro.[4, Line[38: The broadcast message has the form

& (rreq(hops+1,rreqid,dip,max(sqn(rt,dip),dsn),dsk,oip,osn,ip)) .

Hencehops := & (hops)+1, oip. := &(oip) andipe := &(ip) = ip. The valuest (hops) and
& (oip) stem through Lin€l8 of Pr@] 1 from an incoming RREQ messagleeofdrm

é(rreq(hops,rreqid,dip,dsn,dsk,oip,osn,sip)) .

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 58

By Propositior 711 this message was sent before, say infstatey Propositiori 78 the sender
of this message isip := &(sip). By induction, using Invarian{{22), there is a paip —

-+ — 0 IN Gt C 6H from sipto oip; with & (hops) hops. It remains to show that there is a
1-hop path fromip to sip. In stateN' the message sent Isjp must have reached the queue of
incoming messages of node and therefor@ was in transmission range sip, i.e.,ip € R,s\:E
Since the connectivity graph of AWN is always symmetric {&fbled 3 anfll4, and explanation
on Pag& T5)ip € RYf holds as well. Hence it follows théip, sip) € E.

(c) We check all occasions where a route reply is sent.

Pro.[4, Line[1Q: A new route reply witthops := 0 andip. := & (ip) = ip is initiated. Moreover, by
Line[d,dip. := & (dip) = &(ip) = ip. Thus there is a path f&y from ip. to dip; with 0 hops.

Pro.[4, Line[28: We havedip. := £ (dip), hopg := dhopsi,f}(d_ipc) andip. := & (ip) =ip. By Line[20
there is a routing table entrigip, ¥, ¥, ¥, hops, *, %) € & (rt). Hence by Invariant (a), which
we may assume to hold when using simultaneous inductiore tha pathtip — --- — dig. in
%y from ip = ip to dip; with hopg hops.

Pro.[5, Line[13: The RREP message has the fofifrrep(hops+1,dip,dsn,oip,ip)) and the
proof goes exactly as for Pid. 4, Lihel36 of Part (b), by uslipg:= £ (dip) instead ofoip, :=
&(oip), and an incoming RREP message instead of an incoming RRE&ages O

Theoren{ Z.3R(a) says that the AODV protocol is route corrEot the proof it is essential that we use
the version of AWN were a nodp’ is in the range of nodi, meaning thaip’ can receive messages sent
by ip, if and only ifip is in the range ofp’. If AWN is modified so as to allow asymmetric connectivity
graphs, as indicated in Section}4.3, it is trivial to consttau2-node counterexample to route correctness.

A stronger concept of route correctness requires that fdn @hp, «, x, x, hops nhip, x) € E,'\,p(rt)

e eitherhops= 0 anddip = ip,

e orhops= 1 anddip = nhipand there is & in H such thanhipe RY,,

e orhops>1 and there is &' in H with nhipe R:\'TT and(dip, x, *,val,hops-1,,%) € EI{l‘?ip(rt).
It turns out that this stronger form of route correctnesssda# hold for AODV.

7.8 Further Properties

We conclude this section by proving a few more properties@bX; these will be used later in the paper
and/or shed some light on how AODV operates.

7.8.1 Queues

Proposition 7.33 A nodeip € IP never queues data packets intended for itself.
ip ¢ aD (& (store)) (24)

Proof. We first show the claim for the initial states; afterwards wettyyough our specification (step by
step) and look at all locations where the store of an arlyitnadeip € IP can be changed.

In an initial network expression all sets of queued data arptg There is only one place where
a new destination is added txore, namely Pro[R, Lin€l4. Heré, (dip) is added as new queued
destination. However, Lifd 3 shows thiaidip) # & (ip). 0

59 Modelling, Verifying and Analysing AODV

7.8.2 Route Requests and RREQ IDs

A transitionN -R-cast(rreq(«reqiddip+0p0s)) N/ that stems from Pr@] 1, Line B9 marks the initiation of
anewroute request. Each such transition that stems fromPrané[28, which is the only alternative,
marks theforwarding of a route request. In this case, the variablesqid, dip, oip andosn, which
supply the valuesreqid, dip, oip andosn get these values in Pd. 1, Libk 8; nowhere else is the value
of these variables set or changed. Hence the values memtézrecopied directly from another RREQ
message, read in Pid. 1, Line 1. By Proposifionr7.1(a), tleissage has to be sent before; and this is the
message that is forwarded. Nowaute requestan be defined as an equivalence class of route request
messages (transitions in our operational semantics), lgdipeonsidering a forwarded RREQ message
to belong to the same route request as the message beingdedva

Proposition 7.34 A route request is uniquely determined by the gaip, rreqid) of the originator IP
address and its route request identifier.

Proof. As argued above, each forwarded RREQ message carries tlegpsartoip, rreqid) as the mes-
sage being forwarded. It remains to show that each new regigest is initiated with a different pair
(oip, rreqid).

The broadcast message id is determined by the fungi@eqid, At the initial state the function
nrreqid will return 1, sincerreqgs(ip) is empty. If a new id—determined by the functianreqid—is
used by a nodép, the id is also added t§"y(rregs) (Pro.[1, Line(3B). By Proposition 1.5, this id
will never be deleted frond (rreqs). Therefore, whenever the functiarreqid is called afterwards by
the same node, the return value will be strictly higher. et fawill be increased by 1 each time a new
request is sent. It follows that for each route request tivre(p#p, rreqid) is unique. O

This pair(oip, rreqid) is stored in the local variablexeqs maintained by each node that encounters the
route request.

The following proposition paves the way for the conclusibattthe role of the componereqid in
route request messages could just as well be taken over yigtang componersnof these messages.

Proposition 7.35

(@) A node’s sequence number is greater than its last used RRE®.i
E,i\lp(sn) > rreqidifI ,

whererreqidi,f,’ :=max{n| (ip,n) € E,i\,p(rreqs)}and the maximum of the empty set is defined to be
0.

(b) A route request is uniquely determined by the combinatioosmandoip.

Proof.

(@) Inthe initial stateE,i\,p(sn) =1 andrreqidi,f,’ = 0. Both numbers are increased by 1 if a route request
is initiated; thesn is increased firstrreqid',{,J is not changed elsewhere; however, when generating
a route replyé (sn) might be increased (cf. Pid. 4, Lie 8).

(b) When a route request is initiated, the value of the compoo&mn the initial RREQ message equals
the (newly incremented) current valueaf maintained by the initiating node, just like the compo-
nentrreqid in the initial RREQ message equals the (newly incrementedknt value Ofrreqid”NO
of the initiating node. Now the statement follows since thkig ofsn is increased whenever a route
request is initiated andsnandoip are passed on unchanged when forwarding a route requdst, jus
like rreqid andoip. O

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 60

The following proposition states three properties abontis®y a route request.
Proposition 7.36

(a) If aroute request is sent by a ndgge IP, the sender has stored the unique pair of the originator’s
IP address and the request id.

N R:*cast(rreq(*Jreqidc7*7*7*70ip;7*7ipc)) |p N/ = (Olp:, I’I’eC]IdC) G E,i\‘pc(rreqs) (25)

(b) If a route request is sent, the originator has stored tigue pair of the originator’s IP address and
the request id.

N R*cast(rreq(x,rreqide,,x,x,0ip,*,)) o N = (oipc,rreqidc) c Eﬁip:(rreqs) (26)

(c) The sequence number of an originator appearing in a meggeest can never be greater than the
originator’'s own sequence number.

N R*cast(rreq (s *,*,*,*,0ip:;,0S M, *)) o N osn, < Eﬁip:(sn) (27)

Proof. We have to check that the consequent holds whenever a rajutesteis sent. In all the processes
there are only two locations where this happens, namelyRtane[39 and Prd.l4, Lirle_B6.

(a) Pro.[, Line[39: A request with contenf (x,rreqid,*,*,*,ip,*,1ip) is sent. Sap. := &(ip),
oip. := &(ip) andrreqide := & (rreqid). Hence, using[(3),&y° = & = €. Right before
broadcasting the reques€ (ip), & (rreqid)) is added to the set(rreqs).

Pro.[, Line[38: The information(§ (oip), & (rreqid)) is added tcf (rreqgs) at Line[B. Moreover,
the set of handled requesiérreqgs) as well as the values ofip andrreqid do not change be-
tween Lind® anf[36. Agaifoip, rreqidc) = (€ (oip), & (rreqid)) € & (rregs) = &n°(rregs).

(b) Pro.[, Line[39: A request with contenf (x,rreqid, x,x,x,ip,*,ip) is sent. Smip. := & (ip)
and hence, by {3¢\" = &. Moreover,rreqid, := & (rreqid). Right before broadcasting the
request, the paifé (ip), & (rreqid)) is added to the set(rregs).

Pro.[4, Line[38: A request with contenf (x,rreqid, x,*,*,0ip,*,*) is sent. The values of the
variablesrreqid andoip do not change in Pr@l 4; they stem, through Lihe 8 of Pro. Infro
an incoming RREQ message (Po. 1, Lide 1). Now the claimalanmediately from the
fact the each RREQ message received, has been sent by soenéPnopositioi 7]i{a)), and
[induction on reachability.

(c) Pro.[, Line[33: The sender is the originator, @i, := £(ip) = ip andosn; := &(sn). By @),
N = &, which immediately implie®sn, := £®(sn).

Pro.[, Line[38: Hereoip. := £ (oip) andosn. := & (osn). The values of the variablesip andosn
do not change in Pr@] 4; they stem from L[de 8 of Pfo. 1. By Psdum[Z.1(a), a transition
labelledR: *cast(rreq(x,*,*,*,*,0if,0Sn,*)) must have occurred before, say in stiife
Thus, by induction and Proposition ¥ @n. < &g (sn) < &4 (sn). 0

7.8.3 Routing Table Entries

Proposition 7.37

(a) The sequence number of a destination appearing in amepiiecan never be greater than the desti-
nation’s own sequence number.

N Ri*cast(rrep (+,dip.,dsm,,x))

p N’ = dsn. < &I (sn) (28)

61 Modelling, Verifying and Analysing AODV

(b) A known destination sequence number of a valid routiridetantry can never be greater than the
destination’s own sequence number.

(dip,dsnkno, val, %) € &P (rt) = dsn< &JP(sn) (29)

Proof. We apply simultaneous induction to prove these invariants.

(a) We have to check that the consequent holds whenevereaneply is sent.

Pro.[4, Line[10: A route reply with sequence numbdsn, := E,i\,p(sn) is initiated. Moreover, by
Line[7, dip; := &P (dip) = &P (ip) = ip. Sodsn, = EJ7(sn).

Pro.@, Line[28: A route reply withdip. := &P (dip) anddsn, := &P (sqn(rt ,dip)) = sqni’ (dip.)
is initiated. By Line[20dsn; is aknown sequence number, stemming from a valid entry for
dip. in the routing table ofp. Hence by Invarian{{29)sn, = sqnl? (dip,) < &7 (sn).

Pro.[, Line[13: The RREP message has the fofffi(rrep(hops +1,dip,dsn,o0ip,ip)). Hence
dip. := &\ (dip) anddsn, := & (dsn). The values of the variablesip anddsn do not change
in Pro.[B; they stem, through Liel12 of PEd. 1, from an incanRREP message (Pid. 1,

Line[D). By Propositiofi_7]1 this message was sent beforebgapdesip in stateN'. By in-
duction we haveisn, < & (sn) < £™(sn), where the latter inequality is by Proposition7.2.

(b) We have to examine all application call§apidate}—entries resulting from a call dfavalidate are
not valid. Moreover, without loss of generality we restattention to those applications epdate
that actually modify the entry fadip, beyond its precursors; dpdate only adds some precursors
in the routing table, the invariant—which is assumed to h@lfbre—is maintained.

Pro.[d, Lines[I0[T4 18:These calls yield entries witimnknown destination sequence numbers.

Pro.[4, Line[: Heredip:= & (oip) anddsn:= & (osn). These values stem from an incoming RREQ
message, which must have been sent beforehand, say inNStatBy Invariant [27), with
oip. := & (oip) = dipandosn. := & (osn) = dsnwe havedsn< Eﬂ'f(sn) < &3P (sn), where the
latter inequality is by Propositidn 7.2.

Pro.[, Line[2: Heredip:= &(dip) anddsn:= £ (dsn). These values stem from an incoming RREP
message, which must have been sent beforehand, say inN§tatBy Invariant [28), with
dip := £ (dip) = dip anddsn, := & (dsn) = dsnwe havedsn< £{P(sn) < £{"(sn). O

Proposition 7.38 Wheneverip’s routing table contains an entry with next hopip, it also contains an
entry fornhip.

(s, %, %, %, %, Nhip, %) € EP(xt) = (Nhip, x, x, %, %%, %) € &P (rt) (30)

Proof. As usual we only consider function calls apdate and assume that the update changes the
routing table.

Pro.[d, Lines[I0[1% and18:1-hop connections are inserted into the routing table. Bgriant [9), the
new entry has the forrtnhip, , x, x, *, nhip,). Thereforeip has an entry fonhip.

Pro.[4, Line[4: We assume that the entéfoip,osn,kno,val, hops + 1,sip,) is inserted intc§ (rt).
So,nhip:= & (sip). This information is distilled from a received route requegssage (cf. Linég 1
and8 of Prd11). Right after receiving the message, a roudéstop) is created or updated (Lifie]10
of Pro.1); hence an entry for the next hop exists.

Pro.[H, Line[2: The update is similar to the one of Prd. 4, Lide 4. The onlyedéhce is that the infor-
mation stems from an incoming RREP message and that a rdatieg entry toé (dip) (instead
of £ (oip)) is established. 0

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 62

8 Interpreting the IETF RFC 3561 Specification

It is our belief that, up to the abstractions discussed inti@ef, the specification presented in the
previous sections reflects precisely the intention and teanimg of the IETF RFC_[79]. However,
when formalising the AODV routing protocol, we came acrossie ambiguities, contradictions and
unspecified behaviour in the RFC. This is also reflected byfabethat different implementations of
AODV behave differently, although they all follow the line$ the RFC. Of course a specification
“needs to be reasonably implementation independent" and can leave some decisions to the software
engineer; however it is our belief that any specificationusthdoe clear and unambiguous enough to
guarantee the same behaviour when given to different desedo As we will show, this is not the case
for AODV.

In this section, we discuss and formalise many of the proateniehaviours found, as well as their
possible resolutions. Amterpretation of the RFC is given by the allocation of a resolution to each
of the ambiguities, contradictions and unspecified behagioEach reading, implementation, or formal
analysis of AODV must pertain to one of its interpretationke formal specification of AODV presented
in Sectiond b an@l6 constitutes one interpretation; thentovg of ambiguities and contradictions is
formalised in Section 812 by specifying each resolutionaafteof the ambiguities and contradictions as
a modification of this formal specification, typically invatg a rewrite of a few lines of code only. We
also show which interpretations give rise to routing loopstber unacceptable behaviour. Beforehand,
in Section[8.1L, we show how a decrease in the destinationesegunumber in a routing table entry
generally gives rise to unacceptable protocol behaviaierlon we use this analysis to reject some of
the possible interpretations of the RFC. After we have prieskthe ambiguities and their consequences,
in Section 8.8 we briefly discuss five of the most popular im@atations of AODV and demonstrate
that the anomalies we discovered are not only theoretidaigen, butdo occur in practice. In particular,
we show that three implementations can yield routing loops.

8.1 Decreasing Destination Sequence Numbers

In the RFC it is stated that a sequence number is
“A monotonically increasing number maintained by each originating node.”
[79, Sect. 3]
Based on this, it is tempting to assume that also any deistimaéquence number within a routing table
entry should be increased monotonically. In fact this is alated in the RFC: The sequence number for
a particular destination

“is updated whenever a node receives new (i.e., not stale) information about
the sequence number from RREQ, RREP, or RERR messages that may be received
related to that destination. [...] In order to ascertain that information
about a destination is not stale, the node compares its current numerical
value for the sequence number with that obtained from the incoming AODV
message. [...] If the result of subtracting the currently stored sequence
number from the value of the incoming sequence number is less than zero,

then the information related to that destination in the AODV message MUST be
discarded, since that information is stale compared to the node’s currently
stored information.” [79, Sect. 6.1]

This long-winded description simply says that all inforfoatdistilled from any AODV control message

that has a smaller sequence number for the destination uodsideration, MUST be discarded. AODV
should never decrease any destination sequence numiuer tisis could create loops. We illustrate this
by Figure 6.

3%ttp://www.ietf.org/iesg/statement/pseudocode-guidelines. html

http://www.ietf.org/iesg/statement/pseudocode-guidelines.html

63 Modelling, Verifying and Analysing AODV

(a) The initial state; (b) Assumption:
a connection betweethands has been established. A sequence number insidés RT is decreased

(a,0,unk,val,1,a) (d,2,kno,val,1,d) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (d,1,kno,val,1,d) (a,0,unk,val,1,a)
(d,2,kno,val,2,a) (s,1,kno,val,1,s) (s,1,kno,val,2,a) (d,2,kno,val,2,a) (s,1,kno,val,1,s) (s,1,kno,val,2,a)

(c) The topology changes; (d) The topology changes again;
ainvalidates routes td ands. a broadcasts a new RREQ destinedlfo
nodesreceives the RREQ and updates its RT.

©

(a,0,unk,val,1,a) (d,2,kno,inv,1,d) (a,0,unk,val,1,a) (a,2,kno,val,1,a) (d,2,kno,inv,1,d) (a,0,unk,val,1,a)
(d,2,kno,val,2,a) (s,2,kno,inv,1,d) (s,1,kno,val,2,a) (d,2,kno,val,2,a) (s,2,kno,inv,1,d) (s,1,kno,val,2,a)

(e) s has information about a route ¢
it unicasts a RREP back.
aupdates its RT and creates a loop.

(a,2,kno,val,1,a) (d,2,kno,val,3,s) (a,0,unk,val,1,a)
(d,2,kno,val,2,a) (s,2,kno,inv,1,d) (s,1,kno,val,2,a)

Figure 6: Creating a loop when sequence numbers are dedrease

Assume a linear topology with three nodes. In the past, mbgent a request to establish a route
to s. This RREQ message was answered by a RREP message ob.ndfeer the route has been
established, the network is in the state of Fidure 6(a). i (B2 we assume that the sequence number
of the routing table entry td of a's routing table is decreased. Due to topology changes, adlen
looses connection to all neighbours and invalidates itsinguable entries (Part (c)). In particular, it
increments all sequence numbers of the routing table asdtsetstatus flags tbnv. A possible error
message sent by nodds not received by any other node. After the link betweeands has appeared
again, nodea wants to re-establish a route ¢ it broadcasts a new RREQ message (Part (d)). The
AODV control message generatedriseq(0, rreqid, d,2,kno,a,2,a), whererreqid is the unique id
of the message. Since nodédnas information aboud, which is fresh enough, it generates the RREP
messagerep(2,d,2,a,s) (Part (e)). Finally node receives the reply and establishes a route ta
a. A loop has been created.

Further on, we will discuss how sequence numbers might beedsed when following the RFC
literally or interpreting the RFC in a wrong way.

8.2 Interpreting the RFC

In the following we discuss some ambiguities in the RFC, egiglng rise to up to 6 interpretations
of AODV. To resolve ambiguities, we often looked into realpiementation, such as AODV-UUI[2],
Kernel AODV [1] and AODV-UCSBI[13] to determine the intendeersion of AODV. Additionally, we
tried to derive unwanted behaviour from some of the possittépretations.

8.2.1 Updating Routing Table Entries

One of the crucial aspects of AODV is the maintenance of ngutables. In this subsection we consider
the update of routing table entries with new information. olr specification we used the function
update]to specify the desired behaviour. Unfortunately, the RF€cgation only gives hints how to
update routing table entries; an exact and precise defingimissing.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 64

Ambiguity 1: Updating the Unknown Sequence Number in Respose to a Route Reply
If a node receives a RREP message, it might have to updatauiisg table:
“the existing entry is updated only in the following circumstances:
(i) the sequence number in the routing table is marked as invalic@
[...1” [79, Sect. 6.7]
In the same section it is also stated which actions occuradtigeris updated:
“- the route is marked as active@ [(val)],
- the destination sequence number is marked as valid [(kno)],
- the next hop in the route entry is assigned to be the node from which
the RREP is received, [...]
- the hop count is set to the value of the New Hop Count [obtained by

incrementing the hop count value in the RREP by one, to account for the
new hop through the intermediate node’],

[...]
- and the [new] destination sequence number is the Destination Sequence
Number in the RREP message.” [79, Sect. 6.7]

To model this fragment of the RFC accurately, we define amathdate function, which adds a case to
the[original definitioh:

updateffEP : RT x R — RT

Todat QR _Jnrtudnr} if i(r) € kD(rt) A sqnf(rt,r) = unk
pdate ™= (rt,r) = _
update(rt,r) otherwise ,

where, as in the definition nrt := rt — {oroute(rt,, 7@ (r))} is the routing table without the
current entry in the routing table for the destinationr @nd nr := addpre(r, 75(0route(rt, 7a(r)))) is
identical tor except that the precursors from the original entry are addiéis function is now used in
the process for RREP handling insteacipéiate. In particular, Line§11[12 ar{d 26 have to be changed in
Pro[B; all other processes (Prd. 1-Pio. 4 and[P[d. 6, 7) nreamahanged and use the original version of
update.

Using this fragment of the RFC, a sequence number of a rotéiblg entry could be decreased.
For example, an entryd,2,unk,val,1,d,*) is replaced by(d,1,kno,val,n+1,a x) if the reply has
the form rrep(n,d,l,*,a)@ As indicated in Sectioh 8.1, this in turn can create routimgpk. This
updating mechanism is in contradiction[to the gliote fromj [@8ct. 6.1] in Section 8.1. In view of
the undesirability of routing loops, the only way to resothés contradiction is by ignoring (i) in [79,
Sect. 6.7]] the statement quoted at the beginning of thisgoaph.

Ambiguity 2: Updating with the Unknown Sequence Number

Above we have discussed the update mechanism if a routirg &dry with an unknown sequence
number has to be updated. But what happens if the incoming\A@Igssage carries an unknown
number? This occurs regularly: whenever a node receivesaafded AODV control message from a
1-hop neighbour (i.e., the neighbour is not the originafdhe message), it creates a new or updates an
existing routing table entry to that neighbour (cf. Libe$[48,[18 of Prol1l). For example,

40The RFC[[79] uses the term “invalid” in relation to sequencenbers as synonym for “unknown”. We use “unknown”
(unk € K) only, in order to avoid confusion with the validity of theuting table entry in which the sequence number occurs
(val,inv € F).

4IThe RFC uses the term “active” in relations to routes—abtuaferring to routing table entries—as a synonym for “dli

42To see that this can actually happen, consider a varianteoxample of FigurE]l3 in Secti®h 2 in which noslstarts
out with a routing table entryd, 2, kno, inv, 1,d,), which may have resulted from a previous RREQ-RREP cyclgated
by s, followed by an invalidation after the link betwesrand d broke down. Then in Figurgl 3(e) this entry is updated to
(d,2,unk,val,1,d,), and in Figuré¢B(h) nodd sends a RREP message of the fartep(0,d,1,s,d).

65 Modelling, Verifying and Analysing AODV

“[wlhen a node receives a RREQ, it first creates or updates a route to the
previous hop without a valid sequence number” [79] Sect. 6.5]

In case a new routing table entry is created, the sequencdearuis set to zero and the sequence-
number-status flag is set tmk to signify that the sequence number corresponding to thghbeur

is unknown. But, what happens if the routing table eri&ry2, kno, val,2,b,0) of noded is updated by
(a,0,unk,val,1 a 0) as a consequence of the incoming RREQ message(1,rreqid,x,7,kno,s,2,a),
sent by node? This situation is sketched in Figui#y.

(a)d has established a routedaavith known sqgn. (b) The topology changesjooks for a route to;
d receives the RREQ from

(a,2,kno,val,2,b) (a,2,kno,val,2,b)

Figure 7: Updating routing table entries with the unknowgusmce number

Following the RFC the routing table has to be updated. Uuafately, it is not stated how the update
is done. There are four reasonable updates—we call them (@) (2c) and (2d) to label them as
resolutions of Ambiguity 2:

(2a) (a,2,kno,val,2,b,0): no update occurs (more precisely, only an update of thénliteof the
routing table entry happens; this is not modelled in thisgpapTo formalise this resolution, one
skips the fifth option (out of 6) in the definition @bdate]in Sectiof 5.5.2: With this modification
all our proofs in Sectiofi]7 remain valid, which yields loopddom and route correctness of this
alternative interpretation of AODV. It can be argued that RFC rules out this resolution by
including “or updates” in thg quote abave.

(2b) (a,0,unk,val,1,a,0): all information is taken from the incoming AODV control nsege. To
formalise this resolution, one changes the definitiop@fate| by replacingnr’ by nr. Since this
can decrease sequence numbers, routing loops might ocenceHhis update must not be used.

(2¢) (a,2,unk,val,l,a,0): the information from the routing table and from the incogWw&ODV control
message is merged, by taking only the destination sequemabear from the existing routing table
entry and all other information from the AODV control messags usual the sets of precursors
are combined. This is how our specification works. As we h&asve in Sectioii]7, no loops can
occur. Moreover, nodd establishes an optimal route @ In cased’s routing table would contain
the tuple(a, 1,kno,val,1,a), the sequence-number-status flag would also be sekte-this might
be surprising, but it is consistent with the RFC.

(2d) (a,2,kno,val,1,a,0): the information from the routing table and from the incogiihODV
control message is merged, by taking the destination sequaimber and the sequence-number-
status flag from the existing routing table entry and all otheormation from the AODV control
message; as usual the sets of precursors are combined. rialif® this resolution, one takes
nr' := (dipnr, T®(S) , T8(S) , flagnr , hopsy , Nhipnr , prenr) in the definition ofupdate]in Sectiol 5.5.2.

In the case whereqn(rt, m(r)) = &(r) the routesr andnr’ are not equal anymore and hence
the function is not well defined. To achieve well-definedness create mutual exclusive cases by

430nly the routing table entry under consideration is deplicte

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 66

using the fourth and fifth clause onlyii§(r) = kno. With this modification all results of Sectidh 7,
except for Propositiomﬁ remain valid, with the same proofs, which yields loop fremdand
route correctness of this alternative interpretation.

One could also mix Resolutionf2a) with{2c) of{2d), for arste by applying (2c) for updates in re-
sponse to a RREQ message armd (2a) for updates in responsérieRAad® RERR message. This could
be justified by the location of tHe quote abpve in Sect. 6.5hefRFC, which deals with processing
RREQ messages only. Furthermore, as a variantof (2c) orld skip the update of Line~14 of Prial 1

in the special case thdt(sip) = £(dip), since in that case a sequence number for the previous hop is
known. Also for these variants, which we will not further led@ate here, the proofs of Sectioh 7 (with
the exception of Propositidn 7.137) remain valid, and logeffom and route correctness hold.

When taking ResolutionsfRa) o {2d), it is easy to checkfitvaany routing table entry we always
havers(r) = unk < 75(r) = 0. As a consequence, the sequence-number-status flagmsleeduand can
be omitted from the specification altogethigrThis is the way in which AODV-UU([R] is implemented:
it skips the sequence-number-status flag and follols (2dceSResolution (2b) can lead to loops,
and (2a) and (2d) do not make proper use of sequence-nunabes-flags, we assume that Resolution
(20) is in line with the intention of the RFC. In Sectibn 70.2 will discuss the relative merits of the
Resolutions (2a), (2c) and{2d) and propose an improvement.

Ambiguity 3: More Inconclusive Evidence on Dealing with theUnknown Sequence Number
Section 6.2 of the RFC describes under which circumstancepdate occurs.

“The route is only updated if the new sequence number is either

(1) higher than the destination sequence number in the route table, or

(ii) the sequence numbers are equal, but the hop count (of the new
information) plus one, is smaller than the existing hop count in the
routing table, or

(iii) the sequence number is unknown.” [F9] Sect. 6.2]

Part (iii) is ambiguous. The most plausible reading apptabe that ‘the sequence number” refers
to the new sequence number, i.e., the one provided by an ingoAODV control message triggering
a potential update of the node’s routing table. This reatngcompatible with (2a) above, and thus
supports only Resolutions[(2b),{2c) anf[](2d). An altemsateading is that it refers to the sequence
number in the routing table, meaning that the correspons@ggence-number-status flag has the value
unk. This reading of (iii) is consistent wifh the quote from Sext6.7 above, and leads to routing loops
in the same wayd The remaining possibility is that Part (iii) refers to theggence number in the routing
table, but only deals with the case that that number is traknown, i.e. has the value 0. This reading is
consistent with ResolutionfRa) above. However, it implie the routing table may not be updated if the
existing entry has a known sequence number whereas thedistiteed from the incoming information
does not. This is in contradiction the quote from Sect. 6#&RFC aboVe. It is for this reason that we
take the first reading of (iii) as our default.

An IETF Internet draft—published after the RFC—rephrasesabove statement as follows:

“A route is only updated if one of the following conditions is met:

[...]

(iv) the sequence number in the routing table is unknown.” [78] Sect. 6.2]

44The proof of Proposition 7.37 breaks down on the case[lPranesITOTH_I8.

4SIn Pro.[3, Line[3%, &qnf(rt,dip) = unk” should then be replaced byén(rt ,dip) = 0", and likewise, in Lind 2D,
“sqnf(rt,dip) =kno” by “sqn(rt,dip) # 0.

481t can be formalised by usirfgpdate™|instead ofupdate in all process Prd]1-Prbl 5, and furthermore skipping the
fifth option in the definition ofupdate]in Sectiorf 5.5P.

67 Modelling, Verifying and Analysing AODV

Since in [78] the sequence-number-status flag has beenaitpfie only “unknown” sequence number
left is 0, so this quote takes the third reading above. We d&maw, however, whether this is meant to
be a clarification of [79], or a proposal to change it.

Ambiguity 4: Updating Invalid Routes
Another closely related question that arose during forsiradi AODV is whether an invalid route should
be updated in all cases. For example, should an €at;kno, inv,4,b,0) of a routing table be over-
written by (a,1,kno, val,2,c,0)? Of course this should not be allowed: if an invalid routiablé entry
were to be replaced gnyvalid entry—even with smaller sequence number—the prétwoald not be
loop free.
This time, the RFC[79] confirms this assumption:
“Whenever any fresh enough (i.e., containing a sequence number at least
equal to the recorded sequence number) routing information for an affected
destination is received by a node that has marked that route table entry as
invalid, the node SHOULD update its route table information according to the
information contained in the update.” [F9] Sect. 6.1]

However, it is somewhat less clear what should be done intbassequence numbers are equal. For ex-
ample, should an entria, 3, kno, inv, 2, b, 0) of a routing table be overwritten kg, 3,kno, val,4,c,0)?
According to the quote from Sect. 6.1 above the answer ishygsaccording thg preceding qupte from
Sect. 6.2 of the RFC, the answer is no. Our formalisatiorofal Sect. 6.1 in this regard. To formalise
the alternative, one skips the fourth option in the definitddfupdate]in Sectio[5.52. This contradic-
tion needs to be resolved in favour of Sect. 6.1: none of tleedptions gives rise to routing loops, but
the alternative interpretation would result in a severegpdicapped version of AODV, in which many
broken routes will never be repaired. We illustrate thishmy following example.

(a) The initial state; (b) The link breaks down;

a connection betweesandd has been establish

(d,1,kno,val,1,d) (s,2,kno,val,1,s)

ed. both nodes invalidate their entries.

©

(d,2,kno,inv,1,d) _(s,3,kno,inv,1,s)

(c) The topology changes again;
the link re-appears.

(d,2,kno,inv,1,d) (s,3,kno,inv,1,s)

(d) sbroadcasts a new RREQ destinedito
d receives the RREQ message.

e = @

(d,2,kno,inv,1,d) (s,3,kno,inv,1,s)

(e)d updates its RT as well as its sequence numb

o) As a consequenceupdates its routing table.

sreceives the RREP sent by

22D

(d,2,kno,inv,1,d) (s,3,kno,val,1,s)

(d,2,kno,val,1,d) (s,3,kno,val,1,s)

Figure 8: Invalidating a route

We assume a network with two nodes only. Nadas already sent out a route request destined éord
received a route reply message (Figure 8(a)). Due to myltilé link between the nodes breaks. After
nodess andd have invalidated their routing table entries to each otRegure[8(b)), the link becomes
available again. Nodginitiates a new route request destinedlt@or instance becausewants to send
another data-packet w). As usual, nodal receives the request (Part (d)), and, depending on which
version of AODV we follow, may update its routing table. Figs(8(e) and (f) depict the standard and
non-handicapped version of AODV where first nabepdates its routing table with a valid routing table
entry and sends a reply back $0 Thens receives the reply and also updates its routing table. In the

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 68

handicapped version of AODV neither nosleor d will update their routing tables—the messages would
be send around without any actual update being performedhedénd of the RREQ-RREP cycle the
network would be in the same state as depicted in Figure 8(aly if nodes initiates yet another route
request—and therefore increases its own sequence numiderthie resulting routing table af will
contain a valid entry with destinatias—s would still end up with an invalid entry fai. As long as node

d does not increase its own sequence number (e.g., due tdatihean of a route request), nodaeannot
re-establish a valid route.

8.2.2 Self-Entries in Routing Tables

In any practical implementation, when a node sends a messdtgelf, the message will be delivered to
the corresponding application on the local node without @welving a routing protocol and therefore
without being “seen” by AODV or any other routing protocol.efite it ought not matter if any node
using AODV creates a routing table entry to itself. Howewasrwe will show later, there are situations
where thesself-entriesyield loops.

Ambiguity 5: (Dis)Allowing Self-Entries

In AODV, when a node receives a RREP message, it createsiagdaible entry for the destination node

if such an entry does not already exist|[79, Sect 6.7]. If #sgtidation node happens to be the processing
node itself, this leads to the creation of a self-entry. TRERIoes mention self-entries explicitly; it only
refers to them at one location:

“A node may change the sequence number in the routing table entry of a
destination only if:

- it is itself the destination node [...]” [79] Sect. 6.1]

This points at least to the possibility of having self-exdti On the other hand, some implementations,
such as AODV-UU, disallow self-entries. For our specifimat{Section§15 and 6) we have chosen to
allow (arbitrary) self-entries since the RFC daest prohibits their occurrence. We will refer to this
resolution of Ambiguity 5 as (5a).

Looking at our specification, self-entries can only occungishe functiorfupdatel More precisely,
we show the following.

Proposition 8.1 There is only one location where self-entries can be estadadi, namely Pral 5, Liré 2.

Proof. No self-entries are established at the initialisation @f pinotocol (cf. Sectioh 617). Hence we
have to consider merely all occurrences of update:

Pro.[d, Lines[10[14[1B:By Corollary[7.9 we havé (sip) # ip and therefore no self-entry can be writ-
ten in the routing table.

Pro.[4, Line[4: An entry with destinatioré (oip) is updated/inserted. The valddoip) stems from
a received RREQ message (cf. Lifés 1 Bhd 8 of Bro. 1). A sé&lj-ean only be established if
&(oip) =ip. In that case, by Invariant (26§,((oip,rreqid)) € E,'\IF’T(rreqs), whereNT is the
network expression at the time when the RREQ message wagden¢ we use Propositign 7.1.)
By Propositior 75, we obtaifi((oip,rreqid)) € &y, (rregs) and therefore LinEI3 evaluates to
false and the update is never performed.

Pro.[H, Line[2: Self-entries can occur; an example is given below. O
We now show that self-entries can occur in our specificatiohse presented example (Figure 9) is

not the smallest possible one; however, later on it will seas a basis for showing how routing loops
can occur. The example consists of six nodes, where 5 of tloem & circular topology, including

69 Modelling, Verifying and Analysing AODV

one link—between the nodesands—that is is unstable and unreliable. This link will disappead

re-appear several times in the example.

(a) The initial state.

©

(b) sbroadcasts a new RREQ message destinéld to
c receives the message and buffers it

[
\

| |RREQs

Queues[d

(c) The topology changes;
d moves into transmission ranges)f

RREQS

Queues[d || || || || b |

S X a

(d)s broadcasts a new RREQ message destmezd to
(xis either down or not in range of any node.)

RREQs
RREQs| | [l [l RREQi
Cc

I
Queues| d_ || I Il I b

S X a

(e)d handles RREQ, forwards it and updates its R
ssilently ignores RREQ) (after updating its RT)
nodea buffers the message.

(s,3,kno,val,1,s)

(d,0,unk,val,1,d)

RREQy
RREQ.
Cc

| |RREQuq| |

Queues| d b

Tf) c updates its RT and forwards RREQ
ssilently ignores itb queues it.

(c¢,0,unk,val,1,c)

(s,3,kno,val,1,s) (d,0,unk,val,1,d)

(s,2,kno,val,1,s)

I Il | RREQuq| |RREQ1CI RREQS
a b

|
Queues| d s

(g) The topology changes again;
d broadcasts a new RREQ message destined {

@

(c¢,0,unk,val,1,c)

(s,3,kno,val,1,s) (d,0,unk,val,1,d)

c
1

(s,2,kno,val,1,s)

RREQyq
RREQy
a

|[RREQ,| [RREQys
b [¢

Queues| d I

(h)ahandles RREg), and forwards the message;
o noded silently ignores itb queues it.

(a,0,unk,val,1,a) (c,0,unk,val,1,c)
(s,3,kno,val,1,s) (d,0,unk,val,1,d)

©®)

1

(d,0,unk,val,1,d) (s,2,kno,val,1,s)

(s,3,kno,val,2,d)

RREQ,
RREQ

b

RREQ

|
Queues| d

Figure 9:

Self-entries

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan

70

(i) c handles RREQ and forwards the message;

(a,0,unk,val,1,a)
(s,3,kno,val,1,s)

al,1,d)

nodes silently ignores itp queues it.
(a,1,kno,val,1,a)

(¢,0,unk,val,1,c)
(d,0,unk,v: (s,3,kno,val,1,s)

() ahandles RREg) and unicasts RRER back tod;
d handles the RREP and establishes an entay to

(c,0,unk,val,1,c)
(d,0,unk,val,1,d)

©)

Cc

1

(a,1,kno,val,1,a)
(s,3,kno,val,1,s)

(¢,0,unk,val,1,c)

(d,0,unk,val,1,d)

a
1
(d,0,unk,val,1,d) (s,3,kno,val,1,s) (d,2,kno,val,1,d) (s,3,kno,val,1,s)
(s,3,kno,val,2,d) (s,3,kno,val,2,d)
RREQy RREQy
RREQ;, RREQa
| [l [l | |RREQu| |[RREQic| | | | [l [l [l | IRREQc| | |
Queues| d [[s [x [a b |[¢ Queues| d [[s J[x J[a [[[b J[¢ |
(k) b updates its RT and forwards RREQ () bupdates its RT and forwards RREQ
c silently ignores ita queues it. c silently ignores ita queues it.
(a,1,kno,val,1,a) (c,0,unk,val,1,c)

(s,3,kno,val,1, s)

(d,0,unk,val,1,d)

®

RREQ RREQ
a RREQq, /b\ RREQq, C Qa 2b /b\ 2b C
i 0/ 1 1 v/ 1
(d,2,kno,val,1,d) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(s,3,kno,val,1,s)

(d,2,kno,val,1,d) (c,0,unk,val,1,¢) (b,0,unk,val,1,b) X) X . X
(s.3,kno,val,2,d) (s,2,kno,val,2,c) (s,3,kno,val,1,s) (s,3,kno,val,2,d) E:gﬁ:ﬁ:jé;g
RREQy RREQy,

Ll | |[RREQu||RREQu|| | Ll | |[rreQu||RREQe|] |

Queues| d |[s [x |[a [b |[¢ Queues| d |[s [x J[a J[b [¢]

(m) b handles RRE); since it has handled RREQbefore, the message is ignored.

(n) agenerates a route reply
the RREP is sent td.

(a,1,kno,val,1,a) (c,0,u
(s,3,kno,val,1,s) (d,0,u

in response for RREQ0) The topology changé$
a handles and ignores RRE

nk,val,1,d)

@, (D

nk,val,1,c) (a,1,kno,val,1,
(s,3,kno,val, 1, s)

a) (c,0,unk,val,1,c)
(d,0,unk,val,1,d)

@ ®©

() c

C a
L L o/ 1
(d,2,kno,val,1,d) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(s,3,kno,val,2,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s) (d,2,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s)
(s,3,kno,val,3,a) (s,3,kno,val,2,d) (s,3,kno,val,3,a)
[RRERL| | I | |RREQ) | I | |RRER| | I I I I
Queues| d [[s [[x J[a [b][¢ Queues| d [[s [[x [[a [b [¢ |

(p) d forwards RRER,

(a,1,unk,val,1,a)
(d,2,kno,val,2,a) (c,0
(s,3,kno,val,1,s)

it is finally received and handled sy

(d,2,kno,val,3,d)

junk,val,1,c)

(a,0,unk,val
(c,0,unk,val
(s,3,kno,val

(b,0,unk,val,1,b)
(d,2,kno,val,1,d)
(s,3,kno,val,2,d)

,1,a) (b,0,unk,val,1,b)
,1,¢) (s,3,kno,val,1,s)
,3,a)

Figure 9 (cont'd): Self-entries

71 Modelling, Verifying and Analysing AODV

First, nodes broadcasts a new route request message RRd&3tined for node—the second index
s only indicates the sender of the message; a message RRE@Ngs to the same route discovery
process. After the route discovery has been initiatiedpves into transmission rangesfFigure[9 (c)).
Next, nodes sends a second route request; this time it is destined foe rodn Figure[9(e), node
d handles the request destinedxosince it has not seen this route request before and it isheot t
destination, the request is forwarded. Nadeceives the forwarded message, updates its routing table
and silently ignores RRE£ afterwards; node receives RREg) and stores it into its message buffer.
In Figure[9(f) nodec handles RREQ, which is the first message in its message queue; it inseeatan
with destinationsin its routing table and forwards RREQThe link between nodes ands disappears
in Part (g). Moreover a third route discovery search isandil: this time node is looking for a route
to nodea. Nodea is the only node who receives the broadcast message andsgueuds buffer—it
cannot handle RREf immediately since its message buffer queue is not empty.tdpmaost element
is RREQyq, which has been received earlier in Part (e). Nadew handles this request;it creates entries
for d andsin its routing table and forwards the message (Fiire 9¢h)Rart (i), nodec forwards the
second request. The message RRESreceived by nodels ands, simmediately handles the incoming
message, updates its routing table and then silently igniareAfter that, nodea empties its message
gueue and handles the third request, initiateddbyincea is the destination, it creates a route reply
and unicasts it towards. After a single hop, nodd, the originator, receives the reply and establishes a
routing table entry t@ (cf. Figure[9(j)). All but the message buffer of nodare now empty; the queue
of b contains the messages RRERREQ; and RREQ.. In Part (k),b handles the topmost message
(RREQ)- As usual, it updates its routing table and forwards thesags to its neighbousandc; node
a buffers the message, wheraasilently ignores it. In Part (I) the same procedure happejasna—but
this time nodeb handles RREQinstead of RREQ The last message stored by nduilés RREQ,
which is handled now. Sinde has handled a message belonging to the second route digs®ach
before, this message is ignored (Part (m)). The only nodehtdim messages stored in its buffer is now
nodea. The first message in its queue is RR{sQ route request sent by its originatin Figure[9(b)
and destined for nodd. Since nodea has an entry fod in its routing table (d,2,kno,val, 1,d)), it
generates a route reply usimgep(1,d,2,s,a). RRER, has to be sent to the next hop on the route
to s, which stored in the routing table af this is noded, the destination of the original route request.
In Part (0) the topology changes and the message queaissa@mptied. Node handles RREg), and
silently ignores it since, in Part (h), the node has alreaatydled the second request. In the last step,
noded handles the reply generated by najaipdates its routing table and forwards the message to
which establishes a route do When updating the routing table, nodereates a self-entry since RREP
unicasts information about a routedo

Later on, in Sectiof 8.2.3, we continue this example to shatthe combination of allowing self-
entries and literally following the RFC when invalidatinguting table entries yields loops.

By Propositiori 8.11 only Pr@l5 has to be changed to disalldfxesdries. There are two possibilities
to accomplish this:

(5b) If a node receives a route reply and would create a s#lf:eit silently ignores the message and
continues with the main proces8DV. This resolution is implemented in Pid. 8. A disadvantage
of this process is that more replies are lost. In the abovenplea(Figurd D), nods would never
receive areply as a consequence of the very first requestiéevertheless, this resolution appears
closest in spirit to the RFC, which lista “forward route has been created or updated”
as a precondition for forwarding the RREP. The invariantSegtior[¥ remain valid, with the very
same proofs.

47The link betweerd ands can appear at any time between Parts (h) and (o).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 72

Process RREP handling (Resolution (5b))

RREP(hops,dip,dsn,oip,sip,ip,rt,sn,rreqgs,store) def
1. [dip #ip A rt # update(rt,(dip,dsn,kno,val, hops+1,sip,0))] /* the routing table has to be updated */
2. . I* Lines[2H25 of Prd b */
3. +[dip=1ip V rt =update(rt,(dip,dsn,kno,val, hops+1,sip,0))] /* the routing table is not updated */
4. AODV(ip,sn,rt,rregs,store)

(5¢) The alternative is that the node who would create aesglly does forward the message without
updating the its routing table. (Pfd. 9). This resolutioarsehe risk that the main-invariant (Invari-
ant [21)) is violated, since information is forwarded by a@aevithout updating the node’s routing
table. However, all invariants established in SedfionIFtstid, with the very same proofs—except
that the proof of Invarianf(14) requires one extra casechvi trivial sinceip = dip.

Process RREP handling (Resolution (5c))

RREP(hops,dip,dsn,oip,sip,ip,rt,sn,rreqgs,store) def
1. [dip # ip A rt # update(rt,(dip,dsn,kno,val, hops+1,sip,0))] I* the routing table has to be updated */
2 ... /* Lines[2H25 of Prob */
3. +[dip=1ip A rt #update(rt,(dip,dsn,kno,val, hops+1,sip,0))] /* update would yield a self-entry */
4. [*skip all routing table updates */
5. ... /* Lines[39 of Pro[b */
6. I* Lines[I3£25 of Prd.16 */
7. + [rt =update(rt,(dip,dsn,kno,val, hops+1,sip,0))] /* the routing table is not updated */
8 AODV(ip,sn,rt,rregs,store)

Both resolutions by themselves do not yield weird or unwaiehaviour.

Ambiguity 6: Storing the Own Sequence Number

“AODV depends on each node in the network to own and maintain its

destination sequence number to guarantee the loop freedom of all routes

towards that node.” [79, Sect. 6.1]
The RFC does not specify how own sequence numbers shouldreel sSince the own sequence num-
bers are never mentioned in combination with destinati@quesece numbers that are stored in routing
tables, it is reasonable to assume that the own sequenceenwiduld be stored in a separate data
structure. However, there are implementations (e.g. K&@®V) that maintain a node’s own sequence
number in the node’s routing table. Of course, just storingréable does not cause routing loops itself;
but since the way of maintenance influences other desigmsidasi we list this ambiguity.

The resolution where the own sequence number is stored ipagiege variable—Resolution (6a)—
has been modelled in the specification presented in Se@iang[6. The other resolution stores the own
sequence number of nodeas a self-entry irs's routing table, i.e., as an entry with destinati@nAll
other components of that routing table entry are more ordg#tial, so the self-entry could for instance
have the form(s, sn,kno,val,0,s,), wheresn is the maintained sequence number.

A variant of AODV in which a node’s own sequence number iseston its routing table—Resolution
(6b)—is obtained by adapting the specification of Sedtion bhows:

(i) The argumentn of the processes0DV, PKT, RREQ, RREP andRERR is dropped.

(i) In Pro.[, Line[39 and Prd@l4, Lide 10, the occurrencemwhs argument of Aroadcastor unicast
is replaced bygn(rt,ip).

(i) In the initial state each nodie has a routing table containing exactly one optimal selfyent

(ip,1,kno,val,0,ip,0) € E(rt) A|E(xt)| = 1.

73 Modelling, Verifying and Analysing AODV

(iv) InPro.1, Lind3b the assignmefgn := inc(sn)], incrementing the node’s own sequence number,
is replaced by

[rt :=update(rt,(ip,inc(sqn(rt,ip)),kno,val,0,ip,0))].

(v) In Pro.[4, Line[8 the assignmefitn := max(sn,dsn)], updatingip’s own sequence number, is
replaced by

[rt :=update(rt,(ip,max(sqn(rt,ip),dsn),kno,val,0,ip,0))].

Theorem 8.2 The interpretation of AODV that follows Resolutiori {6b) andill other ways our default
specification of Sectiorid 5 is loop free and route correct.

Proof. All invariants established in Sectiéh 7 and their proofsaenvalid, withsqn(rt,ip) substituted
for all occurrences aén (in Propositio 7.2, the proof of Propositibn 7.13, and Psipond 7.3H, 7.361c)
and[Z.3¥ and their proofs), and with the following modifioas:

e Propositiori_ Z.2 now follows from Propositibn 7.6 and an ewjon of the initial state.
e Propositiori_ 7. 710 now holds for non-self-entries only:

(dip, *, *,*, hops *, *) € Eli\lp(rt) Adip#£ip = hops> 1

The claim holds for the initial state, since there are onlfteetries in the routing tables. Further-
more there are two more calls mpdate to be checked, but they all deal with self-entries.

e In the proof of Proposition 7.11(b), when calling PropasifiZ. 10, we need to check thdip # ip.
This follows by Pro[%, Lin€18.

e In the proof of Propositioh 7.12 two more callswgfdate have to be checked, all trivial.

e In the proof of Propositioh 7.21 two more callswdate have to be checked. The case Pio. 1,
Line[33 is trivial; the case Prb] 4, Lihé 8 uses Propositich 7.

e Propositior 7.2B{a) now holds for updates with non-setfies only. The reason is that its proof
depends on Proposition 7110—this is in fact the only othac@where we use Proposition 7.10.

e In the proof of Theorerh 7.27 we now have to check the updatdsseif-entries explicitly, since
they are no longer covered by Propositlon 726(a)—this ésahly use of Proposition_7.26(a).
There are two of them (both introduced above), and none oh tb@n decrease the quality of
routing tables.

e In the proofs of Proposition 7.28 and Theorem ¥.30 two molls ohupdate have to be checked.
If any of those calls actually modifies the entry tbp, beyond its precursors, then in the resulting
routing tablenhip = dip = ip, and the precondition of the proposition or theorem is nat me

e In the proofs of Theorein 7.82(a) and Propositions]7.37(8)7a88 two more calls afpdate have
to be checked, all trivial. O

Theoren 8.2 remains valid for any of the Resolutioms (2a,@@), 3a) or (2H, 3a), in combination with
(5@)—(5r) and with (@b), for the modifications in the prodfSectiol ¥ induced by these resolutions are
orthogonal.

Corollary 8.3 Assume any interpretation of AODV that uses Resolutidn (6lombination with one
of the Resolutions (2a, 3¢),{2c, 3a) okl(2d, 3a) and any oRibsolutions (Ga)—5c); in all other ways it
follows our default specification of Sectiopls 5 @id 6. Thislipretation is loop free and route correct.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 74

The following proposition shows that under Resolutidd (&imiess combined with[[2d) and{5a), the
own sequence number of a node is stored impimmal self-entry—with hop count 0—and that such a
self-entry cannot be invalided, nor overwritten by datarfran incoming message (as this would result
in a non-optimal self-entry—cf. Propositién 7110 and iteqdy.

Proposition 8.4 Assume an interpretation of AODV of the kind described ind@lary[8.3, except that
it does not use a combination of Resolutiorid (2d) and (5a).

(a) Each nodép maintains an optimal self-entry at all times, i.e., a validre for ip with hop count O
andip as next hop.)) i

(ip, *,kno,val,0,ip,*) € ENp(rt) (31)

(b) Only self-entries oip have hop count 0, and only self-entriesiphaveip itself as the next hop.
In other words, if(dip, *, ¥, *, hops nhip, ¥) € & (rt) then

dip=ip < hops=0 < nhip=ip (32)

Proof. We prove both invariants by simultaneous induction. In thiggil state each routing table contains
exactly one entry (se€&{lii) above), which is a self-entrjséging dip = ip, hops= 0 andnhip = ip. By
RemarKZ.B it suffices to look at the application callfpdate|andinvalidatel If an update does not
change the routing table entry (the last clausgm@fate]), both invariants are trivially preserved; hence
we only examine the cases that an update actually occurs.

(a) Pro.[, Line[38; Pro.[4, Line[8: In these (new) cases the update yields a self-entry of thérezk
form.
Pro. [, Lines[10[T#[18:By Corollary[7.9 the update does not result in a self-entry.
Pro.[4, Line[4: As in the proof of Proposition 8.1 we conclude ttuip = E,i\,p(oip) #1p, i.e. the
inserted entry is not a self-entry.
Pro.[H, Line[2: The update has the forrf}i\lp(update(rt ,(dip,dsn,kno,val, hops+1,sip,0))).
Assume, towards a contradiction, that it results in a safifye i.e. thatE,i\,p(dip) =ip. The

valuesé,i\,p(dip) andE,i\,p(dsn) stem through Ling&712 of Prf] 1 from a received RREP message,
which by Propositiofi_ 711 was sent before, say in stéfe By Invariant [28), withdsn, :=
n (dsn) anddip := & (dip) = dip, we have

¥ (dsn) = dsn, < EIP(sqn(rt, ip)) < & (san(rt,ip)) = & (sqn(rt, ip)) ,

the third step by Propositidn 7.2. Since Invariani (31) bdidfore thexpdate, dhopsi,f,’(ip) =0
andflagi,f,’(ip) = val. Hence, by the definition no update actually occurs.
Thus, the update does not result in a self-entry.

Pro.[, Line[28: By construction ofiests in Line[21, for any(rip,rsn) € E,i\,p(dests) we have that
nhopi,fl’z?(rip) = nhopi,fl’z?(dip), wheredip := Eli\f;(dip) — E,i\gz(dip). By Line[21 and Invari-
ant [24)dip # ip. Hence by Invarian{(32), which holds at Lihel 2111,opi,\ﬁ’27(dip) #ip. Thus
nhopi,\rl)ﬂ(l’ip) # ip and by Invariant{(32j)ip # ip. It follows that Line 28 will never invalidate a
self-entry.

Pro.[3, Line[1Q: The proof is similar to the previous case, except thpt~ ip follows from Line[3.

Pro.[4, Lines[I3[29: The proof is again the same, but Wiﬂﬁ?(oip) taking the role ofdip and
&P (dip). That&P(oip) # ip follows as in the case Prb] 4, Lifé 4 of the proof of Proposi-
tion[8.1.

Pro.[H, Line[17: This follows as in the previous case, except ﬁff’ltoip) = ip follows from Line[7.

75 Modelling, Verifying and Analysing AODV

Pro.[d, Line[3: The proof is like the previous ones, but this time \Aﬂltbpi,\ﬁ’z(rip) = ,i\f;(sip) £ip
following from Corollary(7.9. 0

(b) The functioriinvalidatelneither changes the destination, the hop count nor the ogxtience the
invariant is preserved under function callsiafralidate. Moreover, Invarianti(31) already shows
dip=ip = hops=0anddip=ip = nhip=ip.

Pro.[, Line[38; Pro.[4, Line[8: The update yields a self-entry satisfyidgp = ip, hops= 0 and
nhip=ip.

Pro.[D, Lines[I0[14[18:By Corollary[7.9 the update does not result in a self-entng adeed
hops:= 1 andnhip:= &P (sip) # ip.

Pro.[4, Line[; Pro.[8, Line[2: As observed under (a) above, the inserted entry can not bé-a se
entry. Moreovehops:= & (hops)+1 > 0 andnhip:= &\ (sip) # ip by Corollary(7.9.

The above proof uses Invariant {28) (Proposifion 17.37),ctvlis not available under Resolutior 12d).
However, when using Resolutiong [5b) an(5c), the calltd (26 be avoided, because Lde 1 of Pro. 8
or[@ guarantees that the update of Pto. 5, Line 2 does not yisédf-entry. 0

When using Resolution [(6b) in combination with either Ratoh (2a) or (Br), the choice of one of the
Resolutions (§a), [Bb) orbc) doesn’t make any differengarotocol behaviour, as the optimal self-entry
prevents “accidental” non-optimal self-entries to be t&ritin the routing table.

8.2.3 Invalidating Routing Table Entries

We have seen that decreasing a sequence number of a rollimgmdry yields potential loops. A similar
effect occurs if the routing table entry is invalidated, theé sequence number is not incremented.
Of course, invalidating routing table entries is closelated to route error message generation.

“A node initiates processing for a RERR message in three situations:

(1) if it detects a link break for the next hop of an active [(val)] route
in its routing table while transmitting data [...], or

(ii) if it gets a data packet destined to a node for which it does not have
an active route [...], or

(iii) if it receives a RERR from a neighbor for one or more active routes.”

[79, Sect. 6.11]

Before the error message is transmitted, the routing tedmadbe updated:

“1. The destination sequence number of this routing entry, if it exists and
is valid, is incremented for cases (i) and (ii) above, and copied from
the incoming RERR in case (iii) above.

2. The entry is invalidated by marking the route entry as invalid

[...1” [79, Sect. 6.11]

Ambiguity 7: Invalidating Entries in Response to a Link Break or Unroutable Data Packet

Part 2. of the above quotation is clear, whereas Part 1. isguoibs: Where does “it” refer to? Does the
destination sequence number have to exist and be valig) Er is it the routing table entry that should
exist and be validyal)?

From a linguistic point of view, it is more likely that “it” fers to the destination sequence number:
first, the sequence number is the first noun and subject iretitersce; second, the pronoun “this” already
indicates that a routing entry must exist; hence the caditif existence would be superfluous. Follow-
ing this resolution, the routing table entfy, 1, kno, val,1,d) would be updated t¢d, 2,kno, inv,1,d),

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 76

but (d,1,unk,val,1,d) would yield (d,1,unk,inv,1,d). A formalisation of this resolution could be
obtained by changing Life 27 of Pfd. 1 into

[dests:={(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) =nhop(rt,dip) A sqnf(rt,dip) = kno}
U{(rip,sqn(rt,rip))|rip € vD(rt) A nhop(rt,rip) =nhop(rt,dip) A sqnf(rt,dip)=unk}] .

Here, sequence numbers lafown routing table entries are incremented, whereas sequanoders
of unknown entries remain the same. Both kinds of sequence nurabenssed later on to invalidate
routing table entries and for further error handling. Sanithanges need to be made for Pto. 3, Line 9;
Pro.[4, Lind_IP[28 and Pril 5, Linkes|16. With this interpieteAODV is able to create routing loops;
Figure[10 shows an example.

Part (a) shows a network, in which the noslbas already established a routedtoThis was done
by a single route discover process (cf. the first example ofi@H2.2). Next, nodé tries to establish
a route toa. To that end, it initiates and broadcasts a route requestRRREQ message is forwarded
by d (Part (b)). Nodea receives the message and updates the routing table (@hfrykno,val,1,d) to
(d,1,unk,val,1,d), following Resolution (2c) of Sectidn 8.2.[L (Updafing witle Unknown Sequente
[Numbel). After the route has been established, the topatbgypges and all links ta break down; the
node itself notices that the link @ is down, invalidates the route, and sends a RERR messagis but
RERR message is not received by any node (Part (d)). Invimgléhe routes uses the assumption that
the routing table entryd,1,unk,val,1,d) is updated tqd,1,unk,inv,1,d). In Part (e),a reconnects
to sand a new link betweesandd occurs. Last, noda tries to reestablish a route th broadcasts a
request with destination sequence number 1 and immediaedjves an answer sy Now, the routing
table ofa contains an entry td with next hops, ands has a routing table entry swith next hopa. A
packet which is sent to nodkby either of these two nodes would circulate in a loop forever

(a) The initial state; (b) b broadcasts a new RREQ destinedto
a connection betweesandd has been established. d anda receive the RREQ and update their RTs.

(b,2,kno,val,2,d)
(d,1,kno,val,1,d) (d,1,unk,val,1,d)
(s

,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a)

(d,1,kno,val,2,a) (s,2,kno,val,2,a) (d,1,kno,val,2,a) (b,2,kno,val,1,b)
(s,2,kno,val,2,a)
(c) aunicasts a RREP back. (d) The topology changes;
ainvalidates routes tb, d, ands.
(b,2,kno,val,2,d) (b,3,kno,inv,2,d)
(d,1,unk,val,1,d) (d,1,unk,inv,1,d)

(s,2,kno,val,1,s) (s,3,unk,val,1,s)

Q)

(a,0,unk,val,1,a) (a,1,kno,val,1,a) (a,1,kno,val,2,d) (a,0,unk,val,1,a) (a,1,kno,val,1,a) (a,1,kno,val,2,d)
(d,1,kno,val,2,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d) (d,1,kno,val,2,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d)
(s,2,kno,val,2,a) (s,2,kno,val,2,a)

Figure 10: Creating a loop by not incrementing unknown segae@umbers

77

Modelling, Verifying and Analysing AODV

(e) The topology changes again.

(b,3,kno,inv,2,d)
(d,1,unk,inv,1,d)
(s,3,unk,val,1,s)

(f) a broadcasts a new RREQ destinedito

nodesreceives the RREQ and updates its RT.

(b,3,kno,inv,2,d)
(d,1,unk,inv,1,d)
(s,3,unk,val,1,s)

&

e
&,
<

(a,0,unk,val,1,a) (a,1,kno,val,1,a) (a,1,kno,val,2,d) (a,2,kno,val,1,a) (a,1,kno,val,1,a) (a,1,kno,val,2,d)
(d,1,kno,val,2,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d) (d,1,kno,val,2,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d)
(s,2,kno,val,2,a) (s,2,kno,val,2,a)

(g) shas information about a route ¢bh
hence it unicasts a RREP back.
(b,3,kno,inv,2,d)

(d,1,kno,val,3,s)
(s,3,unk,val,1,s)

o
&
Q&

(a,2,kno,val,1,a) (a,1,kno,val,1,a) (a,1,kno,val,2,d)
(d,1,kno,val,2,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d)
(s,2,kno,val,2,a)

Figure 10 (cont'd): Creating a loop by not incrementing umkn sequence numbers

In sum, the only acceptable reading of Part 1. above is thevieee “it” refers to “routing entry”:
before a RERR message is sent, the destination sequencemnohatrouting table entry is incremented,
if such an entry exists and is valid. This is the interpretaformalised in Sectionl 6.

Ambiguity 8: Invalidating Entries in Response to a Route Error Message

The part ‘and copied from the incoming RERR in case (iii) above” of the quote given on
Pagd 7b (from Sect. 6.11 of the RFC) is unambiguous. It deesthe replacement of an existing des-
tination sequence number in a routing table entry with agrotime, which may be strictly smaller. This
literal interpretation gives rise to a version of AODV witltahe requiremengqn(rt,rip) < rsn in
Pro[6, Lind 2 (cf. Resolution (8a) below). However, replgca sequence number with a strictly smaller
one contradicts the quote from Sect. 6.1 of the RFC displayegection 8.]l. To make the process of
invalidation consistent with Sect. 6.1 of the RFC, one caidd Resolutions (8b) or (8c) instead. Res-
olution (8b), which strictly follows Sect. 6.1, aborts thwalidation attempt if the destination sequence
number provided by the incoming RERR message is smallertti@one already in the routing table.
Resolution (8c), on the other hand, still invalidates irstheircumstances, but prevents a decrease in the
destination sequence number by taking the maximum of thedstnd the incoming number.

(8a) Follow Section 6.11 of the RFC, in defiance of 6.1, edyaysinvalidate the routing table entry,
and copy the destination sequence number from the errorageds the corresponding entry in
the routing tabl@§ This is formalised by skipping the requiremenin(rt,rip) < rsnin Pro.[6,
Line[2.

(8b) Follow Section 6.11 only where it does not contradidt, .., invalidate the routing table entry
and copy the destination sequence nundsgy if this does not give rise to a decrease of the des-

48|t could be argued that this is not a reasonable interpeetati the RFC, since Section 6.1 should have priority ovet 6.1
However, this priority is not explicitly stated.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 78

tination sequence number in the routing table. This if fdised by replacing the requirement by
sqn(rt,rip) < rsn.

(8c) Always invalidate the routing table entry (skip theuigment completely), but use a version of the
functioninvalidatel of Sectio5.5.8 that usemax7n(r),rsn) instead ofrsn, thereby updating
the destination sequence number in the routing table to thémum of its old value and the value
contributed by the incoming RERR message.

We now show that in combination with allowing self-entrieé Sectiorf 8.22) each of these resolutions
gives rise to routing loops. Figuell1 continues the exampkagurel9, and is valid for any of them.

(a) The initial state (same as Figlile 9(p)). (b) The topology changes.
(a,1,unk,val,1,a) (a,1,unk,val,1,a)
(d,2,kno,val,2,a) (c,0,unk,val,1,c) (d,2,kno,val,2,a) (c,0,unk,val,1,c)
(s,3,kno,val,1,s) (d,2,kno,val,3,d) (s,3,kno,val,1,s) (d,2,kno,val,3,d)

(D & @ d @, @,

a A C a (D) C
1 o/ L L o/ 1
(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(d,2,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s) (d,2,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s)
(s,3,kno,val,2,d) (s,3,kno,val,3,a) (s,3,kno,val,2,d) (s,3,kno,val,3,a)
| [l [l [l [l [l | | [l [l [l [l [l |
Queues| d J[s [xJ[a b |[c] Queues d |[s [xJ[a][J[c]
(c) A standard RREQ-RREP cycle starts; (d)aands handle and forward the RREQ;
d broadcasts a new RREQ message destinegd to d silently ignores the messages;
nodesa, s buffer the message. b,c andx store it.
(a,1,unk,val,1,a) (a,1,unk,val,1,a)
(d,2,kno,val,2,a) (c,0,unk,val,1,c) (d,2,kno,val,2,a) (c,0,unk,val,1,c)
(s,3,kno,val,1,s) (d,2,kno,val,3,d) (s,3,unk,val,1,s) (d,3,kno,val,1,d)
d RREQ4q /5 @ RREQ4s (g RREQ4s @
3 3 1 3 1
Y, P
oY %
&
$
a A C RREQ4a] c
1 \\1/ 1 1 1
(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(d,2,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s) (d,3,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s)
(s,3,kno,val,2,d) (s,3,kno,val,3,a) (s,3,kno,val,2,d) (s,3,kno,val,3,a)
| | |RREQu] | | |RREQu] | [l | | [l | |RREQus| | | |RREQia| |RREQss|
Queues| d [s [[x J[a J[b J[c] Queues| d [[s [x [[a [[[c]
(e) b forwards RREQ; aignores it;c stores it; (f) sforwards the RREP td, which handles it;
x replies to the RREQ with a RREP. ¢ handles and forwards RRE§)

(a,1,unk,val,1,a)

(a,1,unk,val,1,a) (d.2.kno.val.2,a) (c,0,unk,val,1,c)

(d,2,kno,val,2,a) (c,0,unk,val,1,c) (d,3,kno,val,2,s)

(s,3,unk,val,1,s) (d,3,kno,val,1,d) (s,0,unk,val,1,s) (s,3,unk,val,1,s) (d,3,kno,val,1,d) (d,3,kno,val,2,s)

(z,1,kno,val,2,s) (z,1,kno,val,1,z) (s,0,unk,val,1,s)

(z /g\ RREP,, @ T\ BREP4: /9 @
1

a RREQ /b\ RREQ C
1 v/ 1
(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(d,3,kno,val,1,d) (c,0,unk,val,1,¢) (s,3,kno,val,1,s)
(s,3,kno,val,2,d) (d,3,kno,val,2,a)
(s,3,kno,val,3,a)

1

(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)

(d,3,kno,val,1,d) (c,0,unk,val,1,¢) (d,3,kno,val,2,s)

(s,3,kno,val,2,d) (d,3,kno,val,2,a) (s,3,unk,val,1,s)
(s,3,kno,val,3,a)

RREQy,
L ||RREQe | [|RREQ|
| Queues @[5 |

| | |RREPu] |
Queues[_d_|[s ||

X X

Figure 11: Combination of self-entries and an inappropriatvalidate yields loops

79

Modelling, Verifying and Analysing AODV

(9) All nodes have handled RRE®efore;
they silently ignore the messages in their queu

(h) d detects the link break, invalidates its self-entry.
es; and initiates a RERR message.

the topology changes.

(a,1,unk,val,1,a)

(d,2,kno,val,2,a) (c,0,unk,val,1,c)
(s,3,unk,val,1,s) (d,3,kno,val,1,d)
(x,1,kno,val,2,s) (wx,1,kno,val,1,z)

(a,2,unk,inv,1,a)

(d,3,kno,inv,2,a) (c,0,unk,val,1,c)
(s,3,unk,val,1,s) (d,3,kno,val,1,d)
(z,1,kno,val,2,s) (z,1,kno,val,1,z)

@ RERR1q /g
3

3

(d,3,kno,val,2,s)
(s,0,unk,val,1,s)

(d,3,kno,val,2,s)
(s,0,unk,val,1,s)

@

Cc
1

1

(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(d,3,kno,val,1,d) (c,0,unk,val,1,¢) (d,3,kno,val,2,s) (d,3,kno,val,1,d) (c,0,unk,val,1,¢) (d,3,kno,val,2,s)
(s,3,kno,val,2,d) (d,3,kno,val,2,a) (s,3,unk,val,1,s) (s,3,kno,val,2,d) (d,3,kno,val,2,a) (s,3,unk,val,1,s)
(s,3,kno,val,3,a) (s,3,kno,val,3,a)
| I I I I I | | | [RERRu| | [l I || |
Queues| d [[s [x J[a J[b J[c | Queues| d [[s [[x [a [b [[¢ |
(i) The topology changes; () The topology changes again.

shandles the RERR message.

(a,2,unk,inv,1,a)
(d,3,kno,inv,2,a) (c,0,unk,val,1,c)

(a,2,unk,inv,1,a)

(d,3,kno,inv,2,a) (c,0,unk,val,1,c)

(s,3,unk,val,1,s) (d,3,unk,inv,1,d) (d,3,kno,val,2,s)
(z,1,kno,val,2,s) (x,1,kno,val,1,z) (s,0,unk,val,1,s)

(s,3,unk,val,1,s) (d,3,unk,inv,1,d) (d,3,kno,val,2,s)
(x,1,kno,val,2,s) (z,1,kno,val,1,z) (s,0,unk,val,1,s)

©

(b,0,unk,val,1,b)
(d,3,kno,val,1,d)
(s,3,kno,val,2,d)

Queues{ d H
(k) sbroadcasts a new RREQ message destined t

(a,0,unk,val,1,a)
(¢,0,unk,val,1,c)
(d,3,kno,val,2,a)
(s,3,kno,val,3,a)

(b,0,unk,val,1,b)
(d,3,kno,val,2,s)
(s,3,unk,val,1,s)
[l [l |
I I

c]

(b,0,unk,val,1,b)
(d,3,kno,val,1,d)
(s,3,kno,val,2,d)

(a,0,unk,val,1,a)
(c,0,unk,val,1,c)
(d,3,kno,val,2,a)
(s,3,kno,val,3,a)
[l [l
| I

[x

(b,0,unk,val,1,b)

(d,3,kno,val,2,s)

(s,3,unk,val,1,s)
[l [l |
I /1

c |

|
Queues]|

ql) x replies to RRE@;; shandles the reply;
a loop betwees andx has been established.

(a,2,unk,inv,1,a)

(d,3,kno,inv,2,a) (c,0,unk,val,1,c)
(s,3,unk,val,1,s) (d,3,kno,val,3,z)
(z,1,kno,val,2,s) (x,1,unk,val,1,z)

S X a b d S a b

(a,2,unk,inv,1,a)

(d,3,kno,inv,2,a) (c,0,unk,val,1,c)

(s,3,unk,val,1,s) (d,3,unk,inv,1,d) (d,3,kno,val,2,s)
(x,1,kno,val,2,s) (wx,1,kno,val,1,2) (s,0,unk,val,1,s)

9 . e

(d,3,kno,val,2,s)
(s,4,kno,val,1,s)

g RREP5,, 9

(D)
o/

(b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (b,0,unk,val,1,b)
(d,3,kno,val,1,d) (c,0,unk,val,1,¢) (d,3,kno,val,2,s) (d,3,kno,val,1,d) (c,0,unk,val,1,¢) (d,3,kno,val,2,s)
(s,3,kno,val,2,d) (d,3,kno,val,2,a) (s,3,unk,val,1,s) (s,3,kno,val,2,d) (d,3,kno,val,2,a) (s,3,unk,val,1,s)
(s,3,kno,val,3,a) (s,3,kno,val,3,a)
| I | [RREQs| | I I | | I I I I I |
Queues| d [[s [[x [[a J[b [¢ | Queues| d [[s [[x J[2 J[b J[¢ |

Figure 11 (cont'd): Combination of self-entries and an pr@priateinvalidate yields loops

At the initial state (Part (a)), the message queues of akksade empty. A couple of routes have been
found and many routing table entries are already set up. Mdaes among standard entries also a self-
entry, a valid entry to itself with sequence number and hamt@. The example continues with noxle
moving into the transmission range $ffollowed by a standard RREQ-RREP cycle (Figure 11(b—g)) .

In Part (c),d initiates a new route request far The generated message is received by nadesd
s, both nodes create reverse routesdtand forward the request (Part (d)). Nod@ow handles the
forwarded request and since this node is the intended déstinit generates and unicasts a route reply.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 80

Meanwhile the broadcast request still flows around in thevoldt. In Part (), nodé forwards it; in (f)
the message is handled by nodeHere the route reply is also unicast back freo d. The RREQ-
RREP cycle ends with silently ignoring all remaining routgquiest messages of all message queues; this
is due to the fact that all nodes have already handled theestgent out by node in Part (d).

The last part of the example, which finally creates a routmgp] starts with a topology change
in Figure[I1(g). Node (d) detects the link break and invadidats link toa. It also invalidates its
self-entry since the next hop on its recorded routel is nodea. (At this point all treatments of the
invalidation procedure contemplated in this section ayrés a consequence of the link break natle
also casts a route error message.tbue to unreliable links (for example due to naimoving around),
the error message cannot be sent forward; hemig nodes invalidates its entry fod. Before the
entry is invalidated it is, by Line18 of Prbl 1, updated(th3,unk,val,1,d). For the invalidation we
assume either of the Resolutions (8a), (8b) or (8c)—acogrth each the routing table entry efo d
is invalidated and the destination sequence number 3 remagignged. In Part (j) nodemoves into
transmission range of We assume that it wants to send a data packet fince its routing table entry
for d has been invalidated, a new route request is sent out inlgarije destination sequence number
in this control message is set to 3. The message is receiveddsx, which immediately initiates a
route reply since its routing table contains a valid entrg toith a sequence number that is large enough.
After nodesreceives this message, a routing loop betweamdx for destinationd has been established.

The problem in this example is that a routing table entry walidated without increasing the desti-
nation sequence number.

As the above example shows, none of the above variants sheulded in combination with non-
optimal self-entries; thus either non-optimal self-esdrshould be forbidden, or one should reject all
plausible interpretations of the invalidation procesg #ra consistent with the combination of Sections
6.1 and 6.11 of the RFC. However, fhe preceding quote frorh 68cof the RFC suggests the interpre-
tation proposed in Sectioh$ 5 and 6—Resolution (8f) beloareHve invalidate the routing table entry
and copy the destination sequence number only if this gigesto anincreaseof the destination se-
guence number in the routing table. This if formalised byrdwiirementqn(rt,rip) < rsnin Pro[6,
Line[2. Another solution, Resolution (8d), is to still inigdte in this circumstances, but guarantee an
increase in the destination sequence number in the roudinlg by taking the maximum of its incre-
mented old value and the value stemming from the incoming RERssage. Finally, Resolution (8e) is
a combination of (8b) and (8d).

(8d) Always invalidate the entry (skip the requiremenh(rt,rip) < rsn), but use a version of the
functioninvalidatel of Sectiof 5.5.8 that usesaxinc(mn(r)),rsn) instead ofrsn.

(8e) Invalidate the routing table entl% onlysgn(rt,rip) < rsn and update the destination sequence
number tomax(inc(7&(r)),rsn).

(8f) Invalidate the routing table entry onlyshn(rt,rip) < rsnf?d

In Section§ b and 6 we have shown that our default specifitafidODV, implementing Resolution (8f),

is loop free and route correct. We now show that the same habds using Resolutions (8d) or (8e)
instead. In fact, all invariants established in Secfibn @ @eir proofs remain valid, with the following

modifications.

e The proof of Propositioh 716 simplifies, because not evelfrttaglified) functioninvalidate can
decrease a sequence number.

49The variant that invalidates only éfqn(rt,rip) < rsn and updates tmax(7u(r),rsn) needs no separate consideration,
since it is equivalent to Resolution (8b).
50Here, it does not matter whether we updatesa, max(7e(r), rsn) or tomaxinc(7e(r)),rsn); they are all equivalent.

81 Modelling, Verifying and Analysing AODV

e In Proposition 7.T5 the requiremersn, = sqnilflj(ripc) is weakened taosn; < sqni,\ﬁ’(ripc). This
change is harmless, since Proposifion 7.15 is applied iprbef of Propositiorh 7.28 only (at the
end), where the weakened version is used anyway.

The first case in the proof of Propositibn 7.15 is adapted to:

Pro.[I, Line[32: The setests is constructed in Line31 as asubsefg;?f (dests) =&y, (dests).
For each(ripe, rsne) € EN (dests) one hasip; = EN (rip) € vDN Then in Lind28, using
the modified funCtlonln_Ialldate flag(&(rt), npc) becomesinv andsqn(é(rt),ripe)
becomes majinc(sqn (&, (rt),ripe)),rsne). Thus we obtaimip. € iD§ andsqny (ripc) >
rsnc.

e The proof of Theoremh 7.27 simplifies, because the (modifiadftion invalidate can never
decrease the quality of routing tables.

e The last case in the proof of Proposition 7.28 is adapted to:

Pro.[g, Line[3: Let N3 andN be the network expressions right before and right after wieg
Pro.[6, Lind_B. The entry for destinatiatip can be affected onIy ifdip,dsn) € EN (dests)
for somedsne SQN. In that case, by Lin€l2(dip,dsn) € & ,(dests), dipe vDY, ,» and
nhopN (dip) = EN (sip). By the modified definition Oanvalldate,

squ(dlp) max(lnc(squ (dip)),dsn) and flagilfl](dip) = inv, SO

nsqniﬁ(dip) = squ f(dip) =
= max(inc(s quS(dip)) = 1,dsn*1)
= max(sqny (dip),dsn=1) .
Hence we need to show that &)n}), (dip) < nsqn)y"™(dip) and (i) dsn* 1 < nsqny " (dip).
(i) Sincedip e vDi,ff = vDi,ff , we have

squs(dlp) = nsqu (dip) < nsqnnh'p(dip) = nsanlh'p(dip)

The inequality holds since the invariant is valid right befexecuting Lin&]3.
(i) This case goes exactly as the corresponding case inoBéett O

When forbidding non-optimal self-entries—either by chingsone of the Resolutions[(bb) oi{5c) of
AODV proposed on Padelr2, or by storing the own sequence miméae optimal self-entry as described
in the[previous sectiogn—all Variantg{8a)B(8f) of the instation process described in this section behave
exactly the same. Hence all are loop free and route corrdas fdllows by the following invariants,
which are established not for our default specification oDAQbut for either of the resolutions without
non-optimal self-entries, still following [Bf) above.

Proposition 8.5 Assume an interpretation of AODV that takes one of the Refsols (2a, 3¢), (@Ac, 3a)
or (4d, 3a) in combination with [Bf) and any resolution of Aimlities 5 and 6, but not (5a) and (6a) at
the same time, and not[{2d) with{5a) an@l(6b); in all other sniijollows our default specification of
Section$ b and] 6.

(1) Whenever Lind]2 of Prd.]6 is executed by nddein stateN we havesqu(rlp) < rsn for all
(rip,rsn) € &P (dests) with rip € vDf andnhopN(rlp) EN (sip).

(2) Whenever nodp makes a calinvalidate(rt,dests) in stateN, then ma;@inc(sqni,{f(rip)), rsn)=
max(sqng (rip), rsn) = rsnfor all (rip,rsn) € & (dests).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 82

Proof.

(1) Suppose Lin&]2 of Prg] 6 is executed in sthteand let(rip,rsn) € & (dests) with rip € vDf
and nhip := nhopy| (rip) = & (sip). The valuesé\} (dests) and & (sip) stem from a received
route error message (cf. LinEs 1 dnd 1_6 of Pio. 1). By Prdposm:ll(:a), a transition labelled
R:*cast(rerr(dests, ipc)) with dests := & (dests) andip; := & (sip) must have occurred be-
fore, say in staté&N'. By ProposmodIIS the node castlng thls messagdp. is EN (sip) = nhip.
By Invariant [1%) we haveip € 1Dn ® andrsn= sqn; "P(rip). Since (invalid) self-entries cannot
occufd it follows thatnhip # rip.

Sincerip € VDN, the last function call prior to state that created or updated this valid routing table
entry of nodeip, apart from an update of the precursors only, must have besil apdate(x,
(rip,rsn*, %, %, %, Sip*, *)), where one of the first five clauses in the definitioupdate|was applied.
Let N* be the state in which this call was made. Tlsgst = nhip. We consider all possibilities for
this call.

Pro. [, Lines[I0[1#] 1B:The entl’yEN*(31p,0,unk,val,1, sip,0) is used for the update; its next
hop ISEN*(Slp) = sip* = nhipand its destinatioﬁ,i\,p*(sip) =rip. This contradicts the conclu-
sion thatnhip # rip, and thus these cases cannot apply.

Prop.d, Line[d: The update has the forg{}. (update(rt, (oip,osn, kno,val ;hops +1,5ip,0))).
Hence one of the first four clauses in the definitionupfiate was used, WltffN*(01p)
rip, EN*(osn) = squ(rlp) and EN*(Slp) = sip* = nhip. The vaIuesEN*(o1p) &x-(osn) and

P (sip) stem from a received RREQ message (cf. Liiks 1[@nd 8 of[ProBy)Propo-
sition [Z1(a), a transitioR: *cast(rreq(s, %, , %, %, & (0ip) , &P (osn) , &P (sip))) must
have occurred before, say in staté By Proposition 7.8 the node casting this message is

,'\,Fi(sip) — nhip. By Invariant [I3), using thathip # rip, we haveEN*(osn) < sqn)(rip)
or &P (osn) = sqn”h'p(np) andflag”h'p(rlp) = val. In either caséy,. (osn) < nsqn”h'p(rlp).
Since nodep handled the incoming RREQ message prior to the above- mmutlﬁtERR mes-
sage, the RREQ message was entered earlier in the FIFO glueogeip and hence transmit-
ted earlier by nodahip. SoN* is prior toN™. We obtain

squ(I’Ip) p N+ (0sn) < nsqnnh'p(l’lp) < nsqnnh'p(rlp) < sqnnh'p(l’lp) =rsn,

where the first, second and last step have been establisfed;libe third uses Theordm 7127,
and the penultimate step follows from the definition of nefusance numbers and

sqnnh P(rip) > sqn (I’Ip) > EN*(osn) >1,

which follows from Propositiof 716 and Invariaht {11).

Prop.[d, Line[2: The proof is similar to the one of Pid. 4, Libk 4, the main défece being that the
information stems from an incoming RREP message; insteadpandosn we usedip and
dsn, and instead of Invariants_(113) aid(11) we use Invarian®s 4ihd [(12).

(2) We check all calls oinvalidate.

Pro.[d, Line[28; Pro.[3, Line[10; Pro[4, Lines 18, 29; Prd.]5, lie[17:
By construction ofdests (right before the invalidation call) ifrip,rsn) € E (dests) then
rsn= 1nc(squ(r|p))

Pro.[d, Line[3: Immediately from (1). 0

5I\when using Resolution[[Bb), but not in combination witt (8ayl (2d), invalid self-entries cannot occur by Invariari)(3
in combination with Propositidn_ 7.6 (a); otherwise undes8&lutions (Bb) or (5c) self-entries cannot occur at all.

83 Modelling, Verifying and Analysing AODV

By this proposition, Resolutionsi8a)H(8f) behave the s@nmen-optimal self-entries are forbidden.
Hence, by using Corollafy_ 8.3, we obtain the following résul

Corollary 8.6 Assume an interpretation of AODV that takes one of the Reismis (22, 3c), (2c, 3a) or
(4d, 3a) in combination with any resolution of Ambiguitiesééand 8, but not (5a) and (6a) at the same
time and not (2d) with (§a) and[(6b); in all other ways it fali® our default specification of Sectidns 5
and®. This interpretation is loop free and route correct. O

8.2.4 Further Ambiguities

Ambiguity 9: Packet Handling for Unknown Destinations

In rare situations, often caused by node reboots, it may bsilpe that a node receives a data packet
from another node for a destination for which it has no entryts routing table at all. Such a sit-
uation cannot occur in our specification—this is a directsemuence of Propositidn_7128. Never-
theless, since our specification given in Secfibn 6 is irgenh modelall possible scenarios which
might occur, we have to decide which rules AODV should follolhe RFC states that an error mes-
sage should be generatefl [a node] gets a data packet destined to a node for which

it does not have an active route [79, Sect. 6.11]. It also states that the sequence number for
the unreachable destination, to be listed in the error ngessshould be taken from the routing ta-
ble and that th@eighboring node(s) that should receive the RERR are all those that
belong to a precursor list of at least one of the unreachable destination(s). In
this case neither the sequence number nor the list of pi@suase available. There are two possible
solutions:

(9a) no error message is generated, since no informatioraikahle in the routing table—in Sectidh 6,
we follow that approach (Prb] 3, LinesIZ13-22);

(9b) the error message is broadcast and the sequence nwndelr to unknown (0)—formalised in
Pro.[10. This resolution makes sense only when using Résadu(8t) or (BH) of the invalida-
tion process: Resolutions[(8b),1(8e) and (8f) would systamldy ignore the broadcasted error
message—so that there is no point in sending it—whereas R@ggolution (Ba) this obviously
leads to a decrease in destination sequence numbers aimd)loaips.

Process 1(Routine for packet handling (Resolution (9b))

def
PKT(data,dip,oip, ip,sn,rt,rreqgs,store) =

1. ... [*Lines[IH20 of ProB */

2. +[dip ¢ iD(rt)] [* route not inrt */

3. broadcastrerr({(dip,0)},ip)) . AODV(ip,sn,rt,rreqs,store)
4 ... [*Lines[23£2% of Prd3 */

In Sectior ¥ we have shown that Resolution (9a) is loop fressoRition (9b) is loop free as well, since
all invariants of Sectionl7 and their proofs remain validthithe following modifications:

e Proposition_7.I5 (Invarian{_(15)) has to be weakened: id&anly for pairs(ripc,rsn;) with
rsn: > 0. In the adapted proof there is an extra case to considehdnarsn. = 0. This proposition
is only used in the proof of Propositibn 7128; we show beloat the weaker form is sufficient.

e In the proof of Propositioh 7.16(c) there is an extra casetwitler, which is trivial.

e Inthe last case of the proof of Propositlon 7.28, when usingriant [I5), there is an extra case to
consider, namely thatsn= 0. In that case surelgsn®=1 =0 < nsqn&h'p(dip), which we needed
to establish.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 84

The proof of Propositiof 815 is no longer valid when using dketson (9b) of the packet handling for
unknown destinations, since it uses a version of Invar[@B} that no longer holds. This indicates that
Resolutions (8a), [8b) andi8c) of the invalidation procassnot necessarily compatible with Resolu-
tion (9b), even if non-optimal self-entries are forbid@@non the other hand, it can be argued that in
Resolution (9a) the originator node that initiated the smdf the data packet might send more packets
which increases network traffic without delivering the data

Ambiguity 10: Setting the Own Sequence Number when Generatg a RREP Message
In the RFC, the way in which a destination of a route requedhatgs its own sequence number before
initiating a route reply is described in two ways:

“Immediately before a destination node originates a RREP in response to a
RREQ, it MUST update its own sequence number to the maximum of its current
sequence number and the destination sequence number in the RREQ packet.”

[79, Sect. 6.1]

“If the generating node is the destination itself, it MUST increment its own
sequence number by one if the sequence number in the RREQ packet is equal to
that incremented value. Otherwise, the destination does not change its
sequence number before generating the RREP message.” [79] Sect. 6.6.1]

In most cases these two descriptions yield the same resda(se the destination sequence number
in the RREQ message is usually not more than 1 larger thanestietion’s own sequence number).
However, this is not guaranteed.

(a) The initial state; (b) The topology changes;
d established a route ®via RREQ-RREP cycle| nodessandd invalidate entries.

©

(d,2,kno,val,1,d) (s,1,kno,val,1,s) (d,3,kno,inv,1,d) (s,2,kno,inv,1,s)
(c) The topology changes; (d) The topology changes again;
a broadcasts a new RREQ message destinad to nodesinvalidates entries.

(a,2,kno,val,2,d) (a,2,kno,val,1,a) (d,0,unk,val,1,d) (a,3,kno,inv,2,d) (a,2,kno,val,1,a) (d,0,unk,val,1,d)
(d,3,unk,val,1,d) (s,2,unk,val,1,d) (d,4,unk,inv,1,d) (s,2,unk,val,1,d)
(e) The topology changes; (f) d unicasts a RREP back o

shroadcasts a new RREQ message destinéd to no update occurs at

@ RREQg @ @ @ RREPg @ @

(a,3,kno,inv,2,d) (a,2,kno,val,1,a) (d,0,unk,val,1,d) (a,3,kno,inv,2,d) (a,2,kno,val,1,a) (d,0,unk,val,1,d)
(d,4,unk,inv,1,d) (s,2,unk,val,1,d) (d,4,unk,inv,1,d) (s,2,unk,val,1,d)

Figure 12: Failing to update the own sequence number befsuing a route reply

This is illustrated in Figure_12. In the initial state noslkas a route tal, with destination sequence
number (2) equal td’s own sequence number; this is default behaviour of AODVe Ba link break
betweens andd, nodes increments its destination sequence humbedfarhen invalidating the entry
(Figure[12(b)). Afterwards, in FigufeL2(c), the link comgs again, and whed forwards a RREQ
message (from another nodedestined to an arbitrary nodehat is not in the vicinity) to its neighbour
s, nodes validates its 1-hop route t, without changing its destination sequence number. Thesg®
(link break — invalidation — link coming back up) are repelatg least once (Part (d)), resulting in a
destination sequence number ébat nodesthat is at least 2 higher thats own sequence number. Now,

52|t turns out that Resolutions[(Bb) ang(8c) are compatibté @b) after all; we skip the proof of this claim.

85 Modelling, Verifying and Analysing AODV

whens searches for a route th(Figure[12(e))d will not update its own sequence number when sending
a route reply tcs, so the route reply will have outdated information (a too E®gquence number) from
the perspective df, and thus will be ignored bg. No matter how ofteis sends a new route requesttto

it will never receive an answer that is good enough to restsmuting table entry tal.

Process 11IRREQ handling (Resolution (10b))

def
RREQ(hops,rreqid,dip,dsn,dsk,oip,osn,sip, ip,sn,rt,rregs,store) <

... /* Lines[IH8 of Pro[} */

2. (

3. [dip=ip A inc(sn)=dsn] /* this node is the destination and the sequence number Heesupdated */
4, [sn:=inc(sn)] /* update the sqn ofp */

5. [* Lines[SHIT of Pro ¥ */

6. +[dip=1ip A inc(sn)#dsn] /* this node is the destination and the sequence number reeegdate */
7. /* Lines[Q-ELT of Pro[14 */

8. +[dip#ip] /* this node is not the destination node */

9. /* Lines[I9£38 of Prd 14 */

[N
=4
~

In our specification we resolved this contradiction by fallog Sect. 6.1 of the RFC, in defiance of
Sect. 6.6.1. The alternative is obtained by modifying thé&ERRhandling process as indicated in Frd. 11.
As the above example shows, this alternative leads to aadg\vendicapped version of AODV, in which
certain routes (in the example the one fremo d) can not be established.

8.2.5 Further Assumptions

During the creation of our specification (cf. Sectidn 6), viet mbt only come along some ambiguities,
we also found some unspecified cases—we were forced to gpleetfe situations on our own.

Recording and Invalidating the Truly Unknown Sequence Numler
When creating a routing table entry to a new destination—ah@ady present in the routing table—for
which no destination sequence number is known (i.e. in mspdo an AODV control message from
a neighbour; following Line6 10,14 and]18 of Prd. 1), the RFE@sinot stipulate how to fill in the
destination-sequence-number field in the new entry. It dags

“The sequence number is either determined from the information contained in

the control packet, or else the valid sequence number field is set to false.”

[79, Sect. 6.1]

Accordingly, the sequence-number-status flag in the eatsgt tounk, but that does not tell what to fill
in for the destination sequence number itself. Here, faliguthe implementation AODV-UU|2], we
use the special value 0, indicatingraly unknown destination sequence numbfs this value does not
represent a regular sequence number, we do not incremeheit invalidating the entry.

Packet Handling
Even though not specified in the RFC, our model of AODV inckidemechanism for handling data
packets—this is necessary to trigger any AODV activity. Aadaacket injected at a noddy a client of

530n the IETF MANET mailing listfttp: //www.ietf.org/mail-archive/web/manet/current/msg02589. html)
I. Chakeres proposes a third resolution of this ambigudéynely “Immediately before a destination node issues a
route reply in response to a RREQ, it MUST update its own sequence number to the maximum of its
current sequence number and the destination sequence number in the RREQ packet plus one (1).”
As this is not a possible reading of the RFC, it ought to be taed as proposal for improvement of AODV.

http://www.ietf.org/mail-archive/web/manet/current/msg02589.html

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 86

the protocol (normally the application layer in the protiostack) for delivery at a destinatiahtowards
which s has no valid route, is inserted in a queue of packetsl foraintained by nods. In case there

is no queue fod yet, such a queue is created and a route discovery procasitiaged, by means of

a new route request. As long as that process is pending, nomée request should be issued when
new packets fod arrive; for it could be that packets fdrare injected by the application layer at a high
rate, and sending a fresh route request for each of them wimad the protocol with useless RREQ
messages. For this reason we await the route reply corréspto the request, or anything else that
creates a route t. Afterwards packets td can be send, and the queue is emptied out. In case the route
todis invalidated before the queue is empty, it is appropriaiaitiate a new route discovery process, by
generating a fresh route request. To this end we createdehaést-required” flag, one for each queue,
that is set when the route to the destination is invalidaeded, unset when a new route request has been
issued. The only sensible way we see to omit such a flag woutd bse the non-existence of a queue
of data packets fad as the trigger to initiate a route request when a data packeti§ posted at nods

But for that to work one would have to drop the entire queueaakpts waiting for transmission towards

d when the route td is invalidated, just as packets are dropped when an inteateedode on the path
towardsd loses its connection to the next hop.

Receiving a RREP Message

When an (intermediate) node receives a RREP message deftine nodes, it might happen that the
node has an invalid routing table entry foonly. The RFC does not consider this situation; howeves, thi
casecanoccur and must be specified. For our specification we dectugtdunder these circumstances
the AODV control message is lost and no error message is ateier

8.3 Implementations

To show that the ambiguities we found in the RFC and the aasatproblems are not only theoretically
driven, butdo occur in practice, we analyse five different open sourceemgintations of AODV:

e AODV-UU[2] is an RFC compliant implementation of AODV, developedJatpsala University.
http://aodvuu.sourceforge.net/

e Kernel AODV[1] is developed at NIST and is another RFC compliant impletaigon of AODV.
http://w3.antd.nist.gov/wctg/aodv_kernel/

e AODV-UIUCI5E7] (University of lllinois at Urbana-Champaign) is an ilementation that is based
on an early draft (version 10) of AODYttp://sourceforge.net/projects/aslib/

e AODV-UCSH[13] (University of California, Santa-Barbara) is anothmplementation based on
an early draft (version 6http://moment.cs.ucsb.edu/A0ODV/aodv-ucsb-0.1b.tar.gz

e AODV-nsds an AODV implementation in the ns2 network simulafor [#&]ginally developed by
the CMU Monarch project and improved upon later by S. Das ar8eitling-Royer (the authors
of the AODV RFC [79]). It is based on an early draft (versionro8AODV. It is frequently used
by academic and industry researchers to simulate AQIRYp://ns2.sourcearchive.com/
documentation/2.35~RC4-1/aodv_8cc-source.html

Even though the latter three implementations of AODV are RBC compliant, theydo capture the
main aspects of the AODV protocol, as specified in the REC.[23 we have shown in the previous
section, implementing the AODV protocol based on the RFCifipation does not necessarily guarantee
loop freedom. Therefore, we look at these five concrete AORDWleémentations to determine whether
any of them is susceptible to routing loops. AODV-UU, KerA@DV and AODV-UIUC maintain an
invalidation procedure that conforms to Resolution (8d)emeas AODV-UCSB and AODV-ns2 follow

http://aodvuu.sourceforge.net/
http://w3.antd.nist.gov/wctg/aodv_kernel/
http://sourceforge.net/projects/aslib/
http://moment.cs.ucsb.edu/AODV/aodv-ucsb-0.1b.tar.gz
http://ns2.sourcearchive.com/documentation/2.35~RC4-1/aodv_8cc-source.html
http://ns2.sourcearchive.com/documentation/2.35~RC4-1/aodv_8cc-source.html

87 Modelling, Verifying and Analysing AODV

Resolution (Bb). Since both resolutions give rise to rautoops when used in combination with non-
optimal self-entries, we examine the code of these impl¢atiens to see if routing loops such as the
one described in Figufe 11 occur. The results of this armbys summarised in Takile 7.

| Implementation | Analysis |

AODV-UU [2] Loop free, since self-entries are explicitly excluded.

Kernel AODV [1] | Loop free, due to optimal self-entries.

AODV-UIUC [E7] | Yields routing loops, through sequence number reset.
AODV-UCSB [13] | Yields routing loops, through sequence number reset.

AODV-ns2 Yields routing loops, since it implements Resolutiop] (8bjhe invali-
dation procedure presented in Secfion 8.2.3 and does adibwrsries.

Table 7:Analysis of AODV implementations

In AODV-UU, self-entries are never created because a cheaknays performed on an incoming
RREP message to make sure that the destination IP addrexgshiesame as the node’s own IP address,
just as in Resolution [5b). By Corollaky 8.6, this interptain of the RFC is loop free.

In Kernel AODV, an optimal self-entry is always maintaingddvery node in the network, just as in
Resolution (Bb). By Corollarly 816, this interpretation b&tRFC is loop free.

Both AODV-UIUC and AODV-UCSB allow non-optimal self-ends to occur in nodes (Resolution
(5a) o Ambiguity 5). These are generated based on infoomatontained in received RREP messages.
While self-entries are allowed, the processing of RERR agess in AODV-UIUC and AODV-UCSB
does not adhere to the RFC specification (or even the draftorer that these implementation are based
upon). Due to this non-adherence, we are unable to re-ctieateouting loop example of Figutelll.
However, if both AODV-UIUC and AODV-UCSB were to strictly fow the RFC specification with
respect to the RERR processing, loops would have been dreate

Even though the routing loop example of Figuré 11 could notbesated in AODV-UIUC or AODV-
UCSB, both implementations allow a decrease of destinggguence numbers in routing table entries to
occur, by following Resolution [2@ This gives rise to routing loops in the way described in $a.].

In AODV-ns2, self-entries are allowed to occur in nodes. ikihAODV-UIUC and AODV-UCSB,
the processing of RERR messages follows the RFC specificdtiowever, whenever a node generates a
RREQ message, sequence numbers are incremented by tvaalingtey one as specified in the RFC. We
have modified the AODV-ns2 code such that sequence numleeiscaemented by one whenever a node
generates a RREQ message, and are able to replicate thegrimap example presented]n the
ns2 simulator, with the results showing the existence oliéimg loop between nodesandx. However,
even if the code remains unchanged and sequence numbens@ménted by two, AODV-ns2 can still
yield loops; the example is very similar to the one preseatationly varies in subtle details.

In sum, we discovered not only that three out of five AODV inmpdmtations can produce routing
loops, but also that there are essential differences battheesarious implementations in various aspects
of protocol behaviour. This is due to different interpritas of the RFC.

54p0DV-ns2 follows Resolution (3a), whereas AODV-UU follo#d). Kernel AODV is not compliant with the RFC in this
matter and operates differently.

55The example in[[39] is a simplification of the one in Figliré bt is based on the interpretation of AODV without the
sequence-number-status flag, following Resolutih (2t @xample of Figurle11 itself works equally well in the preseof
that flag.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 88

8.4 Summary

The following table summarises the ambiguities we disaedemas well as their consequences. The
resolutions coloured red lead to unacceptable protocabetr, such as routing loops. The white and
green resolutions are all acceptable readings of the REQréen ones have been chosen in our default

specification of Sectiorid 5 ahfl 6. The section numbers refixetRFC([79].

|Updating Routing

Table Entries |

|1.|U dating the Unknown Sequence Number in Response to a RaReply

la. | the destination sequence number (DSN) is copietecrement of sequence numbers and loops
from the RREP message (Sect 6.7)

1b. | routing table is not updated when the informatipiioes not cause loops; used in our specification
that it has is “fresher” (Sect. 6.1)

|2.|U dafting with the Unknown Sequence Numbeér (Sect. 6.5)

2a. | no update occurs does not cause loops, but opportunity to impraove

routes is missed

2b. | overwrite any routing table entry by an updatelecrement of sequence numbers and loops
with an unknown DSN

2c. | use the new entry with the old DSN does not cause loops; used in our specification

2d. | use the new entry with the old DSN and DSN-flagloes not cause loops

|3.|More Inconclusive Evidence on Dealing with the Unknown Sguence Numbef (Sect. 6.2)

3a. | update wherincomingsequence number is un-supports Interpretations 2b or 2c above; used in
known our specification

3b. | update wherxistingsequence numberisarked | decrement of sequence numbers and loops; [im-
asunknown plies 1a and 2a

3c. | update when neoexisting sequence number is supports Interpretation 2a above
known

|4.[Updating Tnvalid Routeg

4a. | update an invalid route when the new route hagoes not cause loops; used in our specification
the same sequence number (Sect. 6.1)

4b. | donotupdate an invalid route when the new routeesults in handicapped version of AODV, in

has the same sequence number (Sect. 6.2)

which many broken routes will never be repaired.

[Self-Entries in Routing Tables |

|5.|(D|s)AIIowmg Self-Entrieg

5a. | allow (arbitrary) self-entries loop free if used with appropriatenvalidate;
used in our specification
5b. | disallow (non-optimal) self-entries; does not cause loops
if self-entries would be created, ignore message
5c. | disallow (non-optimal) self-entries; does not cause loops
if self-entries would be created, forward message
|6.|St0r|ng the Own Sequence Number
6a. | store sequence number as separate value does not cause loops; used in our specification
6b. | store sequence number inside routing table | does not cause loops

[nvalidating Routing Table Eniries] |

|7.|Inval|dat|ng Entries in Response to a Link Break or Unroutable Data Packelt (Sect. 6.11)

7a.
7b.

“it” refers to routing table entry
“it” refers to DSN

does not cause loops; used in our specificatio
loops

N

89 Modelling, Verifying and Analysing AODV

|8.|Inval|dat|ng Entries In Response to a Route Error Message
8a. | copy DSN from RERR message (Sect. 6.11) | decrement of sequence numbers and loops
(when allowing self-entries (Interpretation 5a)
8b. | no action if the DSN in the routing table is largefdoops (when allowing self-entries)

than the one inthe RERR mess. (Sect. 6.1 & 6.111)

8c. | take the maximum of the DSN of the routing taloops (when allowing self-entries)

ble and the one from the RERR message
8d. | take the maximum of the increased DSN of theloes not cause loops
routing table and the one from the RERR mess.
8e. | combine 8b and 8d does not cause loops
8f. | only invalidate if the DSN in the routing table isdoes not cause loops; used in our specification
smaller than the one from the RERR message

\ [Further Ambiguities] |
|9.|Packet Handling for Unknown Destination$ (Sect. 6.11)
9a. | do nothing the sender is not informed and keeps sending

used in our specification
9h. | broadcast RERR message with unknown DSN loop free if used with adequaisvalidate

|10.|Sett|ng the Own Sequence Number when Generating a RREP lgeage
10a/ taking max (Sect. 6.1) used in our specification
10b/ taking the “conditional increment” (Sect. 6.6.1) loss of RREP message

Table 8:Different interpretations and consequences of ambiguitithe RFC

The above classification of ambiguities and their resohgtioan be used to calculate the number of
possible readings of the RFC. The table shows that the tegmofior Ambiguity 3 is uniquely determined
by the choice of resolutions for Ambiguities 1 and 2; exceptthe case of taking (1a) in combination
with (2a); here Resolutions (3b) and (3c) are possible. Elémbiguity 3 only adds one new variant. In
sum we have(2x 4)+ 1] x 2x 3x 2x 2x 6 x 2x 2 =5184 possible interpretations of the AODV RFC.
Only ([(1x3)+0x1x[(8x2x1x3x2)+(5x1x5)]x1)—5=178 are loop free and without
major flaws. (Here the first “5” refers to all resolutions of Biguities 5 and 6 except for the combination
of (5a) and (6a); the second “5” refers to the first 3 resohgiof Ambiguity 8 and both resolutions of
Ambiguity 9, except for the combination of (8a) and (9b); dhne last “5” deducts the combinations of
(6b) with (2d), (5a) and one of the second “5").

All these ambiguities, missing details and misinterpretet of the RFC show that the specification
of a reasonably rich protocol such as AODV cannot be destiilyesimple (English) text; ibas to be
doneusing formal methods in a precise way.

9 Formalising Temporal Properties of Routing Protocols

Our formalism enables verification of correctness propsrtWhile some properties, such as loop free-
dom and route correctness, are invariants on routing tabtkesrs require reasoning about the temporal
order of transitions. Here we use Linear-time Temporal tdgirL) [86] to specify and discuss two of
such properties, nametgute discovernyandpacket delivery

Let us briefly recapitulate the syntax and semantics of LThe Togic is built from a set catomic
propositions Such propositions stand for facts that may hold at somet gmirsome state) during a
protocol run. An example is “two nodes are connected in therént) topology”.

LTL formulas are interpreted on paths in a transition systetmere each state is labelled with the
atomic propositions that hold in that state.pAthis an alternating sequence of states and transitions,
starting from a state and either being infinite or ending itates such that each transition in the sequence

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 90

goes from the state before to the state after it. An atomipgsition p holds on a pathr if p holds in
the first state oft.

LTL [B6] uses the temporal operataBandF. The formulasG @ andF@ mean thatp holdsglobally
in all states on a path, ar@/entuallyin some state, respectively. Here a formglés deemed tdold
in a state on a patht iff it holds for the remainder oft when starting from that state. In later work on
LTL, two more temporal operators were added—tlext-stateand theuntil operator; these will not be
needed here. LTL formulas can be combined by the logical @divesconjunctionA, disjunctionv,
implication = andnegation—. An LTL formula holds for a transition system iff it holds fall complete
paths in the system starting from an initial state. A pathoimplete iff it leaves no transitions undone
without a good reason; in the original work on temporal 10f@6] the complete paths are exactly the
infinite ones, but in Sectidn 9.1 we will propose a differemmeoept of completeness (cf. Definitibn19.1).

Below we will apply LTL to the transition systemft” generated by the structural operational seman-
tics of AWN from an arbitrary AWN specification, and from ouegification of AODV in particular.
Here we use two kinds of atomic propositions. The first kingl predicates on the states (or network
expressionsN that are fully determined by the (local) values of all valgsomaintained by the nodes in
the network, as well as by the current topology, i.e &8y ¢, andRY, for all ip € IP. The second kind
are predicates on transitiohs—— N’ that are fully determined either by the latdedf the transition, or
by transition-labels appearing in the derivation from threctural operational semantics of AWN of a
T-transition—compare thR: *cast(m)-transitions in Sectiopn 7. 1.

To incorporate the transition-based atomic propositiotsthe framework of temporal logic, we per-
form a translation of the transition-labelled transitigstem.7 into a state-labelled transition syste#
and apply LTL to the latter. A suitable translation, propbge [19], introduces new states halfway the
existing transitions, thereby splitting a transitibimto ¢; 7, and attaches transition labels, or predicates
evaluated on transitions, to the new mid-way states. Sirealgo have state-based atomic proposi-
tions, we furthermore declare any atomic proposition tluddin stateN’ to also hold for the new state
midway a transitiorN LN

Below we use LTL to formalise properties that say that whenev preconditionpP™ holds in a
reachable state, the system will eventually reach a stisfysiag the postconditioPSt. Such a property
is called areventuality propertyn [86]; it is formalised by the LTL formula

G(¢”® = Fg™) . (33)

However, sometimes we want to guarantee such a propertyvdmiy a side conditiony keeps being
satisfied from the state wheg@™ holds untilgP°Stfinally holds. There are three ways to formalise this:

G((¢"°AGY) = FeP) G((¢"° A YW ™) = Fe™) G(¢"°=F(¢™'V-y)). (34)

The first formula is derived froni (33) by adding to the predbad ¢P™ the requirement thap is valid
as well, and remains valid ever after. If that precondit®nat satisfied, nothing is required abaqifst
One might argue that this precondition is too strong: it nexputhe side condition to be valid forever,
even aftergP°S has occurred. The second formula addresses this issue bemeg the precondition
@*" AGy. It uses a binary temporal operatdf—the weak untiloperator—that can be expressed in
terms of G and the (strong) until operator. The meaning of an expragaghy ¢ is that eithery holds
forever, or at some poirg holds and until theny holds. In other wordsy holds until we reach a state
whereg holds, or forever if the latter never happens.

Although the precondition of the second formula is weakantthe one of the first, as a whole the
two formulas are equivalent: they are satisfied by all runhefsystem, except those for which

— at some pointp holds,

— and from that point onwardg remains valid,

— yet never a state occurs satisfyipgPst

91 Modelling, Verifying and Analysing AODV

Both formulas are also equivalent to the third formuldin)(3dcan be understood to say that orng¥®
holds, we will eventually reach a state wheg®®st holds, except that we are off the hook (in the sense
that nothing further is required) when (prior to that) weatea state wherg fails to hold. It is this last
form that we will use further on.

9.1 Progress, Justness and Fairness

In Section$ 9.2 and 9.3, we will formalise properties thgtteat under certain conditions some desired
activity will eventually happen, or some desired state axikntually be reached. As a particularly simple
instance of this, consider the transition systems in Figd@a)—(c), where the double-circled state
satisfies a desired propergy The formulaG(a=- F@) says that once the acti@woccurs, eventually we
will reach a state where holds. In this section we investigate reasons why this féammight not hold,
and formulate assumptions that guarantee that it does.

Progress. The first thing that can go wrong is that the process in Fig@@)lperformsa, thereby
reaching the state and subsequently remains in the stdthout ever performing the internal actian
that leads to the desired statesatisfyingg. If there is the possibility of remaining in a state even when
there are enabled internal actions, no useful temporalgptpbout processes will ever be guaranteed.
We therefore make an assumption that rules out this typelaieur.

A process in a state that admits an internal transitowill eventually perform a transition. (P;)

(P is called aprogressproperty. It guarantees that the process depicted in H#(® satisfies the LTL
formulaG(a=- F@). We do not always assume progress when only external ti@rsiare possib
For instance, the process of Figlird 13(a), when in its Ingiater, will not necessarily perform the
a-transition, and hence need not satisfy the fornftda The reason is that external transitions could
be synchronisations with the environment, and the envimrmay not be ready to synchronise. This
can happen for instance wharis the actiorreceive(m). However, for our applications it makes sense
to distinguish two kinds of external transitions: those sd@xecution requires cooperation from the
environment in which the process runs, and those who do nio¢ Idtter kind could be calledutput
transitions As far as progress properties go, output transitions carebeed just like internal transitions:

A process in a state that admits an output transition willreually perform a transition. ()

Whether a transition is an output transition is completadtedmined by its label; hence we also speak
of output actions In casea is an output action, which can happen independent of the@mwient, the
formulaFg@ does hold for the process of Figlire 13(a).

We formalise[P) and [%) through a suitable definition of a complete path. In earlyknam temporal
logic, formulas were interpreted on Kripke structures:nsiion systems with unlabelled transitions,
subject to the condition dbtality, saying that each state admits at least one outgoing fiamslh this
context, the complete paths are defined to be all infinitespaftthe transition system. When giving
up totality, it is customary to deem complete also thoseg#ttht end in a state from which no further
transitions are possible [19]. Here we go a step further,(fBorchow) define a path to beompleteiff it
is either infinite or ends in a state from which no furtirgernal or outputtransitions are possible. This
definition exactly captures the progress properii& &nd [P2) proposed above. (Dropping all progress
properties amounts to definimgchpath to be complete.) Below we will restrict the notion of axuete
path to also capture a forthcoming justness property.

56A transition is external iff it is not internal, i.e. iff it@bel is different front.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 92

Q'
O—4—0—"—0 O—4—C—"—0
r S t r § t
(a) Progress (c) Fairness
T T T T
oroio | O - GeG-0Q
T S ’

(b) Justness

Figure 13: Progress, Justness and Fairness

It remains to be determined which transitions generatechbystructural operational semantics of
AWN should be classified as output transitions. In the ttarsisystem for (encapsulated) network ex-
pressions generated by the rules of Table 4, only five typésansition labels occurconneciip,ip’),
disconnectip,ip’), ip:newpkt(d,dip), ip:deliver(d) andt. These are all actions to be considered, since
we regard (LTL-)properties on network expressions onlye @ttionsonnectip,ip’), disconnectip,ip’)
andip : newpkt(d, dip) are entirely triggered by the environment of the network] #us cannot be clas-
sified as output actions. Transitions labelledre internal. For transitions labelléol: deliver(d) two
points of view are possible. It could be that the actiprdeliver(d) is seen as attempt of the network
to synchronise with its client in delivering a message; yrchronisation will then happen only when
both the network and the client are ready to engage in thigitctA possible scenario would be that
Pro.[3 gets stuck in Ling 2 because the client is not readyucin & synchronisation (the same happens
in Pro.[2, Lind_2). This interpretation of our formalisatiohAODV would give rise to deadlock possi-
bilities that violate useful properties we would like thetarcol to have, such as the forthcomirgyte
discoveryand packet deliveryproperties. We therefore take the opposite point of view lagsifying
ip:deliver(d) as an output action. Hereby we disallow a deadlock when attegnadeliver-action,
since the environment of the network cannot prevent dselieéidata packets. As a consequence, finite
complete paths of AODV can end only in statésvhere all message queues are empty, all nguease
are either in their initial state or about to call the procmB_V and for all destinationslip for which
ip has a (non-empty) queue of data packets we ligve vDY; and 0p_iag(& (store),dip) =no-req.
This follows since our specification of AODV is input-enathlés non-blocking, and avoids livelocks.

In the remainder of this paper we will only use LTL-formulascheck (encapsulated) network ex-
pressions. However, when defining output transitions alspartial networks, parallel processes and
sequential processes, it is easy to carry over our mechawigrbitrary expressions of AWN. On the
level of partial network expressiori&: *cast(m) counts as an output action, as its occurrence cannot be
prevented by other nodes in the network. Similarly, on thellef sequential and parallel processes
broadcastm), groupcast(D ,m), unicast(dip, m), —unicast(dip, m) anddeliver(d) are output actions,
but send'm) is not, for it requires synchronisation witeceive(m). The remaining actionsa(rive (m),
receivgm)) are not considered output actions.

Justness. Now suppose we have two concurrent systems that work indiepdly in parallel, such as
two completely disconnected nodes in our network. One ahtiemodelled by the transition system
of Figure[I3(a), and the other is doing internal transitionperpetuity. The parallel composition is
depicted on the left-hand side of Figlre 13(b). Accordinguo structural operational semantics, the
overall transition system resulting from this parallel gmsition is the one depicted on the right. In this

5"More precisely these positions are at the beginning of[Brbine[23, Pro[#, LineBlZ_26. B7, PId. 5, Lifd$6l 14,23, 27,
and in the middle of Lines 32,89 (Pfd. [)[2, 4 (Rro[2L1Z T[22 (ProB{_10.17. B3 (Pid.)21 (b [B), 8 (Plo. 6).

93 Modelling, Verifying and Analysing AODV

transition system, the LTL formul@(a = Fg) is not valid, because, after performing the actipnhe
process may do an infinite sequence of internal transitibasdtem from the other component in the
parallel composition, instead of the transition to the iebsuccess state. Yet the form@da = Fo)
does hold intuitively, because no amount of internal agtii the remote node should prevent our own
node from making progress. That this formula does not hofdbEseen as a pitfall stemming from
the use of interleaving semantics. The intended behavibtlreoprocess is captured by the following
justnessproperty@

A component in a parallel composition in a state that admitsraernal or output transition
will eventually perform a transition.

()

Progress can be seen as a special case of justness, obtaieg@itding a system as a parallel composi-
tion of one component only. We will formalise the justnesguirement[{) by fine-tuning our definition
of a complete path.

Any path ! starting from an AWN network expressidN] is derived through the structural oper-
ational semantics of Tablé 4 from a path starting from the partial network expressibh All states
occurring inmt! have the form{M’] for some partial network expressid#f, and in7t' such a state is re-
placed byM’. Moreover, some transition labetsn 1’ are replaced bfR: *cast(m) in 7!, and transition
labelsip : newpkt(d,dip) are replaced byip}—K:arrive (newpkt(d,dip)). To indicate the relationship
betweenrt! and rtl we write 77! = [rl]. It might be thatrt! is not uniquely determined bxt!; if this
happens, the partial network expressMradmits different paths that upon encapsulating becoms-indi
tinguishable.

In the same way, any patii starting from a partial network expressibhthat happens to be a parallel
composition ofn node expressions derives through the structural opeedtgmantics of Tablg 4 from
n pathsre, ..., 11 starting from each of these node expressions. In this caseriteert = 15 || - - - || 7%,
Here it could be thatt! is infinite, yet some (but not all) of tha" are finite. As before, it might be that
the 77* are not uniquely determined by .

Zooming in further, any pathr- starting from a node expressign: P : R derives through the struc-
tural operational semantics of Table 3 from a pathstarting from the parallel process expressoris
transitions labelled¢onnectip,ip’) or disconnectip,ip’) occurring inn!, 7l and7t* do not occur invt,
it can be thatt! is finite even thought' is infinite. We writert' = ip : 1 : x (without filling in theR,
since it may change when followirmg-).

Finally, any pathri of a parallel process expressiéhthat is the parallel composition ofi se-
guential process expressions derives through the stalatyerational semantics of Taldlé 2 fram
pathsrm, ..., T, starting from each of these sequential process expresdioriis case we writer =
m ((--- {{ . Again it may happen that' is infinite, yet some (but not all) of tha are finite.

Definition 9.1 A path starting from any AWN expression (i.e. a sequentiglavallel process expression,
a node expression or (partial) network expressemgjs prematurelyf it is finite and from its last state
an internal or output transitions is possible.

e A pathrs starting from a sequential process expressimompletdf it does not end prematurely—
hence is infinite or ends in a state from which no further imaéor output transitions are possible.

e A path 1 starting from a parallel process expressioaspleteif it does not end prematurely
and can be written ag ((- - - ((TH, where each of theg is complete.

e A path T starting from a node expressiondempleteif it does not end prematurely and can be
written asip : 1‘ : x wheremn! is complete.

%8 the literaturgustnessis often used as a synonym fareak fairesgsdefined on Page 95—see, e.g.[64]. In this paper
we introduce a different concept of justness: fairness ipgrty of schedulers that repeatedly choose betweenaddasks,
whereas justness is a property of parallel-composed tramsiystems, guaranteeing progress of all components.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 94

e Apathr! starting from a partial network expressiorcismpletef it does not end prematurely and
can be written ast || - - - || 7y where each of the" is complete.

e A path ! starting from a network expressiondempleteif it does not end prematurely and can
be written agml] wherert! is complete.

Note that if 7! = [rl] and 77! ends prematurely, then alst ends prematurely. This holds because
any internal or output action enabled in the last stata'omust stem from an internal or output action
enabled in the last state of. For this reason the requirement “it does not end prematlisetedundant
in the above definition of complete path starting from a nekwexpression. For the same reason this
requirement is redundant in the definition of a complete pattnode expressions or partial network
expressions, but not in the definition for parallel procegsressions. The reason for including this
requirement in each part of the definition above, is to ewstialal general pattern that ought to lift smoothly
to languages other than AWN.

This definition of a complete path captures our (progres3 jaisthess requirement, and ensures that
the formulaG(a = Fg) holds for the process of Figurel13(b). For example, the iefipathr starting
from r that after thea-transitions keeps looping through tmdoop ats can only be derived ag || 75,
whererg is a finite path ending right after theetransitions. Sincer fails to be complete (because its
ends prematurely, by its end state admitting-mansition), 77 is defined to be incomplete as well, and
hence does not count when searching for a complete pathaitsatd satisfy the formula.

Fairness. With the justness requiremerﬂ[@ embedded in our semantics of LTL, the processes of
Figure[IB(a)—(b) satisfy the formufa(a = F@). Yet, the process of Figufe113(c) does not satisfy this
formula. The reason is that in stat@ choice is made between two internal transitions. One leatie
desired state satisfying, whereas the other gives the process a chance to make tiseodeagain. This
can go wrong in exactly one way, nhamely if théoop is chosen each and every time.

For some applications it is warranted to makegl@bal fairness assumptioisaying that in verifica-
tions we may simply assume our processes to eventually @$ap a loop such as in Figurel13(c) and
do the right thing. A process-algebraic verification applohased on such an assumption is described
in [3]. Moreover, a global fairness assumption is incorpedan the weak bisimulation semantics em-
ployed in [71].

An alternative approach, which we follow here, is to expljaileclare certain choices to be fair, while
leaving open the possibility that others are not. To see lwblmices come into question, we search for
all occurrences of the choice operateim our AODV specification in Procesded1-7. A nondeternimist
choice occurs in Linds 21 ahd]33 of Prd. 1 and in Linkes 3[and 8@f® All other occurrences of the
+-operator are of the formg1]p+ ...+ [¢n]q where the guardg; are mutually exclusive; these are
deterministic choices, where in any reachable state at omesbf the alternatives is enabled.

Considering Line§]1, 21 arid133 of Pfd. 1, the prockddV running on a node in a network can
be seen as a scheduler that needs to schedule three kindksf taned 1IE20 deal with handling an
incoming message. This task is enabled when there is a neesséige message queue of that node.
Lines[Z1£3P2 deal with sending a data packet towards a d#setirdip. This task is enabled when there
is a queued data packet for destinatdip, i.e. dip € qD(§ (store)), and moreover a valid route tip
exists, i.edip € vD(&(rt)). As data queues for multiple destinatiotip may have formed, each time
when sending a data packet is scheduled a choice is made désthation to serve. Finally, Lines|33—
deal with the initiation of a route discovery process festthationdip. It is enabled when the guard
of Line [33 evaluates tarue. No matter which of these tasks is chosen, the chosen irst@nays

59Remember thafl]) implies the progress requiremerjB)and [F).

95 Modelling, Verifying and Analysing AODV

terminates in a finite amount of tin@aﬂer which theA0DV-scheduler needs to make another choice.

For each of these tasks we postulatereak fairnesgproperty. It requires that if this task, from
some point onwards, is perpetually enabled, it will evelhtuze scheduled. A weak fairness property
is expressed in LTL as the requireméGy = F@); herey is the condition that states that the task
is enabled, whereag states that it is being executetl.The property says that if the conditiai holds
uninterruptedly from some time point onwards, then evdiytua will hold. This is the first formula
of (34) with ¢°"® = true and @P°S'= @. Hence a logically equivalent formula@F(¢@V —y). Another
equivalent formula expressing weak fairness@&y = GFg. It says that if, from some point onwards,
atask is perpetually enabled, it will be scheduled infigitgten

Sometimes atrong fairnesproperty is needed, saying that if a task is enabled inf'm'ﬂ&bn@ but
allowing interruptions during which it is not enabled, itiaventually be scheduled. Such a property is
expressed in LTL a&(GFy = F(p)@ or equivalentlyGFy = GF¢. We do not need strong fairness
properties in this paper.

Our first fairness property ¢ requires that if the guard of Prid. 1, Lihel21 evaluatesitae from
some state onwards, for a particular valuelipf then eventually LinE21 (or equivalently Linel22{of 23)
will be executed, for that value dfip. Naturally, such a property needs to be required for eack ipad
the network, and for each possible destinatiiijm Later, we will formulate gpacket deliveryproperty,
saying that under certain circumstances a data packetwily\sbe delivered to its destination. Without
the fairness property ¢frthere is no hope on such a property being satisfied by AOD¥goUutd be that
a nodeip with a valid route todip has a queued data packet ftip, but will never send it, because it
is constantly busy processing messages—that is, exedLuitiedd instead of Lin¢ 21. Alternatively, it
could be that the node has a constant supply of data packetswébher destinatiodlip’, and always
chooses to send a packetdip instead of tadip.

Fairness property ¢ can be formalised as an instance of the tempg&i@y = Fg) by takingy
to be the formula that says that the guard in L[ink 21 is sadiséird@ a formula that holds after Lide P1
has been executed. We talfeto be the atomic propositiodip € gDP NvDP, which we define to hold
for stateN iff dip € qD(&y (store)) NvDY. Other atomic propositions used below are defined along the
same lines. In order to formulatewe use the atomic propositiamicast(x , pkt(x,dip,ip)), which is
defined to hold when node tries to unicast a data packet with destinatip Thus we require, for all
ip,dipe 1P, that G (G(dip € gD NvDP) = F(unicast(x,pkt(x,dip,ip)))). (F)
(F1) says that whenever the nogeperpetually has queued packets for the destinatipras well as a
valid route todip, it will eventually forward a data packet originating framtowardsdip—i.e. Line[23
will be executed. In classifying this property as a weaknags property, we count a task as enabled
when its guard is valid, notwithstanding that the task caiwecstarted during the tim&dDV is working
on a competing task.

Our second fairness property,jFlemands fairness for the task starting with LUiné 33 of Pronvg
require, for allip,dip € IP, that

G(G(dip € gP —vDP A o

p-flag(dip) =req) = F(broadcast(rreq(+,x,dip,x,*,ip,*,ip)))). (F2)

60Here we use that each of these tasks consists of finitely metinna, of which only the initial one could be blocking. The
task of handling an incoming message could fail to termiifatee message received is not of the form specified in any®f th
guards of Line§ 14,18, 12 brli6; in this case a deadlock woctdioin Line[3. However, using PropositibnIril(a), this will
never happen, as all messages sent have the required form.

61These properties were introduced and formalised in LTL8] [thder the name “responsiveness to insistence”. They were
deemed “the minimal fairness requirement” for any schedule

620r is scheduled in the final state of the system. This possilieeds to be added because, unlike[in [86, 28], we allow
complete paths to be finite.

630r in the final state of the system

64These properties were introduced and formalised in LTL 8] [fhder the name “responsiveness to persistence”.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 96

(F») says that whenevep perpetually has queued packets dip but no valid route talip, and the
request-required flag gt for destinationdip is set toreq, indicating that a new route discovery process
needs to be initiated, then nogedoes issue a request for a route frigrto dip—so Line[39 will be
executed.

We do not formalise a fairness property saying that llihe 1rof B will be executed eventually.
Since theeeceiveaction of Line1 of Prd.]1 has to synchronise with #emdaction in Lind 6 of Prd.17 it
suffices to formalise a fairness property @iSG.

Proces€MsSG can be understood as scheduling two tasks: (1) store an ingamessage at the end
of the message queue, and (2) pop the top message from the gugsend it ta0DV for handling. The
reason that (1) occurs twice in the specification (LI0dd ls-®ell agVEB) is that we require our node to
be input enabled, meaning that (1) must be possible in evaty.s

Our third and last fairness propertysffguards against starvation of task (2). It says that if therdu
of Line[d of Pro[Y evaluates tarue from some state onwards, then eventually Lihe 6 of Brro. 7 hwill
executed. In order to formulate this property we use the mtpnopositionsnsgs'® # [], which holds in
stateN iff E,'\,p(msgs) # [], andip : sendx), saying that the proce€®ISG running on nodep performs
a sendaction. We need to explicitly annotate this activity witlretname of nodép, as—unlike for
unicast andbroadcast—this information cannot be derived from the message bedng S\Ve require,

for all ip € IP, that G(G(nsgs® #[]) = F(ip:sendx))). (Fs)

(F3) says that whenever node perpetually has a non-empty queue of incoming messagestuaily
one of these messages will be handled. Just as for the fiksbtdke proces0DV, there is no need
to specify a fairness property for task (1): our justnesperty forbids any component from stopping
when it can do dcast-action, and our structural operational semantics requeeh component within
transmission range of a component doingast to receive the transmitted message.

To say that a run of AODV is fair amounts to requiring the cep@nding complete path to satisfy
properties (k)—(F3) for all values ofip anddip. In order to require fairness for all runs of AODV we
augment the specification of AODV with a fairness componkignceforth, our specification of AODV
consists of two parts: (A) the AWN specification of Sectignmbhich by the operational semantics of
AWN generates a labelled transition systemand (B) afairness specificatignconsisting of a collec-
tion of I;]-% formulas. The latter narrows down the completehgan L to the ones that satisfy those
formula

65 Formally, we require the labelled transition systerand the fairness specification to be consistent with eackr.ofy
this we mean that one cannot reach a state from where, given a sufficiently uncooperative environméris impossible
to satisfy the fairness specification—in other words [58}e‘automaton can never “paint itself into a corner.”’ [In][H#8s
requirement is callechachine closureand demands that any finite pathLinstarting from an initial state, can be extended to a
path satisfying the fairness specification. Since we detll avreactive system here, we need a more complicated ceamsjst
requirement, taking into account all possibilities of tliwieonment to allow or block transitions that are not fullgntrolled
by the specified system itself. This requirement can beskpkaieed in terms of a two player game betweesthedulerand
theenvironment

Define arun of L as a path that starts from an initial state. Thiigigée runis an alternating sequence of states and transitions,
starting from an initial state and ending in a state, suchehah transition in the sequence goes from the state befdhet
state after it. Moreover, eomplete ruris a finite or infinite path starting from an initial state. Tgeme begins with any finite
run it of L, chosen by the environment. In each turn, first the envirorirselects a setex{ p) of transitions starting in the last
stateN of 11, this set has to include all internal and output transitistasting fromN, but can also include further transitions
starting inN. If nex{p) is empty, the game ends; otherwise the scheduler seleassition from this set, which is, together
with its ending state, appended 1 and a new turn starts with the prolonged finite run. Té®ult of the game is the finite
run in which the game ends, or—if it does not—the infinite roattarises as the limit of all finite runs encountered durirgg t
game. So the result of the game always is a complete run. The gavonby the scheduler iff the result satisfies the fairness
specification. NowL is consistentvith a fairness specification iff there exists a winning &gy for the scheduler.

Our AODV specification and our fairness propertieg){fFs) are constructed in such a way that they are consistent.

97 Modelling, Verifying and Analysing AODV

There are many ways in which we could alter our AWN specificatf AODV so as to ensure that
(F1)—(Fs3) are satisfied and thus need not be required as an extra paut epecification. For example,
Pro.[1 could be modified in a way such that the three differetivides (Lines[1E£2D, Lines 21-82 and
Lines[33£3D) are prioritised. The process could first itetiall route discovery processes, then handle
all queued data packets (for which a valid route is known)farally handle a fixed number of received
messages (less if there are not enough messages in the.gifee)he messages have been handled, the
modified process would loop back and start initiating rousealery processes again. However, for the
purpose of protocol specification we do not want to committparticular method of ensuring fairness.
Therefore we state fairness as an extra requirement witebimg how it should be implemented.

When we later claim that an LTL formul@ holds for AODV, as specified by (A) and (B) together,
this is equivalent to the claim thgt = ¢ holds for AODV as specified by (A) alone, whegeis the
conjunction of all LTL formulas that make up the fairnessdfieation (B).

9.2 Route Discovery

An important property that every routing protocol ought &isy is that if a route discovery process is
initiated in a state where the source is connected to théndésh and during this process no (relevant)
link breaks, then the source will eventually discover aedotthe destination. In case of AODV a route
discovery process is initiated when a route request isassbe for any pair of IP addressem, dip € IP
the following should hold:

G (connected (oip,dip) A broadcast{rreq(x,*,dip,*,,0ip,*,0ip)))
= F(dip € vD°P Vv disconnectx,x)) '

Here, the predicateonnected (oip,dip) holds in stateN iff there exist nodespo,...,ipn such that
ipo=o0Ip, ipn=dip andip; eR',f,"*l fori=1,...,n. The latter condition describes the fact tigtis in
range oﬁpH@ All other predicates follow the description of Pdge ®@oadcastrreq(x,x,dip,*,*,
oip, *,0ip)) models that nodeip issues a request for a route fraip to dip; the predicatealip € vDOP
holds in stateN iff dip € vDR", i.e.oip has found a valid route tdip, anddisconnectx, *) is the action
of disconnecting any two nodes. By means of the last disjuhetproperty does not require a route to
be found once any link in the network bre&is.

The following theorem might be a surprise.

Theorem 9.2 AODV does not satisfy the property route discovery.

We show this by an example (Figurel 14). In particular, we stimt a route reply may be dropped.
This problem has been raised before, back in Oct @OA/e discuss modifications of AODV to solve
this problem in Sectioh 10.2. Figurel14 shows a network stingi of 3 nodes in a linear topology.
Two nodes & ands) are both searching for a route to destinati First, nodea broadcasts a route
request, RREQ(Figure[14(b)). As usual all recipients update their rogitiables. Since nods still
has no information about, it also initiates a route request, RRE@\fter a has forwarded that request
(Figure[14(c))d initiates a route reply as a consequence of RRE@hen nodea receives this reply, it
updates its own routing table (Figure] 14(d)). Finally, nddeacts on the second route request received
(RREQ) and sends yet another route reply. N@deceives RREf but doesnot forward it. This is

66since the connectivity graph of AWN is always symmetrics tondition suffices to guarantee that both the RREQ message
and the RREP message reach their destinations.

67Here—disconnectx, *) is the side conditiony of (34).

68http://www.ietf.org/mail-archive/web/manet/current/msg05702.html shows the same shortcoming using a
4-node linear topology.

69n [@8] we present a version of this example in a non-lineaode topology with symmetry between the two nodes that
search for a route td.

http://www.ietf.org/mail-archive/web/manet/current/msg05702.html

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan

98

(a) The initial state.
(@

O—O0—=030

(b) a broadcasts a new RREQ message destinéld to
all nodes receive the RREQ and update their RT|

@ RREQ; /7 RREQ @
L 1

2o/

(a,2,kno,val,1,a) (s,0,unk,val,1,s) (a,2,kno,val,1,a)

n

(c) sbroadcasts a new RREQ destinedito
aforwards it.

S RREQ2 /1) RREQq d
2 2/ 1

(a,2,unk,val,1,a) (s,2,kno,val,1,s) (a,2,unk,val,1,a)
(s,2,kno,val,2,a)

(d)d handles RREQand unicasts a RREP &
(@)

@ \\2/ RREP; @

(a,2,unk,val,1,a) (d,1,kno,val,1,d) (a,2,unk,val,1,a)
(s,2,kno,val,1,s) (s,2,kno,val,2,a)

(e)d handles RRE@and unicasts a RREP &
(@)

@ \2-/ RREPo @

(a,2,unk,val,1,a) (d,1,kno,val,1,d) (a,2,unk,val,1,a)
(s,2,kno,val,1,s) (s,2 kno,val,2,a)

(f) This ends the work of AODVs will never get an
answer for its RREQ.

Figure 14: Route discovery fails

because RREPdoes not contain any fresher information about destinadioim comparison with the
information in nodea’s existing routing table entry fad. As a result, RRERis dropped at node, and
nodes never receives a route reply for its route request. Looktrauamodel (Procegd 5), the node does

not forward a request since Libk 1 evaluates to

At first glance, it seems that this behaviour can be fixed bypaated route request.

false whérieaf2g evaluates to true.

O
If node

would initiate and broadcast another route request, @odeuld receive it and generate a route reply
immediately. The AODV RFC specifies that a node can broadmasther route request if it has not
received a route reply within a pre-defined time. Howevegpeated route request does not guarantee
the receipt of a route reply. It is easy to construct an examsphilar to Figuré T4 where, instead of a
linear topology with 3 nodes, we use a linear topology with2 nodes, whera is the maximum number

of repeated route requests.

But the situation is even worse. Even in a 4-node topologynéiniie stream of repeated route
requests cannot guarantee route discovery. Flgure 1&dtes this fact.

In the initial state, noda has established a route dovia a standard RREQ-RREP cycle, initiated
by a. Subsequently, in Part (b), notlesearches for a route toan arbitrary node that is not connected to
any of the nodes we consider). Afigforwards the RREQ message destineddarodea creates a valid
route tod with an unknown sequence number that eqaigdsown sequence numtet. Now s initiates

(a) The initial state;
a established a route thby a RREQ-RREP-cycl

(d,1,kno,val,1,d)
(s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,2,kno,val,1,a)

(b) b broadcasts a new RREQ destinec;o
e. the request travels through the network.

(b,2,kno,val,2,d)
(d,1,unk,val,1,d)
(s,0,unk,val,1,s)

(a,2,unk,val,1,a) (a,2,unk,val,1,a)
(b2, knoval.3.a) (b.2,knowval,1,b) (HOunkval,1,d)

Figure 15: Route discovery also fails with repeated reguessinding

7OThis examples hinges on our choice of Resolution (2c) of Amity 2. Taking Resolutions (2a) or (2d) would avoid this
problem; another solution would be following the suggestibl. Chakares in Footnofe P9 on P&gé 35. We will propose & mor
thorough solution, that also tackles the problem of Fifieiri Sectio 1012.

99 Modelling, Verifying and Analysing AODV

(c) sbroadcasts a new RREQ destinedito (d)d sends a route reply farback toa;
adrops the reply.

(b,2,kno,val,2,d)
(d,1,unk,val,1,d)
(s,2,kno,val,1,s)

(a,2,unk,val,1,a) (a,2,unk,val,1,a)
(a,2,unk,val,1,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d) (a,2,unk,val,1,a) (b,2,kno,val,1,b) (d,0,unk,val,1,d)
(b,2,kno,val,3,a) (s,2,kno,val,2,a) (b,2,kno,val,3,a) (s,2,kno,val,2,a)

Figure 15 (cont'd): Route discovery also fails with repéatequest resending

a route request, searching for a routaltdSince nodea does not have a known sequence numbedfor

it may not generate an intermediate route reply (Pro. 4, Blievaluate t¢alse). Hence it forwards

the route request (Part (c)), and natlanswers with a RREP message (Part (d)). However, aauid

not update its routing table entry fdy because it already has an entry with the same sequence numbe
and the same hop count (Lifi¢ 1 of Prd. 5 evaluates to falseeabkdrind 2b evaluates to true). As a
consequence does not forward the route reply spands will not create a route ta. Repeating the
route request bg will not help, as the same events will be repeated.

Both counterexamples show a failure in forwarding a roupdyrback to the originator of the route
discovery process. This travelling back can be seen as ttendestep of a route discovery process.
The first step consists of the route request travelling froendriginator to either the destination or to a
node that has a valid route to the destination (with knowrueege number) in its routing table. The
following property states that this step always succeedsenever a route request is issued in a state
where the source is connected to the destination and suirsguo link break occurs, then some node
will eventually send a route reply back towards the source.

G (connected (oip,dip) A broadcastrreq(x,*,dip,*,*,0ip,*,0ip)))
= F(unicast(rrep(x,dip,,0ip,*),*) V disconnectx,x)) '

This property does hold for AODV. Namely, Pfd. 4 is structuie such a way that upon receipt of a
RREQ message, either a matching RREP is sent or the RREQuiarfted. So if a route reply is never

generated, then the route request floods the network andagadl nodes connected to the originator of
the request, which by assumption includes the destinattbis~would cause a RREP to be sent.

9.3 Packet Delivery

The property ofpacket deliverysays that if a client injects a packet, it will eventually beigered to
the destination. However, in a WMN it is not guaranteed tha property holds, since nodes can
get disconnected, e.g., due to node mobility. A useful fdathan has to be weaker. A higher-layer
communication protocol should guarantee packet delivelyiban end-to-end route exists long enough.
More precisely, such a protocol should guarantee deliveaypacket injected by a client at nodg with
destinationdip, whenoip is connected tdip and afterwards no link in the network is disconnected. This
means that for albip,dip € IP, and any data packelp € DATA, the following should hold:

G (connected (oip,dip) A oip : newpkt(dp,dip)) (PDy)
= F(dip: deliver(dp) v disconnectx,*)) /- 1

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 100

(a) The initial state; (b) The topology changes.
s has established a routedo

(d,1,kno,val,1,d) (d,1,kno,val,1,d)
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a)
(d,1,kno,val,2,a) (s,2,kno,val,2,a) (d,1,kno,val,2,a) (s,2,kno,val,2,a)

(c) stransfers a packet t for delivery atd. (d)adrops the packet and sends a RERR message|to

(d,1,kno,val,1,d) (d,2,kno,inv,1,d)
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a) (a,0,unk,val,1,a)
(d,1,kno,val,2,a) (s,2,kno,val,2,a) (d,2,kno,inv,2,a) (s,2,kno,val,2,a)

Figure 16: Packet delivery property PEils

Hereoip: newpkt(dp, dip) models injection of a new data packkiat oip, anddip: deliver(dp) that the
destination receives it. This formulation of packet delfvdoes not specify any particular route, but
merely requires thatlp will eventually be delivered. The property does not reqaineacket to arrive
once any link in the network breaks down.

For a routing protocol like AODV, this form of packet deliyas a much too strong requirement. The
example of Figure_16 shows why it does not hold.

In the initial state nods has, through a standard RREQ-RREP cycle, establishedaetauit After-
wards, the link betweeaandd breaks, and a new link betwesiandd is established. Subsequently, say
in stateS, the application layer injects a data pac{pdestined fod at nodes. Based on the information
in its routing table s transfers the packet @ However, the packet is dropped byvhena fails to for-
ward the packet td. To be precise, the reachable st8watisfiesconnected(s,d) A s: newpkt(dp,d)
but there is a path frorSthat does not feature any state withdeliver(dp) or disconnectx, x).

This failure of [PD) is normal behaviour of a routing protocol. A higher layettie network stack
(e.g. the transport or the application layer) may use anaelatgement and retransmission protocol on
top of its use of a routing protocol, and this combination miguaranted (PI). For the routing protocol
itself, it suffices that a packet will eventually be deliveithe client (higher-layer protocol) injects the
same data packet again and again, until the packet has cetthelestination. This gives rise to the
following weaker form of packet delivery:

G((connected (oip,dip) A oip : newpkt(dp, dip)) > (PDy)
= F(dip: deliver(dp) v disconnectx,x) v —F(oip: newpkt(dp,dip)))/
This is the property (PB), but under the side conditiogy = F(oip X newpkt(dp,dip)) that is required
to hold after the initial injection of the data packet andiluhe packet is delivered—seke {34). This side
condition says that one will keep injecting copies of the satata packet, i.e. every state for whigh
holds is followed by one where such a packet is injected[DpjPthe clauseip : newpkt(dp, dip) in
the precondition is redundant, as it is implied by the sideddmn . Moreover, by the equivalence of

101 Modelling, Verifying and Analysing AODV

@4, can also be formulated as

G (connected (oip,dip) A GF(oip : newpkt(dp,dip)))
= F(dip: deliver(dp) v disconnectx, «)) '

Here, GF(oip : newpkt(dp,dip)) states that the injection of the data pacttptat nodeoip will be re-
peated infinitely ofteffd If during that time no two nodes get disconnected, the paskbtventually be
delivered at its destinatiodip.

Continuing the example of Figukell6, in Part (d), n@dsends a route error messagestas a result
of which sinvalidates its routing table entry fak If now a new data packet destined fibis injected at
s, nodes initiates a new route discovery process and finds the 1-hopemion. As a result of this, the
packet will be delivered a, as required by (P).

appears to be a reasonable packet delivery property fastangoprotocol like AODV. Yet, it
is still too strong for our purposes. A failure ¢f (F)Dcan occur easily in the following scenario: node
oip has a packet for noddip, and initiates a route discovery process by issuing a ragaast, while
setting the request-required flag for the route towalidto no-req. The route request reacheéip, but
the corresponding route reply is lost on the way backifp due to a link break. From that moment
onwards the topology remains stable and a route fogorto dip exists. We may even assume that it
would be found if onlyoip does a second route request. However, such a second rougstegll never
happen because the request-required flag keeps havingltiemwareq in perpetuity.

This failure of is a flaw of our model rather than of AODV. A more realistic rmbdould
specify that the request-required flag cannot keep the valueeq forever. After a timeout, either the
flag should revert taeq, so that a new route request will be made, or the entire quedata packets
destined talip will be dropped, so that a newly injected packet will staresh queue, which is initialised
with a request-required flageq. Such modelling requires timing primitives; however, ginege abstract
from timing issues, we did not build such a feature into ouwlkeahandling routine.

To compensate for this omission, we add a precondition tpaleket delivery property, namely that if
oip perpetually has queued packets digo but no valid route talip, then eventually the request-required
flag atoip for destinationdip will be set toreq:

G(G(dipe qD%P — vDOP) = F(Ggi_?lag(dip) =req))

Adding this precondition td (PE) yields [PLy), our finalpacket deliveryroperty:
G(G(dip € gd°P — vDOP) = F(Ugi_%ag(dip) =req)
S connected (oip, dip) (PDs)
= F(dip: deliver(dp) v disconnectx,x) Vv —F(oip: newpkt(dp,dip)))/

This property ought to be satisfied by a protocol like AODV vhBlgheless,
Theorem 9.3 AODV does not satisfy the property packet delivery.

Figure[1% presents an example where an infinite stream odtegheoute request does not result in route
discovery, let alone in packet delivery.

Figure[1T shows yet another counterexample against paekeeny, this time when the route dis-
covery property is satisfied. Initially, nodkrequests a route tio (Figure[IT(a)). As a resulg creates
a routing table entry fod, with an empty set of precursﬂ.ln Part (b), the reply is sent from nodbe

"IDue to the existence of finite complete paths, the formlﬂ%{oip : newpkt(dp7dip)) also holds for complete paths whose
final state satisfiesip : newpkt(dp,dip). However, in our specification of AODV such complete pathsidboccur.
72|n fact, in this example all lists of precursors are empty.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 102

(a)d broadcasts a new RREQ message destiné {¢b) b handles RREQand unicasts a reply back to d.
the RREQ floods the networkgreates a route b,

(a,0,unk,val,1,a) (d,2,kno,val,1,d) (a,0,unk,val,1,a) (d,2,kno,val,1,d)
(d,2,kno,val,2,a) (s,0,unk,val,1,s) (d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a) (a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1,s) (s,0,unk,val,1,s) (b,1,kno,val,1,b)

(c) The topology changes; (d)atries to forward data packet th
sreceives a data packet destinedito packet delivery fails.
(a,0,unk,val,1,a) (d,2,kno,val,1,d) (a,0,unk,val,1,a) (d,3,kno,inv,1,d)

(d,2,kno,val,2,a) (s,0,unk,val,1,s) (d,2,kno,val,2,a) (s,0,unk,val,1,s)

(a,2,kno,val,1,a) (a,0,unk,val,1,a) (a,2,kno,val,1,a) (a,0,unk,val,1,a)
(s,0,unk,val,1,5) (b,1,kno,val,1,b) (s,0,unk,val,1,s) (b,1,kno,val,1,b)

Figure 17: Precursor maintenance limits packet delivetip ra

to noded. Afterwards, in Part (c), the link betweenandd breaks. From here on the topology remains
stable, andonnected (s,d) holds. In Part (c) the application layer injects a packetfat delivery atd.
Sinces already has a routing table entry frno new route request needs to be initiated, and the packet
can be sent right away. Unfortunately, the packet is dropyeeha fails to forward it tod. Nodea inval-
idates its entry, but has no precursors for the routbtmsend an error messag@As a consequence,
swill not learn about the broken link, and all subsequent p&ckravelling froms to d will be dropped

ata (Pro[3, Line$ 1H=20).

10 Analysing AODV—Problems and Improvements

In this section we point at shortcomings of the AODV protoeald discuss possible solutions. The
solutions are again modelled in our process algebra. Thies# easy to ensure that the presented
improvements are unambiguous and still satisfy the inmésidiscussed in the Sectibh 7. In particular
we show that all variants of AODV presented in the remaindehig section are loop free and satisfy
the route correctness property.

More precisely we propose five changes to the AODV protocol.

In Sectior 1011 we show that the route request identifier (RRE) is redundant and can be dropped
from the specification of AODV without changing the behaviofi the protocol in any way. This is a
small improvement, but reduces the size of message headers.

In Section$ 10]2—10.4 we address three deficiencies of A®BYVeaach cause a failure of the packet
delivery property discussed in Sectldn 9. The first two dati failures of the route discovery property,
which is a necessary precondition to ensure packet delivery

73The same behaviour occurs when nadéetects the link break earlier, for instance by using Helessages.

103 Modelling, Verifying and Analysing AODV

In Sectior_10.R2 we discuss a known problem of AODV, namely éhaode fails to forward a RREP
message that does not contain new information. This leadsfadure of route discovery because the
information can be new to the nodes to which the message tugletforwarded.

In SectionI0.B we discuss failures of route discovery tieggetid on the convention for routing
table updates in response to an AODV control message fronghbwur (cf[Ambiguity 2) and analyse
conventions that are not prone to such failures.

In Section I0.# we show how error messages may fail to reagbsntiat need to be informed of a
link break. This may cause a failure of packet delivery evéemvroute discovery is guaranteed. This
problem can be solved by always broadcasting error messages

Finally, in Section 10J5, we show that AODV inadvertentlyaddishes sub-optimal routes, i.e., even
when there is a shorter route towards a destination, AODVus#@ (much) longer paths to send packets.
This problem can be avoided by modifying the prode&sq for handling message requests.

10.1 Skipping the RREQ ID

AODV does not need the route request identifier. This numhberpmbination with the IP address of
the originator, is used to identify every RREQ message iniguenway. However, we have shown
that the combination of the originator’s IP address andatgience number is just as suited to uniquely
determine the route request to which the message belongBr(giositio 7.35(b)). Hence, the route
request identifier field is not required. This can then redbeesize of the RREQ message.

In detail, the following changes have to be made:

e The seRREQID (including the variablereqid) and the functiomrreqid are skipped.
e The variablerregs is now of typeZ?(IP x SQN).

e The functionrreq to generate route requests has now the type
rreq:IN XIP X SQN x K x IP x SQN x IP — MSG .

All the parameters are the same, except that the requedifieleis left out.
e The modified basic routine (Pid. 1) is given by Rrd. 12.

Process 12The basic routine, not usingreqid

AODV(ip,sn,rt,rreqs,store) oef
... /* Lines[IH7 of Pro[1L */
2. + [msg = rreq(hops,dip,dsn,dsk,oip,osn,sip)] /* RREQ */
3. [*update the route teip in rt */
4 [rt :=update(rt,(sip,0,unk,val,l sip,0))] [* 0 is used since no sequence number is known */
5. RREQ(hops,dip,dsn,dsk,oip,osn,sip, ip,sn,rt,rreqs,store)
6 .. I* Lines[12£3% of Prd[11 */
7. [* updaterregs by adding(ip,sn) */
8 [rregs :=rreqsU{(ip,sn)}]
9. broadcastrreq(0,dip,sqn(rt,dip),sqnf(rt,dip),ip,sn,ip)) . AODV(ip,sn,rt,rregs,store)

e In Pro.[4, the occurrences efreqid in Lines “0” and[36 are dropped; all other occurrences
(Lines[1[3 and15) are replaced byn.

The statements and proofs of Sectibhs 7[dnd 8 are all valichdmd the following modifications.
e Whenever the functiomreq is used, the second parameterdqid) has to be dropped.

e Proposition§ 7.34 arid 7.85(a) use the variahleqid; they can be dropped. The statement that a
route request is uniquely determined by the pairp, osn), the replacement of Propositidn 7134,
is already stated and proven in Proposifion 17.35(b).

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 104

e The statement of Invariart (25) in Proposition 7.36 charnges

N R:*cast(rreq(,*,*,*,0iR,0SM:,ip:)) o N = (inC,OSI’b) c Eli\lpc(rreqs) (35)

and likewise for Invariant(26). In the proof, “contefitx,rreqid,*,*,*,ip,*,ip)” changes
into “contenté (x ,*,x,%,ip,osn,ip)”. All other occurrences ofr'reqid” change into 6sn”,
and ‘rreqid;” into “osn.”.

e In the proof of Propositioh 8l 1rreqid” changes into ésn”.

10.2 Forwarding the Route Reply

In AODV's route discovery process, a RREP message from théndgion node is unicast back along a
route towards the originator of the RREQ message. Everynm@diate node on the selected route will
process the RREP message and, in most cases, forward itiotharoriginator node. However, there is
a possibility that the RREP message is discarded at an iatBate node, which results in the originator
node not receiving a reply. The discarding of the RREP messgague to the RFC specification of
AODV [[79] stating that an intermediate node only forwards RREP message if it is not the originator
nodeand it has created or updated a routing table entry to the deéistimaode described in the RREP
message:

“If the current node is not the node indicated by the Originator IP Address
in the RREP message AND a forward route has been created or updated as
described above, the node consults its route table entry for the originating
node to determine the next hop for the RREP packet, and then forwards the
RREP towards the originator using the information in that route table

entry.” [79, Sect. 6.7]

The latter requirement means that if a valid routing tableyeto the destination node already exists,
and is not updated when processing the RREP message, thietetineediate node will not forward the
message. In Sectidd 9 we have illustrated this problem witheéxamples (Figurds 114 ahd]15), also
showing that this leads to a failure of route discovery.

A solution to this problem is to require intermediate nodefotwardall RREP messages that they
receive. In the example presented in Fidure 14, the inteiateedodea will forward RRER, after RRER
was received in Part (e). As a result, nadeill establish a route tal. Likewise, in Figuré_I5(d), node
will forward RRER and agairs will establish a route tal.

To implement this behaviour one can simply drop the Lidesd[Z8£27 of Prd. 56 (RREP handling),
keeping Line§A=25 only.

This solution guarantees the forwarding of the RREP messidgerever, it might be the case that
outdated information is forwarded and, as a consequencegpiimal information is stored in the routing
tables. This is shown by the example presented in Figdre 18.

The example assumes a linear topology with 5 nodes. In Pgridues receives a data packet
destined to nodd,; it initiates a route discovery process. The request is dot@d by nodeg, b andc
until it reaches the destinati@h Noded then generates a route reply and unicasts the messagP aot
(c)). After the RREP message is (successfully) sent, Fig8(¢d), a link betweea andd is established
and noded broadcasts a new RREQ message, destined This message is received by nodesndc.

In principle nodec would later forward the request; however, this forwarding the subsequent actions
do not add anything to the example and therefore we drop this b

105 Modelling, Verifying and Analysing AODV

(a) The initial state. (b) sbroadcasts a new RREQ message destiné to
the request floods the network.
(a,0,unk,val,1,a)

(c,0,unk,val,1,¢) (b,0,unk,val,1,b)
(s,2,kno,val,2,a) (s,2,kno,val,3,b)

(a,0,unk,val,1,a) (b,0,unk,val,1,b) (c,0,unk,val,1,c)
(s,2,kno,val,1,s) (s,2,kno,val,4,c)

(c) Noded generates and send a RREP message {(d) The topology changes;
d broadcasts a new RREQ message destine(fo

(a,0,unk,val,1,a)

(a,0,unk,val,1,a) (b,0,unk,val,1,b) (c,0,unk,val,1,¢) (b,0,unk,val,1,b)
(¢,0,unk,val,1,¢) (d,1,kno,val,1,d) (d,1,kno,val,2,¢) (d,2,kno,val,1,d)
(s,2,kno,val,2,a) (s,2,kno,val,3,b) (s,2,kno,val,2,a) (s,2,kno,val,3,b)

®

(a,0,unk,val,1,a) (b,0,unk,val,1,b) (c,0,unk,val,1,c) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (ec,0,unk,val,1,c)

(s,2,kno,val,1,s) (s,2,kno,val,4,c) (d,2,kno,val,1,d) (s,2,kno,val,4,c)
(s,2,kno,val,1,s)

(e)a unicasts RRERback tod; (f) Due to the modificationa forwards RRER.
b forwards RRER.

(a,0,unk,val,1,a) (a,0,unk,val,1,a)

(¢,0,unk,val,1,¢) (b,0,unk,val,1,b) (¢,0,unk,val,1,¢) (b,0,unk,val,1,b)

(d,1,kno,val,2,¢) (d,2,kno,val,1,d) (d,1,kno,val,2,¢) (d,2,kno,val,1,d)

(s,2,kno,val,2,a) (s,2,kno,val,3,b) (s,2,kno,val,2,a) (s,2,kno,val,3,b)

S S RREP; a d

2 2 o/ 2
(a,0,unk,val,1,a) (b,0,unk,val,1,b) (a,l,kno,val,1,a) (a,0,unk,val,1,a) (b,0,unk,val,1,b) (a,1,kno,val,1,a)
(d,2,kno,val,1,d) (c,0,unk,val,1,c) (d,1,kno,val,4,a) (d,2,kno,val,1,d) (c,0,unk,val,1,c)
(s,2,kno,val,1,s) (s,2,kno,val,4,c) (s,2,kno,val,1,s) (s,2,kno,val,4,c)

Figure 18: Always forwarding RREP messages

After a has initiated a route reply as a consequence of RREQich is sent back td, it receives
RRER from b—the reply generated by nodkand destined ts. In the original version of AODV, as
presented in Sections$ 5 aind 6, the reply would be droppece aidoes not update its routing table. In
the modified versiora creates a message byep(3,d,1,s,a), which is sent to node (nhop(rt,oip)).
Note, thata does not update its own routing table. As a consequencesirtbssage, nodeupdates its
routing table and creates an entrydtavith sequence number 1 and hop count 4 (Part (f)).

Although this information is not incorrect, it is outdatedny data packet sent fromto d would
be forwarded t@ and then immediately to the destination, thanks to reotlaving fresher information
(in its routing table the sequence number belonging i®2). As a general rule, it makes sense to use
the newest available information on the route to the destinanode: if an intermediate node’s routing
table contains an entry for the destination node that ishatid fresher than that in the received RREP

74The message RREGQs also sent to node Since it does not change the example, we suppress this geessa

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 106

message, the intermediate node ought to update the comtetits RREP message to reflect this. To
achieve this one can replace L[nd 13 of Plo. 5 by

unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .

In case the received reply contained fresher informatiom routing table was already updated. The full
modified RREP handling is shown in PEa]13. Note that L[des@Zh (Lined® and 22 in the original
process) are also changed. The reason for this change isftirahation should only be forwarded when
the intermediate node hasvalid route to the destination of the route discovery process.umssfor
example the situation given in Figurel18(d). As before, nedends RREP but just before RREPis
handled bya, the unreliable link betweea andd breaks and invalidates its routing table fad, i.e., it
changes intdd, 3,kno, inv,1,d). Under such circumstances a route reply should not be fdveamnce
any data packet reaching the intermediate node (in the draappould be dropped.

All invariants presented in Sectiobk 7 ddd 8 remain validwekeer, a few proofs need adaptation.

e In Propositio 7.111(b), the case dealing with Pio. 5 now sessdfollows:

Pro.[13, Line[2[The message has the fotraep(& (dhops(rt,dip)),*,*,*,x). By Proposi-
tion[7.10& (dhops(rt,dip)) > 0, so the antecedent does not hold.

Process 1RREP handling (Forwarding the Route Reply)

def
RREP(hops,dip,dsn,oip,sip,ip,sn,rt,rreqgs,store) =
1. [rt :=update(rt,(dip,dsn,kno,val, hops+1,sip,0))]

2. (

3 [oip=ip] [* this node is the originator of the corresponding RREQ */

4 [* a packet may now be sent; this is done in the proaesy */

5 AODV(ip,sn,rt,rreqs,store)

6. +[oip#ip] /* this node is not the originator; forward RREP */

7

8 [oip € vD(xrt) A dip € vD(rt)] /* valid route tooip and todip */

9. /* add next hop towardsip as precursor and forward the route reply */
10. [rt := addpreRT(rt,dip,{nhop(rt,oip)})]

11. [rt := addpreRT(rt,nhop(rt,dip), {nhop(rt,oip)})]

12. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .
13. AODV(ip,sn,rt,rreqs,store)

14. » /* If the transmission is unsuccessful, a RERR message isrgaed */
15. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) =nhop(rt,oip)}]
16. [rt :=invalidate(rt,dests)]

17. [store := setRRF(store,dests)]

18. [pre := U{precs(rt,rip)|(rip,*) € dests}]

19. [dests := {(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
20. groupcastpre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqs,store)
21. + [oip € vD(xrt) V dip € vD(rt)] * no valid route tooip or todip */
22, AODV(ip,sn,rt,rreqgs,store)
23.)
24.)

e In Propositiori 7.113(b), the case dealing with Pio. 5 now sesdfollows:

Pro.[13, Line[12: Here, dsn, := &(sqn(rt,dip)). The last routing table update happened in
Line[d. The update us€Sdsn), which stems, through Lirfe 112 of Pid. 1, from an incoming
RREP message (Pfd. 1, Libk 1). For this incoming RREP meshagavariant holds, i.e.
&(dsn) > 1. By Propositio 716, the sequence number is increased towinally, and hence
dsn. := &(sqn(rt,dip)) > &(dsn) > 1.

"5This line corresponds to Piid. 5, Likel 13 in the original sfieation.

107 Modelling, Verifying and Analysing AODV

e The case of Propositidn 7J14(b) dealing with RREP handlioy hecomes
Pro.[13, Line[12: The message has the foiirrep(dhops(rt,dip),dip,sqn(rt,dip),oip,
ip)). Hencehops := & (dhops(rt,dip)), dip. := &(dip), dsn. := & (sqn(rt,dip)), ipc ==
&(ip) = ip and & = €. Line[guarantees thaip, = & (dip) € kD). Since the sequence
number and the hop count are taken from the routing table evergnediately
sqny (dip) = sqn(§(rt),&(dip)) = dsn
dhopsy(dif) = dhops(&(rt),&(dip)) = hops .
With exception of its precursors, which are irrelevant hére routing table does not change
between LineBl8 arid112. So, by Lined¥. = £(dip) € vD(£(rt)) and therefore
flag{(dip;) = flag(&(rt),&(dip)) = val.
e The 7th case of the proof of Proposition 4.19 is changed to
Pro.[13, Line[11: By Line[@¢ (oip) € vD(&(rt)) and&(dip) € vD(&(rt)).
e In Propositiori 7,18, the following case needs to be added:
Pro.[I3, Line[12: By Line[8¢ (dip) € vD(&(rt)).
e In the proof of Proposition 7.21, the cases for Pio. 5, Lilasad 26 are skipped.
e In Propositior 7,22, the last case changes into

Pro.[I3, Line[11: By Line [8, £(dip) € vD(&(rt)) C kD(&(rt)), SO a routing table entry for
& (dip) exists. Using Propositidn 7.B8, this implies thabp (& (dip),&(rt)) € kD(&(rt)).

e In Theoreni Z.32(c), the case dealing with Pio. 5 becomes
Pro.[1I3, Line[I2: The proof is the same as for Pid. 4, LIné 25.
e The last case of Propositibn 7137(a) is changed to
Pro.[I3, Line[12: A route reply withdip.:= &P (dip) anddsn,:= &P (sqn(rt,dip)) =sqn! (dip.)
is initiated. By Invariant[(29¥isn. = sqni,{f(dipc) < Eﬁi“(sn).

Surely, always forwarding (unicasting) replies increasesnumber of messages in the network. How-
ever, as illustrated by the examples of Figureks 14[and 15pdhey to always forward the route reply
significantly increases the probability of a route discgyanocess being successful. As a consequence,
the probability of the originator re-issuing a route reduesestablish a route is much smaller. Such
a re-sending would yield another broadcast cycle, whiclt) waspect to network load, is much more
expensive than the extra unicast of RREP messages.

10.3 Updating with the Unknown Sequence Number

In this section we evaluate the resolutiong of Ambigu]ty 2Sefction[8. We have already discarded
Resolution (Bb), as it leads to routing loops. The alteveati (2a), (@c) and [(2d), have been shown to
satisfy the loop freedom and route correctness property.

A disadvantage of Resolutionf2a) is that it misses opportu-
nities to improve the routes between two neighbouring nottes 9
can lead to situations in which a nod&nows that nodel can
be reached using as next hop, but at the same time does not
know that there is a valid 1-hop route #oitself: assume the 5 \?/ @
topology given in Figuré@ 19. The link between the nodesd
a is unreliable—messages sent via this link might get lost a8gyre 19: 4-node topology missing
the neighbouring nodes might detect that this link is brokeet qte optimisation opportunity
us further assume thathas established a route & the corre-

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 108

sponding routing table entry might 4@, 1,kno,val, 2, b) (the RREQ message fromto a got lost)
or (a,2,kno,inv,1,a) (a 1-hop connection was established, but the link broke gloitext, noded
searches for a route ® The generated RREQ message is received byd forwarded ts. Nodes
creates a routing table entrydd((d, 2, kno, val, 2 a)) and tries to update its entry & However, by use
of Resolution (2r), neither of the above mentioned entrieslavbe changed.

This strongly gives the impression that information is regdiin an optimal way.

Resolutions @c) and [[2d) do not suffer from this drawbackweler, they have their own prob-
lems. Resolution (2d) gives rise to non-optimal routes,llastiated in Figuré 20. In the initial state
(Figure[20(a)), a route betwearandd is established through a standard RREQ-RREP cycle. Then, in
Part (b)), the connection betwearandd breaks downa andd detect the link break and invalidate their
routing table entries for each other, thereby increasiegistination sequence numbers. Subsequently,
the connection betweemandd comes back up, and notb§connected tal) initiates a route request for
a nodex, which is not to be found in the vicinity (Figute120(c)).

(a) The initial state; (b) The link betweem andd breaks down;
a established a route thby a RREQ-RREP cycle. aandd invalidate their entries to each other.
(d,1,kno,val,1,d) (d,2,kno,inv,1,d)
(s,0,unk,val,1,s) (s,0,unk,val,1,s)

O,

(a,2,kno,val,1,a) (a,2,kno,val,1,a) (a,2,kno,val,1,a) (a,3,kno,inv,1,a)

(c) The link reappears; (d) The topology changes again.
a RREQ fronb floods the network.
(b,2,kno,val,2,d) (b,2,kno,val,2,d)
(d,2,kno,val,1,d) (d,2,kno,val,1,d)
(s,0,unk,val,1,s) (s,0,unk,val,1,s)

5 D ®

(a,2,kno,val,1,a) (a,3,kno,val,1,a) (d,0,unk,val,1,d) (a,2,kno,val,1,a) (a,3,kno,val,1,a) (d,0,unk,val,1,d)
(b,2,kno,val,3,a) (b,2,kno,val,1,b) (b,2,kno,val,3,a) (b,2,kno,val,1,b)
(e) sbroadcasts a new RREQ destineddor (f) sreceives RREPs fromandd.
(b,2,kno,val,2,d) (b,2,kno,val,2,d)
(d,2,kno,val,1,d) (d,2,kno,val,1,d)
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

(a,2,kno,val,1,a) (a,3,kno,val,1,a) (d,0,unk,val,1,d) (a,2,kno,val,1,a) (a,3,kno,val,1,a) (d,0,unk,val,1,d)
(b,2,kno,val,3,a) (b,2,kno,val,1,b) (b,2,kno,val,3,a) (b,2,kno,val,1,b)
(s,2,kno,val,1,s) (d,2,kno,val,2,a) (s,2kno,val,1,s)

Figure 20: Resolution (2d) gives rise to non—optimal routes

As a consequence, wherreceives the forwarded RREQ message fishnit validates its routing table
entry ford, the destination sequence number being higher tteown sequence number. In Parts (d)
and (e), a direct link betweesiandd appears, and searches for a route w. Its RREQ message is
answered both bg, which knows a route td, and byd itself (Figure[20(f)). Regardless which of the

109 Modelling, Verifying and Analysing AODV

two RREP messages arrives firsgstablishes a route tof length 2 viaa, since the RREP message
from a carries a higher destination sequence numbedfitran the RREP message fraimtself. This
anomaly pleads against the use of Resolutih (2d).

Although Resolution (3c) seems to be the intention of the REFJAmbiguity J), it gives rise to
route discovery failures as illustrated in Figliré 15. Thigation is so common, and the lack of route
discovery is such a severe problem, that for the original ¥@{&solution (Bc) can be judged worse than
(2@) and (BH), and should not be used. The problem is a cotiinaf the use of Resolution2c) and
AODV's failure to forward route replies. Once the latter lplem is satisfactory addressed, for instance
by following our proposal in Sectidn 10.2, the problem of Fg[15 is solved, and Resolutiory2c) is
back in the race. Nevertheless, the following example stovesnaining problem, that pertains to both
Resolutions (@c) and [(2d). (The sequence-number-statys ifiathe routing table entries of Figurel 21
conform to Resolution (2c)—however, they play no role irs skample.)

(a) The initial state;
sestablished a route thby a RREQ-RREP cyclé

O—O0—0

2/

(b) The link betweers andd breaks down;
. sandd invalidate their entries to each other.

 O—0 O

(s,2,kno,val,1,s) (a,0,unk,val,1,a) (s,2,kno,val,1,s)
(d,1,kno,val,1,d)

(s,2,kno,val,1,s) (a,0,unk,val,1,a) (s,3,kno,inv,1,s)
(d,2,kno,inv,1,d)

(c) The link reappears;

(d) The topology changes;

a RREQ froma floods the network. sandd invalidate their entries to each other.

a RREQ; /S\ RREQ; d

2 o/ 1
(s,2,unk,val,1,s) (a,2,kno,val,1,a) (a,2,kno,val,2,s)
(d,2,unk,val,1,d) (s,3,unk,val,1,s)

(s,2,unk,val,1,s) (a,2,kno,val,1,a) (a,3,kno,inv,2,s)
(d,3,unk,inv,1,d) (s,4,unk,inv,1,s)

(e) sbroadcasts a new RREQ message destinéeld t
d’s reply cannot be sent ®

[®)

(s,3,kno,val,1,s)

==
2

(s,3,kno,val,1,s) (a,2,unk,val,1,a) (a,3,kno,inv,2,s)
(b,0,unk,val,1,b) (b,0,unk,val,1,b)
(d,3,unk,inv,1,d) (s,4,unk,inv,1,s)

Figure 21: Failure in generating a route reply (Resoluti@t3 and (2d))

In the initial state (Figuré21(a)), a route betweeandd is established through a standard RREQ-
RREP cycle. Then, in Part (b), the connection betwgandd breaks down.d detects the link break
and invalidates its routing table entry fer thereby increasing the destination sequence number. In
Figure[21(c), the connection betwegandd comes back up, andinitiates a route request for a noge
(which is not to be found in the vicinity). As a consequenckend receives the forwarded route request
from s, it validates its routing table entry fax the destination sequence number being higher #san
own sequence number. In Figlrdg 21(d), the connection bd@ke and the entry becomes again invalid.
The destination sequence number of the entry is now 2 higlagiss own sequence number. Moreover,

a nodeb appears in the network, and gets connectesldndd. From this point onwards the topology
remains stable and the predicannected (s,d) (cf. Pagd 97) holds. In Part (e9searches for a route

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 110

tod. Even though this increasss own sequence number, it is still smaller than the destinatequence
number forsatd. When the route request reaclikfria b), d tries to update its own routing table entry
for s. Howeverd already has an invalid entry fawith a higher sequence number. As a result, no update
occurs and the route froohto sremains invalid. Thereforedoes not get a reply.

Since each of the Resolutiongi(@a-d) turned out to haveusedszadvantages, we now propose an
alternative—Resolution (2e)—that does not share theseldimtages. The intuition is that when a node
changes an invalid route into a valid one, while keeping #guence number from the routing table
(as done in Resolutionsf2¢-d)), it needs to undo the incnéwiethe sequence number performed upon
invalidation of the route. This involves decrementing tiegion sequence numbers, a practice that goes
strongly against the spirit of the RFC. Nevertheless, stheenet sequence number stays the same, we
are able to show that all our invariants are maintained, ivbanstitutes a formal proof of loop freedom
and route correctness. So in this special case decremel#stipation sequence numbers turns out to be
harmless.

Resolution (2e) is a variant of Resolutior {2d), defined ugloa modification in the definition of
updatel The 5th clausenftU {nr'} if @ (r) € kD(rt) A 1&(r) = unk) is split into two parts (depending
on the validity of the route).

rtu{r} if m(r) & kD(rt)

nrtU{nr} if my(r) € kD(rt) Asqn(rt,m(r)) < 1B(r)

nrtu{nr} if rm(r) € kD(rt) /\ sqn(rt, 1 (r)) = 1(r) Adhops(rt, 1w (r)) > 16(r)
8(r) =kno

update(rt,r) := { nrtu{nr} if m(r) € kD(rt) /\ sqn(rt,rrl(r)) To(r) A flag(rt, /m(r)) = inv
(1)

nrtJ{nr’} if m(r) € kD(r) TB(r) = unk A flag(rt, 7 (r)) = val

nrtu{nr'”} if mm(r) € kD(rt) A 15(r) nk/\flag(m(r)) = inv

nrtu{ns} otherwise ,

where (in the terminology of Section 5.5.2)' := (dip,,, ®&(S), TB(S) ,f1lagy, ,hops,, ,nhip, ,prey)

andnr” := (dip,,, ®(s) = 1, 18(S), flag,, ,hopsy, ,nhip,, ,pre,). We illustrate the behaviour of this

modification using a similar example as in the Section apaub&uity 2: as a consequence of the

incoming RREQ messagereq(1,rreqid,X, 7,kno,s,2,a) the routing table entrya, 2,kno,val,2 b, 0)

of noded is now updated tda, 2, kno, val, 1l a 0)—the same behaviour as in Resolutioh] (2d)—but the

entry (a,2,kno, inv,2,b,0) is updated tda, 1,kno,val,1,a,0).

Any of the interpretations and variants of AODV using Re#iolu (2u)—our default resolution of
Ambiguity 2—that have been shown loop free in this paper,aienioop free when using Resolution
(2e) instead—the invariants, proofs and proof modificatioh Sectiorl /=10]2 remain valid, with the
following modifications:

e Propositiori_ Zb is reformulated as:

In each node’s routing table, tmetsequence number for a given destination increases
monotonically. That is, foip,dipe IP, if N - N’ thennsqn!" (dip) < nsqng, (dip).
For the proof, note that the modifiegpdate cannot decrease a net sequence number, so again the
only function that can decrease a net sequence numpierslidatel When invalidating rout-
ing table entries using the functidmvalidate(rt,dests), Sequence numbers are copied from
dests to the corresponding entry irt. It is sufficient to show that for allrip,rsn) € &P (dests)
squ(np) rsn= 1, as all other sequence numbers in routing table entrieairemmchanged.
Pro.[d, Line[28; Pro.[3, Line[10; Pro[4, Lines 18, 29; Prd.]5, liel17:
The setdests is constructed immediately before the invalidation praged For(rip,rsn) €
EN (dests), we hav&squ(rlp) = inc(sqny(rip)) =1 =rsn> 1.

111 Modelling, Verifying and Analysing AODV

Pro.[d, Line[3: When constructingests in Line[2, the Conditiorf,i\g(sqn(rt ,rip)) < Eli\f;(rsn)
is taken into account, which immediately yields the claim(fp, rsn) € &\ (dests).

e \We also need a weakened version of the old Propogitidn 7.6:
An application ofinvalidatelnever decreases a sequence number in a routing table. (36)

The proof is contained in proof of the old Proposition] 7.6 aags not rely on the (modified)
functionupdate.

e The reference to Propositibn 7.6 in the proof of Proposdi® is replace by a reference fo](36).
¢ In the beginning of the proof of Propositibn 7126(a) the inady

nsqn(rt,dip) < sqn(rt, dip) = dsn; = nsqn(rt’, dip)

turns into an equality nsqn(rt,dip) = dsn; = nsqn(rt’, dip),
and follows, by the new definition afpdate, without the step that referencés|(16).

e To adapt the proof of Theorem 7130 we need some new auxilimgriants. The first states that
the sequence number of an invalid routing table entry capmiss 1.

dip € 1D = sqnf(dip) # 1. (37)

Proof. Invalid routing table entries only arise by applicationdiairalidatel on valid routing
table entries; furthermore, only calls bfivalidate can change the sequence number of an in-
valid routing table entry while keeping the route invalidernte it suffices to check all calls of
invalidate. An applicationé (invalidate(rt,dests)) invalidates the routing table entry to
rip and changes its sequence number istofor any pair(rip,rsn) € & (dests).
Pro.[, Line[28; Pro.[3, Line[10; Pro[%, Line$ 18 29; Prd.15, lrie[11: _
By construction oflests (immediately before the invalidation calljip,rsn) € E,'\,p(dests)
impliesrsn=inc(sqn(&\ (rt),rip)). By[definifion ofindwe haveinc(n) # 1, forn € N.
Pro.[@, Line[3: Let (rip,rsn) € & (dests; then(rip,rsn) € & (dest$, and&) (dest$ stems from
a received RERR message that must have been sent beforsharioly a nodep; in state
N'. By Propositio Z.I5tip € iD\; andrsh= sqn/j;(rip). So by[inducfion on reachabiity,

NT
rip # 1. O

As an immediate corollary of this invariant we obtain that

dip € iDf = inc(nsqnf(dip)) = sqnff (dip) . (38)
e Define theupgraded sequence numbmrdestinationdip at nodeip by

. ; P/ di it di ip iPdin) —
usqn® (dlip) = 1nci(psq1_1N (dip)) if dip E-VDN A dhopsy, (dip) =1
sqny, (dip) otherwise.
By this definition we immediately get the following inequaati
usqngP(dip) > sqny°(dip) > usqn{(dip) * 1 (39)

After Theoreni Z.2I7 has been established, we obtain thenfiiipinvariant, saying that in each
routing table, the upgraded sequence number for any givetmdé&on increases monotonically:
for ip,dip€ IP and a reachable network expression

N-5N = usqnilfl](dip) < usqni,fl’,(dip) . (40)

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 112

Proof. We distinguish four cases.

(i)

(ii)

(i)

(iv)

Ne|therd|p € vDjj A dhops (dlp) =1 nordip € vD A dhops ,(dip) = 1 holds. Then
usqny (dip) = sqny (dip) < sqny; (dip) = usqu,(de) where the inequality follows jUSt as
in the proof of Propositiofi 716, taking into account that thedified 5th clause
cannot apply, as usmg Proposm on 1.21, it would resuli mouting table entry W|tiui|p €
VDl A dhopsy (dip) =
Both dip € vD] A dhops{?(dip) = 1 anddip € vD}}, A dhops/"(dip) = 1 hold. Then
usqu f(dip) = 1nc(squ(d|p)) = 1nc(nsqu(d|p))
inc(nsqnilf},(dip)) = inc(sqni,\?,(dip)) = usqu,(dlp)
where the inequality follows by Theordm 7127.
dip € vDP, A dhopsy’,(dip) = 1 holds, butip € vDJ; A dhops{)(dip) = 1 does not. Then
usqny; (dip) = sqnf(dip) < inc(nsqny(dip)) <
inc(nsqny, (dip)) = inc(sqny; (dip)) = usqny, (dip) ,
where the first inequality is by (B8) in case tluiy iD and bysqn (dip) = nsqu(de)

otherwise; the second inequality follows by Theo@ 27.
dip € VDN A dhopsN(dlp) = 1 holds, butdip € vDfj, A dhops ,(dip) = 1 does not. We
consider two subcases.
— dip ¢ vDP,, which is equivalent talip € 1D}, V dip ¢ kD\. By Propositioi ZHdip ¢
de'p is not possible, henadip € iDiS,. Then, again using Theordm 7127 ahdl (38),

usqnyh (dip) - inc(sqni\ﬁ’(dip)) — inc(nsqnf) (dip)) <
inc(nsqny, (dip)) = sqny; (dip) = usqu,(dlp)
—dipe vD anddhops ,(dip) # 1. Then, by PrOpOSIIIOmﬁhops (dip) >2>1=
dhopsy] (dlp) As N changes intd\’, by Theoren_7.27 the quality of the route dip

cannot decreasef,'\,p(rt) Cdip EN,(rt) Yet the hop count strictly increases, so the net

sequence number must strictly increase as Weld;n (dip) < nsqu,(dlp) From this
we get

usqni,\'?(dip) = inc(sqnilg(dip)) = inc(nsqnil\rl’(dip)) <
nsqny, (dip) = squ,(de) = usqu,(de) 0

e In the proof of Theorenh _7.30, tHe case of Pro. 4, Lihe 4, wheee“assume that the first line
holds”, we may no longer appeal to Proposifion 7.6. Insteaad@nsider two sub cases.

— First, letdhopsh"P(dip) = 1.

Sincenhip # dip we have, by PrOpositid@ﬁ(@hopsi’S(dip) # 1 and hence, by Propo-
sition[Z.10,dhops" (dip) > 2 > 1 = dhopsy""(dip). Hence to conclude that! (rt) Caip
£0"P(rt), it suffices to show thabsqnf"P(dip) > nsqnll(dip). Using the Equation(B9)
(twice) and[(4D), we get

nsqn&h'p(dip) sqn&h'p(dlp) > usqnnh'p(dip) =1 ->
usqnnh'p(dlp) 1> sqnnh'p(dlp) * 1> &(osn) = nsqny(dip) ,

where the last inequality follows fromqn”h'p(dip) > &(osn), which holds in the circum-
stances considered (cf. Pagé 53).

113 Modelling, Verifying and Analysing AODV

— If dhopsp"P(dip) # 1 the net sequence number is strictly increased:

nsanl\]lhip(dip) = sqn&hip(dip) = usanl\]lhip(dip) >
usqny!P(dip) > sqnfP(dip) > & (osn) = nsqnf (dip) .
(As before for we use Equations {4d),{39) mﬂﬂip(dip) > & (osn) for the proof of this
inequality.) Hence,P (rt) Caip &N P(rt).

e The proof of Propositiof 7.37(b) needs to be modified; to¢hid we strengthen the statement as
in (b) below, and establish (c) by simultaneous induction.

(b) The net destination sequence number of a routing talitg ean never be greater than the
destination’s own sequence number.

nsqny (dip) < &P (sn) (41)

(c) The sequence number of a destination appearing in a eowdemessage can never be more
than 1 greater than the destination’s own sequence number.

N R:*cast(rerr(dests,ip:))

ip N A (ripe,rsne) € destg = rsnc=1< E,{,ip°(sn) (42)

Proof.

(b) The statement holds in the initial states. By Propasfid, any update of " (sn) is harm-
less. Hence we have to examine all application calisp@iatelandinvalidatel restricting

attention to those calls that actually modify the entrydar, beyond its precursors.

Pro.[d, Lines[I0[T4 18:With Resolution 2(e) these calls maintaiaqn‘,i','p(dip).

Pro.[4, Line[d; Pro.[8, Line[2: These updates yield a valid routing table entry with a known
sequence number. The proof is unchanged from the one of §itopd7.37 (b).

Pro.[, Line[28; Pro.[3, Line[10; Pro[4, Lines IR, 29; Prd.]5, lre[17: By construction of
dests (immediately before the invalidation calljip,rsn) € El'\lp(dests) impliesrsn=
inc(sqn(&Y (rt),rip)). Hence the call maintainssqny,”(dip).

Pro.[6, Line[3: Let (rip,rsn) € & (dests; then(rip, rsn) € &\ (dests, and&,) (dests stems
from a received RERR message that must have been sent fdreday by a nodg;
in stateN™. By Invariant [42) we havesqny (rip) =rsn=1 < & (sn) < & (sn).

(c) Immediately from Proposition 7.115 and Invaridntl(41krelthe weakened form of Proposi-
tion[Z.15 proposed in tHe proof modificatipns for Resolwi¢@d£e) is sufficient. The same
holds for the weakened form of Propositibn 7.15 proposedéjgroof modificatior{s for
Resolution (9b). O

In case Resolution (2e) is chosen, the sequence-numlbes-stag becomes redundant and can be
skipped, just as for Resolutiong{2a) and (2d)—see Fodtht&oreover, with Resolution (2e) it would
make sense to record the net sequence number in routingetativies rather than the sequence number,
because only the net sequence number is monotonicallyaisiage This means that sequence numbers
of routing table entries are not incremented upon invabeatbut instead a node that may initiate a
route reply bases its actions on the incremented value afdbénation sequence number in the received
RREQ message.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 114

10.4 From Groupcast to Broadcast

“For each valid route maintained by a node as a routing table entry, the
node also maintains a list of precursors that may be forwarding packets on
this route. These precursors will receive notifications from the node in
the event of detection of the loss of the next hop link.” [F9] Sect. 2]

This notification is modelled by means of a groupcast meshanilt sends error messages pertaining
to certain routes to the precursors collected for thoseesoahly. The idea is to reduce the number of
messages received and handled. However, precursor kstaamplete. They are updated only when
a RREP message is sent (Lies 22, 23 of Pro. 4 and Cinds 11, BedB). The following example,
showing a standard RREQ-RREP cycle, illustrates that alesaot handling a route reply have no
information about precursors; even those nodes that hdhdl®RREP message may have insufficient
information. As a consequence, some nodes are not inforfreetin break and will use a broken route;
hence packets are lost.

(a) The initial state. (b) sbroadcasts a new RREQ destinedito
the request floods the network.

(a,0,unk,inv,1,a,0)
(s,2,kno,val,1,s,0) (s,2,kno,val,2,a,0)

ra,0

(a,0,unk,val,1
1

(b,0,unk,val,1,b,0
(¢,0,unk,val,1,b,0) (b,0,unk,val,1,b,0)
(s,2,kno,val,1,s,0) (s,2,kno,val,2,b,0)
(c) The RREP message is sent frdro s; (d) The topology changes;
only a updates one of its precursor lists a, d, sdetect link breaks; no RERR message is s¢nt.
(d,1,kno,val,1,d,{s}) (a,0,unk,inv,1,a,0) (d,1,kno,val,1,d,{s}) (a,0,unk,inv,1,a,0)
(s,2,kno,val,1,s, @) (s,2,kno,val,2,a,0) (s,3,kno,inv,1,s, #) (s,2,kno,val,2,a,0)

(a,0,unk,val,1,a,0)
(b,0,unk,val,1,b,0)
(d

(a,0,unk,inv,1,a,0)
(b,0,unk,inv,1,b,0)
,1,kno,val,2,a,0) (d,2,kno,inv,2,a,0)

(¢,0,unk,val,1,b,0) (b,0,unk,val,1,b,0) (¢,0,unk,val,1,b,0) (b,0,unk,val,1,b,0)
(s,2,kno,val,1,s,0) (s,2,kno,val,2,b,0) (s,3,kno,inv,1,s,0) (s,2,kno,val,2,b,0)

Figure 22: Precursor lists are incomp@e

The example is a standard RREQ-RREP cycle. Within the n&tgiven in Figurd_2P(a), a data
packet is inserted at nodg destined ford. Consequentlys issues a route discovery process. In Part
(b) the RREQ message floods the network. While handling RRE&sages no (non-empty) precursor
list is set or changed. In fact, it is not possible to deteet pnecursors for a route to the originator
of the route request when handling and forwarding a RREQ agesthe necessary information is not
available. Thus, whenever a link break is detected duringugerrequest process, no RERR message is
sent, except when a node has information from previous cbomessages. In Figute22(c), the reply is
sent from nodel to s. When nodea forwards the RREP message, its adds its list of precursors of
the route tad (Pro.[B, Line[1ll). However, it fails to adtlas a precursor of the route $o In Part (d),

"6This is the only example where precursor lists are showty, dne the last component of an entry.

115 Modelling, Verifying and Analysing AODV

the links between nodess a andb break down. Although nodes b ands detect the link break, they do
not send error messages—so nodesdd will not be informed about the broken routes. If these nodes
receive packets fos they will keep sending them via or b, without ever learning that none of those
packets ever reachesin detail, when nodé (or a) receives a data packet fefrom c (or d) it drops the
packet (Prd3, Line-16) and composes a error message reping broken link ts (Pro.[3, Line 2D).
However, this error message is send to the list of precuffsoriés route tos, which in our example is
still empty. A variant of this example that constitutes arteuexample to the packet delivery property
of Sectior] 9 was already presented in Fidure 17.

As already remarked in Sectibn b.4, the failure of nade addd as a precursor of its route gxan
be remedied by the addition of the lifiet := addpreRT(rt,o0ip,{nhop(rt,dip)})] to Pro.[5, right
after Line[12. One can even go a step further and also addnihe li

[rt := addpreRT(rt,nhop(rt,oip),{nhop(rt,dip)})],

which is the equivalent to Pr@] 5, Line]12. However, the peaoblat nodeb cannot be fixed using
precursors.

A possible solution is to abandon precursors and to replaesy groupcast by a broadcast. At first
glance this strategy seems to need more bandwidth, busthist ithe case. Sending error messages to a
set of precursors is implemented at the link layer by brostiltg the message anyway; a hode receiving
such a message then checks the header to determine wheshametof the intended recipients. Instead
of analysing the header only, a node can just as well read #3sage and decide whether the information
contained in the message is of use. To be more precise: amegssage is useful for a node if the node
has established a route to one of the nodes listed in the geesmad the next hop to a listed node is the
sender of the error message. In case a node finds useful mtfominside the message, it should update
its routing table and distribute another error messages iBhexactly what happens in the route error
process (Prd.6).

In the specification given in Sectiobk 5 ddd 6, the last erfteyrouting table entry can be dropped;
yielding small adaptations in functions and function céftsr example Lined_ID of Prd.]1 should be
[rt :==update(rt,(sip,0,unk,val,1 sip))]). Next to these small adaptations, the following changes
need to be implemented:

Pro.[d, Line[32; Pro.[3, Line[14; Pro[4, Line$ 117, 33; Prd.15, lre[21:

The commandjroupcastpre,rerr(dests,ip)) is replaced byroadcastrerr(dests,ip)).

Pro.[, Lines[30[31; Pro[B, Line§ 14, 13; PrgJ4, Lindés 115, 1182,[23[31[3P;
Pro.[H, Lines[I1[12[1d, 20These lines are dropped without replacement.

Pro.[3, Line[20: The commandyroupcastprecs(rt,dip),rerr({(dip,sqn(rt,dip))},ip)) is re-
placed bybroadcastrerr({(dip,sqn(rt,dip))},ip)).

Pro.[d, Lines[6£8: The error forwarding is replaced by
(

[dests #£0] /* the RERR needs to be forwarded */
broadcastrerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
+ [dests=0] /* no valid route via broken link */

AODV(ip,sn,rt,rreqs,store)

)

All invariants and statements of Sectidds 7 ahd 8 remairdydlie necessary proof adaptations are
marginal and straightforward.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 116

10.5 Forwarding the Route Request

In AODV'’s route discovery process, a destination node (ointermediate node with an active route to
the destination) will generate a RREP message in resporsedoeived RREQ message. The RREQ
message is then dropped and not forwarded. This terminafidhe route discovery process at the
destination can lead to other nodes inadvertently creatorgoptimal routes to the source node![72],
where route optimality is defined in terms of a metric, forrapde hop count. In[72] it is shown that
during the route discovery process in AODV, the only noded tenerally discover optimal routes to
the source and destination nodes are those lying on theeglemte between the source node and the
destination node (or the intermediate node) generatingebly. All other network nodes receiving the
RREQ message (in particular those located “downstreamhefdestination node) may inadvertently
be creating non-optimal routes to the source node due tortheoidable receipt of RREQ messages
over other routes. These “poorly selected paths have signtfy higher routing-metric costs and their
duration can extend to minute time scales”|[72].

We illustrate this by the example in Figurel 23. There, nedeants to find a route to nods It
generates and broadcasts a RREQ message that is receiteddighbour noded andb (Figure[23(a)).
Since noddl is the destination, it responds with a RREP message; theveecBRREQ message is not
forwarded. On the other hanb,continues to forward its received RREQ message, which eadint
arrives ata (Part (b)). At nodeg, a routing table entry is created for the sousc&ith a hop count of
six. This is clearly not optimal, asis only two hops away frors. Due to the discarding of the RREQ
message at nodg nodea is prevented from discovering its optimal routesti@ia noded. In a next step,
the RREQ message would also reachia a, but this message is then silently ignoreddoy

(a) sbroadcasts a new RREQ message destineld tb) The request floods the network;

it reaches, which establishes a non-optimal route.
b,0,unk,val,1,b
(5,2, kno,val,1,5) Ed;g;kuo;val;},d; (s,2,kno,val,1,s) (s,2,kno,val,6,*)
e (d) (@) N\e_muee 7\ ()
2 1 1 2 o/ o/
a o
£ 2
[
b o o D) BEEQ o
1 A4 A
1
(s,2,kno,val,1,s) (5,2, kno.val,1,5)

Figure 23: Non-optimal route selection

A possible modification to solve this problem is to allow thestination node to continue to forward
the RREQ message. This will then enable nade Figure[23 to discover its optimal route $0A route
request is only stopped if it has been handled before. Theafoled RREQ message from the destination
node needs to be modified to include a Boolean ﬂagdle that indicates a RREP message has
already been generated and sent in response to the formeageesin case the flag is settioue, it
prevents other nodes (with valid route to the destinatiomnhfsending a RREP message in response to
their reception of the forwarded RREQ message.

The entire specification of this variant differs only in eidimes from the original. Prd.J1 needs
only slight adaptations. First the newly introduced flagdse® be introduced in Lindg 8 ahd]11; these
lines now readmsg = rreq(hops,rreqid,dip,dsn,dsk,oip,osn,sip, handled)] andRREQ(hops,
rreqid,dip,dsn,dsk,oip,osn,sip,handled, ip,sn,rt,rreqs,store), respectively. The broadcast

7"The AODV RFC provides a fieldeserved as part of a RREQ messade|[79, Sect. 5.1], which is more odisigned to
cater for such extensions.

117 Modelling, Verifying and Analysing AODV

in Line[39 needs also be equipped with the flag. Since the naagpest is initiated, the flag is set to
false:

broadcastrreq(hops +1,rreqid,dip,dsn,dsk,oip,osn,ip,false))

All other changes happen in the proc&8&Q. The new procesBREQ is given in Proceds 14.

Process 14The modified RREQ handling

def
RREQ(hops ,rreqid,dip,dsn,dsk,oip,osn,sip,handled, ip,sn,rt,rreqgs, store) =
1. [(oip,rreqid) € rregs] /*the RREQ has been received previously */
2. AODV(ip,sn,rt,rregs,store) [* silently ignore RREQ, i.e. do nothing */

3. + [(oip,rreqid) ¢ rregs] /* the RREQ is new to this node */

4. [rt:=update(rt,(oip,osn,kno,val, hops +1,sip,0))] [* update the route teip in rt */

5. [rregs:=rreqsU{(oip,rreqid)}] [* updaterregs by adding(oip,rreqid) */

6. (

7 [handled = false] /* the request has not yet been handled */

8

(

9. [dip=1ip] /* this node is the destination node */

10. [sn:= max(sn,dsn)] [* update the sgn ofp */

11. /* unicast a RREP towardsip of the RREQand forward the request

12. unicast(nhop(rt,oip),rrep(0,dip,sn,oip,ip)) .

13. broadcastrreq(hops +1,rreqid,dip,dsn,dsk,oip,osn,ip,true)).

14. AODV(ip,sn,rt,rreqs,store)

15. » /* If the transmission is unsuccessful, a RERR message isrgead */

16. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip)=nhop(rt,oip)}]

17. [rt :=invalidate(rt,dests)]

18. [store := setRRF(store,dests)]

19. [pre := U{precs(rt,rip)| (rip,*) € dests}]

20. [dests :={(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]

21. groupcast(pre ,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)

22, +[dip#ip] /* this node is not the destination node */

23,

24, [dip € vD(rt) Adsn <sqn(rt,dip) A sqnf(rt,dip) =kno] I* fresh enough valid route taip */
25. /* updatert by adding precursors */
26. [rt := addpreRT(rt,dip,{sip})]
27. [rt := addpreRT(rt,oip, {nhop(rt,dip)})]
28. /* unicast a RREP towards theip of the RREQand forward the requet
29. unicast(nhop(rt,oip),rrep(dhops(rt,dip),dip,sqn(rt,dip),oip,ip)) .
30. broadcastrreq(hops + 1,rreqid,dip,dsn,dsk,oip,osn,ip,true)) .
31 AODV(ip,sn,rt,rreqs,store)
32. » /* If the transmission is unsuccessful, a RERR message isrgead */
33. [dests := {(rip,inc(sqn(rt,rip)))|rip € vD(rt) A nhop(rt,rip) = nhop(rt,oip)}]
3a. [rt :=invalidate(rt,dests)]
35. [store := setRRF(store,dests)]
36. [pre := U{precs(rt,rip)|(rip,*) € dests}]
ar. [dests :={(rip,rsn)|(rip,rsn) € dests A precs(rt,rip) # 0}]
38. groupcast(pre,rerr(dests,ip)) . AODV(ip,sn,rt,rreqgs,store)
30. + [dip ¢ vD(rt) Vsqn(rt,dip) < dsnV sqnf(rt,dip) =unk] * no fresh enough valid route */
40. /* no further update oft */
41. broadcastrreq(hops + 1,rreqid,dip,maxsqn(rt,dip),dsn),dsk,oip,osn,ip,false)).
42, AODV(ip,sn,rt,rreqs,store)
43,)
44,)
45, + [handled = true] /* the request has been answered before */
46. /* the request is just forwarded (the RREQ was not handledrbgf/
47. broadcastrreq(hops + 1,rreqid,dip,dsn,dsk,oip,osn,ip,true)) . AODV(ip,sn,rt,rreqgs,store)

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 118

The changes introduce the new flag and a case distinctionl loasthat (Line§17 and 45), as well as
three new broadcasts (Lines| [3] 30 47). For example,iaitiating a route reply at the destination
(Pro[14, Liné 1PR), the route request message is forwardezhse thenicastof Line[12 is not successful
(Lines[IB£21), no forwarding is necessary, since it doesmake sense to establish a link back to the
originator of the RREQ message—the intermediate node @tstted that this link is broken.

The proofs of Sectiorfs 7 ahdl 8 are still valid, but need, aalusome modifications. The newly in-
troduced flag does not have any effect on the proofs—excapstime line numbers change and the addi-
tional flag is added to all calls afreq. The only real modification is that in Propositidns 7.117al3(a),
[7.14(a) and_Z.36(a)—(c), as well as in Theofem17.32(b)ethevbroadcastactions need to be exam-
ined. However, these cases are identical to the cadd Prae3bi(corresponding to Line 41 of Pia] 14).

If this modification is applied to the example presentediea now establishes an optimal route.
The example is illustrated in detail in Figulird 24. As beford@sissues a route discovery in Figlird 24(a).
The RREQ message is receivediogndd. Following the standard behaviour of AODV, ndolérwards
the RREQ and the destinatiorunicasts a RREP message back tAdditionally, noded also broadcasts
the modified request RREgPart (b)). It is received bganda. Sinces initiated the request, it silently
ignores the modified RREQ message; nadstablishes an optimal route. Subsequently, both the-origi
nal and the modified request are sent through the networki@@d(c)). The flooding is terminated as
soon as every node has handled one of the RREQ messages—abetiné same route request identifier.
In the example, the node in the lower right corner receivel BIREQ messages, forwards one of them
(here RREQ) and silently ignores the other.

(a) sbroadcasts a new RREQ destinedito (b) The request reachdswhich unicasts a RREP bagk
and forwards a modified RREQ.
(s:2.Jeno,val, 1,9) (60 o val L) (s.2,knoval 1) (o2, kne val 2.0)
S RREQ @)\ RREQm /T
? L L o/
cQ
m
4
[
1 A\
(s,2,kno,val,1,s) (5,2, knoval,1,5)
(c) The (modified) RREQ floods the network (d) The RREQ terminates as soon as all nodes have
(until a node receives both messages). handled RREQ or RREQ
(b,0,unk,val,1,b) (a,0,unk,val,1,a) (d,0,unk,val,1,d) (b,0,unk,val,1,b) (a,0,unk,val,1,a) (d,0,unk,val,1,d)
(d,1,kno,val,1,d) (s,2,kno,val,1,s) (s,2,kno,val,2,d) (d,1,kno,val,1,d) (s,2,kno,val,1,s) (s,2,kno,val,2,d)
3 (DN BREQm (@) RREQ. S (D (@
2 o/ o/ 2 o/ o/
S o
)] m
£ £
b RREQ RREQ ~ RREQ) ~ ~ RREQ
1 S) 1 /S S
(s,2,kno,val,1,s) (s,2,kno,val,1,s)

Figure 24: Forwarding route requests

An intermediate node answering the route request on beh#ieaestination will also forward the
RREQ message. The destination will receive the modified agesand establish a route to the originator.
By this, a bidirectional route between the source and therdd®n is established.

This finishes our list of improvements. All presented imgnonents are “orthogonal”, i.e., they can be
combined without problems; the properties of Sectl[dns 78 remain valid. In case new shortcomings
are found, our specification as well as the proofs can easithlanged, as illustrated in this section.

119 Modelling, Verifying and Analysing AODV

11 Related Work

11.1 Process Algebras for Wireless Mesh Networks

Several process algebras modelling broadcast commuondadive been proposed before: the Calculus of
Broadcasting Systems (CBS) [87] 88], tirecalculus[22], CBS# [74], the Calculus of Wireless Systems
(CWS) [69], the Calculus of Mobile Ad Hoc Networks (CMAN) [#@he Calculus for Mobile Ad Hoc
Networks (CMN) [66], thew-calculus [94], rooted branching process theory (RBPT],[BArT [42]

and the broadcast psi-calcli [9]. The latter eight of thesee specifically designed to model MANETS.
However, we believe that none of these process calculi gesvall features needed to fully model routing
protocols such as AODV, namely data handling, (conditipnaicast and (local) broadcast. Moreover,
all these process algebras lack the feature of guaranteeiptref message. Due to this, it is not possible
to analyse properties such as route discovery. We will eiibmn this in the following.

Modelling Broadcast Communication All these languages, as well as ours, feature a form of broad-
cast communication between nodes in a network, in whichglesimessage emitted by one node can be
received by multiple other nodes. In terms of operationalaics, this is captured by rules like

M broadcastm) M N receive(m) N/ M receive(m) M N broadcastm) N/
MHN broadcastm) M’HN’ MHN broadcastm) M’HN’

that stem from[[87] and can be found in the operational seicsgaf each of these languages, except for
bAr. In such a rule the broadcast action in the conclusion islgimperited from the broadcasting ar-
gument of the parallel composition, so that it remains aéd for the parallel compaosition with another
receiver. In order to guarantee associativity of the palrathmposition, i.e.

(broadcast(m).P|receive(m).Q) ||receive(m).R = broadcast(m).P|| (receive(m).Q| receive(m).R)

one also needs a rule like

M receive(m) M’ N receive(m) N/

|V|||N receive(m) |V|’||N’

Lossy Broadcast versus Enforced Synchronisation without Bcking The languages CMAN, CMN,
RBPT, thew-calculus,bArr and the broadcast psi-calculi modessycommunication, which allows, as
a nondeterministic possibility, any node to miss a mességaaiher node, even when the two nodes are
within transmission range. The corresponding operatianiak are

M broadcastm) M’ N broadcastm) N/
MHN broadcastm) |V|’||N MHN broadcastm) MHN/

78CMN lacks such a rule, resulting in a non-associative palrabmposition. This in turn leads to a failure bf[66, Lemma
3.2], saying that structural congruence “respects triamsit, i.e. is a strong bisimulation. This mistake is progiagl in [31].
The w-calculus lacks this rule as well, but there associativityhe parallel composition is enforced by closing the trtaosi
relation under structural congruence. Nevertheless, dheesproblem returns in the form of a failure 6f[94, Theorem 9]
stating that strong bisimilarity is a congruence. Namely).nil : {g} | r (x).nil : {g}, the parallel composition of two connected
nodes, each doing a receive action, is bisimilar(td.r (x).nil : {g}, a single node doing two receive actions; yet in the context
b(u).nil : {g} | —, involving a fully connected node broadcasting a vaiuenly the former can do a broadcast transition to a
process that can do no further receive actions.

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 120

In such a language it impossible to formulate valid propertif modelled protocols like “if there is a path
from ip to dip, and the topology does not change, then a packetifosubmitted atp will eventually be
delivered adip” (cf. Section9.8). Namely, there is never a guarantee thyanaessage arrives.

In the operational semantics, the only alternative to tlesyaules above appears to be enforced
synchronisation of a broadcast action of one component arallpl composition with some (in)activity
of the other. This approach is followed in CB87, CBS# and CWS, as well as in AWN. In CBI9r7,
CBS# and CWS, and in the optional augmentation of AWN preskint Sectioi_4]5, any node within
transmission rangmustreceive a message sent to it, provided the node isadyto receive it, i.e., in
a state that admits a transitioeceivem). This proviso makes all these calcualn-blocking meaning
that no sender can be delayed in transmitting a messageysimghuse one of the potential recipients is
not ready to receive it. The default version of AWN (SectiaB)4acks this proviso and hence does allow
blocking. However, in applications of our language we maales in such a way that any message can
be received at any time (cf. Sectibnl6.6). Nodes with thiperty are callednput enableda concept
introduced in the work ofO-automata]61]. For such applications our models are non-blocking.

In CBS [87], actionsdiscard(m) are used to model situations where a process cannot receive a
messagen. The definitions are such thmm N’ only if N = N—so the discard actions do not
correspond with any state-change—add2=2 4™, N/ if an only if N ¥4 - Now the rules for
broadcast are augmented by

M receive(m) M’ N discard(m) N/ M discard(m) M’ N discard(m) N/ M discard(m) M’ N receive(m) N/

MHN receive(m) M’HN’ MHN discard(m) M’HN’ MHN receive(m) M’HN’
M broadcastm) M’ N discard(m) N/ M discard(m) M’ N broadcastm) N/
|V|||N broadcast(m) |V|’||N’ MHN broadcastm) |V|’||N’

This way, in a parallel compositiod ||N, a broadcast action of one component can never be blocked by
the other component; it synchronises either with a receaieediscard of the other component, depending
on whether the other component is ready to receive a messagé onbrrand CBS# the same approach
is followed, except that in CBS# messages are annotatedthéih sender (i.e. reath as a sender-
message pair in all rules above). This way, one can say thatl@M (in a certain state) can receive a
message from one sender, but not from another.

At the expense of the use of negative g)remises, it is poswbédiminate the discard action, and
replace a premish 2SCAML N7 by N VM) (of Sectior 4b). Another variant of the same idea, ap-
plied in [88] and CWSI[69], is to simply replace the discaahsitionsN 253y N 1y TeCeVemL
Thus, whenever a node is unable to receive a particular message from a partictier mode, its oper-
ational semantics introduces a discard transitof¥e™, N that essentially allows the message to be
received and completely ignored.

Local Broadcast with Arbitrary Dynamic Topologies CBS models global broadcast communication,
where all processes (or nodes) are able to receive any lastadessage. The langualga allows
processes to joigroups and receive all messages sent by members of that group.dém tw join a
group a process needs to have knowledge of the name of thig.ghichis appears less suitable for the
specification of wireless mesh networks, where nodes mamemessages from unknown other nodes
as soon as they move into transmission range. The otherdgeguallow arbitrary network topologies,
and feature a local broadcast, which can be received onlyoldgsiwithin transmission range of the
sender. CWS deals with static topologies, whereas in CBSFAN, CMN, the w-calculus, RBPThbAT
and the broadcast psi-calculus, as in our approach, théotpps subject to arbitrary changes.

121 Modelling, Verifying and Analysing AODV

Guaranteed Receipt of Messages Broadcast within Transmigs Range The syntax of CBS# and
CWS does not permit the construction of meaningful nodesatealways ready to receive a message.
Hence our model is the first that assumes that any messageeived by a potential recipient within
range. Itis this feature that allows us to evaluate whetlpeotocol satisfies thpacket deliveryroperty

of Sectior 9.B Anyrouting protocol formalised in any of the other formalismsuhd automatically fail

to satisfy such a property.

Modelling Connectivity To model connectivity of nodes in the current topology, corle expressions
have the formip : P : R, whereP is a process running on the nodp,is the node’s address, ailis

the current transmission range, given as the set of addregseodes that can receive messages sent
by this node. Changes in the transmission range occur throoignectanddisconnectactions, which
can occur at any time (cf. Sectibn #.3). This follows CMAN[[4@here ourl:p:o is denoted asp|?,

with | being alocation which plays the role of the node’s address. In CWS nodes thavirmn|[PJ
wheren is the node address (oip), ¢ denotes the broadcast channel (e.g. a frequency) to whech th
node is tuned) is the physical location and € IR the radius or transmission range of the node. A
global functiond is postulated that given two locatiohandl’ returns the distanag(l,l’) between them;
comparing this value with the radius of a nodd aetermines whether broadcast messages from that
node reach a node Ht In comparison with CWS our formalism could be said to use anle possible
channel. CMN uses the same syntax as CWS, except that theethameplaced by anobility tag p,
telling whether the node is mobile or stationary. In theclattase, the physical locatidrof the node is
subject to chance. The-calculus has node expressions of the f&nG, whereP is a process an@ the

set ofgroupsthe node belongs to. Each group is a clique in the graph esipgethe network topology,
and two nodes can communicate iff they belong to a commonpgrdontrary to these approaches,
in CBS#, RBPT and the broadcagtcalculi node expressions do not contain connectivity rimiation.
Instead, connectivity is modelled in the semantics onlylalyelling transitions with (information about)
the topologies that support them. In CBS# node expressiaves the forrm[P, § wheren is thelocation

or identifier of a nodeR a process an8the node’s memory, storing values that could have beenvestei
RBPT node expressions simply have the fdifi, denoting a proced® at the locatiorl. Broadcast psi
differs from the above calculi in that it makes no distinatioetween processes and node (or network)
expressions. Consequently, nodes are not equipped witlhdzass and connectivity cannot be expressed
as a relation between nodes. Instead it is expressed agiarmrddatween channel expressions occurring
in processes. IbAmrnodes have the formp|;, as in CMAN, but without any connectivity information.
The operational semantics differs from those of the oth&ugain that a broadcast action results in
messages sitting as separate components in the parallpbs@iimn among the nodes. Connectivities of
the form{l — m}, saying that nodecan receive message send by nog@lso occur as separate entities
in this parallel composition, and can react with messagesiitte them in appropriate directions.

The above comparison between the various formalisms is suised in Tablé]9, of which the last
three columns are largely taken from [34]. The sixth coluelis twhether connectivity information is
stored in the syntax of node or network expressions, or véndttappears in the structural operation
semantics of the language only. The last column indicatestlveln the formalism assumes the connec-
tivity relation between nodes to be symmetric. In this reghere are two versions of AWN; in [26] the
default version is asymmetric, whereas here, in view of ieation to AODV, we made the symmetric
version the default.

Operational Semantics of Local Broadcast with Enforced Syohronisation Whereas CBS# and
CWS enrich receive actions of messages with their sendergadicate that a message can be received
from one sender but not from another, based on the topologyetti operational semantics this adminis-

A. Fehnker, R.J. van Glabbeek, P. Hofner, A. Mclver, M. Ramin & W.L. Tan 122
| Process algebra Message loss | Type of broadcast Connectivity model \
CBS [88] '91| enforced synchr.| global broadcast symmetric
brt [22] 99| enforced synchr.| subscription-based broadcast symmetric
CBS# [74] '06| enforced synchr.| local bc. | dynamic top. | n[P,§ | op. sem.| symmetric
CWS [69] '06| enforced synchr. | local bc. | static topology| n[P]7, | node symmetric
CMAN [40] '07 | lossy broadcast | local bc. | dynamic top. | |p]¢ | node symmetric
CMN [66] '07| lossy broadcast | local bc.| dynamic top. n[P]l‘fr node symmetric
w [94] '07| lossy broadcast | local bc.| dynamictop. | P: G | node symmetric
RBPT [34] '08| lossy broadcast | local bc.| dynamic top. | [P] op. sem.| asymmetric
bAm [42] '09| lossy broadcast | local bc. | dynamic top. | |p] network | asymmetric
by [O] '11| lossy broadcast | local bc.| dynamic top. | P op. sem.| asymmetric
AWN here 11| enforced synchr.| local bc. | dynamic top. | ip:P:R | node asym./sym.

with guar. receipt

Table 9: Process algebras modelling broadcast commuuricati

trative burden is shifted to the broadcast actions—thewnanetated with the range of possible receivers.
This enables us to model groupcast and unicast actionshvaingcnot treated in CBS# and CWS, in the
same way as broadcast actions. However, the price to be fay#ds convenience is that our actions
arrive (m), which are synchronisations of (non)receive actions oftiplel components, need to be an-
notated with the locations of all these components. Monedkies set of locations is partitioned into the
ones that are in and out of transmission range of the messaljeloes not appear possible to model our
groupcast in the style of CBS# and CWS.

Conditional Unicast Our novelconditional unicasbperator chooses a continuation process dependent
on whether the message can be delivered. This operatorastedsfor the correct formalisation of
AODV and other network protocols. In practice such an operatay be implemented by means of an
acknowledgement mechanism; however, this is typicallyedainthe link layer, from which the AODV
specification[[79], and hence our formalism, abstracts. €nad formalise a conditional unicast as a
standard unicast in the scope of a priority operatof [16Jvén@r, our operator allows an operational
semantics within the de Simone format. Of the other prockgbeas of Tabl€]9, only they-calculus,

bArm and the broadcast psi-calculi model unicast at all, nextroadicast; they do not have anything
comparable to the conditional unicast.

Data Structures Although our treatment of data structures follows the dtadspproach of universal
algebra, and is in the spirit of formalisms likeCRL [46], we have not seen a process algebra that
freely mixes in imperative programming constructs likeialle assignment. Yet this helps to properly
capture AODV and other routing protocols. This mixture dtlanake the syntax of AWN on the level
of sequential processes easy to read for anybody who hasesgragence in programming, thus making
it easier to implement protocol specifications written in NW

Other Process Algebras for WMNs In [31] CMN is extended with mechanisms for unicast and mul-
ticast/groupcast communication; the paper focuses onposresumption issues. Process calculi in the
same spirit as the ones above, but focusing on security @sped trust, appear in [43,168]. Probabilistic
and stochastic calculi for WMNSs, based on similar designgiples as the process algebras discussed
above, are proposed in [97,138, 29] [98,[10,11, 30]. Anneete and improved version of CWS

123 Modelling, Verifying and Analysing AODV

appears in[[59]. Extensions of CWS with time appealf_id [67/6&R2[12/102]; these process algebras
focus on the MAC-layer rather than the network layer of thePTl@ reference model. In[41] a vari-
ant of CMAN is proposed that limits mobility. A variant of CM\that incorporates another mobility
model appears in[44]. IN[35] the process algebra RBPT isleed with specifications of sets of topolo-
gies into Computed Network Theory (CNT). This facilitatee £quational axiomatisation of RBPT. In
[36] RBPT and CNT are extended with encapsulation and atistraoperators; a simple abstraction of
AODV has been shown to be loop free in this framework by meé&esjoational reasoning [37].

11.2 Modelling, Verifying and Analysing AODV and Related Piotocols

Our complete formalisation of AODV, presented here, haw/grivom elaborating a partial formalisation
of AODV in [94]. The features of our process algebra weredbrgletermined by what we needed to
enable a complete and accurate formalisation of this pobtothe same formalism has been used to
model the Dynamic MANET On-demand (DYMO) Routing Protoakp known as AODVv2) [21]. By
this we did not only derive an unambiguous specification faftezersion 22 (as we did for the RFC of
AODV); we were also able to verify that some of the problenssadvered for AODV have been addressed
and solved. However, we showed that other limitations akiist, e.g., the establishment of non-optimal
routes (cf. Section 10.5). We conjecture that AWN is alsdiagple to a wide range of other wireless
protocols, such as the Dynamic Source Routing (DSR) prof66j the Lightweight Underlay Network
Ad-hoc Routing (LUNAR) protocol[100, 101], the Optimizeihk State Routing (OSLR) protocadl [15]
or the Better Approach To Mobile Adhoc Networking (B.A.TAMN.) [75]. The specification and the
correctness of the latter three, however, rely heavily orinj aspects; hence an AWN-extension with
time appears necessary (see also Setfibn 12).

Test-bed Experiments and Simulation While process algebra can be used to formally model and ver-
ify the correctness of network routing protocols, test-bggderiments and simulations are complemen-
tary tools that can be used to quantitatively evaluate thfpaance of the protocols. While test-bed
experiments are able to capture the full complex charatiesiof the wireless medium and its effect
on the network routing protocols [63,184], network simutat{¥6,[92] offer the ease and flexibility of
evaluating and comparing the performance of differentinguprotocols in a large-scale network of hun-
dreds of nodes, coupled with the added advantage of beieg@bépeat and reproduce the experiments

[18,[80,54].

Loop Freedom Loop freedom is a crucial property of network protocols, coonly claimed to hold
for AODV [79]. Merlin and Segall[[65] were amongst the firstise sequence numbers to guarantee
loop freedom of a routing protocol. We have shown that sévaterpretationsof AODV—consistent
ways to revolve the ambiguities in the RFC—fail to be loogefrehile proving loop freedom of others.

A preliminary draft of AODV has been shown to be not loop frgeBhargavan et al. i [6]. Their
counterexamples to loop freedom have to do with timing isstlee premature deletion of invalid routes,
and a too quick restart of a node after a reboot. Since them\Aas changed to such a degree that
these examples do not apply to the current version [79]. Mewseimilar examples, claimed to apply
to the current version, are reported in|[83] 90]. All thespgua propose repairs that avoid these loops
through better timing policies. In contrast, the routingge documented in [39] as well as in Secf{ién 8
of this paper are time-independent.

Previous attempts to prove loop freedom of AODV have beeaorteg in [82] 6] 106], but none of
these proofs are complete and valid for the current versiéxODV [79]:

e The proof sketch given i [82] uses the fact that when a loop moute to a destinatiod is

created, all nodeX; on that loop must have route entries for destinaionth the same destination

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 124

sequence number.Ftrthermore, because the destination sequence numbeal tre same, the
next hop information must have been derived at every ngdeom the same RREP transmitted
by the destinatiorz” [82] Page 11]. The latter is not true at all: some of the infation could
have been derived from RREQ messages, or from a RREP messag@itted by an intermediate
node that has a route @©. More importantly, the nodes on the loop may have acquireit th
information on a route t& from different RREP or RREQ messages, that all carried theesa
sequence number. This is illustrated by our loop createdguare[11 (Section 8.2]3).

e Based on an analysis of an early draft of AdE\{Eﬂ suggests three improvements. The modified
version is then proved to be loop free, using the followingaant (written in our notation):

if nhip = nhopf (dip), then
(1) sqnfj(dip) < sqny'(dip), and |
(2) sqnf(dip) = sqn&h'p(dip) = dhopsy] (dip) < dhopsrl\]lh'p(dip) .

This invariant does not hold for this modified version of AOD¥r for the current version, docu-
mented in the RFC. It can happen that in a skateheresqn?? (dip) = sqny "(dip), nodeip notices
that the link tonhip is broken. Consequentlip invalidates its route tdip, which hasnhip as its
next hop. According to recommendatiofl(of [6, Page 561]), nodg increments its sequence
number for the (invalid) route tdip, resulting in a stat&l’ for which sqny, (dip) > sanl\llr,"p(dip),

thereby violating the invariant.

Note that the invariant of [6] does not restrict itself to ttase that the routing table entry foip
maintained byip is valid. Adapting the invariant with such a requirement would giige ito a
valid invariant, but one whose verification poses some grob| at least for the current version of
AODV. These problems led us, in this paper, to nsesequence numberstead (cf. Section 7.5).

RecommendationA1) is assumed to be in effect for the (improved) version of ACiMalysed in
[6], although it was not in effect for the draft of AODV exis{j at the time. Since then, recom-
mendation A1) has been incorporated in the RFC. Looking at the proofsjinif6urns out that
Lemma 20(1) ofl[[B] is invalid. This failure is surprising,vgn that according td [6] Lemma 20
is automatically verified by SPIN. A possible explanatiorghtibe that this lemme obviously
valid for the version of AODV prior to the recommendationgjt

Model Checking Bhargavan et al[6] not only found problems in an early dehfAODV, they were
also among the first to apply model checking techniques to ¥@izreby demonstrating the feasibility
and value of automated verification of routing protocolsr their studies they use the model checker
SPIN.

Musuvathi et al.[[78] introduced the model checker CMC prilpao search for coding errors in
implementations of protocols written in C. They use AODVaftiversion 10) as an example and were
able to discover 34 distinct errors in three different inmpéatations: mad-hoc (version 1), Kernel AODV
(version 1.5) and AODV-UU (version 0..They also found a problem with the specification itself: they
discovered that routing loops can be created when sequemskans are just copied from an incoming
RERR message, without checking the value. We have disabtieeesame problem (see Ambiguity 8 in
Sectiori 8.2.8) and proposed the same solution as they delyartroducing a check prior to invalidating
routes (in our specification the checksign(rt,rip) < rsn in Line[2 of Pro[6). However, the routing
loops found in[[73] crucially depend on the use of an unomenessage queue, in which messages can

"9Draft version 2 is analysed, dated November 1998; the RF®ea®en as version 14, dated July 2001.
80For our analysis in Secti¢n 8.3, we use version 0.9.5 of AQIWand version 2.2.2. of Kernel AODV. We did not analyse
mad-hoc since it is no longer actively supported.

125 Modelling, Verifying and Analysing AODV

overtake each other after being sent. Our loop, on the otmed,imanifests itself even when using FIFO
gueues, as specified in the RFC. Although [73] testifies thtt the bug and the fix where accepted by
the protocol authors, the proposed solution is not incateal in the current standard [79].

Chiyangwa and Kwiatkowska [14] use the timing features efrttodel checker PPAAL to study the
relationship between the timing parameters and the pedioce of route discovery in AODV, and find
some route discovery failures.

Using the model checkers SPIN anekAAL, [103] demonstrates that the ad-hoc protocol LUNAR
satisfies a strong variant of the packet delivery propentyafoumber of routing scenarios.

All this related work show that model checking can be used disgnostic tool for MANETSs and
WMNs. Although model checking generally lacks the abilibyvierify protocols for an arbitrary and
changing topology, it can be efficiently used to check spesifenarios (topologies) and to reveal prob-
lems in the specification in an early stage of protocol dgualent; even before anybody starts to verify
interesting properties by pen-and-paper proofs or withpsttpof interactive theorem provers.

We believe that model checking as a diagnostic tool can cemght the process-algebraic approach
presented in this paper. Having the ability of model chegldpecifications written in AWN will al-
low the confirmation and detailed diagnostics of suspecteatewhich arise during modelling. The
availability of an executable model will become especiabgful in the evaluation of proposed improve-
ments. A first step to this complementation was taken_in [24] further elaborated in [25]. In_[24],
we generated a (“time-free”) RPAAL model of AODV from our AWN specification, confirmed some
of the problems discovered by Chiyangwa and Kwiatkowské [ddd show their independence of time.
In [25] we continued the analysis of AODV by model-checkiegttniques by an exhaustive exploration
of AODV'’s behaviour in all network topologies up to 5 nodes.e Were able to automatically locate
problematic and undesirable behaviours. In that paper, areover sketched possible modifications of
AODV, which also were subjected to rigorous analysis by mezfrmodel checking. In these experi-
ments we created an environment in which we can test a rangéfefent topologies in a systematic
manner. This will allow us to do a fast comparison betweendsted protocols (e.g. given by RFCs) and
proposed variations in contexts known to be problematic.

Statistical Model Checking Unfortunately, current state-of-the art (exhaustive) slatheckers are
unable to handle protocols of the complexity needed for WMdting in realistic settings: network size
(usually dozens, sometimes even hundreds of nodes) antbggpohanges yield an explosion in the
state space. Another limitation of (exhaustive) model khmgis that a quantitative analysis is often
not possible: finding a shortcoming in a protocol is greatdmés not show how often the shortcoming
actually occurs. Statistical model checking (SMC) [105,i8%& complementary approach that can over-
come these problems. It combines ideas of model checkingiamalation with the aim of supporting
guantitative analysis as well as addressing the size bafeong others, SMC has been used to analyse
AODV and DYMO.

[51]] first develops timed models for AODV and DYMO. These miedire based on the RPAAL
models created from our AWN specifications. The paper theiesaout a systematic analysis across all
small networks. In contrast to simulation and test bed s&jdhe analysis based on quality and quantity
enables the examination of reasons for observed diffesangeerformance between AODV and DYMO.
[51] then examines the feasibility of SMC w.r.t. scalalilithe results imply that networks of realistic
size (up to 100 nodes) can be analysed.

For small networks it is possible to analyse all topologig&is gives a good overall view of the
performance and behaviour in any situation. For large nedsvthis is not feasible, and so the selec-
tion of topologies as well as their dynamic behaviour becsmmething of a ‘stab in the dark’. The
Node Placement Algorithm for Realistic Topologies (NPARAQ] is a tool that allows the generation

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 126

of arbitrary-sized topologies and transmission rangela# been shown that the generated topologies
have graph characteristics similar to realistic wirelesstiimop ones. [[2]7] proposes a topology-based
mobility model that abstracts from physical behaviour aratels mobility as probabilistic changes in
the topology. It is demonstrated how this model can be itisii#d to cover the main aspects of the ran-
dom walk and the random waypoint mobility model. The modeldsa stand-alone model, but intended
to be used in combination with protocol models. As one apfibn a brief analysis of the Ad-hoc On
demand Distance Vector (AODV) routing protocol is given.

A more thorough (quantitative) analysis of AODV based os tbpology-based mobility model is
performed in[[49]. Here, variants of AODV, such as alwaysvianding route replies (see Section 10.2),
are analysed as well. The paper makes surprising obsersaiiothe behaviour of AODV. For example,
it is shown that some optional features (D-flag) should notdrabined with others (resending). An-
other observation of [49] is that a well-known shortcomirazurs more often than expected and has a
significant effect on the success of route establishment.

Other Approaches Next to process algebra and model checking other approdevesbeen used to
analyse WMNSs. A frequently used approactcadoured Petri net§CPNSs) [55].

The idea to use CPNs to model routing protocols for MANETsfivasemployed in[[104]: the paper
proposes @pology approximatiofTA) mechanism for modelling mobility and, based on thiggants
a CPN model of AODV. Using this formal model the network bebav for a network with 5 nodes is
simulated.

Mandatory parts of DYMO are modelled as a hierarchy of CPN&3). The paper analyses draft-
version 10 and identifies and resolves some ambiguitiesaaifsgation. Moreover, it points at problem-
atic behaviour; six of these findings have been reportecettBMF MANET Working Group mailing list,
and have been resolved by the DYMO developers in version 1edDYMO specification. The model
presented in [23] has a complex net structure, comprisimydld of hierarchy and 14 modules. A much
smaller model of DYMO, which even covers some optional fiesstpis presented im[@ Reducing the
size of the model also reduces the state space, so largeorkstaan be analysed. Experiments per-
forming test runs on small topologies confirm specified biehay However, similar to model checking,
networks with a few nodes only can be analysed.

Graph Transformation Systerase used if [91] to model DYMO (version 10), but without thattere
of route reply by intermediate nodes. The paper providesra-akyorithm, based on graph rewriting,
which was used to verify loop freedom for this version of DYMO

Other formal approaches aatgebraic techniquefvolving a.o. semirings and matrices. Sobrinho
was the first who brought algebraic reasoning into the redlhop-by-hop routing[[95]. He uses alge-
braic properties to argue about the relationship betweeting algorithms and Dijkstra’s shortest path
algorithm. This approach has been further elaborated foattalysis of path vector protocols like the
Border Gate Protocol BGP [96, 45]. Similar algebraic reaspihas been performed in [52] to present
algebraic versions of the algorithms of Dijkstra and Fla&drshall. [50] presents first steps towards an
algebraic characterisation of AODV using these algebrbntiques.

12 Conclusion and Future Work

In this paper we have proposed AWN, a novel process algebtactin be used to model, verify and
analyse (routing) protocols for Wireless Mesh Networks (W8)L The applicability of the process
algebra has been demonstrated by a careful analysis of the@@n-Demand Distance Vector (AODV)

81A detailed comparison between the models givefn in [23] Bhis[given in [7, Sect. 4].

127 Modelling, Verifying and Analysing AODV

Routing Protocol. To the best of our knowledge it is by farriest detailed analysis of a routing protocol
for WMNSs.

The introduced process algebra AWN covers major aspectsMii\ibuting protocols, for example
the crucial aspect of data handling, such as maintainingn@table information. Amongst others, the
assignment primitive, which is used to manipulate datays#WN into an easy to read language—its
syntax is close to the syntax of programming languages. Igeyators of AWN aréocal broadcastand
conditional unicast Local broadcast allows a node to send messages to all itgdiabe neighbours
as implemented by the physical and data link layer. Consliaunicast models an abstraction of an
acknowledgment-of-receipt mechanism that is typical foicast communication but absent in broad-
cast communication, as typically implemented by the linketaof relevant wireless standards such as
IEEE 802.11. AWN can capture the bifurcation depending ensticcess of the unicast; it allows error
handling in response to failed communications while altitrg from link layer implementations of the
communication handling.

The unique set of features and primitives of AWN allows thesation of accurate and concise models
of relatively complex and practically relevant network foaols in a simple language. We have demon-
strated this by giving a complete and accurate model of the ftmctionality of AODV, a widely used
protocol of practical relevance. We currently do not modsianal features such as local route repair,
expanding ring search, gratuitous route reply and multidd& also abstract from all timing issues. In
addition to modelling the complete set of core functiomegitof the AODV protocol, our model also
covers the interface to higher protocol layers via the tigecand delivery of application layer data, as
well as the forwarding of data packets at intermediate nodiisough this is not part of the AODV pro-
tocol specification, it is necessary for a practical modedmf reactive routing protocol, where protocol
activity is triggered via the sending and forwarding of daaakets.

Process algebras are standard tools to describe interectiommunications and synchronisations
between a collection of independent agents, processeswonkenodes. They provide algebraic laws
that facilitate formal reasoning. To demonstrate the gtienf formal reasoning we performed a careful
analysis of AODV, in particular with respect to the loopedmm property. By establishing invariants
that remain valid in a network running AODV, we have showrt thiar model is in fact loop free. In
contrast to protocol evaluation using simulation, test-bgperiments or model checking, where only a
finite number of specific network scenarios can be considenadreasoning with AWN is generic and
the proofs hold for any possible network scenario in term®pblogy and traffic pattern. None of the
experimental protocol evaluation approaches can deliierttigh degree of assurance about protocol
behaviour. We have also shown that, in contrast to commaafpsequence numbers do not guarantee
loop freedom, even if they are increased monotonically twes and incremented whenever a new route
request is generated.

Our analysis of AODV uncovered several ambiguities in theCRiRe de facto standard of AODV.
In this paper we have analyseadl interpretations of the AODV RFC that stem from the ambigsiti
revealed. It turned out that several interpretations caldyinwanted behaviour such as routing loops.
We also found that implementations of AODV behave diffelseimt crucial aspects of protocol behaviour,
although they all follow the lines of the RFC. As pointed othtis is often caused by ambiguities,
contradictions or unspecified behaviour in the RFC. Of emarspecificationrieeds to be reasonably
implementation independent” and can leave some decisions to the software engineer; boéour
belief that any specification should be clear and unambig@mnough to guarantee the same behaviour
when given to different developers. As demonstrated, thitot the case for AODV, and likely not for
many other RFCs provided by the IETF.

Finding ambiguities and unexpected behaviour is not uncomfar RFCs, since the currently pre-

82http://www.ietf.org/iesg/statement/pseudocode-guidelines. html

http://www.ietf.org/iesg/statement/pseudocode-guidelines.html

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 128

dominant practice is an informal protocol specification Eiaglish prose. This shows that the spec-
ification of a reasonably rich protocol such as AODV cannotdbscribed precisely and unambigu-
ously by simple (English) text only; formal methods are spainsable for this purpose. We believe
that formal specification languages and analysis techsieadfering rigorous verification and analysis
techniques—are now able to capture the full syntax and stsawf reasonably rich IETF protocols.

These are an indispensable augmentation to natural laaglagh for specifying protocols such as
AODV, AODVv2 and HWMP, and for verifying their essential perties.

Our analysis of AODV also uncovered several shortcomingthefprotocol, including a failure
in route discovery, and the creation of non-optimal routesthis paper, we have not only listed the
shortcomings, we have proposed (small) modifications of XQ® overcome these deficiencies. All
proposed variants have been carefully analysed as welhriicplar with respect to loop freedom. By
this we have shown how proofs based on AWN can relativelyhyebsiadapted to protocol variants.

A further analysis of AODV will require an extension of AWN tlitime and probability: the former
to cover aspects such as AODV'’s handling (deletion) of staléing table entries and the latter to model
the probability associated with lossy links. We expect thatresulting algebra will be also applicable
to a wide range of other wireless protocols.

Next to this on-going work, we also aim at a complementatioAWN by model checking. Having
the ability of automatically deriving a model for model ckers such as BPAAL from an AWN specifi-
cation allows the confirmation and detailed diagnosticaugpected errors in an early phase of protocol
development. Surely, model checking is limited to paraicubpologies, but finding shortcomings in
some topologies is useful to identify problematic behawiolihese shortcomings can be eliminated,
even before a more thorough and general analysis using AWN.

“Time is the nurse and breeder of all good.”
W. Shakespeare, The Two Gentlemen of Verona

129

Modelling, Verifying and Analysing AODV

References

(1]

(2]

(3]

(4]

(5]

(6]

[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Kernel AODV (ver. 2.2.2), NIST. http://www.antd.nist.gov/wctg/aodv_kernel/ (accessed 27
September 2013).

AODV-UU: An Implementation of the AODV routing protocol (IETF RFC 356http://sourceforge.
net/projects/aodvuu/ (accessed 27 September 2013).

J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1980n the Consistency of Koomen'’s Fair Abstraction Rule
Theoretical Computer Scienbé(1/2), pp. 129-176, ddi0.1016/0304-3975(87) 90052-1.

J.A. Bergstra & J.W. Klop (1986)Algebra of Communicating Processés J.W. de Bakker, M. Hazewinkel
& J.K. Lenstra, editorsMathematics and Computer Scien€N| Monograph 1, North-Holland, pp. 89—
138.

K. Bhargavan, C.A. Gunter, M. Kim, I. Lee, D. Obradovic, 8okolsky & M. Viswanathan (2002)erisim:
Formal Analysis of Network SimulationdEEEE Transactions on Software Engineer2&{2), pp. 129-145,
doi:10.1109/32.988495

K. Bhargavan, D. Obradovic & C.A. Gunter (200Bormal Verification of Standards for Distance Vector
Routing ProtocolsJournal of the ACMA9(4), pp. 538-576, ddi0.1145/581771.581775.

J. Billington & C. Yuan (2009):On Modelling and Analysing the Dynamic MANET On-Demand (BQYM
Routing Protocal In K. Jensen, J. Billington & M. Koutny, editorsiransactions on Petri Nets and Other
Models of Concurrency llILecture Notes in Computer Sciens@00, Springer, pp. 98-126, dod:. 1007/
978-3-642-04856-2_5.

T. Bolognesi & E. Brinksma (1987)tntroduction to the ISO Specification Language LOT@®mputer
Networksl4, pp. 25-59, doi0.1016/0169-7552(87)90085-7.

J. Borgstrom, S. Huang, M. Johansson, P. Raabjerg, @okiJA. Pohjola & J. Parrow (2011)Broadcast
Psi-calculi with an Application to Wireless Protocoldn G. Barthe, A. Pardo & G. Schneider, editors:
Software Engineering and Formal Methods (SEFM, LEcture Notes in Computer Scient@41, Springer,
pp. 74-89, doit0.1007/978-3-642-24690-6_7.

M. Bugliesi, L. Gallina, S. Hamadou, A. Marin & S. Ros&(13): Behavioral Equivalences and Interfer-
ence Metrics for Mobile Ad-hoc Networldoi:10.1016/j.peva.2013.11.003. Performance Evaluation
In Press, Corrected Proof, December 2013.

A. Cerone & M. Hennessy (2013Modelling Probabilistic Wireless Networkd ogical Methods in Com-
puter Scienc8&(3), doi10.2168/LMCS-9(3:26)2013.

A. Cerone, M. Hennessy & M. Merro (2013Ylodelling MAC-Layer Communications in Wireless Systems
In R. De Nicola & C. Julien, editorsCoordination Models and Languages (COORDINATION ‘13jcture
Notes in Computer Scien@&90, Springer, pp. 16—30, dbdi. 1007/978-3-642-38493-6_2.

[.D. Chakeres & E.M. Belding-Royer (2004%ODV Routing Protocol Implementation Desigim: Con-
ference on Distributed Computing Systems Workshops (W)’ |IEEE, pp. 698—703, ddi0.1109/
ICDCSW.2004.1284108.

S. Chiyangwa & M. Kwiatkowska (2005)A Timing Analysis of AODV In: Formal Methods for Open
Object-based Distributed Systems (FMOODS,@%)cture Notes in Computer Sciengg35, Springer, pp.
306—-322, doit0.1007/11494881_20.

T. Clausen & P. Jacquet (200®)ptimized Link State Routing Protocol (OLSRJFC 3626 (Experimental),
Network Working Group. Available atttp: //www.ietf.org/rfc/rfc3626.txt.

R. Cleaveland, G. Luttgen & V. Natarajan (200PYiority in Process Algebraln J.A. Bergstra, A. Ponse
& S.A. Smolka, editorsHandbook of Process Algehrehapter 12, Elsevier, pp. 711-765, d0i: 1016/
B978-044482830-9/50030-8

S. Cranen, M.R. Mousavi & M.A. Reniers (2008% Rule Format for Associativity In F. van Breugel
& M. Chechik, editors:Concurrency Theory (CONCUR ’'0O8)ecture Notes in Computer Sciens201,
Springer, pp. 447-461, dad.1007/978-3-540-85361-9_35.

http://www.antd.nist.gov/wctg/aodv_kernel/
http://sourceforge.net/projects/aodvuu/
http://sourceforge.net/projects/aodvuu/
http://dx.doi.org/10.1016/0304-3975(87)90052-1
http://dx.doi.org/10.1109/32.988495
http://dx.doi.org/10.1145/581771.581775
http://dx.doi.org/10.1007/978-3-642-04856-2_5
http://dx.doi.org/10.1007/978-3-642-04856-2_5
http://dx.doi.org/10.1016/0169-7552(87)90085-7
http://dx.doi.org/10.1007/978-3-642-24690-6_7
http://dx.doi.org/10.1016/j.peva.2013.11.003
http://dx.doi.org/10.2168/LMCS-9(3:26)2013
http://dx.doi.org/10.1007/978-3-642-38493-6_2
http://dx.doi.org/10.1109/ICDCSW.2004.1284108
http://dx.doi.org/10.1109/ICDCSW.2004.1284108
http://dx.doi.org/10.1007/11494881_20
http://www.ietf.org/rfc/rfc3626.txt
http://dx.doi.org/10.1016/B978-044482830-9/50030-8
http://dx.doi.org/10.1016/B978-044482830-9/50030-8
http://dx.doi.org/10.1007/978-3-540-85361-9_35

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 130

[18]

[19]
[20]
[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

S.R. Das, R. Castafieda & J. Yan (2008)mulation-based Performance Evaluation of Routing Rrok®
for Mobile Ad Hoc Networks Mobile Networks and ApplicationS(3), pp. 179-189, dain.1023/A:
1019108612308.

R. De Nicola & F.W. Vaandrager (1995Three Logics for Branching BisimulatiorJournal of the ACM
42(2), pp. 458-487, ddi0 . 1145/201019.201032.

R. de Simone (1985Higher-Level Synchronising DevicesMelJE-SCCS Theoretical Computer Science
37, pp. 245-267, dain.1016/0304-3975(85) 90093-3.

S. Edenhofer & P. Hofner (2012)pwards a Rigorous Analysis of AODVv2 (DYM®). Rigorous Protocol
Engineering (WRIPE '12)EEE, doi10.1109/ICNP.2012.6459942,

C. Ene & T. Muntean (2001)A Broadcast-based Calculus for Communicating Systems Parallel &
Distributed Processing Symposium (IPDPS JOEEE Computer Society, pp. 15161525, d0i:1109/
IPDPS.2001.925136.

K.L. Espensen, M.K. Kjeldsen & L.M. Kristensen (2008)iodelling and Initial Validation of the DYMO
Routing Protocol for Mobile Ad-Hoc Networkdn K.M. van Hee & R. Valk, editors:Applications and

Theory of Petri Nets (PETRI NETS '08)ecture Notes in Computer Sciens@62, Springer, pp. 152-170,
doi:10.1007/978-3-540-68746-7_13.

A. Fehnker, R.J. van Glabbeek, P. Hofner, A.K. Mclwdr,Portmann & W.L. Tan (2011)Modelling and
Analysis of AODV in UPPAALINn: Rigorous Protocol Engineering (WRIPE’ 11)

A. Fehnker, R.J. van Glabbeek, P. Hofner, A.K. Mclvit, Portmann & W.L. Tan (2012)Automated
Analysis of AODV using UPPAALIn C. Flanagan & B. Konig, editorsTools and Algorithms for the
Construction and Analysis of Systems (TACAS ’1Rgcture Notes in Computer Scienégl4, Springer,
pp. 173-187, doi:0.1007/978-3-642-28756-5_13.

A. Fehnker, R.J. van Glabbeek, P. Hofner, A.K. Mcl\MrPortmann & W.L. Tan (2012)A Process Algebra
for Wireless Mesh NetworksIn H. Seidl, editor: European Symposium on Programming (ESOP,'12)
Lecture Notes in Computer Scien¢@l11, Springer, pp. 295-315, dti.. 1007/978-3-642-28869-2_

15.

A. Fehnker, P. Hofner, M. Kamali & V. Mehta (2013)opology-based Mobility Models for Wireless Net-
works In L. Alvisi & D. Giannakopoulou, editorsQuantitative Evaluation of Systems (QEST ’"1Bgcture
Notes in Computer Scien®&954, Springer, pp. 368—383, dui:. 1007/978-3-642-40196-1_32.

D.M. Gabbay, A. Pnueli, S. Shelah & J. Stavi (198@n the Temporal Analysis of Fairnessn P.W.
Abrahams, R.J. Lipton & S.R. Bourne, editoRrinciples of Programming Languages (POPL |3§CM
Press, pp. 163-173, do@.1145/567446 .567462.

L. Gallina, S. Hamadou, A. Marin & S. Rossi (2011): Probabilistic Energy-Aware Model for Mobile
Ad-Hoc NetworksIn K. Al-Begain, S. Balsamo, D. Fiems & A. Marin, editor&nalytical and Stochastic
Modeling Techniques and Applications (ASMTA '] 1)ecture Notes in Computer Sciengé51, Springer,
pp. 316-330, doi:0.1007/978-3-642-21713-5_23.

L. Gallina, A. Marin, S. Rossi, T. Han & M.Z. Kwiatkowsk@013): A Process Algebraic Framework
for Estimating the Energy Consumption in Ad-hoc Wirelesss8eNetworks In: Modeling, Analysis
and Simulation of Wireless and Mobile Systems (MSWiM ‘1BCM Press, pp. 255-262, dod.1145/
2507924 .2507958.

L. Gallina & S. Rossi (2013)A Process Calculus for Energy-aware Multicast Commundcediof Mo-
bile Ad Hoc Networks Wireless Communications and Mobile Computiti®(3), pp. 296—-312, ddi0.
1002/wecm. 2207, An earlier version appeared AsCalculus for Power-Aware Multicast Communications
in Ad Hoc Networksin C.S. Calude & V. Sassone, editor§heoretical Computer Science (TCS '10)
IFIP Advances in Information and Communication Technol8g3, Springer, pp. 20-31, dod.1007/
978-3-642-15240-5_2.

J.J. Garcia-Luna-Aceves (19898 Unified Approach to Loop-free Routing using Distance Mscty

Link States In: Symposium Proceedings on Communications, Architecturd¥étocols (SIGCOMM
'89), ACM SIGCOMM Computer Communication Reviéi®(4), ACM Press, pp. 212223, dui:. 1145/

75246 .75268.

http://dx.doi.org/10.1023/A:1019108612308
http://dx.doi.org/10.1023/A:1019108612308
http://dx.doi.org/10.1145/201019.201032
http://dx.doi.org/10.1016/0304-3975(85)90093-3
http://dx.doi.org/10.1109/ICNP.2012.6459942
http://dx.doi.org/10.1109/IPDPS.2001.925136
http://dx.doi.org/10.1109/IPDPS.2001.925136
http://dx.doi.org/10.1007/978-3-540-68746-7_13
http://dx.doi.org/10.1007/978-3-642-28756-5_13
http://dx.doi.org/10.1007/978-3-642-28869-2_15
http://dx.doi.org/10.1007/978-3-642-28869-2_15
http://dx.doi.org/10.1007/978-3-642-40196-1_32
http://dx.doi.org/10.1145/567446.567462
http://dx.doi.org/10.1007/978-3-642-21713-5_23
http://dx.doi.org/10.1145/2507924.2507958
http://dx.doi.org/10.1145/2507924.2507958
http://dx.doi.org/10.1002/wcm.2207
http://dx.doi.org/10.1002/wcm.2207
http://dx.doi.org/10.1007/978-3-642-15240-5_2
http://dx.doi.org/10.1007/978-3-642-15240-5_2
http://dx.doi.org/10.1145/75246.75268
http://dx.doi.org/10.1145/75246.75268

131 Modelling, Verifying and Analysing AODV

[33] J.J. Garcia-Luna-Aceves & H. Rangarajan (2004)New Framework for Loop-free On-demand Routing
using Destination Sequence Numbets: Mobile Ad-hoc and Sensor Systems (MASS’ D¥BEE, pp.
426-435, doit0.1109/MAHSS.2004.1392182.

[34] F. Ghassemi, W. Fokkink & A. Movaghar (2008Restricted Broadcast Process Theoip A. Cerone &
S. Gruner, editorsSoftware Engineering and Formal Methods (SEFM ;QBEE Computer Society, pp.
345-354, doit0.1109/SEFM. 2008 . 25.

[35] F. Ghassemi, W. Fokkink & A. Movaghar (201@quational Reasoning on Ad Hoc Netwarks F. Arbab
& M. Sirjani, editors: Fundamentals of Software Engineering (FSEN ,d%cture Notes in Computer
Scienceé961, Springer, pp. 113-128, dod:. 1007/978-3-642-11623-0_6.

[36] F. Ghassemi, W. Fokkink & A. Movaghar (2010Equational Reasoning on Mobile Ad Hoc Networks
Fundamenta Informaticd®5(4), pp. 375—-415, ddi0 . 3233/FI-2010-371.

[37] F. Ghassemi, W. Fokkink & A. Movaghar (201 Nerification of Mobile Ad Hoc Networks: An Algebraic
Approach Theoretical Computer Sciendé2(28), pp. 3262—-3282, doD.1016/j.tcs.2011.03.017.

[38] F. Ghassemi, M. Talebi, A. Movaghar & W. Fokkink (201 8tochastic Restricted Broadcast Process The-
ory. In N. Thomas, editorComputer Performance Engineering (EPEW ,11gcture Notes in Computer
Scienceé977, Springer, pp. 72—86, dblt. 1007/978-3-642-24749-1_7.

[39] R.J. van Glabbeek, P. Hofner, W.L. Tan & M. Portmannl2 Sequence Numbers Do Not Guarantee
Loop Freedom —AODV Can Yield Routing Loopsh: Modeling, Analysis and Simulation of Wireless
and Mobile Systems (MSWiM '13ACM Press, pp. 91-100, dad.1145/2507924.2507943.

[40] J.C. Godskesen (2007A Calculus for Mobile Ad Hoc Networksin A.L. Murphy & J. Vitek, editors:
Coordination Models and Languages (COORDINATION ‘Olzgcture Notes in Computer Scienéé67,
Springer, pp. 132-150, da.1007/978-3-540-72794-1_8.

[41] J.C. Godskesen (2009 Calculus for Mobile Ad-hoc Networks with Static Locatianddng. Electronic
Notes in Theoretical Computer Scieri&2(1), pp. 161-183, ddi0.1016/j .entcs.2009.06.018.

[42] J.C. Godskesen (2010Rbservables for Mobile and Wireless Broadcasting SystémB. Clarke & G.A.
Agha, editors:Coordination Models and Languages (COORDINATION '1i0¢cture Notes in Computer
Scienceé116, Springer, pp. 1-15, do0.1007/978-3-642-13414-2_1.

[43] J.C. Godskesen, H. Huttel & M. Kithnrich (200%rification of Correspondence Assertions in a Calculus
for Mobile Ad Hoc NetworksElectronic Notes in Theoretical Computer ScieB28(2), pp. 77-93, daio.
1016/j.entcs.2009.06.030.

[44] J.C. Godskesen & S. Nanz (2009)obility Models and Behavioural Equivalence for Wirelestworks In
J. Field & V.T. Vasconcelos, editor§€oordination Models and Languages (COORDINATION ‘A%cture
Notes in Computer Scien&521, Springer, pp. 106—122, doi:. 1007/978-3-642-02053-7_6.

[45] T.G. Griffin & J. Sobrinho (2005)Metarouting SIGCOMM Computer Communication Revieds(4), pp.
1-12,d0i10.1145/1090191.1080094.

[46] J.F. Groote & A. Ponse (1995Yhe Syntax and SemanticsioERL In A. Ponse, C. Verhoef & S.F.M.
van Vlijmen, editors:Algebra of Communicating Processes, ®orkshops in Computing, Springer, pp.
26—62, d0i10.1007/978-1-4471-2120-6_2.

[47] C.A.R. Hoare (1985)Communicating Sequential ProcessBsentice Hall, Englewood Cliffs.

[48] P. Hofner, R.J. van Glabbeek, W.L. Tan, M. PortmanriK.AMclver & A. Fehnker (2012):A Rigorous
Analysis of AODV and its Varianttn: Modeling, Analysis and Simulation of Wireless and Mobilesggyms
(MSWiM '12), ACM Press, pp. 203-212, don.1145/2387238.2387274.

[49] P. Hofner & M. Kamali (2013):Quantitative Analysis of AODV and its Variants on Dynamipdlogies
using Statistical Model Checkindn V. Braberman & L. Fribourg, editorgzormal Modelling and Analysis
of Timed Systems (FORMATS ’'13) ecture Notes in Computer Scien8853, Springer, pp. 121-136,
doi:10.1007/978-3-642-40229-6_9.

[50] P. Hofner & A. Mclver (2011):Towards an Algebra of Routing Tablek H. de Swart, editorRelational
and Algebraic Methods in Computer Science (RAMICS /1llgcture Notes in Computer Scien6663,
Springer, pp. 212-229, daid.1007/978-3-642-21070-9_17.

http://dx.doi.org/10.1109/MAHSS.2004.1392182
http://dx.doi.org/10.1109/SEFM.2008.25
http://dx.doi.org/10.1007/978-3-642-11623-0_6
http://dx.doi.org/10.3233/FI-2010-371
http://dx.doi.org/10.1016/j.tcs.2011.03.017
http://dx.doi.org/10.1007/978-3-642-24749-1_7
http://dx.doi.org/10.1145/2507924.2507943
http://dx.doi.org/10.1007/978-3-540-72794-1_8
http://dx.doi.org/10.1016/j.entcs.2009.06.018
http://dx.doi.org/10.1007/978-3-642-13414-2_1
http://dx.doi.org/10.1016/j.entcs.2009.06.030
http://dx.doi.org/10.1016/j.entcs.2009.06.030
http://dx.doi.org/10.1007/978-3-642-02053-7_6
http://dx.doi.org/10.1145/1090191.1080094
http://dx.doi.org/10.1007/978-1-4471-2120-6_2
http://dx.doi.org/10.1145/2387238.2387274
http://dx.doi.org/10.1007/978-3-642-40229-6_9
http://dx.doi.org/10.1007/978-3-642-21070-9_17

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 132

[51] P. Hofner & A. Mclver (2013)Statistical Model Checking of Wireless Mesh Routing Prol®dn G. Brat,
N. Rungta & A. Venet, editordNASA Formal Methods Symposium (NFM '13)ecture Notes in Computer
Sciencer871, Springer, pp. 322—-336, doi:. 1007/978-3-642-38088-4_22.

[52] P. Hofner & B. Moller (2012):Dijkstra, Floyd and Warshall meet Kleen&ormal Aspects of Computing
24(4-6), pp. 459-476, ddi0.1007/s00165-012-0245-4.

[53] IEEE (2011):IEEE Standard for Information Technology—Telecommuivoatand information exchange
between systems—Local and metropolitan area networkseHispequirements Part 11: Wireless LAN
Medium Access Control (MAC) and Physical Layer (PHY) sprtifins Amendment 10: Mesh Networking
Available athttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236.

[54] P. Jacquet, A. Laouiti, P. Minet & L. Viennot (2002performance of Multipoint Relaying in Ad Hoc Mo-
bile Routing Protocols In E. Gregori, M. Conti, A.T. Campbell, G. Omidyar & M. Zukean, editors:
Networking Technologies, Services, and Protocols; Peramce of Computer and Communication Net-
works; Mobile and Wireless Communications (NETWORKING J02ecture Notes in Computer Science,
Springer, pp. 387-398, da.1007/3-540-47906-6_31.

[55] K.Jensen (1997)Coloured Petri Nets — Basic Concepts, Analysis Methods aactieal Use Monographs
in Theoretical Computer Science. An EATCS Series, Sprirdr0.1007/978-3-642-60794-3.

[56] D.Johnson, Y. Hu & D. Maltz (2007)fhe Dynamic Source Routing Protocol (DSR) for Mobile Ad Het N
works for IPv4 RFC 4728 (Experimental), Network Working Group (ErratasEx Available athttp://
www.ietf.org/rfc/rfc4728.txt.

[57] V. Kawadia, Y. Zhang & B. Gupta (2003Bystem Services for Ad-Hoc Routing: Architecture, Impteme
tation and ExperiencesIn: Mobile Systems, Applications and Services (MobiSys |#8IM Press, pp.
99-112,doit0.1145/1066116.1189040.

[58] L. Lamport (2000)Fairness and Hyperfairnes®istributed Computing3(4), pp. 239-245, ddio . 1007/
PLO0008921.

[59] I. Lanese & D. Sangiorgi (20108n Operational Semantics for a Calculus for Wireless Systé&imeoretical
Computer Sciencé11(19), pp. 1928-1948, do.1016/j.tcs.2010.01.023.

[60] R. Lanotte & M. Merro (2011)Semantic Analysis of Gossip Protocols for Wireless Senstwdiks In
J.-P. Katoen & B. Konig, editor&€Concurrency Theory (CONCUR '11)ecture Notes in Computer Science
6901, Springer, pp. 156-170, dod.. 1007/978-3-642-23217-6_11.

[61] N.Lynch & M. Tuttle (1989):An Introduction to Input/Output Automat&WI-Quarterly2(3), pp. 219-246.
Centrum voor Wiskunde en Informatica, Amsterdam, The Nédhes.

[62] D. Macedonio & M. Merro (2014)A Semantic Analysis of Key Management Protocols for Weebesnsor
Networks Science of Computer Programmi8i, pp. 53—78, doi0.1016/j.scic0.2013.01.005. An
earlier version, coauthored with F. Ballardin and M. Tirégeappears aittp://arxiv.org/abs/1109.
5088, 2011.

[63] D. Maltz, J. Broch & D.B. Johnson (2001)essons from a Full-scale Multihop Wireless Ad hoc Network
Testbed IEEE Personal Communicatio861), pp. 8-15, doi:0.1109/98.904894.

[64] Z. Manna & A. Pnueli (1992)The Temporal Logic of Reactive and Concurrent Systems —ifigpgan.
Springer, doit0.1007/978-1-4612-0931-7.

[65] P.M. Merlin & A. Segall (1979)A Failsafe Distributed Routing ProtocolEEE Transactions on Commu-
nications27(9), pp. 1280-1287,dai0.1109/TCOM. 1979.1094552.

[66] M. Merro (2009):An Observational Theory for Mobile Ad Hoc Networks (fullsien). Information and
Computatior207(2), pp. 194—-208, ddi0.1016/j.1c.2007.11.010.

[67] M. Merro, F. Ballardin & E. Sibilio (2011)A Timed Calculus for Wireless Systeni#eoretical Computer
Sciencell12(47), pp. 6585—6611, dod.1016/j.tcs.2011.07.016.

[68] M. Merro & E. Sibilio (2013):A Calculus of Trustworthy Ad Hoc NetworkSormal Aspects of Computing
25(5), pp. 801-832, ddi0 . 1007/s00165-011-0210-7.

[69] N. Mezzetti & D. Sangiorgi (2006)Towards a Calculus For Wireless Systenidectronic Notes in Theo-
retical Computer Sciend8, pp. 331-353, ddi0.1016/j.entcs.2006.04.017.

http://dx.doi.org/10.1007/978-3-642-38088-4_22
http://dx.doi.org/10.1007/s00165-012-0245-4
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6018236
http://dx.doi.org/10.1007/3-540-47906-6_31
http://dx.doi.org/10.1007/978-3-642-60794-3
http://www.ietf.org/rfc/rfc4728.txt
http://www.ietf.org/rfc/rfc4728.txt
http://dx.doi.org/10.1145/1066116.1189040
http://dx.doi.org/10.1007/PL00008921
http://dx.doi.org/10.1007/PL00008921
http://dx.doi.org/10.1016/j.tcs.2010.01.023
http://dx.doi.org/10.1007/978-3-642-23217-6_11
http://dx.doi.org/10.1016/j.scico.2013.01.005
http://arxiv.org/abs/1109.5088
http://arxiv.org/abs/1109.5088
http://dx.doi.org/10.1109/98.904894
http://dx.doi.org/10.1007/978-1-4612-0931-7
http://dx.doi.org/10.1109/TCOM.1979.1094552
http://dx.doi.org/10.1016/j.ic.2007.11.010
http://dx.doi.org/10.1016/j.tcs.2011.07.016
http://dx.doi.org/10.1007/s00165-011-0210-7
http://dx.doi.org/10.1016/j.entcs.2006.04.017

133

[70]

[71]
[72]

[73]

[74]

[75]

[76]
[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]
[86]

[87]

[88]

Modelling, Verifying and Analysing AODV

B. Milic & M. Malek (2009): NPART—Node Placement Algorithm for Realistic Topologieg/ireless
Multihop Network Simulationin: Simulation Tools and Techniques (Simutools '08CM Press, dotO.
4108/ICST.SIMUTOOLS2009.5669.

R. Milner (1989):Communication and Concurrenclrentice Hall.

S. Miskovic & E.W. Knightly (2010):Routing Primitives for Wireless Mesh Networks: Design, Ipsia
and Experimentdn: Conference on Information Communications (INFOCOM | 1BEE, pp. 2793-2801,
doi;10.1109/INFCOM.2010.5462111,

M. Musuvathi, D.Y.W. Park, A. Chou, D.R. Engler & D.L. ID{2002): CMC: A Pragmatic Approach to
Model Checking Real Cod&IGOPS Operating Systems Revig@(Sl), pp. 75-88, doi0.1145/844128.
844136.

S. Nanz & C. Hankin (2006)A Framework for Security Analysis of Mobile Wireless Nek&oi heoretical
Computer Scienc867, pp. 203-227, ddi0.1016/j.tcs.2006.08.036.

A. Neumann, M. Aichele, C. Lindner & S. Wunderlich (2008Better Approach To Mobile Ad-hoc Net-
working (B.A.T.M.A.N.) Internet-Draft (Experimental), Network Working Groupvalable athttp://
tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00.

The Network Simulator ns-Bttp://nsnam.isi.edu/nsnam/index.php/Main_Page (accessed 20 De-
cember 2013).

E.-R. Olderog & C.A.R. Hoare (1986)Specification-oriented Semantics for Communicating Fases
Acta Informatica&23(1), pp. 9-66, doi:0.1007/BF00268075.

C.E. Perkins, E.M. Belding-Royer & I.D. Chakeres (2R0&d hoc On-Demand Distance Vector (AODV)
Routing Internet Draft, Mobile Ad hoc Networks Working Group. Alable athttp://tools.ietf.
org/id/draft-perkins-manet-aodvbis-00.txt.

C.E. Perkins, E.M. Belding-Royer & S. Das (2003d hoc On-Demand Distance Vector (AODV) Rout-
ing. RFC 3561 (Experimental), Network Working Group. Avaik@thttp://www.ietf.org/rfc/
rfc3561.txt.

C.E. Perkins, E.M. Belding-Royer, S.R. Das & M.K. Maai(2001):Performance Comparison of Two On-
demand Routing Protocols for Ad hoc NetworKSEE Personal CommunicatioB§l), pp. 16—28, doi0.
1109/98.904895.

C.E. Perkins, S. Ratliff & J. Dowdell (2013pPynamic MANET On-demand (AODVv2) Routirigternet
Draft (Standards Track), Mobile Ad hoc Networks Working Gpo Available athttp://tools.ietf.
org/html/draft-ietf-manet-aodvv2-02.

C.E. Perkins & E.M. Royer (1999Ad-hoc On-Demand Distance Vector Routing: Mobile Computing
Systems and Applications (WMCSA '99FEE, pp. 90-100, dain.1109/MCSA.1999.749281.

A.A. Pirzada, M. Portmann & J. Indulska (200&erformance Analysis of Multi-radio AODV in Hybrid
Wireless Mesh Network€omputer Communicatior&d (5), pp. 885-895, ddi0 . 1016/j . comcom.2007 .
12.012.

A.A. Pirzada, M. Portmann, R. Wishart & J. Indulska (2)05afeMesh: A Wireless Mesh Network Routing
Protocol for Incident Area CommunicationBervasive and Mobile Computirsg?), pp. 201-221, daio.
1016/j.pmcj.2008.11.005,

G.D. Plotkin (2004):A Structural Approach to Operational Semanticdournal of Logic and Algebraic
Programming0-61, pp. 17-139, dai0.1016/j.jlap.2004.05.001. Originally appeared in 1981.

A. Pnueli (1977):The Temporal Logic of Programdn: Foundations of Computer Science (FOCS |77)
IEEE, pp. 46-57, doi:0.1109/SFCS.1977.32.

K.V.S. Prasad (1991)A Calculus of Broadcasting Systems S. Abramsky & T.S.E. Maibaum, editors:
Theory and Practice of Software Development (TAPSOFT, &fture Notes in Computer Sciené@3,
Springer, pp. 338-358, dab.1007/3-540-53982-4_19.

K.V.S. Prasad (1995)A Calculus of Broadcasting SystemScience of Computer Programmi@§(2-3),
pp. 285-327,d0i:0.1016/0167-6423(95)00017-8.

http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5669
http://dx.doi.org/10.4108/ICST.SIMUTOOLS2009.5669
http://dx.doi.org/10.1109/INFCOM.2010.5462111
http://dx.doi.org/10.1145/844128.844136
http://dx.doi.org/10.1145/844128.844136
http://dx.doi.org/10.1016/j.tcs.2006.08.036
http://tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00
http://tools.ietf.org/html/draft-openmesh-b-a-t-m-a-n-00
http://nsnam.isi.edu/nsnam/index.php/Main_Page
http://dx.doi.org/10.1007/BF00268075
http://tools.ietf.org/id/draft-perkins-manet-aodvbis-00.txt
http://tools.ietf.org/id/draft-perkins-manet-aodvbis-00.txt
http://www.ietf.org/rfc/rfc3561.txt
http://www.ietf.org/rfc/rfc3561.txt
http://dx.doi.org/10.1109/98.904895
http://dx.doi.org/10.1109/98.904895
http://tools.ietf.org/html/draft-ietf-manet-aodvv2-02
http://tools.ietf.org/html/draft-ietf-manet-aodvv2-02
http://dx.doi.org/10.1109/MCSA.1999.749281
http://dx.doi.org/10.1016/j.comcom.2007.12.012
http://dx.doi.org/10.1016/j.comcom.2007.12.012
http://dx.doi.org/10.1016/j.pmcj.2008.11.005
http://dx.doi.org/10.1016/j.pmcj.2008.11.005
http://dx.doi.org/10.1016/j.jlap.2004.05.001
http://dx.doi.org/10.1109/SFCS.1977.32
http://dx.doi.org/10.1007/3-540-53982-4_19
http://dx.doi.org/10.1016/0167-6423(95)00017-8

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 134

[89] K. Ramachandran, M.M. Buddhikot, G. Chandranmenoriilier, E.M. Belding-Royer & K. Almeroth
(2005): On the Design and Implementation of Infrastructure Meshwidets In: IEEE Workshop on
Wireless Mesh Networks (WiMesh’O8EEE.

[90] H. Rangarajan & J.J. Garcia-Luna-Aceves (2008aking On-demand Routing Protocols Based on Desti-
nation Sequence Numbers Robust Communications (ICC '05)5, pp. 3068-3072, ddio.1109/ICC.
2005.1494958

[91] M. Saksena, O. Wibling & B. Jonsson (2008kraph Grammar Modeling and Verification of Ad Hoc
Routing Protocols In C.R. Ramakrishnan & J. Rehof, editorBools and Algorithms for the Construction
and Analysis of Systems (TACAS '08)ecture Notes in Computer Sciend®863, Springer, pp. 18-32,
doi:10.1007/978-3-540-78800-3_3.

[92] SCALABLE Network Technologies:QualNet Communications Simulation Platfarmhttp://web.
scalable-networks.com/content/qualnet (accessed 20 December 2013)

[93] K. Sen, M. Viswanathan & G.A. Agha (2005YESTA: A Statistical Model-checker and Analyzer for Prob-
abilistic Systemsln: Quantitative Evaluation of Systems (QEST 'OBJEE, pp. 251-252, ddi0.1109/
QEST.2005.42.

[94] A. Singh, C.R. Ramakrishnan & S.A. Smolka (201@):process calculus for Mobile Ad Hoc Netwarks
Science of Computer Programmiiig, pp. 440—469, dain.1016/j.scico.2009.07.008.

[95] J. Sobrinho (2002)Algebra and Algorithms for QoS Path Computation and Hogibp-Routing in the
Internet IEEE/ACM Transactions on Networkiri@(4), pp. 541-550, dai0.1109/TNET.2002.801397.

[96] J. Sobrinho (2003)Network Routing with Path Vector Protocols: Theory and Aggilons In: Applica-
tions, Technologies, Architectures, and Protocols for @otaer Communications (SIGCOMM '03ACM
Press, pp. 49-60, dab.1145/863955.863963.

[97] L. Song & J.C. Godskesen (201®robabilistic Mobility Models for Mobile and Wireless Netiks In C.S.
Calude & V. Sassone, editor§heoretical Computer Science (TCS '1HIP Advances in Information and
Communication Technolog323, Springer, pp. 86—100, db@. 1007/978-3-642-15240-5_7.

[98] L. Song & J.C. Godskesen (201Broadcast Abstraction in a Stochastic Calculus for MobiktwWorks In
J.C.M. Baeten, T. Ball & F. de Boer, editor$heoretical Computer Science (TCS '12pcture Notes in
Computer Sciencé604, Springer, pp. 342—-356, doi.. 1007 /978-3-642-33475-7_24.

[99] A.P. Subramanian, M.M. Buddhikot & S. Miller (200@pterference Aware Routing in Multi-radio Wireless
Mesh NetworksIn: IEEE Workshop on Wireless Mesh Networks (WiMesh 'A&EE.

[100] C.F. Tschudin (2004)Lightweight Underlay Network Ad hoc Routing (LUNAR) Pratiocinternet Draft
(Expired), Mobile Ad Hoc Networking Working Group. Availbathttp://user.it.uu.se/~rmg/
pub/draft-tschudin-manet-lunar-00.txt.

[101] C.F. Tschudin, R. Gold, O. Rensfelt & O. Wibling (2004)JUNAR: A Lightweight Underlay Network Ad-
Hoc Routing Protocol and Implementatiom Y. Koucheryavy, J. Harju & A. Koucheryavy, editorAlext
Generation Teletraffic and Wired/Wireless Advanced Nekivigy (NEW2AN '04).

[102] M. Wang & Y. Lu (2012):A Timed Calculus for Mobile Ad Hoc Networkk P.C.Olveczky & C. Artho,
editors:Formal Techniques for Safety-Critical Systems (FTSCS, EB)ctronic Proceedings in Theoretical
Computer Scienc#05, pp. 118-134, dai0 .4204/EPTCS.105.9.

[103] O. Wibling, J. Parrow & A.N. Pears (2004hutomatized Verification of Ad Hoc Routing ProtocadtsD. de
Frutos-Escrig & M. Nlfez, editors=ormal Techniques for Networked and Distributed Systen@3RFE
'04), Lecture Notes in Computer Science, Springer, pp. 343-8%8,0.1007/978-3-540-30232-2_22.

[104] C. Xiong, T. Murata & J. Tsai (2002Modeling and Simulation of Routing Protocol for Mobile AddHo
Networks Using Colored Petri Netdn: Formal Methods in Software Engineering and Defence Systems
(CRPIT '02) 12, Australian Computer Society, Inc., pp. 145-153.

[105] H.L.S. Younes (2004 Nerification and Planning for Stochastic Processes withnékyonous Eventd$h.D.
thesis, Carnegie Mellon University.

[106] M. Zhou, H. Yang, X. Zhang & J. Wang (2009)he Proof of AODV Loop Freedann: Wireless Commu-
nications & Signal Processing (WCSP 'QBEE, doi10.1109/WCSP.2009.5371479.

http://dx.doi.org/10.1109/ICC.2005.1494958
http://dx.doi.org/10.1109/ICC.2005.1494958
http://dx.doi.org/10.1007/978-3-540-78800-3_3
http://web.scalable-networks.com/content/qualnet
http://web.scalable-networks.com/content/qualnet
http://dx.doi.org/10.1109/QEST.2005.42
http://dx.doi.org/10.1109/QEST.2005.42
http://dx.doi.org/10.1016/j.scico.2009.07.008
http://dx.doi.org/10.1109/TNET.2002.801397
http://dx.doi.org/10.1145/863955.863963
http://dx.doi.org/10.1007/978-3-642-15240-5_7
http://dx.doi.org/10.1007/978-3-642-33475-7_24
http://user.it.uu.se/~rmg/pub/draft-tschudin-manet-lunar-00.txt
http://user.it.uu.se/~rmg/pub/draft-tschudin-manet-lunar-00.txt
http://dx.doi.org/10.4204/EPTCS.105.9
http://dx.doi.org/10.1007/978-3-540-30232-2_22
http://dx.doi.org/10.1109/WCSP.2009.5371479

135 Modelling, Verifying and Analysing AODV

List of Processes

: B e e e e e 38
I8 RREP handling (Resalution (5b))o i 72
. o (5

Ig RREP handling (Resolution gﬂ) e 72
10 __Routine for packet handling (Resolution (9b)) L 83

b)) . 85

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 136

List of Figures

Precursor maintenance I|m|ts packet deliverylratio 102
Wes 105
19 _4-node topology missing route optimisation opportlhnity 107

|23 Non- ootlmal route selection e e 116

137 Modelling, Verifying and Analysing AODV

List of Tables
[1 Structural operational semantics for sequential omeream_sﬂmis 11
3 Structural operational semantics for node expredsions 14

l4__Structural operational semantics for nefwork expression 15

[Z___Analysis of AODV implementations 87

te] Different interpretations and consequences of ambésiiti the REC 89

[0 Process algebras modelling broadcast communitation 122

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan 138

Index

abstraction operatdr, I3, 123
acknowledgmenf, 11
action[12

add,[29

addpre,[23

addpreRT,[24
a-conversion[_1P

AODV, 1

append, [28

application layef_10
application layer daté, 10, 20
arrive, [14+1%
assignmenf_10
associativity[17

atomic propositiong, 89, 90
AWN, [1,[10

bidirectional links[®

bound[1D
broadcas(]4,10=12

choice operatof,12

client,[10

closed[IP

communication functior, 17
concealment operatdr, 113
conditional unicast,]{, 1L, 1P2, 127
connect[14L16

connected, 21

connectivity graph,_ 36

control messagé] B, P0,]130

data expressionk, 110

data formulad_10

data packef,]436, 10,170,130
data structure, 10, 16, R0
data typed, 10, 20

data valued, 10,16

data variables, 10

de Simone formak,_16
defining equatior,_10
deliver,2[3[1DEIZ, 14-16

destination[Y97, 1L, 21

destination sequence numtdéf H=2,21, 22
dhops,[22

discard actiong, 18,1P0

disconnect[I4+16
drop,[21

encapsulatiorf, 10

encapsulation operatér,]13,1 14,123
error handling[_32

error messageseeRERR message, 32
eventuality property, 90

F (eventually)[9D
fairness[94, 94
strong fairness properfy, 5
weak fairness property, P5
fairness specification, 96
flag,[@
flag,[22
forward route[¥
forwarding,[2 617159
fresh[20

G (globally),[90

global broadcask,_120
gratuitous RREP flag] 9
groupcast,_ 11,12

head,
history,[56
hop,[21

hop count[211, 22

iD,[23

inc,

induction on reachability, 38
initial state[38
injection,[I6[30

input enabled_ 17,120
internal actiond, 12, 18,16
interpretation[4, 62
invalidate,
invariants[38

IP addresse§, 10,114,120
justness propertj, 91
kD,[23

lifetime, [8
Linear-time Temporal Logic (LTL), 89

139

local broadcast]1, 120, 127
local repair[8

loop freedom[1, 54, 56
lossy broadcasft] 2, 1119

MANET, [
message queueirig,]14] 28] 30
messages$, 10, P0.127

neighbour{ 11 436,19, 10
interestedseeprecursors, 5
net sequence numbgr,]49
network [T4
network expressionk, 114
newpkt,[10,[14[16[28
next hop[#[H 11, 21, 23
nhop, [23
node[1[4 Td, 14
mobility, [6,[10
node expressions, 114
node identifierd, 20
non-blocking[1l7, 120
nrreqid,[28

output actiond, 91
output transitiond, 91

packet delivery propertj] B, 99, 701
parallel compositior{, 10, 18,114
parallel process expressiohs] 13
partial network[_Th

path[89
complete[90, 91, 93

pkt,

precs,[23

precursor list 211

precursord, 21, 28,82

predicate logid,_110
process algebrf, 110
process namels, 110

progress propertj, 91

qD,
quality,[49
queued data, 26, B1

receive [11+13
request-required flaf, 6,186
rerr,

Modelling, Verifying and Analysing AODV

RERR messagg] 4,128
restriction operatof, 13
reverse route,]4

RFC[A[8
route [4[2]l
active [64
invalid,[3,[21[28
known,[23
valid,[5,[21[28

route correctnesk] 2,56

route discovery proceds,[4+£6] 20] 32

route discovery property] P, D7

route error (RERR]14, 20

route reply (RREP)L14, 20

route reply acknowledgment (RREP-ACK), 9

route request (RREQ) B, 170,125] 59

route request identifier, 5

routing graph[_56

routing protocol[L

routing table[#¥H1, 20, 22

routing table entry,1437] 9, 22

rrep,

RREP messagE] 4, [6,[7,]128

rreq,

RREQ messagg] 4H6,128
originator,[5[6

self-entries[68
optimal,[72
send [11+13[1b
sender H.16
sequence numbéd [4H6] 20
invalid,[64
known,[B[9[2D
truly unknown[8b
unknown[5[B[, 20, 23
sequence-number-status fla, 14,16, 9[20-23
sequential process expressidng, 10
sequential processés,] 10
setRRF,[27
shared variable§, 13
source[¥
sqn,[22
sqnf,[22
*cast, [14+16
state[3B
strong bisimilarity[16
structural operational semanti€s] 12

A. Fehnker, R.J. van Glabbeek, P. Héfner, A. Mclver, M. Pamn & W.L. Tan

tail,

timing, [8,[123[12B
topology[4[6

transition[1P 14, 19, 38
transmission rangg, 10,114,121

unicast[#[H T10=12

unidirectional links[P

unknown sequence number (‘U’) fldd, 9
unsetRRF,[21

update,[24

validity status[21, 22
valuation[11
variables[10,16
vD,[23

Wireless Mesh Networlk] 1
WMN, seeWireless Mesh Network, 1

140

	Introduction
	Ad hoc On-Demand Distance Vector Routing Protocol
	Basic Protocol
	Detailed Examples

	Abstractions Chosen
	Timing
	Optional Protocol Features
	Flags

	A Process Algebra for Wireless Mesh Routing Protocols
	A Language for Sequential Processes
	A Language for Parallel Processes
	A Language for Networks
	Results on the Process Algebra
	Optional Augmentation to Ensure Non-Blocking Broadcast
	Illustrative Example

	Data Structure for AODV
	Mandatory Types
	Sequence Numbers
	Modelling Routes
	Routing Tables
	Updating Routing Tables
	Updating Precursor Lists
	Inserting New Information in Routing Tables
	Invalidating Routes

	Route Requests
	Queued Packets
	Messages and Message Queues
	Summary

	Modelling AODV
	The Basic Routine
	Data Packet Handling
	Receiving Route Requests
	Receiving Route Replies
	Receiving Route Errors
	The Message Queue and Synchronisation
	Initial State

	Invariants
	State and Transition Invariants
	Notions and Notations
	Basic Properties
	Well-Definedness
	The Quality of Routing Table Entries
	Loop Freedom
	Route Correctness
	Further Properties
	Queues
	Route Requests and RREQ IDs
	Routing Table Entries

	Interpreting the IETF RFC 3561 Specification
	Decreasing Destination Sequence Numbers
	Interpreting the RFC
	Updating Routing Table Entries
	Self-Entries in Routing Tables
	Invalidating Routing Table Entries
	Further Ambiguities
	Further Assumptions

	Implementations
	Summary

	Formalising Temporal Properties of Routing Protocols
	Progress, Justness and Fairness
	Route Discovery
	Packet Delivery

	Analysing AODV—Problems and Improvements
	Skipping the RREQ ID
	Forwarding the Route Reply
	Updating with the Unknown Sequence Number
	From Groupcast to Broadcast
	Forwarding the Route Request

	Related Work
	Process Algebras for Wireless Mesh Networks
	Modelling, Verifying and Analysing AODV and Related Protocols

	Conclusion and Future Work
	References
	List of Processes
	List of Figures
	List of Tables
	Index

