
On the Expressiveness of ACP
(extended abstract)∗

Rob van Glabbeek
†

Computer Science Department, Stanford University

Stanford, CA 94305, USA

rvg@cs.stanford.edu

De Simone showed that a wide class of languages, including CCS, SCCS,
CSP and ACP, are expressible up to strong bisimulation equivalence in
Meije. He also showed that every recursively enumerable process graph
is representable by a Meije expression. Meije in turn is expressible in
aprACP (ACP with action prefixing instead of sequential composition).

Vaandrager established that both results crucially depend on the
use of unguarded recursion, and its noncomputable consequences. Ef-
fective versions of CCS, SCCS, Meije and ACP, not using unguarded
recursion, are incapable of expressing all effective De Simone languages.
And no effective language can denote all computable process graphs.

In this paper I recreate De Simone’s results in aprACP without using
unguarded recursion. The price to be payed for this is the use of a
partial recursive communication function and—for the second result—
a single constant denoting a simple infinitely branching process. Due
to the noncomputable communication function, the version of aprACP
employed is still not effective.

However, I also define a wide class of De Simone languages that are
expressible in an effective version of aprACP. This class includes the
effective versions of CCS, SCCS, ACP, Meije and most other languages
proposed in the literature, but not CSP. An even wider class, including
CSP, turns out to be expressible in an effective version of aprACP to
which an effective relational renaming operator has been added.

1 Introduction

In the early 1980’s several languages for the description of communicating pro-
cesses were introduced, most notably CCS [8], SCCS [9], CSP [5] and ACP
[3]. Using these languages for purposes of specification and verification showed
the necessity, or at least the convenience, of adding many additional constructs
tailored to specific applications. In foundational research however, for instance
when proving a property by structural induction, it is more convenient to have
a fixed and well-defined set of operators. This consideration gives rise to the
task of finding a basic language in which all or most useful operators can be ex-
pressed. Although the languages CCS and SCCS were designed with this goal
in mind, the language Meije, proposed by Austry & Boudol [1], was the
first result of a systematic analysis of expressiveness issues. In [13], Robert

∗To appear in A. Ponse, C. Verhoef & S.F.M. van Vlijmen, editors: Proceedings ACP94,
Workshop on Algebra of Communicating Processes, Utrecht, The Netherlands, May 1994,
Workshops in Computing, Springer-Verlag, 1994.

†This work was supported by ONR under grant number N00014-92-J-1974.

1 Introduction 2

de Simone observed that all constructs of the languages CCS, SCCS, CSP and
ACP, and most constructs that are used in specific applications, can be defined
in a particular way—namely by structural operational rules that fit in what is
now known as the De Simone format—and showed that any operator that can
so be defined is expressible in Meije, up to strong bisimulation equivalence.
I will refer to a language all of whose constructs can so be defined as a De
Simone language.

The interleaving semantics of CCS-like languages is most conveniently de-
scribed in terms of process graphs or labelled transition systems. Depending
on how constructive one wants the theory to be, several classes of graphs or
transition systems can be considered, as indicated in Figure 1. For any un-

κ-bounded

countable

�
�

rec. enumerable

❏
❏
❏❏

decidable

finitely branching

✡
✡

✡✡
computable

❅
❅

primitive recursive

regular

finite & acyclic

✟✟✟✟

κ-bounded

countable

�
�

rec. enumerable

❅
❅

decidable

guarded

bounded

�
�

effective

❅
❅

primitive effective

regular

recursion-free

Figure 1: Classes of process graphs . . . and process expressions

countable cardinal κ one can define the κ-bounded process graphs to be the
ones with less than κ (reachable) nodes (states) and edges (transitions), or—
clearly equivalent—the ones in which every node has less than κ outgoing edges.
For κ = ℵ0, however, these definitions would not be equivalent. The regular
process graphs (having a finite set of states and transitions) form a strictly
smaller class than the finitely branching ones. Additionally one can consider
the recursively enumerable graphs, whose nodes form a recursive set (such as
the natural numbers), and whose edges form a recursively enumerable set. If,
moreover, it is decidable whether a prospective edge is present or not, such a
graph is decidable. Furthermore, a computable process graph is one for which
there exists a terminating algorithm that, when given a node, produces as out-
put the finite set of its outgoing edges. This notion was introduced in Baeten,
Bergstra & Klop [2]. Note that it is a stronger requirement than “decid-
able and finitely branching”. Finally, in Ponse [11] a graph is called primitive
recursive if it is computable by means of a primitive recursive algorithm.

1 Introduction 3

In this paper I propose a similar classification for (expressions in) De Si-
mone languages. For each class of process graphs in Figure 1 I introduce a class
of (process) expressions that are guaranteed to denote graphs from that class
only. The classes of process expressions are displayed in the second part of Fig-
ure 1. The notions of recursion-free, regular, and κ-bounded expressions are just
mentioned for the sake of completeness, and are defined for CCS-like languages
only. The countable process expressions are the ones in which all operators,
not counting recursion, have finite arities. Except in the section on κ-bounded
expressions, I presume this to be the default. The concepts bounded and effec-
tive are due to Vaandrager [14]. These two general but simple restrictions
ensure that the effected expressions only denote, respectively, finitely branching
and computable process graphs. Applied to CCS-like languages boundedness
reduces to guardedness of recursive specifications. The notion of effectivity is
also applied to languages as a whole. In that case it presupposes a decidable
set of closed terms, and requires the interpretation which maps closed terms to
descriptions of computable process graphs to be computable as well.

Whereas for languages like ACP and CCS one can define a κ-bounded ver-
sion (containing only κ-bounded expressions), a recursively enumerable version,
an effective version, etc., the language Meije was designed in such a way that
all its constructs, except for recursion, are intrinsically effective. Nevertheless,
as shown in De Simone [12], many undecidable and infinitely branching pro-
cesses can be specified by Meije-expressions. The expressive power needed to
do so can only originate from the use of unguarded recursion. It follows that the
restriction to guarded recursion must be a prerequisite in the definitions of de-
cidable and bounded expressions. This is indicated in Figure 1. The language
Meije with unguarded recursion falls in the class of recursively enumerable
languages. In Meije only finite recursion is used.

In [13], De Simone shows that Meije is universal in two different ways. It
is universal among the De Simone languages, and it has a universal power to
specify process graphs. Namely, any finitary recursively enumerable De Simone
language is expressible in Meije, and any recursively enumerable process graph
is representable by a Meije expression. Here finitariness is a syntactic restric-
tion that is met by virtually all De Simone languages encountered in practice.
Both expressiveness results hold up to bisimulation equivalence.

Vaandrager [14] investigates whether similar expressiveness results can
be obtained for effective languages, and comes up with two negative results.
First of all he points out that no effective language is capable of denoting
all computable process graphs. This had been shown already by Baeten,
Bergstra & Klop [2] up to strong bisimulation equivalence, but Vaandrager
sharpens the result to hold for the coarser notion of trace equivalence as well.
Secondly he defines a finitary effective De Simone language PC that cannot
be translated in any effective version of Meije, CCS, SCCS or ACP with only
finite guarded recursion. The culprit is a relational renaming operator that
occurs in this language. By means of this operator a primitive recursive graph
can be specified that is not specifiable in the mentioned languages.

The main contributions of the present paper are two effective versions of De
Simone’s first expressivity result. As unguarded recursion violates effectivity,
its use must be eliminated from De Simone’s construction. But Meije appears
to lose most of its power when unguarded recursion is gone. Therefore I will use
a variant of ACP [3], called aprACPF . aprACPF is a parametrised language,

1 Introduction 4

of which an instantiation is obtained by selecting a set A of actions and a
partial binary communication function on A. One particular choice of the
communication function yields an extension of Meije. Thus all expressiveness
results obtained for Meije hold for aprACPF as well. However, thanks to the
possibility of other communication functions, aprACPF is more flexible, and
potentially more expressive.

In Section 2 I propose a definition of what it means for one language to be
expressible in another. This definition agrees with the notion of a translation
from Boudol [4]. I also introduce (annotated) signatures to determine the
syntax of a language and review the method of structural operational semantics
for interpreting the closed expressions in a language as (equivalence classes of)
process graphs.

In Section 3 I introduce the language aprACPF , and indicate how it relates
to ACP, CCS and Meije. In short, it is a sublanguage of ACP—thus “apr”
(for action prefix)—to which renaming operations have been added—thus the
subscript F (for functional renaming). CCS as well as Meije are obtained as
sublanguages of aprACPF under particular instantiations of the parameters. I
show that several operators, such as the left-merge, the communication merge
and the alternative composition, that play a rôle in ACP, are expressible in
terms of the other operators, and hence need not to be introduced as primitives.
I also show that one can benefit from all choices of communication functions
at the same time. There is namely one canonical instantiation of aprACPF in
which any other instantiation with the same set of actions can be expressed.

In Section 4 I define the classification of aprACPF -expressions of Figure 1.
When possible, I make these classes of expressions large enough to denote every
graph in the corresponding class. Only in case of the decidable aprACPF -
expressions I do not succeed in this. In particular, each computable process
graph can be represented by an effective expression. This had been shown
earlier by Ponse [11] for the language µCRL. However, it is not possible to
combine enough such expressions in one effective language, as follows from the
first negative expressiveness result mentioned above. When one tries to do
this, the set of closed terms of the language becomes undecidable. For the
same reason I couldn’t find a canonical candidate for an effective version of
aprACPF , in which all other (finitary) effective versions of aprACPF can be
expressed. This leaves not much hope for expressing all finitary effective De
Simone languages in aprACPF . Therefore I settle for the primitive effective
De Simone languages, denoting only primitive recursive graphs. By means of
a trivial construction, every such graph can be denoted in a single primitive
effective version of aprACPF . As the construction uses infinite—but primitive
recursive—guarded recursion, this is still not a primitive effective version of
De Simone’s second expressiveness result. The same can be said for a more
disciplined construction by Ponse [11].

In Section 5 I extend the classification of Figure 1, or actually the part
between “countable” and “primitive effective”, to arbitrary De Simone lan-
guages. Subsequently I state the expressiveness results that I obtained, but in
this extended abstract the proofs are not included.

Vaandrager’s counterexample-language PC needs only primitive recursion,
so not all finitary primitive effective De Simone languages translate in aprACPF

with finite guarded recursion. Therefore I isolate a class that do. These are the
functional finitary primitive effective De Simone languages. They include the

2 Syntax, Semantics and Expressibility 5

primitive effective versions of CCS, SCCS, ACP and Meije. The restriction
to primitive recursion is probably not so bad, as I am not aware of any use
of effective but not primitive effective De Simone languages. However, the re-
quirement of functionality rules out CSP and Vaandrager’s PC. This is solved
by adding the relational renaming operator of PC—which to a great extent also
occurs as the (inverse) image operator in CSP—to aprACPF , thereby obtaining
aprACPR. All finitary primitive effective De Simone languages are expressible
in the primitive recursive version of aprACPR using only finite guarded recur-
sion. I do not know if these results carry over to Meije. They do not carry
over to CCS, CSP or PC.

Besides these main contributions I establish similar results for the count-
able De Simone languages and the bounded ones. Again, I use only aprACPR

with finite guarded recursion. Similarly, I recreate De Simone’s first expres-
siveness result for aprACPR, without using unguarded recursion. For this, an
undecidable communication function is used.

All results announced above are also generalised to non-finitary De Simone
languages. This necessitates the use of infinite, but still guarded, recursion.

Vaandrager [14] established that any finite effective De Simone language
is expressible in a finite version of PC. Here finite means specified by means of
a finite number of De Simone rules. Such languages only denote graphs with
a finite set of actions. It should be noted that any finite De Simone language
with guarded recursion is functional, finitary and primitive effective. Finite
guarded De Simone languages can also be expressed in aprACPF and Meije.

As far as the power to specify process graphs goes, I recreate De Simone’s
result while using only finite guarded recursion. For this purpose I use a version
of aprACPF with a partial recursive (but undecidable) communication func-
tion, to which a single constant U has been added denoting a simple infinitely
branching process. Without adding U no infinitely branching processes can be
specified in aprACPF with guarded recursion. This result did not extend to
other classes of process graphs/expressions.

2 Syntax, Semantics and Expressibility

In this section I propose a definition of what it means for one language to
be expressible in another. In order for such a notion of expressibility to be
meaningful, a language is understood to combine syntax and semantics.

First I will introduce the syntax of a language through the notion of a
annotated signature. The annotated signature determines what are the valid
expressions of the language. I will define a signature as a set of function decla-
rations, thus omitting the possibility of predicates. These do not occur in the
languages I want to study. The annotation specifies to what extent recursion
is incorporated in the language.

The semantics of a language is given through an interpretation of the
(closed) terms in a domain of values. Such an interpretation should be com-
positional and satisfy a few other requirements. My notion of a compositional
semantics generalises notions of denotational semantics, namely by not insist-
ing that the meaning of recursive expressions is obtained by order-theoretic
methods. Thus my concept of expressiveness applies to languages with a deno-
tational semantics as well.

2 Syntax, Semantics and Expressibility 6

Subsequently I treat the notion of Structural Operational Semantics in
Plotkin’s style [10]. The languages considered in this paper will all be equipped
with a structural operational semantics. Such an operational semantics asso-
ciates in a standard way a process graph to every closed process expression.

On process graphs, I divide out bisimulation equivalence, which is among
the finest congruence relations available. All my expressibility results will be
established up to bisimulation equivalence. They will then also hold for most
other—less fine—equivalences.

2.1 Syntax

In this paper V is an infinite set of variables, ranged over by X,Xi, x, y, x
′ etc.

Definition 1 (Signatures). A function declaration is a pair (f, n) of a function
symbol f 6∈ V and an arity n ∈ IN. A function declaration (c, 0) is also called
a constant declaration. A signature is a set of function declarations. The set
T
r(Σ) of terms with recursion over a signature Σ is defined inductively by:

• V ⊆ T
r(Σ),

• if (f, n) ∈ Σ and t1, . . . , tn ∈ T
r(Σ) then f(t1, . . . , tn) ∈ T

r(Σ),

• If VS ⊆ V , S : VS → T
r(Σ) and X ∈ VS , then

/
\X|S\

/ ∈ T
r(Σ).

A term c() is often abbreviated as c. A function S as appears in the last clause
is called a recursive specification. A recursive specification S is often displayed
as {X = SX | X ∈ VS}. An occurrence of a variable y in a term t is free if it
does not occur in a subterm of the form /

\X|S\
/ with y ∈ VS . A term is closed

if it contains no free occurrences of variables. Let T r(Σ) be the set of closed
terms over Σ. The sets T(Σ) and T (Σ) of open and closed terms over Σ without
recursion are defined likewise, but without the last clause.

The syntax of a language can be given as a signature together with an annota-
tion which places some restrictions on the use of recursion. These can be:
κ-bounded: the sets S should have cardinality less than κ,
countable: the sets S should be countable,
enumerable: the functions S should be partial recursive,
computable: the sets VS should be decidable and the functions S recursive,
primitive: as above, but using only primitive recursion,
finite: the sets S should be finite,
guarded: the sets of equations S should satisfy a syntactic criterion that

ensures that they have unique solutions under a given interpretation,

or no recursion.

Definition 2 (Substitutions). A Σ-substitution σ is a partial function from V
to Tr(Σ). If σ is a substitution and t a term, then t[σ] denotes the term obtained
from t by replacing, for x in the domain of σ, every free occurrence of x in t
by σ(x), while renaming bound variables if necessary to prevent name-clashes.
In that case t[σ] is called a substitution instance of t. A substitution instance
t[σ] where σ is given by σ(xi) = si for i ∈ I is denoted as t[si/xi]i∈I . These
notions extend to syntactic objects containing terms, with the understanding
that such an object is a substitution instance of another one only if the same
substitution has been applied to each of its constituent terms.

2 Syntax, Semantics and Expressibility 7

2.2 Expressibility

A language can be given by an annotated signature, specifying its syntax, and
an interpretation, assigning to every (closed) term t its meaning [[t]]. The mean-
ing of a closed term can simply be a value chosen from a set of values ID, which
is called a domain. Usually interpretations are required to satisfy some san-
ity requirements. One of them is that the meaning of a term /

\X|S\
/ is the

X-component of a solution of S. To be precise:

[[/\X|S\
/]] = [[SX [/\Y |S\

//Y]Y ∈VS
]].

Other requirements are compositionality and invariance under α-recursion.
Compositionality demands that the meaning of a term is completely determined
by the meaning of its components. This means that for functions (f, n) ∈ Σ
and for recursive specifications S and S′ with X ∈ VS = VS′ we have

[[ti]] = [[t′i]] (i = 1, ..., n) ⇒ [[f(t1, ..., tn)]] = [[f(t′1, ..., t
′
n)]]

and [[SY]] = [[S′
Y]] (Y ∈ VS) ⇒ [[/\X|S\

/]] = [[/\X|S′\
/]].

Invariance demands that the meaning of a term is independent of the names of
its bound variables, i.e. for any injective substitution α : VS → V

[[/\α(X)|S[α]\/]] = [[/\X|S\
/]].

In order for language L1 to be expressible in language L2, I require that for
every closed L1-term t there exists a closed L2-term t̃ denoting the same value.
Usually this can only be the case if the domain ID1 in which L1-expressions are
interpreted is included in the domain ID2 of L2.

The requirement on closed terms is not sufficient. It says that every value
denotable by language L1 can also be denoted by language L2. In addition I
want that every operation of L1 can be mimicked in L2. This has to do with
the meaning of open terms. For every open term in T

r(Σ1) I want to find a
term in T

r(Σ2) with the same meaning.
A common approach to open terms is to reduce them to the collection of

their closed substitution instances. In this view there is no need to extend the
interpretation [[·]] explicitly to open terms. The preconditions [[SY]] = [[S′

Y]] of
the second compositionality requirement are simply read as “[[SY [σ]]] = [[S′

Y [σ]]]
for each closed substitution σ : V → T r(Σ)”. This approach is often taken when
generalising an equivalence relation on closed terms to an equivalence on open
terms (over the same signature). Two open terms are then declared equivalent
if for every closed substitution the corresponding substitution instances are
equivalent.

It is slightly more difficult to employ this approach in defining expressibility.
The problem is that open terms over different signatures are compared, so that
it is impossible to employ the same substitution at both sides. This is solved
as follows:

Definition 3 (Expressibility) Let Li (i = 1, 2) be two languages, given as an
annotated signature Σi and an interpretation [[·]]i : T

r(Σi) → IDi. L1 is said to
be expressible in L2 if there is a translation ·̃ : Tr(Σ1) → T

r(Σ2) such that for
all t ∈ T

r(Σ1) with free variables x1, ..., xn and for all t1, ..., tn ∈ T r(Σ)

[[t[ti/xi]
n
i=1]]1 = [[t̃[t̃i/xi]

n
i=1]]2.

2 Syntax, Semantics and Expressibility 8

This will be my definition of expressibility for now. In the full version of
this paper, however, I plan to be a bit more ambitious. An open term with n
free variables is interpreted as an n-ary operator on the domain ID, and for L1

to be expressible in L2 I require that for every L1-term t there is an L2-term
t̃, such that t and t̃ denote the same operator, at least when applied to values
from the domain of L1. If L1 can be expressed into L2 in that sense, it can
certainly be done in the sense of Definition 3.

2.3 Quotient domains

Let ∼ be an equivalence relation on a domain ID. An interpretation [[·]] in ID is
compositional up to ∼ if it satisfies the requirements for compositionality, but
with “=” replaced by “∼”. The first requirement for instance reads

[[ti]] ∼ [[t′i]] (i = 1, ..., n) ⇒ [[f(t1, ..., tn)]] ∼ [[f(t′1, ..., t
′
n)]].

In the same way the other sanity requirements, as well as the notion of ex-
pressibility, can be defined up to ∼. In the case of expressibility, however, it is
necessary that ∼ is defined on ID1 ∪ ID2.

Given a domain ID for interpreting languages and an equivalence relation ∼,
the quotient domain ID/∼ consists of the ∼-equivalence classes of elements of ID.
An interpretation [[·]] : TR(Σ) → ID of the closed terms of a language in ID, is
turned into the quotient interpretation [[·]]∼ : TR(Σ) → ID/∼ of these terms by
letting [[t]]∼ be the equivalence class containing [[t]]. This quotient interpretation
satisfies the sanity requirements of Section 2.2 iff the original interpretation
satisfies them up to ∼. Likewise, one language is expressible in another under
a quotient interpretation obtained by dividing out the same equivalence ∼
on their domains of interpretation, iff, under the original interpretation, this
language is expressible in the other up to ∼.

2.4 Process Graphs

When the expressions in a language are meant to represent processes, they
are called process expressions, and the language a process description language.
Suitable domains for interpreting process description languages are the class of
process graphs and its quotients. In such graph domains a process is represented
by either a process graph, or an equivalence class of process graphs. Process
graphs are also known as state-transition diagrams or automata. They are
labelled transition systems equipped with an initial state.

Definition 4 (Process graphs) A process graph, labelled over a set A of actions,
is a triple G = (S, T, I) with

– S a set of nodes or states,

– T ⊆ S ×A× S a set of edges or transitions,

– and I ∈ S the root or initial state.

Let |G(A) be the domain of process graphs labelled over A.

Virtually all so-called interleaving models for the representation of processes
are isomorphic to graph models. The failure sets for instance that represent

2 Syntax, Semantics and Expressibility 9

expressions in the process description language CSP [5] can easily be exchanged
for equivalence classes of graphs, under a suitable equivalence. In [3] the lan-
guage ACP is equipped with a process graph semantics, and the semantics of
CCS, SCCS and Meije given in [8, 9, 1, 13] are operational ones, which, as I
will show below, induce a process graph semantics.

Usually the parts of a graph that cannot be reached from the initial state
by following a finite path of transitions are considered meaningless for the de-
scription of processes. This means that one is only interested in process graphs
as a model of system behaviour up to some equivalence, and this equivalence
identifies at least graphs with the same reachable parts. Likewise, the particu-
lar identity of the states in a process graph is normally not of any importance.
Two graphs that only differ in the naming of their states are called isomorphic
and also isomorphic graphs are semantically identified.

Definition 5 (Reachability). Let G = (S, T, I) be a process graph. A path is
an alternating sequence s0, a1, s1, a2, s2, . . . , sn−1, an, sn of states and actions,
such that si−1

ai−→ si for i = 1, ..., n. Here si−1
ai−→ si is an abbreviation for

(si−1, ai, si) ∈ T . Such a path is said to go from s0 to sn. A state s′ is reachable
from a state s if there is a path from s to s′. The reachable part of G is the
graph (SR, TR, I) with SR ⊆ S the set of states reachable from the initial state
I, and TR = T ∩ (SR ×A× SR).

(Isomorphism). Two process graphs G = (S, T, I) and H = (S′, T ′, I ′) are
isomorphic if there exists a bijection f : S → S′—called an isomorphism—with
f(I) = I ′ and (s, a, t) ∈ T ⇔ (f(s), a, f(t)) ∈ T ′.

Write G ∼= H if the reachable parts of G and H are isomorphic.

Thus ∼= may be considered the finest equivalence (the one with the fewest iden-
tifications, and the smallest equivalence classes) on |G that makes |G/∼= in a
reasonable model of concurrency. However, some languages (interpretations)
encountered in this paper fail to be compositional up to ∼=. Also several ex-
pressiveness results will not hold up to ∼=. Therefore a coarser equivalence
(identifying more, and having larger equivalence classes) should be divided out
on |G. In the literature many equivalences have been proposed. The finest of
those is (strong) bisimulation equivalence, due to Milner [8, 9].

Definition 6 (Bisimulation equivalence). Two process graphs G and H are
bisimulation equivalent—notation G↔H—if there exists a binary relation R—
called a bisimulation—between their states, such that

– the initial states of G and H are related,

– if sRt and s
a

−→ s′ then H has a state t′ with t
a

−→ t′ and s′Rt′,

– if sRt and t
a

−→ t′ then G has a state s′ with s
a

−→ s′ and s′Rt′.

All languages mentioned in this paper satisfy the sanity requirements of Sec-
tion 2.2 up to ↔ . The expressiveness results of this paper will also be estab-
lished up to bisimulation equivalence. This means that they surely hold for
the (coarser) equivalences used elsewhere in the literature, such as weak bisim-
ulation equivalence—the standard equivalence of CCS [8]—and (weak) failures
equivalence—the standard semantics of CSP [5].

2 Syntax, Semantics and Expressibility 10

2.5 Operational Semantics

In this section I present Plotkin’s method of Structural Operational Semantics
[10] for interpreting expressions as process graphs or labelled transition systems.

Definition 7 (Transition system specifications; Groote & Vaandrager [6]).
Let Σ be an annotated signature and A a set (of actions). A (positive) (Σ, A)-
literal is an expression t

a
−→ t′ with t, t′ ∈ T

r(Σ) and a ∈ A. An action rule
over (Σ, A) is an expression of the form H

α
with H a set of (Σ, A)-literals (the

premises of the the rule) and α a (Σ, A)-literal (the conclusion). A rule H
α

with
H = ∅ is also written α. A transition system specification (TSS) is a triple
(Σ, A,R) with Σ a signature and R a set of action rules over (Σ, A).

The following definition tells when a transition is provable from a TSS. It
generalises the standard definition (see e.g. [6]) by (also) allowing the derivation
of rules. The derivation of a transition t

a
−→ t′ corresponds to the derivation

of the rule H

t
a

−→t′
with H = ∅. The case H 6= ∅ corresponds to the derivation of

t
a

−→ t′ under the assumptions H .

Definition 8 (Proof). Let P = (Σ, R) be a TSS. A proof of an action rule
H
α

from P is a well-founded, upwardly branching tree of which the nodes are
labelled by Σ-literals, such that:

• the root is labelled by α, and

• if β is the label of a node q and K is the set of labels of the nodes directly
above q, then

– either K = ∅ and β ∈ H ,

– or K
β

is a substitution instance of a rule from R.

If a proof of H
α

from P exists, then H
α

is provable from P , notation P ⊢ H
α
.

Transition system specifications often contain infinitely many rules, yet are
presented finitely by giving rule schemata, each of which codifies a large set of
rules. This practice is formalised in part by the notion of an abstract TSS.

Definition 9 (Abstract TSSs). An abstract Σ-literal is an expression t −→ t′

with t, t′ ∈ T(Σ). An abstract action rule over (Σ, A) is an expression of the

form H, Pr
α

with H a set of abstract (Σ, A)-literals, Pr ⊆ AH × A, and α an
abstract Σ-literal. An abstract TSS is a triple (Σ, A,R) with Σ a signature
and R a set of abstract action rules over (Σ, A). An abstract TSS (Σ, A,R)
determines the (concrete) TSS (Σ, A,R′) with

R′ =

{
{ti

ai−→ t′i | i ∈ I}

t
b

−→ t′

∣∣∣∣
{ti −→ t′i | i ∈ I}, Pr

t −→ t′
∈ R ∧ Pr(~a, b)

}
.

Finally I will show how the operational semantics of a language, given as a
TSS, induces a process graph semantics.

Definition 10 (Interpreting the closed expressions in a TSS as process graphs).
Let P = (Σ, A,R) be a TSS and t ∈ T (Σ). Then [[t]] is defined to be the
reachable part of the process graph (T r(Σ), T, t) with T the set of transitions
provable from P .

3 Prefix ACP with Relational Renaming 11

3 Prefix ACP with Relational Renaming

The language that I will use for my expressiveness results is a variant of ACP
[3] that could be called prefix ACP with relational renaming. Like ACP this
language has two parameters: an alphabet A of actions and a partial commu-
nication function | : A2 → A, which is commutative and associative, i.e.
• a|b = b|a (commutativity)
• (a|b)|c = a|(b|c) (associativity)

for all a, b, c ∈ A (and each side of these equations is defined just when the
other side is). I will denote this language as aprACPR(A, |).

Its signature contains a constant 0 denoting inaction, two binary operators
+ and ‖ denoting alternative and parallel composition respectively, a unary
operator a for any action a ∈ A, a unary encapsulation operator ∂H for any
H ⊆ A and a relational renaming operator ρR for any binary relationR ⊆ A×A.

p‖q represents the independent execution of the processes p and q, partly
synchronised by the communication function |. If a|b is defined, an occurrence
of a in p can synchronise with an occurrence of b in q into a communication
action a|b between p and q. If a|b is not defined, no such communication is
possible. The action a of p can, instead of synchronising with an action of q,
(also) appear independent of q, and likewise can b occur independently of p.

The process ap first performs the action a ∈ A and then behaves like p.
∂H(p) behaves like p, but without the possibility of performing actions from
H . The operator ρR is a slight generalisation of the relabelling and (inverse)
image operators of CCS and CSP. Process ρR(p) behaves just like process p,
except that if p has the possibility of doing an a, ρR(p) can do any one action
b that is related to a via R.

In aprACPR(A, |)-expressions brackets are omitted under the convention
that a binds strongest and + weakest. Besides aprACP with relation renaming
I also consider aprACP with functional renaming, denoted aprACPF (A, |). This
is the same language, but with a renaming operator ρf only for every function
f : A → A instead of for every relation.

The action rules for aprACPR(A, |) are given in Table 1, thereby completing
the formalisation of this language as a TSS. These rules determine an interpre-
tation of the aprACPR(A, |)-expressions in |G(A). This interpretation agrees,
up to bisimulation equivalence, with the more denotational interpretation of
ACP(A, |) in |G(A) given in [Baeten,] Bergstra & Klop [3, 2].

It is common to regard the entries in tables like 1 as schemata, each of which
denotes a rule for any proper instantiation of the metavariables a, b, c by real
actions from A. Thus in case A is infinite, there are infinitely many rules for
every operator. In an attempt at “finitisation” I will in this paper regard each

of the first six entries as single rules of an abstract TSS. The rule
x

a
−→ x′

x‖y
a

−→ x′‖y
for instance, should be read as

x −→ x′, Id

x‖y −→ x′‖y
where Id ⊆ A×A is the identity

relation on A. In the rules were Pr is not the identity, it is explicitly given. The
last three entries in Table 1 remain schemata even when interpreted as abstract
action rules. There is namely one rule for every encapsulation operator, one
for every relational renaming, and one for every pair /

\X|S\
/ with S a recursive

specification and X ∈ VS . But at least there are now finitely many rules for
every operator, even if A is infinite. This will turn out to be a useful property.

3 Prefix ACP with Relational Renaming 12

ax
a

−→ x
x

a
−→ x′

x+ y
a

−→ x′

y
a

−→ y′

x+ y
a

−→ y′

x
a

−→ x′

x‖y
a

−→ x′‖y

x
a

−→ x′, y
b

−→ y′, a|b = c

x‖y
c

−→ x′‖y′
y

a
−→ y′

x‖y
a

−→ x‖y′

x
a

−→ x′, a 6∈ H

∂H(x)
a

−→ ∂H(x′)

Sx[
/
\Y |S\

//Y]Y ∈VS

a
−→ z

/
\X|S\

/

a
−→ z

x
a

−→ x′, R(a, b)

ρR(x)
b

−→ ρR(x′)

Table 1: aprACPR

3.1 CCS

Milner’s Calculus of Communicating Systems (CCS) [8] can be regarded as
(a sublanguage of) an instantiation of aprACP with functional renaming. CCS
is parametrised with a set A of names. The set Ā of co-names is given by
Ā = {ā | a ∈ A}, and L = A∪Ā is the set of labels. The function ·̄ is extended
to L by declaring ¯̄a = a. Finally Act = L

.

∪ {τ} is the set of actions. CCS
can now be presented as aprACP(Act, |), where | is the partial function on Act
given by a|ā = τ .

In CCS there is a renaming operator only for every function f : Act → Act
that satisfies f(ā) = f(a) and f(τ) = τ . This operator (applied on a process p)
is written p[f] and called relabelling. Also there is an encapsulation operator
∂H only when H = A ∪ Ā with A ⊆ A. This operator is called restriction and
is written p\A. Parallel composition is written | instead of ‖, but there is no
further difference between CCS and aprACPF (Act, |).

3.2 ACP

There are many methodological differences between the ACP approach to pro-
cess algebra and the CCS approach. I will not address these here. As a language,
ACP can be regarded as a modification of CCS in four directions.

• First of all, ACP makes a distinction between deadlock and successful ter-
mination. As a consequence, action prefixing can be replaced by action
constants and a general sequential composition.

• ACP adds two auxiliary operators, the left merge and the communication
merge, denoted ‖

−−
and |, to enable a finite equational axiomatisation of the

parallel composition.

• Whereas CCS combines communication and abstraction from internal ac-
tions in one operator, in ACP these activities are separated. In CCS the
result of any communication is the unobservable action τ . In ACP it is an
observable action, from which (in the extended language ACPτ) one can
abstract by applying an abstraction operator, renaming designated actions
into τ .

3 Prefix ACP with Relational Renaming 13

• CCS adheres to a specific communication format, admitting only hand-
shaking communication, whereas ACP allows a variety of communication
paradigms, including ternary communication, through the choice of the
communication function |.

In this paper only the last feature of ACP is of importance. I don’t distinguish
observable and unobservable actions and therefore work with ACP rather than
ACPτ . As I also don’t deal with the distinction between deadlock and suc-
cessful termination, I restrict attention to the sublanguage aprACP of ACP
that doesn’t make this distinction and consequently supports prefixing only.
Whereas in the original papers on ACP the set A of action constants was re-
quired to be finite, I allow it to be infinite. I add the subscript R (or F) to
indicate the addition of (functional) renaming operators, which were not in-
cluded in the syntax of ACP. Subsequently I drop the auxiliary operators ‖

−−
and | from the language, since these can be expressed in the other operators of
aprACPF , as I will show in Section 3.5. The resulting language extends CCS
in only one essential way, namely through the general communication format.
This generality greatly enhances the expressiveness of the language.

3.3 Meije

Like CCS, also Boudol’s language Meije [1, 4, 13] can be regarded as (a
sublanguage of) an instantiation of aprACP with functional renaming. Meije
is parametrised with a set A of atomic actions and a set S of signals. The set
Act of actions is a commutative monoid, namely the free commutative product
of the free commutative monoid generated by A and the free commutative
group generated by S. This means that the elements of Act are a kind of
multisets over A and S with the stipulation that elements of S may also have
negative multiplicities. These can also be seen as ordinary multisets over A,
S and S−1 = {s−1 | s ∈ S} in which s and s−1 cancel. A typical element
of Act is denoted as a5b2s3t−1. The product operation . on Act is such that
a5b2s3t−1.a2c4s−3t3u−3 = a7b2c4t2u−3. Meije can now be presented as a
sublanguage of aprACPF (Act, .).

In Meije there are two kind of renaming operators. There is a renaming
operator ρΦ, written

/
\Φ

\
/(p), for any morphism Φ : Act → Act. Here a mor-

phism is a function satisfying Φ(a.b) = Φ(a).Φ(b) for a, b ∈ Act. In addition
there is a renaming operator s ∗ p, called ticking, for any signal s ∈ S. This op-
erator renames any action a into s.a. The only type of encapsulation operators
permitted in Meije are the restriction operators p\s for any signal s ∈ S. p\s
is ∂H(p) for H the set of all actions containing s, i.e. all “multisets” in which s
has a positive or negative multiplicity. Meije also has an operator triggering
which is expressible in the others, and it lacks the operator +, because, as
explained in Section 3.6, that operator is expressible in the others as well, but
there is no further difference between Meije and aprACPF (Act, .).

3.4 A Decidable Signature for aprACP

The language aprACPR(A, |) defined so far has an uncountable signature if A
is infinite. There are namely uncountably many encapsulation and renaming
operators. Computationally it makes sense to restrict attention to a fragment of

3 Prefix ACP with Relational Renaming 14

aprACPR with a decidable signature. This can be achieved by requiring the set
of actions A to be decidable, and by restricting the permitted encapsulation and
renaming operators ∂H and ρR to the ones where A−H and R are recursively
enumerable sets. Such sets can be represented by the code of a Turing machine
that enumerates them, and it is decidable whether an arbitrary piece of text
is the code of a Turing machine enumerating a recursive enumerable set. This
makes the signature decidable. As a consequence the set of recursion-free terms
will be decidable too.

I could have chosen H to be enumerable instead of its complement A−H .
However, the choice above has the advantage that the encapsulation operators
can (in an obvious way) be regarded as special relational renamings, so that
one has one kind of operator less to be concerned about. A more compelling
argument will be presented in Section 4.4.

In order to ensure that the set of recursive terms is decidable as well, I have
to require recursive specifications, seen as sets of equations, to be recursively
enumerable at least. This makes the set of open terms decidable. However, it
remains undecidable whether a term is closed. The set of closed terms is not
even enumerable.

Therefore one may wish to insist that in terms of the form /
\X|S\

/ the set of
recursion variables VS is decidable as well. This makes S computable. However,
it is undecidable whether a piece of text is the code of a Turing machine deciding
membership of a set. Thus with computable recursion even the set of open
terms becomes undecidable again.

Hence an even more restrictive requirement on the desired kind of recursion
is in order. Here I require S to be primitive decidable. This means that there
is a primitive recursive function deciding membership of VS , and in case of a
variable X ∈ VS returning the term SX . It is decidable whether a piece of text
is the source of a primitive recursive function, thus with this restriction the
signature as well as the sets of open and closed terms are decidable.

If moreover the communication function is required to be partial recursive,
the resulting variant of aprACPR will be denoted aprACPr.e.

R . The other lan-
guages I mentioned can be adapted in the same way. In aprACPr.e.

F I have to
allow partial recursive renaming functions. In the original version of aprACPF ,
these where expressible in terms of total renamings and encapsulation.

3.5 Expressing the Left- and Communication Merge

The language ACP has two operators, ‖−−and |, that I didn’t include in the
syntax of aprACPF . The reason is that these operators can be expressed in the
other operators of the language, and thus need not be introduced as primitives.
Here I show how. Table 2 shows the action rules for the two operators. The

x
a

−→ x′

x ‖
−−
y

a
−→ x′‖y

x
a

−→ x′, y
b

−→ y′, a|b = c

x | y
c

−→ x′‖y′

Table 2: The left- and communication merge of ACP

3 Prefix ACP with Relational Renaming 15

left merge, ‖
−−
, behaves exactly like the merge or parallel composition, ‖, except

that the first action is required to come from its leftmost argument. The
communication merge, |, behaves exactly like ‖, except that its first action is
required to be a communication between its two arguments. The operators’
most crucial use is in the axiom CM1

x‖y = x ‖
−−
y + y ‖

−−
x+ x | y

that plays an essential rôle in axiomatising ACP with bisimulation semantics.
Note that the symbol | is used for the communication function as well as the

communication merge. This overloading is intentional, as the communication
merge can be thought of as an extension of the communication function, which
is defined on actions only. The vertical bar in the middle of an expression /

\X|S\
/

is pronounced where—and sometimes even written that way—and has nothing
to do with the communication function and merge. The vertical bar in a set
expression like {n ∈ IN | n > 5} is also pronounced where and constitutes a
fourth use of this symbol. Finally | is used to denote parallel composition in
CCS. It is generally easy to determine from the context which | is meant.

In order to express ‖−−and | in aprACPF (A, |) I assume that the set of actions
A is divided into a set A0 of actions that may be encountered in applications,
and the remainder H0 = A − A0, which is used as a working space for imple-
menting useful operators, such as ‖

−−
and |. On A0 the communication function

is dictated by the applications, but on H0 I can choose it in any way that suits
me. The cardinality of A0 should be infinite, and equal to the cardinality of A.

For today’s implementation I assume that H0 contains actions skip, first,
next, afirst and anext (for a ∈ A0). The communication function given on A0

is extended to these actions as indicated below (applying the convention that
if a|b is not defined it is undefined).

a | first = afirst (a ∈ A0)
a | next = anext (a ∈ A0)
afirst | bfirst = a | b (a, b ∈ A0)
a | skip = a (a ∈ A0)

Let H1 = A0 ∪ {first, next}. I will use a renaming operator f1 that satisfies
f1(anext) = a, f1(afirst) = afirst and f1(a) = a for a ∈ A0.

Let me first introduce the notation a∞ to denote a process that perpetually
performs the action a. This process is obtained as a∞ = /

\X | X = aX\
/. Now

suppose p is a process that can do actions from A0 only. Then

∂H1
(p‖first(next∞))

is a process that behaves exactly like p, except that every initial action has
a tag (subscript) first, and every non-initial action has a tag next. Thus
ρf1(∂H1

[p‖first(next∞)]) is a process that behaves exactly like p, except that
the initial actions are tagged first. It follows that for any two processes p and
q with actions from A0 only

p | q↔ ∂H0

(
ρf1(∂H1

[p‖first(next∞)])‖ρf1(∂H1
[q‖first(next∞)])

)
.

3 Prefix ACP with Relational Renaming 16

In order to extend this result to processes with actions outside A0 I use a
bijective renaming f0 : A → A0 and its inverse f−1

0 . The communication merge
is expressed in aprACPF (A, |), up to bisimulation equivalence, by

x | y↔ ρf−1

0

(
∂H0

(
ρf1(∂H1

[ρf0(x)‖first(next
∞)])‖ρf1(∂H1

[ρf0(y)‖ · · ·])
))

.

Finally the left merge is expressed in terms of the communication merge through

x ‖
−−
y↔ ρf−1

0

(skip(ρf0(y)) | ρf0(x)).

3.6 Expressing Choice

As remarked in Section 3.3, the language Meije lacks the choice operator + of
CCS and ACP. The reason this operator was omitted from the syntax of Meije
was that it can be expressed in terms of the other operators. This is true in
the setting of aprACPF as well, so if one likes, this operator can be skipped
from the signature.

For the implementation of choice, A is again divided in A0 and H0 and in
H0 we put the same actions as in the previous section, together with the action
choose. The communication function also works as before, except that there
is no communication possible between actions of the form afirst and bfirst.
(So maybe one wants to use a different action first.) Instead one has the
communication choose | afirst = a for a ∈ A0. Recall that for p a process that
can do actions from A0 only, ρf1(∂H1

[p‖first(next∞)]) is the same process in
which the initial actions are tagged with a subscript first. This, by the way,
is an implementation of the operator triggering of Meije. It follows that

p+q↔ ∂H0

(
ρf1(∂H1

[p‖first(next∞)])‖choose‖ρf1(∂H1
[q‖first(next∞)])

)

since in the expression on the right choose can communicate with an initial
action from only one of p or q, so that the other one is blocked forever. Using
the renamings ρf0 and its inverse, just as in the previous section, + is expressed
in the rest of aprACPF .

3.7 Expressing the Communication Function

It may be felt as a drawback that the language (apr)ACP, unlike CCS, is
parametrised by the choice of a communication function (besides the choice
of a set of actions). This, one could argue, makes it into a collection of lan-
guages rather then a single one. Personally I do not share this concern. If
in different applications different communication functions are used, they can,
when desired, all be regarded as different fragments of the same communication
function, each considered on only a small subset of the set of actions A. At any
given time there is no need to know all actions and the entire communication
function to be used in all further applications.

Alternatively one may argue that there are many parallel compositions pos-
sible in ACP, namely one for every choice of a communication function. Here I
will present one instantiation of aprACPF (A, |), such that for every other choice
of a communication function the resulting parallel composition is expressible
in this language.

3 Prefix ACP with Relational Renaming 17

Let, as in the previous section, A0 ⊆ A be the actions that are used in
applications and H0 = A−A0 the working space. I fix a bijection f0 : A → A0

and abbreviate ρf0 by ρ0. For this implementation, H0 should contain the
actions (a, b) for every a, b ∈ A0, as well as an action δ denoting deadlock.
The communication function | is defined by a|b = (a, b) for a, b ∈ A0 (thus
undefined outside A0). Now for any other communication function γ : A2 → A
let γ̄ : A → A be a renaming satisfying γ̄((ρ0(a), ρ0(b))) = c for those a, b, c ∈ A
with γ(a, b) = c, and γ̄(a) = f−1

0 (a) for a ∈ A0. Furthermore, let H be
{(a, b) ∈ A0×A0 | γ(a, b) undefined}. Then the associated parallel composition
‖γ is expressible in aprACPF (A, |) by

x‖γy↔ ργ̄(∂H(ρ0(x)‖ρ0(y))).

3.8 Expressing Renaming and Encapsulation

The syntax of aprACPr.e.
F allows for a multitude of renaming operators. Here I

show that one needs only two, namely the operator ρ0, introduced earlier, which
bijectively maps every action to one in the subset A0 of A, and the universal
renaming operator ρF . Every other functional renaming is then expressible.

To this end I introduce an action f̄ ∈ H0 = A − A0 for every partial
recursive renaming function f : A → A. I also introduce an action (f̄ , a) ∈ H0

for every such f and every a ∈ A0. The communication function is enriched
by f̄ | a = (f̄ , a) for a ∈ A0 and the universal renaming F should satisfy
F ((f̄ , ρ0(a))) = f(a). Let H1 = A0 ∪ {f̄ | f : A → A}. Then ∂H1

(f̄∞‖ρ0(x)) is
a process that behaves exactly like x, except that every action a is renamed in
(f̄ , ρ0(a)). Hence ρf is expressible through ρf (x)↔ ρF (∂H1

(f̄∞‖ρ0(x))).
Note that every co-enumerable encapsulation operator can be regarded as a

partial recursive renaming, so also all encapsulation operators can be expressed
in aprACP with ρ0 and ρF . The encapsulation ∂H1

used in the construction
can be incorporated in ρF as well.

In exactly the same way every enumerable relational renaming operator is
expressible in aprACP with only ρ0 and a universal relational renaming.

In the preceding section I showed how all operators ‖γ with γ a communi-
cation function could be expressed in a particular instantiation of aprACPF ,
using a multitude of renamings. Here I showed how all renaming operators of
aprACPr.e.

F can be expressed in only two of them, using a particular communi-
cation function, and similarly for the encapsulations. It is an easy exercise to
combine these results, and express all partial recursive renaming operators, all
co-enumerable encapsulations, and all parallel compositions ‖γ with γ a partial
recursive communication function in a particular instantiation of aprACPr.e.

F ,
with only one communication function and two renamings.

One may wonder whether all renaming operators can be expressed in apr-
ACP, i.e. if it is possible to get rid of the last two. In general this is not possible.
However, if one only cares about the behaviour of all the derived operators on
the relevant subset A0 of A, it is possible to omit the use of ρ0 from all the
constructions, encode the universal renaming in the communication function,
and find for any derived operator (such as ‖

−−
or a renaming) an aprACP-

expression with the same behaviour on A0.

4 Specifying Process Graphs 18

3.9 A Finite Signature for aprACP

Here I show how the syntax of aprACPr.e.
R can be reduced from a decidable one

to a finite one. In the previous section the set of renaming and encapsulation
operators was cut down to two elements, so we are left with an infinity of
actions to get rid of. As in aprACPr.e.

R the set of actions is decidable, they
can be numbered a0, a1, a2, . . ., such that the function succ : A → A given by
succ(ai) = ai+1 is partial recursive (even computable). Hence every action is
expressible in terms of a0 and the renaming operator ρsucc.

3.10 Expressing Relational Renaming

In order to express relational renamings in aprACPF one needs to add just
one constant (or a third renaming) to the signature. One has to assume
the existence of actions [a, b] in H0 for a, b ∈ A0. The desired constant is
all = Σa,b∈A0

[a, b]0. Here Σi∈I is an infinite version of choice, to be formally
introduced in Section 4.1. Σi∈I is not a standard ingredient in the syntax of
aprACP—if it were there would be no reason to add all as a constant. all

can be expressed as ρR(c0) where c is an action chosen from A and R is the
relation {(c, [a, b]) | a, b ∈ A0}.

Now allever = /
\X | X = all ‖−−X

\
/ is a process that perpetually performs

an action of the form [a, b], and at each step has the choice between all such
actions. For any relation R ⊆ A × A the process ∂A×A−R(allever) has at
each step the choice between executing one the actions [a, b] with R(a, b). Let
copy : A0 → A be a renaming that sends each action a ∈ A0 to the (new)
action acopy. Define the communication function on the new actions by acopy |
[a, b] = b. Then for p a process that does actions from A0 only

ρR(p)↔ ∂H0
(ρcopy(p)‖∂A×A−R(allever))

Thus, by means of ρ0 and its inverse to deal with action from outside A0, all
relational renaming operators are expressible in aprACPF with all.

all can also be expressed in aprACPF using so-called unguarded recur-
sion (Section 4.3) as all = /

\X | X = [a0, a0]0 + succ2(X)\/ where succ2 is a
renaming function enumerating the elements of A × A. Thus, as long as un-
guarded recursion is permitted, aprACPF is equally expressive as aprACPR.
When unguarded recursion is banned, however, aprACPR turns out to be more
expressive.

4 Specifying Process Graphs

In this section I will isolate, for each of the classes of process graphs mentioned
in the introduction, a corresponding class of process expressions that denote
only graphs from that class. When possible, I make these classes of expres-
sions so large that every graph of the appropriate kind can be denoted by an
expression in the corresponding class.

Definition 11 (Kinds of graphs). A process graph G = (S, T, I) ∈ |G(A) is

• κ-bounded (for an uncountable cardinal κ) if for every state s ∈ S there are
less than κ outgoing transitions s

a
−→ s′,

4 Specifying Process Graphs 19

• countable if for every state s ∈ S there are at most countably many outgoing
transitions s

a
−→ s′,

• finitely branching if for every state s ∈ S there are only finitely many
outgoing transitions s

a
−→ s′,

• recursively enumerable if there exists an algorithm enumerating all transi-

tions s
a

−→ s′,

• decidable if there exists an algorithm that, when given a triple (s, a, s′) ∈
S ×A× S, determines whether this is a transition from T ,

• computable if there exists an algorithm that, when given a state s ∈ S,
returns the complete finite list of outgoing transitions s

a
−→ s′ and indicates

when the list is complete,

• primitive recursive if there is such an algorithm that is primitive recursive,

• and regular if it has only finitely many states and transitions.

The class of all expressions defined so far will be the class of countable pro-
cess expressions. The κ-bounded process expressions are obtained by enlarging
the signature, whereas the other classes of Figure 1 are obtained by means of
restriction.

4.1 The κ-bounded Process Expressions

In order to define the κ-bounded process expressions I have to generalise the
syntax of aprACPR, even beyond the boundaries imposed by Definition 1.
Whenever I is an index set and pi are process expressions for i ∈ I, Σi∈Ipi
is now a process expression too. It represents a choice between the processes pi
(i ∈ I). Since choice is associative and commutative for virtually every seman-
tics proposed in the literature, I may be chosen to range over sets rather than
sequences. The corresponding action rules (one abstract rule for every index
set I and index j ∈ I) are

xj
a

−→ y

Σi∈Ixi
a

−→ y
.

For this purpose the set of variables should at least have cardinality κ. The
expression p1 + p2 can now be regarded as an abbreviation for Σi=1,2pi and 0
as the summation over an empty index set. In the same fashion it is possible
to introduce infinitary parallel compositions.

Now the κ-bounded process expressions can be defined as the ones in which
all index sets, as well as the sets VS in recursive specifications S, have cardinality
less than κ. Also, for every relational renaming ρR and a ∈ A, the set {b |
R(a, b)} should have less than κ elements. It is straightforward to prove that
process graphs associated to κ-bounded process expressions are κ-bounded.
The converse is true as well:

Proposition 1 Every κ-bounded process graph can up to isomorphism be de-
noted by a κ-bounded process expression.

Proof: Let G = (S, T, I) be a κ-bounded process graph. Take a variable Xs for
every state s ∈ S and let G̃ be the recursive specification {Xs = Σ

(s
a

−→t)∈T
aXt |

s ∈ S}. Now /
\XI |G̃\

/ is a closed process expression with [[/\XI |G̃\
/]] ∼= G. ✷

4 Specifying Process Graphs 20

4.2 The Countable Process Expressions

In the special case of the countable process expressions (κ = ℵ1) one allows
countable alternative and parallel compositions and countable recursion. How-
ever, countable compositions can be expressed in terms of binary compositions
and countable unguarded recursion. Namely

Σi∈INpi =
/
\X0 | {Xi = pi +Xi+1 | i ∈ IN}\

/.

Thus the countable process expressions can be redefined to be the ones with
countable recursion but only binary alternative and parallel composition.

Continuing from that perspective it can be observed that the addition of
arbitrary infinite recursion does not add to the expressive power of the language,
since in any expression /

\X|S\
/ only countably many variables are reachable from

X. Thus the countable process expressions can again be redefined to be exactly
the ones introduced in Section 3. It follows that

Proposition 2 Countable process expressions yield countable process graphs
and every countable process graph is denoted by a countable process expression.

4.3 The Bounded Process Expressions

The notion of guardedness was proposed in Milner [8] to syntactically isolate
a class of recursive specifications that have unique solutions. The definition
below stems from Baeten, Bergstra & Klop [2].

Definition 12 (Guardedness). A free occurrence of a variable in a process
expression t is unguarded if it does not occur in a subterm of the form at′. Let
S be a recursive specification. The relation

u
−→⊆ VS × VS is given by X

u
−→ Y

iff Y occurs unguarded in SX . S is guarded if the relation
u

−→ is well-founded.

Besides ensuring unique solutions, the same requirement also helps to keep the
denoted process graphs finitely branching. Let a process expression be guarded
if in all its subexpressions /

\X|S\
/ the recursive specification S is guarded.

Proposition 3 Guarded expressions in the languages (apr)ACPF , CCS, SCCS
and Meije denote finitely branching process graphs. Moreover, every finitely
branching process graph is denoted by a guarded process expression.

Proof: The first statement follows with a straightforward induction on the
structure of terms, with in the case of recursion a nested induction on the
length of chains X1

u
−→ X2

u
−→ · · ·.

The second statement follows immediately from the proof of Proposition 1,
considering that unguarded recursion wasn’t used there. In Proposition 2 un-
guarded recursion has to be used to replace infinite alternative compositions,
but in order to denote finitely branching graphs this is unnecessary. ✷

Due to the relational renaming (or inverse image) operator this proposition
does not hold for aprACPR and CSP. In case the set {b | R(a, b)} is infinite,
ρR(a) denotes an infinitely branching process graph.

Let a relation R ⊆ A× A be image-finite if ∀a ∈ A : {b | R(a, b)} is finite.
Then the bounded process expressions can be defined as the ones with only
guarded recursion and image-finite renaming operators. It follows that the
bounded process expressions denote only finitely branching graphs.

4 Specifying Process Graphs 21

4.4 The Recursive Enumerable Process Expressions

The recursively enumerable process expressions are the ones that appear in the
language aprACPr.e.

R (A, |). This is the variant of aprACPR with a decidable
signature, introduced in Section 3.4. A has to be decidable and | a partial
recursive function. Moreover, only encapsulation operators ∂H with H co-
r.e. are allowed (i.e. the complement of H should be enumerable), and only
renaming operators ρR with R enumerable. Finally recursive specifications S
are required to be primitive recursive.

Proposition 4 Any process Σi∈Ipi with {pi | i ∈ I} a recursive enumerable
set of recursive enumerable process expressions is expressible in aprACPr.e.

R .

Proof: A classic recursion theoretic theorem states that any non-empty r.e.
set can be obtained as the image of a primitive recursive function. See e.g.
Corollary 4.18 in Manin [7]. It follows that [[Σi∈Ipi]]↔ [[Σi∈INp(n)]] for certain
primitive recursive function p : IN → (the closed aprACPr.e.

R -expressions). Now
use the construction from Section 4.2. ✷

Proposition 5 The r.e. process expressions denote exactly the r.e. graphs.

Proof: It is straightforward to enumerate (recursively) the valid proofs of tran-
sitions between aprACPr.e.

R expressions, and hence the transitions themselves.
Note that for this to be true one needs the complement of H in ∂H to be
enumerable rather than H itself. This is the argument promised in Section 3.4.

The other direction follows immediately from the proof of Proposition 1,
using Proposition 4. ✷

De Simone [13] proved that in order to denote every r.e. process graph it is
sufficient to use finite recursion only. However, whereas the Propositions 1–5
are rather trivial and only use inaction, action prefix, choice and recursion, De
Simone’s construction is more intricate and uses the entire syntax of Meije.

Theorem 1 Let A be an decidable set of actions. There exists an decidable
set of signals S, such that for every r.e. process graph G ∈ |G(A) there exists a
closed r.e. expression t with finite recursion in Meije(A,S) for which [[t]]↔G.

As Meije can be implemented in aprACPF , this theorem implies that for
every decidable set A there is a decidable set A′ ⊇ A and a r.e. communication
function | on A′, such that every r.e. process graph can, up to bisimulation, be
denoted by an expression in aprACPr.e.

F (A′, |) with only finite recursion.
It follows immediately from Proposition 3 that the use of unguarded recur-

sion is unavoidable in De Simone’s result. Still, it is possible to limit such use
to a minimum. Suppose A contains actions ai and bi for i ∈ IN. The process
Σi∈INaibi0 can be obtained with unguarded recursion as /

\X|X=a0b00 + ρf (X)\/
in which f is the renaming with f(ai) = ai+1 and f(bi) = bi+1 for i ∈ IN.
Adding this process as a constant U to the language aprACPF—thereby ob-
taining aprACPU—makes it possible to recreate De Simone’s result without
using unguarded recursion.

Theorem 2 Let A be a decidable set of actions. There exists an decidable set
of actions A′ and a partial recursive communication function | on A′, such that
for every r.e. process graph G ∈ |G(A) there exists a closed expression t with
finite guarded recursion in the language aprACPr.e.

U (A′, |) for which [[t]]↔G.

4 Specifying Process Graphs 22

Proof: The proof is a variation on the one of De Simone. Consider the r.e.
process graphs over A with as nodes the natural numbers. Since I consider
graphs up to bisimulation equivalence, I may assume that there is at most
one edge between every two nodes. Such a graph G can be represented by an
algorithm g that, when given a pair of nodes (i, j), runs for some time and
returns a in case there is a transition (i, a, j). In case there is no transition
from i to j it returns the value δ or runs forever.

Now let A′ be the set of all such algorithms g, together with A, a special
symbol δ denoting (dead)lock, and the actions toi and fromi for i ∈ IN. Note
that the set of algorithms (in a particular form, such as Turing machine code) of
partial recursive functions is decidable, i.e. it is decidable whether an arbitrary
piece of text constitutes such an algorithm, and hence an element of A′. Let
the communication function | be given by g | fromi | toj = g(i, j). [To be
precise, in order to implement this in the ACP communication format I also
need actions of the form fromtoij , g(i, ·) and g(·, j)].

The next thing I need is the left merge operator ‖
−−

from ACP, which, as we
saw in Section 3.5, can be expressed in aprACPF . By means of a renaming,
the new constant U can be turned into flow = Σi∈INtoifromi0. This process
describes the flow of control through an arbitrary state. It says that when
one enters state i, the next thing to do is leaving the same state. Using only
guarded recursion I subsequently define the process control = flow ‖−−control.
This process will be put in a context where in each step a from action and a
to action synchronise. As a result, when the nth synchronisation involves a
toi action, denoting the arrival in state i, the next synchronisation involves a
fromi, denoting departure from the same state. The choice of the to action
is not restricted (by the control process). In order to initialise the process
properly, and to allow a first synchronisation, I use the initialised control C =
from0‖control, in which 0 is supposed to be the initial state.

Now a graph G is represented by the expression ∂H(g∞‖C). Here g∞ is
a shorthand for /

\X | X = gX\
/, i.e. the process that repeatedly performs the

action g, and H = A′ −A. It is easy to see that [[∂H(g∞‖C)]] ∼= G. ✷

Corollary 1 Let A be a countably infinite decidable set of actions. There
exists a partial recursive communication function | on A, such that for every
r.e. process graph G ∈ |G(A) there exists a closed expression t with finite
guarded recursion in the language aprACPr.e.

U (A, |) for which [[t]]↔G.

Proof: Partition A into two infinite decidable subsets A0 and H0. It suffices
to prove the statement for G ∈ |G(A0), since an arbitrary r.e. process graph can
be obtained as ρf (G) for such a G with f : A0 → A a bijective renaming.

By Theorem 2 there is an extension A′ of A0 and a partial recursive com-
munication function |′ on A′, such that for every r.e. process graph G ∈ |G(A0)
there exists a closed expression t with finite guarded recursion in the language
aprACPr.e.

U (A′, |′) for which [[t]] ↔G. Let h : A′ → A be a recursive bijec-
tion with h(a) = a for a ∈ A0. Define the partial recursive communication
function | : A2 → A by h(a) | h(b) = h(c). Let t̃ be the closed aprACPr.e.

U (A, |)-
expression obtained from t by replacing all action names a by h(a), including
the action names in the subscripts of encapsulation and renaming operators.
Then [[t]]↔G immediately implies [[t̃]]↔G. ✷

4 Specifying Process Graphs 23

4.5 The Decidable and the Effective Expressions

De Simone [12] shows that with unguarded recursion it is easy to specify
undecidable processes. Therefore the first requirement of a decidable process
expression is that only guarded recursion is permitted. In this setting there are
already three different variants of aprACP to consider: the language aprACPF

with functional renaming, the language aprACPR with relational renaming,
and the language aprACPU with the constant U , introduced in the previous
section. The subscript U reminds of universal and is inspired by Theorem 2.
Note that the guarded version of aprACPr.e.

U is at least as expressive as the
guarded version of aprACPr.e.

R . Namely, as A is decidable, the constant all of
Section 3.10 can be obtained from U by means of encapsulation and renaming,
and aprACPr.e.

R turned out to be guardedly expressible in terms of aprACPr.e.
F

with all. As long as unguarded recursion was allowed, the three languages
were equally expressive, but this is here no longer the case.

A second requirement for decidable process expressions has to do with the
computable nature of the operators of the language. For the relational renaming
operators ρR it is not sufficient to require the relations R to be decidable, as
any recursively enumerable relation can be obtained as the composition of two
decidable ones. In particular, the process Σa∈Aa0 is surely decidable, and
can be obtained as the image of a single action under a suitable decidable
relational renaming. However, for any nonempty recursive enumerable set of
actions B ⊆ A, the (generally undecidable) process Σb∈Bb0 can be obtained
as ρf (Σa∈Aa0) with f a primitive recursive function (recalling that a primitive
recursive function is a special total recursive function, and any total recursive
function, seen as a relation, is decidable). This is Corollary 4.18 in Manin [7].

A similar problem arises for the communication function. There are two
ways in which to strengthen the decidability requirement so as to avoid these
problems. The renaming operators as well as the communication function
should be either effective or coeffective. The requirement of effectivity comes,
in the more general setting of De Simone languages, from Vaandrager [14].

Definition 13 (Decidable terms) An aprACPR(A, |)-expression is effective if
– A is a decidable set,
– | is given as a total recursive function | : A2 → A

.

∪ {δ}
—a|b = δ means that a and b do not communicate,

– it contains only computable guarded recursion,
– it contains only encapsulation operators ∂H for which H is decidable
– and only renamings ρR for R such that ∀a ∈ A : ({b | R(a, b)} is finite),

and the total function which yields for any a ∈ A this finite set is recursive.
A aprACPU (A, |)-expression is coeffective if
– A is a decidable set,
– | satisfies ∀c ∈ A : ({(a, b) | a|b = c} is finite), and the total function which

yields for any c ∈ A this finite set is recursive,
– it contains only computable guarded recursion,
– it contains only encapsulation operators ∂H for which H is decidable
– and only renamings ρR for R such that ∀b ∈ A : ({a | R(a, b)} is finite),

and the total function which yields for any b ∈ A this finite set is recursive.
A aprACPU (A, |) expression is decidable if it is either effective and without the
constant U or coeffective.

4 Specifying Process Graphs 24

Note that, due to the use of countable recursion, the (co)effective expressions
are not a subclass of the enumerable ones. Using only primitive recursive
recursion would be a more serious restriction than in the the previous section,
as Proposition 4 crucially depends on the use of unguarded recursion.

Mixing effective and coeffective ingredients in one process expression leads in
general to undecidable processes. As indicated above, adding U to the effective
processes is already catastrophic.

Proposition 6 Effective process expressions denote only computable graphs.
Decidable expressions denote only decidable graphs.

Proof: Two straightforward structural inductions. ✷

I have no idea how to represent all decidable graphs by decidable process ex-
pressions. The proof strategy adopted for Theorem 2 makes use of a highly
non-coeffective communication function as well as the non-effective constant
U . Similarly I don’t know if it is possible to represent all computable graphs
by effective process expressions with finite recursion. However, the same recipe
as used in the previous sections yields

Proposition 7 Every computable process graph is denoted by an effective
process expression, using only choice, (in)action and recursion.

Proof: If G ∈ |G(A) is computable it follows immediately that the recursive
specification G̃ constructed in the proof of Proposition 1 is computable. ✷

In Ponse [11], every computable graph is denoted by an effective expression
in the language µCRL. The trivial proof above could be seen as a consider-
able simplification of his construction. However, Ponse uses finite recursion
schemata, parametrised with recursive data parameters, whereas I use plain
infinite recursion.

It is interesting to compare this positive result with the following negative one.

Definition 14 (Effectivity) An interpretation of a decidable language in a
graph domain is effective if it induces a total recursive function from the closed
terms to (descriptions of) computable process graphs.

The concept of an effective interpretation is due to Vaandrager [14]. Let a
language be decidable if its set of closed terms is decidable (as in aprACPr.e.

R).
The following theorem stems from Baeten, Bergstra & Klop [2]. Is has
been sharpened in Vaandrager [14], who established it for the even coarser
notion of trace equivalence.

Theorem 3 Let A be a set of at least two actions. No decidable language with
an effective interpretation in |G(A) is able to denote all computable process
graphs, up to bisimulation equivalence.

If follows that the set of effective process expressions is not decidable. This
is due to the presence of computable recursion, which was observed to make
the language undecidable already in Section 3.4. Similarly, the set of expres-
sions in Ponse’s language is undecidable. It also follows that the decidability
requirement in the above theorem is essential.

4 Specifying Process Graphs 25

4.6 The Primitive Effective Process Expressions

In Section 3.4 I proposed a variant aprACPr.e.
R of aprACPR with a decidable

signature. In Section 4.4 this language turned out to denote only enumerable
process graphs. Furthermore in Section 3.7 there turned out to be a canonical
instantiation of this language, such that any other instantiation (with a different
communication function) is expressible in it. Here I search for a similar variant
of aprACP in which only decidable graphs can be denoted.

The first idea could be to take the language of all effective process expres-
sions in aprACPr.e.

U (or the coeffective ones or both). However, such a language
has an undecidable signature. To be precise, as it is undecidable whether a
piece of text is the code of a Turing machine representing a total recursive
function, the set of renaming (and encapsulation) operators is undecidable.

Thus the collection of permitted encapsulation and renaming operators has
to be cut down until their codes form a decidable set. It is tempting to think
that Section 3.8 offers a solution, as it allows all these operators to be ex-
pressed in only two of them. However, the construction enabling this requires
an action to be introduced in A for any renaming operator. This only shifts
the undecidable signature problem from the renaming operators to the set of
actions.

Another idea is allow any decidable selection of (co)effective renaming oper-
ators to constitute a valid instantiation of the desired language. This is basically
what is done in Vaandrager [14] for the recursive specifications. There only
one computable recursive specification is allowed. However, this violates the
desired property of canonicity, as one cannot express all (co)effective renamings
(or computable specifications) in one decidable selection.

Hence a (complexity) class of such operators has to be found for which it
is decidable whether (a description of) an operator is in this class. As in Sec-
tion 3.4 I take the class of primitive recursive operators. It should be admitted
that many other (complexity) classes would serve the purpose equally well.

In order to maintain the canonicity result of Section 3.7, I also have to re-
quire primitive recursion for the communication function, which in turn requires
A to be primitive decidable.

Definition 15 (Primitive) An aprACPR(A, |)-term is primitive effective if
– A is a primitive decidable set,
– | is given as a primitive recursive function | : A2 → A

.

∪ {δ},
– it contains only primitive recursive guarded recursion,
– only encapsulation operators ∂H for which H is primitive decidable
– and only renamings ρR for R such that ∀a ∈ A : ({b | R(a, b)} is finite), and

the function which yields for any a ∈ A this finite set is primitive recursive.
A aprACPU (A, |)-expression is primitive coeffective if
– A is a primitive decidable set,
– | satisfies ∀c ∈ A : ({(a, b) | a|b = c} is finite), and the total function which

yields for any c ∈ A this finite set is primitive recursive,
– it contains only primitive recursive guarded recursion,
– only encapsulation operators ∂H for which H is primitive decidable
– and only renamings ρR for R such that ∀b ∈ A : ({a | R(a, b)} is finite), and

the function which yields for any b ∈ A this finite set is primitive recursive.
A aprACPU (A, |) expression is primitive decidable if it is either primitive effec-
tive and without the constant U or primitive coeffective.

5 De Simone Languages 26

The languages of primitive (co)effective aprACP expressions will be denoted
aprACPp.e.

R (A, |) and aprACPp.c.
U (A, |). It is easy to see that the signatures and

sets of open and closed terms of these languages are decidable. As it is very
easy to recognise the sources of primitive recursive functions, they are even
primitive decidable. Also the canonicity results of Section 3.7, as well as the
expressibility results of Sections 3.5 and 3.6 apply to these variants of aprACP.

The primitive decidable process graphs are defined just like the decidable
ones (Definition 11), but with the additional requirement that the involved
algorithm uses only primitive recursion. Exactly as before it follows that

Proposition 8 Primitive effective process expressions denote only primitive
recursive process graphs. Primitive decidable expressions denote only primitive
decidable graphs.

Every primitive recursive process graph is denoted by a primitive effective
process expression. ✷

4.7 The Regular and the Recursion-free Expressions

Finally the regular process expressions are the ones with finite guarded recur-
sion, and no other operators than inaction, action prefix and choice occurring
in recursive specifications, whereas the recursion-free ones obviously have no
recursion at all. It is easy to show that regular process expressions denote only
regular process graphs, and recursion-free expressions only finite and acyclic
process graphs. Conversely, every regular process graph is denotable by a reg-
ular process expression, and every every finite and acyclic process graph is, up
to bisimulation equivalence, denotable by a recursion-free expression.

5 De Simone Languages

A De Simone language is a language of which the syntax is given as an anno-
tated signature, and the semantics as a TSS over that signature of a particular
form, known as the De Simone format.

Definition 16 (The De Simone format). A TSS is in the De Simone format
if for every recursive specification S and X ∈ VS it has a rule

Sx[
/
\Y |S\

//Y]Y ∈VS

a
−→ z

/
\X|S\

/

a
−→ z

and each of its other rules (the De Simone rules) has the form

{xi
ai−→ yi | i ∈ I}

f(x1, . . . , xn)
a

−→ t

where (f, n) ∈ Σ, I ⊆ {1, . . . , n} and t ∈ T(Σ) is univariate recursion-free term
containing no other variables than xi (1 ≤ x ≤ n and i 6∈ I) and yi (i ∈ I).
Here univariate means that each variables occurs at most once.
In a rule of the above form, (f, n) is the type, a the action, t the target, and
the tuple (l1, . . . , ln) with li = ai if i ∈ I and li = ∗ otherwise, the trigger [14].

5 De Simone Languages 27

Most process description languages encountered in the literature, including
CCS, SCCS, CSP, ACP and Meije, are De Simone languages. De Simone
languages are known to satisfy all the sanity requirements of Section 2.2 up to
bisimulation equivalence. Below I will generalise the classification of process
expressions in aprACPR to a classification of De Simone languages. I will
not consider the classes of finite, regular and κ-bounded expressions. The De
Simone languages from Definition 16 are the countable ones.

Definition 17 (Guarded). Let P = (Σ, A,R) be a TSS in De Simone format.
For (f, n) ∈ Σ and 1 ≤ i ≤ n, the ith argument of (f, n) is awake if there is a
rule in R of type (f, n) with i in its index set. For t ∈ T

r(Σ) a free occurrence
of a variable in t is awake or unguarded if for every subterm f(t1, ..., tn) of t
such that the occurrence is in ti, the ith argument of f is awake.

Let S be a recursive specification. The relation
u

−→⊆ VS × VS is given by
X

u
−→ Y iff Y is awake in SX . S is guarded if the relation

u
−→ is well-founded.

This notion of guardedness is due to Vaandrager [14]. Guarded recursive
specifications in any De Simone language have unique solutions.

Definition 18 A TSS P in De Simone format is said to be

• (recursively) enumerable if Σ is decidable, only primitive recursive recursion
is allowed, and the set of De Simone rules is r.e.

• bounded [14] if only guarded recursion is allowed and for each type and
trigger the set of rules involving that type and trigger is finite.

• effective [14] if Σ is decidable, only computable guarded recursion is allowed,
and there exists a total recursive function associating with each type and
trigger the finite set of rules with that type and trigger.

• coeffective if Σ is decidable, only computable guarded recursion is allowed,
and there exists a total recursive function associating with each type, action
and target the finite set of corresponding rules.

• primitive effective if Σ is primitive decidable, only primitive recursive
guarded recursion is allowed, and there exists a primitive recursive function
associating with each type and trigger the finite set of corresponding rules.

• primitive coeffective if Σ is primitive decidable, only primitive recursive
guarded recursion is used, and there is a primitive recursive function giving
for each type, action and target the finite set of corresponding rules.

It is not difficult to apply these requirements to the De Simone language
aprACPU and verify that they coincide exactly with the ones from Section 4.

Proposition 9 Terms in a De Simone language with a property on the left

countable countable
bounded finitely branching
recursively enumerable recursively enumerable
effective computable
coeffective decidable
primitive effective primitive recursive
primitive coeffective primitive decidable

denote only process graphs satisfying the corresponding property on the right.
Proof: Straightforward. ✷

5 De Simone Languages 28

The main results announced in this extended abstract concern the express-
ibility of arbitrary De Simone languages in aprACPR. In order to state which
expressiveness results have been obtained, more properties of De Simone lan-
guages need to be defined.

Definition 19 (Dependence of operators). Let P = (Σ, A,R) be a TSS in De
Simone format, then dependence is the smallest transitive binary relation on Σ
such that (f, n) is dependent on (g,m) if there is a rule with type (f, n) and
with (g,m) occurring in its target.

Definition 20 A TSS P in De Simone format is said to be

• width-finitary if for each type there are only finitely many targets (such
that there is a rule with that type and target).

• (primitive) width-effective if there exists a (primitive) recursive function
giving for each type the finite set of corresponding targets.

• finitary if
– (depth:) each type is dependent on only finitely many other types,
– (width:) and for each type there are only finitely many targets.

• image-finite if for each type and trigger the matching set of rules is finite.

• functional if there exists a finite upperbound for the number of rules with
any given type and trigger.

The first two properties can best be understood when viewing a De Simone lan-
guage as an abstract TSS. Width-finitariness is then the property that for every
type there are only finitely many abstract rules. (Primitive) width-effectiveness
moreover requires that there is a (primitive) recursive function associating with
each type the finite set of abstract rules of that type. A language is finitary if
the behaviour of a finite term can be deduced by considering only finitely many
abstract rules. Thus a finitary De Simone language can be obtained as the com-
bination of a number of De Simone languages with finitely many abstract rules,
each of which is trivially primitive width-effective. Boundedness is the com-
bination of guarded- and image-finiteness. As seen in Section 3, aprACPR is
width-finitary, and even primitive width-effective. As in aprACPR every type
is dependent only on itself (at most), the language is finitary as well. Image-
finiteness for aprACPR reduces to image-finiteness of the relational renamings,
and functionality corresponds with the restriction to aprACPF .

The following table lists a number of translatable properties of De Simone
languages. Every translatable property consist of a full row in the table, thus
being the conjunction of a left and a right side. For aprACPR, in each property
the left side is either always true or implied by the right side.

Theorem 4 Any De Simone language satisfying certain translatable proper-
ties of Table 3 is expressible in the version of aprACPR with the same properties.

Proof: To be supplied in the full version of this paper. My proof is an adap-
tation of De Simone’s construction, but avoids, when possible, the use of un-
guarded recursion, by resorting to a richer synchronisation algebra (A, |). There
is essentially only one construction, translating any open term in any (count-
able) De Simone language into aprACPR. For any of the properties on the

5 De Simone Languages 29

width-finitary with guarded recursion
width-effective with computable guarded recursion
primitive width-effective with prim. rec. guarded recursion
finitary with finite guarded recursion
image-finite with image-finite renaming
functional with functional renaming
– recursively enumerable
primitive width-effective primitive effective

Table 3: Properties of De Simone languages preserved under translation to aprACPR

right in Table 3, I followed the construction backwards to see which additional
requirements on De Simone languages are needed to ensure that the version of
aprACP they are translated into meets that property. This yielded the prop-
erties on the left. ✷

By taking the dependencies between the properties in Table 3 into account—
finite recursion is surely primitive recursive, primitive effectivity entails both
image-finiteness and primitive recursive guarded recursion, and with unguarded
recursion aprACPF is as good as aprACPR—Theorem 4 establishes 30 express-
ibility results. Since virtually all De Simone languages encountered in practice
are finitary, the most significant results are

1. Any finitary De Simone language is expressible in aprACPR with finite
guarded recursion.

2. Any finitary image-finite De Simone language is expressible in aprACPR

with finite guarded recursion and image-finite renamings.

3. Any finitary functional De Simone language is expressible in aprACPF

with finite guarded recursion.

4. Any finitary enumerable De Simone language is expressible in aprACPr.e.
R

with finite guarded recursion.

5. Any finitary enumerable image-finite De Simone language is expressible
in aprACPr.e.

R with finite guarded recursion and image-finite renamings.

6. Any finitary enumerable functional De Simone language is expressible in
aprACPr.e.

F with finite guarded recursion.

7. Any finitary primitive effective De Simone language is expressible in
aprACPp.e.

R with finite guarded recursion.

8. Any finitary primitive effective functional De Simone language is express-
ible in aprACPp.e.

F with finite guarded recursion.

In each of these results the De Simone languages are also assumed to have
finite guarded recursion only, but, by the compositionality of recursion, the
same results hold without requiring or getting guardedness, finiteness or both.

Result 4 generalises the original theorem by De Simone, saying that any
finitary recursively enumerable De Simone language with finite recursion is
expressible in the recursively enumerable version of Meije with finite recursion.
The generalisation is that, under the assumption that the source languages have
only guarded recursion, the target language (now aprACPR) can be required
to use only guarded recursion as well.

5 De Simone Languages 30

Using the constant U yields an even stronger result for recursive enumerable
De Simone languages, namely by dispensing with finitariness. This result has
no effective counterpart.

Theorem 5 Any recursively enumerable De Simone language is expressible in
aprACPU with finite guarded recursion.

Acknowledgments Many thanks to Hanna Walińska and Anna Patterson
for proofreading, and to the editors and publisher of this proceeding for delaying
publication until my contribution was ready.

References

[1] D. Austry & G. Boudol (1984): Algèbre de processus et synchronisa-
tions. TCS 30(1), pp. 91–131. See also [4].

[2] J.C.M. Baeten, J.A. Bergstra & J.W. Klop (1987): On the consis-
tency of Koomen’s fair abstraction rule. TCS 51(1/2), pp. 129–176.

[3] J.A. Bergstra & J.W. Klop (1984): The algebra of recursively defined
processes and the algebra of regular processes. In J. Paredaens, editor:
Proc. 11 th ICALP, Antwerpen, LNCS 172, Springer-Verlag, pp. 82–95.

[4] G. Boudol (1985): Notes on algebraic calculi of processes. In K. Apt,
editor: Logics and Models of Concurrent Systems, Springer-Verlag, pp.
261–303. NATO ASI Series F13.

[5] S.D. Brookes, C.A.R. Hoare & A.W. Roscoe (1984): A theory of
communicating sequential processes. JACM 31(3), pp. 560–599.

[6] J.F. Groote & F.W. Vaandrager (1992): Structured operational se-
mantics and bisimulation as a congruence. I&C 100(2), pp. 202–260.

[7] Yu.I. Manin (1977): A Course in Mathematical Logic, Graduate Texts
in Mathematics 53. Springer-Verlag.

[8] R. Milner (1980): A Calculus of Communicating Systems, LNCS 92.
Springer-Verlag.

[9] R. Milner (1983): Calculi for synchrony and asynchrony. TCS 25, pp.
267–310.

[10] G.D. Plotkin (1981): A structural approach to operational semantics.
Report DAIMI FN-19, Computer Science Department, Aarhus University.

[11] A. Ponse (1992): Computable processes and bisimulation equivalence.
Report CS-R9207, CWI, Amsterdam.

[12] R. de Simone (1984): On Meije and SCCS: infinite sum operators vs.
non-guarded definitions. TCS 30, pp. 133–138.

[13] R. de Simone (1985): Higher-level synchronising devices in Meije–
SCCS. TCS 37, pp. 245–267. For more details see [12] and: Calculabilité
et Expressivité dans l’Algebra de Processus Parallèles Meije, Thèse de 3e

cycle, Univ. Paris 7, 1984.

[14] F.W. Vaandrager (1993): Expressiveness results for process algebras.
In J.W. de Bakker, W.P. de Roever & G. Rozenberg, editors: Proceedings
REX Workshop on Semantics: Foundations and Applications, Beekbergen,
The Netherlands, June 1992, LNCS 666, Springer-Verlag, pp. 609–638.

	Introduction
	Syntax, Semantics and Expressibility
	Syntax
	Expressibility
	Quotient domains
	Process Graphs
	Operational Semantics

	Prefix ACP with Relational Renaming
	CCS
	ACP
	Meije
	A Decidable Signature for aprACP
	Expressing the Left- and Communication Merge
	Expressing Choice
	Expressing the Communication Function
	Expressing Renaming and Encapsulation
	A Finite Signature for aprACP
	Expressing Relational Renaming

	Specifying Process Graphs
	The k-bounded Process Expression
	The Countable Process Expressions
	The Bounded Process Expressions
	The Recursive Enumerable Process Expressions
	The Decidable and the Effective Expressions
	The Primitive Effective Process Expressions
	The Regular and the Recursion-free Expressions

	De Simone Languages

