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Abstract: In comparative concurrency semantics one usually distinguishes between linear time
and branching time semantic equivalences. Milner's notion of observation equivalence is often
mentioned as the standard example of a branching time equivalence. In this paper we
investigate whether observation equivalence really does respect the branching structure of
processes, and find that in the presence of the unobservable action t of CCS this is not the
case.

Therefore the notion of branching bisimulation equivalence is introduced which strongly
preserves the branching structure of processes, in the sense that it preserves computations
together with the potentials in all intermediate states that are passed through, even if silent
moves are involved. On closed CCS-terms branching bisimulation can be completely
axiomatized by the single axiom scheme:

a(tly+2)+y)=a(y+2)

(where a ranges over all actions) and the usual laws for strong congruence.

For a large class of processes it turns out that branching bisimulation and observation
equivalence are the same. All protocols known to the authors that have been verified in the
setting of observation equivalence happen to fit in this class, and hence are also valid in the
stronger setting of branching bisimulation equivalence.
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INTRODUCTION

When comparing semantic equivalences for concurrency, it is common practice to distinguish
between linear time and branching time equivalences (see for instance DE BAKKER, BERGSTRA,
KLOP & MEYER (1983), PNUELI (1985)). In the former, a process is determined by its possible
executions, whereas in the latter also the branching structure of processes is taken into account. The
standard example of a linear time equivalence is trace equivalence as employed in HOARE (1980);
the standard example of a branching time equivalence is observation equivalence or bisimulation
equivalence as defined by MILNER (1980) and PARK (1981) (cf. MILNER (1983), MILNER (1989)).
Furthermore, there are several decorated trace equivalences in between (cf. BAETEN, BERGSTRA &
KLOP (1987b), BLOOM, ISTRAIL & MEYER (1988), BROOKES, HOARE & ROSCOE (1984), DE
NICOLA & HENNESSY (1984), HOARE (1985), OLDEROG & HOARE (1986), PHILLIPS (1987),
PNUELI (1985), POMELLO (1986)), preserving part of the branching structure of processes but for
the rest resembling trace equivalence.

Originally, the most popular argument for employing branching time semantics was the fact that it
allows a proper modelling of deadlock behaviour, whereas linear time semantics does not.
However, this advantage is shared with the decorated trace semantics which have the additional
advantage of only distinguishing between processes that can be told apart by some notion of
observation or testing. The main criticism on observation equivalence - and branching time
equivalences in general - is that it is not an observational equivalence in that sense: distinctions
between processes are made that cannot be observed or tested, unless observers are equipped with
extraordinary abilities like that of a copying facility together with the capability of global testing as
in ABRAMSKY (1987).

Nevertheless, branching time semantics is of fundamental importance in concurrency, exactly
because it is independent of the precise nature of observability. Which one of the decorated trace
equivalences provides a suitable modelling of observable behaviour depends in great extend on the
tools an observer has, to test processes. And in general a protocol verification in a particular
decorated trace semantics, does not carry over to a setting in which observers are a bit more
powerful. On the other hand, branching time semantics preserves the internal branching structure of
processes and thus certainly their observable behaviour as far as it can be captured by decorated
traces. A protocol, verified in branching time semantics, is automatically valid in each of the
decorated trace semantics.

Probably one of the most important features in process algebra is that of abstraction, since it
provides us with a mechanism to hide actions that are not observable, or not interesting for any
other reason. By abstraction, some of the actions in a process are made invisible or silent.
Consequently, any consecutive execution of hidden steps cannot be recognized since we simply do
not 'see’ anything happen.

Algebraically, in ACP7 of BERGSTRA & KLOP (1985) abstraction has the form of a renaming
operator which renames actions into a silent move called 1. In MILNER's CCS (MILNER (1980))



these silent moves result from synchronization. This new constant 7 is introduced in the algebraic
models as well: for instance in the graph models (cf. BERGSTRA & KLOP (1985), MILNER (1980))
we find the existence of T-edges, and so the question was how to find a satisfactory extension of
the original definition of bisimulation equivalence that we had on process graphs without <.

It turns out that there exist many possibilities for extending bisimulation equivalence to process
graphs with T-steps. One such possible extension is incorporated in Milner's notion of observation
equivalence - called T-bisimulation equivalence in BERGSTRA & KLOP (1985) -, which resembles
ordinary bisimulation, but permits arbitrary sequences of t-steps to precede or follow
corresponding atomic actions. A different notion of so-called n-bisimulation was suggested by
BAETEN & VAN GLABBEEK (1987) invoking a weaker set of abstraction axioms. In MILNER
(1981) another notion of observational equivalence was introduced which in this paper is referred
to as delay bisimulation equivalence. As we will show, the treatments of Milner and Baeten & Van
Glabbeek fit into a natural structure of four possible variations of bisimulation equivalence
involving silent steps. The structure is completed by defining branching bisimulation equivalence.
As it turns out, observation equivalence is the coarsest equivalence of the four, in the sense of
identifying most processes. - and delay bisimulation equivalence are two incomparable finer
notions whereas branching bisimulation equivalence is the finest of all.

In a certain sense the usual notion of observation equivalence does not preserve the branching
structure of a process. For instance, the processes a-(tb + ¢) and a-(t'b +¢) + a'b are observation
equivalent. However, in the first term, in each computation the choice between b and ¢ is made
after the a-step, whereas the second term has a computation in which b is already chosen when the
a-step occurs. For this reason one may wonder whether or not we should accept the so-called third
T-law - a:(T°x + y) = a*(T'X + y) + ax - (responsible for the former equivalence) and for similar
reasons the second - T'X = T'X + X.

The previous example shows us that while preserving observation equivalence, we can introduce
new paths in a graph that were not there before. To be precise: the traces are the same, but the
sequences of intermediate nodes are different (modulo observation equivalence), since in the
definition of observation equivalence there is no restriction whatsoever on the nature of the nodes
that are passed through during the execution of a sequence of t-steps, preceding or following
corresponding atomic actions. This is the key point in our definition of branching bisimulation
equivalence: in two bisimilar processes every computation in the one process corresponds to a
computation in the other, in such a way that all intermediate states of these computations
correspond as well, due to the bisimulation relation. It turns out that it can be defined by a small
change in the definition of observation equivalence.

The fact that observation equivalence is too rigid in its identifications is even stronger illustrated by
the problems that it may cause in practical applications and analysis. As an example, it can be
shown (cf. GRAF & SIFAKIS (1987)) that there is no modal logic with eventually operator ¢ which
is adequate for observation equivalence. Here ¢¢ means that all paths will eventually pass to a state
were ¢ holds. Indeed, suppose that such a logic would exist, then this means that two processes are



observation equivalent iff they satisfy the same modal formulas. For instance, with respect to
processes in CCS there exists a formula f such that: (c.nil + 7.b.nil) F ¢ and b.nil ¥ ¢ since
obviously both processes are not observation equivalent. However, from (c.nil + t.b.nil) ¢ it
follows that we have a.(c.nil + T.b.nil) = ¢ ¢ whereas from b.nil ¥ ¢ we find a.(c.nil + T.b.nil) +
a.b.nil ¥ ¢ ¢ although both processes are observation equivalent. Obviously, this inconsistency is
due to the third t-law.

Another paper by JONSSON & PARROW (1989) on deciding bisimulation equivalence shows a
different kind of struggle with the third t-law. In this paper, infinite data flow is turned into a finite
state representation by considering symbolic transitions. This provides us with a method to decide
on the equivalence of infinite data flow programs. It turns out to work easily for strong
equivalence, but in observation equivalence there is no straightforward generalization of the former
results and a less intuitive transition system is needed to fix this problem. Using branching
bisimulation may serve as a key to a more natural solution of this problem.

Having at least four options for the definition of bisimulation congruence involving T-steps, in any
particular application it becomes important to have a clear intuition about which kind of abstraction
is preferable. In an important class of problems one can prove however, that all four notions of
bisimulation yield the same equivalence. In particular this is the case if one of the two bisimulating
graphs does not have any t-steps. It is interesting to observe that all case studies on protocol
verification known to the authors fit into this class of problems, hence all of their proofs that have
been given in the setting of observation equivalence still hold in branching bisimulation semantics .

1. BRANCHING AND ABSTRACTION

In this section we define the semantic equivalences that we want to discuss on a domain of process
graphs. Since we focus on branching and abstraction, we have chosen to abstain from a proper
modelling of divergence, concurrency, real-time behaviour and stochastical aspects of processes.
Moreover, we will disregard the nature of the actions that our processes may perform: they will be
modelled as uninterpreted symbols a,b,c,... from a given set Act. We have chosen process graphs
(or labeled transition systems) to represent processes, since they clearly visualize the aspects of the
modelled systems' behaviour we are interested in. The nodes in our graphs (or states in our
transition systems) remain anonymous. A common alternative is to use closed expressions in a
process specification language like CCS or ACP as nodes in process graphs, but here we prefer to
separate the semantic issues from the treatment of a particular language. In the next section,
however, we will give an interpretation of certain subsets of CCS and ACP in (parts of) the graph
model and discuss the algebraic aspects of our equivalences.

DEFINITION 1.1 A process graph is a connected, rooted, edge-labeled and directed graph.



In an edge-labeled directed graph, edges go from one node to another (or the same) node and are
labeled with elements from a certain set Act. One can have more than one edge between two nodes
as long as they carry different labels. A rooted graph has one special node which is indicated as the
root node. We require process graphs to be connected: they need not be finite, but one must be able
to reach every node from the root node by following a finite path. If r and s are nodes in a graph,
then r —2s denotes an edge from r to s with label a or it will be used as a proposition saying that
such an edge exists. Process graphs represent concurrent systems in the following way: the
elements of Act are actions a system may perform; the nodes of a process graph represent the states
of a concurrent system; the root is the initial state and if r —2 s, then the system can evolve from
state r to state s by performing an action a. The domain of process graphs will be denoted by G.
On G we consider the notion of bisimulation equivalence, which originally was due to PARK
(1981) and used in MILNER (1983, 1985, 1989) and in a different formulation already in MILNER
(1980). On the domain of process graphs, a bisimulation usually is defined as a relation R ¢
nodes(g)xnodes(h) on the nodes of graphs g and h satisfying:

i. The roots of g and h are related by R

ii. IfR(r,s) and r =371, then there exists a node s' such that s —»2 s' and R(r',s")

iii. If R(r,s) and s —2 s', then there exists a node r' such that r -2 r' and R(r',s").
Equivalently - as is done in this paper - one can obtain bisimulation equivalence from a symmetric
relation R between nodes of g and h, only satisfying (i) and (ii). Such a symmetric relation can be
defined as a relation R ¢ nodes(g)xnodes(h) U nodes(h)xnodes(g) such that R(r,s) < R(s,r), or
alternatively, as a set of unordered pairs of nodes R < {{r,s}: renodes(g), se nodes(h)}. In the
latter case R(r,s) abbreviates {r,s}eR. Note that this restriction to symmetric relations does not
cause any loss of generality.

DEFINITION 1.2 Two graphs g and h in G are bisimilar - notation: g h - if there exists a symmetric
relation R between the nodes of g and h (called a bisimulation) such that:
i. The roots of g and h are related by R
ii. If R(r,s) and r -2 r', then there exists a node s' such that s -2 s' and R(r',s")

Bisimilarity turns out to be an equivalence relation on G which is called bisimulation equivalence.
Depending on the context we will sometimes use Milner's terminology and refer to bisimulation
equivalence as strong equivalence or strong congruence.

Now let us postulate the existence of a special action te Act, that represents an unobservable,
internal move of a process. We write r = s for a path from r to s consisting of an arbitrary number
(20) of t-steps.

The definition of strong congruence was the starting point of MILNER (1980) when he considered
abstraction in CCS. Having in mind that t-steps are not observable, he suggested to simply require
that for g and h to be equivalent, (i) every possible a-step (a#t) in the one graph should correspond
with an a-step in the other (as for usual bisimulation equivalence), apart from some arbitrary long



sequences of t-steps that are allowed to precede or follow, and (ii) every t-step should correspond
to an arbitrary long (20) T-sequence. This way he obtained his notion of observation equivalence
(cf. MILNER (1980, 1983, 1985, 1989) - or t-bisimulation equivalence - which can be defined as
follows:

DEFINITION 1.3 Two graphs g and h are t-bisimilar - notation: g « ¢ h - if there exists a symmetric
relation R (called a t-bisimulation) between the nodes of g and h such that:
i. The roots are related by R
ii. If R(r,s) and r —2 r', then either a=T and R(r',s), or there exists a path s =51 —2s3 = §'
such that R(r',s").

Again, =1 is an equivalence on G which is called t-bisimulation equivalence, also known as
observation equivalence or weak equivalence.

To some extend, the notion of t-bisimulation cannot be regarded as the natural generalization of
ordinary bisimulation to an abstract setting with hidden steps. The reason for this is the fact that an
important feature of a bisimulation is missing for t-bisimulation, which is the property that any
computation in the one process corresponds to a computation in the other, in such a way that all
intermediate states of these computations correspond as well, due to the bisimulation relation.
When HENNESSY & MILNER (1980) introduced the first version of observation equivalence, they
also insisted on relating the intermediate states of computations, as they tell us: "... any satisfactory
comparison of the behaviour of concurrent programs must take into account their intermediate states
as they progress through a computation, because differing intermediate states can be exploited in
different program contexts to produce different overall behaviour ..." and: "If we consider a
computation as a sequence of experiments (or communications), then the above remarks show that
the intermediate states are compared. In fact, if p is to be equivalent to q, there must be a strong
relationship between their respective intermediate states. At each intermediate stage in the
computations, the respective “potentials” must also be the same". However, in Milner's
observation equivalence, when satisfying the second requirement of definition 1.3 one may execute

arbitrarily many t-steps in a graph without worrying about the status of the nodes that are passed
through in the meantime.
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FIGURE 1. Observation equivalence.

As an illustration, in figure 1 we consider a path a-t-b-t-c with outgoing edges di,...,d4, and it
follows easily that all three graphs are observation equivalent. Note that one may add extra b-edges
as in (b) and (c) without disturbing equivalence. However, in both (b) and (c) a new computation
path is introduced - in which the outgoing edge d3 (or d3 respectively) is missing - and such a path
did not occur in (a). Or - to put it differently - in the path introduced in (b) the options d; and d; are
discarded simultaneously, whereas in (a) it corresponds to a path containing a state where the
option d is already discarded but d3 is still possible. Also in the path introduced in (c) the choice
not to perform d3 is already made with the execution of the b-step, whereas in (a) it corresponds to
a path in which this choice is made only after the b-step. Thus we argue that observation
equivalence does not preserve the branching structure of processes and hence lacks one of the main
characteristics of bisimulation semantics.

Consider the following alternative definition of bisimulation in order to see how we can overcome
this deficit.



DEFINITION 1.4 Two graphs g and h are branching bisimilar - notation: g «p h - if there exists a
symmetric relation R (called a branching bisimulation) between the nodes of g and h such that:
i. The roots are related by R
ii. IfR(r,s) and r —2r', then either a=t and R(r',s), or there exists a paths = s; 5253 = &'
such that R(r,s1), R(r',s2) and R(r',s").

In a picture, the difference between branching and t-bisimulation can be characterized as follows:

T
O

FIGURE 2. Bisimulations with 7.

The double arrow corresponds to the symbol =. Ordinary T-bisimulation (definition 1.3) says that
every a-step r —2r' corresponds with a path s = s1 —2 53 = s' and so we obtain figure 2 without
the lines marked with (1) and (2). Branching bisimulation moreover requires relations between r
and s1 and between r' and s2 and thus we obtain figure 2 with (1) and (2). Note that if g 2p h then
there exists a largest branching bisimulation between g and h, since the set of branching
bisimulations is closed under arbitrary union. One can easily check that branching bisimilarity is an
equivalence on G, referred to as branching bisimulation equivalence or branching equivalence for
short.

Obviously, branching equivalence more strongly preserves the branching structure of a graph since
the starting and endnodes of the t-paths s = s1 and s = s are related to the same nodes. Observe
that in figure 1 there are no branching bisimulations between any of the graphs (a), (b) and (c). In
particular, adding extra edges as in (b) and (c) no longer preserves branching equivalence.
Equivalently, we could have strengthened definition 1.3 (ii) by requiring all intermediate nodes in
s = s1 and s2 = s to be related with r and r' respectively. The fact that this alternative definition
yields the same equivalence relation can be seen by use of the following lemma:

LEMMA 1.1 (stuttering lemma) Let R be the largest branching bisimulation between g and h.
Ifr %1y 5%>Trm 5T ' (n20) is a path such that R(x,s) and R(r',s) then V1<ism: R(1;,8).



PROOF First we prove lemma 1.1 for a slightly different kind of bisimulation, defined as follows:

DEFINITION A semi branching bisimulation between two graphs g and h is a symmetric relation
R between the nodes of g and h such that:
i. The roots are related by R
ii. If R(v,w) and v —2 V' then either
(a) a=r and there exists a path w = w' such that R(v,w") and R(v',w"), or:
(b) there exists a path w = w1 —2 wp = w' such that R(v,w1), R(v',w2) and R(v',w").

The difference with branching bisimulation is in case (a), which can be illustrated by:

FIGURE 3. Semi branching (left) and branching bisimulation.

Now let (*) denote the property, mentioned in the lemma. Observe that (a) any branching
bisimulation is a semi branching bisimulation and (b) any semi branching bisimulation satisfying
(*) is a branching bisimulation.

CLAIM The largest semi branching bisimulation between g and h satisfies (*).

Let R be the largest semi branching bisimulation between g and h, let s be a node and let
r =% r; =%+—=7% ry =% r' (m20) be a path such that R(r,s) and R(r',s). Then we prove that
R'= RU{{rj,s}: 1<i<m} is a semi branching bisimulation. We check the conditions:

(i) Clearly, the root nodes of g and h are related by R' (since by R).

(ii) Suppose R'(v,w) and v —2 v'. If R(v,w) then it follows that either (a) a=T and there exists a
path w = w' such that R(v,w") and R(v',w'), or (b) there exists a path w = w1 =2 wa = W'
such that R(v,w1), R(v',w3) and R(v',w"). Hence, from RCR' we find that R' satisfies the
requirements in the definition above.

So assume not R(v,w), then we find that either (1) v=s and w=rj or (2) v=r; and w=s.

(1) If s »2 ' then it follows from R(r',s) that

either: a=T and there is a path r' = r" such that R(r",s) and R(r",s'). Hence there is a path
rj = r' = r" such that R'(r",s) and R'(r",s") as required.

or: there is a path r' = t; =2 tp = r" such that R(ty,s), R(tz,s") and R(r",s") and hence

ri=>r' =t; 22t = r" with R'(t1,s), R'(t,s") and R'(r",s").

(2) If rj >3 1" thenr % ry] 57T - 5T r; -2 r" and since R(r,s) we find that there exists a

sequence s = s = ** = s; such that R(r1,s1),...,R(rj,si). It follows from R(rj,s;) that
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either: a=T and there exists a path s; = s' such that R(r;,s") and R(r",s"). Hence s = s' with
R'(rj,s") and R'(r",s") as required.

or: there exists a path s; = t; =2 tp = s" such that R(rj,t1), R(r",t2) and R(r",s"), and hence
s = sj = t] 22 tp = §" with R'(rj,t1), R'(r",t2) and R'(r"',s").

This proves that R’ is a semi branching bisimulation. Since R is the largest we find R=R'.

So we proved the claim. Finally, conclude that the largest semi branching bisimulation is equal
to the largest branching bisimulation, and thus we proved the lemma. 0

The stuttering lemma will play a crucial role in some of the results we will present later.
It follows from figure 2 that we can find two more kinds of bisimulation with 7, since we can leave
out (1) while still having (2) and vice versa. Consider the following two definitions:

DEFINITION 1.5 Two graphs g and h are n-bisimilar - notation g =y h - if there exists a
symmetric relation R (called an n-bisimulation) between the nodes of g and h such that:
i. The roots are related by R
ii. IfR(r,s) and r —2r then either a=T and R(r',s), or there exists a path s = 51 -3 57 = &'
such that R(r,s1) and R(r',s").

DEFINITION 1.6 Two graphs g and h are delay bisimilar - notation g =4 h - if there exists a
symmetric relation R (called a delay bisimulation) between the nodes of g and h such that:
i. The roots are related by R
ii. IfR(r,s) and r —2r, then either a=T and R(r',s), or there exists a path s = 51 9253 = §'
such that R(r',s2) and R(r',s").

Notice the subtle differences between both definitions (and definition 1.4). In definition 1.5 the
notion of M-bisimulation corresponds to figure 2 without the relation (2) but with (1). Similarly,
with delay bisimulation we have (2) but not (1). It is easy to see that in the definition of both
branching and delay bisimulation the existence requlrement of a node s' such that s = s' and
R(r',s") is redundant.

From the definitions we find immediately that g 2p h = g 2@y h = g «¢ h and similarly
geph =g ogh= g arh Observe that in figure 1 we find an 1-bisimulation between (a) and (c)
and a delay bisimulation between (a) and (b). Conversely, there is no n-bisimulation between (a)
and (b) and no delay bisimulation between (a) and (c), so all implications are strict.

The notion of n-bisimulation was first introduced by BAETEN & VAN GLABBEEK (1987) as a finer
version of observation equivalence. A variant of delay bisimulation - only differing in the treatment
of divergence - first appeared in MILNER (1981), also under the name observational equivalence.
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HISTORICAL NOTE:

The first semantic equivalence preserving the branching structure of processes was defined in
HENNESSY & MILNER (1980) and MILNER (1980). In MILNER (1980) it was called strong
equivalence or strong congruence. It was defined in terms of a decreasing sequence
~0, ~1, -y ~k,... Of €quivalence relations. Originally, these relations where defined on CCS
expressions that figured as states in transition systems, but one can also define them on nodes of
(possibly different) process graphs.

DEFINITION 1.7 Let r and s be nodes of process graphs. Then:
r ~0 s is always true
r ~k41 S iff for all ae Act
(i) if r »2r' then there exists a node s' such thats —2s'and ' ~ §'
(ii) if s =2 s' then there exists a node r' such thatr —2r' and r' ~g §'
r~ siff forallke N: r ~gs.
Two graphs g and h are strongly equivalent, notation g ~ h, if root(g) ~ root(h).

A process graph is finitely branching if each node has only finitely many outgoing edges. In
HENNESSY & MILNER (1980) and MILNER (1980) strong congruence was defined only on CCS
expressions corresponding with finitely branching graphs. On this domain, as was shown in
MILNER (1980), strong congruence 'satisfies its definition’ in the following sense:

PROPOSITION 1.2 Let r and s be nodes of finitely branching process graphs.
Thenrt ~ s iff for all ae Act:
i. ifr —>2r' then there exists a node s' such thats —52s'andr' ~ §'
ii. ifs —3s' then there exists a node r' such thatr —23r' andr' ~ s'.

Strong equivalence is closely related to the notion of bisimulation, introduced by PARK (1981) (cf.
definition 1.2). It is easy to verify that any bisimulation is included in each of the relations ~ for
ke N. Hence bisimulation equivalence is at least as discriminating as strong equivalence. On the
other hand, from the former proposition it follows that with respect to finitely branching process
graphs strong equivalence is a bisimulation, and hence the two notions coincide. With respect to
infinitely branching graphs, ~ is strictly coarser than bisimulation equivalence as can be seen from
the following example. Consider the graphs
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FIGURE 4. 'Strongly equivalent' graphs that are not bisimilar.

One can easily verify that these graphs are strongly equivalent in the sense of definition 1.7, but not
bisimilar.

PROPOSITION 1.3
i. Withrespect to finitely branching process graphs the notions ~ and « coincide;
ii. With respect to infinitely branching process graphs s is strictly contained in ~.

Starting from this observation, there are two different ways in which the notion of strong
equivalence (in HENNESSY & MILNER (1980) and MILNER (1980) defined on finitely branching
processes only) can be extended to infinitely branching process graphs. In MILNER (1983) strong
equivalence is chosen to be the relation of definition 1.2, so strong equivalence and bisimulation
equivalence are synonyms.

In the presence of a special action T, representing an unobservable move of a process, one looks for
a semantic equivalence that abstracts from internal moves in a process and for the rest resembles
bisimulation equivalence. Such an abstract equivalence has to satisfy requirements such as:

- it is coarser than bisimulation equivalence :

- it is equal to bisimulation equivalence with respect to processes not containing t-edges

- it does not discriminate between the graphs
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and

FIGURE 5. Contraction of internal moves.

The definition of strong congruence (~) was the starting point of HENNESSY & MILNER (1980)
when they introduced abstraction in CCS. Having in mind that t-steps are not observable, they
proposed that two process graph g and h are equivalent if every visible step in the one graph
corresponds with a similar step in the other, apart from some arbitrarily long sequences of T-steps
that are allowed to precede or follow. This way they obtained a notion of observational
equivalence. Originally, this relation was defined in the style of definition 1.7, but in order to
facilitate comparison with the other equivalences, we will present it in bisimulation style.

DEFINITION 1.8 Two graphs g and h are observational equivalent in the sense of HENNESSY &
MILNER if there exists a symmetric relation R between the nodes of g and h such that:
i. The roots are related by R
ii. If R(r,s) and r =2 r' (a#1), then there exists a path s = s1 —2s3 = s' such that R(r',s").

Unfortunately, this type of observational equivalence turned out not to be a congruence for the CCS
parallel composition operator, the free merge, or any other operator representing concurrent activity
(cf. HENNESSY & MILNER (1980)). Furthermore, we argue that it is not resistent against refusal
testing as developed in PHILIPS (1987) (Refusal testing is essentially the testing notion of MILNER
(1981), but without replication facility).

EXAMPLE Consider the following two process graphs:

FIGURE 6. Observational equivalence does not respect refusal testing.
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These graphs are observational equivalent in the sense of HENNESSY & MILNER (1980); the
relation R has been indicated in the figure above. Now expose them to the experiments a, d and
c (in this order). The process on the right may respond as follows: a is accepted, d is refused
and c is accepted (another possible respons would be: a accepted, d refused and c refused).
However, this respons would not be possible in the process on the left: the attempt to execute
the action d would cause the t-edge to be executed, and then ¢ cannot happen anymore.

Hence MILNER's version of observation equivalence (MILNER (1980)) (which we call -
bisimulation equivalence) can be regarded as an improvement. Both notions satisfy the
requirements mentioned above, but additionally t-bisimulation equivalence is a congruence for the
CCS parallel composition operator and is resistent against refusal testing. Since observational
equivalence in the sense of HENNESSY & MILNER (1980) is coarser than T-bisimulation
equivalence, the criticism that t-bisimulation equivalence does not preserve the branching structure
of processes also applies to the variant of HENNESSY & MILNER (1980).

2. AXIOMS

In this section we will turn several parts of our graph domain G into algebras, by defining some
operations on them. This will enable us to give equational characterizations of the equivalences
studied in the previous section. In the first subsection we use the operators of the axiom system
BPAz (cf. BERGSTRA & KLOP (1985)): action constants, alternative and sequential composition.
In the second subsection we take the operators inaction, prefixing and alternative composition of
CCS (cf. MILNER (1980)). Finally, in the third subsection we combine the features of the previous
two approaches, thereby obtaining the kernel of the extended algebra ACP; (cf. BERGSTRA &
KLOP (1985)). We will not consider parallel composition, restriction (or encapsulation), hiding and
relabeling. However, we claim that these can be added without problem.

2.1. BASIC PROCESS ALGEBRA

For sake of convenience, in this subsection we will only consider root unwound process graphs,
i.e. process graphs with no incoming edges at the root. Since each bisimulation equivalence class
of process graphs contains a root unwound graph, this does not cause any loss of generality.
Furthermore, we restrict ourselves to non-trivial graphs - having at least one edge - and we assume
our graphs to be divergence free, meaning that they do not contain infinite t-paths. The latter
restriction will be cancelled later, but for the time being it suits us since having it we can stay closer
to CCS in our presentation. (NOTE: apart from arguments about presentation, one may argue that
there is still discussion about the role of divergence in bisimulation equivalence on processes, such
as the dichotomy between explicit divergence MILNER (1981), WALKER (1990) and fair abstraction
MILNER (1980), BAETEN, BERGSTRA & KLOP (1987a), see also section 6.3). The domain of root
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unwound, non-trivial and divergence free process graphs will be denoted by Gepa. Clearly GBpa
cG.

In order to equip GBpa with some structure, we introduce two binary infix written operators + and
- and constants for every element in Act.

DEFINITION 2.1 The constants ac Act and the operators + and - are defined on Ggpa as follows:
(i) Constants ae Act are interpreted by one-edge graphs labeled with a
(i) (g + h) can be constructed by identifying the root nodes of g and h
(iii) (gh) is constructed by identifying all endnodes (leaves) in g with the root of h. If g is
without endnodes, then the result is just g.

As in regular algebra we will often leave out brackets and -, assuming that - will always bind
stronger than +.

The operators + and - are well-defined, even after deviding out bisimulation equivalence on GBpaA,
as follows from the following proposition, the proof of which is straightforward and omitted.

PROPOSITION 2.1 Bisimulation equivalence is a congruence with respect to the operators + and .
Hence the structure (GBpa/e,+,",Act) is a well-defined algebra. Considering its first order

equational theory we find the axiom system BPA (cf. BERGSTRA & KLOP (1984)) which stands
for Basic Process Algebra.

X+y=y+X Al
x+y)+z=x+(y+2) A2
X+X=X A3
(x+y)z=xz+yz A4
(xy)z = x(yz) AS
Table 1. BPA.

As usual, we assume the axioms from table 1 to be universally quantified.
Now let us say that a theory I is a complete axiomatization of a model M if for every pair of closed
terms p and q we have: I' - p=q if and only if M = p=q. This definition deviates from the standard

one, since usually also open terms are considered. Then the following theorem is due to
BERGSTRA & KLOP (1985):

THEOREM 2.2 BPA is a complete axiomatization of (GBpA/ 2 ,+,",Act).
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Observe that in the presence of the trivial graph, BPA is not sound with respect to
(GBPA/2,+,",Act): axiom A4 no longer holds, with the trivial graph substituted for the variable y.
For this reason it was excluded from Ggpa from the beginning.

In the same way one may wish to find axiomatizations for algebras resulting from deviding out the
other equivalences of section 1. However, as it turns out these equivalences are no congruences
with respect to the operator +. In the case of observation equivalence this problem was solved by
MILNER (1980) by simply taking the closure of 1 with respect to all contexts in CCS, thereby
obtaining observation congruence. Similarly in HENNESSY & MILNER (1980) observational
congruence was defined as the CCS-closure of their variant of obsevational equivalence (definition
1.8) and this congruence coincides with the one of MILNER (1980). BERGSTRA & KLOP (1985)
formulated an additional condition, yielding an immediate definition of observation congruence by
means of bisimulation relations.

DEFINITION 2.2 (root condition) A relation R between nodes of process graphs is called rooted if root
nodes are related with root nodes only.

Observe that every bisimulation (see definition 1.2) is rooted, but this is not necessarily the case for
the relations defined in definitions 1.3-1.6. For any two process graphs g and h and
* € {1,b,n,d} we write R: g e« hif R is a rooted *-bisimulation between g and h, and g e 4 h if
such a relation exists.

THEOREM 2.3 For * € {1,b,n,d}, e« is a congruence on Gpa with respect to + and .

PROOF We prove theorem 2.3 for e . The other proofs proceed in the same way.
e is reflexive since the identity relation is a rooted branching bisimulation between any graph
and itself, and it is symmetric by definition. Furthermore, assume that R: g e g' and
S: g' 2 g" and define: T(r,r") :< for some r' in g": R(r,r') and S(r',r""). Now one can easily
prove that T: g erp g", and S0 e is transitive. Thus we proved that < is an equivalence. So it
is left to prove that = 1, respects the operators. Suppose thatR: g e g'and S: h exp h'.
+: We prove that (RUS): (g + h) e (g' + h').
(i) Obviously the roots of (g + h) and (g' + h') are related.
(ii) Assume that in (g + h) we have an edge r —2r' and suppose we have (RUS)(r,s) then from
the construction of (g + h) it follows that this edge either originates from g or from h; let us say
it is g. It follows from (RUS)(r,s) that we have either R(r,s) or S(r,s), so we have two distinct
cases:
Firstly, suppose that R(r,s). Then either a=t and R(r',s) - hence (RUS)(r',s) and RLS)
satisfies definition 1.4 - or there exists a path s = s; —2 s = s' in g' such that R(r,s1), R(',s2)
and R(r',s). Obviously, we can find the same path in (g' + h') and we have that RUS)(1,s1),
(RUS)(r',s2) and (RUS)(1',s") as required.
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Secondly, suppose that we do not have R(r,s). Then we have S(r,s), and since we assumed that
the edge r —2 r' came from g, we find that r has to be the (joint) root node of g and h. However,
in S root nodes are related with root nodes only (the root condition), and so s must be the joint
root node of g' and h'. Hence R(r,s), which is a contradiction.

(iii) Obviously, the root nodes of (g + h) and (g' + h') are uniquely related by (RUS).

+: we prove RUS: (g'h) b (g"h").

(i) Clearly, the roots of both graphs are related by R, hence by RUS.

(ii) Assume that in (g-h) we have an edge r —2 r' and suppose we have (RUS)(r,s) then from
the construction of (g-h) it follows that this edge either originates from g or from h.

(1) Firstly, let us say it is from g. From (RUS)(r,s) we find that either R(r,s) or S(r,s). Since r
cannot be an endnode in g we have R(r,s). It follows from the fact that R is a rooted branching
bisimulation that either a=t and R(1',s) - hence (RUS)(r',s) as required - or there is a path
s = s1 —2s2 = s' in g' such that R(r,s1), R(r',s2) and R(r',s") and thus we find the same path
in (g"h") such that (RUS)(r,s1), (RUS)(1',s2) and (RUS)(r',s"), as is required.

(2) Secondly, assume r —2 r' is from h.

- In case R(r,s), we find that r is an endnode in g (since those are the only nodes of g that are
identified with nodes from h). Suppose s is an endnode in g', then it is identified with the root
node of h', and since S is a rooted branching bisimulation we find:

either a=T and S(1',s), hence (RUS)(r',s);

or there exists a path s = s; — s = s' such that S(r,s1), S(r',s2) and S(r',s") and hence

(RUS)(r,81), (RUS)(1r',s2) and (RUS)(r',s") as required.

So let us assume that s is not an endnode in g', then it has at least one outgoing edge s =P s;.
Since R is a rooted branching bisimulation and R(r,s), we find that b=T and R(r,s1). The same
argument holds for s; and thus we find a path s=sg =% s; =7 s —=%... such that R(r,sj). Since
all graphs in Gppa are divergence free we have that all nodes s; are distinct and furthermore the
sequence s=sg —7T s1 =7 s2 —7%... has bounded length. Hence there exists a path s = s' to an
endnode s' in g', such that R(r,s') (and hence (RUS)(r,s")). Note that s' is identified with the
root node of h'. Combining this result with the former part, we find that the conditions of
definition 1.4 are satisfied as required.

- In case not R(r,s), then S(r,s) and both r and s are from h and h' respectively. Now the
requirement follows immediately from the fact that S is a branching bisimulation.

(iii) Clearly, the root nodes are uniquely related by (RUS). O

THEOREM 2.4 Provided that there exists al least one action a€ Act with a#%, e« is the coarsest
congruence on GBpA With respect to + that is contained in e «, for * € {T,b,n,d}. Hence ¢
coincides with observation congruence.

PROOF The idea for this proof is due to J.W. Klop (personal communication). Let g and he Ggpa
and suppose g+k o4 h+k for any graph ke Ggpa. Suppose there is an action ae Act (a#7) that
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does not occur in g and h. Then g+a =« h+a. Let R be a *-bisimulation between g+a and h+a,
then R must be rooted. Therefore the restriction of R to the nodes of g and h is a rooted *-
bisimulation between g and h.

If no 'fresh atom' ae Act can be found a variant of this method still works. First note that for
each infinite cardinal x there are at least x *-bisimulation equivalence classes of graphs with less
then K nodes. (Choose an action a€ Act (a#t) and define for each ordinal A>0 the graphs g) as
follows: g1=a, gr+1=g)r+ag) and for A a limit ordinal g), is contructed from all graphs gy for
H<A by identifying their roots. Then with transfinite induction it follows that no two different
g)'s are *-bisimilar. Furthermore, for infinite A, the cardinality of the nodes of g is the
cardinality of A.) Thus for any two graphs g and h there must be a graph ke Ggpa with the same
cardinality such that k is not bisimilar with any subgraph corresponding with a node in g or h.
Now take a *-bisimulation between g+tk and h+1k. O

The equivalence relations e« are called rooted *-bisimulation equivalence or *-bisimulation
congruence. As a consequence of theorem 2.3, we find that all structures (GBpA/ e #,+,",Act) are
well-defined algebras, every one of which may satisfy a different equational theory. In a slightly
different setting, MILNER (1980) found that the algebra (Ggpa/er1,+,',Act) can be completely
axiomatized by BPA together with the following three equations:

XT=X T1
TX=TX+X T2
a(tix+y)=a(tx +y) + ax T3

Table 2. t-laws (ac Act).
THEOREM 2.5 BPA + T1-T3 is a complete axiomatization of (Ggpa/ e oo+ ACt).

In the setting of BPA and process graphs, this theorem was first established in BERGSTRA & KLOP
(1985). Its proof will be given in section 4, together with the proofs of the theorems 2.6-2.8.

From figure 1 one can observe that the constructions (b) and (c) are highly fundamental for the
behaviour of 7 in the graph model. For instance, by simplifying figure 1 (b) one finds the second 1-
law T2, whereas T3 can be easily found from figure 1 (c). This shows us that the extra t-laws T2
and T3 originate from the fact that observation equivalence does not preserve branching structures.

Since branching bisimulation equivalence distinguishes between all three graphs in figure 1, we
expect that the laws T2 and T3 will no longer hold in (GBpa/ < 1b,+,",Act). As it turns out, axiom
T3 is completely dropped and T2 is considerably weakened to axiom H2 from the following table:
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XT=X H1 (T1)
x(ty +2) +y)=x(y +2) H2

Table 3. T-laws for branching bisimulation.

H1 is the same axiom as T1 whereas H2 is derivable from T1 and T2 as one can check easily. Both
axioms refer to the axiomatization of 1, a constant for abstraction from BAETEN & VAN GLABBEEK
(1987) similar to 7. In fact they are a variation on the first two 1-laws in the sense that in BAETEN
& VAN GLABBEEK (1987) the second law H2 was only introduced for atomic actions x, instead of
taking x as a general variable ranging over all processes. On the domain of closed terms the two
variants are equally powerful.

THEOREM 2.6 BPA + H1-H2 is a complete axiomatization of (GBpA/ £ rb,+,",Act).

Obviously, <2 is a coarser notion than e, and it respects the axioms H1-H2. As it turns out we
have the additional axiom H3 which was introduced earlier as T3.

XT =X & H1 (T1)
Xy +z)+y)=x(y +2) H2
a(tx+y)=a(tx +y) + ax H3 (T3)

Table 4. n-laws (ae Act).

BAETEN & VAN GLABBEEK (1987) established a completeness theorem for rooted 1-bisimulation:
THEOREM 2.7 BPA + H1-H3 is a complete axiomatization of (GBpA/ 2 m»+>ACt).

So, on closed terms, the difference between H2 and T2 is precisely all the difference there is
between the usual T-laws and 7). Finally a completeness theorem for delay bisimulation was (in the
setting of CCS) established by WALKER (1990).

THEOREM 2.8 BPA + T1-T2 is a complete axiomatization of (GBpPA/ < rA,+,",ACt).

Resuming we have the following diagram (see figure 7):
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weak bisimulation
T1, T2, T3

.

r1 -bisimulation delay bisimulation
H1, H2, H3 T1, T2

\/

branching bisimulation

Hi1, H2
Tl xTt=x H1
Xy +2z)+y)=x(y +z) H2
T2 Tx=1x+X
T3 a(tx+y)=a(tx +y) +ax H3

FIGURE 7. Four notions of bisimulation with T (ac Act).

REMARK

In case we do not restrict to root unwound process graphs the definitions of the various
bisimulations become a little more complicated. In particular the root conditions will have a
different form (cf. BAETEN & VAN GLABBEEK (1987)) and the definition of the operator + on
process graphs has to be changed.

2.2 CCS

In the setting of CCS we extend the graph domain Gppa to Gccs consisting of the root unwound
process graphs, thus no longer excluding the trivial graph (the one-node graph without edges) nor
any of the graphs with divergences (i.e. infinite t-paths). We obtain: Ggps = Gces ¢ G.

We introduce a constant O for inaction, a binary infix written operator + for alternative
composition, and unary operators a. for prefixing (ac Act).

DEFINITION 2.3 The constant 0 and the operators + and a. are defined on Gccs as follows:
(i) The constant 0 is interpreted as the trivial graph
(i) (g + h) can be constructed by identifying the root nodes of g and h
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(iii) (a.g) is constructed from g by adding a new node which will be the root of a.g, and a
new a-labeled edge from the root of a.g to the root of g.

We will often leave out brackets, assuming that + will be the weakest operator symbol. For agents
p we will often write ap instead of a.p in order to avoid non-essential distinctions between CCS and
ACP. Similarly, we write Act for the set of prefix operators {a.: ac Act}. MILNER (1980) proved
that the operators from Act and + all are well-defined on Gccs/ < :

PROPOSITION 2.9 Bisimulation equivalence is a congruence with respect to the operators from Act
and +.

So again, the structure (Gccs/=,0,+,Act) is a well-defined algebra, and as in the case of
(GBpA/e,+,",Act) we can find a complete axiomatization of its equalities with respect to closed
terms:

X+y=y+X ' Al
x+y)+z=x+(y+2) A2
X+X=X A3
x+0=x A6

Table 5. Basic CCS.

Let us call the theory from table 5 Basic CCS, and write BCCS := A1-A3,A6. Then the following
theorem is due to HENNESSY & MILNER (1980) and MILNER (1980).

THEOREM 2.10 BCCS is a complete axiomatization of (Geoes/< ,0,+,Act).

As before, we have four other equivalences er+« for * € {7,b,n,d} on G¢ccs which can be
considered. First we establish that they are congruences.

THEOREM 2.11 For * € {1,b,n,d}, e« is a congruence on Gees with respect to + and Act.

PROOF We prove it for < rp. The other proofs proceed in the same way.
The proof that < rp is an equivalence and respects + can be copied from the proof of theorem
2.3. So itis left to prove that it respects the operators in Act. So suppose that R: g = g' and p,
p' are the root nodes of a.g and a.g'. Put R* := RU{p,p'}. Then we prove R*: (a.g) e (a.g).
(1) Clearly, the roots of both graphs are related by R*.



22

(ii) Assume that in (a.g) we have an edge r —b r' and suppose we have R*(r,s) then from the
construction of (a.g) it follows that either r=p or this edge originates from g.

If r=p then by the definition of R* we have s=p'. Furthermore, b=a and r' is the root node of g
and by the construction of prefixing we find that in g' there exists an edge s —2 s' to the root
node s' of g'. Since R is a branching bisimulation we find R(r',s') and hence R*(r',s").

If r -V ¢ originates from g then it follows from the definition of R* that R(r,s), from which the
requirement follows immediately.

(iii) Clearly, the root nodes are uniquely related by R*. 0

It follows from theorem 2.4 that « . is moreover the coarsest BCCS-congruence contained in s .
Now consider the axioms from the following table:

H1' atmx=ax T1'
H2' a(t(y+z)+y)=a(y +2z)
TX=TX+X T2'

H3' a(tx+y)=a(tx+y)+ax T3'

Table 6. t-laws in CCS (ae Act).

The only difference between these axioms and the ones introduced in the previous section is the
replacement of sequential composition by prefixing in the axioms T1 (H1) and H2. The prime
accents (') refer to this replacement. Note that H1' is derivable from H2. We find the following
completeness results:

THEOREM 2.12

(i) BCCS is a complete axiomatization of (Gocs/ = ,0,+,Act)

(i) BCCS + T1-T3'is a complete axiomatization of (Gocs/ e 11,0,+,Act).
(iii) BCCS + H2' is a complete axiomatization of (GCCs/ 2 1b,0,+,Act).

(iv) BCCS + H2'-H3' is a complete axiomatization of (Gccs/ em,0,+,Act).
(v) BCCS + T1'-T2' is a complete axiomatization of (Gces/ <2 1d,0,+,Act).

For the proof of theorem 2.12, we refer to section 4.

2.3. TERMINATION
In the previous two subsections, we presented two models: the model (GBPA/21%,+,",Act) for
BPA with sequential composition, and (Gccs/< r+,0,+,Act) for BCCS with prefixing. As we
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argued before, including the trivial graph in Ggpa/«<r+ would destroy the soundness of BPA in the
corresponding model, i.e. of the axiom A4. Furthermore, from GBpA/«r+ We have to exclude
graphs containing infinite T-paths since otherwise sequential composition no longer respects the
equivalences - i.e. the equivalences < r« are no longer congruences with respect to . For consider
the following example:

L=

FIGURE 8. Equivalent graphs with and without divergence.

In figure 8, we find two equivalent graphs, one with and one without divergence, which we
informally denote by a-Tt® and a. So: a-T® e« a, for *e {t,b,n,d}. However, since a-t® does not
contain any endnodes we find that (a-t®)'b = a-t® and a-1? s ab. So in the presence of divergence
e+ NO longer is a congruence with respect to -.

The question arises whether the virtues of (GBpA/er«,+,",Act) and (Gces/ e r+,0,+,Act) can be
conbined, i.e. whether it is possible to define inaction and general sequential composition in one
model (without destroying the intuitively plausable axiom A4) as well as to define general
sequential composition on graphs with possible divergence paths, while respecting the
equivalences. We will give a positive answer to this question by once again extending Gccs to a
larger domain Gacp (so: Gpa S Gees < GAcp)-

Let us extend the set Act with an additional label, written as V. Then, in Gacp we will distinguish
between successful and unsuccessful termination of a process by adding a termination edge to the
endnodes which are considered to terminate successfully. Such termination edges consist of an
outgoing edge labeled with v to a new endnode. Let G Acp consist of ail graphs that can be
obtained from non-trivial, root unwound graphs from Ggpa by adding termination edges to some
of their endnodes. Next we add the trivial graph to Gacp but assume that Gacp is without the
graph consisting of a single termination edge, i.e. the graph representing instant termination.
Observe that in graphs from GAcp every node has at most one outgoing termination edge and if it
has one, then it does not have any other outgoing edges. Furthermore, if a node has an incoming
termination edge then it is an endnode and it does not have any other incoming edges. We
immediately find that Gces <€ Gacp and Gacp C G‘I, where GV is the set of process graphs with



Vasa possible edge-label. The difference between Gccs and Gacp is that the latter distinguishes
between two kinds of termination.

FIGURE 9. Process graphs with termination edges.

With respect to the algebraic operators, we simple combine the operators from BPA and ACP, but
we adapt the definitions of action constants and sequential composition to the presence of V-labels.
This is done in the following definition. The new operator for sequential composition will again be
denoted by -, and similarly for action constants. It will appear from the context (whether it is about
GBpa or Gacp) which one of the definitions 2.1 and 2.4 presents their current interpretation. In
case of doubt we underline the BPA operators.

DEFINITION 2.4 On GAcp the constants 0 and a (for ac Act) and the operators + and - are defined

as follows:

(i) Ois the trivial graph

(ii) Constants a Act are interpreted by the left hand side of figure 9

(iii) (g + h) can be constructed by identifying the root nodes of gandh

(iv) (g'h) is constructed by identifying every node in g with an outgoing termination edge with
the root node of h while deleting its termination edge. The root node of (g°h) is that of g. If
g is without termination edges, then (g-h) is just g.

The prefixing operator of CCS can now be defined by: a. g=a‘g. In the subdomain G¢cs of Gacp
all processes end in deadlock (unsuccesful termination), so g'h=g. This explains the absence of
sequential composition on Gccs. Let G’gBpa be the subdomain of G ACP consisting of all
divergence free graphs from Gacp only ending with succesful termination. Then (G'BPA,+,",Act)
and (GBPpA,+,:,Act) are isomorphic algebras and the latter can be interpreted as a notational
abbreviation of the former, where all V-labels have been left out.
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On the new graph domain Gocp we can define the bisimulation relations from definition 1.2-1.6
and 2.2, taking into account that Ve Act. That is, termination edges are not treated anyhow different
from other edges. The relations on Ggpa, inherited through the isomorphism from G'gpa,
coincide with the relations considered in subsection 2.1. However, this is no longer true if
divergent graphs would be added to Gpa; in that case all relations need an additional clause:

- If R(r,s) and r is an endnode than there is a path s = s' to an endnode s'.

In order to prevent this complication in section 2.1, there we treated divergence free graphs only.
The fact that definition 2.4 provides us with a proper algebraic structure on Gacp follows from the
following theorem:

THEOREM 2.13 All equivalences &, 11, ©21b, £2rm and s1d are congruences with respect to the
operators + and - on GACP.

PROOF Again we prove the theorem for e p. The fact that on Gocp they are conguences with
respect to + can be found from the proof of theorem 2.3. Considering the proof for , suppose
that R: g «21p g'and S: h «p h'. Let R' be the restriction of R to the nodes in g that also appear
in g'h (i.e. the nodes without incoming \/-edges). We prove that R'US: (g-h) 254 (g"h').

(i) Clearly the roots of (g-h) and (g"h') are related by R'US.

(ii) Assume that in (g-h) we have an edge r —2 r' and suppose (R'US)(r,s), then from the
construction of (g-h) it follows that this edge either originates from g or from h. If it is from g,
then the proof proceeds as in the proof of theorem 2.3. So assume r —2r' is from h.

- In case R'(r,s), we find that in g the node r has an outgoing termination edge r -V toan
endnode 1" (since those are the only nodes of g that are identified with nodes from h). Since R is
a branching bisimulation, we find that in g' there exists a path s = s' —V §" such that R(,s")
and R(r",s"). By applying the definition of « 1, we even find that all nodes in s = s' are related
with r. Furthermore, by construction of (g"h') the node s' is identified with the root node of h',
and since S is a rooted branching bisimulation between h and h', we find:

either a=t and S(r',s"), hence (R'US)(r',s");

or there exists a path s' = s; — sy = s3 such that S(r,s1), S(r',s2) and S(r',s3) and hence

(R'US)(1,81), (R'US)(1',s2) and (R'US)(r',s3) as required.

- In case not R'(r,s), then S(r,s) and both r and s are from h and h' respectively. Now the
requirement follows immediately from the fact that S is a branching bisimulation.

(iii) In Gacp the root node cannot have an outgoing termination edge, and hence the root nodes
of (g'h) and (g"h') are only related by R' (they are not identified with nodes from h or h').
Hence (R'US) is rooted since R is. O

As a consequence, we find a well-defined algebra (Gacp/«=,0,+,",Act), and four others with
domain GAcp/erx (* € {1,b,n,d}). To start with, we find that the following basic theory is valid in
all five algebras (see table 7):
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X+y=y+Xx Al
x+y)+z=x+(y+12) A2
X+X=X A3
x+y)z=xz+yz A4
(xy)z = x(yz) AS
x+0=x A6
0x=0 A7
Table 7. BPAg.

The theory BPAy is the kernel of the axiom system ACP, introduced in BERGSTRA & KLOP
(1984), where 0 was called 8. As before, we have the following completeness theorem for the five
respective algebras:

THEOREM 2.14
(1) BPAgis a complete axiomatization of (GAcp/ < ,0,+,",Act)
(i) BPAq + T1-T3 is a complete axiomatization of (GACP/ < 11,0,+,",Act)
(iii) BPAg + H1-H2 is a complete axiomatization of (G ACP/ < 1b,0,+,",Act)
(iv) BPAg + H1-H3 is a complete axiomatization of (GACp/ = mp0s+,Act)
(v) BPAg + T1-T2 is a complete axiomatization of (G ACp/ < 14,0,+,",Act).

Again for the proof of this completeness theorem we refer to section 4.

3. BRANCHES AND TRACES

As we saw in figure 1, while preserving observation equivalence we are able to introduce new
‘'paths’ in a graph. To be more precise: in these new paths alternative options may branch off in
places different from any in the old paths. So far, we claimed to have solved this problem by
defining a new kind of bisimulation, but as of yet we still have to prove that our solution solves the
problem in a fundamental way. In this section we will establish an alternative characterization of
branching bisimulation. In fact, we will show how branching bisimulation preserves the branching
structure of graphs. Let us first consider ordinary bisimulation.

DEFINITION 3.1 A concrete trace of a process graph is a finite sequence (a1, a3, a3,..., ax) of actions
from Act, such that there exists a path rg =21 r; =32 rp — **—2% ry from the root node 0.
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Two graphs g and h are said to be concrete trace equivalent, notation g = h, if their concrete trace
sets (i.e. the sets of their concrete traces) are equal. It is easily checked that = is a congruence on
Ggpa and g & h = g = h. Consequently we find that Ggpa/=; is a model for BPA. Compared to
bisimulation, concrete trace equivalence makes much more identifications. For example, we find
that Gpa/= satisfies the equation x(y + z) = Xy + xz which cannot be proved from BPA.

The main reason for this is that a concrete trace does not provide us with information about the
branching potentials in the intermediate nodes. Therefore we cannot distinguish between processes
a(b + ¢) and (ab + ac). In the following we will use colours at the nodes to indicate these potentials.

DEFINITION 3.2 A coloured graph is a process graph with colours Ce C as labels at the nodes.
Obviously, in a coloured graph we have traces which have colours in the nodes:

DEFINITION 3.3 A concrete coloured trace of a coloured graph g is a sequence of the form
(Co, a1, Cy, a3, Cy,..., ak, Cx) for which there exists a path rg 531r; 5321y — -« 3% ryin g,
starting from the root node rg, such that rj has colour C;.

The concrete coloured traces of a node r in a graph g are the concrete coloured traces of the
subgraph (g); of g that has r as its root node. This graph is obtained from g by deleting all nodes
and edges which are inaccessible fromr.

The question remains how to detect the colour differences of the nodes, or - to put it differently -
how to define the concept of 'branching potential in a node' properly. There are several ways to do
this. Probably the shortest definition is the following:

DEFINITION 3.4 A concrete consistent colouring of a set of graphs is a colouring of their nodes with
the property that two nodes have the same colour only if they have the same concrete coloured
trace set.

Obviously, the trivial colouring - in which every node has a different colour - is consistent on any
set of graphs. Note that - even apart from the choice of the colours - a set of graphs can have more
than one consistent colouring. For instance, consider a set containing only an infinite graph
representing a® or a-a-a- then obviously the homogeneous colouring - in which every node has
the same colour - is a consistent one, as well as the alternating or the trivial colouring.

Let us say two graphs g and h are concrete coloured trace equivalent - notation: g = h - if for some
concrete consistent colouring on {g,h} they have the same concrete coloured trace set, or
equivalently, if for some concrete consistent colouring on {g,h} the root nodes have the same
colour. Then we have the following important characterization:
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THEOREM 3.1 g « h if and only if g =¢ h.

PROOF =»: Suppose R is the largest bisimulation relation between g and h. Let R be the transitive
closure of R, then R is an equivalence relation on the set of nodes from g and h. Let C be the set
of equivalence classes induced by R and label every node with its own equivalence class. Then
this colouring is consistent on g and h.

To see this let rg be a node in g say, and (Co, aj, Cy, az, C»,..., ax, Cx) be a concrete coloured
trace which corresponds to a path rg —2 r; =32 rp — -+ -3 ry starting from rg. Now suppose
for some node sp in h we have R(rg,sg), then we find from definition 1.2 that sg —21 s for
some sj such that R(r1,s1). Thus r1 and s; have the same colour C1. By induction we find that
so has the same concrete coloured trace (Co, aj, Cy, ag, Ca,..., a, Ck). So R preserves concrete
coloured trace sets, hence so does R.

Since the roots of g and h are related we find g = h.

<: Suppose that g and h have the same concrete coloured trace sets. Then consider the relation R
which relates two nodes of g and h iff they are labeled with the same colour. It is easy to prove
that R is a bisimulation between g and h. 0

So far we did not have any notion of abstraction in the definition of coloured traces, so if a
coloured graph has T-labels then these are treated as if they were ordinary actions. In the following
definition we find how to abstract from these T-steps. The idea is simple: T-steps can only be left
out if they are inert, meaning that they are between two nodes that have the same colour. Thus it is
not only that inert steps are not observable, but even more, they do not cause any change in the
overall state of the machine.

DEFINITION 3.5 A coloured trace of a coloured graph is a sequence (Co, a1, C1, a2, Ca,..., ak, Cx)
which is obtained from a concrete coloured trace of this graph by replacing all subsequences
¢C 1,Cr, .1, C) by C.

DEFINITION 3.6 A consistent colouring of a set of graphs is a colouring of their nodes with the
property that two nodes have the same colour only if they have the same coloured trace set.
Furthermore such a colouring is rooted if no root-node has the same colour as a non-root node.

For two root unwound graphs g and h let us write g = h if for some consistent colouring on {g,h}
they have the same coloured trace set, and g = h if moreover this colouring is rooted. Then we
find the following characterization for (rooted) branching bisimulation:

THEOREM 3.2
i. gephifandonlyifg=ch
ii. gemphifandonlyifg=qh.
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PROOF =>: Suppose R is the largest (rooted) branching bisimulation between g and h. Let R be its
transitive closure and C the set of equivalence classes induced by R. Then the colouring in
which every node is labeled with its own equivalence class is consistent (and rooted) on g and h.
To see this, let us write C(r) for the colour of the node r and assume that, for certain nodes rg
and sg, R(rg,sp) and rg has an coloured trace (Cg, aj, C1, a2, C,..., ak, Ck). Then there exists a
path of the form rg »%Tu; —%.. 2%up —31 r; (m20) such that C(r1) = C; and for all i
C(uj) = C(rg) = Cop. For every edge uj -7 uj,1 (0<i<m, ug=rp) there exists a path vi = vij,1
(vo=sg) such that R(uj,vj), and all intermediate nodes are related to either u;j or uj,1 (by lemma
1.1), hence all v; have the same colour Cg. So we find a path sg = vy, with only one colour in
the nodes such that R(um,vm).

Next, since uy —21 r; and R(up,vm) we find that either a;=7 and R(r1,vy) - in which case
C1=Cp in contradiction with (Cp, a1, C1, a2, Ca,..., ax, Cx) being a coloured trace
- or there is a path vy, = t; —31 s1 such that R(up,t;) and R(ry,81). Again by lemma 1.1 we find
that t; and all the intermediate nodes in = have the same colour as vy, and so we find a coloured
trace (Co, a1,C1) of sg. By repeating this argument k times, we find that sg has a coloured trace
(Co, a1, Cy, a2, Ca,..., ak, Ck) and so R preserves coloured trace sets. Thus R induces a
consistent colouring and since the roots are related we find g =¢ h. If moreover R is rooted, then
so is the induced colouring.

«=: Consider a (rooted) consistent colouring such that the coloured trace sets of g and h are equal
with respect to that colouring. Let R be the relation between nodes of g and h relating two nodes
iff they have the same colour, then it is easy to see that R is a (rooted) branching bisimulation. O

This characterization provides us with a clear intuition about what branching bisimulation actually
is, since the difference between inert steps - not changing the state of the machine - and relevant t-
steps - that behave as common actions - is visualized immediately by the (change of) colours at the
nodes. It follows that branching bisimulation equivalence preserves computations together with the
potentials in all intermediate states that are passed through.

Another way of looking at the colouring of a graph is the following. Since trace-equivalence is too
weak to characterize branching bisimilarity we can add more information to traces in order to
distinguish between processes. Consider the following definition:

DEFINITION 3.7 For ordinals o the a-trace set of a graph g is defined as follows:
1. The a-trace set of a node r of g is the set of all y-traces of r, for y<a.
2. An o-trace of r is made of a sequence (T, a1, T1, a2,..., ak, Tk), where aj are actions from
Act and Tj are o-trace sets such that g has a path ro 521 r; —32 .- -3k ry and rj has o-trace
set Tj, by replacing all subsequences (T, T, T, 7, ..., T, T) by T.
3. The o-trace set of g is the o-trace set of its root.
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Note that all O-trace sets are empty, and the 1-trace set of g is just the set of its concrete traces from
which T's have been left out. Two graphs g and h are a-trace equivalent - notation g =¢ h - if they
have the same o-trace set. Let us say that they are hypertrace equivalent - notationg=h -if g =g h
for all ordinals o. Note that if A<ol then g = h implies g =), h. From this it immediately follows
that if G’ ¢ G is a ser of process graphs then on G’ the notion of «-trace equivalence stabelizes
for some ordinal - i.e. there exists a closure ordinal o such that, for g,he G’, g = hiff g =¢ h. It
will follow from the proof of theorem 3.3 that the smallest ordinal with (g = h & g=g41 h)isa
closure ordinal. Furthermore if G has cardinality B then B must be a closure ordinal. Next we
prove that hypertrace equivalence coincides with coloured trace equivalence:

THEOREM 3.3 g = h if and only if g = h.

PROOF =»: Let G’ be a set of process graphs containing g,h and all their subgraphs and let o be the
smallest ordinal such that, for g'h'eG’, g' =q h'iff g' =q4+1 h'. If g' =¢+1 h' then from
definition 3.7 we find that g' and h' have the same o-traces. Consider the colouring on g and h
in which every node is coloured with its own o-trace set. Now a coloured trace (Co, a1, Ci,
ay,..., a, Cx) of a node r is precisely an a-trace and by definition of o we have that r and r'
have the same a-trace set only if they have the same o-traces, i.e. they have the same colour
only if they have the same coloured traces. Hence the colouring is consistent.

Now g = h = g =q+1 h = g and h have the same coloured traces = g = h.

<=: Take a consistent colouring on g and h such that the roots of g and h have the same colour.
Then with transfinite induction on v it is easy to prove that equally coloured nodes have the same
Y-traces for all ordinals v. O

Hence we find that =~ is equivalent to =, and hence to =1, (theorem 3.2). Note that compared to
readiness semantics (cf. OLDEROG & HOARE (1986)), possible-futures semantics (cf. ROUNDS &
BROOKES (1981)) and ready trace semantics (cf. BAETEN, BERGSTRA & KLOP (1987b)) in an a-
trace (021) we keep track of a lot more information. Apart from just all one-step exits from the
endstate of a partial execution we are now able to see all traces (and higher traces) that can be
chosen at every intermediate state during the execution.

The notion of hypertrace equivalence gives us an indication of the amount of extra information that
is needed to turn trace equivalence into branching bisimulation equivalence. Furthermore, it
provides us with an idea of how to build a consistent colouring on a set of graphs by distinguishing
more and more between nodes. A construction similar to definition 3.7 was used by MILNER
(1985) to characterize observation equivalence in the spirit of definition 1.7.

As a tool for further analysis we have the following proposition:
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PROPOSITION 3.4 It is possible to colour the nodes of a root unwound process graph g in such a
way that two nodes have the same colour iff they can be related by a rooted branching
autobisimulation on g (relating g with itself). This colouring is rooted and consistent.

PROOF For every root unwound process graph g the largest rooted branching autobisimulation on g
is an equivalence relation on the nodes. It follows from the proof of theorem 3.2 that every node
can be labeled with its equivalence class as a colour, in order to obtain a rooted consistent
colouring. O

This colouring of a graph is called its canonical colouring. Note that two nodes r and s of a root
unwound process graph g have the same colour with respect to its canonical colouring if and only if
1,s # root(g) and (g)r «p (g)s (the subgraph (g) of g with root r is defined in the beginning of this
section; furthermore, remember that in the canonical colouring root nodes have colours different
from those of internal nodes). We say that r and s are rooted branching bisimilar. A root unwound
graph is said to be in normal form if each node has a different colour with respect to its canonical
colouring and it has no t-loops r =7 r. Next we show that each root unwound process graph is
rooted branching bisimilar with exactly one normal form (up to isomorphism).

DEFINITION 3.8 Let g be a root unwound process graph and consider its canonical colouring with
colour set C. Let N(g) - the normal form of g - be the graph which can be found from g by
contracting all nodes with the same colour and removing T-loops. To be precise:

1. N(g) has colours Ce C as its nodes.

2. N(g) has an edge C —2 C' (a#t) iff g has an edge r —2 r' such that C(r)=C and C(r")=C,
’ where C(r) denotes the colour of the node r.

3. N(g) has an edge C =7 C' iff C#C' and g has an edge r =7 r' with C(r)=C and C(r")=C".

PROPOSITION 3.5 For all root unwound process graphs g: g < p N(8).

PROOF Consider the canonical colouring on g, and the trivial colouring on N(g) in which each node
(being a colour from C) is labeled by itself. Let R be the relation relating nodes from g and N(g)
iff they have the same colour. Now it follows directly from the construction above that R is a
rooted branching bisimulation between g and N(g). O

So in every rooted branching bisimulation equivalence class of root unwound process graphs there
is a normal form. We proceed by showing that up to isomorphism there is only one.

DEFINITION 3.9 A graph isomorphism is a bijective relation R between the nodes of two process
graphs g and h such that:
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1. the roots of g and h are related by R
2. if R(r,s) and R(r',s") then r -2 is an edge in g iff s —2 ' is an edge in h (a Act).

Note that a graph isomorphism is just a bijective bisimulation, or a bijective branching bisimulation
for that matter. Two graphs are isomorphic - notation g = h - iff there exists an isomorphism
between them. In that case g and h only differ with respect to the identity of the nodes. Note that =
is a congruence relation on process graphs.

THEOREM 3.6 (normal form theorem) Let g and h be root unwound graphs that are in normal form.
Then g 2p hifandonly if g=h.

PROOF This follows since any bisimulation R: g « , h must be bijective:
(i) it is surjective because every node in g or h can be reached from the root; hence by definition
1.4 every node is related to some node in the other graph;
(ii) it is injective since every node is related with at most one other node: if two different nodes
in g are related to the same node in h, then these two are also related by a branching
autobisimulation on g, and so with respect to the canonical colouring they have the same colour.
But then by definition 3.8 the nodes are identical, which is a contradiction. O

Theorem 3.6 says that each equivalence class in G/« can be represented by one special element:
its normal form. It follows that g 2rb h if and only if N(g) = N(h).

4. COMPLETENESS PROOFS

In this section we will present the proofs of the completeness theorems 2.6, 2.7, 2.8 and 2.5. By
means of a rather trivial adaptation of the contents of this section one obtains the completeness
theorems for CCS and ACP; (theorems 2.12 and 2.14). The basic idea in these proofs is to
establish a graph rewriting system on finite process graphs, which is confluent and terminating. We
prove that (i) normal forms with respect to the graph rewriting system are normal forms in the
sense of definition 3.8, hence two normal forms are bisimilar iff they are equal (i.e. isomorphic).
Furthermore we prove that every rewriting step in the system (ii) preserves bisimulation, and (iii)
corresponds to a proof step in the theory. Then we conclude:

- two finite graphs are bisimilar iff they have the same normal form

- if two graphs have the same normal form then the corresponding terms can be proved equal.

To start with, let us consider some definitions.

DEFINITION 4.1 Let H < G be the set of finite process graphs and H* < Ggpa the set of finite,
non-trivial process graphs. Here a process graph is finize if it has only finitely many paths.
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Note that finite process graphs are acyclic and thus certainly root-unwound, and contain only
finitely many nodes and edges. Later on, we will establish a correspondence between graphs from
H* and closed terms in BPA, i.e. the signature of BPA together with the extra constant T. Below
we will use the results from the previous section, starting from proposition 3.4.

DEFINITION 4.2 A pair (r,s) of nodes in a process graph g is called a pair of double nodes if r#s,
1,s # root(g) and for all nodes t and labels ae Act: r 53t < s —at.

DEFINITION 4.3 An edge r —7 s in a process graph g is called manifestly inert if r # root(g) and for
all nodes t and labels a Act such that (a,t) # (T,8): r 53t = s —52t.

N/ N\ -

Figure 10. A pair of double nodes (left) and a manifestly inert T-step.

Note that for finite process graphs g, the requirement r,s # root(g) in definition 4.2 is redundant. A
t-edge in a root unwound graph g is inert if it is between two rooted branching bisimilar nodes (i.e.
nodes that have the same colour in the canonical colouring of g). For root unwound graphs it is
easily checked that if (r,s) is a pair of double nodes or if r =7 s is manifestly inert, then r and s are
rooted branching bisimilar. As one can see from figure 10, it is essential in the definitions 4.2 and
4.3 that this can be found by investigating the outgoing edges only up to one level. For this reason,
in definition 4.3 the 1-step is called manifestly inert, since it can be recognized as such. On H,
sharing of double nodes and contraction of manifestly inert T-steps turns out to be strong enough to
reduce a graph to its normal form. This means that in the reduction process all rooted branching
bisimilar nodes become manifestly rooted branching bisimilar.
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THEOREM 4.1 A graph ge H without double nodes or manifestly inert edges is in normal form.

PROOF Let ge H be a finite graph which is not in normal form. Then with respect to its canonical
colouring (proposition 3.4) it has at least one pair of different nodes with the same colour. Now
define the depth d(s) of a node s as the number of edges in the longest path starting from s, and
the combined depth of two nodes as the sum of their depths. Choose a pair (r,s) of different
equally coloured nodes in g with minimal combined depth. Consequently we have:

) if r' and s' have the same colour and d(r') + d(s') < d(r) + d(s) then r'=s'.

Without loss of generality assume d(s)<d(r). Then we prove the following two statements:

L. ifr -3t (ac Act) is an edge in g and (a,t)#(T,s), then s >3 tis an edgeing

2.if s >3t (ac Act) is an edge in g, then eitherr > s orr -3 tisanedgein g.

From these two statements we find that if r 57 s is an edge in g then it is manisfestly inert, and
if r 7% s is not an edge in g, then (r,s) is a pair of double nodes, which proves our theorem.
Note that since r and s are different equally coloured nodes, they both must be different from the
root.

ad 1: Letr —2t be an edge in g and (a,t)#(1,s). Since r and s have the same colour (hence the
same coloured traces) we find that either a=T and t has the same colour as r and s, or s has the
coloured trace (C(r), a, C(t)). In the first case it follows from d(t) < d(r) and (*) that t=s, which
is in contradiction with our assumption (a,t)#(t,s). So s has a coloured trace (C(r), a, C(t)).
Suppose that s =T u for a node u with colour C(u)=C(s)=C(r), then it follows from d(u)<d(s)
and (*) that u=r, contradicting d(u)<d(s)<d(r). Hence there is a node u such that s —2 u and
C(t)=C(u), and since d(t) + d(u) < d(r) + d(s) we conclude from (*) that t=u. Hence s —2 t is an
edgein g.

ad 2: Let s -2 t be an edge in g. If C(t)=C(s)=C(r) then it follows from (*) and d(t)<d(s) that
r=t, in contradiction with d(t)<d(s)<d(r). So (C(s), a, C(t)) is a coloured trace of s, and since r
and s have the same colour (C(s), a, C(t)) is a coloured trace of r as well. Now if r has an
outgoing t-edge r —7 u to a node with the same colour C(r), then it follows from d(u) + d(s) <
d(r) + d(s) and (*) that u=s. If r has no such edge, then it has an edge r =2 u with C(u)=C(t),
and since d(u) + d(t) < d(r) + d(s) we find that u=t. Thus we proved that eitherr =-Ts orr —t,
which proves (2). O

Theorem 4.1 tells us that all we need do in order to turn a finite graph g into its normal form is to
repeatedly unify its pairs of double nodes and contract its manifestly inert edges. In the case of
finite graphs this can be done in finitely many steps as follows:

DEFINITION 4.4 For any graph ge H the rewriting relation —p is defined by the following two one-
step reductions:
1. sharing a pair of double nodes (r,s): replace all edges t —2 r by t —2 s (if not already there,
otherwise just remove t —2r ) and remove r together with all its outgoing edges from g;
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2. contracting a manifestly inert step r —7 s: replace all edges t =3 r by t =2 s (if not already
there, otherwise just remove t —2r ) and remove r together with all its outgoing edges from g.

PROPOSITION 4.2 The rewriting relation —p has the following properties:
i. H aswell as HT are closed under applications of >y
ii. ifg—Hhtheng e2ph
iii. —py is confluent and terminating.

PROOF (i) In applications of —p the root is never removed and in the resulting graph all nodes
remain accessible from the root. Never two edges with the same label appear between the same
two nodes. The graph also remains finite (and non-trivial).

(ii) Suppose (r,s) is a pair of double nodes or r =7 s is a manifestly inert edge in g, and g =g h
identifies the nodes r and s (= removes the node r). Let I be the identity relation on the nodes of
h then IU{{r,s}} is a rooted branching bisimulation between g and h. This is easy to prove from
the definitions 4.2 and 4.3.

(iii) —p is terminating since it decreases the number of nodes, and every finite process graph
has finitely many nodes. Next, suppose g has two normal forms n and n', then by the definition
of -y n and n' are without pairs of double nodes and without manisfestly inert edges. Thus by
theorem 4.1 n and n' are in normal form. By (ii) it follows that n 4 n' and hence by theorem
3.6 (normal form theorem) we have n=n'. O

Next we will establish a correspondence between finite non-trivial graphs and closed BPA<-terms,
such that the graph reductions of definition 4.4 correspond to proof steps in BPA + H1,2.

Write s =t for I' - s=t saying that s and t are equal modulo applications of axioms from I" and the
standard axioms for equality (reflexivity, commutativity, transitivity and replacement). It is quite

easy to turn finite non-trivial graphs into BPA¢-terms as follows. Let T(BPA¢) be the set of closed
BPA: terms.

DEFINITION 4.5 Let <*>: HY — T(BPA() be a mapping that satisfies

<g>=2 b.

r(g) —2 s is an edge in g; a<(g)s> + z 1(g) —Pb s is an edge in g;
s not an endnode s is an endnode

Here 1(g) denotes the root node of ge H and if p; is a BPA¢-term for ie I, with I={ij,...,in} a
finite non-empty set of indices, then Yiel pj denotes a BPA¢-term pj; + ... + pj,. Note that the
notation Jje I pi does not determine the order and association of the terms p;.
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If ge H*, r(g) —2 s is an edge in g, and s is not an endnode, then (g)s€ H*. Furthermore, since
ge H is finite, r(g) has only finitely many outgoing edges. Moreover, with induction to the depth
of its arguments, one easily proves that <-> is well-defined. Observe that for ge H*, <g> is only
uniquely defined modulo A1-A2.

PROPOSITION 4.3 If g,he H" and g = h, then A1-A2 } <g> = <h>.
PROOF Trivial.

DEFINITION 4.6 The denotation [p] of a BPAz-term p in the graph domain G, is defined by:
[a] = ag for ae A
[x + y] = [x] +g [y]
[xyl=1[x] Gyl
where ag, +G and ‘g are the interpretations in G, of the constants and operators a, + and - of
BPA<, as defined in definition 2.1.

Now it turns out that for terms of the form <g> (for ge H*) <> is a left-inverse of [-], modulo
A1-A2. Consider the following definition:

DEFINITION 4.7 The set BT of basic terms over BPAq is inductively defined as follows:
1. For all ae Act we have ac BT;
2. If p,qe BT then (p + @) BT and for all ac Act: a-pe BT.

LEMMA 4.4 For ge H*, <g> is a basic term and if pe BT, then <[p]> =a1,2 p-

PROOF With induction to the structure of terms:
- If p = a (ae Act) then [p] is the one-edge graph labeled with a, and so < [p] > = p.
- If p = a-u for some basic term u, then [p] is the graph with an edge labeled a followed by [u].
Then, < [p] > = a'< [u] > and so by induction we find that < [p] > =12 a-u.
- Suppose p = u + v. One can easily see that for graphs g and h: < g +G h > =12 <g> + <h>.
Then: A1-A2F < [u+ v] > =< [u] >+ < [v] > = u + v (by induction). O

LEMMA 4.5 (elimination)
For every closed BPA¢-term p there exists a basic term q such that A4-AS+ p=q.

PROOF By induction on the structure of p.
- If p=a (ae Act) then p is a basic term.
- If p = u'v and lemma 4.5 can be proved for all terms smaller than p, then there exist basic
terms
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' and v' such that A4-A5 k= u = u', v = v'. Now suppose u' has the form (Z; ajwj + X bj),
then we find:
A4-A5E p=u"v' = (T ai'wj + X bj)v' = i (apwy)v' + Zj bj'v' (by axiom A4)
= X aj"(wiv') + Zj bj'v' (by axiom AS5)
= X aj'q; + X bj'v' for some basic terms g; (by induction)
which is a basic term again.
-If p=u + v then A4-A5  p =u' + V' for basic terms u' and v', and the sum of two basic
terms is again a basic term. 0

PROPOSITION 4.6 For all closed BPAr-terms p we have: A1-A2 + A4-AS5 + < [p] > =p.

PROOF If 'p=q' is an instantiation of A4 or AS (possibly in a context) then < [p] > =a1,2 < [q] >.
Now the proposition follows immediately from the lemma s 4.4 and 4.5. O

This concludes the establishment of a correspondence between H* and T(BPA¢). Next we will
show that every rewriting step on H* corresponds to a proof step in BPA + H1-H2.

LEMMA 4.7 Let (1,8) be a pair of dubble nodes or r =7 s be a manifestly inert T-step in a process
graph g, such that neither r nor s are endnodes, and let ac Act. Then we have: BPA + H1-H2 -
a'<(g)r> = a<(g)s>.

PROOF In case (r,s) is a pair of dubble nodes r has an edge r —2 t iff s has an edge s —2 t and so
<(8)r> =A1,2 <(g)s>, hence a-<(g)r> = a-<(g)s>.
In case r —7 s is a manifestly inert T-step we distinguish two subcases: First assume that r has
more outgoing edges than only r —7 s. Then there must be basic terms p and q such that
(1)  <(®)r>=A1,27T<(8)s>+P
(2) <(8)s>=A12DP+q
So we derive:
Al,2 + H2 - a'<(g)r> = a(T'<(g)s> + p) (by (1)) =
=a(t(p+q) +p) (by 2)) =
= a'(p + q) (by applying H2)
= a<(g)s> (by (2)).
In case r has no more outgoing edges than r =7 s we have <(g)r> = T'<(g)s>, hence
AS + H1 F a<(g)r> = a'(T<(g)s> ) = (a'1)'<(g)s> = a'<(g)s>. O

PROPOSITION 4.8 If g —H h then BPA + H1-H2 - <g> = <h>.
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PROOF On H the rewriting relation — g can be decomposed in the following elementary reductions:
Take a pair of double nodes (r,s) or a manifestly inert T-step r —7 s and replace one edge t -2 r
by t —2 s (if not already there, otherwise just remove t —2 r ) and if r has no more incoming
edges remove r together with all its outgoing edges from g. So it suffices to proof that if h is
obtained from g by means of such an elementary reduction, we have <g> =r <h>, where I =
BPA + H1-H2. From definition 4.5 it follows that it even suffices to proof <(g)¢> =r <(h)>.

- First consider the case that neither r nor s are endnodes and there is no edge t »2s in g. Then
<(g)> =a1,2 a'<(g)r> + p for certain basic term p. Lemma 4.7 says a'<(g)r> =r a'<(g)s>,
hence <(g)¢> =r a'<(g)s> + p =a1,2 <(h)¢>.

- In case t =2 s is an edge in g, and r,s are still assumed not to be endnodes we have <(g)¢>
=A1,2 a'<(8)r> + a'<(g)s> + P =r a'<(g)s> + a'<(8)s> + P =A2,3 a'<(g)s> + P =A1,2

<(h)t>.

- If (r,8) is a pair of double nodes than r is an endnode iff s is. In this case we have
<(g)>=a12a+p=a12<(h)>ift 58sisnotanedgeing
and <(g)p> =A12a+a+p=aA23a+p=a12<(h)> otherwise.

- Finally if t —2 s is a manifestly inert t-edge and s is an endnode in g, we have
<(@>=a12aT+p=H1a+p=a12<th)>ift 528sisnotanedgein g
and <(g)> =A1,2a'T +a+p=H1a+a+p=aA23a+p=a12<(h)> otherwise. O

Now we are in the position to prove the completeness of BPA + H1-H2 with respect to GBpa/ < 1b:

PROOF OF THEOREM 2.6: (soundness) The fact that (GBpaA/ s« rb,+,",Act) is a model for BPA + H1-
H2 follows easily by inspection of the axioms of BPA + H1-H2.
(completeness) Let (GBPA/=1b,+,',Act) Ep=q for two closed BPAz-terms p,q, then by
definition [p] e [q]. Let g and h be the unique normal forms of [p] and [q] with respect to
—H. By proposition 4.2 we find g = [p] 21b [q] 2rb h. From theorem 4.1 it follows that g
and h must be in normal form in the sense of section 3 and by the normal form theorem (theorem
3.6) it then follows that g = h. Thus we find BPA + H1-H2 I p = <[p]> = <g> = <h> =
<[q]> = q using propositions 4.3, 4.6 and 4.8. So BPA + H1-H2 is a complete axiomatization
of GRpA/e2 1b. O

Next we will prove the other completeness theorems, using the earlier results in this section. In fact
we will extend the graph rewriting system to one which is 'typical' for the corresponding
bisimulation relation. The rewrite rules which are added to the system are derived from figure 1: in
case of n-bisimulation we will saturate the graph by exhaustively adding edges of the kind of figure
1 (c), whereas in the case of delay bisimulation we add edges as in figure 1 (b). For t-bisimulation
we do both. This way we obtain normal forms which are saturated and which turn out to be unique
modulo rooted branching bisimulation. From there we establish the completeness result precisely in
the same way as before.



39

DEFINITION 4.8 Let a€ Act, then:
1. The rewriting relation —, is defined on H by the rule:
if a graph has a path s —2s; —7 s' without an edge s —2s' then add s —2s'.
2. The rewriting relation —y is defined on H by the rule:
if a graph has a path s -7 s; —2s' without an edge s —2s' then add s —3'.
3. Furthermore, we set: —¢ = —n U —4d.

Applications of —y, —d or —1 are referred to as saturation steps (cf. BERGSTRA & KLOP (1988)).

PROPOSITION 4.9 The relations —v, —d and —+ satisfy the following properties:
i. H aswell as H* are closed under applications of =y, =4 and —¢
ii. —m, >dand Hqare confluent and terminating.

PROOF (i) Directly from definition 4.8.
(ii) (termination) Let ge H. Let n(g) be the (finite) number of nodes in g, 1(g) be the number of
labels and e(g) be the number of edges in g. Note that n(g) and 1(g) are not changed by —q, —d
and —; whereas e(g) increases with every saturation step. Since g is finite we find that e(g) <
n(g)x1(g)xn(g) and so n(g)x1(g)xn(g) - e(g) is positive and decreasing with the number of
saturation steps.
(confluence) —n, =>4 and —¢ do not eliminate redexes. O

So from proposition 4.9 we find that any graph ge H has unique normal forms with respect —y,
—4 and —¢. These are written as H(g), D(g) and T(g) and (in that order) are called M-, d- and -
saturated. The latter is also often referred to as the transitive closure of t-steps. Furthermore,
saturation preserves the corresponding bisimulation:

PROPOSITION 4.10 For all g,he H:
i. ifg—onhtheng emh
ii. ifg—qhtheng edh
iii. ifg >ththeng erh.

The proof of the proposition 4.10 is straightforward.

THEOREM 4.11 (normal form theorem) Let g,he H, then
i. if g and h are n-saturated process graphs, then g emhifandonly if g e h
ii. if g and h are d-saturated process graphs, then g =dhifandonly if g 21ph
iii. if g and h are T-saturated process graphs, then g et hifand only if g 22 h.
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PROOF We will only prove (i). The other cases proceed in the same way.
Suppose that R: g «2m h then it is sufficient to prove that R is a rooted branching bisimulation:
(1) The roots of H(g) and H(h) are related and (iii) R satisfies the root condition.
(ii) If R(r,s) and r —2 ' then either a=T and R(r',s), or s = s1 —2 s => s' such that R(r,s1) and
R(1r',s"). Let ty,...,tx be such that s3 = tg =T t; =7 ** =7 ty = §' (k=20) then since g and h are 1-
saturated there are edges s1 —2 tj and so there is a path s = s; —25s". O

COROLLARY
i. gemhifandonly if H(g) em H(h) if and only if N(H(g)) = N(H(h))
ii. gerdhifandonly if D(g) 2 D(h) if and only if N(D(g)) = N(D(h))
iii. g e hifand only if T(g) e, T(h) if and only if N(T(g)) = N(T(h)).

PROOF It follows by proposition 4.10 that H(g) e g, D(g) 214 g and T(g) e ¢ g. Now apply the
normal form theorems 4.11 and 3.6. O

So we find that in each r*-bisimulation equivalence class of finite process graphs for * € {T,n,d}
there is exactly one *-saturated process graph up to rooted branching bisimulation and exactly one
*-saturated normal form up to isomorphism. In order to prove the completeness theorems we still
need to prove that rewriting steps correspond to proof steps.

PROPOSITION 4.12 For finite graphs g and h:
i. Ifg —nhthen A1-A3 + H1,3 + <g> = <h>
ii. Ifg —>qhthen A1-A3 + T2 <g> = <h>
ii. If g =g hthen A1-A3 + T1-3 I <g> = <h>.

PROOF (i) If r »31r' »%r" — is a path is g and r 521" is added in g to obtain h, then we find that
<(&)r> =A1-3 <(8)r> + a<(g)r> and <(g)r> =A1-3 T'<(g)r"> + <(g)r> and hence:
Al-A3 + H3 F <(g)r> = <(g8)r> + a(T<(g)y"> + <(g)>) =
= <(g)r> + a:(T<(g)hr"> + <(g)r>) + a* <(g)"> (by H3) = <(g)r> + a <(g)r"> = <(h)r>.
Incaser -3r' —7r" and r" is an endnode we find:
Al-A3 + HLL3 F <(g)r> = <(@)r> + a'(T + <(g)r>) = <(g)r> + a:(T T+ <(g)r>) (by H1) =
= <(g)r> + a(TT + <(g)r>) + at (by H3) = <(g)r> + a = <(h)r>.
From A1-A3 + H3 F <(g)r> = <(h);> it easily follows that A1-A3 + H3 I <g> = <h>.
(i) Ifr »7r' —»28r" — is a pathis g and r —»2 " is added in g to obtain h, then:
<(8)r> =A1-3 <(8)r> + T'<(g)r> and <(g)r> =a1-3 a'<(g)r"> + <(g)r> and hence:
Al-A3 + T2 F <(g)> = <(@)r> + T-(a'<(g)"> + <(g)r>) =
= <(g)r> + a <(g)r"> (by T2 and A3) = <(h)r>.
In case r »2r' —Tr" and r" is an endnode we simply leave out *<(g)"> in the argument above.
Hence A1-A3 + T2 I <g> = <h>.
(iii) Immediately from (i) and (ii). Note that H1 = T1 and H3 = T3. O



41

PROOFS OF THE THEOREMS 2.5, 2.7 AND 2.8

The soundness theorems follow easily after inspection of the axioms. Of the completeness
theorems we only prove theorem 2.7. The others proceed in the same way.

Let (GBPA/=2m,+,",Act) Ep=q for two closed BPA¢-terms p,q, then by definition [p] «m [q].
Let g and h be the unique normal forms of [p] and [q] with respect to —y. By proposition 4.10
we find g @m [p] 2m [q] &m h. The graphs g and h must be n-saturated and by the normal
form theorem (theorem 4.11) it then follows that g «;p h. Thus we find BPA + H1-H3
p = <[pl> = <g> = <h> = <[q]> =q using propositions 4.6 and 4.12 and theorem 2.6. So
BPA + H1-H3 is a complete axiomatization of Gppa/= m. O

5. REFINEMENT

Virtually all semantic equivalences employed in theories of concurrency are - as in this paper -
defined in terms of actions that concurrent systems may perform. Mostly, these actions are taken to
be atomic, meaning that they are considered not to be divisible into smaller parts. In this case, the
defined equivalences are said to be based on action atomicity.

However, in the top-down design of distributed systems it might be fruitful to model processes at
different levels of abstraction. The actions on an abstract level then turn out to represent complex
processes on a more concrete level. This methodology does not seem compatible with non-
divisibility of actions and for this reason PRATT (1986), LAMPORT (1986) and others plead for the
use of semantic equivalences that are not based on action atomicity.

As indicated in CASTELLANO, DE MICHELIS & POMELLO (1987), the concept of action atomicity
can be formalized by means of the notion of refinement of actions. A semantic equivalence is
preserved under action refinement if two equivalent processes remain equivalent after replacing all
occurrences of an action a by a more complex process r(a). In particular, r(a) may be a sequence of
two actions aj and a3. An equivalence is strictly based on action atomicity if it is not preserved
under action refinement.

In the previous sections in this paper we argued that MILNER's notion of observation equivalence
does not respect the branching structure of processes, and proposed the finer notion of branching
bisimulation equivalence which does. In this section we moreover find, that observation
equivalence is not preserved under action refinement, whereas branching bisimulation equivalence
is.

From the axioms T3 (see table 2), it is easy to show why the notion of observation congruence is
not preserved under refinement of actions: replacing the action a by the term bc, we obtain
be(tx +y) = be(Tx + y) + bex, which obviously is not valid in G/« . Applying T3, we do find
be(tx +y) = b(c(tx + y) + cx), unfortunately denoting a different process however.
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In this section we will prove that branching equivalence is preserved under refinement of actions,
and so it allows us to look at actions as abstractions of much larger structures. We will present our
result in the style of BPA, and indicate afterwards how our construction can be adapted to obtain
refinement theorems in the style of CCS and ACP. Put A=Act\{0} (or A=Act\{0,V} if there are
V-labels around). Consider the following definitions.

DEFINITION 5.1 (substitution) Let r: A — Gppa be a mapping from observable actions to graphs, and
suppose ge GppaA. Then, the graph r(g) can be found as follows.
For every edge r —2r' (ae A) in g, take a copy r(a) of r(a) (€ Gepa). Next, identify r with the
root node of r(a), and r' with all endnodes of r(a), and remove the edge r —2r',

Note that in this definition it is never needed to identify r and r', since r(g) is non-trivial. This way,
the mapping r is extended to the domain Ggpa. Note that since T& A, T-edges cannot be substituted
by graphs. Finally, observe that every node in g is a node in r(g).

DEFINITION 5.2 (preservation under action refinement) An equivalence =~ on GBpa is said to be preserved
under refinement of actions if for every mapping r: A — Gppa, we have: g = h = r(g) = r(h).

In other words, an equivalence = is preserved under refinement if it is a congruence with respect to
every substitution operator r.

Starting from a relation R: g «rp h, we construct a branching bisimulation r(R): 1(g) e r(h),
proving that preserving branching congruence, every edge with a label from A can be replaced by a
root unwound non-trivial graph.

DEFINITION 5.3 Let r: A — GBpa be a mapping from observable actions to graphs, g,he Ggpa and
R: g 2 h. Now r(R) is the smallest relation between nodes of r(g) and r(h), such that:
1. RgrR).
2. Ifr—>2r'and s —25s' (ac A) are edges in g and h such that R(r,s) and R(r',s"), and both
edges are replaced by copies r(a) and r(a) of r(a) respectively, then nodes from r(a) and
r(a) are related by r(R) iff they are copies of the same node in r(a).

Edges r —21' and s —25' (ae A) such that R(r,s) and R(r',s'), will be called related by R, as well
as the copies r(a) and r(a) that are substituted for them. Observe, that on nodes from g and h the
relation r(R) is equal to R. Note that if r(R)(r,s), then r is a node in g iff s is a node in h.

THEOREM 5.1 (refinement) Branching congruence is preserved under refinement of actions.

PROOF We prove that R: g 2rp h = r(R): 1(g) e r(h) by checking the requirements. For
convenience, in the definition of branching equivalence (definition 1.4), we omit the
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requirement of the existence of a path s3 = s', as it is redundant (see the remark just after
definition 1.6). Then we find:

i. The root nodes of r(g) and r(h) are related by r(R).

ii. Assume r(R)(r,s) and in r(g) there is an edge r —2 r'. Then there are two possibilities
(similarly in case r —2r' stems from r(h)):

(1) The nodes r and s originate from g and h. Then R(r,s), and by the construction of r(g) we
find that either a=t and r —7 r' was already an edge in g, or g has an edge r —b r* and
r —2r'is a copy of an initial edge from r(b).

In the first case it follows from R: g = h that either R(r',s) - hence r(R)(r',s) - or in h there is a
path s = s; —7 s' such that R(r,s1) and R(r',s"). By definition of refinement, the same path also
exists in r(h), and thus we have r(R)(r,s1) and r(R)(r',s").

In the second case there must be a corresponding path s = s; =P s* in h such that R(r,s1) and
R(r*,s*). Then, in r(h) we find a path s = s; —2 §' (by replacing —b by r(b)) such that
r(R)(r,s1) and r(R)(r',s").

(2) The nodes r and s originate from related copies r(b) and r(b) of a substituted graph r(b) (for
some be A), and are no copies of root or endnodes in r(b). Then r -2 is an edge in r(b). From
r(R)(r,s) we find that r and s are copies of the same node from r(b). So, there is an edge s —2 s'
in r(b) where s' is a copy of the node in r(b), corresponding with r'. Clearly r(R)(r',s").

iii. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is satisfied. O

With respect to closed BPA+-terms, the refinement theorem can be proved much easier by syntactic
analysis of proofs, instead of working with equivalences between graphs. For observe that the
axioms A1-AS5 + H1-H2, that form a complete axiomatization of branching congruence for closed
terms, do not contain any occurrences of (atomic) actions from A. Now assume we have a proof of
some equality s=t between closed terms, then this proof consists of a sequence of applications of
axioms from A1-AS + H1-H2. Since all these axioms are universal equations without actions from
A, the actions from s and t can be replaced by general variables, and the proof will still hold.
Hence, every equation is an instance of a universal equation without any actions. Immediately we
find that we can substitute arbitrary closed terms for these variables, obtaining refinement for closed
terms.

Nevertheless, the semantic proof of the refinement theorem is important since it also holds for
larger graphs from Gppa that cannot be represented by closed BPA<-terms.

In the setting of BCCS, a substitution should be a mapping r: A — Gccs\{0}, where 0 denotes the
trivial graph. Then the semantic proof of the refinement theorem goes exactly as in the setting of
BPA. However the syntactic proof breaks down on the absence of general sequential composition
and on the presence of actions in the axioms for branching congruence. In the setting of basic ACP,
definition 5.1 should be adapted such that r' is identified not with all endnodes of r(a), but with all



nodes of r(a) that have an outgoing termination edge. These termination edges should then be
deleted. Furthermore if certain parts in the resulting graph have become disconnected from the root,
they should be deleted as well. Now both the semantic and the syntactic proof of the refinement
theorem remain valid. Finally it should be noted that refinement as defined in this section is a
sensible notion that can be used in the design of systems only if these system are assumed to be
sequential (i.e. performing only one action at a time). In the presence of parallel composition,
process graphs as presented here are not sufficiently expressive for defining a refinement operator.
For this pupose one may better use causality based models of concurrency, such as event structures
or Petri nets (cf. VAN GLABBEEK & GOLTZ (1990)).

6. COMPARISON
In this section we compare branching with -, delay and t-bisimulation and list the differences and
similarities that occurred to us.

6.1. BRANCHING TIME

The main difference between branching and t-bisimulation equivalence is that the former notion
preserves the branching structure of processes whereas the latter does not. This has been elaborated
in the sections 1 and 3. If one argues that branching equivalence is too fine, since it does not
correspond to a natural testing scenario, the same argement can be used to move from 7-
bisimulation to one of the decorated trace equivalences, which are even coarser. On the other hand,
if one favours T-bisimulation over the decorated trace semantics since it preserves the internal
structure of processes and is therefore independent from any particular testing scenario, a
consequent application of this argument points in the direction of the finer notion of branching
bisimulation semantics.

6.2. EQUIVALENCE VERSUS CONGRUENCE

T-bisimulation equivalence is not a congruence for +, and therefore T-bisimulation congruence is
defined as the closure of t-bisimulation equivalence under contexts, or by means of the root
condition. In this respect 1-, delay and branching bisimulation behave exactly the same. However,
each t-bisimulation equivalence class consists of at most two T-bisimulation congruence classes
(this follows from exersice 7.6 of HENNESSY in MILNER (1980)), as is the case for delay
bisimulation, whereas M- and branching bisimulation equivalence classes may contain many
congruence classes. Nevertheless, for all four bisimulations there exists a close relationship
between rooted and non-rooted bisimulation, since the root condition (definition 2.2) only works
on the root nodes:

THEOREM 6.1 For all root unwound graphs g and h and * € {t,b,n,d}we have:
g eshifandonly if 1°g o« Th.



45

PROOF If R is a *-bisimulation between g and h and r,s are the roots of T-g and Th then RU{r,s}
is a rooted *-bisimulation between T-g and T*h. On the other hand, if R is a rooted *-bisimulation
between T-g and Th, then the roots of g and h are related by R, so R restricted to the nodes of g
and h is a *-bisimulation between g and h. O

This theorem provides us with a tool to decide upon *-bisimulation equivalence, using the axiom
systems of *-bisimulation congruence.

6.3. DIVERGENCE

In the literature on bisimulation semantics roughly three ways are suggested for treating divergence
(= infinite T-paths). The original notion of T-bisimulation equivalence (HENNESSY & MILNER
(1980), MILNER (1980) and PARK (1981)) abstracted from all divergencies; the first two graphs of
figure 11 are equivalent, as well as the two graphs of figure 8.

3 B 3

a

O
P Q/g

Figure 11. Three ways of modeling divergence.

These identifications can be justified by an appeal to fairness (MILNER (1980) and BAETEN,
BERGSTRA & KLOP (1987a)), and play a crucial role in many protocol verifications. In
BERGSTRA, KLOP & OLDEROG (1987) the corresponding semantics is refered to as bisimulation
semantics with fair abstraction. A variant were divergence is taken into account, in the sence that
the first two graphs of figure 11 are distinguished, as well as the two graphs of figure 8, was
proposed in HENNESSY & PLOTKIN (1980) for t-bisimulation and in MILNER (1981) for delay
bisimulation. In both cases a complete axiomatization is provided in WALKER (1990). In these
semantics the basic notion is a preorder rather then an equivalence, and divergence is identified with
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underspecification. The induced equivalences identify the last two graphs of figure 11, which are
distinghuished in t-bisimulation semantics with fair abstraction. Hence the two notions are
incomparable. A semantics that refines both notions was proposed in BERGSTRA, KLOP &
OLDEROG (1987) under the name bisimulation semantics with explicite divergence.

1M-, delay and branching bisimulation as presented in this paper are all based on the variant of 1-
bisimulation with fair abstraction. However it is completely straightforward to generalize the 7-
bisimulation preorder of HENNESSY & MILNER (1980) to a n-bisimulation preorder, and the delay
bisimulation preorder of MILNER (1980) to a branching bisimulation preorder. Also it is not
difficult to define 7)-, delay and branching bisimulation with explicit divergence in the spirit of
BERGSTRA, KLOP & OLDEROG (1987). For branching bisimulation the definition can conveniently
be given in terms of coloured traces.

DEFINITION 6.1 A node in a coloured graph is divergent if it is the starting point of an infinite path
of which all nodes have the same colour. A colouring preserves divergence if no divergent node
has the same colour as a non-divergent nocde. Two graphs g and h are (rooted) branching
bisimulation equivalent with explicit divergence if there exists a (rooted) consistent divergence
preserving colouring on g and h for which they have the same coloured trace set.

6.4. ADEQUACY FOR MODAL LOGICS

As mentioned in the introduction, T-bisimulation semantics is not adequate for a modal logic with
eventually operator. From the example in the introduction one can see that the problem originates
from the circumstance that 1-bisimulation equivalence does not preserve the branching structure of
processes, and indeed one can easily proof that such an operator would cause no problems in
branching bisimulation semantics, at least not in the variant with explicit divergence. In fact, a
much stronger result has been proved in DE NICOLA & VAANDRAGER (1990).

The Computation Tree Logic CTL* (EMERSON & HALPERN (1986)) is a very powerful
logic, combining both branching time and linear time operators. It is a generalization of CTL
(CLARKE & EMERSON (1981)), that contains only branching time operators. CTL* is interpreted
on Kripke structures (directed graphs of which the nodes are labeled with sets of atomic
propositions). DE NICOLA & VAANDRAGER (1990) established a translation from process graphs
to Kripke structures, so that CTL* can also be regarded as a logic on process graphs. One of the
operators of CTL/CTL*, the nexttime operator X, makes it possible to see when an (invisible)
action takes place, and is therefore incompatible with abstraction. This operator was also criticized
by LAMPORT (1983). BROWNE, CLARKE & GRUMBERG (1988) found that CTL-X and CTL*-X
induce the same equivalence on Kripke structures, which they characterized as stuttering
equivalence. In DE NICOLA & VAANDRAGER (1990) branching bisimulation, after being translated
to Kripke structures, is shown to coincide with stuttering equivalence. (To be precise, they consider
two variants of CTL*, that correspond to two variants of stuttering equivalence and two variants of
branching bisimulation, namenly divergence blind branching bisimulation (our notion with fair
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abstraction) and divergence sensitive branching bisimulation (defined as branching bisimulation
with fair abstraction above, but also considering endnodes to be divergent). The stuttering
equivalence of BROWNE, CLARKE & GRUMBERG (1988) is the divergence sensitive variant.)
Hence (divergence sensitive) branching bisimulation is adequate for CTL*-X. Since the eventually
operator of GRAF & SIFAKIS (1987) can be expressed in CTL*, this implies that it causes no
problems in branching bisimulation semantics.

6.5. MODAL CHARACTERIZATIONS

It is well known (cf. HENNESSY & MILNER (1985)) that observation equivalence can be
characterized by means of a simple modal language, called Hennessy-Milner logic (HML). The
question arises if such a result can also be obtained for branching equivalence. As pointed out
above, CTL-X characterizes branching equivalence, but this language is rather strong. Another
possibility is adding the eventually operator to HML. It remains to be determined for which classes
of process graphs HML + 'eventually' is adequate. In DE NICOLA & VAANDRAGER (1990) it has
been shown that adding an 'until' operator to HML is sufficient.

6.6. BACK AND FORTH BISIMULATIONS

In DE NICOLA, MONTANARI & VAANDRAGER (1989) it has been established that if in the
definition of *-bisimulation, for * € {t,b,n,d}, it is required that moves in the one process can be
simulated by the other process, not only when going forward but also when going back in history,
these modified notions all coincide with branching bisimulation. This also yields another modal
characterization of branching bisimulation, namely HML with backward modalities.

6.7. PRACTICAL APPLICATIONS OF BRANCHING TIME
The extra identifications made in t-bisimulation semantics on top of branching bisimulation

semantics can be cumbersome in certain applications of the theory. See the remark in the
introduction.

6.8. REFINEMENT OF ACTIONS

For sequential processes branching bisimulation is preserved under refinement of actions, whereas
T-bisimulation is not. This was established in section 5, which appeared before as VAN GLABBEEK
& WELILAND (1989). A proof can also be found in DARONDEAU & DEGANO (1989). Delay
bisimulation is also preserved under action refinement, and m-bisimulation is not. Moreover delay
bisimulation is the coarsest equivalence that is preserved under refinement and finer then 1-
bisimulation, and branching bisimulation is the coarsest equivalence that is preserved under
refinement and finer then M-bisimulation. This was established in CHERIEF & SCHNOEBELEN
(1990).
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6.9. AXIOMATIZATIONS AND REWRITE SYSTEMS

All *-bisimulations (* € {t,b,n,d}) have relatively simple equational characterizations (see section
2), but the axiom system for branching bisimulation can easily be turned in a complete term
rewriting system, which is not the case for the other notions.

6.10. COMPLEXITY

In GROOTE & VAANDRAGER (1990) an algorithm is presented for deciding branching bisimulation
equivalence between finite-state processes, with (time) complexity O(l+n'm). Here 1is the size of
Act, n is the number of nodes in the investigated process graphs and m the number of edges. The
fastest algorithm for T-bisimulation equivalence up till now has complexity O(1'n2-376), In general
n<ms<l-n2, so it depends on the density of edges in a graph which algorithm is faster. In a trial
implementation of the scheduler of MILNER (1980), reported in GROOTE & VAANDRAGER (1990),
branching bisimulation turned out to be much faster. Furthermore, it turned out that in such
automatic verifications the space complexity was a much more serious handicap then the time
complexity (the t-bisimulation tools suffered from lack of memory already when applied to
processes with 15.000 states). The space complexity of the algorithm of GROOTE & VAANDRAGER
(1990) is O(n+m), which is less than the space complexity of the t-bisimulation algorithm.

6.11. CORRESPONDENCE

Finally we present a theorem which tells us that in quite a number of cases observation and
branching bisimulation equivalence are the same. For instance, consider the practical applications
where implementations are verified by proving them equal to some specification (after having
abstracted from a set of unobservable actions of course). In many such cases, the specification does
not involve any tT-steps at all: in fact all t-steps that occur in the verification process originate from
the abstraction procedure which is carried out on the implementation.

As it turns out, in all such cases there is no difference between observation and branching
bisimulation equivalence. For this reason we may expect many verifications involving observation
equivalence to be valid in the stronger setting of branching bisimulation as well. In particular this is
the case for all protocol verifications in T-bisimulation semantics known to the authors.

THEOREM 6.2 Suppose g and h are two graphs, and g is without edges labeled with ©. Then:
i. gethifandonlyifg eph
ii. gaerhifandonlyifg oy h.

PROOF Let R be the largest (rooted) T-bisimulation between g and h. We show that R is even a
(rooted) branching bisimulation. Assume that R(r,s) and r —@r' is an edge in g, then either a=t
and R(r',s) - contradicting the absence of t-edges in g - or in h there is a path s = 51 =35y = &'
and R(r';s"). Assume s => s1 has the form s = vg 5% vi 5% =+ =T vy, = 51 (m20) then it
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follows from s —7 v1 and R(r,s) that for some rj: r => r; and R(rq,v1). Since g has no t-edges
we find that r=r1. Repeating this argument m times we find that R(r,vj) and R(r,s1).
Furthermore, since R(r,s1) and s; —2 sp we find that r —2 r" (g has no T-steps) such that
R(r",s2). Since s3 = wg =T w1 57 = =T wy = §' it follows from the same argument as before
that R(r",w;) and R(r",s"). Thus we find R(r',s"), R(s',r") and R(r",s2) and since R is the
largest rooted T-bisimulation we have R(r',s2).

On the other hand, if R(r,s) and r =2 ' is an edge in h, then either a=T and R(r',s) or directly s
—4 g' such that R(r',s"), since g contains no T-edges. O

For - instead of branching bisimulation equivalence this theorem was already proven in BAETEN
& VAN GLABBEEK (1987). From theorem 6.1 we easily find that for graphs g and h:
g is without T-edges = (T'g et Th = Tg 2 Th).
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