
Centrum voor Wiskunde en Informatica
Centr8 for Mathematics and Computer Science

R.J. van Glabbeek, W.P. Weijland

Branching time and abstraction in bisimulation semantics
(extended abstract)

Computer Science / Department of Software Technology

·1-.1 •hronl< 8;, ·i;O" ,~., . mat~
, "Jid• 1,.;nd8 en \nfor

centrumvoo, • ""' ,-'~m Amslf,<><>

Report CS-R8911 April

The Centre for Mathematics and Computer Science is a research institute of
the Stichting Mathematisch Centrum , which was founded on February 11 ,
1946, as a nonprofit institution aiming at the promotion of mathematics, com­
puter science, and their applications. It is sponsored by the Dutch Govern­
ment through the Netherlands Organizat ion for the Advancement of Research
(N.W.O.) .

Copyright © Stichting Mathematisch Centrum, Amsterdam

Branching Time and Abstraction in Bisimulation Semantics
(extended abstract)

R.J. van Glabbeek and W.P. Weijland

Centre for Mathematics and Computer Science
Kruislaan 413, 1098 SJ Amsterdam, The Netherlands

Abstract: In comparative concurrency semantics, one usually distinguishes between
linear time and branching time semantic equivalences. Milner's notion of observation
equivalence is often mentioned as the standard example of a branching time
equivalence. In this paper we investigate whether observation equivalence really
does respect the branching structure of processes, and find that in the presence of
the unobservable action 't of CCS this is not the case.
Therefore the notion of branching bisimulation equivalence is introduced which
strongly preserves the branching structure of processes, in the sense that it
preserves computations together with the potentials in all intermediate states that are
passed through, even if silent moves are involved. On closed terms, branching
bisimulation can be completely axiomatized by the two laws:

X·'t = X

x·('t·(y + z) + y) = x·(y + z).

For a large class of processes it turns out that branching bisimulation and observation
equivalence are the same. All protocols known to the authors that have been verified
in the setting of observation equivalence happen to fit in this class, and hence are also
valid in the stronger setting of branching bisimulation equivalence.

Key words & phrases: semantics, process algebra , abstraction, bisimulation,
branching time, concurrency.
1980 Mathematics subject classification: 68B10, 68C01 , 68D25, 68F20
1985 Mathematics subject classification: 68055, 68045, 6801 O, 68N15
1987 CR Categories: F.3.2, F.4.3, F.1.2, D.3.1.

Note: This extended abstract will also appear in the proceedings of the 11th IFIP
World Computer Congress, San Francisco 1989. It does not contain any proofs. They
can be found in the full version of this paper, to appear as CWl-report.
This paper is sponsored in part by Esprit project no.432, METEOR.

INTRODUCTION

When comparing semantic equivalences for concurrency, it is common practice to distinguish

between linear time and branching time equivalences (see for instance DE BAKKER, BERGSTRA,

KLOP & MEYER [4], PNUELI [18)). In the former, a process is determined by its possible

executions, whereas in the latter also the branching structure of processes is taken into account. The

standard example of a linear time equivalence is trace equivalence as employed in HOARE [10] and

REM [19]; the standard example of a branching time equivalence is observation equivalence or

bisimulation equivalence as defined by MILNER [12] and PARK [16] (cf. [13, 14)) . Furthermore,

Report CS-R8911
Centre for Mathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

there are several decorated trace equivalences in between (cf. [2, 7, 8, 9, 11, 15, 17, 18]),

preserving part of the branching structure of processes but for the rest resembling trace equivalence.

Originally, the most popular argument for employing branching time semantics was the fact that it

allows a proper modelling of deadlock behaviour, whereas linear time semantics does not.

However, this advantage is shared with the decorated trace semantics which have the additional

advantage of only distinguishing between processes that can be told apart by some notion of

observation or testing. The main criticism on observation equivalence - and branching time

equivalences in general - is that it is not an observational equivalence in that sense: distinctions

between processes are made that cannot be observed or tested, unless observers are equipped with

extraordinary abilities like that of a copying facility together with the capability of global testing as in

ABRAMSKY [l].

Nevertheless, branching time semantics is of fundamental importance in concurrency, exactly

because it is independent of the precise nature of observability. Which one of the decorated trace

equivalences provides a suitable modelling of observable behaviour depends to a large extent on the

tools an observer has, to test processes. And in general, a protocol verification in a particular

decorated trace semantics, does not carry over to a setting in which observers are a bit more

powerful. On the other hand, branching time semantics preserves the internal branching structure of

processes and thus certainly their observable behaviour as far as it can be captured by decorated

traces. A protocol, verified in branching time semantics, is automatically valid in each of the

decorated trace semantics.

Probably one of the most important features in process algebra is that of abstraction, since it

provides us with a mechanism to hide actions that are not observable, or not interesting for any other

reason. By abstraction, some of the atomic steps in a process are made invisible or silent.

Consequently, any consecutive execution of hidden steps cannot be recognized since we simply do

not 'see' anything happen.

Algebraically, in ACP't of BERGSTRA & KLOP [6] abstraction has the form of a renaming operator

which renames atomic steps into a silent move called 't. In MILNER's CCS [12] these silent moves

result from synchronization. This new constant 't is introduced in the algebraic models as well: for

instance in the graph models (cf. [12, 6]) we find the existence oh-edges, and so the question was

how to find a satisfactory extension of the original definition of bisimulation equivalence that we had

on process graphs without 't.

One such possible extension is incorporated in Milner's notion of observation equivalence, which

resembles ordinary bisimulation, but permits arbitrary sequences of 't-steps to precede or follow

corresponding atomic actions. In a certain sense this notion of observation equivalence does not

preserve the branching structure of a process. For instance, the processes a·('t·b + c) and

a·('t·b + c) + a·b are observation equivalent. However, in the first term, in each computation the

3

choice between b and c is made after the a-step, whereas the second term has a computation in

which b is already chosen when the a-step occurs. For this reason one may wonder whether or not

to accept the so-called third 't-law - a·('t·x + y) = a·('t·x + y) + a·x - (responsible for the former

equivalence) and for similar reasons the second - 't·X = 't·X + x.

The previous example shows us that while preserving observation equivalence, we can introduce

new paths in a graph that were not there before. To be precise: the traces are the same, but the

sequences of intermediate nodes are different (modulo observation equivalence), since in the

definition of observation equivalence there is no restriction whatsoever on the nature of the nodes

that are passed through during the execution of a sequence of 't-steps, preceding or following

corresponding atomic actions.

This is the key point in our new definition of abstraction: in two bisimilar processes every

computation in the one process corresponds to a computation in the other, in such a way that all

intermediate states of these computations correspond as well, due to the bisimulation relation. The

equivalence which is thus obtained will be referred to as branching bisimulation equivalence. It turns

out that it can be defined by a small change in the definition of observation equivalence.

1. ABSTRACTION

Assume that we work within the signature containing a set A of atomic actions a,b,c ... which stand

for observable actions, together with two infix written operators

+ a binary operator for alternative composition

a binary operator for sequential composition.

As in regular algebra, we will often leave out brackets and •, assuming that • will always bind

stronger than+. In table 1 we find the algebraic theory BPA (cf. BERGSTRA & KLOP [5]) - which

stands for Basic Process Algebra - which we will assume to hold for all processes in our signature:

X + y = y + X Al

(x + y) + z = x + (y + z) A2

x+x=x A3

(x + y)z = xz + yz A4

(xy)z = x(yz) A5

Table 1. BPA.

The algebraic theory BPA is a logical theory from which we can derive certain statements about

processes. In order to examine the implications of such equational theories we can build models for

4

BPA and try to achieve results about soundness and completeness. One such model is the graph

model, which can be constructed by factoring out bisimulation equivalence on process graphs. Let

us take a closer look at this particular model.

DEFINITION 1.1 A process graph (or labelled transition system) is a connected, rooted, edge-labelled

and directed graph.

In an edge-labelled directed graph, edges go from one node to another (or the same) node and are

labelled with elements from a given set. One can have more then one edge between two nodes as

long as they carry different labels. A rooted graph has one special node which is indicated as the

root node. Graphs need not be finite, but in a connected graph one must be able to reach every node

from the root node by following a finite path. If r and s are nodes in a graph, then r ➔a s

denotes an edge from r to s with label a or it will be used as a proposition saying that such an

edge exists. Process graphs represent concurrent systems in the following way: the edge-labels are

actions a system may perform; the nodes of a process graph represent the states of a concurrent

system; the root is the initial state and if r ➔a s, then the system can evolve from state r to state s

by performing an action a.

For convenience, in this paper we will only consider root unwound process graphs, consisting of all

those process graphs with no incoming edges at the root. 'This does not cause any loss of generality.

Furthermore, we restrict ourselves to non-trivial graphs: graphs with at least one edge (which is a

genuine restriction). The set of non-trivial, root unwound process graphs with labels from A will be

denoted by G.

DEFINITION 1.2 The constants aE A and the operators + and • are defined on G as follows.

i. Constants aE A are denoted by one-edge graphs labelled with a;

ii. g + h can be constructed by identifying the root nodes of g and h;

iii. g·h is constructed by identifying all endnodes (leaves) in g with the root of h. If g is without

endnodes, then the result is just g.

In order to tum G into a model for BPA we need the notion of bisimulation equivalence, which

originally was due to PARK [16] and used in MILNER [13] and in a different formulation already in

MILNER [12]. Essentially, bisimulation equivalence is a congruence on G which preserves the

branching structure of graphs. Its definition reads:

DEFINmON 1.3 Two graphs g and h in G are bisimilar (notation: g t:t h) if there exists a symmetric

relation R between nodes of g and h (called the bisimulation) such that:

i. The roots of g and h are related by R

5

ii. If R(r,s) and r ➔a r', then there exists a node s' such that s ➔as' and R(r',s').

A symmetric relation between nodes of g and h can be defined either as a relation

R ~ nodes(g)xnodes(h)unodes(h)xnodes(g) such that R(r,s) <=> R(s,r), or, alternatively, as a set

of unordered pairs of nodes R !:;;; { { r,s}: r E nodes(g), SE nodes(h)}. In the latter case R(r,s)

abbreviates { r,s} ER.

Bisimilarity turns out to be an equivalence relation on G which is called bisimulation equivalence.

Depending on the context we will sometimes use Milner's terminology and refer to bisimulation

equivalence as strong equivalence or strong congruence.

It can be proved that t:t is a congruence on G. Furthermore, let us say that a theory r is a complete

axiomatization of a model M if for every pair of closed terms p and q we have: r I- p=q if and

only if MI= p=q. Then the following theorem is from [6]:

THEOREM 1.1 BPA is a complete axiomatization oJG/t:t.

A similar theorem for CCS occurred in [12]. Observe that in the presence of the trivial graph, BPA

is not sound with respect to G/t:t. For this reason it was excluded from G from the beginning.

Now let us extend the signature of BPA with an extra constant 'te A, and also introduce 't as a new

edge-label. Since in this paper we want to avoid all complications connected with divergence, we

restrict our attention to process graphs which are divergence free. Here, a process graph is

divergence free if it does not contain an infinite path of 't-edges. Let G* be the set of non-trivial,

root unwound and divergence free process graphs with labels from Au{'t}.

The definition of strong congruence was the starting point of MILNER [12] when he first considered

abstraction in CCS. Having in mind that 't-steps are not observable, he suggested to simply require

that if g and h are equivalent, (i) every possible a-step (aE A) in the one graph should correspond

with an a-step in the other (as in usual bisimulation semantics), apart from some arbitrary long

sequences of 't-steps that are allowed to precede or follow, and (ii) every 't-step should correspond

to some arbitrary long (~0) 't-sequence. In this way he obtained his notion of observation

equivalence. However, this equivalence turned out not to be a congruence, which he repaired by

simply taking the closure of observation equivalence under contexts, thereby obtaining observation

congruence. BERGSTRA & KLOP [6] found an additional condition in the definition ofbisimulation -

which is referred to as the root condition - turning observation equivalence into observation

congruence or rooted 't-bisimulation equivalence.

Write s ⇒ t for a path from s to t consisting of an arbitrary number (~0) of 't-steps. Then

MILNER's notion of observation equivalence (see [13, 14]) - or 't-bisimulation equivalence - can be

defined as follows:

6

DEFINITION 1.4 Two graphs g and hare 't-bisimilar (notation: g ti,: h) if there exists a symmetric

relation R between the nodes of g and h (called a 't-bisimulation) such that:

i. The roots are related by R

ii. If R(r,s) and r ➔a r' (aE Au{'t}), then either a='t and R(r',s), or there exists a path

s ⇒ s1 ➔a s2 ⇒ s' such that R(r',s').

Furthermore, g and h are rooted 't-bisimilar (notation: g ti rt h) if we also have that

iii. (root condition) Root nodes are related to root nodes only.

In BERGSTRA & KLOP [6] it is proved that ti,: is an equivalence and tin a congruence on G*.

Hence the relations are called (rooted) 't-bisimulation equivalence. Moreover, 't-bisimulation

equivalence is also known as observation equivalence, and it is not difficult to see that rooted

't-bisimulation equivalence is the coarsest congruence contained in 't-bisimulation equivalence and

hence coincides with observation congruence.

Milner proved that the resulting graph model G*/tin satisfies the following three important 't-laws:

X't = X Tl

'tX = 'tX + X T2

a('tx + y) = a('tx + y) + ax T3

Table 2. ,:-Jaws (aE Au(i:}).

So we have G*/tin F Tl-T3 which is an argument to include these three axioms in our system.

Once again we are able to state a completeness theorem for G*/tin saying that Tl-TI is all that we

have extra in G*/tin with respect to closed terms. It was first stated by MILNER [12] in the setting

of CCS. In the setting of ACP,: it was proved by BERGSTRA & KLOP [6].

THEOREM 1.2 BPA + Tl-T3 is a complete axiomatization ofG*/tir,:.

These 't-laws Tl-TI show us the implications of the particular choice of observation equivalence.

Especially the laws T2 and TI are quite surprising as a direct consequence of just eliminating

sequences of 't-steps from computation paths. The reason for this is the fact that at least one basic

feature in the construction of a bisimulation (see PARK [16]) is skipped, which is the property that

any computation in the one process corresponds to a computation in the other process, in such a

way that all intermediate states of these computations correspond as well due to the bisimulation

relation. But look, in MILNER's observation equivalence, when satisfying the second requirement of

7

definition 1.4, one may execute arbitrarily many 't-steps in a graph without worrying about the

status of the nodes that are passed in the meantime.

(a)

(b) (c)

Figure 1. Observation equivalence.

As an illustration, in figure 1 we have a path a·'t·b·'t·C with outgoing edges d1, ... ,<4, and it

follows easily that all three graphs are observation equivalent. Note that one may add extra b-edges

as in (b) and (c) without disturbing equivalence. However, in both (b) and (c) a new computation

path is introduced - in which the outgoing edge d2 (or d3 respectively) is missing - and such a path

did not occur in (a). Or - to put it differently - in the path introduced in (b) the options d1 and d2 are

discarded simultaneously, whereas in (a) it corresponds to a path containing a state where the option

d1 is already discarded but d2 is still possible. Also in the path introduced in (c) the choice not to

perform d3 is already made with the execution of the b-step, whereas in (a) it corresponds to a path

in which this choice is made only after the b-step. Thus we argue that observation equivalence does

not preserve the branching structure of processes and hence lacks one of the main characteristics of

bisimulation semantics.

Another observation tells us that the constructions (b) and (c) are highly fundamental for the

behaviour of 'tin the graph model. For instance, by simplifying figure l(b) one immediately finds

the second 't-law T2, whereas T3 can be easily found from figure l(c). This shows us that the extra

8

-c-laws T2 and T3 actually originate from the fact that observation equivalence does not preserve

branching structures.

Consider the following alternative definition of bisimulation in order to see how we can overcome

this deficit.

DEFINITION 1.s Two graphs g and h are (rooted) branching bisimilar if there exists a (rooted)

-c-bisimulation R between the nodes of g and h with as an extra condition in definition 1.4 (ii) that

R(r,s1) and R(r',s2).

Let us write g t::tb h if g and h are branching bisimilar and g t::trb h if they are rooted branching

bisimilar. In a picture, the difference between branching and 't-bisimulation can be characterized as

follows :

't

a a

't

Figure 2. Bisimulations with 't.

The double arrow corresponds to the symbol ⇒. Ordinary 't-bisimulation (see definition 1.4) says

that every a-step r ➔a r' corresponds with a path s ⇒ s1 ➔a s2 ⇒ s' and so we obtain figure 2

without the lines marked with (1) and (2). Branching bisimulation moreover requires relations

between r and s1 and between r' and s2 and thus we obtain figure 2 with (1) and (2). Note that in

the presence of (2), i.e. R(r',s2), the existence requirement of a node s' with s2 ⇒ s' and R(r',s')

is redundant. It follows immediately from the definitions that we have g t::trb h ⇒ g t::tr-r h.

Note that if g t::tb h or g t::trb h then there exists a largest (rooted) branching bisimulation between

g and h, since the set of (rooted) branching bisimulations is closed under arbitrary union.

Obviously, a branching bisimulation more strongly preserves the branching structure of a graph

since the starting and endnodes of the 't-paths s ⇒ s1 and s2 ⇒ s are related to the same nodes.

Equivalently, we could have strengthened definition 1.4 (ii) by requiring all intermediate nodes in

s ⇒ s1 and s2 ⇒ s to be related with r and r' respectively. The fact that this alternative definition

yields the same equivalence relation can be seen by use of the following lemma:

9

LEMMA 1.3 Let R be the largest (rooted) branching bisimulation between g and h.

If r ➔"' r1 ➔"'···➔"'rm ➔"' r' (m~0) is a path such that R(r,s) and R(r',s) then 'v'lsi~: R(ri,S).

THEOREM 1.4 ttrb is a congruence on G* with respect to+ and·. Moreover it is the coarsest

congruence contained in t:::tb.

The equivalence relation which is thus induced by a (rooted) branching bisimulation will be called

(rooted) branching bisimulation equivalence or (rooted) branching equivalence for short.

Obseive that in figure 1 there are no branching bisimulations among the graphs (a), (b) and (c). In

particular, adding extra edges as in (b) and (c) no longer preseives branching bisimulation. For this

reason we expect that the laws T2 and T3 will no longer hold. As it turns out, axiom T3 is

completely dropped and T2 is considerably weakened to axiom H2 from the following table:

X't = X

x('t(y + z) + y) = x(y + z)

HI (Tl)

H2

Table 3. 't-laws for branching bisimulation.

HI is the same axiom as Tl whereas H2 is a weaker version of T2 as one can check easily. Both

axioms refer to the axiomatization of 11, a constant for abstraction from BAETEN & VAN GLABBEEK

[3] similar to 't. In fact, they are a variation on the first two 11-laws in the sense that in [3] the second

law H2 was only introduced for atomic actions x, instead of taking x as a general variable ranging

over all processes. On the domain of closed terms, the two variants are equally powerful.

One can easily prove that Hl and H2 are preseived by rooted branching bisimulation. But we can do

better, as is shown in the following theorem:

THEOREM 1.5 BPA + Hl ,H2 is a complete axiomatization ofG*/t:::trb-

SKETCH OF PROOF Let p and q be closed terms in BPA-c such that G*/t:::trb I= p=q. By applying the

axioms A4 and A5, p and q can be rewritten into basic terms p' and q', only containing prefixing

a·x instead of general sequential composition x·y. We still have G*/t:::trb I= p'=q', or in other

words: [p'] t:::t [q'], where [p] is the denotation of pin the graph domain G*. Now one can

show that by identifying isomorphic subgraphs and contracting inert 't-steps the graphs [p'] and

[q'] can be transformed into the same normal form (up to graph isomorphism). Here, a 't-step

r ➔"' s is inert if all options available in r are also available in s. On basic terms modulo axioms

Al and A2, these graph transformations correspond to applications of A3, HI and H2.

Hence, BPA+Hl ,H2 I- p=q. D

10

2. BRANCHES AND TRACES

As we saw in figure 1, while preserving observation equivalence we are able to introduce 'new

paths' in a graph. To be more precise: in these new paths alternative options may branch off at

different places than in any of the old paths. So far, we claimed to have solved this problem by

defining a new kind of bisimulation, but as of yet we still have to prove that our solution solves the

problem in a fundamental way. In this section we will establish an alternative characterization of

branching bisimulation. In fact, we will show the way in which branching bisimulation preserves

the branching structure of graphs. Let us first consider ordinary bisimulation on process graphs

without 't.

DEFINITION 2.1 A trace in a process graph gE G is a finite sequence (a1, a2, a3, ... , ak) of atoms

from A, such that there exists a path ro ➔al r1 ➔a2 r2 ➔ ···➔ak fk from the root node ro.

Two graphs g and hare said to be trace equivalent, notation g =th, if their trace sets are equal. It is

easily checked that =tis a congruence on G and g t::t h ⇒ g =th. Consequently, we find that Gf=t

is a model for BP A. Compared to bisimulation, trace equivalence is much more rigid in its

identifications. For example, we find that G/=t satisfies the equation x(y + z) = xy + xz which

cannot be proved from BP A.

The main reason for this is that in a trace we lose information about the potentials in the intermediate

nodes. Therefore we cannot distinguish between processes a(b + c) and (ab + ac). In the

following we will use colours at the nodes to indicate these potentials.

DEFINITION 2.2 A coloured graph is a process graph with colours CE C as labels at the nodes.

Obviously, in a coloured graph we have traces which have colours in the nodes:

DEFINITION 2.3 A coloured trace in a coloured graph gE G is a sequence

(Co, a1, C1, a2, C2, ... , ak, Ck)

for which there is a path ro ➔al ri ➔a2 r2 ➔ ··· ➔ak fk in g, starting from the root node ro, such

that ri has colour Ci.

The coloured traces of a node r in a graph g are the coloured traces of the subgraph of g that has r

as its root node. This graph is obtained from g by deleting all nodes and edges which are

inaccessible from r.

The question remains how to detect the colour of a node in a graph, or - to put it differently - how to

define the concept of 'potential in a node' properly. There are several ways to do this. Probably the

shortest definition is the following:

11

DEFINITION 2.4 A consistent colouring on a set of graphs is a colouring of their nodes with the

property that two nodes have the same colour only if they have the same coloured trace set.

Obviously, the trivial colouring - in which every node has a different colour - is consistent on any

set of graphs. Note that - even apart from the choice of the colours - a set of graphs can have more

than one consistent colouring. For instance, consider a set containing only an infinite graph

representing aro or a·a·a··· then obviously the homogeneous colouring - in which every node has

the same colour - is a consistent one, as well as the alternating or the trivial colouring.

Let us say two graphs g,hE G are coloured trace equivalent - notation: g =ch - if for some consistent

colouring on {g,h} they have the same coloured trace set. Then we have the following important

characterization:

THEOREM 2.1 g t::t h if and only if g =ch.

Hence, on G the notion of coloured trace equivalence precisely coincides with bisimulation

equivalence.

Next we will extend our definitions to G* => G. In the following definition, we find how to abstract

from 't-steps. The idea is simple: 't-steps can only be left out if they are inert, which says that they

are between two nodes that have the same colour (potential). Thus it is not only that the inert steps

are not observable but even more, they do not cause any change in the overall state of the machine.

DEFINITION 2.5 A concrete coloured trace in a coloured graph gE G* is defined as in definition 2.3,

but treating 't exactly as an atom from A.

An (abstract) coloured trace in a coloured graph gE G* is a sequence

(Co, a1, C1, a2, C2, ... , ak, Ck)

which is obtained from a concrete coloured trace by replacing all subsequences of the form

(C, 't, C, 't, ... , 't, C) by C.

DEFINITION 2.6 On subsets of G* a consistent colouring is defined exactly as on subsets of G.

Furthermore, such a colouring is rooted if all root nodes have the same unique colour, not

occurring anywhere else in the graphs.

For two graphs g,hE G* let us also write g =c h if for some consistent colouring on {g,h} they

have the same coloured trace set, and g =re h if moreover this colouring is rooted. Then we find the

following characterization for (rooted) branching bisimulation:

THEOREM2.2

i . g ttb h if and only if g =ch

ii. g ttrb h if and only if g =re h.

12

This characterization provides us with a clear intuition about what branching bisimulation actually is,

since the difference between inert steps - not changing the state of the machine - and relevant 't-steps

- that behave as common atomic actions - is visualized immediately by the (change of) colours at the

nodes. It follows that branching bisimulation equivalence preserves computations together with the

potentials in all intermediate nodes that are passed through.

As a tool for further analysis we have the following proposition:

PROPOSITION 2.3 For every process graph gE G* the largest rooted branching autobisimulation

- relating g with itself- induces a rooted consistent colouring of its nodes, the so-called canonical

colouring.

The maximal rooted branching autobisimulation on g is an equivalence relation on the nodes.

Proposition 2.3 says that every node can be labelled with its equivalence class as a colour, in order

to obtain a consistent colouring on { g}.

DEFINITION 2.7 Let gE G* be a process graph and consider its canonical colouring with colour set

C. Let N(g) - the normal form of g - be the graph which can be found from g by contracting all

nodes with the same colour. To be precise:

1. N(g) has colours CE C as its nodes.

2. N(g) has an edge C ➔a C' (aE A) iff g has an edge r ➔a r' such that C(r)=C and C(r')=C',

where C(r) denotes the colour of the node r.

3. N(g) has an edge C ➔'t C' iff c~c• and g has an edge r ➔'tr' with C(r)=C and C(r')=C'.

PROPOSITION 2.4 For all process graphs gE G*: g ~ rb N(g).

So every graph gE G* can be turned into normal form preserving rooted branching equivalence. In

every rooted branching equivalence class, these normal forms tum out to be unique up to graph

isomorphisms as is shown by the following:

DEFINITION 2.8 A graph isomorphism is a bijective relation R between the nodes of g and h such

that:

1 . the roots of g and h are related by R

2. ifR(r,s)andR(r',s')then r ➔ar' isanedgeing iff s ➔as• isanedgeinh(aEAU{'t}).

13

Two graphs are isomorphic - notation g = h - iff there exists an isomorphism between them. In that

case g and h only differ with respect to the identity of the nodes. Note that= is a congruence relation

on process graphs.

THEOREM 2.5 (normal form theorem)

g ttrb h if and only if N(g) = N(h).

3. CORRESPONDENCE

Let us end with a theorem which tells us that in quite a number of cases observation and branching

equivalence are the same. For instance, consider the practical applications where implementations

are verified by proving them equal to some specification (after having abstracted from a set of

unobservable actions of course). In many such cases, the specification does not involve any 't-steps

at all: in fact all 't-steps that occur in the verification process originate from the abstraction procedure

which is carried out on the implementation.

As it turns out, in all such cases there is no difference between observation and branching

bisimulation equivalence. For this reason we may expect many verifications involving observation

equivalence to be valid in the stronger setting of branching bisimulation as well. In particular this is

the case for all protocol verifications in 't-bisimulation semantics known to the authors.

THEOREM 3.1 Suppose g and hare two graphs, and g is without edges labelled with 't. Then:

i . g t:t't h if and only if g t:tb h

ii . g ttn h if and only if g ttrb h.

Finally, observe that there exists a close relationship between rooted and non-rooted branching

bisimulation, since the root condition (definition l.4(iii)) only works on the root nodes:

THEOREM 3.2 For all graphs g and h we have:

i . g t:t'th if and only if 't·g ttn 't·h

ii. g ttbh if and only if 't·g ttrb 't·h.

From theorem 3.2 we easily find that for graphs g and h:

g is without 't-edges ⇒ ('t·g ttn 't·h ⇒ 't·g ttrb 't·h).

14

REFERENCES

[1] S.ABRAMSKY, Observation equivalence as a testing equivalence, TCS 53, pp.225-241, 1987.

[2] J.C.M.BAETEN, J.ABERGSTRA & J.W.KLOP, Ready trace semantics for concrete process

algebra with the priority operator, The Computer Journal 30 (6), pp.498-506, 1987.

[3] J.C.M.BAETEN & R.J.v AN GLABBEEK, Another look at abstraction in process algebra, proc.

14th ICALP (Th.Ottman ed.) Karlsruhe, Springer LNCS 267, pp.84-94, 1987.

[4] J.W.DE BAKKER, J.ABERGSTRA, J.W.KLOP & J.-J.Ch.MEYER, Linear time and branching

time semantics for recursion with merge, proc. 10th ICALP (J.Diaz ed.) Barcelona, Springer

LNCS 154, pp.39-51, 1983.

[5] J.ABERGSTRA & J.W.KLOP, Process algebra for synchronous communication, Information

& Control 60 (1-3), pp. 109-137, 1984.

[6] J.ABERGSTRA & J.W.KLOP, Algebra of communicating processes with abstraction, TCS 37

(1), pp.77-121, 1985.

[7] B.BLOOM, S.ISTRAIL & AR.MEYER, Bisimulation can't be traced: preliminary report, conf.

record of the 15th POPL, San Diego, California, pp.229-239, 1988.

[8] S.D.BROOKES, C.A.R.HOARE & A.W.ROSCOE, A theory of communicating sequential

processes, Journal ACM 31 (3), pp.560-599, 1984.

[9] R.DE NICOLA & M.C.B.HENNESSY, Testing equivalences for processes, TCS 34, pp.83-

133, 1984.

[10] C.A.R.HOARE, Communicating sequential processes, On the construction of programs

(R.M.McKeag & AM. Macnaghten eds.), Cambridge University Press, pp.229-254, 1980.

[11] C.AR.HOARE, Communicating sequential processes, Prentice Hall, London 1985.

[12] R.MILNER, A calculus of communication systems, Springer LNCS 92, 1980.

[13] R.MILNER, Calculi for synchrony and asynchrony, TCS 25, pp.267-310, 1983.

[14] R.MILNER, Lectures on a calculus for communicating systems, Seminar on concurrency

(S.D.Brookes, AW.Roscoe & G.Winskel eds.), Springer LNCS 197, pp.197-220, 1985.

[15] E .-R. OLDEROG & C.A.R.HOARE, Specification-oriented semantics for communicating

processes, Acta Informatica 23, pp.9-66, 1986.

[16] D.M.R.PARK, Concurrency and automata on infinite sequences, proc. 5th GI conf. on

Theor.Comp.Sci. (P.Deussen ed.), Springer LNCS 104, pp.167-183, 1981.

[17] I.C.C.PHILLIPS, Refusal testing, TCS 50, pp.241-284, 1987.

[18] APNUELI, Linear and branching structures in the semantics and logics of reactive systems,

proc. 12th ICALP (W.Brauer ed.) Nafplion, Springer LNCS 194, pp.15-32, 1985.

[19] M.REM, Trace theory and systolic computations, proc. PARLE conf. (J.W.de Bakker,

AJ.Nijman & P.C.Treleaven eds.) Eindhoven, Vol.1, SpringerLNCS 258, pp.14-33, 1987.

