
Comparative Concurrency Semantics
and Refinement of Actions

- B

R.J. van Glabbeek

VUA

VRIJE UNIVERSITEIT TE AMSTERDAM

Comparative Concurrency Semantics

and Refinement of Actions

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,

op gezag van de rector magnificus

dr. C. Datema,
hoogleraar aan de faculteit der letteren,

in het openbaar te verdedigen

ten overstaan van de promotiecommissie

van de faculteit der wiskunde en informatica

op woensdag 16 mei 1990 te 15 .30 uur
in het hoofdgebouw van de universiteit, De Boelelaan 1105

door
Robert Jan van Glabbeek

geboren te Eindhoven

Centrum voor Wiskunde en Informatica

1990

,- ---- -,

B!biD.'hGdr
CentnmvoorWi-:\.;1:nde c-.1 ~fomwtlca.

Ar.: ~-~:rd~m

Promotoren:

Referent:

prof. dr. J.W. Klop

prof. dr. J.A. Bergstra
prof. dr. G. Winskel

Contents

Introduction
I. The linear time - branching time spectrum

I. Semantic equivalences on labelled transition systems
2. The semantic lattice
3. Complete axiomatizations

2. Modular specifications in process algebra - with curious queues
I. Module logic
2. Process algebra
3. Applications of the module approach in process algebra
4. Queues
5. A protocol verification
Appendix: Logics

3. Branching time and abstraction in bisimulation semantics
I. Branching and abstraction
2. Axioms
3. Branches and traces
4. Competeness proofs
5. Features
6. Refinement

4. Refinement of actions in causality based models
I. Refinement of actions in prime event structures
2. Refinement of actions in flow event structures
3. Configuration structures and refinement of actions
4. Refinement of transitions in Petri nets

5. Partial order semantics for refinement of actions - neither necessary

18
33
46

55
60
74
83
96

105

3

7
13

49

111
114
124
136
142
151
157

161
169
175
182
186

nor always sufficient but appropriate when used with care - 205
6. Equivalence notions for concurrent systems and refinement of actions 215

I. Interleaving semantics 217
2. Step semantics 219
3. 'Linear time' partial order semantics 223
4. 'Branching time' partial order semantics 224

7. The refinement theorem for ST-bisimulation semantics 235
I. Concurrent systems and refinement of actions 239
2. The behaviour of concurrent systems I 241
3. Equivalence notions for concurrent systems I 242
4. The behaviour of concurrent systems II 247
4. Equivalence notions for concurrent systems II 249
6. The refinement theorems 257

Samenvatting 265
References 267

4

Affiliations

Most of the work reported in this thesis was done when I was employed at the
Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB
Amsterdam. The manuscript was finalized during my employment at the
Technical University of Munich, Postfach 202420, D-8000 Miinchen 2.
Chapter II is joint work with Frits Vaandrager, and Chapter III with Peter
Weijland, both affiliated with the Centre for Mathematics and Computer Sci­
ence. Chapters IV, V and VI are joint work with Ursula Goltz, Gesellschaft
fiir Mathematik und Datenverarbeitung, Postfach 1240, D-5205 Sankt Augus­
tin I.

5

Acknowledgements

Jan Willem Klop has been an ideal promotor for me. He was always ready to
discuss my work, but let me free to pursue my own goals in my own way. It
has been a great pleasure to have him as a supervisor.

I also like to express my gratitude to Jan Bergstra, not only for being my
second promotor, but also for initiating my employment at CWI and organiz­
ing a very interesting scientific environment. Moreover I appreciated the many
discussions with him, in which he was always full of ideas.

I greatly benefited from the collaboration with Frits Vaandrager. With him
I could discuss all my work in depth and he contributed numerous useful
ideas.

I thank Ursula Goltz for our fruitful cooperation since 1987. Our joint
work on action refinement forms an important constituent of this thesis. This
work was initiated by a discussion with Albert Meyer and Ernst-Rudiger
Olderog at ICALP 87 in Karlsruhe, to whom I also express my gratitude.

I am grateful to my colleagues Jos Baeten and Jan Friso Groote for our
pleasant collaboration and for their useful comments on earlier versions <:>f
parts of this thesis.

Furthermore I gratefully acknowledge the discussions and correspondence
with Alex Rabinovich, Walter Vogler, Wolfgang Reisig, Vaughan Pratt, Tony
Hoare, Ilaria Castellani, Rocco De Nicola, Pierpaolo Degano, Ugo Montanari
and Gerard Boudol that contributed to the work reported in this thesis.

I thank the participants of the weekly Process Algebra Meetings (as far as
not mentioned already): Wiet Bouma, Jeroen Bruijning, Nicolien Drost, Henk
Goeman, Karst Koymans, Sjouke Mauw, Kees Middelburg, Hans Mulder,
Alban Ponse, Gerard Renardel de Lavalette, Piet Rodenburg, Gert Veltink, Jos
Vrancken, Fer-Jan de Vries, Peter Weijland, Freek Wiedijk and Han Zuidweg,
for numerous lively discussions and comments.

More in general, my years at the CWI Department of Software Technology,
headed by Jaco the Bakker, will remain a pleasant memory for its excellent
working conditions and friendly atmosphere.

It is a pleasure to thank Glynn Winskel for his kind willingness to referee
this thesis and to take part in the examination committee.

Thanks are also due to the printing department of CWI for its fast produc­
tion of this work.

Finally, special thanks goes to Gertrud Jacobs for her careful preparation of
Chapters IV, V and VI of the manuscript, and for being available whenever
she was needed.

ERRATUM. All reference numbers in the introduction and in Chapters I - VI,
starting from 57, should be decremented by 1.

7

Introduction

1. Comparative concurrency semantics. This thesis is about comparative con­
currency semantics.

Concurrency is the study of concurrent systems. Often concurrency as area
of scientific research is located in computer science. In that case the systems
which are the subject of study are taken to be computers or computer pro­
grams. However, much theory in the field of concurrency applies equally well
to other systems, like machines, elementary particles, protocols, networks of
falling dominoes or human beings. Concurrent or parallel systems - as opposed
to sequential systems - are systems capable of performing different activities at
the same time.

Semantics is the study of the meaning of words. In concurrency, one often
employs formal languages for the description of concurrent systems. These I
call system description languages. Like all formal languages, system description
languages are usually introduced to avoid the ambiguities of natural languages
and to gain accuracy of expression. Therefore their semantics tends to be
easier than the semantics of natural languages. Moreover the meaning of the
words in a formal language should to some extent be given by the one who
defines the language, rather than to be discovered by linguists.

Since system description languages tend to describe abstractions of systems
rather than concrete systems, the meaning of an expression in a system
description language is in general given by an equivalence class of systems (i.e.
a class of systems which are considered to be equivalent on a chosen level of
abstraction). Thus the meaning of the entire language is determined by a par­
tition of a set of systems into equivalence classes and an allocation of one such
equivalence class to each expression. For this reason it is convenient to divide
the semantics of system description languages into two subfields, namely the

8 Introduction

study of equivalence relations on sets of concurrent systems, and the study of
allocating equivalence classes to expressions in particular languages. The first
field deals with the establishment of criteria, determining when two systems are
sufficiently alike to be collected in the same equivalence class. It can be stu­
died independently of a particular system description language. Therefore it
can be simply referred to as semantics of concurrent systems or concurrency
semantics for short.

In concurrency semantics a criterion, determining when two systems are
sufficiently alike to be collected in the same equivalence class, is called a
semantics, and the induced equivalence relation a semantic equivalence. In the
literature on concurrency semantics many semantics have been proposed and
most likely also a multitude of sensible semantics have never been proposed.
The classification of these semantics is called comparative concurrency semantics
and will be the primary subject of this thesis.

2. Design and verification. Much work in concurrency is motivated by an
interest in design problems for concurrent systems. A fruitful method to
design concurrent systems is by means of stepwise refinement. Here one starts
with a description SO of the system one has in mind. This initial description is
called a specification of the desired system. It abstracts from all the details of
the desired system that are not essential in its behaviour and leaves open many
design decisions that have to be taken later on. Then one starts refining the
specification by adding step for step the details one needs to know when the
system is going to be built. In this way one obtains a sequence

So - S1 - ... - Sn

of system descriptions of which the last one says exactly how the system will
look like. This final state in the design process describes the implementation of
the desired system.

Roughly one can distinguish two different kinds of refinement steps in such
a sequence of system descriptions. First of all there are steps in which infor­
mation is added about what the system ought to do. These steps concern the
goal of the entire exercise and can therefore not be proven correct in terms of
this goal. Secondly there are steps that add information about how the system
is going to do it. It is one of the tasks of concurrency theory to prove the
correctness of such steps.

When considering only one step from a stepwise refinement sequence, the
left-hand side of this step is called specification and the right-hand side imple­
mentation. Let S - I be a 'how'-step. The question is now to find criteria for
determining whether or not this step is correct. Here at least two situations
can be distinguished:
1. Although / describes much more activities of the desired system than S,

all these extra activities can be considered as internal actions in which the
user of the system is not interested. After abstraction from all these
details, I and S are equivalent according to some suitable semantic
equivalence.

9

2. Some choices about how the final system should behave, that were left
open in S, are resolved in /. Therefore / and S cannot be equivalent.
Here one needs a partial order between equivalence classes of concurrent
systems, specifying when one system is a correct implementation of the
other.

In order to tackle both cases one needs to define a suitable semantic
equivalence and a partial order on the equivalence classes. Together these
ingredients can be coded as a preorder, a reflexive and transitive relation, on
system descriptions.

In this thesis, for reasons of convenience, attention is restricted to
equivalences rather than arbitrary preorders. However, there exists a close
correspondence between semantic equivalences and preorders. Most semantic
equivalences are defined, or can be characterized, in terms of the properties
that are shared by equivalent systems. For each system p, a set of properties
O(p) is defined, such that two systems p and q are equivalent iff O(p) = O(q).
Often O (p) describes the observable behaviour of p according to some testing
scenario. Now a corresponding preorder « can be defined by p « q iff
O(p) ~ O(q). Most preorders encountered in the literature on concurrency
are of that form. I expect that using this insight, much work on classifying
semantic equivalences can be generalized to preorders.

Above I argued that semantic equivalences (and preorders) can be relevant
for the design of concurrent systems. However, in fact they are more often
employed for verification purposes. In this case one is offered a specification
and an implementation of a certain system and is asked to determine if the
implementation is correct. In such applications the distance between the
specification and the implementation tends to be larger than in one step in a
design process. Therefore it is even more important to have solid criteria for
deciding on the correctness of the implementation.

When semantic equivalences are used in the design of concurrent systems, or
for verification purposes, they should be chosen in such a way that two system
descriptions are considered equivalent only if the described behaviours share
the properties that are essential in the context in which the system will be
embedded. It depends on this context and on the interests of a particular user
which properties are essential. Therefore it is not a task of concurrency
semantics to find the 'true' semantic equivalence, but rather to determine
which equivalence is suitable for which applications. It is the intention of this
thesis to carry out a bit of this task. In particular it addresses the question
which semantic equivalences are suitable for dealing with action refinement.

3. Refinement of actions. In this thesis concurrent systems are represented by
expressions in a system description language or by elements of some
mathematical model. The basic building block in the languages and models
that occur in this thesis are the actions which may occur in a system. By an
action here any activity is understood which is considered as a conceptual
entity on a chosen level of abstraction. This allows design steps, in which
actions are replaced by more complex system descriptions. Such a step in the

10 Introduction

design of a system is referred to as refinement of actions. Action refinement is
a design step that adds information about what the system ought to do (a
'what'-step), at least if the refined actions are not considered to be internal.
Therefore the 'correctness' of such refinement steps cannot be proven. How­
ever, the possibility of doing such steps puts some restrictions on the kind of
equivalences that can be used for proving the correctness of 'how' -steps occur­
ring in the same design process.

Ex.AMPLE: Consider the following specification of a concurrent system: 'The
actions a and b should in principle be performed independently on different
processors, but if one of the processors happens to be ready with a before the
other starts with b, b may also be executed on this processor instead of the
other one'. This system description is represented by the Petri net K below.

K L

An introduction to Petri nets and the way they model concurrent systems can
be found in REISIG (110).

Suppose that someone comes up with an implementation in which first it is
determined whether the actions a and b will happen sequentially or indepen­
dently, and subsequently one of these alternatives will take place, as
represented by the Petri net L. Although this implementation does not seem
very convincing, it will be considered 'correct' by many equivalences occurring
in the literature.

Let the next step in the design process consist of refining the action a in the
sequential composition of two actions a I and a 2 . From L one thereby obtains
the net L' on the right. If L' is going to be placed in an environment where
a2 becomes causally dependent on b - it may be the case that b is an output
action, a2 is an input action, and the environment needs data from b in order
to compute the data that are requested by a 2 - then deadlock can occur.
However, if the refinement step splitting a in a I and a 2 is carried out on K
already, the resulting system K' is deadlock free in the environment sketched

11

K' L'

above.
Thus the possibility of refining a somehow invalidates the correctness of the

design step from K to L. □

A semantic equivalence is said to be preserved under refinement of actions if two
equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). The example above indicates
that for certain applications is may be fruitful to employ equivalences that are
preserved under refinement of actions. It is one of the topics of this thesis to
find out which equivalences have this property.

4. About the contents of this thesis. This thesis consists of seven chapters which
are all based on separate papers and have their own introduction. This gen­
eral introduction is only meant to give an indication of their contents and their
role in the thesis.

In the first chapter several semantic equivalences for concrete sequential sys­
tems are presented, and motivated in terms of the observable behaviour of sys­
tems, according to some testing scenario. Here concrete means that no internal
actions or internal choice is considered. These semantics are partially ordered
by the relation 'makes strictly more identifications than', thus constituting a
complete lattice. For ten of these semantic equivalences complete axiomatiza­
tions are provided. As in the rest of my thesis, stochastic and real-time aspects
of concurrent systems are completely neglected. Furthermore the actions of
which concurrent systems are considered to be composed, are left uninter­
preted. Chapter I serves partly to give an overview of the literature on

12 Introduction

semantic equivalences for concrete sequential processes. The various notions
that can be found elsewhere can easily be compared, since they are all
presented in the same style, and using the same formalism. In order for the
semantics of this chapter to be applicable for design and verification purposes,
they have to be generalized to a setting with internal moves, and with parallel­
ism. This can be done in many ways. In the last two chapters the two
extreme points on the semantic lattice, trace semantics and bisimulation
semantics, are generalized to a setting with parallelism and in Chapter III,
bisimulation semantics is generalized to a setting with internal moves.

In the second chapter it is shown how semantic notions can be used in pro­
tocol verification and other applications. This chapter is entirely algebraic in
style and employs axiom systems of which only classes of models are con­
sidered, rather than a particular model. It is based on the Algebra of Com­
municating Processes of BERGSTRA & KLoP (19,22]. In order to combine
axiom systems representing semantic notions that are difficult to combine a
new notion of 'proof is developed.

The third chapter is devoted to the generalization of bisimulation
equivalence to a setting with silent moves. It is argued that the solution of
MILNER [92] (observation equivalence) does not respect the branching structure
of processes and hence lacks an important feature of bisimulation semantics
without internal moves. A finer equivalence is proposed which indeed respects
branching structure. This new branching bisimulation equivalence turns out to
have some practical advantages as well. In particular, we show that in a set­
ting without parallelism it is preserved under refinement of actions, whereas
observation equivalence is not.

In the fourth chapter an operator for refinement of actions is defined on
four causality based models for concurrent systems, namely on three kinds of
event structures and on Petri nets, and in the remaining three chapters it is
investigated which of the 'linear time' and 'branching time' semantic
equivalences proposed in the literature are preserved under refinement of
actions and which are not. Chapter V can be regarded as an informal sum­
mary of the Chapters VI and VII. It uses Petri nets rather than event struc­
tures and contains no technicalities like definitions and proofs. Instead more
attention has been paid to the examples.

All chapters in this thesis can be read independently, although for motiva­
tion it may be helpful to read the introduction to Chapter IV before Chapters
V-VII, and depending on the taste of the reader it may be fruitful to consult
Chapter V before or simultaneously with the last two chapters. Furthermore
Chapter VI depends on Section I or 2 of Chapter IV. Conceptually Chapter
VII follows Chapter VI, and it recalls its results.

Chapter I·

The Linear Time - Branching Time Spectrum

R.J. van Glabbeek

In this chapter various semantics in the linear time - branching time spectrum
are presented in a uniform, model-independent way. Restricted to the domain
of finitely branching, concrete, sequential processes, only twelve of them turn
out to be different, and most semantics found in the literature that can be
defined uniformly in terms of action relations coincide with one of these twelve.
Several testing scenarios, motivating these semantics, are presented, phrased
in terms of 'button pushing experiments' on generative and reactive machines.
Finally ten of these semantics are applied to a simple language for finite , con­
crete, sequential, nondeterministic processes, and for each of them a complete
axiomatization is provided.

TABLE OF CONTENTS

Introduction
1. Semantic equivalences on labelled transition systems
2. The semantic lattice
3. Complete axiomatizations
Concluding remarks

INTRODUCTION

13

13
18
33
46
48

Process theory. A process is the behaviour of a system. The system can be a
machine, an elementary particle, a communication protocol, a network of fal­
ling dominoes, a chess player, or any other system. Process theory is the study
of processes. Two main activities of process theory are modelling and
verification. Modelling is the activity of representing processes, mostly as ele­
ments of a mathematical domain or as expressions in a system description
language. Verification is the activity of proving statements about processes, for
instance that the actual behaviour of a system is equal to its intended
behaviour. Of course, this is only possible if a criterion has been defined,
determining whether or not two processes are equal, i.e. two systems behave
similarly. Such a criterion constitutes the semantics of a process theory. (To
be precise, it constitutes the semantics of the equality concept employed in a
process theory.) Which aspects of the behaviour of a system are of importance
to a certain user depends on the environment in which the system will be run­
ning, and on the interests of the particular user. Therefore it is not a task of
process theory to find the ' true' semantics of processes, but rather to determine
which process semantics is suitable for which applications.

14 I. The linear time - branching time spectrum

Comparative concurrency semantics. This thesis aims at the classification of
process semantics. 1 The set of possible process semantics can be partially
ordered by the relation 'makes strictl1 more identifications on processes than',
thereby becoming a complete lattice . Now the classification of some useful
process semantics can be facilitated by drawing parts of this lattice and locat­
ing the positions of some interesting process semantics, found in the literature.
Furthermore the ideas involved in the construction of these semantics can be
unraveled and combined in new compositions, thereby creating an abundance
of new process semantics. These semantics will, by their intermediate posi­
tions in the semantic lattice, shed light on the differences and similarities of the
established ones. Sometimes they also turn out to be interesting in their own
right. Finally the semantic lattice serves as a map on which it can be indicated
which semantics satisfy certain desirable properties, and are suited for a partic­
ular class of applications.

Most semantic notions encountered in contemporary process theory can be
classified along four different lines, corresponding with four different kinds of
identifications. First there is the dichotomy of linear time versus branching
time: to what extent should one identify processes differing only in the branch­
ing structure of their execution paths? Secondly there is the dichotomy of
interleaving semantics versus partial order semantics: to what extent should
one identify processes differing only in the causal dependencies between their
actions (while agreeing on the possible orders of execution)? Thirdly one
encounters different treatments of abstraction from internal actions in a pro­
cess: to what extent should one identify processes differing only in their inter­
nal or silent actions? And fourthly there are different approaches to infinity:
to what extent should one identify processes differing only in their infinite
behaviour? These considerations give rise to a four dimensional representation
of the proposed semantic lattice.

However, at least three more dimensions can be distinguished. In this
thesis, stochastic and real-time aspects of processes are completely neglected.
Furthermore it deals with uniform concurrency3 only. This means that
processes are studied, performing actions4 a,b,c, ... which are not subject to
further investigations. So it remains unspecified if these actions are in fact
assignments to variables or the falling of dominoes or other actions. If also
the options are considered of modelling (to a certain degree) the stochastic and
real-time aspects of processes and the operational behaviour of the elementary
actions, three more parameters in the classification emerge.

I. This field of research is called comparative concurrency semantics, a terminology first used by
MEYER in (90].
2. The supremum of a set of process semantics is the semantics identifying two processes whenev­
er they are identified by every semantics in this set.
3. The term uniform concurrency is employed by DE BAKKER et aJ (14].
4. Strictly speaking processes do not perform actions, but systems do. However, for reasons of
convenience, this thesis sometimes uses the word process, when actually referring to a system of
which the process is the behaviour.

Introduction 15

Process domains. In order to be able to reason about processes in a mathemat­
ical way, it is common practice to represent processes as elements of a
mathematical domain. Such a domain is called a process domain. The relation
between the domain and the world of real processes is mostly stated infor­
mally. The semantics of a process theory can be modelled as an equivalence
on a process domain, called a semantic equivalence. In the literature one finds
among others:

graph domains, in which a process is represented as a process graph, or
state transition diagram,
net domains, in which a process is represented as a (labelled) Petri net,
event structure domains, in which a process is represented as a (labelled)
event structure,
explicit domains, in which a process is represented as a mathematically
coded set of its properties,
projective limit domains, which are obtained as projective limits of series of
finite term domains,
and term domains, in which a process is represented as a term in a system
description language.

Action relations. Write p ~ q if the process p can evolve into the process q,

while performing the action a. The binary predicates ~ are called action
relations. The semantic equivalences which are treated in this chapter will be
defined entirely in terms of action relations. Hence these definitions apply to
any process domain on which action relations are defined. Furthermore they
will be defined uniformly in terms of action relations, meaning that all actions
are treated in the same way. For reasons of convenience, even the usual dis­
tinction between internal and external actions is dropped in this chapter.

Finitely branching, concrete, sequential processes. Being a first step, this chapter
limits itself to a very simple class of processes. First of all only sequential
processes are investigated: processes capable of performing at most one action
at a time. Moreover the main interest is in finitely branching processes:
processes having in each state only finitely many possible ways to proceed.
Finally, instead of dropping the usual distinction between internal and external
actions, one can equivalently maintain to study concrete processes in which no
internal actions occur (and also no internal choices as in CSP [76]). For this
simple class of processes, when considering only semantic equivalences that
can be defined uniformly in terms of action relations, the announced semantic
lattice collapses in six out of seven dimensions and covers only the linear time
- branching time spectrum.

16 /. The linear time - branching time spectrum

Literature. In the literature on uniform concurrency 11 semantics can be
found, which are uniformly definable in terms of action relations and different
on the domain of finitely branching, sequential processes (see Figure 1).

bisimulation semantics

l
2-nested simulation semantics

l
ready simulation semantics

po,,;b/e-futum semantks l
ready trace semantics

/~
readiness semantics failure trace semantics

~ / s;mula1;on semanfo

failure semantics

l
completed trace semantics

l
trace semantics

FIGURE 1. The linear time - branching time spectrum

The coarsest one (i.e. the semantics making the most identifications) is trace
semantics, as presented in HOARE [75). In trace semantics only partial traces

Introduction 17

are employed. The finest one (making less identifications than any of the oth­
ers) is bisimulation semantics, as presented in MILNER [94]. Bisimulation
semantics is the standard semantics for the system description language CCS
(MILNER [92]). The notion of bisimulation was introduced in PARK [103].
Bisimulation equivalence is a refinement of observational equivalence, as intro­
duced by HENNESSY & MILNER in [72]. On the domain of finitely branching,
concrete, sequential processes, both equivalences coincide. Also the semantics
of DE BAKKER & ZUCKER, presented in [15], coincides with bisimulation
semantics on this domain. Then there are nine semantics in between. First of
all a variant of trace semantics can be obtained by using complete traces
besides (or instead of) partial ones. In this chapter it is called completed trace
semantics. Failure semantics is introduced in BROOKES, HOARE & ROSCOE [33],
and used in the construction of a model for the system description language
CSP (HOARE [76]). It is finer than completed trace semantics. The semantics
based on testing equivalences, as developed in DE NICOLA & HENNESSY [43],
coincides with failure semantics on the domain of finitely branching, concrete,
sequential processes, as do the semantics of KENNA w A Y [79] and DARONDEAU
[38]. This has been established in DE NICOLA [42]. In OLDEROG & HOARE
[102] readiness semantics is presented, which is slightly finer than failure
semantics. Between readiness and bisimulation semantics one finds ready trace
semantics, as introduced independently in PNUELI [106] (there called barbed
semantics), BAETEN, BERGSTRA & KLOP [10] and POMELLO [107] (under the
name exhibited behaviour semantics). The natural completion of the square,
suggested by failure, readiness and ready trace semantics yields failure trace
semantics. For finitely branching processes this is the same as refusal seman­
tics, introduced in PHILLIPS [105]. Simulation equivalence, based on the classi­
cal notion of simulation (see e.g. PARK [103]), is independent of the last five
semantics. Ready simulation semantics was introduced in BLOOM, ISTRAIL &
MEYER [28] under the name GSOS trace congruence. It is finer than ready
trace as well as simulation equivalence. In LARSEN & SKOV [86] a more opera­
tional characterization of this equivalence was given under the name ½­
bisimulation equivalence. This characterization resembles the one used in this
chapter. Finally 2-nested simulation equivalence, introduced in GROOTE &
V AANDRAGER [68], is located between ready simulation and bisimulation
equivalence, and possiblefutures semantics, as proposed in ROUNDS & BROOKES
[112], can be positioned between 2-nested simulation and readiness semantics.
Among the semantics which are not definable in terms of action relations and
thus fall outside the scope of this chapter, one finds semantics that take sto­
chastic properties of processes into account, as in VAN GLABBEEK, SMOLKA,
STEFFEN & ToFTs [58] and semantics that make almost no identifications and
are hardly used for system verification.

About the contents. In the first section of this chapter all semantics are defined,
and motivated by several testing scenarios, which are phrased in terms of but­
ton pushing experiments. In Section 2 the semantics are partially ordered by
the relation 'makes at least as many identifications as'. This yields the

18 I. The linear time - branching time spectrum

infinitary linear time - branching time spectrum. Counterexamples are pro­
vided, showing that on a graph domain this ordering cannot be further
expanded. However, for deterministic processes the spectrum collapses, as was
first observed by PARK [103). Finally, in Section 3, nine of these semantics are
applied to a simple language for finite, concrete, sequential, nondeterministic
processes, and for each of them a complete axiomatization is provided.

1. SEMANTIC EQUIVALENCES ON LABELLED TRANSITION SYSTEMS

1. 1. Labelled transition systems. In this thesis processes will be investigated,
that are capable of performing actions from a given set Act. By an action any
activity is understood that is considered as a conceptual entity on a chosen
level of abstraction. Actions may be instantaneous or durational and are not
required to terminate, but in a finite time only finitely many actions can be
carried out. Any activity of an investigated process should be part of some
action a EA ct performed by the process. Different activities that are indistin­
guishable on the chosen level of abstraction are interpreted as occurrences of
the same action a EAct.

A process is sequential if it can perform at most one action at the same time.
In this chapter only sequential processes will be considered. A domain of
sequential processes can often be conveniently represented as a labelled transi­
tion system. This is a domain A on which infix written binary predicates

➔ are defined for each action a EAct. The elements of A represent

processes, and p ➔ q means that p can start performing the action a and
after completion of this action reach a state where q is its remaining behaviour.

In a labelled transition system it may happen that p ➔ q and p ~ r for
different actions a and b or different processes p and q. This phenomena is
called branching. It need not be specified how the choice between the alterna­
tives is made, or whether a probability distribution can be attached to it.

NOTATION: For any alphabet ~. let ~• be the set of strings over ~- Write t: for
the empty string, op for the concatenation of o and pE~• , and a for the string,
consisting of the single symbol a E~.

DEFINITION: A labelled transition system is a pair (A, -) with A a class and

-c;A XAct X A, such that for pEA and aEAct the class {qEA IP ➔ q} is
a set.

Let for the remainder of this section (A,-) be a labelled transition system,

ranged over by p,q,r, Write p ➔ q for (p,a,q)E-. The binary predicates

➔ are called action relations.

1. Semantic equivalences on labelled transition systems 19

DEFINITIONS (Remark that the following concepts are defined in terms of
action relations only):

The generalized action relations ~ for aEAct* are defined inductively
by:

I. p ➔ p , for any process p.

2. (p ,a,q}E- with a EA ct implies p ~ q with a EA ct* .
_!!__,. _E___:,,. • Ii !!.P.:,._ 3. p --,, q --,, r unp esp --,, r.

In words: the generalized action relations ~ are the reflexive and tran­

sitive closure of the ordinary action relations ~ . p ~ q means that p
can evolve into q, while performing the sequence a of actions. Remark

that the overloading of the notion p ~ q is quite harmless.
The set of initial actions of a process p is defined by:

l(p)={aEActl3q:p ~q}.

A process p EA is finitely branching if for each q E A with p ~ q for

some a EAct* , the set {(a,r)lq ~ r, aEAct, rEA} is finite.

In the following, several semantic equivalences on A will be defined in terms
of action relations. Most of these equivalences can be motivated by the
observable behaviour of processes, according to some testing scenario. (Two
processes are equivalent if they allow the same set of possible observations,
possibly in response on certain experiments.) I will try to capture these
motivations in terms of button pushing experiments (cf. MILNER (92], pp. 10-12).

1.2. Trace semantics. aEAct* is a trace of a process p, if there is a process q,
a

such that p ➔ q. Let T(p) denote the set of traces of p. Two processes p
and q are trace equivalent if T(p) = T(q). In trace semantics two processes are
identified iff they are trace equivalent.

Trace semantics is based on the idea that two processes are to be identified
if they allow the same set of observations, where an observation simply con­
sists of a sequence of actions performed by the process in succession.

1.3. Completed trace semantics. aEAct* is a complete trace of a process p, if

there is a process q, such that p ~ q and / (q) = 0 . Let CT (p) denote the set
of complete traces of p. Two processes p and q are completed trace equivalent if
T(p)=T(q) and CT(p)=CT(q). In completed trace semantics two processes
are identified iff they are completed trace equivalent.

Completed trace semantics can be explained with the following (rather
trivial) completed trace machine. The process is modelled as a black box that
contains as its interface to the outside world a display on which the name of
the action is shown that is currently carried out by the process. The process
autonomously chooses an execution path that is consistent with its position in
the labelled transition system (A ,-). During this execution always an action

20 I. The linear time - branching time spectrum

FIGURE 2. The completed trace machine

name is visible on the display. As soon as no further action can be carried
out, the process reaches a state of deadlock and the display becomes empty.
Now the existence of an observer is assumed that watches the display and
records the sequence of actions displayed during a run of the process, possibly
followed by deadlock. It is assumed that an observation takes only a finite
amount of time and may be terminated before the process stagnates. Two
processes are identified if they allow the same set of observations in this sense.

The trace machine can be regarded as a simpler version of the completed
trace machine, were the last action name remains visible in the display if
deadlock occurs (unless deadlock occurs in the beginning already). On this
machine traces can be recorded, but stagnation can not be detected, since in
case of deadlock the observer may think that the last action is still continuing.

1.4. Failure semantics. The failure machine contains as its interface to the out­
side world not only the display of the completed trace machine, but also a
switch for each action a EAct (as in Figure 3).

a b z

FIGURE 3. The failure trace machine

By means of these switches the observer may determine which actions are free
and which are blocked. This situation may be changed any time during a run
of the process. As before, the process autonomously chooses an execution

1. Semantic equivalences on labelled transition systems 21

path that fits with its position in (A,-), but this time the process may only
start the execution of free actions. If the process reaches a state where all ini­
tial actions of its remaining behaviour are blocked, it can not proceed and the
machine stagnates, which can be recognized from the empty display. In this
case the observer may record that after a certain sequence of actions CJ, the set
X of free actions is refused by the process. X is therefore called a refusal set
and <CJ,X> a failure pair. The set of all failure pairs of a process is called its
failure set, and constitutes its observable behaviour.

DEFINITION: <CJ,X> EAct* X qf(Act) is a failure pair of a process p, if there is

a process q, such that p ➔ q and / (q) n X = 0 . Let F (p) denote the set of
failure pairs ofp. Two processesp and q are failure equivalent if F(p)=F(q).
In failure semantics two processes are identified iff they are failure equivalent.

This version of failure semantics is taken from HOARE [76]. In BROOKES,
HOARE & RoscoE [33], where failure semantics was introduced, the refusal sets
are required to be finite. It is not difficult to see that for finitely branching
processes the two versions yield the same failure equivalence. In fact this fol­
lows immediately from the following proposition, that says that, for finitely
branching processes, the failure pairs with infinite refusal set are completely
determined by the ones with finite refusal set.

PROPOSITION 1.1 : Let p EA and CJ ET(p). Put Cont(CJ)= {a EA ct I CJa ET(p)} .
1. Then, for XCAct, <CJ,X>EF(p) <=> <CJ,XnCont(CJ)> EF(p).
ii. If pis finitely branching then Cont(CJ) is finite.
PROOF: Straightforward. □

In DE NICOLA [42] several equivalences, that were proposed in KENNAWAY
[79], DARONDEAU [38] and DE NICOLA & HENNESSY [43], are shown to coin­
cide with failure semantics on the domain of finitely branching transition sys­
tems without internal moves. For this purpose he uses the following alterna­
tive characterization of failure equivalence.

DEFINITION : Write p after CJ MUST X if for each q EA with p ➔ q there is

an r EA and a EX such that q ➔ r. Put p c:::::.q if for all CJ EA ct• and X CA ct:
p after CJ MUST X <=> q after CJ MUST X.

PROPOSITION 1.2: Let p,qEA. Then pc:::::.q <=> F(p) = F(q) .
PROOF: p after CJ MUST X <=> (CJ,X)fJ:F(p) [42]. □

In HENNESSY [70], a model for nondeterministic behaviours is proposed in
which a process is represented as an acceptance tree. An acceptance tree of a
finitely branching process p without internal moves or internal nondeterminism
can be represented as the set of all pairs <CJ,X > EAct* X ~(Act) for which

there is a process q, such that p ➔ q and X CI (q). It follows that for such

22 I. The linear time - branching time spectrum

processes acceptance tree equivalence coincides with failure equivalence.

1.5. Failure trace semantics. The failure trace machine has the same layout as
the failure machine, but is does not stagnate permanently if the process cannot
proceed due to the circumstance that all actions it is prepared to continue with
are blocked by the observer. Instead it idles - recognizable from the empty
display - until the observer changes its mind and allows one of the actions the
process is ready to perform. What can be observed are traces with idle periods
in between, and for each such period the set of actions that are not blocked by
the observer. Such observations can be coded as sequences of members and
subsets of Act.

ExAMPLE: The sequence { a,b)cdb{ b,c }{ b,c,d)a(Act) is the account of the
following observation: At the beginning of the execution of the process p, only
the actions a and b were allowed by the observer. Apparently, these actions
were not on the menu of p, for p started with an idle period. Suddenly the
observer canceled its veto on c, and this resulted in the execution of c, fol­
lowed by d and b. Then again an idle period occurred, this time when b and c
were the actions not being blocked by the observer. After a while the observer
decided to allow d as well, but the process ignored this gesture and remained
idle. Only when the observer gave the green light for the action a, it happened
immediately. Finally, the process became idle once more, but this time not
even one action was blocked. This made the observer realize that a state of
eternal stagnation had been reached, and disappointed he terminated the
observation.

A set X c;:Act, occurring in such a sequence, can be regarded as an offer
from the environment, that is refused by the process. Therefore such a set is
called a refusal set. The occurrence of a refusal set may be interpreted as a
'failure' of the environment to create a situation in which the process can
proceed without being disturbed. Hence a sequence over Act U 0'(Act), result­
ing from an observation of a process p may be called a failure trace of p. The
observable behaviour of a process, according to this testing scenario, is given
by the set of its failure traces, its failure trace set. The semantics in which
processes are identified iff their failure trace sets coincide, is called failure trace
semantics.

DEFINITIONS:

The refusal relations 4 for X c;:Act are defined by: p 4 q iff p = q
and I(p)nX = 0.

p 4 q means that p can evolve into q, while being idle during a period
in which Xis the set of actions allowed by the environment.

The failure trace relations ~ for oE(Act U <3>(Act))* are defined as the
reflexive and transitive closure of both the action and the refusal relations.
Again the overloading of notation is harmless.
oE(Act U <3>(Act))* is a failure trace of a process p , if there is a process q,

such that p ~ q. Let FT(p) denote the set of failure traces of p. Two

1. Semantic equivalences on labelled transition systems 23

processes p and q are failure trace equivalent if FT (p) = FT (q).

EXERCISES:

1. Explain why a(a,b}a can never be a failure trace of a processpEA.
2. Can { a }b and { b }a be two failure traces of such a process? And a { a }b

anda{b}a?
3. {a,b}cc, {a}c{b}c, {b}c{a}c, c{a,b}c, c{a}{b}c and care failure traces

of a process p EA. Which selections from this series provide the same
information about p?

1.6. Ready trace semantics. The Ready trace machine is a variant of the failure
trace machine that is equipped with a lamp for each action a EA ct.

' I , ' I , ' I ,

-0- -0- -0-
, I ' , I ' , I '

~ b b b

a b z

FIGURE 4. The ready trace machine

Each time the process idles, the lamps of all actions the process is ready to
engage in are lit. Of course all these actions are blocked by the observer, oth­
erwise the process wouldn't idle. Now the observer can see which actions
could be released in order to let the process proceed. During the execution of
an action no lamps are lit. An observation now consists of a sequence of
members and subsets of A, the actions representing information obtained from
the display, and the sets of actions representing information obtained from the
lights. Such a sequence is called a ready trace of the process, and the subsets
occurring in a ready trace are referred to as menus. The information about the
free and blocked actions is now redundant. The set of all ready traces of a
process is called its ready trace set, and constitutes its observable behaviour.

DEFINITIONS:

The ready trace relations ~ for aE(Act U '!P(Act))* are defined induc­
tively by:

f
l. p tt p, for any process p.

2. p ~ q implies p ~ q.

24 /. The linear time - branching time spectrum

3. p ~ q with XCAct whenever p =q and I(p)=X.

4. p ~ q ~ r impliesp ~ r.
The special arrow ~ had to be used, since further overloading of ~
would cause confusion with the failure trace relations.
aE(Act U 0l(Act)r is a ready trace of a process p, if there is a process q,

C1
such that p ~ q. Let RT(p) denote the set of ready traces of p. Two
processes p and q are ready trace equivalent if RT(p)=RT(q). In ready
trace semantics two processes are identified iff they are ready trace
equivalent.

In BAETEN, BERGSTRA & KLOP [10), PNUELI [106) and POMELLO [107) ready
trace semantics was defined slightly differently. By the proposition below,
their definition yields the same equivalence as mine.

DEFINITION: Xoa1X1a2 .. · anXn E0>{Act)X(Act X0>(Act)r is a normal ready
trace of a process p, if there are processes p 1, • · · ,Pn such that

a, a2 an
p ~Pt ~ · · · ~Pn and l(p;)=X; for i = 1, · · · ,n. Let RTN(p) denote
the set of normal ready traces of p. Two processes p and q are ready trace
equivalent in the sense of [10,106,107) if RTN(p)=RTN(q).

PROPOSITION 1.3: Let p,qEA. Then RTN(p)=RTN(q) ~ RT(p)=RT(q).
PROOF: The normal ready traces of a process are just the ready traces which
are an alternating sequence of sets and actions, and vice versa the set of all
ready traces can be constructed form the set of normal ready traces by means
of doubling and leaving out menus. □

1. 7. Readiness semantics. The readiness machine has the same layout as the
ready trace machine, but, like the failure machine, can not recover from an
idle period. By means of the lights the menu of initial actions of the remain­
ing behaviour of an idle process can be recorded, but this happens at most
once during an observation of a process, namely at the end. An observation
either results in a trace of the process, or in a pair of a trace and a menu of
actions by which the observation could have been extended if the observer
wouldn't have blocked them. Such a pair is called a ready pair of the process,
and the set of all ready pairs of a process is its ready set.

DEFINITION: <a,X> EAct• X0>(Act) is a ready pair of a process p, if there is a

process q, such that p ~ q and I(q)=X. Let R(p) denote the set of ready
pairs of p. Two processes p and q are ready equivalent if R(p)=R(q). In

1. Semantic equivalences on labelled transition systems 25

readiness semantics two processes are identified iff they are ready equivalent.

Two preliminary versions of readiness semantics were proposed in ROUNDS &
BROOKES (112]. In possiblefutures semantics the menu consists of the entire
trace set of remaining behaviour of an idle process, instead of only the set of
its initial actions; in acceptance-refusal semantics a menu may be any finite
subset of initial actions, while also the finite refusal sets of Subsection 1.4 are
observable.

DEFINITION: <a,X>EAct* X0>{Act*) is a possiblefuture of a process p, if

there is a process q, such that p ~ q and T (q) = X. Let PF (p) denote the set
of possible futures of p. Two processes p and q are possiblefutures equivalent if
PF(p)=PF(q).

DEFINITION: <a,X, Y > EA ct• X 0>(Act) X 0>(Act) is a acceptance-refusal triple of

a process p, if X and Y are finite and there is a process q, such that p ~ q,
X <:;;J (q) and Y nI (q)= 0. Let AR (p) denote the set of acceptance-refusal tri­
ples of p . Two processes p and q are acceptance-refusal equivalent if
AR(p)=AR(q).

It is not difficult to see that for finitely branching processes acceptance-refusal
equivalence coincides with readiness equivalence: <a,X> is a ready pair of a
process p iff p has an acceptance-refusal triple <a,X, Y > with
XU Y=Cont(a) (as defined in the proof of Proposition 1.1).

1.8. Infinite observations. All testing scenarios up till now assumed that an
observation takes only a finite amount of time. However, they can be easily
adapted in order to take infinite behaviours into account.

DEFINITION:

For any alphabet ~. let ~w be the set of infinite sequences over~-
a I a 2 · · · EActw is an infinite trace of a process p EA, if there are

a, a 2
processes p 1 ,p 2 , • • · such that p ~ p 1 ~ • • • . Let Tw (p) denote the
set of infinite traces of p.
Two processes p and q are infinitary trace equivalent if T (p) = T (q) and
Tw(p)= Tw(q).
p and q are infinitary completed trace equivalent if CT (p) = CT (q) and
Tw(p)= Tw(q). Note that in this case also T(p)= T(q).
p and q are infinitary failure equivalent if F(p)=F(q) and Tw(p)= Tw(q).
p and q are infinitary ready equivalent if R (p) = R (q) and Tw (p) = Tw (q).
Infinitary failure traces and infinitary ready traces aE(Act U 0>(Act))w and
the corresponding sets FTw (p) and R Tw (p) are defined in the obvious
way. Two processes p and q are infinitary failure trace equivalent if
FTw(p)=FTw(q), and likewise for infinitary ready trace equivalence.

With Konigs lemma one easily proves that for finitely branching processes all

26 I. The linear time - branching time spectrum

infinitary equivalences coincide with the corresponding finitary ones.

1.9. Simulation semantics. The testing scenario for finitary simulation seman­
tics resembles that for trace semantics, but in addition the observer is, at any
time during a run of the investigated process, capable of making arbitrary (but
finitely) many copies of the process in its present state and observe them
independently. Thus an observation yields a tree rather than a sequence of
actions. Such a tree can be coded as an expression in a simple modal
language.

DEFINITIONS:

The set es of simulation formulas over Act is defined inductively by:
1. TEes.
2. If cf,,t/tEes then cp/\t/tEes.
3. If cf,Ees and aEAct then aq,Ees .
The satisfaction relation 1= t;;: AX es is defined inductively by:
1. p I= T for all p EA.
2. p 1=ct,/\t/t if p 1=ct, and p 1=if;.

3. p l=acp if for some qEA: p ~ q and q 1=q,.
Let S (p) denote the set of all simulation formula that are satisfied by the
process p:
S(p)={q,Eesip1=q,}. Two processes p and q are finitary simulation
equivalent if S(p)=S(q).

The following concept of simulation, occurs frequently in the literature (see e.g.
PARK (103)). The derived notion of simulation equivalence coincides with
finitary simulation equivalence for finitely branching processes.

DEFINITION: A simulation is a binary relation R on processes, satisfying, for
aEAct:

if pRq and p ~ p', then 3q': q ~ q' and p'Rq'.
Process p can be simulated by q, notation s St, if there is a simulation R with
pRq.
p and q are similar, notation p ~q. if p Sq and q SP·

PROPOSITION I .4: Similarity is an equivalence on the domain of processes.
PRooF: It has to be checked that p SP, and p Sq & q Sr ~ p Sq.

The identity relation is a simulation with pRp.
If R is a simulation with pRq and S is a simulation with qSr, then the
relation R 0 S, defined by x (R 0 S)z iff 3y: xRy & ySz, is a simulation with
p~~~ □

Hence the relation will be called simulation equivalence.

1. Semantic equivalences on labelled transition systems 27

PROPOSITION 1.5 : Let p,qEA be finitely branching processes. Then
p(qq <=> S(p)=S(q).
PROOF : See HENNESSY & MILNER [73]. D

The testing scenario for simulation semantics differs from that for finitary
simulation semantics, in that both the duration of observations and the
amount of copies that can be made each time are not required to be finite.

I .JO. Ready simulation semantics. Of course one can also combine the copying
facility with any of the other testing scenarios. The observer can then plan
experiments on one of the generative machines from the Subsections 1.3 to 1.7
together with a duplicator, an ingenious device by which one can duplicate the
machine whenever and as often as one wants. In order to represent observa­
tions, the modal language from the previous subsection needs to be slightly
extended.

DEFINITIONS:

The completed simulation formulas and the corresponding satisfaction rela­
tion are defined by means of the extra clauses:
4. OEf:cs -
4. p F O if / (p) = 0 .
For the failure simulation formulas one needs:
4. If XCAct then XE eFS·
4. p t=X if l(p)nX= 0 .
For the ready simulation formulas:
4. If XCAct then XE eRS·
4. pt=Xif l(p) = X.
For the failure trace simulation formulas :
4. If q,E errs and X~Act then Xq,E errs-
4. pt=Xq,ifl(p)nX= 0 andpt=q,.
And for the ready trace simulation formulas:
4. If q, EeRTS and X~Act then Xq,E eRTS·
4. p t= X q, if / (p) = X and p t= q,.

Note that traces, complete traces, failure pairs, etc. can be obtained as the
corresponding kind of simulation formulas without the operator /\ .

By means of the formulas defined above one can define the finitary versions of
completed simulation equivalence, ready simulation equivalence, etc. It is obvious
that failure trace simulation equivalence coincides with failure simulation
equivalence and ready trace simulation equivalence with ready simulation
equivalence (p t=Xq, <=> p t=X /\q,). Also it is not difficult to see that failure
simulation equivalence and ready simulation equivalence coincide. So two
different equivalences remain. For finitely branching processes the finitary ver­
sions of these two equivalences coincide with the following infinitary versions.

28 /. The linear time - branching time spectrum

DEFINITION: A complete simulation is a binary relation R on processes, satisfy­
ing, for a EAct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';
ifpRq then I(p)= 0 <=> J(q)= 0.

Two processes p and q are completed simulation equivalent if there exists a com­
plete simulation R with pRq and a complete simulation S with qSp.

DEFINITION: A ready simulation is a binary relation R on processes, satisfying,
for aEAct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';
if pRq then l(p)=l(q).

Two processes p and q are ready simulation equivalent if there exists a ready
simulation R with pRq and a ready simulation S with qSp.

An alternative and maybe more natural testing scenario for finitary ready
simulation semantics (or simulation semantics) can be obtained by exchanging
the duplicator for an undo-button on the (ready) trace machine (Figure 5).

' I , ' I , ' I ,

-0- -0- -0-
, I ' , I ' , I '

[] 'b 'b 'b ()

a b z undo

FIGURE 5. The ready simulation machine

It is assumed that all intermediate states that are past through during a run of
a process are stored in a memory inside the black box. Now pressing the
undo-button causes the machine to shift one state backwards. In case the but­
ton is pressed during the execution of an action, this execution will be inter­
rupted and the process assumes the state just before this action began. In the
initial state pressing the button has no effect. An observation now consists of
a (ready) trace, enriched with undo-actions. Such observations can easily be
translated in (ready) simulation formulas.

1. Semantic equivalences on labelled transition systems 29

l.JJ. Refusal (simulation) semantics. In the testing scenarios presented so far, a
process is considered to perform actions and make choices autonomously. The
investigated behaviours can therefore be classified as generative processes. The
observer merely restricts the spontaneous behaviour of the generative machine
by cutting off some possible courses of action. An alternative view of the
investigated processes can be obtained by considering them to react on stimuli
from the environment and be passive otherwise. Reactive machines can be
obtained out of the generative machines presented so far by replacing the
switches by buttons and the display by a green light.

' I , ' I , ' I ,
-0- -0- -0-

, I ' , I ' , I '

'
I

/

@ @ @ -0- @
/

I '

a b z undo

FIGURE 6. The reactive ready simulation machine

Initially the process waits patiently until the observer tries to press one of the
buttons. If the observer tries to press an a-button, the machine can react in
two different ways: if the process can not start with an a-action the button will
not go down and the observer may try another one; if the process can start
with an a-action it will do so and the button goes down. Furthermore the
green light switches on. During the execution of a no buttons can be pressed.
As soon as the execution of a is completed the light switches off, so that the
observer knows that the process is ready for a new trial. Reactive machines as
described above originate from MILNER (92, 93].

Next I will discuss the equivalences that originate from the various reactive
machines. First consider the reactive machine that resembles the failure trace
machine, thus without menu-lights and undo-button. An observation on such
a machine consists of a sequence of accepted and refused actions. Such a
sequence can be modelled as a failure trace where all refusal sets are single­
tons. For finitely branching processes the resulting equivalence is exactly the
equivalence that originates from PHILLIPS notion of refusal testing [105]. There
it is called refusal equivalence. The following proposition shows that for
finitely branching processes refusal equivalence coincides with failure
equivalence.

30 I. The linear time - branching time spectrum

PROPOSITION 1.6: Let p EA, oEFT(p) and Cont(o)= {a EAct I oa EFT(p)}.
1. Then, for X(:Act, oXpEFT(p) ~ o(XnCont(o))pEFT(p).
u. If pis finitely branching then Cont(o) is finite.
111. o(XU Y}pEFT(p) ~ oXYpEFT(p).
PROOF: Straightforward. □

If the menu-lights are added to the reactive failure trace machine considered
above one can observe ready trace sets, and the green light is redundant. If
the green light (as well as the menu-lights) are removed one can only test trace
equivalence, since any refusal may be caused by the last action not being ready
yet. Reactive machines seem to be unsuited for testing completed trace and
failure equivalence. If the menu-lights and the undo-button are added to the
reactive failure trace machine one gets ready simulation again and if only the
undo-button is added one obtains an equivalence that may be called refusal
simulation equivalence and coincides with ready simulation equivalence on the
domain of finitely branching processes. The following refusal simulation formu­
las originate from BLOOM, ISTRAIL & MEYER (28).

DEFINITION: The refusal simulation formulas and the corresponding satisfaction
relation are defined by adding to the definitions of Subsection 1.9 the follow­
ing extra clauses:
4. If a EAct then -,a Eecs-
4. p r- -,a if a f£l (p).

1. 12. 2-nested simulation semantics. 2-nested simulation equivalence popped up
naturally in GROOTE & V AANDRAGER (68) as the coarsest congruence with
respect to a large and general class of operators that is finer than completed
trace equivalence. In order to obtain a testing scenario for this equivalence
one has to introduce the rather unnatural notion of a lookahead (68): The 2-
nested simulation machine is a variant of the ready trace machine with duplica­
tor, where in an idle state the machine not only tells which actions are on the
menu, but even which simulation formulas are satisfied in the current state.

DEFINITION: A 2-nested simulation is a simulation contained in simulation
equivalence (~). p and q are 2-nested simulation equivalent if there exists a 2-
nested simulation R with pRq and a 2-nested simulation S with qSp.

1.13. Bisimulation semantics. The testing scenario for bisimulation semantics,
as presented in MILNER (92) is the oldest and most powerful testing scenario,
from which most others have been derived by omitting some of its features. It
was based on a reactive failure trace machine with duplicator, but additionally
the observer is equipped with the capacity of global testing. Global testing is
described in ABRAMSKY [I] as: "the ability to enumerate all (of finitely many)
possible 'operating environments' at each stage of the test, so as to guarantee
that all nondeterministic branches will be pursued by various copies of the
subject process". MILNER [92) implemented global testing by assuming that

1. Semantic equivalences on labelled transition systems 31

(i) It is the weather which determines in each state which a-move will occur
in response of pressing the a-button (if the process under investigation is
capable of doing an a-move at all);

(ii) The weather has only finitely many states - at least as far as choice-
resolution is concerned;

(iii) We can control the weather.
Now it can be ensured that all possible moves a process can perform in reac­
tion on an a-experiment will be investigated by simply performing the experi­
ment in all possible weather conditions. Unfortunately, as remarked in
MILNER [93], the second assumption implies that the amount of different a­
moves an investigated process can perform is bounded by the number of possi­
ble weather conditions; so for general application this condition has to be
relaxed.

A different implementation of global testing is given in LARSEN & SKou [86].
They assumed that every transition in a transition system has a certain positive
probability of being taken. Therefore an observer can with an arbitrary high
degree of confidence assume that all transitions have been examined, simply by
repeating an experiment many times.

As argued among others in BLOOM, ISTRAIL & MEYER [28], global testing in
the above sense is a rather unrealistic testing ability. Once you assume that
the observer is really as powerful as in the described scenarios, in fact more
can be tested then only bisimulation equivalence: in the testing scenario of
Milner also the correlation between weather conditions and transitions being
taken by the investigated process can be recovered, and in that of Larsen &
Skou one can determine the relative probabilities of the various transitions.

An observation in the global testing scenario can be represented as a for­
mula in Hennessy-Milner logic [72] (HML). An HML formula is a simulation
formula in which it is possible to indicate that certain branches are not
present.

DEFINITION: The HMLformulas and the corresponding satisfaction relation
are defined by adding to the definitions in Subsection 1.9 the following extra
clauses:
4. If </>E E then -,cf>E f:.
4. p F-,q> if pr, cf>.
Let HM L(p) denote the set of all HML-formula that are satisfied by the pro­
cess p : HML(p)= {</>E E Ip Fe/>}. Two processes p and q are HML-equivalent if
HML(p)=HML(q).

For finitely branching processes HENNESSY & MILNER [72] provided the follow­
ing characterization of this equivalence.

DEFINITION: Let p,q EA be finitely branching processes. Then:
p ~0 q is always true.
p ~n + I q if for all aEA ct:

p ~ p' implies 3q': q ~ q' and p' ~n q' ;

32 I. The linear time - branching time spectrum

q ~ q' implies 3p': p ~ p' and p' ~n q'.
p and q are observational equivalent, notation p ~ q, if p~,,q for every
nEN.

PROPOSITION l.7: Let p,qEA be finitely branching processes. Then
p ~q <=> HML(p)=HML(q).
PROOF: In HENNESSY & MILNER [73). □

As observed by PARK [103), for finitely branching processes observation
equivalence can be reformulated as bisimulation equivalence.

DEFINITION: A bisimulation is a binary relation R on processes, satisfying, for
a EA ct:

ifpRq andp ~ p', then 3q': q ~ q' andp'Rq';

if pRq and q ~ q', then 3p': p ~ p' and p'Rq'.
Two processes p and q are bisimilar, notation p ~ q, if there exists a bisimula­
tion R with pRq.

The relation ~ is again a bisimulation. As for similarity, one easily checks
that bisimilarity is an equivalence on A. Hence the relation will be called
bisimulation equivalence. Finally note that the concept of bisimulation does

a
not change if in the definition above the action relations ~ were replaced

by generalized action relations ~ .

PROPOSITION l.8 :
p ~ q <=> p ~q.

Let p,q EA be finitely branching processes. Then

PROOF: "~": Straightforward with induction.
in MILNER [92).

"~" follows from Theorem 5.6

□

For infinitely branching processes ~ is coarser then ~ and will be called
finitary bisimulation equivalence.

Another characterization of bisimulation semantics can be given by means
of AczEL's universe CV of non-well-founded sets [4]. This universe is an exten­
sion of the Von Neumann universe of well-founded sets, where the axiom of
foundation (every chain x 0 3x 1 3 · · · terminates) is replaced by an anti­
foundation axiom.

DEFINITION: Let B denote the unique function '!B:A-cv satisfying

'!B(p)={<a,'!B(q)>lp~q} for allpEA. Two processesp and q are
branching equivalent if B (p) = B (q).

It follows from Aczel's anti-foundation axiom that such a solution exists. In
fact the axiom amounts to saying that systems of equations like the one above

2. The semantic lattice 33

have unique solutions. In [4] there is also a section on communicating sys­
tems. There two processes are identified iff they are branching equivalent.

A similar idea underlies the semantics of DE BAKKER & ZUCKER [15], but
there the domain of processes is a complete metric space and the definition of
B above only works for finitely branching processes, and only if = is inter­
preted as isometry, rather then equality, in order to stay in well-founded set
theory. For finitely branching processes the semantics of De Bakker and
Zucker coincides with the one of Aczel and also with bisimulation semantics.
This is observed in VAN GLABBEEK & RUTTEN [57], where also a proof can be
found of the next proposition, saying that bisimulation equivalence coincides
with branching equivalence.

PROPOSITION 1.9: Let p,qEA. Then p ~ q <=> B(p)=B(q).
PRooF: "$=". Let B be the relation, defined by pBq iff B(p) = B(q), then it

suffices to prove that B is a bisimulation. Suppose pBq and p ~ p'. Then
<a,B(p')>EB(p)=B(q). So by the definition of B(q) there must be a pro-

cess q' with B(p') = B(q') and q ~ q'. Hencep'Bq' , which had to be proved.
The second requirement for B being a bisimulation follows by symmetry.
"⇒". Let B* denote the unique solution of

~ •(p) = { <a, ~ •(r')> I 3r: r ~ p & r ~ r'}.

As for B it follows from the anti-foundation axiom that such a unique solution
exists. From the symmetry and transitivity of ~ it follows that

p ~ q ⇒ B*(p)=B*(q). (*)

Hence it remains to be proven that B* =B. This can be done by showing that

B* satisfies the equations ~ (p) = { <a, ~ (q)> IP ~ q}, which have B as
unique solution. So it has to be established that

B • (p) = { <a, B • (q) > Ip ~ q}. The direction "-;;J " follows directly from the
reflexivity of ~. For "k ", suppose <a,X> EB.(p). Then 3r: r ~ p ,

r ~ r' and X = B•(r'). Since ~ is a bisimulation, 3p' : p ~ p ' and
r' ~ p ' . Now from (*) it follows that X = B*(r')=B*(p'). Therefore

<a,X> E{ <a, B*(q)> IP ~ q} , which had to be established. □

2. THE SEMANTIC LA TIICE

2.1. Ordering the equivalences for finitely branching processes. In Section I
twelve semantics were defined that are different for finitely branching
processes. These will be abbreviated by T, CT, F, R, FT, RT, S, CS, RS, PF,
2S and B. Write § ~ '5 if semantics § makes at least as much identifications
as semantics 5. This is the case if the equivalence corresponding with § is
equal to or coarser than the one corresponding with 5.

34 I. The linear time - branching time spectrum

THEOREM 2.1: T ~ CT~ F ~ R ~ RT, F ~FT~ RT~ RS ~ 2S ~ B,
T ~ S ~CS~ RS, CT~ CS and R ~PF~ 2S.

PROOF: The first statement is trivial. For the next five statements it suffices to
show that CT(p) can be expressed in terms of F(p), F(p) in terms of R(p),
R(p) in terms of RT(p), F(p) in terms of FT(p) and FT(p) in terms of RT(p).

CT(p)={CJEA* I <CJ,A>EF(p)}.
<CJ,X>EF(p) ~ 3Y~A: <CJ,Y>ER(p)& XnY=0.
<CJ,X>ER(p) ~ CJXERT(p).
<CJ,X>EF(p) ~ CJXEFT(p).
CJ=CJ1CJ2 · · · CJnEFT(p) (CJ;EA U'!P(A)) ~

3p=p1f>2 • • • PnERT(p) (p;EA U'!P(A)) such that for i = l, ... ,n either
CJ;= P; EA or CJ;,P; ~A and CJ; n P; = 0.

The remaining statements are (also) trivial. □

Theorem I is illustrated in Figure 1. There, however, completed trace seman­
tics is missing, since it did not occur in the literature.

2.2. Ordering the equivalences for infinitely branching processes. When the res­
triction to finitely branching processes is dropped, there exists a finitary and
an infinitary variant of each of these semantics, depending on whether or not
infinite observations are taken into account. These versions will be notation­
ally distinguished by means of superscripts '*' and 'w' respectively; the unsub­
scripted abbreviation will, for historical reasons, refer to the infinitary versions
in case of 'simulation' -like semantics and to the finitary versions otherwise.
For the semantics that are based on refusal sets, there exists even a third ver­
sion, namely when also the refusal sets are required to be finite. These will be
denoted by means of a superscript ' - '. So F- denotes failure semantics as
defined in [33] (see Subsection 1.4), R- denotes acceptance-refusal semantics
[112] (Subsection 1.7), FT- denotes refusal semantics (Subsection 1.11), RS­
denotes refusal simulation semantics (also Subsection 1.11) and B- denotes
HML-semantics (Subsection 1.13). Now the ~-relation is represented by
arrows in Figure 7.

THEOREM 2.2: Let ~. '5 be any two of the semantics mentioned above. Then
~~5whenever this is indicated in Figure 7.

Again the proof is straightforward. If the labelled trans1t10n system A on
which these semantic equivalences are defined is large enough, then they are all
different and ~ ~ 5 holds only if this follows from Theorem 2.2 (and the fact
that ~ is a partial order), as will be shown in Subsection 2.8. However, for
certain labelled transition systems much more identifications can be made. Is
has been remarked already that for finitely branching processes all semantics
that are connected by dashed arrows in Figure 7 coincide. This result will be
slightly strengthened in the next subsection. In the subsequent subsection a
class of processes will be defined on which all the semantics coincide.

2. The semantic lattice 35

FIGURE 7. The infinitary linear time - branching time spectrum

2.3. Image finite processes.

DEFINITION: A process p EA 1s image finite if for each a EA ct* the set

{ q EA IP ~ q} is finite.

Note that finitely branching processes are image finite, but the reverse does not
hold.

THEOREM 2.3: On a domain of image finite processes, semantics that are con­
nected with a dashed arrow in Figure 7 coincide.

PROOF: For the upper two arrows, connecting HML-semantics with finitary
bisimulation semantics and finitary bisimulation semantics with bisimulation
semantics, the proof has been given in HENNESSY & MILNER [73]. For the
other simulation-like semantics the proof goes likewise. For the trace-like
semantics the correspondence between the finitary and infinitary versions (the
arrows on the right) follows directly from Konigs lemma. Here I only prove

36 /. The linear time - branching time spectrum

the correspondence between F - and F; the remaining cases can be proved
likewise.

It has to be established that, for image finite processes p and qEA,
F - (p)=F - (q) ⇒ F(p)=F(q), where F - (p) denotes the set of failure pairs
< o, X > of p with finite refusal set X. The reverse implication is trivial. For
finitely branching processes F(p) is completely determined by F - (p) (Proposi­
tion I.I), from which the implication follows. For arbitrary image finite
processes this is no longer the case, but the implication still holds.

Let p and qEA be two image finite processes with F(p)=/=F(q). Say there is
a failure pair <o,X>EF(p)-F(q). By image finiteness of q there are only

finitely many processes r; with q ~ r;, and for each of those there is an
action a;El(r;)nX (otherwise <o,X> would be a failure pair of q). Let Y be
the set of all those a;'s. then Y is a finite subset of X, so <o, Y > E F - (p).
On the other hand a; El(r;)n Y for all_..;, so <o, Y> r1.F - (q). □

2.4. Deterministic processes.

DEFINITION: A process pis deterministic if p ~ q & p ~ r ⇒ q =r.

REMARK: If p is deterministic and p ~ p' then also p' is deterministic. Hence
any domain of processes on which action relations are defined, has a sub­
domain of deterministic processes with the inherited action relations. (A simi­
lar remark can be made for image finite processes.)

PROOF: Suppose p' 4 q and p' 4 r. Then p ~ q and p ~ r, so q =r.

□

THEOREM 2.4 (PARK [103]): On a domain of deterministic processes all semantics
on the infinitary linear time - branching time spectrum coincide.

PROOF: Because of Theorem 2.2 it suffices to show that BS=(, TS. This is the
case if T(p) = T(q) ⇒ p ~ q for any two deterministic processes p and q.
Let R be the relation, defined by pRq iff T(p)= T(q), then it suffices to prove

that R is a bisimulation. Suppose pRq and p ~ p'. Then oET(p)=T(q).

So there is a process q' with q ~ q' . Now let pE T(p'). Then 3r: p' 4 r.

Hence p ~ r and op E T(p)=T(q). So there must be a process s with

q ~ s. By the definition of the generalized action relations

3t: q ~ t 4 s, and since q is deterministic, t =q'. Thus pET(q'), and from
this it follows that T(p') ~ T(q'). Since also p is deterministic the converse can
be established in the same way, and together this yields T(p') = T(q'), or p' Rq'.
This finishes the proof. □

2. The semantic lattice 37

2.5. Process graphs. In process theory it is common practice to represent
processes as elements in a mathematical domain. The semantics of a process
theory can then be modelled as an equivalence on such a domain. In Section
1 several semantic equivalences were defined on any domain of sequential
processes which is provided with action relations. Such a domain was called a
labelled transition system. In Section 3 a term domain P with action relations
will be presented for which these definitions apply. The present subsection
introduces one of the most popular labelled transition systems: the domain G
of process graphs or state transition diagrams.

DEFINITION : A process graph over a given alphabet Act is a rooted, directed
graph whose edges are labelled by elements of Act. Formally, a process graph
g is a triple (NODES (g), EDGES (g),ROOT (g)), where

NODES (g) is a set, of whicl·, the elements are called the nodes or states of
g,
ROOT (g)ENODES (g) is a special node: the root or initial state of g,
and EDGES(g)\:NODES(g) X Act X NODES{g) is a set of triples (s,a ,t) with
s,t ENODES (g) and a EAct: the edges or transitions of g.

If e =(s,a,t)EEDGES (g), one says that e goes from s tot. A (finite) path 7T in a
process graph is an alternating sequence of nodes and edges, starting and end­
ing with a node, such that each edge goes from the node before it to the node
after it. If 7r=s0(s0,a 1,s 1)s 1(s 1,a2,s2) · · · (sn - i ,an ,sn)sn , also denoted as

a, a 2 a. h fl . .
7T: s 0 ~s 1 ~ · · · ~Sn, one says t at 7T goes rom s 0 to sn; 1t starts m s 0
and ends in end(7T)=sn . Let PATHS (g) be the set of paths in g starting from
the root. If s and t are nodes in a process graph then t can be reached from s if
there is a path going from s to t. A process graph is said to be connected if all
its nodes can be reached from the root; it is a tree if each node can be reached
from the root by exactly one path. Let G be the domain of connected process
graphs over a given alphabet Act.

DEFINITION : For g E G and s E NODES (g), let gs be the process graph defined
by

NODES (gs)= {t ENODES (g) I there is a path going from s tot},
ROOT (gs)=s ENODES (gs),
and (t,a,u)EEDGES (gs) iff t, UENODES (gs) and (t,a,u)EEDGES (g).

Of course gsEG. Remark that gRooT(g)=g. Now on G action relations ~

for aEAct are defined by g ~h iff (ROOT(g),a,s)EEDGES(g) and h =gs.
This makes G into a labelled transition system. Hence all semantic
equivalences of Section 1 are well-defined on G. Below the sets of observa­
tions O(g) for OE{T, CT, R, F, RT, FT}i= and gEG, are characterized in
terms of the paths of g, rather than the generalized action relations between
graphs.

38 I. The linear time - branching time spectrum

a, a 2 a
DEFINITION: Let gEG and let 'TT: s0 ~s 1 ~ • • • 4sn EPATHS (g). Con-
sider the following notions:

the trace associated to 'TT: T(7T)=a 1a2 • · · anEAct*;
the menu of a nodes ENODES (g): / (s)= { a EAct I 3t: (s,a,t)EEDGES (g)};
the ready pair associated to 'TT: R(1T)=<T(1T),/(sn)>;
the failure set of.,,: F(.,,)= { <T('TT),X > I /(sn)n X = 0 };
the ready trace set of.,,: RT('TT) is the smallest subset of (Act U'B'(Act))*
satisfying

I(so)a1I(si)a2 · · · anl(sn)ERT('TT),
oXpERT('TT) => opERT('TT),
oXpERT('TT) => oXXpERT(.,,);

the failure trace set of 'TT: FT('TT) is the smallest subset of (Act U 'B'(Act))*
satisfying

(A -l(so))a1(A -/(s1))a2 · · · an(A -I(sn))EFT('TT),
oXpEFT('TT) => opEFT('TT),
oXpEFT('TT) => oXXpEFT('TT),
oXpEFT('TT)/\Yc;;,X => oYpEFT(.,,);

PROPOSITION 2.5:

T(g)= { T('TT) I 'TTEPATHS (g)}

CT(g)= {T('TT) I 'TTEPATHS (g)/\/(end('TT))= 0}

R(g)= { R ('TT) I 'TTEPATHS (g)}

F(g)= LJ F('TT)
1T E PATHS{g)

RT(g)= LJ RT('TT)
?T E PATHS (g)

FT(g)= U FT('TT)
1T E PATHS{g)

PROOF: Straightforward. D

Analogously, the simulation-like equivalences can be characterized by means of
simulation relations between the nodes of two process graphs, rather than
between process graphs themselves. Below this is done for bisimulation
equivalence.

DEFINITION: Let g,h EG. A bisimu/ation between g and h is a binary relation
R C NODES (g) X NODES (h), satisfying:
I. ROOT (g)R ROOT (h }.
2. If sRt and (s,a,s')EEDGES (g), then there is an edge (t,a,t'}EEDGES (h)

such that s' Rt'.
3. If sRt and (t,a,t')EEDGES (h), then there is an edge (s,a,s'}EEDGES (g)

such thats' Rt'.
This definition is illustrated in Figure 8. Now it follows easily that two graphs

2. The semantic lattice 39

g and h are bisimilar iff there exists a bisimulation between them.

a a 1

-- - - -------- - --- ____ j

a'
t----- - --------

a

FIGURE 8

Proposition 2.5 yields a technique for deciding that two process graphs are
ready trace equivalent, c.q. failure trace equivalent, without calculating their
entire ready trace or failure trace set.

a , a 2 a
Let g,hEG, '1T:s 0 ~s 1 ~ •• • 4snEPATHS and

77': t O ~ t 1 ➔ · · · ~ tm E PA THS . Path 77' is a failure trace augmentation of
'TT , notation '1T:,;;;_rr'1T', if FT(77}CFT(77'). This is the case exactly when n =m
and /(t;)C/(s;) for i = l, ... ,n. Write '1T=rr'1T' for '1T:,;;;_rr'1T' f\ 77':,;;;_rr'TT. It follows
that 77= rr'TT' ~ FT(77)=FT(77') ~ RT('1T)=RT('1T'). From this the follow­
ing can be concluded.

COROLLARY 2.5 : Two process graphs g,h EG are ready trace equivalent ifJ
for any path 'TTEPATHS (g) in g there is a '1T1 EPATHS (h) such that 'TT= rr'TT'
and for any path '1T E PATHS (g) in h there is a '1T1 E PATHS (g) such that
77= rr'TT'.

They are failure trace equivalent ifJ
for any path 'TTEPATHS (g) in g there is a '1T

1 EPATHS (h) such that '1T:,;;;_rr'1T'
and for any path '1T E PATHS (g) in h there is a 'TT' EPA THS (g) such that
'1T:,;;;_rr'1T'.

If g and h are moreover without infinite paths, then it suffices to check the
requirements above for maximal paths.

2.6. Drawing process graphs.

DEFINITION : Let g,h EG. A graph isomorphism between g and h is a bijective
function f :NODES (g }-+NODES (h) satisfying

f(ROOT(g))=ROOT(g) and
(s,a,t}EEDGES (g) ~ (f (s),a,f (t))EEDGES (h).

40 I. The linear time - branching time spectrum

Graphs g and h are isomorphic, notation g~h, if there exists a graph isomor­
phism between them.

In this case g and h differ only in the identity of their nodes. Remark that
graph isomorphism is an equivalence on G.

PROPOSITION 2.6: For g,h EG, g~h iff there exists a bisimulation R between g
and h, satisfying
4. If sRt and uRv then s =u ~ t =v.

PROOF: Suppose g~h. Let f :NODES (g)-NODES (h) be a graph isomorphism.
Define R\:NODES{g)XNODES(h) by sRt iff f(s)=t. Then it is routine to
check that R satisfies clauses 1, 2, 3 and 4. Now suppose R is a bisimulation
between g and h, satisfying 4. Definef:NODES(g)-NODES(h) by f(s)=t iff
sRt. Since g is connected it follows from the definition of a bisimulation that
for each s such a t can be found. Furthermore direction "~,, of clause 4
implies that f (s) is uniquely determined. Hence f is well-defined. Now direc­
tion "<;=." of clause 4 implies that f is injective. From the connectedness of h if
follows that f is also surjective, and hence a bijection. Finally clauses 1, 2 and
3 imply that f is a graph isomorphism. □

COROLLARY: If g~h then g and h are equivalent according to all semantic
equivalences of Section 1.

Finitely branching connected process graphs can be pictured by using open
dots (0) to denote nodes, and labelled arrows to denote edges, as can be seen
in Subsection 2.8. There is no need to mark the root of such a process graph
if it can be recognized as the unique node without incoming edges, as is the
case in all my examples. These pictures determine process graphs only up to
graph isomorphism, but usually this suffices since it is virtually never needed to
distinguish between isomorphic graphs.

2. 7. Embedding labelled transition systems in G. Let A be an arbitrary labelled
transition system and let p EA. The canonical graph G (p) of p is defined as
follows:

NODES (G(p))= {qEA I 3aEA •: p ~ q},
ROOT (G(p))=p ENODES (G(p)),
and (q,a,r)EEDGES (G(p)) iff q,rENODES (G(p)) and q ~ r .

Of course G(p)EG. This means G is a function from A to G.

PROPOSITION 2.7: G :A-G is an injective function, satisfying, for a EAct:
a a

G(p) ~ G(q) ~ p ~ q.
PROOF: Trivial. □

COROLLARY: For pEA and OE{T, CT, F, R, FT, RT, S, CS, RS, PF, 2S, B},
O(G(p))=O(p).

2. The semantic lattice 41

Proposition 2.7 says that G is an embedding of A in G. It implies that any
labelled transition system over Act can be represented as a subclass
G(A)={G(p)EGlpEA} ofG.

Since G is also a labelled transition system, G can be applied to G itself.
The following proposition says that the function G :G➔G leaves its arguments
intact up to graph isomorphism.

PROPOSITION 2.8: For gEG, G(g)~g.
PROOF: Remark that NODES (G(g))= {gs Is ENODES (g) }. Now the function
f : NODES (G (g))➔ NODES (g) defined by f (gs)= s is a graph isomorphism. 0

2.8. Counterexamples. In this subsection a number of examples will be
presented, showing that on G all semantic notions mentioned in Theorem 2.2
are different and £ ~ '5 holds only if this follows from that theorem. More­
over, apart from the examples needed to show the difference between seman­
tics that are connected by a dashed arrow in Figure 7, all examples will use
finite processes only. Thus it follows that neither the ordering of Theorem 2.1
nor the ordering of Theorem 2.2 can be further expanded. Let H be the set of
finite connected process graphs. Here a process graph g is finite if PATHS (g) is
finite. Finite graphs are acyclic and have only finitely many nodes and edges.
They represent finite processes.

THEOREM 2.9: Let £ and '5 be semantics on H from the series T, CT, F, R, FT,
RT, S, CS, RS, PF, 2S, B. Then £~ '5 only if this follows from Theorem 2.1.
(and the fact that ~ is a partial order).

PROOF: The following counterexamples provide for any statement £~ '5, not
following from Theorem 2.1 and the fact that ~ is a partial order, two finite
connected process graphs that are identified in '5, but distinguished in £.

bf' -T

:j =l=cT

-s

ab+a ab

FIGURE 9

1. T"';}=CT. For the graphs of Figure 9, T(left)=T(right)={f, a, ab}, whereas
CT(left)=l=CT(right) (since a ECT(lejt)-CT(right)). Hence they are identified
in trace semantics but distinguished in completed trace semantics.

42 I. The linear time - branching time spectrum

Furthermore the two graphs are simulation equivalent (the construction of the
two simulations is left to the reader). Since ~ is a partial order, the same
example shows that ~=<'j; 5 for ~E{CT, CS, F, R, FT, RT, RS, PF, 2S, B}
and 5 E { T, S}.

a -CT

A c:faF

b b C

-cs

ab +a(b +c) a(b +c)

FIGURE IO

2. CT~F. For the graphs of Figure IO, CT(left)=CT(right)={ab, ac} ,
whereas F(lejt)c:/=F(right) (since <a, { b} > EF(/ejt)- F(right)). Hence they
are identified in completed trace semantics but distinguished in failure seman­
tics. Furthermore the two graphs are completed simulation equivalent (the
construction of the two completed simulations is again left to the reader).
Since ~ is a partial order, the same example shows that ~=<'j; 5 for
~E{F, R, FT, RT, RS, PF, 2S, B} and 5°"E{CT, CS} .

(l -F

~ c:faR

-FT b C

c:faRT

b C

ab +ac ab +a(b +c)+ac

fi

FIGURE 11

3. FT~ R. For the graphs of Figure 11 , FT(left) = FT(right), whereas
R (lejt)c:/=R (right). The first statement follows from Corollary 2.5, since the
new maximal paths at the right-hand side are both failure trace augmented by
the two maximal paths both sides have in common. The second one follows
since <a, {b,c}>ER(right) - R(left). Hence these processes are identified in
failure trace semantics but distinguished in readiness semantics. Since ~ is a

2. The semantic lattice 43

partial order, the same example shows that ~~5 for any ~~FT and ~R. so
in particular F~ R and FT~ RT.

a a

-F

=l=-rr b
C C

-R
d e =l=-RT e d

a(b +cd)+a(j +ce) a(b +ce)+a(j +cd)

FIGURE 12

4. R ~ FT. For the graphs of Figure 12, R (left)= R (right), whereas
FT(/eft)=l=-FT(right). The first statement follows since in the second graph
only 4 ready pairs swopped places. The second one follows since
a { b }ce EFT(lejt)- FT(right). Hence these processes are identified in readiness
semantics but distinguished in failure trace semantics. Since ~ is a partial
order, the same example shows that ~~ 5 for any ~~R and ~ FT, so in par­
ticular F~FT and R~RT. Since PF(left)=/=-PF(right) this example does not
show that PF~FT. It it left as an exercise to the reader to adapt the example
so that also that is established.

a

b b b

=l=-s
C C d

abc +abd a(bc +bd)

FIGURE 13

5. RT~S. For the graphs of Figure 13, RT(left)=RT(right), whereas
S(left)=l=-S(right). The first statement follows immediately from Corollary 2.5.

44 I. The linear time - branching time spectrum

The second one follows since a(bcTl\bdT)ES(right)-S(left). Hence these
processes are identified in ready trace semantics but distinguished in simula­
tion semantics. Since ~ is a partial order, the same example shows that §~ 5'
for any §~RT and ~S, so in particular T~S, CT~CS and RT~RS.

a a

b b

C C d C d

abc +a(bc +bd) a(bc +bd)

FIGURE 14

6. RS~ 2S. The graphs of Figure 14 are ready simulation equivalent, but not
2-nested simulation equivalent. There exists exactly one simulation from right
by left, namely the one mapping right on the right-hand side of left, and this
simulation is a ready simulation as well as a 2-nested simulation. There also
exists exactly one simulation from left by right, which maps the black node on
the left on the black node on the right. This simulation is a ready simulation
(related nodes have the same menu of initial actions) but not a 2-nested simu­
lation (the two subgraphs originating from the two black nodes are not simula­
tion equivalent). Hence RS~2S. Furthermore PF(left)=l=PF(right), since
<a,{t:, b, bc}>EPF(left)-PF(right). Hence§~PFforany§~RS.

a
a

b b
-2s

=l=n
C C C

abc +a(bc +b) a(bc +b)

FIGURE 15

2. The semantic lattice 45

7. 2S ~ B. The graphs of Figure 15 are 2-nested simulation equivalent, but
not bisimulation equivalent. There now exists 2-nested simulations in both
directions since the two subgraphs originating from the two black nodes are
simulation equivalent. However, a-,b-,cTEHML(lejt)- HML(right). □

THEOREM 2. 10: Let ~ and '5 be semantics on G mentioned in Subsection 2.2.
Then ~~'5 only if this follows from Theorem 2.2. (and the fact that ~ is a partial
order).

PROOF: The following counterexamples provide for any statement ~ ~ '5; not
following from Theorem 2.2 and the fact that ~ is a partial order, two con­
nected process graphs that are identified in '5; but distinguished in ~-

8. B • ~ T"'. The graphs of Figure 4 in Chapter 3 are finitary bisimulation
equivalent (as follows straightforward with induction) but not infinitary trace
equivalent (since only the graph at the right has an infinite trace). Since ~ is
a partial order it follows that ~~'5for ~~B• and ~T"'.

b b b =/=cT

FIGURE 16

9. B - ~CT. For the graphs of Figure 16, HML(left)=HML(right), whereas
CT(lejt)=/=CT(right). The first statement follows since by means of HML­
formulas one can only say that a finite set of actions can not take place in a
certain state. The second one follows since a E CT(lejt) - CT(right). Since ~
is a partial order it follows that ~~ '5 for ~~B- and ~CT. □

One could say that a semantics ~ respects deadlock behaviour iff ~~CT. The
example above then shows that non of the semantics on the left in Figure 7
respects deadlock behaviour; only the left-hand process of Figure 16 can
deadlock after an a-move.

46 I. The linear time - branching time spectrum

3. COMPLETE AXIOMATIZATIONS

3.1. A language for finite, concrete, sequential processes. Consider the following
basic CCS- and CSP-like language BCCSP for finite, concrete, sequential
processes over a finite alphabet Act:

inaction: 0 (called nil or stop) is a constant, representing a process that refuses
to do any action.

action : a is a unary operator for any action a EAct. The expression ap
represents a process, starting with an a-action and proceeding with p.

choice : + is a binary operator. p + q represents a process, first being
involved in a choice between its summands p and q, and then
proceeding as the chosen process.

The set P of (closed) process expressions or terms over this language is defined
as usual:

OEP,
ap EP for any a EAct and p EP,
p +qEP for any p,qEP.

Sub terms a O may be abbreviated by a.

On P action relations ~ for a EAct are defined as the predicates on P gen­
erated by the action rules of Table 1. Here a ranges over Act and p and q over
P.

a
ap ~ p

a
p~p'

a
q~q'

p+q ~ q'

TABLE 1

Now all semantic equivalences of Section 1 are well-defined on P, and for each
of the semantics it is determined when two process expressions denote the
same process.

3.2. Axioms. In Table 2, complete axiomatizations can be found for ten of the
twelve semantics of this chapter that differ on BSSCP. Axioms for 2-nested
simulation and possible-futures semantics are more cumbersome, and the
corresponding testing notions are less plausible. Therefore they have been
omitted. In order to formulate the axioms, variables have to be added to the
language as usual. In the axioms they are supposed to be universally
quantified. Most of the axioms are axiom schemes, in the sense that there is

3. Complete axiomatizations 47

one axiom for each substitution of actions from Act for the parameters a,b,c.
Some of the axioms are conditional equations, using an auxiliary operator /.
Thus provability is defined according to the standards of either first-order logic
with equality or conditional equational logic. / is a unary operator that calcu­
lates the set of initial actions of a process expression, coded as a process
expression again.

THEOREM 3.1: For each of the semantics OE{T, S, CT, CS, F, R, FT, RT, RS,
B} two process expressions p,q EP are O-equivalent ifJ they can be proved equal
from the axioms marked with '+' in the column for O in Table 2. The axioms
marked with 'v' are valid in O-semantics but not needed for the proof

BIR.5 R1 'FI RF ~5 C1 ST

x+y=y+x ++ + + ++ + + ++
x +y)+z = x +(y +z) ++ + + ++ + + ++

:X +x = X ++ + + ++ + + ++
x+0 = x ++ + + ++ + + ++

/(-x) = /(y) ⇒ a(x +y) = ax +a(x +y) + V V V V V V V V

/(x) = /(y) ⇒ ax +ay = a(x +y) + + V V V V

ax +ay = ax +ay +a(x +y) + V V V

a(bx +u)+a(by +v) = a(bx +by +u)+a(bx +by +v ++ V V

ax +a(y +z) = ax +a(x +y)+a(y +z) + V V

a(bx +u +y) = a(bx +u)+a(bx +u +y) + V V V

a(bx +u)+a(cy +v) = a(bx +cy +u +v) + V

a(x +y) = ax +a(x +y) +v
ax +ay = a(x +y) +

/(0) = 0 ++ + + + ++ + ++
/(ax) = a0 ++ + + + ++ + ++
l(x +y) = /(x)+ /(y) ++ + + + + + + ++

TABLE 2

PROOF: For F, R and B the proof is given in BERGSTRA, KLoP & OLDEROG

(24] by means of graph transformations. A similar proof for RT can be found
in BAETEN, BERGSTRA & KLoP [10]. For the remaining semantics a proof can
be given along the same lines. D

48 I. The linear time - branching time spectrum

CONCLUDING REMARKS

In this chapter various semantic equivalences for concrete sequential processes
are defined, motivated, compared and axiomatized. Of course many more
equivalences can be given then the ones presented here. The reason for select­
ing just these, is that they can be motivated rather nicely and/ or play a role in
the literature on semantic equivalences. In ABRAMSKY & VICKERS [2] the
observations which underly many of the semantics in this chapter are placed in
a uniform algebraic framework, and some general completeness criteria are
stated and proved.

It is left for a future occasion to give (and apply) criteria for selecting
between these equivalences for particular applications (such as the complexity
of deciding if two finite-state processes are equivalent, or the range of useful
operators for which they are congruences). The work in this direction reported
so far, includes [28] and [68].

An interesting topic is the generalization of this work to a setting with silent
moves and/ or with parallelism. In Chapter III the generalization of bisimula­
tion semantics to a setting with silent steps is considered; in Chapters IV-VII
bisimulation and trace semantics will be considered in a setting with parallel­
ism. In both cases there turn out to be many interesting variations. General­
izing the entire spectrum to a setting with both silent actions and parallelism
remains as of yet to be done. However, in many papers parts of a
classification can be found already (see for instance (107]).

A generalization to preorders, instead of equivalences, can be obtained by
replacing conditions like O(p)=O(q) by O(p)<;;,O(q). Since preorders are
often useful for verification purposes, it seems to be worthwhile to have to
classify them as well.

Furthermore it would be interesting to give explicit representations of the
equivalences, by representing processes as sets of observations instead of
equivalence classes of process graphs, and defining operators like action
prefixing and choice directly on these representations, as has been done for
failure semantics in (33] and for readiness semantics in (102].

Chapter II

Modular Specifications in Process Algebra
With Curious Queues

Rob van Glabbeek and Frits Vaandrager

In recent years a wide variety of process algebras has been proposed in the
literature. Often these process algebras are closely related: they can be viewed
as homomorphic images, submodels or restrictions of each other. The aim of
this chapter is to show how the semantical reality , consisting of a large number
of closely related process algebras, can be reflected , and even used, on the
level of algebraic specifications and in process verifications. This is done by
means of the notion of a module. The simplest modules are building blocks of
operators and axioms, each block describing a feature of concurrency in acer­
tain semantical setting. These modules can then be combined by means of a
union operator +, an export operator D, allowing to forget some operators in
a module, an operator H, changing semantics by taking homomorphic images,
and an operator S which takes subalgebras. These operators enable us to
combine modules in a subtle way, when the direct combination would be
inconsistent. We show how auxiliary process algebra operators can be hidden
when this is needed. Moreover it is demonstrated how new process combina­
tors can be defined in terms of the more elementary ones in a clean way. As
an illustration of our approach, a methodology is presented that can be used to
specify FIFO-queues, and that facilitates verification of concurrent systems con­
taining these queues.

Notes. This chapter appeared as Report CS-R8821 , Centrum voor Wiskunde en
Informatica, Amsterdam 1988, an extended abstract of which has been pub­
lished in Algebraic Methods: Theory, Tools and Applications, LNCS 394,
Springer-Verlag, pp. 465-506. Apart from Sections 4 and 5 it moreover
appeared in the Ph.D. Thesis of Frits Vaandrager [122].
The research of the authors was supported by ESPRIT project no. 432, An
Integrated Formal Approach to Industrial Software Development (METEOR).
The research of the second author was also supported by RACE project no.
1046, Specification and Programming Environment for Communication
Software (SPECS).

TABLE OF CONTENTS

49

Introduction 50 4. Queues 83
I. Module Logic 55
2. Process Algebra 60
3. Applications of the Module 74

Approach in Process Algebra

5. A Protocol Verification 96
Conclusions and Open Problems I 03
Appendix: Logics 105

50 II. Modular specifications in process algeL

INTRODUCTION
During the last decade, a lot of research has been done on process u . .._
branch of theoretical computer science concerned with the modelling ,
current systems as elements of an algebra. Besides the Calculus of Comm,
eating Systems (CCS) of MILNER [92, 95], several related formalisms have beet.
developed, such as the theory of Communicating Sequential Processes (CSP) of
HOARE [76], the MEIJE calculus of AUSTRY & BOUDOL [6] and the Algebra of
Communicating Processes (ACP) of BERGSTRA & KLOP [19, 20, 22].

When work on process algebra started, many people hoped that it would be
possible to come up, eventually, with the 'ultimate' process algebra, leading to
a 'Church thesis' for concurrent computation. This process algebra, one ima­
gined, should contain only a few fundamental operators and it should be
suited to model all concurrent computational processes. Moreover there should
be a calculus for this model making it possible to prove the identity of
processes algebraically, thus proving correctness of implementations with
respect to specifications. As far as we know, the ultimate process algebra has
not yet been found, but we will not exclude that it will be discovered in the
near future.

Two things however, have become clear in the meantime: (1) it is doubtful
whether algebraic system verification, as envisaged in [92], will be possible in
this model, and (2) even if the ultimate process algebra exists, this certainly
does not mean that all other process algebras are no longer interesting. We ela­
borate on this below.

A central idea in process algebra is that two processes which cannot be dis­
tinguished by observation should preferably be identified: the process seman­
tics should be fully abstract with respect to some notion of testing (see [43, 92]
and the first chapter of this thesis). This means that the choice of a suitable
process algebra may depend on the tools an environment has to distinguish
between certain processes. In different applications the tools of the environ­
ment may be different, and therefore different applications may require
different process algebras. A large number of process semantics are not fully
abstract with respect to any (reasonable) notion of testing (bisimulation seman­
tics and partial order semantics, for instance). Still these semantics can be very
interesting because they have simple definitions or correspond to some strong
operational intuition. Our hypothetical ultimate process algebra will make
very few identifications, because it should be resistant against all forms of test­
ing. Therefore not many algebraic laws will be valid in this model and alge­
braic system verification will presumably not be possible (specification and
implementation correspond to different processes in the model).

Another factor which plays a role has to do with the operators of process
algebras. For theoretical purposes it is in general desirable to work with a sin­
gle, small set of fundamental operators. We doubt however that a unique
optimal and minimal collection exists. What is optimal depends on the type of
results one likes to prove. This becomes even more clear if we look towards
practical applications. Some operators in process algebra can be used for a
wide range of applications, but we agree with JIFENG & HOARE [77] that we

Introduction 51

may have to accept that each application will require derivation of specialised
laws (and operators) to control its complexity.

Many people are embarrassed by the multitude of process algebras occurring
in the literature. They should be aware of the fact that there are close rela­
tionships between the various process algebras: often one process algebra can
be viewed as a homomorphic image, subalgebra or restriction of another one.
The aim of this chapter is to show how the semantical reality, consisting of a
large number of closely related process algebras, can be reflected, and even
used, on the level of algebraic specifications and in process verifications.

This chapter is about process algebras, their mutual relationships, and stra­
tegies to prove that a formula is valid in a process algebra. Still, we do not
present any particular process algebra here. In the other chapters of this thesis
several process algebras are discussed. However we neither define all the opera­
tions we use in this chapter nor all the semantical notions that will be con­
sidered here. In this chapter we only define classes of models of process
modules. One reason for doing this is that a detailed description of all partic­
ular process algebras we use would make this thesis too long. Another reason
is that there is often no clear argument for selecting a particular process alge­
bra. In such situations we are interested in assertions saying that a formula is
valid in all algebras satisfying a certain theory. A number of times we need
results stating that some formulas cannot be proven from a certain module. A
standard way to prove this is to give a model of the module where the formu­
las are not true. For this reason we will often refer to particular process alge­
bras which have been described elsewhere in the literature.

The discussion of this chapter takes place in the setting of ACP. We think
however that the results can be carried over to CCS, CSP, MEIJE, or any other
process algebra formalism.

M odu/arisation.
The creation of an algebraic framework suitable to deal with realistic applica­
tions, gives rise to the construction of building blocks, or modules, of operators
and axioms, each block describing a feature of concurrency in a certain
semantical setting. These modules can then be combined by means of a
module combinator +. We give some examples:
i) A kernel module, that expresses some basic features of concurrent

processes, is the module ACP. For a lot of applications however, ACP
does not provide enough operators. Often the use of renaming operators
makes specifications shorter and more comprehensible. These renaming
operators can be defined in a separate module RN. Now the module
ACP+ RN combines the specification and verification power of modules
ACP and RN.

ii) The axioms of module ACP correspond to the semantical notion of
bisimulation. For some applications bisimulation semantics does not
make enough identifications. In these cases one would like to deal with
processes on the level of, for example, failure semantics. Now one can
define a module F, corresponding to the identifications made in failure

52 II. Modular specifications in process algebra - with curious queues

semantics on top of the identifications of bisimulation semantics. The
module ACP+ F then corresponds to the failure model.

Once a number of modules have been defined, they can be combined in a lot
of ways. Some combinations are interesting (for example the module
ACP+ RN+ F), for other combinations no interesting applications exist (the
module RN+ F). Didactical aspects aside, a major advantage of the modular
approach is that results which have been proved from a module M, can also be
proved from a module M + N . This means that process verifications become
reusable.

It turns out that certain pairs of modules are incompatible in a very strong
sense: with the combination of two modules strange and counter-intuitive
identities can be derived. In BAETEN, BERGSTRA & Kl.OP [10), for example, it is
shown that the combination of failure semantics and the priority operator is
inconsistent in the sense that an identity can be derived which says that a par­
ticular process that can do a b-action after it has done an a-action, equals a
process that cannot do this. Another example can be found in BERGSTRA,

Kl.OP & OLDEROG [23), where it is pointed out that the combination of failure
semantics and Koomen's Fair Abstraction Rule (KFAR) is inconsistent.

In the first section of this chapter we present, besides the combinator +,
some other operators on modules. We discuss an export operator □, allowing
to forget some operators in a module, an operator H, changing semantics by
taking homomorphic images, and an operator S which takes subalgebras.
These operators enable us to combine modules in a subtle way, when the
direct combination would be inconsistent. In Section 2 we describe a large
number of process modules which play a role in the ACP framework. Section
3 contains two examples of applications of the new module operators in pro­
cess algebra:
l. The axiom system ACP contains auxiliary operators IL and I (left-merge

and communication-merge) which drastically simplify computations and
have some desirable 'metamathematical' consequences (finite axiomatisa­
bility1 ; greater suitability for term rewriting analysis). These auxiliary
operators can be defined in a large class of process algebras. However, it
turns out that in a setting with the silent step T the left-merge cannot be
added consistently to all algebras (for instance not to the usual variants of
failure semantics). Now one may think that this result means that some­
one who is doing failure semantics with T's cannot profit from the nice
properties of the left-merge. However, we will show in this chapter that
use of the module approach makes it possible to do failure semantics with
T's but still benefit from the left-merge in verifications. The idea is that
verifications take place on two levels: the level of bisimulation semantics
where the left-merge can be used, and a level of for instance failure
semantics, where no left-merge is present. The failure model can be

I. Recently, FARON MOLLER (97) from Edinburgh showed that in bisimulation semantics the
merge operator cannot be finitely ax.iomatised without auxiliary operators.

Introduction 53

obtained from the bisimulation model by removing the auxiliary operators
and talcing a homomorphic image. Now we use the observation that cer­
tain formulas (the 'positive' ones without auxiliary operators) are
preserved under this procedure. A consequence of this application is that
even if bisimulation semantics is not considered to be an appropriate pro­
cess semantics (since it is not fully abstract with respect to any reasonable
notion of testing), it still can be useful as an expedient for proving formu­
las in failure semantics.

2. As already pointed out above, one would like to have, from a theoretical
point of view, as few operators or combinators as possible. On the other
hand, when dealing with applications, it is often very rewarding to intro­
duce new operators. This paradox can be resolved if the new operators
are definable in terms of the more elementary ones. In that case the new
operators can be considered as notations which are useful, but do not
complicate the underlying theory. A problem with defining operators in
terms of other operators is that often auxiliary atomic actions are needed
in the definition. These auxiliary actions can then not be used in any
other place, because that would disturb the intended semantics of the
operator. In the laws that can be derived for the defined operator, the
auxiliary actions occur prominently. These 'side effects' are often quite
unpleasant. One may think that side effects are unavoidable and that
someone who really does not like them should define new operators
directly in the algebras (even though this is in conflict with the desire to
have as few operators as possible). However, we will show that the
module approach can be used to solve also this problem: with the restric­
tion operator we remove the auxiliary actions from the signature and then
we apply the subalgebra operator in order to 'move' to algebras where the
auxiliary actions are not present at all.

The concept of hiding auxiliary operators in a module in some formal way is
quite familiar in the literature (see BERGSTRA, HEERING & KLINT [17] for
example), but the use of module operators H and S, and their application in
combining modules that would be incompatible otherwise, is, as far as we
know, new. The H and S operations are in spirit related to the abstract opera­
tion of SANNELLA & WIRSING [114] and SANNELLA & TARLECKI [113], which
also extends the model class of a module.

In previous papers on ACP, the underlying logic used in process
verifications was not made explicit. The reason for this was that a long
definition of the logic would distract the reader's attention from the more
essential parts of the paper. It was felt that filling in the details of the logic
would not be too difficult and that moreover different options were equivalent.
In this chapter we generalise the classical notion of a formal proof of a for­
mula from a theory to the notion of a formal proof of a formula from a
module. The definition of this last notion is parametrised by the underlying
logic. What is provable from a module really depends on the logic that is used,
and this makes it necessary to consider in more detail the issue of logics. In
an appendix we present three alternatives: (I) Equational logic. This logic is

54 II. Modular specifications in process algebra - with curious queues

suited for dealing with finite processes, but not strong enough for handling
infinite processes; (2) Infinitary conditional equational logic. This is the logic
used in most process verifications in the ACP framework until now; (3) First
order logic with equality.

Our investigations into the precise nature of the calculi used in process alge­
bra, led us to alternative formulations of some of the proof principles in ACP
which fit better in our formal setup. We present a reformulation of the Recur­
sive Specification Principle (RSP) and also an alphabet operator which returns
a process instead of a set of actions.

Queues.
As an illustration of the techniques developed in Sections 1 to 3, we present in
Section 4 an algebraic treatment of FIFO-queues. FIFO-queues play an
important role in the description of languages with asynchronous message
passing, the modelling of communication channels occurring in computer net­
works and the implementation of languages with synchronous communication.
We show how the chaining operator can be used to give short specifications of
various (faulty) queues and simple proofs of numerous identities, for example
of the fact that the chaining of a queue with unbounded capacity and a one
datum buffer is again a queue.

We give an example of an identity that holds intuitively (there is no experi­
ment that distinguishes between the two processes) but is not valid in bisimu­
lation semantics. We use the machinery developed in Section l-3 to extend the
axiom system in a neat way (avoiding inconsistencies) so that we can prove the
processes identical.

A protocol verification.
The usefulness of the proof technique for queues is illustrated in Section 5,
where a modular verification is presented of a concurrent alternating bit proto­
col. This verification takes 4 pages (or 5 if the proof of the standard facts
about the queues is included) and is thereby considerably shorter than the
proof of similar protocols in papers by KOYMANS & MULDER [81] and LARSEN

& MILNER [85] (l 5 and 11 pages respectively). The verification shows that the
protocol is correct if the channels behave as faulty FIFO-queues with
unbounded capacity. However, a minor change in the proof is enough to show
that the protocol also works if the channels behave as n-buffers, faulty n­
buffers, etc. In our view the basic merit of our way of dealing with queues is
that it becomes possible to use inductive arguments when dealing with the
length of queues in protocol systems.

1. Module logic 55

1. MODULE LOGIC

In this chapter, as in many other papers about process algebra, we use formal
calculi to prove statements about concurrent systems. In this section we answer
the following questions:

Which kind of calculi do we use?
What do we understand by a proof?

In the next sections we will apply this general setup to the setting of con­
current systems.

1.1. Statements about concurrent systems. In many theories of concurrency it is
common practice to represent processes - the behaviours of concurrent systems
- as elements in an algebra. This is a mathematical domain, on which some
operators and predicates are defined. Algebras, which are suitable for the
representation of processes are called process algebras. Thus a statement about
the behaviour of concurrent systems can be regarded as a statement about the
elements of a certain process algebra. Such a statement can be represented by
a formula in a suitable language which is interpreted in this process algebra.
Sometimes we consider several process algebras at the same time and want to
formulate a statement about concurrent processes without choosing one of
these algebras. In this case we represent the statement by a formula in a suit­
able language which has an interpretation in all these process algebras. Hence
we are interested in assertions of the form: 'Formula cf, holds in the process
algebra (!, notation ct F cf,, or 'Formula cf, holds in the class of process algebras
e, notation e F cf,. Now we can formulate the goal that is pursued in the
present section: to propose a method for proving assertions ct F cf,, or e F cf,.

1.2. Proving formulas from theories. Classical logic gave us the notion of a for­
mal proof of a formula cf, from a theory T. Here a theory is a set of formulas.
We write T ~ cf, if such a proof exists. The use of this notion is revealed by the
following soundness theorem: If T ~ cf, then cf, holds in all algebras satisfying T
Here an algebra ct satisfies T, notation ct F T, if all formulas of T hold in this
algebra. Thus if we want to prove ct F cf, it suffices to prove T ~ cf, and ct F T for
a suitable theory T. Likewise, if we want to prove e F cf,, with ea class of alge­
bras, it suffices to prove T ~ cf, and e F T.

At first sight the method of proving ct F cf, by means of a formal proof of cf,
out of T seems very inefficient. Instead of verifying ct F cf,, one has to verify
ci', F if; for all i/;E T, and moreover the formal proof has to be constructed. How­
ever, there are two circumstances in which this method is efficient, and in most
applications both of them apply. First of all it might be the case that cf, is more
complicated than the formulas of T and that a direct verification of ct F cf, is
much more work than the formal proof and all verifications ct F 1/J together.
Secondly, it might occur that a single theory T with ct F T is used to prove
many formulas cf,, so that many verifications ct F cf, are balanced against many
formal proofs of cf, out of T and a single set of verifications ct F if;. Especially
when constructing formal proofs is considered easier then making verifications
ct F cf,, this reusability argument is very powerful. It also indicates that for a

56 II. Modular specifications in process algebra - with curious queues

given algebra ct we want to find a theory T from which most interesting formu­
las cJ> with a 1= cJ> can be proved.

Often there are reasons for representing processes in an algebra that satisfies
a particular theory T, but there is no clear argument for selecting one of these
algebras. In this situation we are interested in assertions e 1= cJ> with e the class
of all algebras satisfying T. Of course assertions of this type can be con­
veniently proved by means of a formal proof of cJ> from T.

1.3. Proving formulas from modules. In process algebra we often want to
modify the process algebra currently used to represent processes. Such a
modification might be as simple as the addition of another operator, needed
for the proper modelling of yet another feature of concurrency, but it can also
be a more involved modification, such as factoring out a congruence, in order
to identify processes that should not be distinguished in a certain application.
It is our explicit concern to organise proofs of statements about concurrent
systems in such a way that, whenever possible, our results carry over to
modifications of the process algebra for which they were proved.

Now suppose ct is a process algebra satisfying the theory T and a statement
ct 1= cJ> has been proved by means of a formal proof of cJ> out of T. Furthermore
suppose that ~ is obtained from ct by factoring out a congruence relation on ct
(so ~ is a homomorphic image of Ct) and for a certain application ~ is con­
sidered to be a more suitable model of concurrency than If. Then in general
~ 1= cJ> cannot be concluded, but if cJ> belongs to a certain class of formulas (the
positive ones) it can. So if cJ> is positive we can use the following theorem: 'If
ct 1= T, T ~ cp, cJ> is positive, and ~ is a homomorphic image of ci'., then ~ 1= cp' .
This saves us the trouble of finding another theory U, verifying that ~ 1= U and
proving U ~ cp for many formulas cJ> that have been proved from T already.
Another way of formulating the same idea is to introduce a module H(T). We
postulate that one may derive 'H (T) ~ cp' from 'T ~ cp' and 'cp is positive', and
H (T) ~ cJ> implies that cJ> holds in all homomorphic images of algebras satisfy­
ing T.

Thus we propose a generalisation of the notion of a formal proof. Instead of
theories we use the more general notion of modules. Like a theory a module
characterises a class e of algebras, but besides the class of all algebras satisfy­
ing a given set of formulas, e can for instance also be the class of
homomorphic images or subalgebras of a class of algebras specified earlier.
Now a proof in the framework of module algebra is a sequence or tree of
assertions M ~ cp such that in each step either the formula cJ> is manipulated, as
in classical proofs, or the module M is manipulated. Of course we will estab­
lish a soundness theorem as before, and then an assertion ct 1= cJ> can be proved
by means of a module M with ct 1= Mand a formal proof of cJ> out of M . We
will now turn to the formal definitions.

1. Module logic 57

1.4. Signatures. Let NAMES be a given set of names.
A sort declaration is an expression §:S with S E NAMES.

A/unction declaration is an expression F:f:S 1 X · · · x sn-S withf,S 1, ... ,Sn ,
S E NAMES.

A predicate declaration is an expression R :pc;;S 1 X · · · X Sn withp,S 1, .. . ,Sn E
NAMES.

A signature a is a set of sort, function and predicate declarations, satisfying:

('f:j :S I X · · · x sn-S)Ea => (§ :S;) Ea (i = 1, ... ,n) /\ (§:S) Ea

(IR:pCS1 X · ·· X Sn) Ea => (§ :S;)Ea(i = l , ... ,n)

A function declaration F:f:-S of arity O is sometimes called a constant
declaration and written as 'f:jES.

1.5. a-Algebras. Let a be a signature. A a-algebra ti; is a function on o that
maps

(§:S)Ea to a sets«,

('f:j:S1 X · · · X Sn-S)Ea to a functionfs ,x ... xs.-s :Sf X · · · XS*-s&,

(IR :pCS1 X · · · X Sn)Ea to a predicateplx . .. xs. csr X · ·· XS*.

Let @ and (if> be a-algebras. (if> is a subalgebra of @ if S % c;;s« for all (§ :S) Ea,
if moreover fs, x . .. xs.-s restricted to s r X · · · XS~-s% is just
AX ... XS -+S for all 'f :f :SI X ... X sn-s in a, and if p f X ... XS restricted
to

1

s r X . : . XS~ is just Pl x ... xs. for all lR:p CS1 X · · ·
1

XSn in ·a.

A homomorphism h :~(if> consists of mappings hs :s«-sr,f, for all § :S in a,
such that

hs<fs, x • • • xs.-s(x 1, ... ,xn)) = /!, x • • • x s. - s(hs, (x 1) , ... ,hs. (xn))

for all (F:f :S1 X . . . x sn-S) Ea and all X;E Sf (i = 1, ... ,n)

P~,x • •· xs.(X t ,· ··, xn) <=> Plx •· • x s. (hs,(xi) , ... ,hs.(Xn))

forall(IR :p c;; S 1X ·· · XSn)Eaandallx;ESf(i = l , .. . ,n)

(if> is a homomorphic image of @ if there exists a surjective homomorphism
h :~(if>.

Let @ be a a-algebra. The restriction p□ @ of @ to the signature p is the p n a­
algebra (if> , defined by

s r,f, = s/i, for all (§ :S)Epna

A ,x·· · XS,-+S =.fs,x- -- xs.-s forall(F:f:S1 X . .. x sn-S)Epna

P1,x---x s. = p! ,x ---xs. forall(R:pCS1 X ··· XSn) Epno

58 II. Modular specifications in process algebra - with curious queues

1.6. Logics. A logic e is a complex of prescriptions, defining for any signature
(J

a set~ of formulas over a such that~ n~ =~np,
a binary relation F~ on a-algebras X ~ such that for all p-algebras ct and
cpE~np: a Oct F~np cp <=> ct Fh cp

- and a set I~ of inference rules -;j; with H C.~ and cpE~.

If ct F~ cp we say that the a-algebra ct satisfies the formula cp, or that cp holds in
ct. A theory over a is a set of formulas over a. If T is a theory over a and
ct F~ cp for all cpE T we say that ct satisfies T, notation ct F~ T. We also say that
ct is a model of T.

A logic e is sound if H El~ implies ct F~ H ~ ct F~ cp for any a-algebra ct.
cp

A formula cpE~ is preserved under subalgebras if ct F~ cp implies 'ffi F~ cp, for any
subalgebra 'ffi of ct.
A formula <f,E~ is preserved under homomorphisms if ct F~ cp implies 'ffi F~ cp, for
any homomorphic image 'ffi of ct.

Without doubt, the definition of a 'logic' as presented above is too general for
most applications. However, it is suited for our purposes and anyone can sub­
stitute his/her favourite (and more restricted) definition whenever he/she likes.

In the process algebra verifications of this chapter we will use infinitary con­
ditional equational logic. The definition of this logic can be found in the
appendix. For comparison, the definitions of equational logic and first order
logic with equality are included too.

1. 7. Classical logic.
DERIVABILITY. A a-proof of a formula cpE~ from a theory Tc_~ using the
logic e, is a well-founded, upwardly branching tree of which the nodes are
labelled by a-formulas, such that

the root is labelled by cp
and if if; is the label of a node q and H is the set of labels of the nodes
directly above q then

either 1/;ET and H= 0,
H e

or ~Ela.

If a a-proof of cp from T using e exists, we say that cp is a-provable from T by
means of e, notation T 1-~ cp.

TRUTH. Let e be a class of a-algebras and cpE~. Then cp is said to be true in
(?, notation e F~ cp, if cf, holds in all a-algebras ctE8. Let Alg(a, T) be the class
of all a-algebras satisfying T.

SOUNDNESS THEOREM. If e is sound then T .. ~ cp implies Alg(a, T) F~ cp.
PROOF. Straightforward with induction. □

1. Module logic 59

If no confusion is likely to result, the sub- and superscripts of 1= and f- may be
dropped without further warning.

1.8. Module logic. The set ~ of modules is defined inductively as follows:
If CJ is a signature and Ta theory over CJ, then (CJ, T)E ~
If Mand NE~ then M +NE ~
If CJ is a signature and ME ~ then CJ □M E~
If ME ~ then H(M)E ~
If ME ~ then S(M)E ~

Here + is the composition operator, allowing to organise specifications in a
modular way, and □ is the export operator, restricting the visible signature of
a module, thereby hiding auxiliary items. These operators occur in some form
or other frequently in the literature on software engineering. Our notation is
taken from BERGSTRA, HEERING & KLINT [17) in which also additional refer­
ences can be found. The homomorphism operator H and the subalgebra opera­
tor S are, as far as we know, new in the context of algebraic specifications. Of
course they are well known in model theory, see for instance MONK [98).

The visible signature L(M) of a module M is defined inductively by:
L(CJ,T) = CJ,
L(M + N) = L(M) U L(N),
L(CJ□M) = CJnL(M),
L(H (M)) = L(M),
L(S(M)) = L(M).

TRUTH. The class Alg(M) of models of a module M is defined inductively by:
&, is a model of (CJ, T) if it is a CJ-algebra, satisfying T;
&, is a model of M + N if it is a L(M + N)-algebra, such that L(M)D ct is a
model of Mand L(N)D &, is a model of N ;
&, is a model of CJ □M if it is the restriction of a model l!.B of M to the sig­
nature CJ;
&, is a model of H (M) if it is a homomorphic image of a model l!.B of M ;
&, is a model of S (M) if it is a subalgebra of a model l!.B of M .

Note that Alg(M) is a generalisation of Alg(CJ, T) as defined earlier. All the ele­
ments of Alg(M) are L(M)-algebras. A L(M)-algebra &-EAlg(M) is said to
satisfy M. A formula </>EJ1(Ml is satisfied by a module M, ~otation M l=e </>, if
Alg(M) l= ~(M) </>, thus if</> holds in all L(M)-algebras satisfying M.

DERIVABILITY. A proof of a formula </>EJ1(M) from a module Musing the logic
e, is a well-founded, upwardly branching tree of which the nodes are labelled
by assertions N f- iii, such that

the root is labelled by M f- </>
if N f- iii is the label of a node q and H is the set of labels of the nodes

directly above q then _!!__ is one of the inference rules of Table l .
N f- iii

60 II. Modular specifications in process algebra - with curious queues

(o,T)f-cp if cf,E T

M f- 'PL (JEJ)
whenever

'Pj (jEJ)
Eii(M)

M f- cp cf,

Mf-~ N f- cf,

M+Nf-cp M +N f- cf,

M f- cf,
if cpEf!

o□M f- cf,

M f- cf,
if cf, is positive

H(M)f-cp

M f- cf,
if q> is universal

S(M) f- cf,

TABLE 1

Here positive and universal are syntactic criteria, to be defined for each logic e
separately, ensuring that a formula is preserved under homomorphisms and

subalgebras respectively. We write N f- l/; for -
0
- , and omit braces in the

N f- l/;
conditions of inference rules. If a proof of cf, from M using e exists, we say
that cf, is provable from M by means of e, notation M f-e cf,.

LEMMA. If M f- e cf, then cpEJ1(M)·
PROOF. With induction. The only nontrivial cases are the rules for +
These follow from f! cf!up and f! nE! cf!np respectively.

SOUNDNESS THEOREM. If e is sound then M f-e cf, implies M Fe q>.

and □.

□

PROOF. With induction. Again the only nontrivial cases are the rules for +
and □ . These follow since for all p-algebras te and q>Ef!np : 0Dtt1ccp =>
tP, F cf, and oDtP, F cf, <= (f, 1c cf, respectively. D

2. PROCESS ALGEBRA

This thesis does not contain an introductory chapter on process algebra. We
only give a listing of some important process modules. For an introduction to
the ACP formalism we refer the reader to [19, 20, 22].

2. Process algebra 61

2.1. ACPT. In this chapter a central role will be played by the module ACPT ,
the Algebra of Communicating Processes with abstraction. A first parameter of
ACPT is a finite set A of actions. For each action a EA there is a constant a in
the language, representing the process, starting with an a-action and terminat­
ing (successfully) after some time.

The first two composition operations we consider are ·, denoting sequential
composition, and + for alternative composition. If x and y are two processes,
then xy is the process that starts execution of y after successful completion of
x, and x +y is the process that either behaves like x or like y . We do not
specify whether the choice between x and y is made by the process itsself, or
by the environment.

We have a special constant 8, denoting deadlock, inaction, a process that
cannot do anything at all. In particular 8 does not terminate succesfully. We
write A 6 =AU {8}.

Next we have a parallel composition operator II . x l[y denotes the process
corresponding to the parallel execution of x and y. Execution of x lly either
starts with a step from x, or with a step from y, or with a synchronisation of an
action from x and an action from y. Synchronisation of actions is described
by the second parameter of ACPT, which is is a binary communication func­
tion y:A 6 X A 6-A 6 that is commutative, associative and has 8 as zero ele­
ment:

y(a,b) = y(b,a) y(a, y(b,c)) = y(y(a,b),c) y(a, 8) = 8

If y(a,b) = c:fo8 this means that actions a and b can synchronise. The synchro­
nous performance of a and b is then regarded as a performance of the com­
munication action c. Formally we should add the parameters to the name of a
module: ACPT(A , y). However, in order to keep notation simple, we will always
omit the parameters if this can be done without causing confusion. In order to
axiomatise the II-operator we use two auxiliary operators lL (left-merge) and I
(communication merge). x ll_y is x l[y, but with the restriction that the first step
comes from x, and x ly is x l[y but with a synchronisation action as the first
step.

Next we have for each HCA an encapsulation operator aH. The operator
aH blocks actions from H . The operator is used to encapsulate a process, i.e. to
block synchronisation with the environment.

When describing concurrent systems and reasoning about their behaviour, it
is often useful to have a distinguished action that cannot synchronise with any
other action. Such an action is denoted by the constant T!iA 6. The fact that 7'

cannot synchronise makes that in some sense this action is not observable.
Therefore it is often called the silent action. For each / CA the language con­
tains an abstraction or hiding operator T1. This operator hides actions in / by
renaming them into 7', thus expressing that certain actions in a system
behaviour cannot be observed.

In Table 2 we summarize the signature of module ACPT.

62 II. Modular specifications in process algebra - with curious queues

§ (sort): p the set of processes
F (functions): +: P X P➔P alternative composition (sum)

PXP➔P sequential composition (product)
II: P X P➔P parallel composition (merge)
IL: PXP➔P left-merge
I: PXP➔P communication-merge
aH: P➔P encapsulation, for any H c;A
T/: P➔P abstraction, for any / c;A
a EP for any atomic action a EA
8 EP inaction, deadlock
T EP silent action

TABLE 2

Table 3 contains the theory of the module ACPT. In this chapter we present
ACPT as a monolithic module. In [22] however, it is shown that ACPT can be
viewed as the sum of a large number of sub-modules which are interesting in
their own right. The module consisting of axioms Al-5 only is called BPA
(from Basic Process Algebra). If we add axioms A6-7 we obtain BPA.5 , and
BPA.5 plus axioms Tl-3 gives BP~6. The module ACP consists of the axioms
Al-7, CF, CMl-9 and D1-4, i.e. the left column of Table 3. All axioms in
Table 3 are in fact axiom schemes in a, b, H and / . Here a and b range over
A 6 (unless further restrictions are made in the table) and H,/ c;A . In a product
x y we will often omit the ·. We take · to be more binding than other opera­
tions and + to be less binding than other operations. In case we are dealing
with an associative operator, we also leave out parentheses.

2.1.1. Note. Let n>O. Let D = {d1, •• • ,dn} be a finite set. Let td, ,···, td. be
process expressions. We use the notation ~ td for the sum td, + · · · + td •.

d e D
~ td = 8 by definition.

d e0

2.1.2. Summand inclusion. In process verifications the summand inclusion
predicate C turns out to be a useful notation. It is defined by: x Cy ¢9

x +y =y. From the ACPT-axioms Al, A2 and A3 respectively it follows that
C is antisymmetrical, transitive and reflexive, and hence a partial order.

2.1.3. PROPOSITION. ACPT 1- -rxl[y = -r(xl[y).
PROOF. -rxl[y d -rx[ly = -r(xl[y) = -rx[ly = -r-rx[Ly = -r(-rxl[y) d -rxl[y.
Now use the fact that C is a partial order. □

2. Process algebra 63

x+y=y+x Al X'T = X Tl
x+(y+z) = (x+y)+z A2 'TX+ X = 'TX T2
x+x = x A3 a(rx +y) = a(rx +y)+ax T3
(x +y)z = xz +yz A4
(xy)z = x(yz) A5
x+8 = X A6
8x = 8 A7

alb= y(a,b) CF

xl[y = xlly +yllx + x ly CMI
allx = ax CM2 rllx = rx TMI
(ax)lly = a(xl[y) CM3 (rx)lly = r(xlly) TM2
(x +y)llz = xllz +yllz CM4 rlx = 8 TCI
(ax)lb = (a lb)x CM5 xlr = 8 TC2
al(bx) = (alb)x CM6 (rx)ly = x ly TC3
(ax)l(by) = (alb)(xl[y) CM7 xl(ry) = xly TC4
(x +y)lz = x lz +y lz CMS
X I (y + z) = X ly + X I z CM9

aH(r) = 'T DT
r1(r) = r Tll

aH(a) = a if a flH DI r1(a) = a if a fl] TI2
aH(a) = 8 if a EH D2 r1(a) = r if a El TB
aff(X +y) = aH(x)+aH(y) D3 r1(x + y) = r1(x) + r1(y) TI4
aH(xy) = aH(x)•aH(y) D4 r1(xy) = r1(x)·r1(y) TI5

TABLE 3

2.1.4. Monotony. Most of the operators of ACPT are monotonous with respect
to the summand inclusion ordering. Using essentially the distributivity of the
operators over +, one can show that if x Cy, ACPT proves:

x+zcy+z,
x·zcy·z,
xllz Cyllz,
x lz Cy lz,
aH(x)CaH(y),
r1(x) C r1(y).

Due to branching time, in general z·x i zy, xllz i yllz and zllx i zll...y.
However, we do have monotony of the merge for the case were x is of the
form rx'. If rx' Cy, then ACPT f- rx'llz Cy llz:

2.1.3

rx'llz = r(x'llz) = rx'llz Cyllz Cyllz.

64 II. Modular specifications in process algebra - with curious queues

2.2. Standard Concurrency . Often one adds to ACPT the following module SC
of Standard Concurrency (a EA 8), which is parametrised by A. A proof that
these axioms hold for all closed recursion-free terms can be found in [20).

SC (xlly)llz = xlL(yllz) SCI
(x lay)llz = x l(aylL_z) SC2
xly=ylx SC3
xl[y = yllx SC4
xl(ylz)=(xly)lz SC5
xll(yllz) = (xl[y)llz SC6

TABLE 4

2. 3. Renamings. Let A T.5 = A .s U { -r} . For every function f: A T.s-A T.5 with the
property that f(/3)=13 and /(-r)=-r, we introduce an operator p1 :P-P.
Axioms for Pf are given in Table 5 (Here a EAT.s and id is the identity).
Module RN is parametrised by A.

RN pJa) = f (a) RN!

pJx +y) = pJx)+pJ<Y) RN2

pJxy) = pJx) ·pJ<Y) RN3

P;d(x) = x RN4

Pf'Pg(x) = Pjog(x) RN5

TABLE 5

Fort EAT6 and H c_A we define mappings r,,H : AT.s-AT.s as follows :

{

t if a EH
rr,H(a) = a otherwise

In the following we will implicitly identify the operators aH and Pru , and also
the operators -r1 and P,,., : encapsulation is just renaming of actions into 13, and
abstraction is renaming of actions into the silent step -r.

2.4. Chaining operators. A basic situation we will encounter is one in which
processes input and output values in a domain D. Often we want to 'chain'
two processes in such a way that the output of the first one becomes the input
of the second. In order to describe this, we define chaining operators >>> and
». In the process x >>>y the output of process x serves as input of process y.
Operator » is identical to operator >>>, but hides in addition the communi­
cations that take place at the internal communication port. The reason for
introducing two operators is a technical one: the operator » (in which we are

2. Process algebra 65

interested most) often leads to the possibility of an infinite sequence of internal
actions corresponding to hidden synchronisations between the two arguments
of the operator (a form of unguarded recursion, cf. Sections 2.8.l and 2.12.1).
In order to deal with such behaviours, it is useful to view » as the composi­
tion of two operators: the >>> operator and an abstraction operator that hides
the communications of >>>. We will define the chaining operators in terms of
the operators of ACPT + RN. In this way we obtain a simple, finite axiomati­
sation of the operators. The operator » occurs (in a different notation)
already in HOARE [75] and MILNER [92].

Let for d ED, J,d be the action of reading d, and jd be the action of sending
d. Furthermore let ch (D) be the following set:

ch(D) = {jd,J,d,s(d),r(d),c(d)ldED}.

Here r(d), s(d) and c(d) (dED) are auxiliary actions which play a role in the
definition of the chaining operators. The module for the chaining operators is
parametrised by an action alphabet A satisfying ch (D) c;A. The module should
occur in a context with a module ACPiA, y) where

range(y)n {J,d, jd,s(d),r(d) Id ED} = 0

and communication on ch (D) is defined by

y(s(d),r(d)) = c(d)

(all other communications give 8). The renaming functions js and J,r are
defined by

js(jd) = s(d) and J,r(J,d) = r(d) (d ED)

and js(a)=J,r(a)=a for every other aEAT6• Now the 'concrete' chaining of
processes x and y, notation x>>>y, is defined by means of the axiom
(H = {s(d),r(d)ldED}):

I x>>>y = aH(Pts(x)llpJ,r(y)) CHI I
The 'abstract' chaining of processes x and y, notation x»y, is defined by
means of the axiom(/ = {c(d)ldED}):

I x»y = -r1(x>>>y) CH2 I
The module CH+ consists of axioms CHI and CH2, and is parametrised by
A. The '+' in CH+ refers to the auxiliary actions in the module, which will
be removed in Section 3.

66 II. Modular specifications in process algebra - with curious queues

2.4.1. EXAMPLE. Let D = {O, 1 }. Process AND reads two bits and then outputs
1 if both are I, and O otherwise:

AND = JO·UO·jO + Jl·jO) + Jl·UO·jO + Jl ·jl)

Process OR reads two bits, outputs O if both are 0, and I otherwise:

OR = JO·UO·jO + Jl·jl) + Jl·UO·jl + Jl ·jl)

Process NEG reads a bit band outputs 1-b:

NEG = JO·jl + Jl ·jO

These processes can be composed using chaining operators. It is not too hard
to prove:

(NEG·NEG»AND)»NEG = OR

Note however that we do not have

(NEG·NEG>>>AND)>>>NEG = OR

since in the LHS process internal computation steps are still visible.

2.5. Recursion. A recursive specification Eis a set of equations {x =Ix Ix EVE }
with VE a set of variables and Ix a process expression for x EVE . Only the
variables of VE may appear in Ix. A solution of E is an interpretation of the
variables of VE as processes (in a certain domain), such that the equations of
E are satisfied. Recursive specifications are used to define (or specify) infinite
processes.

For each recursive specification E and x EVE, the module REC introduces a
constant <x IE>, denoting the x-component of a solution of E.

In most applications the variables XE VE in a recursive specification E will
be chosen fresh, so that there is no need to repeat E in each occurrence of
<XIE>. Therefore the convention will be adopted that once a recursive
specification has been declared, <XI E > can be abbreviated by X. If this is
done, X is called a formal variable. Formal variables are denoted by capital
letters. So after the declaration X = aX, a statement X =aaX should be inter­
preted as an abbreviation of <XIX = aX> = aa<XIX=aX>.

Let E = { x = Ix Ix EVE} be a recursive specification, and t a process expres­
sion. Then < I I E > denotes the term t in which each free occurrence of
XE VE is replaced by <x IE >. In a recursive language we have for each E as
above and x EVE an axiom

l < xlE >=<lx lE> RECI

If the above convention is used, these formulas seem to be just the equations
of E. The module REC is parametrised by the signature in which the recursive
equations are written. In the presence of module REC each system of recur­
sion equations over this signature has a solution.

2. Process algebra 67

2.6. Projection. The operator ,,,.n : P➔P (n EN) stops processes after they have
performed n atomic actions, with the understanding that -r-steps are tran­
sparent. The axioms for 'TT'n are given in Table 6. Module PR is parametrised
by A.

PR 'TT'n(-r) = 'T PRl

'TT'o(ax) = l> PR2

'TT'n +1(ax) = a "'TT'n(x) PR3

'TT'n(-rx) = 'T"'TT'n(x) PR4

'ITn(X +y) = 'ITn(x)+,,,.n(y) PR5

TABLE 6

In this chapter, as in other papers on process algebra, we have an infinite col­
lection of unary projection operators. Another option, which we do not pur­
sue here, but which might be more fruitful if one is interested in finitary pro­
cess algebra proofs, is to introduce a single binary projection operator
F : ,,,.:N X P➔P.

2. 7. Boundedness. The predicate Bn ~p (n EN) states that the nondeterminism
displayed by a process before its n th atomic steps is bounded. If for all n EN:
Bn(x), we say x is bounded. Axioms for Bn are in Table 7 (a EA 8). Module B
is parametrised by A .

B Bo(x)

Bn('T)

Bn(x)

Bn(-rx)

Bn(x)

Bn +1(ax)

Bn(x) , Bn(y)

Bn(X +y)

TABLE 7

Boundedness predicates were introduced in [52].

Bl

B2

B3

B4

B5

2.8. Approximation Induction Principle. AIP- is a proof rule which is vital if
we want to prove things about infinite processes. The rule expresses the idea
that if two processes are equal to any depth, and one of them is bounded then
they are equal.

68 II. Modular specifications in process algebra - with curious queues

(AIP-)
Vn EN '11n(x) = '11n(y), Bn(x)

X = y

The'-' in AIP- , distinguishes the rule from a variant without predicates Bn .

2.8.1. DEFINITION. Let t be an open ACPT-term without abstraction opera­
tors. An occurrence of a variable X in t is guarded if t has a subterm of the
form a ·M , with a EA 6, and this X occurs in M. Otherwise, the occurrence is
unguarded.

Let E = { x = t x Ix E VE} be a recursive specification in which all t x are
ACPT-terms without abstraction operators. For X, YE VE we define:

X ➔ Y ¢c) Y occurs unguarded in tx.

We call E guarded if relation ➔ is well-founded (i.e. there is no infinite
u u u

sequence X ➔Y ➔Z ➔ · · ·).

2.8.2. THEOREM (Recursive Specification Principle (RSP)).
ACPT + REC + PR + B + AIP- ~

I (RSP) E arded E I xlE> gu

In plain English the RSP rule says that every guarded recursive specification
has at most one solution.

2.8.3. EXAMPLE. Let E = {X=(a +b)-X} and F = { Y=a·(a +b)· Y +b· Y}
be two recursive specifications. Since

<XIE>= (a +b)·<XIE> = a ·<XIE>+b·<XIE>

= a·(a +b)-<XIE>+b·<XIE>,

the constant <XIE> satisfies the equation of F. Because the specification F
is guarded, RSP now gives that <XIE> = <YI F > .

2.9. Koomen 's Fair Abstraction Rule (KFAR). In the verification of communi­
cation protocols one often uses the following rule, called Koomen's Fair
Abstraction Rule (I c;A). Module KFAR is parametrised by A .

(KFAR)
x =ix +y (iEl)

1°I(x)=n)(y)

Fair abstraction here means that -r1(x) will eventually exit the hidden i-cycle.
Below we will formulate a generalisation of KFAR, the Cluster Fair Abstrac­
tion Rule (CFAR), which can be derived from KFAR.

2. Process algebra 69

2.9.1. DEFINITION. Let E = {X=tx I XEVE} be a recursive specification,
and let / c;A. A subset C of VE is called a cluster (of I) in E ilf for all XE C:

m n

tx = ~ ik-xk + ~ Yi
k=l / = I

(For m~O, i1,---,imE/U{r}, X1,---,XmEC, n~O and Y1,- --,YnEVE-C). Vari­
ables XE C are called cluster variables. For XE C and YE VE we say that

X ,_,.. Y ~ Y occurs in t x-

We define

e(C) = {YE VE-C13XEC:X-v+Y}

Variables in e (C) are called exits. ,_,..• is the transitive and reflexive closure of
""'· Cluster C is conservative ilf every exit can be reached from every cluster
variable via a path in the cluster:

'v'X EC'v'Y Ee(C): x,_,..• Y.

2.9.2. EXAMPLE. The transition diagram of Figure 1 represents a cluster in a
recursive specification. The nodes represent variables in the recursive
specification, labelled edges represent summands, and the triangles denote
exits. The sets {1,2,3}, {4,5,6,7}, {8} and {1,2,3,4,5,6,7,8} are examples of
conservative clusters. Cluster {1,2,3,4,5,6,7} is not conservative since exit Z
cannot be reached from cluster variables 4, 5, 6 and 7.

X

1

FIGURE 1

70 II. Modular specifications in process algebra - with curious queues

2.9.3. DEFINITION. The Cluster Fair Abstraction Rufe (CFAR) reads as follows:

(CFAR) Let Ebe a guarded recursive specification; let I c;;;;A with
IJl;;;;,,2; let C be a finite conservative cluster of I in E; and
let X,X'EC with X,v+X'. Then: 1"I(X) = -r· ~ -r1(Y)

Yee(C)

2.9.4. THEOREM. ACPT + RN+ REC+ RSP + KFAR ~ CFAR.
PROOF. See (l 17). □

2.10. Alphabets. Intuitively the alphabet of a process is the set of atomic
actions which it can perform. This idea is formalised in [8], where an operator
a:P-+2A is introduced, with axioms such as:

a(8) = 0

a(ax) = {a}Ua(x)

a(x +y) = a(x)Ua(y)

In this approach the question arises what axioms should be adopted for the
set-operators U, n, etc. One option, which is implicitly adopted in previous
papers on process algebra, is to take the equalities which are true in set theory.
This collection is unstructured and too large for our purposes. Therefore we
propose a different, more algebraic solution. We view the alphabet of a process
as a process; the alphabet operator a goes from sort P to sort P. Process a(x)
is the alternative composition of the actions which can be performed by x. In
this way we represent a set of actions by a process. A set B of actions is
represented by the process expression B= def~ b. So the empty set is

b EB

represented by 8, a singleton-set {a} by the expression a, and a set { a,b} by
expression a +b. Set union corresponds to alternative composition. The pro­
cess algebra axioms Al-3 and A6 correspond to similar axioms for the set
union operator. The notation c;: for summand inclusion between processes
(Section 2.1.2), fits with the notation for the subset predicate on sets.

The following axioms in Table 8 define the alphabet of finite processes
(a EA). Module AB is parametrised by A.

AB a(8) = 8 ABI
a(ax) = a +a(x) AB2
a(x+y) = a(x)+a(y) AB3
a(-r) = 8 AB4
a(-rx) = a(x) ABS

TABLE 8

In order to compute the alphabet of infinite processes, we introduce an

2. Process algebra

additional module AA which is parametrised by A.

AA a(x)c;A

a(x lly)=a(x)+a(y)+a(x) I a(y)

a 0 p/x) C Pf'O H 0 a(x)
(where H={aEA lf(a)='T})

\fn EN a('11'n(x))Cy

a(x)c;y

TABLE 9

AAI

AA2

AA3

AA4

71

It is not hard to see that the axioms of AA hold for all closed recursion-free
terms.

2.10.1. EXAMPLE. (from [8]). Letp=<Xl{X=aX}>, and define q='T(a)(p),
r=q·b (with b=foa). What is the alphabet of r? We derive:

a(r) = a(qb) = a('T(a)(p)·b) = a('T(a)(p)·'T(a)(b)) =
AA 3 RN5

= a('T(a)(pb)) C 'T(a) 0 o(aJ 0 a(pb) = o{a) 0 a(pb).

Since
AB2

a(pb) = a(apb) = a + a(pb),

we have that a c; a(pb). On the other hand we derive for n EN:

a('11'n(pb)) = a(a" ·l>) Ca

and therefore, by application of axiom AA4, a(pb) c; a.
Consequently a(pb) = a and

a(r) = O(a) 0 a(pb) = O(a)(a) = l>.

Information about alphabets must be available if we want to apply the follow­
ing rules. These rules, which are a generalisation of the condjtional axioms of
[8], occur in a slightly different form also in [118]. Rules like these are an
important tool in system verifications based on process algebra. Module RR is
parametrised by A and y. Observe that axioms AAl and RRl together imply
axiom RN4 of Table 5. Axiom RR2, which describes the interaction between
renaming and parallel composition, looks complicated, but that is only because
it is so general. The axioms RR are derivable for closed recursion-free terms.

72 II. Modular specifications in process algebra - with curious queues

a(x)CB 'r/bEB :f (b)=b
pf._x)=x

RRI

a(x)CB a(y)CC 2
pf._x I~)= ~f._x /lpj(Y)) 'r/c EC.f (c)= f (c)/\('r/b EB.f0 y(b,c)= Joy(b,f (c))) RR2

TABLE 10

2.10.2. LEMMA: (Conditional Axioms (CA)): Let CA be the theory consisting of
the conditional axioms in Table 11. Then: ACPT + RN + AB + RR 1- CA.

a(x) I (a{.!:'.) n H) CH
CAI a(x)l(a(r)n/)= 0

CA2
aH(x llY)=aH(xllaH(y)) 1'!(x l[y)=T1(xll1)(y))

a(x)nH = 0
CA3

a(x)n/ = 0
CA4

aH(x)=x -r1(x)=x

H=Hi UH2
CA5

/=/1 U/i
CA6

aH(x)=aH, oaH,(X) -r/x)=-r1, o-r1,(x)

Hn/=0
CA7

T1°aH(X) = aH 0 'T1(X)

TABLE 11

PROOF: We prove three of the rules. The others can be dealt with similarly.
CA3: Choose aEa(x). Then afl.H. This means that rs,H(a) =a.Because a

was chosen arbitrarily, we can aply rule RRI, which gives
P,,./x) = aH(x) = X.

CA5: Follows immediately from the observation

rs,H = rs,H, 0 rs,H,

and application of axiom RN5 of Table 5.
CAI: Choose cEa(y). We have:

rs,H(c) = rs,Hors,H(c)

Choose bEa(x). If cfl.H then rs,H(c) = c and the condition of rule
RR2 is fulfilled. If cEH then either y(b,c) equals l> (so that we have
rs,H 0 y(b,c) = l>), or y(b,c)EH, so that again r 8,H0 y(b,c) = l>. But in
case c EH we also have

rs,H 0 y(b,rs,H(c)) = rs,H0 y(b,l>) = l>

This means that we can apply rule RR2. □

2. Process algebra 73

2.10.3. REMARK. In most of the situations where we want to apply axiom
CA l, H does not contain results of communications: (A I A) n H = 0. Further
actions from a(x) will not communicate with actions from H. In these cases
the following weakened version of axiom CA l is already strong enough:

a(x)IH = 0 CAI•
aH(xl[y) = aH(xllaH(y))

2.11. ACPr The combination of all modules presented thus far, except for
KFAR, will be called ACP' (the system ACP' as presented here slightly
differs from a system with the same name occurring in [22]). The module is
defined by:

ACP~ = ACPT+SC+RN+CH+ +REC+PR+B+AIP- +AB+AA+RR

Bisimulation semantics, as described in for instance [9], gives a model for the
module ACP' + KFAR. Work of BERGSTRA, KLoP & 0LDEROG [23] showed
that in a large number of interesting models KF AR is not valid. Therefore we
have chosen not to include KF AR in the 'standard' module ACP'.

2.12. Generalised Recursive Specification Principle. For many applications the
RSP is too restrictive. Therefore we will present below a more general version
of this rule, called RSP+.

2.12.1. DEFINITION. Let qJl be the set of closed expressions in the signature of
ACPr A process expression p Eqp is called guardedly specifiable if there exists
a guarded recursive specification F with YE VF such that

ACP' ~ p=<YIF>.

We have the following theorem:

2.12.2. THEOREM (Generalised Recursive Specification Principle (RSP+)).
ACP' ~

(RSP+) E ----- <x IE> guardedly specifiable
x - <xlE>

2.12.3. Remarks. In the definition of the notion 'guardedly specifiable', it is
essential that the identity p =<YI F> is provable. If we would only require
that p = < YI F >, then the corresponding version of RSP+ would not be
provable from ACP~, since this rule would then not be valid in the action rela­
tion model of [52]. In this model we have the identity <XI { X = X} > = 8. 1

I. Strictly speaking, this is not correct. In [52), a recursion construct <XI£> is viewed as a
kind of variable which ranges over the X-components of the solutions of £ . Since any process X
satisfies X = X, the identity < Xl(X = X}> = 8 does not hold under this interpretation. However,

74 II. Modular specifications in process algebra - with curious queues

Hence <Xl{X=X}>=<Yl{Y=8}>=8. Since the specification {Y=8} is
guarded, this would mean that expression <XI { X = X} > is guardedly
specifiable. But then RSP+ gives that for arbitrary x: x=<Xl{X=X}>=8.
This is clearly false.

We conjecture that an expression p is guardedly specifiable iff it is provably
bounded, i.e. for all nEN: ACP~ 1- Bn(x).

3. APPLICATIONS OF THE MODULE APPROACH IN PROCESS ALGEBRA

3.1. The auxiliary status of the left-merge.

3.1.1. Semantics. Sometimes it happens that our 'customers' complain that
they do not succeed in proving the identity of two processes in ACP~, whose
behaviour is considered 'intuitively the same'. Often, this is because there are
many intuitions possible, and ACP~ happens not to represent the particular
intuitions of these customers. Therefore we have defined some auxiliary
modules that should bridge the gaps between intuitions.

In general a user of process algebra wants that his system proves p = q (here
p and q are closed process expressions in the signature of ACPh whenever p
and q have the same interesting properties. So it depends on what properties
are interesting for a particular user, whether his system should be designed to
prove the equality of p and q or not. For this reason the semantical branch of
process algebra research generated a variety of process algebras in which
different identification strategies were pursued. In bisimulation semantics we
find algebras that distinguish between any two processes that differ in the pre­
cise timing of internal choices; in trace semantics only processes are dis­
tinguished which can perform different sequences of actions; and, somewhere
in between, the algebras of failure semantics identify processes if they have the
same traces (can perform the same sequences of actions) and have the same
deadlock behaviour in any context. A lot of these process algebras can be
organised as homomorphic images of each other, as indicated in Figure 2. For
concrete process algebra (without T-moves) these process algebras have been
defined in Chapter I. If two process expressions p and q represent the same
process in bisimulation semantics with explicit divergence, they have many
properties in common; if they only represent the same process in trace seman­
tics, this only guarantees that they share some of these properties; and, des­
cending from bisimulation semantics with explicit divergence to trace seman­
tics, less and less distinctions are made. Now a user should state exactly in
which properties of processes (s)he is interested. Suppose (s)he is only
interested in traces and deadlock behaviour, then we can tell that for this pur­
pose failure semantics suffices. This means that if processes p and q are proven
equal in failure semantics, this guarantees that they have the same relevant
properties. If they are only identified in trace semantics (somewhere in the lat­
tice below failure semantics) such a conclusion cannot be drawn, but if they
are identified in a semantics finer than failure semantics (such as bisimulation

if one interprets the construct <XIE> as a constant in the model of [52), then the most natural
choice is to relate to <XIE> the bisimulation equivalence class of the term <XIE>. Under

3. Applications of the module approach in process algebra 75

bisimulation semantics with explicit divergence [23]

l~
ready trace semantics [1 OJ bisimulation semantics

/ ~ w;,h Ja;, abst,actfon [9]

readiness semantics [102] failure trace semantics [105]

~/
failure semantics [23, 33, 43, 76]

j
trace semantics [75]

FIGURE 2. The linear time - branching time spectrum

semantics with explicit divergence), then they certainly have the same interest­
ing properties, and probably some uninteresting ones as well. Hence a proof in
bisimulation semantics with explicit divergence is just as good as one in failure
semantics (or even better).

This is the reason that we do our proofs mostly in bisimulation semantics:
the entire module ACP~ is sound with respect to bisimulation semantics with
explicit divergence. However, if two processes are different in bisimulation
semantics, we will never succeed in proving them equal from ACP~. In such a
case we might add some axioms to the system, that represent the extra
identifications made in a less discriminating semantics. If we find a proof from
this enriched module, it can be used by anyone satisfied with the properties of
this coarser semantics. '

It is in the light of the above considerations that one should judge the
appearance of the following module T4:

T4 I T('TX +y) = TX +y I
The law of this module does not hold in bisimulation semantics, but it does
hold in all other semantics of Figure 2. Thus any identity derived from ACP~
+ T4 holds in ready trace semantics and hence also in the courser ones like
failure and trace semantics, or so it seems

this interpretation < XI (X = X}> =I>.

76 II. Modular specifications in process algebra - with curious queues

3.1.2. An inconsistency .

3.1.2.1. DEFINITION. Let M be a process module with ~(M):;f~-:(BPA,.6). We
call M consistent if for all closed expressions x and y in the signature of BPA,.6
with

Mrx=y,

the sets of complete traces agree:

trace (x) = trace (y).

A complete trace is a finite sequence of actions, ending with a symbol y or l>
indicating successful resp. unsuccessful termination. A formal definition of the
set trace(x) is given in [23). Here we only give some examples, which should
make the notion sufficiently clear:

trace(abc +adl>+a(rbc +d)) = {abc y, adl>, ady}

trace(r) = { v} =I= { l> , v} = trace(r+r8)

A model ct of M is consistent if for all closed expressions x and y in the signa­
ture of BPA,.6 with

ct F X =y,

the sets of complete traces agree. The module ACP~ + KFAR is consistent
because bisimulation semantics with fair abstraction, as described in [9), gives
a consistent model for this module. However, KF AR is not valid in any of the
other semantics of Figure 2.

3.1.2.2. PROPOSITION.
ACPr +T4 f- r(ac +ca)+bc = r(r(ac +ca)+bc +c(ra +b)).
PROOF.

r(ra +b)llc = (ra +b)llc = r(allc)+bc = r(ac +ca)+bc

r(ra+b)llc = r((ra + b)llc) = r(r(ac+ca)+bc+c(ra+b)) D

Proposition 3.1.2.2 shows that module ACPr + T4 is not consistent. This sud­
den inconsistency must be the result of a serious misunderstanding. And
indeed, what's wrong is the use of ACPT in the less discriminating models (say
in failure semantics). It happens that, in a setting with r, failure equivalence
(or ready trace equivalence for that matter) is not a congruence for the left­
merge lL, and this causes all the trouble.

3. Applications of the module approach in process algebra 77

3.1.3. Solution. In applications we do not use the operators lL and directly.
In specifications we use the merge operator II, and lL and I are only auxiliary
operators, needed to give a complete axiomatisation of the merge.

Let sacp-r be the signature obtained from ~(ACP-r) by stripping the left­
merge and communication-merge:

sacp-r = ~(ACP-r) - {F: lL : P X P-P, F: I : P x P-P)

Failure equivalence as in [23], etc. are congruences for the operators of sacp-r.
However, the operators lL and I in ACP-r are needed to axiomatise the 11-
operator, and without them even the most elementary equations cannot be
derived. Our solution to this problem is based on the following idea. Suppose
we want to prove an equation p =q in the signature sacp-r that holds in ready
trace semantics (and hence in failure semantics) but not in bisirnulation seman­
tics. Then we first prove an intermediate result from ACP-r : one or more equa­
tions holding in bisimulation semantics (with explicit divergence) and in which
no lL and I appear. This intermediate result is preserved after mapping the
bisirnulation model homomorphically on the ready trace or failure model, and
can be combined consistently with the axiom T4. Thus the proof of p =q can
be completed. In our language of modules we can describe this as follows. The
module

SACP-r = H(sacp-r □ (ACP-r+SC))

does not contain the operators lL and I in its visible signature and since
failure semantics can be obtained as a homomorphic image of bisimulation
semantics, considering that ACP-r + SC is sound w.r.t. bisimulation semantics
and that the operators of sacp-r carry over to failure semantics, we conclude
that this module is sound w.r.t. failure semantics. Hence it can be combined
consistently with T4, and SACP-r is a suitable framework for proving state­
ments in failure semantics.

We would like to stress that the use of the fl-operator is essential here. The
H-operator makes that from module SACP-r only positive formulas are prov­
able. The following example shows what goes wrong if we also allow non­
positive formulas. From the proof of Proposition 3.1.2.2 it follows that:

sac -r □ (ACP-r +SC)~ 'T('ra +b)=rn +b
P c('Ta+b)~'T(ac+ca)+bc

Consequently we can prove an inconsistency if we add law T4:

sacp-r D(ACPT +SC)+ <'T('TX +y) = 'Tx +y> ~ c(-ra +b)~'T(ac +ca)+bc

So although the formulas provable from module sacpT D(ACPT + SC) contain
no left-merge, some of them (which are non-positive) cannot be combined con­
sistently with the laws of ready trace semantics and failure semantics.

78 II. Modular specifications in process algebra - with curious queues

3.2. Associativity of the chaining operator. ACPT is a universal specification for­
malism in the sense that in bisimulation semantics every finitely branching,
effectively presented process can be specified in ACPT by a finite system of
recursion equations (see [9]). Still it often turns out that adding new operators
to the theory facilitates specification and verification of concurrent systems. In
general, adding new operators and laws can have far reaching consequences for
the underlying mathematical theory. Often however, new operators are
definable in terms of others operators and the axioms are derivable from the
other axioms. In that case the new operators can be considered as notations
which are useful, but do not complicate the underlying theory in any way.
Examples of definable operators are the projection operators and the process
creation operator of [16].

Just like the left-merge and the communication-merge are needed in order to
axiomatise the parallel composition operator, new atomic actions are often
needed if we want to define a new operator in terms of more elementary
operators. As an example we mention the actions s(d) and r(d) which we
need in the definition of the chaining operators. These auxiliary atoms will
never be used in process specifications. Unfortunately they have the
unpleasant property that they occur in some important algebraic laws for the
new operators. One of the properties of the chaining operators we use most is
that they are 'associative'. However, due to the auxiliary actions, the chaining
operators are not associative in general. We do not have general associativity
in the model of bisimulation semantics. Counterexample:

(r(d)>>>(s(d)+s(e)))>>>r(e) = c(d)·S

r(d)>>>((s(d)+s(e))>>>r(e)) = c(e)·S

However, we do have associativity under some very weak assumptions. In the
model of bisimulation semantics, the following law is valid (here
H= {s(d),r(d) Id ED}):

aH(x)=x, aH(y)=y, aH(z)=z CC

(x >>> y)>>> Z = X >>>(y >>> Z)

It would be much nicer if we somehow could 'hide' the auxiliary atoms, and,
for the >>>-operator, have associativity in general. In this section we will see
how this can be accomplished by means of the module appro~h.

3.2. I. The associativity of the chaining operators. Although the rule CC holds in
the model of bisimulation semantics, we have not been able to prove it alge­
braically from module ACP~. However, we can prove algebraically a weaker
version of rule CC if we make some additional assumptions about the alpha­
bet. We assume that besides actions ch (D), the alphabet A contains actions:

H = {s(d),r(d)ldED} en H = {:"_(d),~(d)ldED}

One may think about these actions as special fresh atoms which are added to

3. Applications of the module approach in process algebra 79

A only in order to prove the 11ssociati~ty of the chaining operators. 1 Let
lf={r(d),s(d)ldED} and let H=HUHUH. We assume that actions from
H do not A synchronise ~th the other actions in the alphabet, and that
range(y)nH = 0. On H communication is given by (dED}:

y(i(d), r(d)) = y(i(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) =

= y(s(d), r(d)) = y(s(d), r(d)) = y(s(d), r(d)) = c(d) - - - -
We define for v, w E {t,i,s,r,s,r,~,:_} the renaming function vw:

{

w(d) if a = v(d) for some dED
vw(a) = a otherwise

J.2.1.1. LEMMA. SACPT + RN + ctt+ + AB + AA + RR~

a.ti(x)=x, a.ti(y)=y, a.ti(z)=z

aif(Pr,(x)llpJj(y)) = x >>>y = aH(Ptix)IIPir0-'))
- - -

PROOF. We only prove the first equality. The second one follows by symmetry.

aif(Pr,(x)IIPi,(y)) = (Note 1 below, RR!)

= aif0Pss0P,,(Pts<x)llpJi(y)) = (RN5, y = a .ti(y))

= aif0Pss0P,,(Pr,(x)llp,,0Pi,(y)) = (Note 2, RR2)

= aif 0Pss0P,,(Pts(x)IIPvV')) = (SC4, RN5, x = aJi(x))

= aif0P,,0Pss(Pir0-')11Pss0Ptix)) = (as in Note 2, RR2)

= ai1°P,,0Pss(Pi rV')llpt,(x)) = (RN5)

= aH 0 aif(Pi,(y)l lpts(x)) = (Note 3, RRI , SC4)
CHI

= aH(Pts<x)IIPi,(y)) = x>>>y

Note 1. Let B=A-H. We claim a(pt:,(x)IIPi,(y))<;:;;B
(recall that B=de'" b).

J £.,b EB

PROOF : a(pt:,(x)IIPiN)) =
AA2

= aopts(x) + a0pir0-') + a0pr,(x) I aopi,0-') c;:;;

RN5

(Use that X c;:;;y ==> X lz c;:;;y lz. Use further X =a.ti(x) = aH0a.ti(x)=aH(x).)
AA I

c;:;; aopt:,oaH(x)+a0pJ,roaH(y)+A IA c;:;;

I. The Fresh Atom Principle (FAP) says that we can use new (or 'fresh') atomic actions in proofs.
In [12), it is shown that FAP holds in bisimulation semantics. We have not included FAP in the
theoretical framework of this chapter. Therefore, if we need certain 'fresh' atoms in a proof, we
have to assume that they were in the alphabet right from the beginning.

80 II. Modular specifications in process algebra - with curious queues

(Use that range(y) n H = 0 .)
RN5

C a0 aH 0 Ptrtx)+a0 an°P.v-(y)+ BC
AA3,RN4

C aHoa0 pr,(x) + aH oaop.j,r(y) +BC

(Use that x Cy implies pfx)Cpfy).)
AA I

C an(A)+aH(A)+B=B

This finishes the proof of the claim.

Note 2. Application of axiom AAI gives: a0 pt:,(x)CA and a0 pi,(y)CA. In
order to apply axiom RR2, we first have to check that for all c EA:
rr(c)=rr0 rr(c). This is obviously the case. Because range(y)nH= 0, we have
for all b,cEA :rr0 y(b,c)=y(b,c). Now the last thing to be checked is that for
b,cEA: y(b,c)=y(b,rr(c)). This turns out to be the case.

Note 3. Let C=A -H. We claim: a(p.v(y)llpt,(x))~C. The proof is similar to
the proof in Note 1.

This finishes the proof of the lemma.

3.2.1.2. THEOREM. SACPT + RN + CH+ + AB + AA + RR~

a11(x)=x, a11(y)=y, a11(z)=z

x >>>(y >>>z) = (x >>>y)>>>z

□

PROOF. This is essentially Theorem 1.12.2 of [118]. We give a sketch of the
proof.

x>>>(y>>>z) = aH(Pt:,(x)IIPi,0 an(Pts(y)IIPi,(z))) =
- - -

RN5

= a11(Pt:,(x)lla~ 0 P.v-<Pt!.(y)IIPi~(z))) =
RRI

= a11°a~(Ptrtx)l!a~ 0 P.v(Pt!.(y)llpt(z))) =
RR2

= aH 0 an(Pt:,(x)IIPirCPts(y)llp-1_,(z))) = - - -
RR2

= aH 0 a~(Pts(X)IIP.v(P.v0 Pt!_(y)IIPi~(z))) =
RRI

= aH 0 a~(Pt:,(x)IIPi,0 Pt!_(y)llpt(z)) =
RN5

= a~ 0 aif(Ptrtx)IIPt!.0 P.v(y)llpt(z)) =
RRI

= a~ 0 a11(Pt/PtrtX)11Pt!_0 P.v(y))IIPi~(z)) =
RR2

a~ 0 a11(Pt/Pt:,(x)llp.v(y))IIPi/z)) =

3. Applications of the module approach in process algebra

RR2

= aH 0 aH(aH0 PtsCPts(X)llpJ.,(y))IIPJ,,(z)) = - - -
RRI

= aH(aH0 PtsCPr:,(x)IIPJ,,(y))llpJ.r(z)) = - - -
RN5

81

aH(Pts 0 aH(Pts(x)llpv(y))llpv(z)) = (x>>>y)>>>z - - -

3.2.I.3. THEoREM. SACPT + RN + ctt+ + AB + AA + RR 1-

a11(x)=x, a11(y)=y, a11(z)=z

x»(y»z) = (x»y)»z

PROOF. Let J={c(d)ldeD}.
CH2

x»(y»z) = r1(x>>>(r1(y>>>z))) =
CHI

= 'T1°aH(Pts(x)IIPJ.r 0 'T1(y>>>z)) =
RN5

= aH 0 r1(Pts(x)llr1°Pv(y>>>z)) =
RR2

= aH 0 r1(PtsCx)IIPJ.,(y>>>z)) =
RN5

= r1°aH(PtsCx)llpv(y>>>z)) =
CHI

= r1(x>>>(y>>>z)) =
3.2.1.2

□

= r1((x>>>y)>>>z) = · · · = (x»y)»z □

3.2.2. Removing auxiliary atoms. We will now apply the module approach to
remove completely the auxiliary atoms which were used in the definition of the
chaining operators. What we want to obtain is a module where 'inside' the
auxiliary atoms are used to define the chaining operator but where 'outside'
they are no longer visible and moreover chaining is associative in general.
Below we will employ the notation:

<16.M (~(M)-a)□ M.

Consider the module:

CH- =({IF: aEP laeH} U {f': Pf: P-+P lf:AT6-+AT6})

6.(SACPT +RN+ cH+ +AB+ AA+ RR).

This module cannot be used to prove any formula containing atoms in H . But
unfortunately module CH - still does not prove the general associativity of the
chaining operators:

CH- V x>>>(y>>>z)=(x>>>y)>>>z

82 II. Modular specifications in process algebra - with curious queues

The reason is that the auxiliary atoms, although removed from the language,
are still present in the models of module CH- . Thus the countere~ample
(r(d)>>>(s(d)+s(e)))>>>r(e) still works in the models. Let A - =A - H . We
are interested in consistent models which only contain actions of A - . The
module CH- + <a(x) CA - > does not denote such models: all consistent
models of CH- contain the process A with a(A)=A <Z A - . Adding the law
a(x) CA - therefore throws away all consistent models. The right class of
models can be denoted with the help of operator S. We consider the module

CH= S(CH-)+<a(x)CA - >.

Some models of module CH- have consistent submodels which do not contain
auxiliary atoms. In these models the law a(x) CA - holds. Thus module CH
has consistent models.

From Theorems 3.2. l.2 and 3.2. l.3, together with axiom RR l, it follows
that:

CH - I- a(x)CA - , a(y)CA - , a(z)CA- and
(x>>>y)>>>z =x>>>(y>>>z)

CH - 1- a(x)CA - , a(y)CA-, a(z)CA ­
(x»y)»z =x »(y»z)

From this we can easily see that module CH proves the general associativity of
the chaining operators:

CH I- x>>>(y>>>z)=(x>>>y)>>>x and

CH I- x»(y»z)=(x»y)»x.

3.2.3. The following laws can be easily proven from module CH (here
d,eED):

jd·x»(L te/) = T·(x»yd)
eeD

jd·x»je:r = je·(jd·x»y)

(L !d·xd)»(L te/) = L !d·(xd»(L !e/))
deD eeD deD eeD

Ll

L2

L3

(L !d·xd)»ie:Y = L !d·(xd»je:r) + je·((L !d·xd)»y) L4
deD deD deD '

The laws are equally valid when the operator » is replaced by >>>, except for
law Ll where in addition the 'T has to be replaced by c(d).

4. Queues 83

3.3. SACPf Module SACP~ is an 'improved' version of module ACPr It is
defined by:

SACP~ = SACP.,.+RN+CH+REC+PR+B+AIP- +AB+AA+RR

If modules in the above defining equation have an alphabet as parameter, this
is A - , and if they are parametrised by a communication function this is the
restriction y- of y to (A - U { c5}) X (A - u { c5}). The rules RSP, RSP+ and
CFAR can still be used in a setting with module SACPr We have SACP~ r
RSP, SACP~ r RSP+ and SACP~ + KF AR r CF AR.

4. QUEUES
In the specification of concurrent systems FIFO queues with unbounded capa­
city often play an important role. We give some examples:

The semantical description of languages with asynchronous message pass­
ing such as CHILL (see Recommendation Z.200 (CHILL language
definition), CCITI Study Group XI, 1980),
The modelling of communication channels occurring in computer net­
works (see LARSEN & MILNER (85] and VAANDRAGER (117]),
The implementation of languages with many-to-one synchronous com­
munication, such as POOL (see AMERICA [5] and V AANDRAGER [I 18]).

Consequently the questions how queues can be specified, and how one can
prove properties of systems containing queues, are important. For a nice sam­
ple of queue-specifications we refer to the solutions of the first problem of the
STL/SERC workshop [46]. Some other references are BROY [35], HOARE [76]
and PRATI [108].

4.1. Also in the setting of ACP a lot of attention has been paid to the
specification of queues. Below we give an infinite specification of the process
behaviour of a queue. Here D is a finite set of data, D* is the set of finite
sequences a of elements from D, the empty sequence is £ . Sequence a•a' is the
concatenation of sequences a and a'. The sequence, only consisting of d ED is
denoted by d as well.

QUEUE= Q, = ~td ·Qd
d ED

Qa•d = ~ te ·Qe•a•d + jd ·Qa
e ED

Note that this infinite specification uses only the signature of BPA,s (see Sec­
tion 2.1). We have the following fact :

4.1.1. THEOREM: Using read/send communication, the process QUEUE cannot be
specified in A CP by finitely many recursion equations.
PROOF: See BAETEN & BERGSTRA [7] and BERGSTRA & TIURYN [25]. D

84 II. Modular specifications in process algebra - with curious queues

It turns out that if one allows an arbitrary communication function, or extends
the signature with an (almost) arbitrary additional operator, the process
QUEUE can be specified by finitely many recursion equations. For some nice
examples we refer to BERGSTRA & IC.LOP [22).

4.2. Definition of the queue by means of chaining. A problem we had with all
ACP-specifications of the queue is that they are difficult to deal with in process
verifications. For example, let BUFl be a buffer with capacity one:

BUFl = L!d·BUFld
d ED

BUFld = jd·BUFl

In process verifications we need propositions like QUEUE»BUFl = QUEUE
(in Section 5 we present a protocol verification where a similar fact is actually
used). However, the proof of this fact starting from the infinite specification is
rather complicated. Now the following specification of a queue by means of
the (abstract) chaining operator allows for a simple proof of the proposition
and numerous other useful identities involving queues. This specification is
also described by HOARE [76) (p. 158).

Q = L!d ·(Q»BUFid)
d ED

The first thing we have to prove is that the process described above really is a
queue.

4.2.1. TuEOREM: Q = QUEUE.
PROOF: Define for every n EN and o = d 1 , . .. , dm ED• processes n: as fol­
lows:

D: = Q»BUFI · · · n times »BUFid' · · · »BUFid·

So by definition D? = Q. Using the laws of Section 3.2.3, we derive the fol­
lowing recursion equations:

D? = Q = L!d·(Q»BUFid) = L!d·D~

D:.d = Q»BUFI · · · n times » BUFid' · · · »BUFid·»BUFid =
= L!e ·(Q»BUFie » BUFI · · · n times » BUFid' · · · »BUFid·»BUFid) +

+ jd·(Q»BUFI · · · · » BUFid' · · · »BUFid·»BUFI) = n times

note

L!e·(Q»BUFI · · · ntimes »BUFie»BUFid' · · · »BUFid•»BUFid) +
eED

4. Queues

+ jd·(Q»BUF1 · · · n+I times »BUFld' · · · »BUFldM) =
L !e ·D~•a•d + jd ·D~ + 1

e ED

85

Note. In the second last step we moved the data in the sequence of 1-datum­
buffers to the right as far as possible. It is easy to see that this is allowed. Sup­
pose that not all data are moved to the right. By applying the associativity of
the chaining operator we can rewrite the expression in such a way that we get
a subterm of the form BUF1d»BUF1. This subterm can be rewritten into
1 .. (BUFl»BUFld). Next we move the initial -r to the front of the sequence
using the identity -rxl[y=-r(xl[y) of Proposition 2.1.3, and remove it by means
of axiom Tl (x-r=x) of ACPT . Now we have moved one datum one place to
the right in the queue. We can iterate this procedure until the desired result is
obtained.

Define the process Q~ by:

Q? = L!d ·Q~

The specification of process Q? is clearly guarded. Applying RSP gives us on
the one hand that QUEUE=Q?, and on the other hand that Q=D~ =Q~ .
Consequently QUEUE=Q. □

The proof above shows the 'view of a queue' that lies behind the specification
of Q. During execution there is a long chain of I-datum buffers passing mes­
sages from 'the left to the right'. After the input of a new datum on the left, a
new buffer is created, containing the new datum and placed at the leftmost
position in the chain. Because no buffer is ever removed from the system, the
number of empty buffers increases after every output of a datum.

4.2.2. LEMMA: Q»BUFI = Q.
PROOF:

Q»BUF1 = L!d ·((Q»BUF1d)»BUF1) =

= Ltd ·(Q»(BUF 1d»BUF 1)) =

2.1.3

= L !d ·(Q»(BUFl»BUFld)) =

= Ltd ·((Q»BUF1)»BUF1d)
d ED

86 II. Modular specifications in process algebra - with curious queues

Now apply RSP+ (from the proof of Theorem 4.2. l it follows that Q is guard­
edly specifiable). □

By means of an inductive argument we can easily prove the following corollary
of Lemma 4.2.2.

4.2.3. COROLLARY: Let for a ED*, Q" be a queue with content a:

Q' = Q

Then: -r·(Q"»BUF1) = -r ·Q" .

4.2.4. PROPOSITION: Q»Q = Q.
PROOF:

Q»Q = Ltd·((Q»BUF1d)»Q) =

= Ltd ·(Q»-r·(BUF1»(Q»BUF1d))) =
d eD

2.1.3

= Ltd ·(Q»(BUF1»(Q»BUF1d))) =

= Ltd ·((Q»BUF1)»(Q»BUF1d)) =
deD

4.2.2

= Ltd ·(Q»(Q»BUF1d)) =

Now apply RSP+.

4.2.5. COROLLARY: Let a,pED· . Then: r(Q"»QP) = rQ"·P .

□

4.2.6. Remark. It will be clear that the implementation which is suggested by
the specification of process Q is not very efficient: at each time the number of
empty storage elements equals the number of data that have left the queue.
But we can do it even more inefficiently: the following queue doubles the
number of empty storage elements each time a datum is written.

Q = Ltd ·(Q»jd ·Q)
deD

A standard proof gives that Q = QUEUE. From the point of view of process

4. Queues 87

algebra this specification is very efficient. It is the shortest specification of a
FIFO-queue known to the authors, except for a 5-character specification of
PRATI [108): H X D*. A problem with Pratt's specification is that a n~t
axiomatisation of the orthocurrence operator X is not available. Our Q­
specification h~s t~ dis~dvantage that it does not allow for simple proofs of
identities like Q»Q = Q.

4.3. Bags. In [18) a bag over data domain D is defined by:

BAG= ~Jd·(jdllBAG)
d ED

4.3.1. THEOREM: Q»BAG = BAG.
PROOF:

Q»BAG = ~ Jd·((Q»jd·BUFI)»BAG) =

= ~Jd·(Q»(jd·BUFI»BAG)) =

= ~ Jd·(Q»-r·(BUFI»(BAGlljd))) =

= ~ Jd·(Q»(BUF I »(BAGlljd))) =

= ~ Jd·((Q»BUFI)»(BAGlljd)) =

= ~ Jd·(Q»(BAGlljd)) =

note

= ~ Jd·((Q»BAG)lljd)
d ED

Now apply RSP.

Note. We claim that SACPT+RN+CH+ +AB+AA+RR 1- (Q»(BAGlljd))
= ((Q»BAG)lljd). Let/ = {c(d)ldED} and H = {r(d),s(d)ldED}. Then:

(Q»(BAGlljd)) = -r1°aH(PtsCQ)llpv(BAGlljd)) = ,

(straightforward application of axioms of AB + AA + RR + SC6)

= T1 °aH(PtsCQ)IIP.v(BAG))lljd =
= ((Q»BAG)lljd)

From the claim it follows that CH 1- (Q»(BAGlljd)) = ((Q»BAG)lljd) and
consequently SACPf 1- (Q»(BAGlljd)) = ((Q»BAG)lljd). □

88 II. Modular specifications in process algebra - with curious queues

4.3.2. Remark. The identity BAG»Q =BAG does not hold. The intuitive
argument for this is as follows: if a bag contains an apple and an orange, and
the environment wants an apple, then it can just take this apple from the bag.
In the case where a system, consisting of the chaining of a bag and a queue,
contains an apple and an orange, it can occur that the first element in the
queue is an orange. In this situation the environment has to take the orange
first. The argument that processes Q»BAG and BAG are different, because in
the first process the environment is not able to pick an apple that is still in the
queue, does not hold. In ACP-r we abstract from the real-time behaviour of
concurrent systems. If the environment waits long enough then the apple will
be in the bag.

4.4. A queue that can lose data. In the specification of communication proto­
cols, we often encounter transmission channels that can make errors: they can
lose, damage or duplicate data. All process algebra specifications of these
channels we have seen thus far were lengthy and often incomprehensible.
Consequently it was difficult to prove properties of systems containing these
queues. Now, interestingly, the same idea that was used to specify the normal
queue by means of the chaining operator, can also be used to specify the vari­
ous faulty queues. One just has to replace the process BUF I in the definition
by a process that behaves like a buffer but can lose, damage or duplicate data.

First we describe a queue FQ that can lose every datum contained in it at
every moment, without any possibilities for the environment to prevent this
from happening. The basic component of this queue is the following Faulty
Buffer with capacity one:

FBUFI = "'J:, !d ·FBUFld
deD

FBUF ld = (jd + -r) ·FBUF 1

If the faulty buffer contains a datum, then this can get lost at any moment
through the occurrence of a -r-action. In the equation for FBUF ld there is no
-r-action before the jd-action because this would make it possible for the buffer
to reach a state where datum d could not get lost.

We use the above specification in the definition of the faulty queue FQ:

FQ = 2,!d·(FQ»FBUFld)
deD

4. Queues 89

The idea behind this specification of the faulty queue is illustrated in Figure 3.

FIGURE 3. The faulty queue

4.4.1. LEMMA: FBUFld»FBUFI = T·(FBUFl»FBUFld).
PROOF:

FBUFld»FBUFl = 'T·(FBUFl»FBUFld) + T·(FBUFl»FBUFl) =
= 'T·(FBUFl»FBUFld)

In the last step we use that:
T·(FBUFl»FBUFl)CFBUFl»FBUFld CT ·(FBUF l»FBUFld). □

Compare the simple definition of FQ with the following BPA,.6-specification of
the same process.

4.4.2. Let a,pED*. We write a-p if p can be obtained from a by deleting one
datum. Let R(a) = {p I a-p} be the finite set of residues of a after one dele­
tion. Now FQUEUE is the following process.

FQUEUE = FQ, = L Jd ·FQd
deD

FQa•d = L Je ·FQe•a•d + jd ·FQa + L 'T ·FQP
eeD pER(a•d)

4.4.3. THEOREM: FQ = FQUEUE.
PROOF: Analogously to the proof of Theorem 4.2.1. Use Lemma 4.4.1. D

Analogous versions of the identities we derived for the normal queue can be
derived for the faulty queue in the same way. In the proofs we use Lemma
4.4.1.

90 II. Modular specifications in process algebra - with curious queues

4.4.4. PROPOSITION:
i) FQ»FBUFI =FQ,
ii) Let for aED*, FQ" be a faulty queue with content a:

FQ' = FQ

FQ"*d = FQ"»FBUF1d

Then: T·(FQ"»FBUFI) = T·FQ",
iii) FBUF ld»FQ ='T"(FBUF l»(FQ»FBUF Id)),
iv) Q»FQ = FQ»FQ = FQ,
v) Let a,pED*. Then: T·(FQ"»FQP) = T·FQ"*P.

4.5. An identity that does not hold. In this subsection we will discuss the iden­
tity

FQ = Q»FBUFI.

'Intuitively' the processes FQ and Q»FBUFI are equal since both behave like
a FIFO-queue that can lose data. Furthermore, with both processes the
environment cannot prevent in any way that a datum gets lost. Unlike the
situation with the processes BAG»Q and BAG which we discussed in Section
4.3, we can think of no 'experiment' that distinguishes between the two
processes. Still the identity cannot be proved with the axioms presented thus
far.

4.5.1. THEOREM: If parameter D of operator » contains more than one element,
then SACP' V FQ = Q»FBUFI.
PROOF: We show that the identity is not valid in the model of process graphs
modulo bisimulation congruence as presented in BAETEN, BERGSTRA & KLoP
[9]. Suppose that there exists a bisirnulation between processes FQ and
Q»FBUFI. Suppose that process FQ reads successively two different data,
starting from the initial state. Because of the bisimulation it must be possible
for the process Q»FBUFl to read the same data in such a way that the
resulting state is bi similar to the state process FQ has reached. Now process
FQ executes a T-step and forgets the second datum. We claim that process
Q»FBUFI is not capable to perform a corresponding sequence of zero or
more T-step. This is because there are only two possibilities: '
I) Q » FB U F l forgets the second datum. But this means that also the first

datum is forgotten. In the resulting state Q » FB UF 1 cannot output any
datum (before reading one), whereas process FQ can do this.

2) Q»FBUFI does not forget the second datum. In the resulting state
Q»FBUFI can output this datum. Process FQ cannot do that.

The argument is illustrated in Figure 4.

4. Queues 91

FO 0 » FBUF 1

------------- - - .

FIGURE 4.

The next theorem shows that, if we add law T4, the two faulty queues can be
proven equivalent.

4.5.2. THEOREM: SACP' + T4 ~ FQ=Q»FBUFl.
PROOF: Define the process QF by:

QF = QF, = L!d ·QFd
deD

QFo•d = L!e ·QFe•o•d + (jd + r)·QF0

eeD

Analogous to the proof of Theorem 4.2.1, using in addition the identity
Q»BUFI=Q, we prove that Q»FBUFl=QF. For this we do not need the
additional axiom.

The main trick in the proof is that we introduce yet another 'view of
queues': process QF0 is split in two parts, a read-process QF, and a write pro­
cess Q.P,,. The read-process takes care of reading new data, whereas the write
process outputs the data in CJ. When the write process is ready, it sends a mes­
sage ready to the read-process and dies. When the read-process, after reading a
sequence p of messages, receives the ready-signal it behaves again like process
QFP . The fact that the length of the sequence of data CJ in Q.P,, can only
decrease, allows us to use induction.

We extend the alphabet1 with actions ready, ready* and ready, and define

I. See Note I in Section 3.2.1.

92 II. Modular specifications in process algebra - with curious queues

communication by -y(ready,ready*)=ready. For oED* and dED we define:

QP, = ~ !d ·QP.J
d ED

QP.,.d = ~ !e ·QYe•a•d + ready* ·QFa•d
e ED

QP, = ready

QF'a.d = (jd + T) ·QF'a

A short but nontrivial proof gives:

QFa = T(,e~) 0 a(,eadJ,,eadJ·i(QP.IIQF'a)

Also in this step we do not use the extra axiom. We claim that:
T ·QF'a.a' C QF'a•d•a'.

The proof of the claim goes with induction to the length of o' . If Io' I = 0 the
the claim holds trivially. Now suppose the claim is proved for Io' 1,s;;:,n.
Choose a with length n, and eED. We have that:

T ·QF'a•a•e = T ·(je ·QF'a.-;; + T ·QF'a.-;;) =
(this is the only step where we use axiom T4)

= je ·QPa.,; + T ·QF'a • .; C

(because on the one hand je ·QPa.0 C je ·QF'a•d•ci because of the induction
hypothesis and axiom T3, and on the other hand T ·QPa.0 C T ·QF'a•d•ci
because of the induction hypothesis and axiom TI)

C je ·QF'a•d•ci + T ·QF'a•d•ci = QF'a•d•ci•e

This finishes the proof of the claim. A corollary is that T·QF0 • 0 , C QFa•d•a·=

T·QFa•a' = T"T(re~) 0 a(,eady,re~·i(QP.IIQPa.a') C

(Use the observation of Section 2.1.4 that TX Cy implies TX llz Cy llz)

C T(ready) oa(,e~.,e~·i(QP. IIQPa.d•a') = QFa•d•a'

We have shown that process QF0 is indistinguishable from a process that can
lose each datum at every moment. Using the notation of Section 4.4.2 we can
write down the following equation for processes QF0 .d:

QFa•d = ~ te ·QFe•a•d + jd ·QF0 + ~ T ·QFP
e ED pER(a•d)

Application of RSP gives that the process FQUEUE of Section 4.4.2 equals
process QF. But according to Theorem 4.4.3 also FQUEUE=FQ. □

4. Queues 93

4.6. The faulty and damaging queue. In the specification of certain link layer
protocols we have to deal with a communication channel that behaves like a
FIFO-queue with unbounded capacity (this is of course a simplifying assump­
tion), but has some additional properties: (l) a datum can be damaged at
every moment it is in the queue; the environment cannot prevent this event,
and (2) a datum can be lost at every moment it is in the queue. We give a
process algebra specification of this process in two steps. First we specify the
Faulty and Damaging Buffer with capacity one (FDBUFl). We assume that
the domain of data D contains a special element er, representing a damaged
datum.

FDBUFl = "2.id·FDBUFid
d eD

FDBUFld = jd·FDBUFl + r·(jer+r) ·FDBUFl

With the help of this process we can now easily define the Faulty and Damag­
ing Queue (FDQ):

FDQ = "2.id ·(FDQ»FDBUFld)
d eD

4.6.l. LEMMA: FDBUFld » FDBUF1 = r ·(FDBUFl » FDBUFld).
PROOF: FDBUFld » FDBUFI =
= r ·(FDBUFl » FDBUFld) + r·((jer+r) ·FDBUFI»FDBUFI) =
= r·(FDBUFl » FDBUFld) + r ·(r·(FDBUFI » FDBUFie') +

+ r ·(FDBUFI » FDBUFI)) =
note
= r·(FDBUFl » FDBUFid) + r·(r ·(FDBUFI » (r ·(jer+r) ·FDBUFI)) +

+ r·(FDBUFl » FDBUFl)) =
= r·(FDBUFI » FDBUF1d) + r ·(r·(FDBUFI » (jer+r) ·FDBUFI) +

+ r·(FDBUFl » FDBUFl)) =
= r·(FDBUFI » FDBUFid) + r·(FDBUFI » (jer+r) ·FDBUFI) =

= r ·(FDBUFl » FDBUFld)

Note. FDBUFler = jer ·FDBUFI + r·(jer+r) ·FDBUFI
T2

= r·(jer + r) ·FDBUF l. □

Once we have Lemma 4.6.1, it is standard to prove that process FDQ is guard­
edly specifiable. It is moreover easy to derive an analogous version of Proposi­
tion 4.4.4 for FDQ.

94 II. Modular specifications in process algebra - with curious queues

4.6.2. Remark. One might ask if there is not a -r too many in the specification
of process FDBUFI. Why not specify the faulty and damaging buffer simply
as follows?

FDBl = L!·FDBld
dED

FDB ld = (fd + fer + -r) ·FDB l

A first observation we make is that if D=I={ er}:

SACP~ V FDBUFl = FDB l

This is because the two processes are different in bisimulation semantics. Pro­
cess FDBUF l can input a datum d different from er, and then get into a state
where either an output action fer will be performed or no output action at all.
This means that it is possible that a datum is first damaged and then lost.
Process FDB l does not have such a state.

For similar reasons we also have the following fact :

SACP~ V FDB ld»FDB l = -r ·(FDB l»FDB ld)

This means that if we work with a queue defined with the help of FDB 1, our
standard technique to prove facts about queues is not applicable. Note that
processes FDB 1 and FDBUF 1 are trivially equal if we work in a setting where
the law T4 (-r(-rx+y)=-rx+y) is valid.

4. 7. The faulty and stuttering queue. This section is about a very curious queue:
a FIFO-queue that can lose or duplicate any element contained in it at every
moment. An infinite specification of this process can be found in LARSEN &
MILNER (85). The basic component we use in the specification of the Faulty
and Stuttering Queue is a Faulty and Stuttering Buffer with capacity I:

FSBUFl = 2,!d ·FSBUFld
dED

FSBUFld = fd·FSBUFld + -r ·FSBUFl

FSQ = L!d·(FSQ»FSBUFld)
dED

When we place two faulty and stuttering buffers in a chain, then we have the
possibility of an infinite number of internal actions (the first buffer stutters and
the second one loses all its input). This implies that, in the specification of the
faulty and stuttering queue, we have to guard against unguarded recursion.
We need a fairness assumption if we want to exclude the possibility of infinite
stuttering.

First we prove a simple lemma:

4. Queues

4.7.1. LEMMA: FSBUF1d»FSBUF1d = T·(FSBUF1d»FSBUF1d) =
= FSBUF1d»FSBUF1 = T·(FSBUF1d»FSBUF1).
PROOF :

95

FSBUF1d»FSBUF1d d T·(FSBUF1d»FSBUF1) d FSBUF1d»FSBUF1 d

d T·(FSBUF1d»FSBUF1d) d FSBUF1d»FSBUF1d □

The proof of the next lemma is more involved.

4.7.2. LEMMA:

SACP,+KFARrFSBUF1d»FSBUF1 = T·(FSBUF1»FSBUF1d).

PROOF:

FSBUF1d>>>FSBUF1 =
= c(d)·(FSBUF1d>>>FSBUF1d) + T·(FSBUF1>>>FSBUF1)

FSBUF1d>>>FSBUF1d =
= T·(FSBUFld>>>FSBUFl) + T·(FSBUF1>>>FSBUF1d) +

+ jd ·(FSBUF1d>>>FSBUF1d)

Application of CFAR gives (/ = {c(d)ldED}):

FSBUF1d » FSBUF1 = T1(FSBUF1d>>>FSBUF1) =

= T·T1(T·(FSBUFl>>>FSBUF1) + T·(FSBUF1>>>FSBUF1d) +
+ jd·(FSBUF1d>>>FSBUF1d)) =

4.7.1

T·(T ·(FSBUF1»FSBUF1) + T·(FSBUF1 » FSBUF1d) +
+ jd ·(FSBUF1d»FSBUF1))

In addition we derive:

FSBUF1»FSBUF1d = -:i,J,e ·(FSBUF1e » FSBUF1d) +

+ T·(FSBUF1 » FSBUF1) + jd·(FSBUF1»FSBUF1d)

FSBUF1e»FSBUF1d = T·(FSBUF1»FSBUF1d) +
+ T·(FSBUF1e»FSBUF1) + jd·(FSBUF1e»FSBUF1d)

FSBUF 1 »FSBUF 1 = -:2, J,d ·(FSBUF ld»FSBUF I)

Let Ebe the following guarded system of recursion equations:

yd = 'T'"(T·Y + 7' .yd + jd ·Yd)

yd = L, J,e . yed + 7'. y + jd. yd
eeD

96 II. Modular specifications in process algebra - with curious queues

yed = -r· Yd + -r -r · + td • rd

y = Ltd·Yd.
d e D

RSP gives that FSBUFld»FSBUFI = yd and FSBUFI»FSBUFid = yd_
Thus it suffices to prove that yd = -r · yd. Let F be the following guarded
system of recursion equations:

zd = Lte ·zed + -r ·Z + jd·Zd
ee D

zed= -r·Zd + -r•ze + jd•zed

z = L!d·Zd
d e D

We derive:

-r •zd = -r •-r .zd = -r ·(-r -z + jd .zd + -r ·zd)

If we substitute 'T. zd for yd' zd for yd' zed for yed and z for Y, then RSP
gives: -r·Zd=yd. andZd=yd_ Consequently Yd=-r ·Yd . □

From Lemma 4.7.2 all the rest follows: process FSQ is guardedly specifiable
and we can derive an analogous version of Proposition 4.4.4.

5. A PROTOCOL VERIFICATION
In this section we present the specification and verification of a variant of the
Alternating Bit Protocol, resembling the ones discussed in KOYMANS &
MULDER [81] and LARSEN & MILNER [85]. The aim of this exercise is to illus­
trate the usefulness of the proof technique developed in the previous section.
The architecture of the Concurrent Alternating Bit Protocol (CABP) is as fol­
lows:

B

FQ

2

FQ

D C
FIGURE 5.

Elements of a finite set of data are to be transmitted by the CABP from port I
to port 2. Verification of the CABP amounts to a proof that (1) the protocol

5. A protocol verification 97

will eventually send at port 2 all and only data it has read at port 1, and (2)
the protocol will send the data at port 2 in the same order as it has read them
at port 1.

In the CABP sender and receiver send frames continuously. Since sender
and receiver will have a different clock in general, the number of data that can
be in the channels at a certain moment is in principle unlimited. In this section
we assume that the channels behave like the process FQ as described in Sec­
tion 4.4: a FIFO-queue with unbounded capacity that can either lose frames or
pass them on correctly.

In the protocol, the sender consists of two components A and D, whereas
the receiver consists of components B and C. One might propose to collapse A
and D into a sender process, and B plus C into a receiver process. The result­
ing processes would be more complicated and in the correctness proof we
would have to decompose them again.

5.1. Specification. Let D be a finite set of data which have to be sent by the
CABP from port l to port 2. Let B = {O, l }. 6j) = (DX B) U B is the set of
data which occur as parameter in the actions of the chaining operators. The set
of ports is IP' = {1,2,3,4 }, the set of data that can be communicated at these
ports is D = DU {next}. Alphabet A and communication function y are now
defined by the standard scheme for the chaining operators, augmented with
actions ri (d), si (d) and ci (d), for which we have communications
y(ri(d),si(d)) = ci(d) (iEI? and dED).

We now give the specifications of processes A, B, C and D. Here b ranges
over B = {O, 1} and d over D (the overloading of names B and D should
cause no confusion). The specifications are standard and need no further com­
ment.

A= A 0

Ab= ~rl(d) ·Adb
dED

Adb = tdb ·Adb + r3(next)-A l - b

D = D0

Db = t(l-b)·Db +
+ !b ·s 3(next) ·DI - b

B = B0

Bdb = s2(d)·s4(next)·B 1-b

C = C 1

Cb= tb·Cb + r4(next)·C 1-b

Let H and / be the following sets of actions:

H = {r3(next),s3(next),r4(next),s4(next)}

I = {c3(next),c4(next)}

The Concurrent Alternating Bit Protocol is defined by:

98 II. Modular specifications in process algebra - with curious queues

CABP = '7"1°aH((A »FQ»B)ll(C»FQ»D))

5.2. Verification. If we do not abstract from the internal actions of the proto­
col, then the number of states is infinite. This means that a straightforward
calculation of the state graph is not possible. A strategy which is often applied
in cases like this is that one substitutes a buffer with capacity I for the com­
munication channels. As a result the system is finite and can be verified
automatically. Next a buffer with capacity 2 is substituted, followed by another
automatic verification, etc.. The verification for the case of buffers with capa­
city 155 takes 23 hours CPU time. Thereafter it is decided that 'the protocol is
correct'.

Of course it is not so difficult to specify a protocol that is correct for buffers
with capacity less or equal than 155, but fails when the capacity is 156. The
conclusion that the protocol is correct for arbitrary buffer size because it works
in the cases where the buffer size is less than 156, is therefore influenced by
other observations. It is for example intuitively not very plausible that the
CABP works for buffer size 155, but not for buffer size 156, because the
specification is so short and the only numbers which occur in it are O and I.

Because intuitions can be wrong people look for formal techniques which
tell in which situations induction over certain protocol parameters is allowed.

The basic merit of the results of Section 4 is that they make it possible to
use inductive arguments when dealing with the length of queues in protocol
systems. In the verification below we show that the protocol is correct if the
channels behave as faulty FIFO-queues with unbounded capacity. However, a
minor change in the proof is enough to show that the protocol also works if
the channels behave as n-buffers, faulty n-buffers, perfect queues, faulty and
stuttering queues, etc.

The following two lemmas will be used to show that, after abstraction, the
number of states of the protocol is finite. The first lemma says that if, at the
head of the queue, there is a datum that will be thrown away by the receiver
because it is of the wrong type, this datum can be thrown away immediately.

5.2.1. LEMMA:
i) FBUFldb»B 1-b = '7"·(FBUFl»B 1- b);

ii) FBUF1db»s4(next)·B 1- b = '7"·(FBUFl»s4(next) ·B 1- b);'

iii) FBUFldb»Bdb = '7" ·(FBUF1 » Bdb).
PROOF: The proof of (i) is trivial. Part (ii) goes as follows:

FBUFldb » s4(next)·B 1- b =
= '7"·(FBUFI»s4(next)·B 1- b) + s4(next)·(FBUFldb»B 1- b) =
(i)

= '7"·(FBUFl»s4(next)·B 1- b) + s4(next)·(FBUF1»B 1- b) =

= '7"·(FBUF1»s4(next) ·B 1- b) (summand inclusion)

5. A protocol verification 99

The proof of part (iii) is similar:

FBUF1db»Bdb = 1 .. (FBUFI»Bdb) + s2(d)·(FBUF1db»s4{_next)·B 1- b) =
(ii)

= -r·(FBUFI»Bdb) + s2(d)·(FBUFl»s4(_next)·B 1- b) =
= -r ·(FBUFl»Bdb) □

The next lemma says that if two frames, of a type that the receiver is willing to
accept, are at the head of the queue, one of these can be deleted without
changing the process (modulo an initial -r).

5.2.2. LEMMA: FBUFldb»FBUFidb»Bb = -r·(FBUFl»FBUFidb»Bb).
PROOF: FBUF1db»FBUF1db»Bb =
= -r·(FBUF1»FBUF1db»Bb) + -r·(FBUF1db»FBUF1»Bb) +

+ -r·(FBUFldb»FBUFl»Bdb) =
4.4.1
= -r·(FBUFl»FBUFidb»Bb) + -r·(FBUFI»FBUFidb»Bb) +

+ -r·(FBUFI»FBUFidb»Bdb) =
5.2.1
= -r·(FBUF1»FBUFldb»Bb) + -r·(FBUF1»FBUFl»Bdb) =
= -r·(FBUFl»FBUFldb»Bb) □

5.2.3. We will now derive a transition diagram for process A >>>FQ»B. In
the derivation we use Lemmas 5.2.1 and 5.2.2 to keep the diagram finite.
Furthermore we stop the derivation at those places where an action is per­
formed that corresponds to the acknowledgement of a frame that has not yet
arrived. The result of the calculations is presented in Figure 6. The grey arcs
correspond to places where we stopped the derivation.

A >>>FQ»B = A 0 >>>FQ » B0

Ab>>>FQ»Bb = L,rl(d) ·(Adb>>>FQ»Bb)

Adb>>>FQ»Bb = c(db) ·(Adb>>>FQ»FBUF1db»Bb) +
+ r3(next)·(A l- b>>>FQ»Bb)

Adb>>>FQ»FBUF1db»Bb =
c(db) ·(Adb>>>FQ»FBUF ldb»FBUF Idb»Bb) +
+ -r·(Adb>>>FQ»FBUFI»Bb) +

+ -r·(Adb>>>FQ»FBUF1»Bdb) +
+ r3(next) ·(A I- b>>>FQ»FBUF1db»Bb) =

(0)

(I)

(2)

(3)

100 JI. Modular specifications in process algebra - with curious queues

c(dO) c(dO) c(dO) c(dO)

s4(next)

L r3(next) Lr3(next) Lr3(next)
·:r ·:r ,::·

r3(next) r3(next) .}. r3(next/

6 s4(next)

c(dl)

FIGURE 6. Transition diagram of process A >>>FQ»B

(Lemmas 5.2.2 and 4.4.4(i))

= c(db)·(Adb>>>FQ»FBUF1db»Bb) +
+ 1"(Adb>>>FQ»Bb) +r·(Adb>>>FQ»Bdb) +
+ r3(next)·(A l- b>>>FQ»FBUF1db»Bb)

Adb>>>FQ»Bdb = c(db)·(Adb>>>FQ»FBUF1db»Bdb) +
+ s2(d) ·(A db>>>FQ»s4(next) ·B 1- b) +
+ r3(next) ·(A l- b>>>FQ»Bdb) =

(Lemmas 5.2.1 (iii) and 4.4.4(i))

= c(db) ·(Adb>>>FQ»Bdb) +
+ s2(d)·(Adb>>>FQ»s4(next)·B 1- b) +
+ r3(next) ·(A l - b>>>FQ»Bdb)

Adb>>>FQ»s4(next)·B 1- b =
c(db) ·(A db>>> FQ » FBUF 1db»s4(next) ·B l - b) +
+ s4(next)·(Adb>>>FQ»B 1- b) +
+ r3(next)·(A l- b>>>FQ»s4(next) ·B 1- b) =

(Lemmas 5.2. l(ii) and 4.4.4(i))

= c(db)·(Adb>>>FQ»s4(next)·B 1-b) +

r3(next)

(4)

(5)

5. A protocol verification

+ s4(next)·(Adb>>>FQ»B 1- b) +
+ r3(next)·(A l- b>>>FQ»s4(next)·B 1- b)

Adb>>>FQ»B 1-b = c(db) ·(Adb>>>FQ»FBUF1db»B 1- b) +
+ r3(next)·(A l - b>>>FQ»B 1- b)

(Lemmas 5.2. l(i) and 4.4.4(i))

101

(6)

= c(db) ·(Adb>>>FQ»B 1- b) + r3(next)·(A 1- b>>>FQ»B 1-b)

5.2.4. Summarising, we have shown that A >>>FQ»B satisfies the following
system of recursion equations.

X = XI

x1{ = ~ r 1(d) ·X1b
d ED

xf = c(db) ·X'f + Y~

~ = r3(next) ·(A l- b>>>FQ»Bb)

Yf = r3(next)·(A l- b>>>FQ»FBUFldb»Bb)

rjb = r3(next)·(A 1- b>>>FQ»s4(next)·B 1- b)

X'f = r3(next)·XJ - b + c(db)-X'/:

Using CFAR immediately gives the next lemma.

102 II. Modular specifications in process algebra - with curious queues

5.2.5. LEMMA: Let Ube specified by:

u = ell

cl{ = ~rl(d)·Uf
d e D

vf' = r3(next) ·(A l- b»FQ»FBUFldb»Bb)

u'f = s2(d)·U'f' + vf' Jlt = r3(next)·(A 1- b»FQ»Bdb)

u'f' = s4(next)·U'/;' + ~ ~ = r3(next)·(A 1- b»FQ»s4(next)·B 1- b)

u'f = r3(next)·Ul - b

Then: SACP~ + KFAR r U=A »FQ»B.

In the same way we can derive similar lemmas for 'the other side' of the proto­
col.

5.2.6. LEMMA:
i) FBUFlb»D 1- b = -r·(FBUFl»D 1- b);
ii) FBUFlb»s3(next) ·D 1- b = -r·(FBUFl»s3(next) ·D 1- b);
iii) FBUFlb»FBUFlb»Db = -r·(FBUFl»FBUFlb»Db)_

5.2.7. LEMMA: Let W be specified by:

W= Wl

~ = s3(next) ·J0i + Z~ Z~ = r4(next)·(C 1- b»FQ»s3(next)·D 1- b)

Then: SACP~ + KFAR r C » FQ»D= W.

The fact that CABP is a correct protocol is asserted by

5.2.8. THEOREM: SACP~ + KFAR r CABP=-r·('2:,rl(d) ·s2(d))·CABP.
d ED

PROOF: Lemmas 5.2.5 and 5.2.7 together give that we can write CABP as:

CABP = -r1°aH(UII W)

Conclusions and open problems 103

A straightforward expansion gives:

7) 0 an(UII W) = 'T ·(Lr l(d) ·s 2(d)} ·(Lr l(e) ·s2(e)} ·r1°an(UII W)
d e D e e D

The variables V and Z vanish in the expansion, due to the fact that they only
occur in situations where a receiver component sends a premature ack­
nowledgement. An application of RSP concludes the proof of the theorem. □

5.2.9. Remark. A serious problem that has to be faced in the context of alge­
braic protocol verification is the fairness issue. In the verifications of this
chapter we used KF AR to deal with fairness. KF AR is the algebraic
equivalent of the statement: 'if anything can go well infinitely often, it will go
well infinitely often'. In most applications a more subtle treatment of fairness
is desirable. Moreover KF AR is incompatible with lots of semantics between
bisimulation and trace semantics. In [23] it is proved that failure semantics is
inconsistent with the rule KF AR. In the same paper a restricted version
KF AR - of KF AR is presented which is consistent with the axioms of failure
semantics, but this version is not powerful enough to allow for a verification of
the CABP. The argument for this is simple: KF AR - allows for the fair
abstraction of unstable divergence. This means that a process will never stay
forever in a conservative cluster of internal r-steps if it can be exited by
another internal r-step. Since in the CABP component C can always perform
an internal step, and since the protocol is finite state (after suitable abstrac­
tion), there must be a conservative cluster of internal steps which can only be
exited by performing an observable action. Thus the CABP contains stable
divergence.

CONCLUSIONS AND OPEN PROBLEMS

In this chapter we presented a language making it possible to give modular
specifications of process algebras. The language contains operations + and
□, which are standard in the theory of structured algebraic specifications, and
moreover two new operators H and S. Two applications have been presented
of the new operators: we showed how the left-merge operator can be hidden if
this is needed and we described how the chaining operator can be defined in a
clean way in terms of more elementary operators. It is clear that there are
much more applications of our approach. Numerous other pfocess combina­
tors can be defined in terms of more elementary operators in the same way as
we did with the chaining operators. Maybe also other model theoretic opera­
tions can be used in a process algebra setting (cartesian products?).

Strictly speaking we have not introduced a 'module algebra' as in (17]: we
do not interpret module expressions in an algebra. However, this can be done
without any problem. An interesting topic of research is to look for axioms to
manipulate module expressions. Due to the presence of the operators H and
S, an elimination theorem for module expressions as in [17] will probably not
be achievable.

104 II. Modular specifications in process algebra - with curious queues

An important open problem for us is the question whether the proof system
of Table I is complete for first order logic.

In this chapter the modules are parametrised by a set of actions. These
actions themselves do not have any structure. The most natural way to look
towards actions likes l(d0) however, is to see them as actions parametrised by
data. We would like to include the notion of a parametrised action in our
framework but it turns out that this is not trivial. Related work in this area
has been done by MAUW [87] and MAUW & VELTINK [88].

In order to prove the associativity of the chaining operators, we needed aux­
iliary actions s(d), r(d), etc. Also in other situations it often turns out to be
useful to introduce auxiliary actions in verifications. At present we have to
introduce these actions right at the beginning of a specification. This is embar­
rassing for a reader who does not know about the future use of these actions
in the verification. But of course also the authors don't like to rewrite their
specification all the time when they work on the verification. Therefore we
would like to have a proof principle saying that it is allowed to use 'fresh'
atomic actions in proofs. We think that it is possible to add a 'Fresh Atom
Principle' (F AP) to our formal setting, but some work still has to be done.

In our view Section 4 convincingly shows that chaining operators are useful
in dealing with FIFO-queues. We think that in general it will be often the case
that a new application requires new operators and laws.

In Section 4.5 we presented a simple example of a realistic situation where
bisimulation semantics does not work: a FIFO-queue which can loose data at
every place is different from a FIFO-queue which can only loose data at the
end. Adding the law T4, which holds in ready trace semantics (and hence in
failure semantics), made it possible to prove the two queues equal.

For the correctness of protocols which involve faulty queues one normally
needs some fairness assumption. Koomen's Fair Abstraction Rule (KFAR)
often forms an adequate, although not optimal, way to model fairness. An
interesting open problem is therefore the question whether the module SACP~
+ T4 + KFAR is consistent (conjecture: yes).

The verification of the Concurrent Alternating Bit Protocol as presented here
takes 4 pages (or 5 if the proofs of the standard facts about the queues are
included). Our proof is considerably shorter than the proof of similar proto­
cols in [81] and [85] (15 and l l pages respectively). But maybe this comparison
is not altogether fair because the proofs in these papers were meant as an illus­
tration of new modular proof techniques. Our proof shows that the axioms of
bisimulation semantics with fair abstraction are sufficient for the modular
verification of simple protocols like this. The axioms of bisimulation semantics
will tum out to be not sufficient for more substantial modular verifications
because bisimulation semantics is not fully abstract. We could give a shorter
and simpler proof of the protocol by using the notion of redundancy in con­
text of [I 19]: the grey arcs in Figure 6 all correspond to summands which are
redundant in the context in which they occur. Additional proof techniques
will certainly be needed for the modular verification of more complex proto­
cols.

Appendix: logics 105

ACKNOWLEDGEMENTS

Our thanks to Jan Bergstra for his help in the development of the H-operator
and to Kees Middelburg for helpful comments on an earlier version.

APPENDIX: LOGICS

In this appendix equational, conditional equational and first order logic are
defined. Since all these logics share the concepts of variables and terms, these
will be treated first.

1. Variables and terms. Let a be a signature. A a-variable is an expression xs
with XE NAMES and (§:S}Eo. A valuation of the a-variables in a a-algebra a
is a function { that takes every a-variable xs into an element of sa.

For any (§:S}Eo the set T's of a-terms of sort Sis defined inductively by:
xs E T's for any CJ-variable x5.
If F :f :S I X · · · X Sn-Sis in a and I; E T's, for i = l, .. . ,n then

fs, x · • • x s.➔s(t1,•··,tn) E7"s.

The !-evaluation [t]E ESa of a a-term t E T's in a a-algebra a (with { a valua­
tion) is defined by:

[x5]€ =«xs}ESa.
[fs. x •· • x s.➔s(t1,••·,tn)]€=.fs, x •·· x s.➔s(lt1Jc, ... ,[tnJc).

2. Equational logic. The set F/ of equations or equational formulas over a is
defined by:

If l;ET's for i = l,2 and certain §:Sin CJ, then (t 1 =t2)EFi.

An equation (1 1 =t2)EF",/' is ~-true in a a-algebra If, notation If,~ F:q' t 1 =t2 , if
[t1]€ =[t2]E.
Such an equation q,EF;/' is true in If, notation a F!q' q,, if If,{ F:q' q, for all
valuations f
An inference system I!ql for equational logic is displayed in Table 12 below.
There t, u and v are terms over a and x is a variable. Furthermore t [ul x] is
the result of substituting u for all occurrences of x in t. Of course u and x

should be of the same sort. Finally an inference rule H with H = 0 is called
an axiom and denoted simply by q,. <I>

t =t
u =v
V =u

t =u, u =v
t =v

u =v u =v
t[ulx]=t[vlx] u[tl x]=v[tl x]

TABLE 12

106 II. Modular specifications in process algebra - with curious queues

3. Conditional equational logic. The set F:,' of atomic formulas over a is defined
by:

If t;ET}; for i = l,2 and certain §:Sin a, then (t 1 =t 2)EF:,'.
If R:p CS 1 X · · · XSn is in a and t;ET};; for i = 1, ... ,n then

Ps X . .. XS (t., ... ,tn) EF:,'.

The se~ F;,eqt of· conditional equational formulas over a is defined by:
If C C F:,1 and a E F:,1 then (C =M) E F;,eqt.

The f.-truth of formulas cf, E F:,' U F;,eqt in a a-algebra Ee is defined by:
(f,f, F~eql t I= t2 if [t I]~= [t2]~ .
lP,f, F~eql Ps, x ... xs,(t1,••·,tn) ifpi, x •·· xs.([t1]~, ... ,[tn]~).
(P,f. t,~eqt C=M if (P,f. -,~eqt /3 for some /3EC or (P,f. F~eql a.

cf, is true in if, notation Ee tc~eqt cf,, if (P,f. tc~eqt cf, for all valuations f..

An inference system l~eql for conditional equational logic is displayed in Table
13 below. There a and a; are atomic formulas, C is a set of atomic formulas, cf,
is a conditional equational formula, t;, t, u and v are terms over a and X; and x
are variables. Furthermore a[u/ x] is the result of substituting u for all
occurrences of x in a. Of course u and x should be of the same sort. Likewise
cf,[t; IX; (i El)] is the result of simultaneous substitution for i El of t; for all

occurrences of x; in cf,. An inference rule _E!__ is again denoted by cf, and a con-
cf,

ditional equational formula 0 ⇒a by a.

C⇒a if aEC

t =t

C⇒a; (i El), { a; Ii E/}⇒a

C⇒a

{u =v}⇒(v =u)

{ u = v, a[ul x]}⇒(a[v Ix])

TABLE 13

cf,
cf,[t; IX; (i El)]

{t =u, u =v}⇒(t =u)

The logic described above is infinitary conditional equational logic. Finitary con­
ditional equational logic is obtained by the extra requirement that in condi­
tional equational formulas C⇒a the set of conditions C should be finite. In
that case the inference rule

cf,
cp[t; IX; (i El)]

can be replaced by
cf,

cf,[tlx]"

Furthermore (in)finitary conditional logic is obtained by omitting all reference
to the equality predicate =.

Appendix: logics 107

4. First order logic. The set F!oleq of first order formulas with equality over a is
defined by:
- If t; E T's for i = 1,2 and certain §:Sin a, then (t 1 = t 2)EF!oleq.

If IR :p <: S I X · · · X Sn is in a and t; E T's, for i = I , ... , n then
Ps X · · · XS (t1,·- ·,tn) EF!oleq_
If

1

cf, E F!oleq" then -,cf, E F!oleq .
If cf, and 1pEF!oleq then (cf>-tJ,)EF!01eq _
If cf, and 1pEF!oleq then (cf,/\1p)EF!°'eq _
If cf, and "1 E F!oleq then (cf, V "1) E F!oleq.
If cf, and "1 E F!oleq then (~V') E F!oleq.
If Xs is a a-variable and cf,EF!0leq then Vxs(cf>)EF!01eq_
If xs is a a-variable and q,EF!oleq then 3xs(<J>)EF!01eq _

The !;-truth of a formula cf,EF!01eq in a a-algebra tt is defined inductively by:
&,I; t{oleq ti =t2 if [t1]t =[t2]t.

&,I; t{oleq Ps x .. · XS (t I, · · · ,tn) if P~, X .. · x s. ([t I]t , ... ,[tn]t).
(f, I; t{oleq -,~ if (f, I; ~ !oleq cf,.
(f, I; t{oleq cf>-"1 if (f, I; ~ !oleq q> or cl', I; t{oleq 'P ·
&,I; t{oleq cf,/\1p if &,I; t{oleq cf, and &,I; t{oleq 'P·
(f, I; t{oleq cf, V tJ, if cl',/; ta-(;oleq cf, or cl', I; ta-(;oleq 'P ·
&,I; t{oleq ~'P if &,I; ta-(;oleq cf, if and only if &,I; ta-(;oleq tJ,.
&,I; t{oleq Vxs(cf>) if &,I;' ta-{;01eq cf, for all valuations I;' with f(ys,)=/;(ys,) for

all variables Ys•=FXs-
&,I; t{oleq 3xs(cf>) if &,I;' ta-(;0 leq cf, for some valuation I;' with f(ys,)=/;(ys,)

for all variables Ys•=FXs-
cf, is true is cl', notation tt ta-(;0 leq q,, if &,I; ta-(;0 leq cf, for all valuations f

An inference system 1!0 'eq for first order logic with equality is displayed in
Table 14 on the next page. There cf,, "1 and p are elements of F!oleq, a is an
atomic formula (constructed by means of the first two clauses in the definition
of F!oleq only), t, u and v are terms over a and x is a variable. An occurrence of
a variable x in a formula cf, is bound if it occurs in a subformula Vx("1) or
3x(t/,) of cf,. Otherwise it is free. A variable is free in a formula cf, if all its
occurrences in cf, are free. q,(t Ix] denotes the result of substituting u for all
free occurrences of x in t. Of course u and x should be of the same sort. Now t
is free for x in cf, if all free occurrences of variables in t remain free in q,(t Ix].

As before an inference rule H with H = 0 is called an axiom and denoted
cf,

simply by cf,.

108 II. Modular specifications in process algebra - with curious queues

p_, p_➔lf_
modus ponens 7 generalisation

"1 \fx(q,

q,➔(t/l➔q,)

} deduction axioms { q,➔(t/l➔p) }➔ {(q,➔iJ,)➔(q,➔p)}

{Vx(q,➔t/l)}➔ {q,➔Vx(iJ,)}, if xis not free in q,
(-,q,➔q,)➔q, axiom of the excluded middle
-,q,➔(q,➔t/1) axiom of contradiction
'vx(q,)➔q,{tl x], if tis free for x in q, axiom of specialisation

(q,/\t/l)➔q, q,➔(q,Vt/1) (q, - iJ,)➔ {(q,➔iJ,)/\(iJ,➔q,)}
(q,/\t/1)➔"1 iJ,➔(q,ViJ,) {(q,➔iJ,)/\(iJ,➔q,)}➔(q, - iJ,)
q,➔ {1¥➔(q, I\ iJ,)} (q, V iJ,)➔(-,q,➔iJ,) 3x(q,) - -,\fx(-,q,)

t =t (u =v)➔(v =u) {(t =u)/\(u =v)}➔(t =v)
(u = v)➔(a[u Ix] - a[v Ix])

TABLE 14

First order logic is obtained from first order logic with equality by omitting all
reference to =. It is also possible to present first order logic without the con­
nectives /\, V and - and the quantifier 3, and introduce them as notational
abbreviations. In that case the third block of Table 13 can be omitted.

5. Expressiveness. One can translate an equation aEF"/ by a (finitary) condi­
tional equational formula 0 ~a and a finitary conditional equational formula
{ a 1 , •.• ,an }~a into a first order formula (a1 /\ • • • /\an)➔a. Using this trans­
lation we have F"/ C Ffeql C F{oleq and furthermore ct ta!q/ q, ~ ct ta~eql q, for
q,EF{l and ct ta~eql q, ~ ct ta!oleq q, for q,EF{ceql_ This means that first order
logic with equality is more expressive then equational logic and finitary condi­
tional equational logic is somewhere in between. However first order logic with
equality and infinitary conditional equational logic have incomparable expres­
sive power.

6. Completeness. For all logics mentioned above the following completeness
result is known to hold: Alg(a,T) ta; q, ~ T f-; q,. The reverse direction also
holds, since all these logics are obviously sound. As a corollary we have

T f-!ql q, ~ T f-~eql q, for q,EF"/ and

T f-~eql q, ~ T f-!oleq q, for q,EF{ceql_

For this reason in most process algebra papers it is not made explicit which
logic is used in verifications: the space needed for stating this could be saved,
since the resulting notion of provability would be the same anyway. However,
the situation changes when formulas are proved from modules. Equational
logic and conditional equational logic are not complete anymore and for first

Appendix: logics 109

order logic with equality this is still an open problem (as far as we know).
Here a logic e is complete if M Fe q, ~ M 1-e q,. It is easily shown that

M f-eql q, ~ M f-ceql q, for q,EPI_M) and

M f-ceql q, ~ M t,foleq q, for q,EF-¥{iJ.),

but the reverse directions do not hold. Thus we should state exactly in which
logic our results are proved.

7. Notation. This chapter employs infinitary conditional equational logic.
However, no proof trees are constructed; proofs are given in a slightly infor­
mal way, that allows a straightforward translation into formal proofs by the
reader. Furthermore all type information given in the subscripts of variables,
function and predicate symbols is omitted, since confusion about the correct
trfes is almost impossible. Outside Section 1 and this appendix inference rules

- do not occur, but all conditional equational formulas c~a are written £,
q, a

as is usual. However, the suggested similarity between inference rules and con-

ditional equational formulas is misleading: H holds in an algebra ct if (er,~ F i/;
q,

for all i/;EH and all valuations~) implies (er,~ F q, for all valuations~), while ..f_
a

holds in ct if for all valuations f (er,~ F /3 for all /3EC implies er,~ Fa).

8. Positive and universal formulas. In equational logic all formulas are both
positive and universal. In conditional equational logic all formulas are univer­
sal and the positive formulas are the atomic ones. In first order logic with
equality the positive formulas are the ones without the connectives -, and -
and the universal ones are the formulas without quantifiers. Model theory (see
for instance [98]) teaches us that a formula q, is preserved under homomor­
phisms (respectively subalgebras) iff there is a positive (respectively universal)
formula i/; with t,foleq If - q,.

Chapter Ill

Branching time and abstraction
in bisimulation semantics

Rob van Glabbeek & Peter Weijland

Abstract: In comparative concurrency semantics one usually distinguishes
between linear time and branching time semantic equivalences. Milner's
notion of observation equivalence is often mentioned as the standard
example of a branching time equivalence. In this chapter we investigate
whether observation equivalence really does respect the branching
structure of processes, and find that in the presence of the unobservable
action 't of CCS this is not the case.
Therefore the notion of branching bisimulation equivalence is introduced
which strongly preserves the branching structure of processes, in the sense
that it preserves computations together with the potentials in all intermediate
states that are passed through, even if silent moves are involved. On closed
CCS-terms branching bisimulation can be completely axiomatized by single
axiom scheme:

a.('t.(y + z) + y) = a.(y + z)

(where a ranges over all actions) and the usual laws for strong congruence.
For a large class of processes it turns out that branching bisimulation and
observation equivalence are the same. All protocols known to the authors
that have been verified in the setting of observation equivalence happen to
fit in this class, and hence are also valid in the stronger setting of branching
bisimulation equivalence.

Notes: An extended abstract of this chapter has been published in the
Proceedings of the IFIP 11th World Computer Congress, San Fransisco
1989, pp. 613-618; the last section appeared in the Proceedings of the
AMAST Conference, Iowa 1989, pp. 197-201. Moreover, the first two
sections partly appeared in the Ph.D. Thesis of Peter Weijland [127] .
The Research of the authors was supported by ESPRIT project 432
(METEOR). The first author was also supported by Sonderforschungs­
bereich 342 of the TU Muenchen, and the second author by ESPRIT project
3006 (CONCUR).

TABLE OF CONTENTS

Introduction 112
1 Branching and abstraction 114
2 Axioms 124
3 Branches and traces 136
4 Completeness proofs 142
5 Features 151
6 Refinement 157

111

112 II. Branching time and abstraction in bisimulation semantics

INTRODUCTION
When comparing semantic equivalences for concurrency, it is common practice to
distinguish between linear time and branching time equivalences (see for instance DE
BAKKER, BERGSTRA, KLOP & MEYER [13], PNUELI [106]). In the former, a
process is determined by its possible executions, whereas in the latter also the
branching structure of processes is taken into account. The standard example of a
linear time equivalence is trace equivalence as employed in HOARE [75]; the standard
example of a branching time equivalence is observation equivalence or bisimulation
equivalence as defined by MILNER [92] and PARK [103] (cf. MILNER [94-96]) .
Furthermore, there are several decorated trace equivalences in between (see Chapter
I), preserving part of the branching structure of processes but for the rest resembling
trace equivalence.
Originally, the most popular argument for employing branching time semantics was
the fact that it allows a proper modelling of deadlock behaviour, whereas linear time
semantics does not. However, this advantage is shared with the decorated trace
semantics which have the additional advantage of only distinguishing between
processes that can be told apart by some notion of observation or testing. The main
criticism on observation equivalence - and branching time equivalences in general - is
that it is not an observational equivalence in that sense: distinctions between processes
are made that cannot be observed or tested, unless observers are equipped with
extraordinary abilities like that of a copying facility together with the capability of
global testing as in ABRAMSKY [1].
Nevertheless, branching time semantics is of fundamental importance in concurrency,
exactly because it is independent of the precise nature of observability. Which one of
the decorated trace equivalences provides a suitable modelling of observable
behaviour depends in great extend on the tools an observer has, to test processes. And
in general a protocol verification in a particular decorated trace semantics, does not
carry over to a setting in which observers are a bit more powerlul. On the other hand,
branching time semantics preserves the internal branching structure of processes and
thus certainly their observable behaviour as far as it can be captured by decorated
traces. A protocol, verified in branching time semantics, is automatically valid in each
of the decorated trace semantics.

Probably one of the most important features in process algebra is that of abstraction,
since it provides us with a mechanism to hide actions that are not observable, or not
interesting for any other reason. By abstraction, some of the actions in a process are
made invisible or silent. Consequently, any consecutive execution of hidden steps
cannot be recognized since we simply do not 'see' anything happen.
Algebraically, in ACP't of BERGSTRA & KLOP [20] abstraction has the form of a
renaming operator which renames actions into a silent move called 't. In MILNER's
CCS [92] these silent moves result from synchronization. This new constant 't is
introduced in the algebraic models as well: for instance in the graph models (cf.
[20,92]) we find the existence of 't-edges, and so the question was how to find a

Introduction 113

satisfactory extension of the original definition of bisimulation equivalence that we
had on process graphs without 't.
It turns out that there exist many possibilities for extending bisimulation equivalence
to process graphs with '!-steps. One such possible extension is incorporated in
Milner's notion of observation equivalence - called -r-bisimulation equivalence in [20]
-, which resembles ordinary bisimulation, but permits arbitrary sequences of '!-steps
to precede or follow corresponding atomic actions. A different notion of so-called 11-
bisimulation was suggested by BAETEN & VAN GLABBEEK [11] invoking a weaker
set of abstraction axioms. In Mll.NER [93] another notion of observational equivalence
was introduced which in this chapter is referred to as delay bisimulation equivalence.
As we will show, the treatments of Milner and Beaten & Van Glabbeek fit into a
natural structure of four possible variations of bisimulation equivalence involving
silent steps. The structure is completed by defining branching bisimulation
equivalence. As it turns out, observation equivalence is the coarsest equivalence of the
four, in the sense of identifying most processes. 11- and delay bisimulation
equivalence are two incomparable finer notions whereas branching bisimulation
equivalence is the finest of all.
In a certain sense the usual notion of observation equivalence does not preserve the
branching structure of a process. For instance, the processes a·(-r·b + c) and a·(-r·b +
c) + a·b are observation equivalent. However, in the first term, in each computation
the choice between b and c is made after the a-step, whereas the second term has a
computation in which b is already chosen when the a-step occurs. For this reason one
may wonder whether or not we should accept the so-called third '!-law - a ·('t·x + y) =
a·('t·x + y) + ax - (responsible for the former equivalence) and for similar reasons the
second - 't·x = 't·x + x.
The previous example shows us that while preserving observation equivalence, we
can introduce new paths in a graph that were not there before. To be precise: the traces
are the same, but the sequences of intermediate nodes are different (modulo
observation equivalence), since in the definition of observation equivalence there is no
restriction whatsoever on the nature of the nodes that are passed through during the
execution of a sequence of '!-steps, preceding or following corresponding atomic
actions. This is the key point in our definition of branching bisimulation equivalence:
in two bisimilar processes every computation in the one process corresponds to a
computation in the other, in such a way that all intermediate states of these
computations correspond as well, due to the bisimulation relation. It turns out that it
can be defined by a small change in the definition of observation equivalence.
The fact that observation equivalence is too rigid in its identifications is even stronger
illustrated by the problems that it may cause in practical applications and analysis . As
pointed out by GRAF & SIFAKIS [66] there is no modal logic with eventually operator
♦ which is adequate for observation equivalence. Here ♦ <\> means that all paths will
eventually pass to a state were <\> holds, and a logic l is adequate for an equivalence "'
if (V<\>E l: (p I= <\> <=> q I= <\>)) <=> p"' q. Indeed, suppose that such a logic would exist,
then this means that two processes are observation equivalent iff they satisfy the same
modal formulas . Thus, with respect to processes in CCS there exists a formula f such

114 II. Branching time and abstraction in bisimulation semantics

that: (c.nil + 't.b.nil) I= <j> and b.nil lj!, <1> since obviously both processes are not
observation equivalent. However, from (c.nil + 't.b.nil) I= <j> it follows that we have
a.(c .nil + 't.b .nil) I= ♦ <j> whereas from b.nil lj!, <1> we find a.(c.nil + 't.b.nil) + a.b.nil lj!,

♦ <j> although both processes are observation equivalent. Obviously, this inconsistency
is due to the third 't-law.
Another paper by JONSSON & PARROW [78) on deciding bisimulation equivalence
shows a different kind of struggle with the third 't-law (as was pointed out to us by
VAANDRAGER [121]). In this paper, infinite value passing is turned into a finite state
representation by considering symbolic transitions. This provides us with a method to
decide on the equivalence of certain infinite-state programs. It turns out to work easily
for strong equivalence, but in observation equivalence there is no straightforward
generalization of the former results and a less intuitive transition system is needed to
fix this problem. Using branching bisimulation may serve as a key to a more natural
solution of this problem.
Finally, if the actions a,b,c ... are not required to be atomic, one may want that two
equivalent processes remain equivalent after replacing actions my more complex
processes. In a setting with parallel operators this requirement leads to non­
interleaving equivalences (Chapter VI), but also in a setting with only sequential
processes this requirement is not met by observation equivalence, as can be seen by
replacing a by a1 .a2 in the third 't-law mentioned above. Again, branching
bisimulation does not suffer from this problem, as will be demonstrated in Section 6.
Having at least four options for the definition of bi simulation congruence involving 't­
steps, in any particular application it becomes important to have a clear intuition about
which kind of abstraction is preferable. In an important class of problems one can
prove however, that all four notions of bisimulation yield the same equivalence. In
particular this is the case if one of the two bisimulating graphs does not have any 't­
steps. It is interesting to observe that all case studies on protocol verification known to
the authors fit into this class of problems, hence all of their proofs that have been
given in the setting of observation equivalence still hold in branching bisimulation
semantics.

1. BRANCHING AND ABSTRACTION
In this section we define the semantic equivalences that we want to discuss on a
domain of process graphs. Since we focus on branching and abs1+action, we have
chosen to abstain from a proper modelling of divergence, concurrency, real-time
behaviour and stochastical aspects of processes. Moreover, we will disregard the
nature of the actions that our processes may perform: they will be modelled as
uninterpreted symbols a,b,c, ... from a given set Act. We have chosen process graphs
(or labelled transition systems) to represent processes, since they clearly visualize the
aspects of the modelled systems' behaviour we are interested in. The nodes in our
graphs (or states in our transition systems) remain anonymous. A common alternative
is to use closed expressions in a process specification language like CCS or ACP as
nodes in process graphs, but here we prefer to separate the semantic issues from the

1. Branching and abstraction 115

treatment of a particular language. In the next section, however, we will give an
interpretation of certain subsets of CCS and ACP in (parts of) the graph model and
discuss the algebraic aspects of our equivalences.

DEFINITION 1.1 A process graph is a connected, rooted, edge-labelled and directed
graph.

In an edge-labelled directed graph, edges go from one node to another (or the same)
node and are labelled with elements from a certain set Act. One can have more than
one edge between two nodes as long as they carry different labels. A rooted graph has
one special node which is indicated as the root node. We require process graphs to be
connected: they need not be finite, but one must be able to reach every node from the
root node by following a finite path. If r and s are nodes in a graph, then r ➔as

denotes an edge from r to s with label a or it will be used as a proposition saying that
such an edge exists. Process graphs represent concurrent systems in the following
way: the elements of Act are actions a system may perform; the nodes of a process
graph represent the states of a concurrent system; the root is the initial state and if r ➔a

s, then the system can evolve from state r to state s by performing an action a. The
domain of process graphs will be denoted by G.
On G we consider the notion of bisimulation equivalence, which originally was due
to PARK [103) and used in MII...NER [94-96) and in a different formulation already in
MII...NER [92). On the domain of process graphs, a bisimulation usually is defined as a
relation R c nodes(g)xnodes(h) on the nodes of graphs g and h satisfying:

i. The roots of g and hare related by R
ii. If R(r,s) and r ➔a r', then there exists a node s' such thats ➔a s' and R(r',s')
iii. If R(r,s) ands ➔as', then there exists a node r' such that r ➔a r' and R(r',s') .

Equivalently - as is done in this chapter - one can obtain bisimulation equivalence
from a symmetric relation R between nodes of g and h, only satisfying (i) and (ii) .
Such a symmetric relation can be defined as a relation R c nodes(g)xnodes(h) u
nodes(h)xnodes(g) such that R(r,s) ¢::> R(s,r), or alternatively, as a set of unordered
pairs of nodes R c {{r,s}: rEnodes(g), sEnodes(h)} . In the latter case R(r,s)
abbreviates { r,s }ER. Note that this restriction to symmetric relations does not cause
any loss of generality.

DEFINITION 1.2 Two graphs g and h in G are bisimilar - notation: gt::th - if there exists
a symmetric relation R between the nodes of g and h (called a bisimulation) such
that:
i. The roots of g and h are related by R
ii. If R(r,s) and r ➔a r', then there exists a node s' such that s ➔a s' and R(r',s').

Bisimilarity turns out to be an equivalence relation on G which is called bisimulation
equivalence. Depending on the context we will sometimes use Milner's terminology
and refer to bisimulation equivalence as strong equivalence or strong congruence.

116 II. Branching time and abstraction in bisimulation semantics

Now let us postulate the existence of a special action 'tE Act, that represents an
unobservable, internal move of a process. We write r ⇒ s for a path from r to s
consisting of an arbitrary number(~) of 't-steps.
The definition of strong congruence was the starting point of MILNER [92] when he
considered abstraction in CCS. Having in mind that 't-steps are not observable, he
suggested to simply require that for g and h to be equivalent, (i) every possible a-step
(a;t:'t) in the one graph should correspond with an a-step in the other (as for usual
bisimulation equivalence), apart from some arbitrary long sequences of 't-steps that
are allowed to precede or follow, and (ii) every 't-step should correspond to an
arbitrary long (~O) 't-sequence. This way he obtained his notion of observation
equivalence (cf. MILNER [92,94-96]) - or 't-bisimulation equivalence - which can be
defined as follows:

DEFINITION 1.3 Two graphs g and h are 't-bisimilar - notation: g i:i "th - if there exists a
symmetric relation R (called a 't-bisimulation) between the nodes of g and h such
that:
i. The roots are related by R
11. If R(r,s) and r ➔a r', then either a='t and R(r',s), or there exists a path

s ⇒ s1 ➔a s2 ⇒ s' such that R(r',s').

Again, i:::l"t is an equivalence on G which is called 't-bisimulation equivalence, also
known as observation equivalence.
To some extend, the notion of 't-bisimulation cannot be regarded as the natural
generalization of ordinary bisimulation to an abstract setting with hidden steps. The
reason for this is the fact that an important feature of a bisimulation is missing for 't­
bisimulation, which is the property that any computation in the one process
corresponds to a computation in the other, in such a way that all intermediate states of
these computations correspond as well, due to the bisimulation relation. When
HENNESSY & MILNER [72] introduced the first version of observation equivalence,
they also insisted on relating the intermediate states of computations, as they tell us:
" ... any satisfactory comparison of the behaviour of concurrent programs must take
into account their intermediate states as they progress through a computation, because
differing intermediate states can be exploited in different program contexts to produce
different overall behaviour ... " and: "If we consider a computation as a sequence of
experiments (or communications), then the above remarks show that the intermediate
states are compared. In fact, if p is to be equivalent to q, there must be a strong
relationship between their respective intermediate states. At each intermediate stage in
the computations, the respective "potentials" must also be the same". However, in
Milner's observation equivalence, when satisfying the second requirement of
Definition 1.3 one may execute arbitrarily many 't-steps in a graph without worrying
about the status of the nodes that are passed through in the meantime.

1. Branching and abstraction 117

(a)

(b)

(c)

FIGURE 1. Observation equivalence.

As an illustration, in Figure 1 we consider a path a·'t ·b·'t·c with outgoing edges
d1, ... ,d4, and it follows easily that all three graphs are observation equivalent. Note
that one may add extra b-edges as in (b) and (c) without disturbing equivalence.
However, in both (b) and (c) a new computation path is introduced - in which the
outgoing edge d2 (or d3 respectively) is missing - and such a path did not occur in (a) .
Or - to put it differently - in the path introduced in (b) the options d1 and d2 are
discarded simultaneously, whereas in (a) it corresponds to a path containing a state
where the option d1 is already discarded but d2 is still possible. Also in the path

118 II. Branching time and abstraction in bisimu/ation semantics

introduced in (c) the choice not to perform d3 is already made with the execution of
the b-step, whereas in (a) it corresponds to a path in which this choice is made only
after the b-step. Thus we argue that observation equivalence does not preserve the
branching structure of processes and hence lacks one of the main characteristics of
bisimulation semantics.
Consider the following alternative definition of bisimulation in order to see how we
can overcome this deficit.

DEFINITION 1.4 Two graphs g and hare branching bisimilar - notation: g i:ib h - if
there exists a symmetric relation R (called a branching bisimulation) between the
nodes of g and h such that:
i. The roots are related by R
11. If R(r,s) and r ➔a r', then either a='t and R(r',s), or there exists a paths ⇒ s1
➔a s2 ⇒ s' such that R(r,s1), R(r',s2) and R(r',s').

In a picture, the difference between branching and 't-bisimulation can be characterized
as follows:

't

a a

't

FIGURE 2. Bisimulations with 't.

The double arrow corresponds to the symbol ⇒. Ordinary 't-bisimulation (Definition
1.3) says that every a-step r ➔a r' corresponds with a paths ⇒ s1 ➔a s2 ⇒ s' and so
we obtain Figure 2 without the lines marked with (1) and (2) . Branching bisimulation
moreover requires relations between r and s1 and between r' and' s2 and thus we
obtain Figure 2 with (1) and (2). Note that if g i:ib h then there exists a largest
branching bisimulation between g and h, since the set of branching bisimulations is
closed under arbitrary union. One can easily check that branching bisimilarity is an
equivalence on G, referred to as branching bisimulation equivalence or branching
equivalence for short.
Obviously, branching equivalence more strongly preserves the branching structure of
a graph since the starting and endnodes of the 't-paths s ⇒ s1 and s2 ⇒ s are related to
the same nodes. Observe that in Figure 1 there are no branching bisimulations
between any of the graphs (a), (b) and (c). In particular, adding extra edges as in (b)

1. Branching and abstraction 119

and (c) no longer preserves branching equivalence. Equivalently, we could have
strengthened Definition 1.3 (ii) by requiring all intermediate nodes in s ⇒ s 1 and s2 ⇒
s to be related with rand r' respectively. The fact that this alternative definition yields
the same equivalence relation can be seen by use of the following lemma:

LEMMA 1.1 (stuttering lemma)
Let R be the largest branching bisimulation between g and h.
If r ➔'t fJ ➔'t- - -➔'t rm ➔'tr' (m~0) is a path such that R(r,s) and R(r',s) then
V l:5i:5m: R(ri,S) .

PROOF First we prove Lemma 1.1 for a slightly different kind of bisimulation,
defined as follows:

DEFINITION A semi branching bisimulation between two graphs g and h is a
symmetric relation R between the nodes of g and h such that:
1. The roots are related by R
11. If R{v,w) and v ➔av' then either

(a) a='t and there exists a path w ⇒ w' such that R(v,w') and R(v',w'), or:
{b) there exists a path w ⇒ WJ ➔a w2 ⇒ w' such that R(v,w1), R(v',w2) and
R(v',w').

The difference with branching bisimulation is in case (a), which can be illustrated
by:

FIGURE 3. Semi branching (left) and branching bisimulation.

Now let(*) denote the property, mentioned in the lemma. Observe that (a) any
branching bisimulation is a semi branching bisimulation and {b) any semi
branching bisimulation satisfying (*) is a branching bisimulation.

CLAIM The largest semi branching bisimulation between g and h satisfies(*).

Let R be the largest semi branching bisimulation between g and h, let s be a node
and let r ➔'t fJ ➔'t ... ➔'t rm ➔'t r' (m~0) be a path such that R(r,s) and R(r',s).
Then we prove that R' = Ru{ {ri,s}: l~i~m} is a semi branching bisimulation. We
check the conditions:
(i) Clearly, the root nodes of g and hare related by R' (since by R).
(ii) Suppose R'(v,w) and v ➔av'. If R(v,w) then it follows that either (a) a='t and
there exists a path w ⇒ w' such that R(v,w') and R(v',w'), or (b) there exists a

120 II. Branching time and abstraction in bisimulation semantics

path w ⇒ WJ ➔a w2 ⇒ w' such that R(v,wJ), R(v',w2) and R(v',w'). Hence,
from Rd' we find that R' satisfies the requirements in the definition above.
So assume not R(v,w), then we find that either (1) v=s and w=ri or (2) v=ri and
W=S.

(1) Ifs ➔as' then it follows from R(r',s) that
either: a='t and there is a path r' ⇒ r" such that R(r",s) and R(r",s'). Hence there is
a path ri ⇒ r' ⇒ r" such that R'(r",s) and R'(r",s') as required.
or: there is a path r' ⇒ tJ ➔a t2 ⇒ r" such that R(tJ,s), R(t2,s') and R(r",s') and
hence
ri ⇒ r' ⇒ tJ ➔a t2 ⇒ r" with R'(tJ,S), R'(t2,s') and R'(r",s').
(2) If ri ➔a r" then r ➔'t ri ➔'t ••• ➔'t ri ➔a r" and since R(r,s) we find that there
exists a sequences ⇒ SJ ⇒···⇒ Si such that R(q,sJ), ... ,R(ri,Si), It follows from
R(ri,Si) that
either: a='t and there exists a path Si ⇒ s' such that R(ri,s') and R(r" ,s'). Hence
s ⇒ s' with R'(ri,s') and R'(r",s') as required.
or: there exists a path Si ⇒ tJ ➔a t2 ⇒ s" such that R(ri,tJ), R(r" ,t2) and R(r" ,s"),
and hence s ⇒ Si ⇒ tJ ➔a t2 ⇒ s" with R'(ri,tJ), R'(r" ,t2) and R'(r" ,s").
This proves that R' is a semi branching bisimulation. Since R is the largest we find
R=R'.

So we proved the claim. Finally, conclude that the largest semi branching
bisimulation is equal to the largest branching bisimulation, and thus we proved the
lemma. □

The stuttering lemma will play a crucial role in some of the results we will present
later.
It follows from Figure 2 that we can find two more kinds of bisimulation with 't, since
we can leave out (1) while still having (2) and vice versa. Consider the following two
definitions:

DEFINITION 1.5 Two graphs g and hare rt-bisimilar - notation g till h - if there exists
a symmetric relation R (called an rt-bisimulation) between the nodes of g and h
such that:
1. The roots are related by R
ii. If R(r,s) and r ➔a r', then either a='t and R(r',s), or there exists a path

s ⇒ SJ ➔a s2 ⇒ s' such that R(r,sJ) and R(r',s').

DEFINITION 1.6 Two graphs g and hare delay bisimilar - notation g tid h - if there
exists a symmetric relation R (called a delay bisimulation) between the nodes of g
and h such that:
1. The roots are related by R
11. If R(r,s) and r ➔a r', then either a='t and R(r',s), or there exists a path

s ⇒ SJ ➔a s2 ⇒ s' such that R(r',s2) and R(r',s').

1. Branching and abstraction 121

Notice the subtle differences between both definitions (and Definition 1.4). In
Definition 1.5 the notion of rt-bisimulation corresponds to Figure 2 without the
relation (2) but with (1). Similarly, with delay bisimulation we have (2) but not (1). It
is easy to see that in the definition of both branching and delay bisimulation the
existence requirement of a node s' such that s2 ⇒ s' and R(r',s') is redundant.
From the definitions we find immediately that g i::lb h ⇒ g i::lll h ⇒ g i::l-c hand
similarly
g i::lb h ⇒ g t::ld h ⇒ g t::l-c h. Observe that in Figure 1 we find an rt-bisimulation
between (a) and (c) and a delay bisimulation between (a) and (b). Conversely, there is
no rt-bisimulation between (a) and (b) and no delay bisimulation between (a) and (c),
so all implications are strict.
The notion of rt-bisimulation was first introduced by BAEfEN & VAN GLAB BEEK [11]

as a finer version of observation equivalence. A variant of delay bisimulation - only
differing in the treatment of divergence - first appeared in MlLNER [93], also under the
name observational equivalence.

HISTORICAL NOTE:
The first semantic equivalence preserving the branching structure of processes was
defined in HENNESSY & MILNER [72] and MILNER [92]. In [92] it was called strong
equivalence or strong congruence. It was defined in terms of a decreasing sequence
~o, ~1, ... , ~k,• •· of equivalence relations. Originally, these relations where defined
on CCS expressions that figured as states in transition systems, but one can also
define them on nodes of (possibly different) process graphs.

DEFINITION 1.7 Let rand s be nodes of process graphs. Then:
r ~o sis always true
r ~k+l s ifffor all aEAct

(i) if r ➔2 r' then there exists a node s' such thats ➔2 s' and r' ~ks'
(ii) ifs ➔2 s' then there exists a node r' such that r ➔2 r' and r' ~k s'

r ~ s iff for all kE N: r ~ks.
Two graphs g and h are strongly equivalent, notation g ~ h, if root(g) ~ root(h) .

A process graph is finitely branching if each node has only finitely many outgoing
edges. In [72] and [92] strong congruence was defined only on CCS expressions
corresponding with finitely branching graphs. On this domain, as was shown in [92),
strong congruence 'satisfies its definition' in the following sense:

PROPOSITION 1.2 Let rands be nodes of finitely branching process graphs.
Then r ~ s ifffor all aE Act:
i. if r ➔2 r' then there exists a nodes' such thats ➔2 s' and r' ~ s'
ii. ifs ➔2 s' then there exists a node r' such that r ➔2 r' and r' ~ s'.

Strong equivalence is closely related to the notion of bisimulation, introduced by
PARK [103] (cf. Definition 1.2). It is easy to verify that any bisimulation is included

122 II. Branching time and abstraction in bisimulation semantics

in each of the relations ~k for kE N. Hence bisimulation equivalence is at least as
discriminating as strong equivalence. On the other hand, from the former proposition
it follows that with respect to finitely branching process graphs strong equivalence is a
bisimulation, and hence the two notions coincide. With respect to infinitely branching
graphs, ~ is strictly coarser than bisimulation equivalence as can be seen from the
following example. Consider the graphs

a

~

a a

FIGURE 4. 'Strongly equivalent' graphs that are not bisirnilar.

One can easily verify that these graphs are strongly equivalent in the sense of
Definition 1.7, but not bisimilar.

PROPOSITION 1.3

i. With respect to finitely branching process graphs the notions~ and t:t coincide;
ii. With respect to infinitely branching process graphs t:t is strictly contained in~.

Starting from this observation, there are two different ways in which the notion of
strong equivalence (in HENNESSY & MILNER (72] and MILNER (92] defined on
finitely branching processes only) can be extended to infinitely branching process
graphs. In MILNER (94] strong equivalence is chosen to be the relation of Definition
1.2, so strong equivalence and bisimulation equivalence are synonyms.

In the presence of a special action 't, representing an unobservable move of a process,
one looks for a semantic equivalence that abstracts from internal moves in a process
and for the rest resembles bisimulation equivalence. In particular, such an abstract
equivalence has to satisfy some requirements such as:
- it is coarser than bisimulation equivalence

1. Branching and abstraction

- it is equal to bisimulation equivalence with respect to processes not containing 't­
edges

- it does not discriminate between the graphs

and

FIGURE 5. Contraction of internal moves.

123

The definition of strong congruence (~) was the starting point of HENNESSY &
MILNER [72] when they introduced abstraction in CCS. Having in mind that 't-steps
are not observable, they proposed that two process graph g and h are equivalent if
every visible step in the one graph corresponds with a similar step in the other, apart
from some arbitrarily long sequences of 't-steps that are allowed to precede or follow.
This way they obtained a notion of observational equivalence. Originally, this relation
was defined in the style of Definition 1.7, but in order to facilitate comparison with
the other equivalences, we will present it in bisimulation style.

DEFINITION 1.8 Two graphs g and h are observational equivalent in the sense of
HENNESSY & MILNER if there exists a symmetric relation R between the nodes of
g and h such that:
i. The roots are related by R
11. If R(r,s) and r ➔a r' (a#'t), then there exists a paths ⇒ SJ ➔a s2 ⇒ s' such that

R(r',s').

Unfortunately, this type of observational equivalence turned out not to be a
congruence for the CCS parallel composition operator, the free merge, or any other
operator representing concurrent activity (cf. HENNESSY & MILNER [72]).
Furthermore, we argue that it is not resistent against refusal testing as developed in
PHILIPS [105] (Refusal testing is essentially the testing notion of MILNER [92], but
without replication facility).

EXAMPLE Consider the two process graphs on the next page:

124 II. Branching time and abstraction in bisimulation semantics

-----------------G-. a a

a ----------~---•• -- b c .' b .
C • . .

I
:_______ ..

-.-------- . ~

b •·- ••• _ - - - - - --::-·•••:_ - - --::_-.-_:.··

........ -...-------.-: :: =~-- --------· -
FIGURE 6. Observational equivalence does not respect refusal testing.

These graphs are observational equivalent in the sense of HENNESSY & MILNER
[72); the relation R has been indicated in the figure above. Now expose them to
the experiments a, d and c (in this order). The process on the right may respond as
follows: a is accepted, d is refused and c is accepted (another possible respons
would be: a accepted, d refused and c refused). However, this respons would not
be possible in the process on the left: the attempt to execute the action d would
cause the 't-edge to be executed, and then c cannot happen anymore.

Hence MILNER's version of observation equivalence [92) (which we call 't·
bisimulation equivalence) can be regarded as an improvement. Both notions satisfy
the requirements mentioned above, but additionally 't-bisimulation equivalence is a
congruence for the CCS parallel composition operator and is resistent against refusal
testing. Since observational equivalence in the sense of HENNESSY & MILNER [72) is
coarser than 't-bisimulation equivalence, the criticism that -c-bisimulation equivalence
does not preserve the branching structure of processes also applies to the variant of
HENNESSY & MILNER [72).

2. AXIOMS
In this section we will turn several parts of our graph domain G into algebras, by
defining some operations on them. This will enable us to give equational
characterizations of the equivalences studied in the previous section. In the first
subsection we use the operators of the axiom system BPA't (cf. BERGSTRA & KLOP
[20)): action constants, alternative and sequential composition. In the second
subsection we take the operators inaction, prefixing and alternative composition of
CCS (cf. MILNER [92)). Finally, in the third subsection we combine the features of
the previous two approaches, thereby obtaining the kernel of the extended algebra
ACP't (cf. BERGSTRA & KLOP [20)). We will not consider parallel composition,
restriction (or encapsulation), hiding and relabeling. However, we claim that these can
be added without problem.

2. Axioms 125

2.1. BASIC PROCESS ALGEBRA
For sake of convenience, in this subsection we will only consider root unwound
process graphs, i.e . process graphs with no incoming edges at the root. Since each
bisimulation equivalence class of process graphs contains a root unwound graph, this
does not cause any loss of generality. Furthermore, we restrict ourselves to non-trivial
graphs - having at least one edge - and we assume our graphs to be divergence free ,
meaning that they do not contain infinite 't-paths. The latter restriction will be
cancelled later, but for the time being it suits us since having it we can stay closer to
CCS in our presentation. (NOTE: apart from arguments about presentation, one may
argue that there is still discussion about the role of divergence in bisimulation
equivalence on processes, such as the dichotomy between explicit divergence MILNER
[93], WALKER [126] and fair abstraction MILNER [92], BAETEN, BERGSTRA &
KLOP [9], see also Section 5.3). The domain of root unwound, non-trivial and
divergence free process graphs will be denoted by GBPA- Clearly GBPA \;;;; G.
In order to equip GBPA with some structure, we introduce two binary infix written
operators + and · and constants for every element in Act.

DEFINITION 2.1 The constants aEAct and the operators+ and· are defined on GBPA
as follows:
(i) Constants aE Act are interpreted by one-edge graphs labelled with a
(ii) (g + h) can be constructed by identifying the root nodes of g and h
(iii) (g·h) is constructed by identifying all endnodes (leaves) in g with the root of

h. If g is without endnodes, then the result is just g.

As in regular algebra we will often leave out brackets and ·, assuming that · will
always bind stronger than+.
The operators + and · are well -defined, even after deviding out bisimulation
equivalence on GBPA, as follows from the following proposition, the proof of which
is straightforward and omitted.

PROPOSITION 2.1 Bisimulation equivalence is a congruence with respect to the
operators+ and·.

Hence the structure (GBPAlt:::t,+;,Act) is a well-defined algebra. Considering its first
order equational theory we find the axiom system BPA (cf. BERGSTRA & KLOP [19])
which stands for Basic Process Algebra.

X + y = y + X Al
(x + y) + z = x + (y + z) A2
x+x=x A3
(x + y)z = xz + yz A4
(xy)z = x(yz) AS

Table 1. BPA.

126 II. Branching time and abstraction in bisimulation semantics

As usual, we assume the axioms from Table 1 to be universally quantified.
Now let us say that a theory r is a complete axiomatization of a model M if for every
pair of closed terms p and q we have: r I- p=q if and only if MI= p=q. This
definition deviates from the standard one, since usually also open terms are
considered. Then the following theorem is due to BERGSTRA & KLOP [20]:

THEOREM 2.2 BPA is a complete axiomatization of(GBPAh~,+,-,Act).

Observe that in the presence of the trivial graph, BPA is not sound with respect to
(GnpAIH,+,-,Act): axiom A4 no longer holds, with the trivial graph substituted for
the variable y. For this reason it was excluded from GnPA from the beginning.
In the same way one may wish to find axiomatizations for algebras resulting from
deviding out the other equivalences of Section 1. However, as it turns out these
equivalences are no congruences with respect to the operator +. In the case of
observation equivalence this problem was solved by MILNER [92] by simply taking
the closure of t:i-t with respect to all contexts in CCS, thereby obtaining observation
congruence. Similarly in HENNESSY & MILNER [72] observational congruence was
defined as the CCS-closure of their variant of obsevational equivalence (Definition
1.8) and this congruence coincides with the one of MILNER [92]. BERGSTRA & KLOP
[20] formulated an additional condition, yielding an immediate definition of
observation congruence by means ofbisimulation relations.

DEFINITION 2.2 (root condition) A relation R between nodes of process graphs is called
rooted if root nodes are related with root nodes only.

Observe that every bisimulation (see Definition 1.2) is rooted, but this is not
necessarily the case for the relations defined in Definitions 1.3-1.6. For any two
process graphs g and h and * E {t,b,T),d} we write R: g Hr• h if R is a rooted *­
bisimulation between g and h, and g Hr• h if such a relation exists.

THEOREM 2.3 For* E {t,b,T),d}, Hr• is a congruence on GBPA with respect to+ and

PROOF We prove Theorem 2.3 for t:irb. The other proofs proceed in the same way.
Hrb is reflexive since the identity relation is a rooted branching bisimulation
between any graph and itself, and it is symmetric by definition. Furthermore,
assume that R: g Hrb g' and S: g' Hrb g" and define: T(r,r") :<=> for some r' in g':
R(r,r') and S(r',r") . Now one can easily prove that T: g Hrb g", and so Hrb is
transitive. Thus we proved that t:irb is an equivalence. So it is left to prove that t:irb
respects the operators. Suppose that R: g Hrb g' and S: h t:irb h'.
±...:. We prove that (RuS): (g + h) Hrb (g' + h').
(i) Obviously the roots of (g + h) and (g' + h') are related.
(ii) Assume that in (g + h) we have an edge r ➔a r' and suppose we have
(RuS)(r,s) then from the construction of (g + h) it follows that this edge either

2. Axioms 127

originates from g or from h; let us say it is g. It follows from (RuS)(r,s) that we
have either R(r,s) or S(r,s), so we have two distinct cases:
Firstly, suppose that R(r,s). Then either a='t and R(r',s) - hence (RuS)(r',s) and
(RuS) satisfies Definition 1.4 - or there exists a paths ⇒ s1 ➔a s2 ⇒ s' in g' such
that R(r,s1), R(r',s2) and R(r',s'). Obviously, we can find the same path in (g' +
h') and we have that (RuS)(r,s1), (RuS)(r',s2) and (RuS)(r',s') as required.
Secondly, suppose that we do not have R(r,s). Then we have S(r,s), and since we
assumed that the edge r ➔a r' came from g, we find that r has to be the Uoint) root
node of g and h. However, in S root nodes are related with root nodes only (the
root condition), and so s must be the joint root node of g' and h'. Hence R(r,s),
which is a contradiction.
(iii) Obviously, the root nodes of (g + h) and (g' + h') are uniquely related by
(RuS).
:_;, we prove RuS: (g·h) t::trb (g'·h').
(i) Clearly, the roots of both graphs are related by R, hence by RuS.
(ii) Assume that in (g·h) we have an edger ➔a r' and suppose we have (RuS)(r,s)
then from the construction of (g·h) it follows that this edge either originates from g
or from h.
(1) Firstly, let us say it is from g. From (RuS)(r,s) we find that either R(r,s) or
S(r,s). Since r cannot be an endnode in g we have R(r,s). It follows from the fact
that R is a rooted branching bisimulation that either a='t and R(r',s) - hence
(RuS)(r',s) as required - or there is a path s ⇒ s1 ➔a s2 ⇒ s' in g' such that
R(r,sJ), R(r',s2) and R(r',s') and thus we find the same path in (g'·h') such that
(RuS)(r,s1), (RuS)(r',s2) and (RuS)(r',s'), as is required.
(2) Secondly, assumer ➔a r' is from h.
- In case R(r,s), we find that r is an endnode in g (since those are the only nodes of
g that are identified with nodes from h). Suppose sis an endnode in g', then it is
identified with the root node of h', and since S is a rooted branching bisimulation
we find:
either a='t and S(r',s), hence (RuS)(r',s);
or there exists a paths ⇒ SJ ➔ s2 ⇒ s' such that S(r,SJ), S(r',s2) and S(r',s') and
hence (RuS)(r,sJ), (RuS)(r',s2) and (RuS)(r',s') as required.
So let us assume that s is not an endnode in g', then it has at least one outgoing
edges ➔b SJ. Since Risa rooted branching bisimulation and R(r,s), we find that
b='t and R(r,SJ). The same argument holds for SJ and thus we find a path
s=so ➔'t SJ ➔'t s2 ➔'t •.. such that R(r,Si). Since all graphs in GBPA are divergence
free we have that all nodes Si are distinct and furthermore the sequence
s=so ➔'t s1 ➔'t s2 ➔'t ••• has bounded length. Hence there exists a paths ⇒ s' to an
endnode s' in g', such that R(r,s') (and hence (RuS)(r,s')). Note that s' is
identified with the root node of h'. Combining this result with the former part, we
find that the conditions of Definition 1.4 are satisfied as required.
- In case not R(r,s), then S(r,s) and both rand s are from h and h' respectively.
Now the requirement follows immediately from the fact that S is a branching
bisimulation.

128 II. Branching time and abstraction in bisimu/ation semantics

(iii) Clearly, the root nodes are uniquely related by (RuS). D

IllEOREM 2.4 Provided that there exists al least one action aE Act with a:;e-r, tir• is the
coarsest congruence on GsPA with respect to + that is contained in ti*• for
* E {t,b,rt,d}. Hence tirt coincides with observation congruence.

PROOF The idea for this proof is due to J .W. Klop (personal communication). Let g
and hE GsPA and suppose g+k ti* h+k for any graph kE GsPA· Suppose there is
an action aE Act (a:;e-r) that does not occur in g and h. Then g+a ti* h+a. Let R be a
*-bisimulation between g+a and h+a, then R must be rooted. Therefore the
restriction of R to the nodes of g and h is a rooted *-bisimulation between g and h.
If no 'fresh atom' aE Act can be found a variant of this method still works. First
note that for each infinite cardinal K there are at least K *-bisimulation equivalence
classes of graphs with less then JC nodes. (Choose an action aE Act (a:;e-r) and define
for each ordinal A.>0 the graphs gA as follows: g1=a, gA+l=gA+agA and for A a
limit ordinal gA is contructed from all graphs gµ for µ<l by identifying their roots.
Then with transfinite induction it follows that no two different gA's are *-bisimilar.
Furthermore, for infinite A, the cardinality of the nodes of gA is the cardinality of
A.) Thus for any two graphs g and h there must be a graph kE GsPA with the same
cardinality such that k is not bisimilar with any subgraph corresponding with a
node in g or h. Now take a *-bisimulation between gHk and h+tk. D

The equivalence relations tir• are called rooted *-bisimulation equivalence or
*-bisimulation congruence. As a consequence of Theorem 2.3, we find that all
structures (GBPAI ti .. ,+,-,Act) are well-defined algebras, every one of which may
satisfy a different equational theory. In a slightly different setting, MILNER [92) found
that the algebra (GnpAltin,+;,Act) can be completely axiomatized by BPA together
with the following three equations:

X'C = X Tl
'CX = 'CX + X T2
a(tx + y) = a(tx + y) + ax T3

Table 2. 't-laws (aeAct).

THEOREM 2.5 BPA + Tl-T3 is a complete axiomatization of(GBPAltin,+,,Act).

In the setting of BP A and process graphs, this theorem was first established in
BERGSTRA & KLOP [20). Its proof will be given in Section 4, together with the
proofs of the Theorems 2.6-2.8.

2. Axioms 129

From Figure 1 one can observe that the constructions (b) and (c) are highly
fundamental for the behaviour of 't in the graph model. For instance, by simplifying
Figure 1 (b) one finds the second 't-law T2, whereas T3 can be easily found from
Figure 1 (c). This shows us that the extra 't-laws T2 and T3 actually originate from the
fact that observation equivalence does not preserve branching structures.
Since branching bisimulation equivalence distinguishes between all three graphs in
Figure 1, we expect that the laws T2 and T3 will no longer hold in
(GBPAlt::trb,+,,Act) . As it turns out, axiom T3 is completely dropped and T2 is
considerably weakened to axiom H2 from the following table:

X't = X

x('t(y + z) + y) = x(y + z)
Hl (Tl)
H2

Table 3. 't-laws for branching bisimulation.

Hl is the same axiom as Tl whereas H2 is derivable from Tl and T2 as one can
check easily. Both axioms refer to the axiomatization of T\, a constant for abstraction
from BAETEN & VAN GLABBEEK [11] similar to 't . In fact they are a variation on the
first two Tt-laws in the sense that in [11] the second law H2 was only introduced for
atomic actions x, instead of taking x as a general variable ranging over all processes.
On the domain of closed terms the two variants are equally powerful.

THEOREM 2.6 BPA + Hl-H2 is a complete axiomatization of(GBPAlt::trb,+,,Act).

Obviously, t::tr11 is a coarser notion than t::trb and it respects the axioms Hl-H2. As it
turns out we have the additional axiom H3 which was introduced earlier as T3.

X't = X

x('t(y + z) + y) = x(y + z)
a('tx + y) = a('tx + y) + ax

Table 4. 11-laws (ae Act).

Hl (Tl)
H2
H3 (T3)

BAETEN & VAN GLAB BEEK [11] established a completeness theorem for rooted
Tt-bisimulation:

THEOREM 2.7 BPA + Hl-H3 is a complete axiomatization of (GBPAlt::tr11,+,,Act).

130 II. Branching time and abstraction in bisimulation semantics

So, on closed terms, the difference between H2 and T2 is precisely all the difference
there is between the usual 't-laws and 11- Finally a completeness theorem for delay

bisimulation was (in the setting of CCS) established by WALKER [126].

THEOREM 2.8 BPA + Tl-T2 is a complete axiomatization of(GBPAllirt,.,+,·,Act).

Resuming we have the following diagram (see Figure 7):

REMARK

weak bisimulation

Tl, T2, T3

~~
r11 -bisimulation

Hl, H2, H3

delay bisimulation

Tl, T2

Tl

T2
T3

~~
branching bisimulation

Hl , H2

X't = X
x('t(y + z) + y) = x(y + z)

'tX = 'tX + X
a('tx + y) = a('tX + y) + ax

Hl
H2

H3

FIGURE 7. Four notions of bisimulation with 'C (ae Act).

In case we do not restrict to root unwound process graphs the definitions of the
various bisimulations become a little more complicated. In particular the root
conditions will have a different form (cf. BAETEN & VAN GLAB BEEK [11]) and the
definition of the operator + on process graphs has to be changed.

2.2 ccs
In the setting of CCS we extend the graph domain GBPA to Gees consisting of the
root unwound process graphs, thus no longer excluding the trivial graph (the one­
node graph without edges) nor any of the graphs with divergences (i.e. infinite 't­

paths) . We obtain: GBPA ~Gees~ G.
We introduce a constant O for inaction, a binary infix written operator+ for alternative
composition, and unary operators a . for prefixing (aE Act).

2. Axioms 131

DEFINITION 2.3 The constant 0 and the operators + and a. are defined on Gees as
follows:
(i) The constant 0 is interpreted as the trivial graph
(ii) (g + h) can be constructed by identifying the root nodes of g and h
(iii) (a.g) is constructed from g by adding a new node which will be the root of

a.g, and a new a-labelled edge from the root of a.g to the root of g.

We will often leave out brackets, assuming that + will be the weakest operator
symbol. For agents p we will often write ap instead of a.p in order to avoid non­
essential distinctions between CCS and ACP. Similarly, we write Act for the set of
prefix operators {a.: aE Act}. MILNER [92] proved that the operators from Act and+
all are well-defined on Gees! t:1:

PROPOSITION 2.9 Bisimulation equivalence is a congruence with respect to the
operators from Act and +.

So again, the structure (Geeslt:1 ,0,+,Act) is a well-defined algebra, and as in the case
of (GBPAlt:1,+;,Act) we can find a complete axiomatization of its equalities with
respect to closed terms:

X + y = y + X Al
(x + y) + z = x + (y + z) A2
x+x=x A3
x+0=x A6

Table 5. Basic ees.

Let us call the theory from Table 5 Basic CCS, and write BCCS := AI-A3,A6. Then
the following theorem is due to HENNESSY & MILNER [72] and MILNER [92].

THEOREM 2.1 O BCCS is a complete axiomatization of (Gees! t:1 ,0,+,Act).

As before, we have four other equivalences t:1r+ for* E {'t,b,fl,d} on Gees which can
be considered. First we establish that they are congruences.

THEOREM 2.11 For* E {'t,b,fl,d}, t:1r+ is a congruence on Gees with respect to+ and
Act.

PROOF We prove it for t:1rb. The other proofs proceed in the same way.
The proof that t:1rb is an equivalence and respects+ can be copied from the proof
of Theorem 2.3. So it is left to prove that it respects the operators in Act. So
suppose that R: g t:1rb g' and p, p' are the root nodes of a.g and a.g'. Put R * :=
Ru{p,p'}. Then we prove R*: (a.g) t:1rb (a.g').

132 JI. Branching time and abstraction in bisimulation semantics

(i) Clearly, the roots of both graphs are related by R*.
(ii) Assume that in (a.g) we have an edge r ➔b r' and suppose we have R *(r,s)
then from the construction of (a.g) it follows that either r=p or this edge originates
from g.
If r=p then by the definition of R * we have s=p'. Furthermore, b=a and r' is the
root node of g and by the construction of prefixing we find that in g' there exists
an edges ➔as' to the root node s' of g'. Since Risa branching bisimulation we
find R(r',s') and hence R*(r',s').
If r ➔b r' originates from g then it follows from the definition of R * that R(r,s),
from which the requirement follows immediately.
(iii) Clearly, the root nodes are uniquely related by R *. D

It follows from Theorem 2.4 that t:tr• is moreover the coarsest BCCS-congruence
contained in t:::t •.
Now consider the axioms from the following table:

Hl' a'tx = ax Tl'
H2' a('t(y + z) + y) = a(y + z)

'CX = 'CX + X T2'
H3' a('tx + y) = a('tx + y) + ax T3'

Table 6. 't-laws in CCS (aeAct).

The only difference between these axioms and the ones introduced in the previous
section is the replacement of sequential composition by prefixing in the axioms Tl
(Hl) and H2. The prime accents (') refer to this replacement. Note that Hl' is
derivable from H2. We find the following completeness results:

THEOREM 2.12

(i) BCCS is a complete axiomatization of (Gccslt::t,0,+,Act)
(ii) BCCS + Tl '-T3' is a complete axiomatization of (Gccslt:tn,0,+,Act).
(iii) BCCS + H2' is a complete axiomatization of (Gccslt:tro,0,+,Act).
(iv) BCCS + H2'-H3' is a complete axiomatization of (Gccslt::t 111 ,0,+,Act).
(v) BCCS + Tl'-T2' is a complete axiomatization of(Gccslt:trd,0,+,Act).

For the proof of Theorem 2.12, we refer to Section 4.

2.3. TERMINATION
In the previous two subsections, we presented two models: the model
(GBPAlt:::tr•,+,,Act) for BPA with sequential composition, and (Gccslt:::tr+,0,+,Act)
for BCCS with prefixing. As we argued before, including the trivial graph in

2. Axioms 133

GapAlt=tr• would destroy the soundness of BPA in the corresponding model, i.e. of
the axiom A4. Furthermore, from GBPAlt:tr• we have to exclude graphs containing
infinite 't-paths since otherwise sequential composition no longer respects the
equivalences - i.e. the equivalences t=tr• are no longer congruences with respect to ·.
For consider the following example:

f:::tr *

't

FIGURE 8. Equivalent graphs with and without divergence.

In Figure 8, we find two equivalent graphs, one with and one without divergence,
which we informally denote by a·'tro and a. So: a·'tro t:tr,o a, for *E {'t,b,Tl,d} .
However, since a·'tro does not contain any endnodes we find that (a·'tro)·b = a·'tro and
a·'tro $!t ab. So in the presence of divergence t:tr• no longer is a congruence with
respect to·.
The question arises whether the virtues of (G BPAI t:tr,.,+,-,Act) and
(Geeslt:tr,.,0,+,Act) can be conbined, i.e. whether it is possible to define inaction
and general sequential composition in one model (without destroying the intuitively
plausable axiom A4) as well as to define general sequential composition on graphs
with possible divergence paths, while respecting the equivalences. We will give a
positive answer to this question by once again extending Gees to a larger domain
GAeP (so: GBPA kGees kGAep).
Let us extend the set Act with an additional label, written as ✓. Then, in GACP we
will distinguish between successful and unsuccessful termination of a process by
adding a termination edge to the endnodes which are considered to terminate
successfully. Such termination edges consist of an outgoing edge labelled with ✓ to a
new endnode. Let GACP consist of all graphs that can be obtained from non-trivial,
root unwound graphs from GBPA by adding termination edges to some of their
endnodes. Next we add the trivial graph to GAeP but assume that GAeP is without
the graph consisting of a single termination edge, i.e. the graph representing instant
termination.
Observe that in graphs from GAeP every node has at most one outgoing termination
edge and if it has one, then it does not have any other outgoing edges. Furthermore, if
a node has an incoming termination edge then it is an endnode and it does not have
any other incoming edges. We immediately find that Gees k G AeP and G AeP k
G✓, where G✓ is the set of process graphs with ✓ as a possible edge-label. The

134 II. Branching time and abstraction in bisimulation semantics

difference between Gees and GAeP is that the latter distinguishes between two kinds
of termination.

a

✓ ✓

FIGURE 9. Process graphs with termination edges.

With respect to the algebraic operators, we simple combine the operators from BPA
and ACP, but we adapt the definitions of action constants and sequential composition
to the presence of ✓-labels. This is done in the following definition. The new operator
for sequential composition will again be denoted by ·, and similarly for action
constants. It will appear from the context (whether it is about GBPA or GAeP) which
one of the Definitions 2.1 and 2.4 presents their current interpretation. In case of
doubt we underline the BPA operators.

DEFINITION 2.4 On G AeP the constants O and a (for aE Act) and the operators + and ·
are defined as follows:
(i) 0 is the trivial graph
(ii) Constants aE Act are interpreted by the left hand side of Figure 9
(iii) (g + h) can be constructed by identifying the root nodes of g and h
(iv) (g·h) is constructed by identifying every node in g with an outgoing

termination edge with the root node of h while deleting its termination edge.
The root node of (g·h) is that of g. If g is without termination edges, then
(g·h) is just g.

The prefixing operator of CCS can now be defined by: a.g=a·g. In the subdomain
Gees of G AeP all processes end in deadlock (unsuccesful termination), so g·h=g.
This explains the absence of sequential composition on Gees. Let G'BPA be the
subdomain of G AeP consisting of all divergence free graphs from G AeP only ending
with succesful termination. Then (G'BPA,+,,Act) and (GBPA,+,.:.,Ail) are
isomorphic algebras and the latter can be interpreted as a notational abbreviation of the
former, where all ✓-labels have been left out.
On the new graph domain G AeP we can define the bisimulation relations from
Definition 1.2-1.6 and 2.2, taking into account that ✓E Act. That is, termination edges
are not treated anyhow different from other edges. The relations on GnPA, inherited

2. Axioms 135

through the isomorphism from G'BPA, coincide with the relations considered in
Subsection 2.1. However, this is no longer true if divergent graphs would be added
to Gar A; in that case all relations need an additional clause:

If R(r,s) and r is an endnode than there is a paths ⇒ s' to an endnode s'.
In order to prevent this complication in Section 2.1, there we treated divergence free
graphs only.
The fact that Definition 2.4 provides us with a proper algebraic structure on G ACP
follows from the following theorem:

THEOREM 2.13 All equivalences i:i, !:ire, i:irb, i:iI11 and i:ird are congruences with
respect to the operators + and · on G ACP·

PROOF Again we prove the theorem for i:irb• The fact the on G ACP they are
conguences with respect to+ can be found directly from the proof of Theorem 2.3.
Considering the proof for·, suppose that R: g i:irb g' and S: h i:irb h'. Let R' be
the restriction of R to the nodes in g that also appear in g·h (i.e. the nodes without
incoming ✓-edges). We prove that R'uS: (g·h) i:irb (g'·h').
(i) Clearly the roots of (g·h) and (g'·h') are related by R'uS.
(ii) Assume that in (g·h) we have an edge r ➔a r' and suppose (R'uS)(r,s), then
from the construction of (g·h) it follows that this edge either originates from g or
from h. If it is from g, then the proof proceeds as in the proof of Theorem 2.3. So
assume r ➔a r' is from h.
- In case R'(r,s), we find that in g the node r has an outgoing termination edge
r ➔ ✓ r" to an end node r" (since those are the only nodes of g that are identified
with nodes from h). Since R is a branching bisimulation, we find that in g' there
exists a path s ⇒ s' ➔✓ s" such that R(r,s') and R(r",s"). By applying the
definition of i:irb we even find that all nodes in s ⇒ s' are related with r.
Furthermore, by construction of (g'·h') the nodes' is identified with the root node
of h', and since S is a rooted branching bisimulation between hand h', we find:
either a="C and S(r',s'), hence (R'uS)(r',s');
or there exists a path s' ⇒ s1 ➔ s2 ⇒ s3 such that S(r,s1), S(r',s2) and S(r',s3)
and hence (R'uS)(r,s1), (R'uS)(r',s2) and (R'uS)(r',s3) as required.
- In case not R'(r,s), then S(r,s) and both rand s are from hand h' respectively.
Now the requirement follows immediately from the fact that S is a branching
bisimulation.
(iii) In GAcP the root node cannot have an outgoing termination edge, and hence
the root nodes of (g·h) and (g'·h') are only related by R' (they are not identified
with nodes from h or h'). Hence (R'uS) is rooted since R is. D

As a consequence, we find a well-defined algebra (GAcPli:i,0,+,,Act), and four
others with domain GAcPli:ir• (* E{"C,b,T\,d}). To start with, we find that the
following basic theory is valid in all five algebras (see Table 7):

136 Ill. Branching time and abstraction in bisimulation semantics

X + y = y + X Al
(x + y) + z = x + (y + z) A2
X+X=X M
(x + y)z = xz + yz A4
(xy)z = x(yz) A5
x+O=x A6
0·x = 0 A7

Table 7. BPAo.

The theory BPAo is the kernel of the axiom system ACP, introduced in BERGSTRA &
KLOP [19), where 0 was called 8. As before, we have the following completeness
theorem for the five respective algebras:

THEOREM 2.14

(i) BPAo is a complete axiomatization of(GAcPl~,o,+,,Act)
(ii) BPAo + Tl-TI is a complete axiomatization of (GAcPl~rr:,0,+,,Act)
(iii) BPAo + Hl-H2 is a complete axiomatization of(GACPl~rb,O,+,,Act)
(iv) BP Ao+ Hl-H3 is a complete axiomatization of (GAcPl~rri,0,+,,Act)
(v) BPAo + Tl-T2 is a complete axiomatization of(GACPl~rd,O,+,,Act) .

Again for the proof of this completeness theorem we refer to Section 4.

3. BRANCHES AND TRACES
As we saw in Figure 1, while preserving observation equivalence we are able to
introduce new 'paths' in a graph. To be more precise: in these new paths alternative
options may branch off at different places than in any of the old paths. So far, we
claimed to have solved this problem by defining a new kind of bisimulation, but as of
yet we still have to prove that our solution solves the problem in a fundamental way.
In this section we will establish an alternative characterization of branching
bisimulation. In fact, we will show the way in which branching bisimulation
preserves the branching structure of graphs. Let us first consider ordinary
bisimulation.

DEFINITION 3.1 A concrete trace of a process graph is a finite sequence (a1, a2, a3, ... ,
ak) of actions from Act, such that there exists a path ro ➔at ri ➔a2 ri ➔ ... ➔ak rk
from the root node ro.

3. Branches and traces 137

Two graphs g and h are said to be concrete trace equivalent, notation g =t h, if their
concrete trace sets (i.e. the sets of their concrete traces) are equal. It is easily checked
that =t is a congruence on GBPA and g t:i h ⇒ g =th. Consequently we find that
GBPAl=t is a model for BPA. Compared with bisimulation, concrete trace equivalence
makes much more identifications. For example, we find that GBPAl=t satisfies the
equation x(y + z) = xy + xz which cannot be proved from BPA.
The main reason for this is that in a concrete trace we lose information about the
potentials in the intermediate nodes. Therefore we cannot distinguish between
processes a(b + c) and (ab+ ac). In the following we will use colours at the nodes to
indicate these potentials.

DEFIN1TION 3.2 A coloured graph is a process graph with colours CE C as labels at the
nodes.

Obviously, in a coloured graph we have traces which have colours in the nodes:

DEFINITION 3.3 A concrete coloured trace of a coloured graph g is a sequence (Co, a1 ,
C1, a2, C2, ... , ak, Ck) for which there exists a path ro ➔al ri ➔a2 r2 ➔ ... ➔ak rk
in g, starting from the root node ro, such that ri has colour Ci,

The concrete coloured traces of a node r in a graph g are the concrete coloured traces
of the subgraph (g)r of g that has r as its root node. This graph is obtained from g by
deleting all nodes and edges which are inaccessible from r.
The question remains how to detect the colour of a node in a graph, or - to put it
differently - how to define the concept of 'potential in a node' properly. There are
several ways to do this. Probably the shortest definition is the following:

DEFINITION 3.4 A concrete consistent colouring of a set of graphs is a colouring of
their nodes with the property that two nodes have the same colour only if they have
the same concrete coloured trace set.

Obviously, the trivial colouring - in which every node has a different colour - is
consistent on any set of graphs. Note that - even apart from the choice of the colours -
a set of graphs can have more than one consistent colouring. For instance, consider a
set containing only an infinite graph representing aro or a·a·a .. , then obviously the
homogeneous colouring - in which every node has the same colour - is a consistent
one, as well as the alternating or the trivial colouring.
Let us say two graphs g and h are concrete coloured trace equivalent - notation: g =cc
h - if for some concrete consistent colouring on {g,h} they have the same concrete
coloured trace set, or equivalently the root nodes have the same colour. Then we have
the following important characterization:

138 Ill. Branching time and abstraction in bisimulation semantics

THEOREM 3.1 g t:t h if and only if g =cc h .

PROOF ⇒: Suppose R is the largest bisimulation relation between g and h. Let R be
the transitive closure of R, then R. is an equivalence relation on the set of nodes
from g and h. Let C be the set of equivalence classes induced by Rand label every
node with its own equivalence class. Then this colouring is consistent on g and h.
To see this let robe a node in g say, and (Co, ai, Ci, a2, C2, ... , ak, Ck) be a
concrete coloured trace which corresponds to a path ro ➔al ri ➔a2 r2 ➔ ··· ➔ak fk

starting from ro. Now suppose for some node so in h we have R(ro,so), then we
find from Definition 1.2 that so ➔al Si for some Si such that R(ri,si)- Thus ri and
Si have the same colour Ci. By induction we find that so has the same concrete
coloured trace (Co, ai, Ci, a2, C2, .. . , ak, Ck). So R preserves concrete coloured
trace sets, hence so does B.. Since the roots of g and h are related we find g =cc h.
(=: Suppose that g and h have the same concrete coloured trace sets. Then consider
the relation R which relates two nodes of g and h iff they are labelled with the same
colour. It is easy to prove that Risa bisimulation between g and h. □

So far we did not have any notion of abstraction in the definition of coloured traces,
so if a coloured graph has '!-labels then these are treated as if they were ordinary
actions. In the following definition we find how to abstract from these '!-steps. The
idea is simple: '!-steps can only be left out if they are inert, which says that they are
between two nodes that have the same colour (potentials). Thus it is not only that the
inert steps are not observable, but even more, they do not cause any change in the
overall state of the machine.

DEFINITION 3.5 A coloured trace of a coloured graph is a sequence of the form
(Co, ai , Ci, a2, C2, ... , ak, Ck) which is obtained from a concrete coloured trace of
this graph by replacing all subsequences (C, 't, C, 't, . .. , 't, C) by C.

DEFINITION 3.6 A consistent colouring of a set of graphs is a colouring of their nodes
with the property that two nodes have the same colour only if they have the same
coloured trace set. Furthermore such a colouring is rooted if no root-node has the
same colour as a non-root node.

For two root unwound graphs g and h let us write g =c h if for some consistent
colouring on {g,h} they have the same coloured trace set, and g =re h if moreover this
colouring is rooted. Then we find the following characterization for (rooted)
branching bisimulation:

THEOREM3.2

i. g t:t b h if and only if g =c h
ii . g t:trb h if and only if g =re h.

3. Branches and traces 139

PROOF ⇒: Suppose R is the largest (rooted) branching bi simulation between g and h.
Let R be its transitive closure and C the set of equivalence classes induced by B..
Then the colouring in which every node is labelled with its own equivalence class
is consistent (and rooted) on g and h.
To see this, let us write C(r) for the colour of the node r and assume that, for
certain nodes ro and so, R(ro,so) and ro has an coloured trace (Co, a1, C1, a2,
C2, ... , ak, Ck), Then there exists a path of the form ro ➔'tu 1 ➔ 't ... ➔ 't Um ➔al q
(m~O) such that C(q) = C1 and for all i: C(ui) = C(ro) = Co. For every edge
Ui ➔'t Ui+l (O~i<m, uo=ro) there exists a path Yi ⇒ Yi+! (vo=so) such that R(ui,Yi),
and all intermediate nodes are related to either Ui or Ui+l (by Lemma 1.1), hence all
Yi have the same colour Co. So we find a path so ⇒ vm with only one colour in the
nodes such that R(um,Ym).
Next, since Um ➔al fJ and R(um,Ym) we find that either a1='t and R(ri,vm) - in
which case C1 =Co in contradiction with (Co, a1, C1, a2, C2, ... , ak, Ck) being a
coloured trace - or there is a path vm ⇒ t1 ➔al SJ such that R(um,t1) and R(ri ,s1).
Again by Lemma 1.1 we find that t1 and all the intermediate nodes in ⇒ have the
same colour as Ym and so we find a coloured trace (Co, a1,C1) of so. By repeating
this argument k times, we find that so has a coloured trace (Co, a1, C1, a2, C2, ... ,
ak, Ck) and so R preserves coloured trace sets . Thus R induces a consistent
colouring and since the roots are related we find g =c h. If moreover R is rooted,
then so is the induced colouring.
¢::: : Consider a (rooted) consistent colouring such that the coloured trace sets of g
and h are equal with respect to that colouring. Let R be the relation between nodes
of g and h relating two nodes iff they have the same colour, then it is easy to see
that R is a (rooted) branching bisimulation. □

This characterization provides us with a clear intuition about what branching
bi simulation actually is, since the difference between inert steps - not changing the
state of the machine - and relevant 't-steps - that behave as common actions - is
visualized immediately by the (change of) colours at the nodes. It follows that
branching bisimulation equivalence preserves computations together with the
potentials in all intermediate states that are passed through.

Another way of looking at the canonical colouring of a graph is the following. Since
trace-equivalence is too weak to characterize branching bisimilarity we can add more
information to traces in order to distinguish between processes. Consider the
following definition:

DEFINITION 3.7 For ordinals a the a-trace set of a graph g is defined as follows:
1 . The a-trace set of a node r of g is the set of ally-traces of r, for y<a.
2. An a-trace of r is made of a sequence (To, a1, T1, a2, ... , ak, Tk), where ai are

actions from Act and Ti are a-trace sets such that g has a path of the form

140 Ill. Branching time and abstraction in bisimulation semantics

ro ➔al q ➔a2 ·· · ➔ak rk for which ri has a-trace set Ti, by replacing all
subsequences (T, 't, T, 't, ... , 't, T) by T.

3. The a-trace set of g is the a-trace set of its root.

Note that the 1-trace set of g is just the set of its concrete traces from which 't's have
been left out. Two graphs g and h are a-trace equivalent - notation g =a h - if they
have the same a-trace set. Let us say that they are hypertrace equivalent - notation
g = h - if g =ah for all ordinals a. Note that if A<a then g =ah implies g =,. h. From
this it immediately follows that if G' ~ G is a set of process graphs then on G' the
notion of a-trace equivalence stabilizes for some ordinal - i.e. there exists a closure
ordinal a such that, for g,hE G ', g = h iff g =a h. It will follow from the proof of
Theorem 3.3 that the smallest ordinal with (g =ah ¢=> g -=a+! h) is a closure ordinal.
Furthermore if G has cardinality p then p must be a closure ordinal. Next we prove
that hypertrace equivalence coincides with coloured trace equivalence:

THEOREM 3.3 g = h if and only if g =c h.

PROOF ⇒: Let G' be a set of process graphs containing g,h and all their subgraphs and
let a be the smallest ordinal such that, for g',h'EG', g' =ah' iff g' =a+! h'. If

g' =mi h' then by definition g' and h' have the same y-traces, for ~a. Since a­
traces are recognizable from there form, this implies that g' and h' must have the
same a-traces. Consider the colouring on g and h in which every node is coloured
with its own a-trace set. Now a coloured trace (Co, a1, C1, a2, ... , ak, Ck) of a
node r with a-trace sets Ci is just an a-trace and by definition of a we have that r
and r' have the same a-trace set only if they have the same a-traces, i.e. they have
the same colour only if they have the same coloured traces. Hence the colouring is
consistent.
Now g = h ⇒ g =a+! h ⇒ g and h have the same coloured traces ⇒ g =ch.
<=: Assume a consistent colouring on g and h such that the roots of g and h have
the same colour. Then with transfinite induction on y it is easy to prove that equally
coloured nodes have the same y-traces. D

Hence we find that= is equivalent to =c, and hence to i:ib (Theorem 3.2). Note that
compared to readiness semantics (cf. OLDEROG & HOARE [102)), possiblejutures
semantics (cf. ROUNDS & BROOKES [112)) and ready trace semantics (cf. BAETEN,
BERGSTRA & KLOP [10]) in an a-trace (a~l) we keep track of a lot more
information. Apart from just all one-step exits from the endstate of a partial execution
we are now able to see all traces (and higher traces) that can be chosen at every state
during the execution.
The notion of hypertrace equivalence gives us an indication of the amount of extra
information that is needed to turn trace equivalence into branching bisimulation

3. Branches and traces 141

equivalence. Furthermore, it provides us with an idea of how to build a consistent
colouring on a set of graphs by distinguishing more and more between nodes.
A construction similar to Definition 3.7 was used by MILNER (95] to characterize
observation equivalence in the spirit of Definition 1.7.

As a tool for further analysis we have the following proposition:

PROPOSITION 3.4 ft is possible to colour the nodes of a root unwound process graph g
in such a way that two nodes have the same colour if! they can be related by a
rooted branching autobisimulation on g (relating g with itself) . This colouring is
rooted and consistent.

PROOF For every root unwound process graph g the largest rooted branching
autobisimulation on g is an equivalence relation on the nodes. It follows from the
proof of Theorem 3.2 that every node can be labelled with its equivalence class as a
colour, in order to obtain a rooted consistent colouring.

This colouring of a graph is called its canonical colouring. Note that two nodes rands
of a root unwound process graph g have the same colour with respect to its canonical
colouring if and only if r,s =le root(g) and (g)r t:;t b (g)8 (the subgraph (g)r of g with root
r is defined in the beginning of this section) . In this case we say that rands are rooted
branching bisimilar. A root unwound graph is said to be in normal form if it has no 't­
loops r ➔'t r and each node has a different colour with respect to its canonical
colouring. Next we show that each root unwound process graph is rooted branching
bisimilar with exactly one normal form (up to isomorphism).

DEFINITION 3.8 Let g be a root unwound process graph and consider its canonical
colouring with colour set C. Let N(g) - the normal form of g - be the graph which
can be found from g by contracting all nodes with the same colour and removing 't­
loops. To be precise:
1 . N(g) has colours CE C as its nodes.
2. N(g) has an edge C ➔a C' (a=lc't) iff g has an edger ➔a r' such that C(r)=C and

C(r')=C', where C(r) denotes the colour of the node r.
3. N(g) has an edge C ➔'t C' iff C=lcC' and g has an edger ➔'tr' with C(r)=C and

C(r')=C'.

PROPOSITION 3.5 For all root unwound process graphs g: g t:;trb N(g).

PROOF Consider the canonical colouring on g, and the trivial colouring on N(g) in
which each node (being a colour from C) is labelled by itself. Let R be the relation
relating nodes from g and N(g) iff they have the same colour. Now it follows

142 Ill. Branching time and abstraction in bisimulation semantics

directly from the construction above that R is a rooted branching bisimulation
between g and N(g). □

So in every rooted branching bi simulation equivalence class of root unwound process
graphs there is a normal form. We proceed by showing that up to isomorphism there
is only one.

DEFINITION 3.9 A graph isomorphism is a bijective relation R between the nodes of
two process graphs g and h such that:
1. The roots of g and h are related by R
2 . If R(r,s) and R(r',s') then r ➔a r' is an edge in g iff s ➔a s' is an edge in h

(aEAct).

Note that a graph isomorphism is just a bijective bisimulation, or a bijective branching
bisimulation for that matter. Two graphs are isomorphic - notation g = h - iff there
exists an isomorphism between them. In that case g and h only differ with respect to
the identity of the nodes. Note that= is a congruence relation on process graphs.

THEOREM 3.6 (normal form theorem)

Let g and h be root unwound graphs that are in normal form.
Then g t:trb h if and only if g = h.

PROOF This follows since any bisimulation R: g t:trb h must be bijective:
(i) it is surjective because every node in g or h can be reached from the root; hence
by Definition 1.4 every node is related to some node in the other graph;
(ii) it is injective since every node is related with at most one other node: if two
different nodes in g are related to the same node in h, then these two are also related
by a branching autobisimulation on g, and so with respect to the canonical
colouring they have the same colour. But then by Definition 3.8 the nodes are
identical, which is a contradiction. □

Theorem 3.6 says that each equivalence class in G/ t::trb can be represented by one

special element: its normal form. It follows that g t:t rb h if and only if N(g) = N(h) .

4. COMPLETENESS PROOFS
In this section we will present the proofs of the completeness theorems 2.6, 2.7, 2.8
and 2.5. By means of a rather trivial adaption of the contents of this section one
obtains the completeness theorems for CCS and ACP't (Theorems 2.12 and 2.14) .
The basic idea in these proofs is to establish a graph rewriting system on finite
process graphs, which is confluent and terminating. Next we prove that (i) two
normal forms (with respect to the graph rewriting system) are bisimilar iff they are

4. Completeness proofs 143

equal (i.e. isomorphic), and furthermore that every rewriting step in the system (ii)
corresponds to a proof step in the theory, and (iii) preserves bisimulation. Then we
conclude:

two finite graphs are bisimilar iff they have the same normal form
if two graphs have the same normal form then the corresponding terms can be
proved equal.

To start with, let us consider some definitions.

DEFINITION 4.1 Let H ~ G be the set of finite process graphs and n+ ~ GBPA the
set of finite, non-trivial process graphs. Here a process graph is finite if it has only
finitely many paths.

Note that finite process graphs are acyclic and thus certainly root-unwound, and
contain only finitely many nodes and edges . Later on, we will establish a
correspondence between graphs from n+ and closed terms in BPA't, i.e. the signature
of BPA together with the extra constant 't. Below we will use the results form the
previous section, starting from Proposition 3.4.

DEFINITION 4.2 A pair (r,s) of nodes in a process graph g is called a pair of double
nodes if r;es, r,s "# root(g) and for all nodes t and labels aE Act: r ➔a t <=> s ➔a t.

DEFINITION 4.3 An edger ➔'ts in a process graph g is called manifestly inert if r "#

root(g) and for all nodes t and labels aE Act such that (a,t) "# ('t,s): r ➔at ⇒ s ➔at.

Figure 10. A pair of double nodes (left) and a manifestly inert 't-step.

144 Ill. Branching time and abstraction in bisimulation semantics

Note that for finite process graphs g, the requirement r,s -:t- root(g) in Definition 4.2 is
redundant. A 't-edge in a root unwound graph g is inert if it is between two rooted
branching bisimilar nodes (i.e. nodes that have the same colour in the canonical
colouring of g). For root unwound graphs it is easily checked that if (r,s) is a pair of
double nodes or if r ➔'t s is manifestly inert, then r and s are rooted branching
bisimilar. As one can see from Figure 10, it is essential in the Definitions 4.2 and 4.3
that this can be found by investigating the outgoing edges only up to one level. For
this reason, in Definition 4.3 the 't-step is called manifestly inert, since it can be
recognized as such. On H, sharing of double nodes and contraction of manifestly
inert 't-steps turns out to be strong enough to reduce a graph to its normal form. This
means that in the reduction process all rooted branching bisimilar nodes become
manifestly rooted branching bisirnilar.

THEOREM 4.1 A graph gE H without double nodes or manifestly inert edges is in
normal form.

PROOF Let gE H be a finite graph which is not in normal form. Then with respect to
its canonical colouring (Proposition 3.4) it has at least one pair of different nodes
with the same colour. Now define the depth d(s) of a node s as the number of
edges in the longest path starting from s, and the combined depth of two nodes as
the sum of their depths. Choose a pair (r,s) of different equally coloured nodes in g
with minimal combined depth. Consequently we have:
(*) if r' and s' have the same colour and d(r') + d(s') < d(r) + d(s) then r'=s'.
Without loss of generality assume d(s)$d(r). Then we prove the following two
statements:
1. if r ➔at (aE Act) is an edge in g and (a,t)-:t-('t,s), thens ➔a tis an edge in g
2. ifs ➔at (aE Act) is an edge in g, then either r ➔'ts or r ➔at is an edge in g.
From these two statements we find that if r ➔'t s is an edge in g then it is
manisfestly inert, and if r ➔'ts is not an edge in g, then (r,s) is a pair of double
nodes, which proves our theorem. Note that since r and s are different equally
coloured nodes, they both must be different from the root.
ad 1: Let r ➔at be an edge in g and (a,t)-:t-('t,s). Since rands have the same colour
(hence the same coloured traces) we find that either a='t and t has the same colour
as r and s, or s has the coloured trace (C(r), a, C(t)). In the first case it follows
from d(t) < d(r) and (*) that t=s, which is in contradiction with our assumption
(a,t)-:t-('t,s). So s has a coloured trace (C(r), a, C(t)). Suppose that s ➔'tu for a
node u with colour C(u)=C(s)=C(r), then it follows from d(u)<d(s) and (*) that
u=r, contradicting d(u)<d(s)$d(r). Hence there is a node u such thats ➔au and
C(t)=C(u), and since d(t) + d(u) < d(r) + d(s) we conclude from (*) that t=u.
Hence s ➔a t is an edge in g.
ad 2: Lets ➔a t be an edge in g. If C(t)=C(s)=C(r) then it follows from (*) and
d(t)<d(s) that r=t, in contradiction with d(t)<d(s)$d(r). So (C(s), a, C(t)) is a

4. Completeness proofs 145

coloured trace of s, and since r and s have the same colour (C(s), a, C(t)) is a
coloured trace of r as well. Now if r has an outgoing 't-edge r ➔'tu to a node with
the same colour C(r), then it follows from d(u) + d(s) < d(r) + d(s) and (*) that
u=s. If r has no such edge, then it has an edge r ➔3 u with C(u)=C(t), and since
d(u) + d(t) < d(r) + d(s) we find that u=t. Thus we proved that either r ➔'t s or
r ➔at, which proves (2). □

Theorem 4.1 tells us that all we need to do to turn a finite graph g into its normal form
is to repeatedly unify its pairs of double nodes and contract its manisfestly inert edges.
In the case of finite graphs this can be done in finitely many steps as follows:

DEFINITION 4.4 For any graph gE H the rewriting relation ➔H is defined by the
following two one-step reductions:
1. sharing a pair of double nodes (r,s): replace all edges t ➔3 r by t ➔3 s (if not
already there, otherwise just remove t ➔a r) and remover together with all its
outgoing edges from g;
2. contracting a manifestly inert step r ➔'ts: replace all edges t ➔3 r by t ➔3 s (if
not already there, otherwise just remove t ➔a r) and remover together with all its
outgoing edges from g.

PROPOSITION 4.2 The rewriting relation ➔H has the following properties:
i. Has well as H+ are closed under applications of ➔H
ii. ifg ➔Hhthengt:troh

iii. ➔His confluent and terminating.

PROOF (i) In applications of ➔H the root is never removed and in the resulting graph
all nodes remain reachable from the root. Never two edges with the same label
appear between the same two nodes. The graph also remains finite (and non­
trivial).
(ii) Suppose (r,s) is a pair of double nodes or r ➔1: sis a manifestly inert edge in g,
and g ➔H h identifies the nodes r and s (= removes the node r). Let I be the
identity relation on the nodes of h then Iu{ {r,s}} is a rooted branching
bisimulation between g and h. This is easy to prove from the Definitions 4.2 and
4.3.
(iii) ➔His terminating since it decreases the number of nodes, and every finite
process graph has finitely many nodes. Next, suppose g has two normal forms n
and n', then by the definition of ➔H n and n' are without pairs of double nodes
and without manisfestly inert edges. Thus by Theorem 4.1 n and n' are in normal
form. By (ii) it follows that n t::trb n' and hence by Theorem 3.6 (normal form
theorem) we haven= n'. □

146 Ill. Branching time and abstraction in bisimulation semantics

Next we will establish a correspondence between finite non-trivial graphs and closed
BPA-c-terms, such that the graph reductions of Definition 4.4 correspond to proof
steps in BPA + Hl,2.
Write s =rt for rt- s=t saying that s and tare equal modulo applications of axioms
from rand the standard axioms for equality (reflexivity, commutativity, transitivity
and replacement). It is quite easy to turn finite non-trivial graphs into BPA-c-terms as
follows. Let T(BPA-c) be the set of closed BPA-c terms.

DEFINITION 4.5 Let<·>: n+ ➔ T(BPA-c) be a mapping that satisfies

<g> = L r(g) ➔as is an edge in g; a·<(g)s> + L r(g) ➔b sis an edge in g; b.
s not an endnode s is an endnode

Here r(g) denotes the root node of gE n+ and if Pi is a BPA-c-term for iE I, with
l={i1, ... ,in} a finite non-empty set of indices, then LiE I Pi denotes a BPA-c-term
Pii + ... + Pin• Note that the notation LiE I Pi does not determine the order and
association of te terms Pi•

If gE n+ , r(g) ➔a s is an edge in g, and s is not an endnode, then (g)sE n+ .
Furthermore, since gE n+ is finite, r(g) has only finitely many outgoing edges, so the
requirement of Definition 4.5 is well-defined. Moreover, with induction to the depth
of its arguments, one easily proves that a mapping that meets this requirement exists .
However, for gE n+, this requirement determines <g> only modulo Al-A2.

PROPOSITION 4.3 //g,hE H+ and g = h, then Al-A2 I- <g> = <h>.
PROOF Tri vial.

DEFINITION 4.6 The denotation [p] of a BPA-c-term pin the graph domain G, is
defined by:

[a] = ac for aE A-c
[x + y] = [x] +G [y]
[x·y] = [x] ·c [y]
where ac, +G and ·care the interpretations in G, of the constants and operators
a, + and · of BPA-c, as defined in Definition 2.1.

Now it turns out that terms of the form <g> (for gEH+) are all of a specific shape,
and for terms of this shape,<·> is a left-inverse of [·], modulo Al-A2. Consider the
following definition:

DEFINITION 4.7 The set BT of basic terms over BPA-c is inductively defined by:
1. For all aE Act we have aE BT;
2. If p,qE BT then (p + q)E BT and for all aE Act: a·pE BT.

4. Completeness proofs 147

LEMMA 4.4 For gEH+, <g> is a basic term and if pE BT, then <[p]> =Al,2 p.

PROOF With induction to the structure of terms:
- Ifp = a (aEAct) then [p] is the one-edge graph labelled with a, and< [p] > = p.
- If p = a·u for some basic term u, then [p] is the graph with an edge labelled a,

followed by [u].
Then,< [p] >=a·< [u] > and so by induction we find that< [p] > =Al,2 a·u.

- Suppose p = u + v. One can easily see that for graphs g and h: < g +ah> =Al,2
<g> + <h>.
Then: Al-A2 I-< [u + v] > = < [u] > + < [v] > = u + v (by induction). D

LEMMA 4.5 (elimination)
For every closed BPA't-term p there exists a basic term q such that A4-A5 I- p = q.

PROOF By induction on the structure of p.
- If p = a (aE Act) then p is a basic term.
- If p = u·v and Lemma 4.5 can be proved for all terms smaller than p, then there

exist basic terms u' and v' such that A4-A5 I= u = u', v = v'. Now suppose u'
has the form (Lj ai"Wi + Lj bj), then we find:

A4-A5 I= p = u'·v' = (Li ai-Wi + Lj bj)·v' =
= Li (aj'Wi)·v' + Lj brv' (by axiom A4)
= Li ai'(wj•v') + Lj bp' (by axiom A5)
= Li ai-qi + Lj brv' for some basic terms qi (by induction)

which is a basic term again.
- If p = u + v then A4-A5 I= p = u' + v' for basic terms u' and v', and the sum of

two basic terms is again a basic term. D

PROPOSITION 4.6 For all closed BPA't-terms p we have: Al-A2+A4-A5 I- <[p]> = p.

PROOF If 'p=q' is an instantiation of A4 or A5 (possibly in a context) then < [p] >
=Al,2 < [q] >. Now the proposition follows immediately from the Lemma's 4.4
and 4.5. D

This concludes the establisment of a correspondence between y+ and T(BPA't). Next
we will show that every rewriting step on y+ corresponds to a proof step in BPA +
Hl-H2.

LEMMA 4.7 Let (r,s) be a pair of dubble nodes or r ➔'ts be a manifestly inert T-step in
a process graph g, such that neither r nor s are endnodes, and let aE Act. Then we
have: BPA + Hl-H21- a·<(g)r> = a·<(g)5>.

148 Ill. Branching time and abstraction in bisimulation semantics

PROOF In case (r,s) is a pair of dubble nodes r has an edger ➔at iff s has an edge s
➔at and so <(g)r> =AJ,2 <(g)s>, hence a·<(g)r> = a·<(g)s>-
In case r ➔'t s is a manifestly inert 't-step we distinguish two subcases: First
assume that r has more outgoing edges than only r ➔'ts. Then there must be basic
terms p and q such that

(1) <(g)r> =AJ,2 't·<(g)s> + P
(2) <(g)s> =AJ,2 P + q.

So we derive:
Al,2 + H2 f- a·<(g)r> = a·('t·<(g)s> + p) (by (1)) =

= a·('t·(p + q) + p) (by (2)) =

= a·(p + q) (by applying H2)
= a·<(g)s> (by (2)) .

In case r has no more outgoing edges than r ➔'ts we have <(g)r> = 't·<(g)s>,
hence

AS + Hl f- a·<(g)r> = a·('t·<(g)s>) = (a·'t) ·<(g)s> = a·<(g)s>- D

PROPOSITION 4.8 If g ➔y h then BPA + Hl-H2 f- <g> = <h>.

PROOF On H the rewriting relation ➔y can be decomposed in the following
elementary reductions:
Take a pair of double nodes (r,s) or a manifestly inert 't-step r ➔'ts and replace one
edge t ➔a r by t ➔as (if not already there, otherwise just remove t ➔a r) and if r
has no more incoming edges remover together with all its outgoing edges from g.
So it suffices to proof that if h is obtained from g by means of such an elementary
reduction, we have <g> =r <h>, where r = BPA + Hl-H2. From Definition 4.5
it follows that it even suffices to proof <(g)t> =r <(h)t>-
- First consider the case that neither r nor s are endnodes and there is no edge

t ➔as in g. Then <(g)t> =AJ,2 a·<(g)r> + p for certain basic term p. Lemma 4.7

says a·<(g)r> =r a·<(g)s>, hence <(g)t> =r a·<(g)s> + p =AJ ,2 <(h)t>.
- In case t ➔a s is an edge in g, and r,s are still assumed not to be endnodes we

have <(g)t> =AJ,2 a ·<(g)r> + a·<(g)s> + p =r a·<(g)s> + a·<(g)s> + p =A2 ,3

a·<(g)s> + p =AJ,2 <(h)t>-
- If (r,s) is a pair of double nodes than r is an endnode iff sis. In this case we have

<(g)t> =AJ,2 a+ p =AJ,2 <(h)t> if t ➔as is not an edge in g
and <(g)t> =AJ,2 a+ a+ p =A2,3 a+ p =AJ,2 <(h)t> otherwise.

- Finally if t ➔as is a manifestly inert 't-edge ands is an endnode in g, we have
<(g)t> =AJ,2 a·'t + p =HJ a+ p =AJ ,2 <(h)t> if t ➔as is not an edge in g
and <(gh> =AJ ,2 a·'t +a+ p =HJ a+ a + p =A2 ,3 a+ p =AI ,2 <(h)t>
otherwise. □

Now we are in the position to prove the completeness of BPA + Hl-H2 with respect
to GapAlttrb:

4. Completeness proofs 149

PROOF OF THEOREM 2.6: (soundness) The fact that <GBPAI t::trb,+,-,Act) is a model
for BPA + Hl-H2 follows easily by inspection of the axioms of BPA + Hl-H2.
(completeness) Let (GBPAlt::trb,+,-,Act) !=p=q for two closed BPArterms p,q,
then by definition [p] t::trb [q]. Let g and h be the unique normal forms of [p] and
[q] with respect to ➔H- By Proposition 4.2 we find g t::trb [p] t::trb [q] t::trb h.
From Theorem 4.1 it follows that g and h must be in normal form in the sense of
Section 3 and by the normal form theorem (Theorem 3.6) it then follows that g = h.
Thus we find BPA + Hl-H2 f- p = < [p]> = <g> = <h> = < [q]> = q using
Propositions 4.3, 4.6 and 4.8. So BPA + Hl-H2 is a complete axiomatization of

GBPAlt::trb. D

Next we will prove the other completeness theorems, using the earlier results in this
section. In fact we will extend the graph rewriting system to one which is 'typical' for
the corresponding bisimulation relation. The rewrite rules which are added to the
system are derived from Figure 1: in case ofT)-bisimulation we will saturate the graph
by exhaustively adding edges of the kind of Figure 1 (c), whereas in the case of delay
bisimulation we add edges as in Figure 1 (b) . For 't-bisimulation we do both. This
way we obtain normal forms which are saturated and which turn out to be unique
modulo rooted branching bisimulation. From there we establish the completeness
result precisely in the same way as before.

DEFINITION 4.8 Let aE Act, then:
1. The rewriting relation ➔ri is defined on H by the rule:

if a graph has a paths ➔a s1 ➔'ts' without an edges ➔as' then adds ➔as'.

2. The rewriting relation ➔d is defined on H by the rule:
if a graph has a paths ➔'t s1 ➔as' without an edges ➔as' then adds ➔as'.

3. Furthermore, we set: ➔'t = ➔ri u ➔d-

Applications of ➔ri, ➔d or ➔'tare referred to as saturation steps (cf. BERGSTRA &
KLOP [21]).

PROPOSITION 4.9 The relations ➔ri, ➔d and ➔'t satisfy the following properties:
i. Has well as H+ are closed under applications of ➔ri, ➔d and ➔'t
ii . ➔ri, ➔d and ➔'tare confluent and terminating.

PROOF (i) Directly from Definition 4.8.
(ii) (termination) Let gE H. Let n(g) be the (finite) number of nodes in g, l(g) be the
number of labels and e(g) be the number of edges in g. Note that n(g) and l(g) are
not changed by ➔ri, ➔d and ➔'t whereas e(g) increases with every saturation step.
Since g is finite we find that e(g) < n(g)xl(g)xn(g) and so n(g)xl(g)xn(g) - e(g) is
positive and decreasing with the number of saturation steps.
(confluence) ➔ri, ➔d and ➔'t do not eliminate redexes. D

150 Ill. Branching time and abstraction in bisimulation semantics

So from Proposition 4.9 we find that any graph gE H has unique normal forms with
respect ➔l], ➔d and ➔'t- These are written as H(g), D(g) and T(g) and (in that order)
are called Tl-, d- and 't-saturated. The latter is also often referred to as the transitive
closure of 't-steps. Furthermore, saturation preserves the corresponding bisimulation:

PROPOSITION 4.10 For all g,hE H:
i. ifg ➔'Tlhthengi:tn,h

ii. ifg ➔dhthengi:trdh

iii. if g ➔'t h then g i:i r't h.

The proof of the Proposition 4.10 is straightforward.

THEOREM 4.11 (normal form theorem) Let g,hE H, then
i . if g and hare 71-saturated process graphs, then g i:i rTI h if and only if g i:i rb h
ii. if g and hared-saturated process graphs, then g lird h if and only if g i:irb h
iii. if g and hare -r-saturated process graphs, then g i:i r't h if and only if g i:i rb h.

PROOF We will only prove (i). The other cases proceed in the same way.
Suppose that R: g i:in, h then it is sufficient to prove that R is a rooted branching
bisimulation:
(i) The roots of H(g) and H(h) are related and (iii) R satisfies the root condition.
(ii) If R(r,s) and r ➔3 r' then either a='t and R(r',s), ors ⇒ s1 ➔3 s2 ⇒ s' such

that R(r,s1) and R(r',s'). Let t1, ... ,tk be such that s2 = to ➔'t t1 ➔'t ·· • ➔'t tk =
s' (k:?:0) then since g and h are 11-saturated there are edges s1 ➔3 ti and so
there is a paths ⇒ s1 ➔3 s'. □

COROLLARY
i. g lin, h if and only ifH(g) i:irb H(h) if and only ifN(H(g)) = N(H(h))
ii. g lird h if and only ifD(g) lirb D(h) if and only ifN(D(g)) = N(D(h))
iii. g i:i n h if and only ifT(g) lirb T(h) if and only ifN(T(g)) = N(T(h)).

PROOF It follows by Proposition 4.10 that H(g) i:in, g, D(g) lird g and T(g) lir't g.
Now apply the normal form theorems 4.11 and 3.6. □

So we find that in each r*-bisimulation equivalence class of finite process graphs for
* E {'t,Tt,d} there is exactly one *-saturated process graph up to rooted branching
bisimulation and exactly one *-saturated normal form up to isomorphism. In order to
prove the completeness theorems we still need to prove that rewriting steps
correspond to proof steps.

PROPOSITION 4.12 For finite graphs g and h:
i. lf g ➔'Tl h then Al-A3 + Hl,3 I- <g> = <h>

5. Features 151

ii. If g ➔d h then Al-A3 + T2 f-- <g> = <h>
iii . lf g ➔,: h then Al-A3 + Tl-3 f-- <g> = <h>.

PROOF (i) If r ➔a r' ➔,: r" ➔ is a path is g and r ➔a r" is added in g to obtain h, then
we find that <(g)r> ='AI-3 <(g)r> + a·<(g)r•>
and <(g)r·> =AJ -3 't·<(gk> + <(g)r·> and hence:
Al-A3 + H3 f-- <(g)r> = <(g)r> + a·('t·<(g)ru> + <(g)r·>) =

= <(g)r> + a·('t·<(gk> + <(g)r•>) + a· <(g)r"> (by H3) =
= <(g)r> + a· <(g)rn> = <(h)r>.

In case r ➔a r' ➔,: r" and r" is an endnode we find:
Al-A3 + Hl,3 f-- <(g)r> = <(g)r> + a·('t + <(g)r·>) =

= <(g)r> + a·('t·'t+ <(g)r·>) (by Hl) =
= <(g)r> + a ·('t·'t + <(g)r·>) + a·'t (by H3) =
= <(g)r> + a = <(h)r>.

From Al-A3 + H3 f-- <(g)r> = <(h)r> it easily follows that
Al-A3 + H3 f-- <g> = <h>.

(ii) If r ➔,: r' ➔a r" ➔ is a path is g and r ➔a r" is added in g to obtain h, then:
<(g)r> =AJ-3 <(g)r> + 't ·<(g)r•> and
<(g)r·> =AJ-3 a·<(g)rn> + <(g)r·> and hence:

Al-A3 + T2 f-- <(g)r> = <(g)r> + 't ·(a·<(g)r"> + <(g)r·>) =
= <(g)r> + a· <(g)ru> (by T2 and A3) = <(h)r>.

In case r ➔a r' ➔,: r" and r" is an endnode we simply leave out ·<(g)r"> in the
argument above. Hence A 1-A3 + T2 f-- <g> = <h>.
(iii) Immediately from (i) and (ii). Note that H1 = Tl and H3 = T3 . □

PROOFS OF THE THEOREMS 2.5, 2.7 AND 2.8

The soundness theorems follow easily after inspection of the axioms. Of the
completeness theorems we only prove Theorem 2.7. The others proceed in the
same way.
Let (GBPAI i:irri,+, ·,Act) Fp=q for two closed BPA,:-terms p,q, then by definition
[p] t:trri [q]. Let g and h be the unique normal forms of [p] and [q] with respect to
➔11 • By Proposition 4.10 we find g t:trri [p] t:trri [q] t:trri h. The graphs g and h
must be 11-saturated and by the normal form theorem (4.11) it then follows that g
i:irb h. Thus we find BPA + Hl-H3 f-- p = <[p]> = <g> = <h> = <[q]> =Q using
Propositions 4.6 and 4.12 and Theorem 2.6. So BPA + Hl-H3 is a complete
axiomatization of GBPAI t:t rri · D

5. FEATURES
In this section we list the main features of branching bisimulation semantics that
occurred to us. We concentrate on the differences and similarities with 't-bisimulation
semantics.

152 Ill. Branching time and abstraction in bisimulation semantics

5.1. BRANCHING TIME
The main difference between branching and 't-bisimulation semantics is that the
former notion preserves the branching structure of processes whereas the latter does
not. This has been elaborated in the Sections 1 and 3. If one argues that branching
equivalence is too fine, since it does not correspond to a natural testing scenario, the
same argument can be used to move from 't-bisimulation to one of the decorated trace
equivalences, which are even coarser. On the other hand, if one favours 't­
bisimulation over the decorated trace semantics since it preserves the internal structure
of processes and is therefore independent of a particular testing scenario, a systematic
application of this argument points in the direction of the finer notion of branching
bisimulation semantics.

5.2. EQUIVALENCE VERSUS CONGRUENCE
't-bisimulation equivalence is not a congruence for +, and therefore 't-bisimulation
congruence is defined as the closure of 't-bisimulation equivalence under contexts, or
by means of the root condition. In this respect l)-, delay and branching bisimulation
behave exactly the same. However, each 't-bisimulation equivalence class consists of
at most two 't-bisimulation congruence classes (this follows from Exersice 7.6 of
HENNESSY in MILNER [92]), as is the case for delay bisimulation, whereas ri- and
branching bisimulation equivalence classes may contain many congruence classes.
Nevertheless, for all four bisimulations there exists a close relationship between
rooted and non-rooted bisimulation, since the root condition (Definition 2.2) only
works on the root nodes:

DIEOREM 5.1 For all root unwound graphs g and h and* E {-.:,b,l),d}we have:
g t:t • h if and only if 't·g t:tr• 't·h.

PROOF If R is a *-bisimulation between g and h and r,s are the roots of -.:·g and -.:·h
then Ru{r,s} is a rooted *-bisimulation between 't·g and 't·h. On the other hand, if
R is a rooted *-bisimulation between 't·g and -.:·h, then the roots of g and h are
related by R, so R restricted to the nodes of g and h is a *-bisimulation between g
and h. □

This theorem provides us with a tool to decide upon *-bisimulation equivalence, using
the axiom systems of *-bisimulation congruence.

5.3. DIVERGENCE
In the literature on bisimulation semantics roughly three ways are suggested for
treating divergence (= infinite -.:-paths). The original notion of 't-bisimulation
equivalence (HENNESSY & MILNER [72], MILNER [92] and PARK [103]) abstracted
from all divergencies; the first two graphs of Figure 11 are equivalent, as well as the
two graphs of Figure 8.

5. Features 153

't

't

Figure 11. Three ways of modeling divergence.

These identifications can be justified by an appeal to fairness (MILNER [92), BAETEN,
BERGSTRA & KLOP [9]), and play a crucial role in many protocol verifications. In
BERGSTRA, KLOP & OLDEROG [23) the corresponding semantics is refered to as
bisimulation semantics with fair abstraction. A variant were divergence is taken into
account, in the sence that the first two graphs of Figure 11 are distinguished, as well
as the two graphs of Figure 8, was proposed in HENNESSY & PLOTKIN [74) for 't­
bisimulation and in MILNER [93) for delay bisimulation. In both cases a complete
axiomatization is provided in WALKER [126). In these semantics the basic notion is a
preorder rather then an equivalence, and divergence is identified with
underspecification. The induced equivalences identify the last two graphs of Figure
11, which are distinghuished in 't-bisimulation semantics with fair abstraction. Hence
the two notions are incomparable. A semantics that refines both notions was proposed
in BERGSTRA, KLOP & OLDEROG [23) under the name bisimulation semantics with
explicite divergence.
11-, delay and branching bisimulation as presented in this chapter are all based on the
variant of 't-bisimulation with fair abstraction. However it is completely
straightforward to generalize the -r-bisimulation preorder of HENNESSY & PLOTKIN
[74) to a T]-bisimulation preorder, and the delay bisimulation preorder of MILNER [93)
to a branching bisimulation preorder. Also it is not difficult to define T]·, delay and
branching bisimulation with explicit divergence in the spirit of BERGSTRA, KLOP &
OLDEROG [23). For branching bisimulation the definition can conveniently be given
in terms of coloured traces.

DEFINITION 5.1 A node in a coloured graph is divergent if it is the starting point of an
infinite path of which all nodes have the same colour. A colouring preserves
divergence if no divergent node has the same colour as a non-divergent node. Two

154 Ill. Branching time and abstraction in bisimulation semantics

graphs g and h are (rooted) branching bisimulation equivalent with explicit
divergence if there exists a (rooted) consistent divergence preserving colouring on
g and h for which they have the same coloured trace set.

5.4. ADEQUACY FOR MODAL LOGICS
As mentioned in the introduction, 't-bisimulation semantics is not adequate for a modal
logic with 'eventually' operator. From the example in the introduction of this chapter
one can see that the problem originates from the circumstance that 't-bisimulation
equivalence does not preserve the branching structure of processes, and indeed one
can easily prove that such an operator would cause no problems in branching
bisimulation semantics, at least not in the variant with explicit divergence . In fact, a
much stronger result has been proved in DE NICOLA & VAANDRAGER [45].

The Computation Tree Logic CTL * (EMERSON & HALPERN [49]) is a very
powerful logic, combining both branching time and linear time operators . It is a
generalization of CTL (CLARKE & EMERSON [37]), that contains only branching time
operators. CTL* is interpreted on Kripke structures (directed graphs of which the
nodes are labelled with sets of atomic propositions). DE NICOLA & V AANDRAGER
[45] established a translation from process graphs to Kipke structures, so that CTL *
can also be regarded as a logic on process graphs. One of the operators of CTUCTL *,
the nexttime operator X, makes it possible to see when an (invisible) action takes
place, and is therefore incompatible with abstraction. This operator was also criticized
by LAMPORT [82]. BROWNE, CLARKE & GR0MBERG [34] found that CTL-X and
CTL *-X induce the same equivalence on Kripke structures, which they characterized
as stuttering equivalence. In DE NICOLA & VAANDRAGER [45] branching
bisimulation, after being translated to Kripke structures, is shown to coincide with
stuttering equivalence. (To be precise, they consider two variants of CTL*, that
correspond to two variants of stuttering equivalence and two variants of branching
bisimulation, namely divergence blind branching bisimulation (our notion with fair
abstraction) and divergence sensitive branching bisimulation (defined as branching
bisimulation with explicit divergence above, but also considering endnodes to be
divergent). The stuttering equivalence of BROWNE, CLARKE & GR0MBERG [34] is the
divergence sensitive variant.) Hence (divergence sensitive) branching bisimulation is
adequate for CTL*-X. Since the eventually operator of GRAF & SIFAKIS [66] can be
expressed in CTL *-X, this implies that it causes no problems in branching
bisimulation semantics.

5.5. MODAL CHARACTERIZATIONS
It is well known (cf. HENNESSY & MILNER [73]) that observation equivalence can be
characterized by means of a simple modal langage, called Hennessy-Milner logic
(HML). The question arises if such a result can also be obtained for branching
equivalence. As pointed out above, CTL-X characterizes branching equivalence, but
this language is rather strong. Another possibility is adding the eventually operator to

5. Features 155

HML. It remains to be determined for which classes of process graphs HML +
'eventually' is adequate. In DE NICOLA & VAANDRAGER [45] it has been shown that
adding an 'until' operator to HML is sufficient.

5.6. BACK AND FORTH BISIMULATIONS
In DENICOLA, MONTANARI & VAANDRAGER [44] it has been established that if in
the definition of *-bisimulation, for* E {-r,b,'T),d}, it is required that moves in the one
process can be simulated by the other process, not only when going forward but also
when going back in history, these modified notions all coincide with branching
bisimulation. This also yields another modal characterization of branching

bisimulation, namely HML with backward modalities.

5.7. PRACTICAL APPLICATIONS OF BRANCHING TIME
The extra identifications made in 't-bisimulation semantics on top of branching
bisimulation semantics can be cumbersome in certain applications of the theory. See
the remark in the introduction.

5.8. REFINEMENT OF ACTIONS
For sequential processes branching bisimulation is preserved under refinement of
actions, whereas 't-bisimulation is not. This was established in VAN GLABBEEK &
WEIJLAND [63], see the next section of this chapter. A proof can also be found in
DARONDEAU & DEGANO [39].

5.9. AXIOMATIZATIONS AND REWRITE SYSTEMS
All *-bisimulations (* E {-r,b,Tl,d}) have relatively simple equitional characterizations
(see Section 2) , but the axiom system for branching bisimulation can easily be turned
in a complete term rewriting system, which is not the case for the other notions.

5.10. COMPLEXITY
In GROOTE & V AANDRAGER [68] an algorithm is presented for deciding branching
bisimulation equivalence between finite-state processes, with (time) complexity
O(k+n·m). Here k is the size of Act, n is the number of nodes in the investigated
process graphs and m the number of edges. The fastest algorithm for 't-bisimulation
equivalence up till now has complexity O(k·n2 -376). In general n:5:m:5:k•n2, so it
depends on the density of edges in a graph which algorithm is faster. In a trial
implementation of the scheduler of MILNER [92], reported in GROOTE &
V AANDRAGER [68], branching bisimulation turned out to be much faster .
Furthermore, it turned out that in such automatic verifications the space complexity
was a much more serious handicap then the time complexity (the 't-bisimulation tools
suffered from lack of memory already by processes with 15.000 states). The space
complexity of the algorithm of GROOTE & V AANDRAGER [68] is O(n+m), which is
less than the space complexity of 't-bisimulation.

156 Ill. Branching time and abstraction in bisimu/ation semantics

5.11. CORRESPONDENCE
Finally we present a theorem which tells us that in quite a number of cases
observation and branching bisimulation equivalence are the same. For instance,
consider the practical applications where implementations are verified by proving them
equal to some specification (after having abstracted from a set of unobservable actions
of course). In many such cases, the specification does not involve any 't-steps at all: in
fact all 't-steps that occur in the verification process originate from the abstraction
procedure which is carried out on the implementation.
As it turns out, in all such cases there is no difference between observation and
branching bisimulation equivalence. For this reason we may expect many verifications
involving observation equivalence to be valid in the stronger setting of branching
bisimulation as well. In particular this is the case for all protocol verifications in 't­
bisimulation semantics known to the authors.

THEOREM 5.2 Suppose g and h are two graphs, and g is without r-labelled edges.
Then:
i . g !d't h if and only if g !db h
ii. g !drt h if and only if g !drb h.

PROOF Let R be the largest (rooted) 't-bisimulation between g and h. We show that R
is even a (rooted) branching bisimulation. Assume that R(r,s) and r ➔3 r' is an
edge in g, then either a='t and R(r',s) - contradicting the absence of 't-edges in g -
or in h there is a paths ⇒ s1 ➔3 s2 ⇒ s' and R(r',s'). Assumes ⇒ s1 has the form
s = vo ➔'t VI ➔'t ··· ➔'t Vm = SI (m~) then it follows from s ➔'t VI and R(r,s) that
for some q: r ⇒ q and R(q, v 1). Since g has no 't-edges we find that r=ri.
Repeating this argument m times we find that R(r,vi) and R(r,sI).
Furthermore, since R(r,sI) and SJ ➔3 s2 we find that r ➔3 r" (g has no 't-steps)
such that R(r",sz). Since s2 = wo ➔'t WI ➔'t ··· ➔'t wn = s' it follows from the
same argument as before that R(r" ,wi) and R(r" ,s') . Thus we find R(r',s'),
R(s',r") and R(r",s2) and since R is the largest rooted 't-bisimulation we have
R(r',s2) .
On the other hand, if R(r,s) and r ➔3 r' is an edge in h, then either a='t and R(r',s)
or directly s ➔3 s' such that R(r',s'), since g contains no 't-edges. □

For T)- instead of branching bisimulation equivalence this theorem was already proven
in BAETEN & VAN GLABBEEK [11) . From Theorem 5.1 we easily find that for graphs
g and h:

g is without 't-edges ⇒ ('t·g !d rt 't·h ⇒ 't·g !drb 't·h).

6. Refinement 157

6. REFINEMENT
Virtually all semantic equivalences employed in theories of concurrency are - as in this
thesis - defined in terms of actions that concurrent systems may perform. Mostly, these
actions are taken to be atomic, meaning that they are considered not to be divisible into
smaller parts. In this case, the defined equivalences are said to be based on action
atomicity.
However, in the top-down design of distributed systems it might be fruitful to model
processes at different levels of abstraction. The actions on an abstract level then turn
out to represent complex processes on a more concrete level. This methodology does
not seem compatible with non-divisibility of actions and for this reason PRATT [108],
LAMPORT [83] and others plead for the use of semantic equivalences that are not based
on action atomicity.
As indicated in CASTELLANO, DEMICHELIS & POMELLO [36], the concept of action
atomicity can be formalized by means of the notion of refinement of actions. A
semantic equivalence is preserved under action refinement if two equivalent processes
remain equivalent after replacing all occurrences of an action a by a more complex
process r(a). In particular, r(a) may be a sequence of two actions a1 and a2 . An
equivalence is strictly based on action atomicity if it is not preserved under action
refinement.
In the previous sections in this chapter we argued that Milner's notion of observation
equivalence does not respect the branching structure of processes, and proposed the
finer notion of branching bisimulation equivalence which does. In this section we
moreover find, that observation equivalence is not preserved under action refinement,
whereas branching bisimulation equivalence is.

From the axioms T3 (see Table 2), it is easy to show why the notion of observation
congruence is not preserved under refinement of actions: replacing the action a by the
term be, we obtain bc('tx + y) = bc('tx + y) + bcx, which obviously is not valid in
G!!dr-c• Applying T3, we do find bc('tX + y) = b(c('tx + y) + ex), unfortunately
denoting a different process however.

In this section we will prove that branching equivalence is preserved under refinement
of actions, and so it allows us to look at actions as abstractions of much larger
structures. We will present our result in the style of BPA, and indicate afterwards how
our construction can be adapted to obtain refinement theorems in the style of CCS and
ACP. Put A=Act\{O} (or A=Act\{O,✓} if there are ✓-labels around). Consider the
following definitions.

DEFINITION 6.1 (substitution) Let r: A ➔ GBPA be a mapping from observable actions to
graphs, and suppose gE GBPA· Then, the graph r(g) can be found as follows.

158 Ill. Branching time and abstraction in bisimulation semantics

For every edger ➔a r' (aE A) in g, take a copy ru!l of r(a) (E GBPA)- Next, identify
r with the root node of I.(ru, and r' with all endnodes of I.(ru, and remove the edge
r ➔a r'.

Note that in this definition it is never needed to identify r and r', since r(g) is non­
trivial. This way, the mapping r is extended to the domain GBPA· Note that since u A,
't-edges cannot be substituted by graphs. Finally, observe that every node in g is a
node in r(g).

DEFINITION 6.2 (preservation under action refinement) An equivalence = on GBPA is said to
be preserved under refinement of actions if for every mapping r: A ➔ GBPA, we
have: g = h ⇒ r(g) = r(h).

In other words, an equivalence= is preserved under refinement if it is a congruence
with respect to every substitution operator r.
Starting from a relation R: g f=lrb h, we construct a branching bisimulation r(R):
r(g) f=lrb r(h), proving that preserving branching congruence, every edge with a label
from A can be replaced by a root unwound non-trivial graph.

DEFINITION 6.3 Let r: A ➔ GnPA be a mapping from observable actions to graphs,
g,hE GBPA and R: g f=l rb h. Now r(R) is the smallest relation between nodes of r(g)
and r(h), such that:

1. R ~ r(R).
2 . If r ➔a r' ands ➔as' (aE A) are edges in g and h such that R(r,s) and R(r',s'),

and both edges are replaced by copies ru!l and r(a) of r(a) respectively, then
nodes from ru!l and r(a) are related by r(R) iff they are copies of the same node
in r(a).

Edges r ➔a r' ands ➔as' (aEA) such that R(r,s) and R(r',s'), will be called related by
R, as well as the copies r.(.a.). and r(a) that are substituted for them. Observe, that on
nodes from g and h the relation r(R) is equal to R. Note that if r(R)(r,s), then r is a
node in g iff s is a node in h.

THEOREM 6.1 (refinement) Branching congruence is preserved under refinement of
actions.

PROOF We prove that R: g t:trb h ⇒ r(R): r(g) tirb r(h) by checking the requirements.
For convenience, in the definition of branching equivalence (Definition 1.4), we
omit the requirement of the existence of a path s2 ⇒ s', as it is redundant (see the
remark just after Definition 1.6). Then we find:
i. The root nodes of r(g) and r(h) are related by r(R).

6. Refinement 159

ii. Assume r(R)(r,s) and in r(g) there is an edge r ➔3 r'. Then there are two
possibilities (similarly in case r ➔3 r' stems from r(h)):
(1) The nodes rands originate from g and h. Then R(r,s), and by the construction
of r(g) we find that either a='t and r ➔,: r' was already an edge in g, or g has an
edger ➔b r* and r ➔3 r' is a copy of an initial edge from r(b).
In the first case it follows from R: g t:::trb h that either R(r',s) - hence r(R)(r',s) - or
in h there is a paths ⇒ s1 ➔,: s' such that R(r,s1) and R(r',s'). By definition of
refinement, the same path also exists in r(h), and thus we have r(R)(r,s1) and
r(R)(r',s').
In the second case there must be a corresponding paths ⇒ s1 ➔b s* in h such that
R(r,s1) and R(r*,s*). Then, in r(h) we find a paths ⇒ s1 ➔3 s' (by replacing ➔b
by r(b)) such that r(R)(r,s1) and r(R)(r',s').
(2) The nodes rand s originate from related copies rDu and r(b) of a substituted
graph r(b) (for some bEA), and are no copies of root or endnodes in r(b). Then r
➔3 r' is an edge in r(hl. From r(R)(r,s) we find that rand s are copies of the same
node from r(b). So, there is an edges ➔3 s' in r(b) where s' is a copy of the node
in r(b), corresponding with r'. Clearly r(R)(r',s').
iii. Since for nodes from g and h we have r(R)(r,s) iff R(r,s), the root condition is
satisfied. D

With respect to closed BPA,:-terms, the refinement theorem can be proved much easier
by syntactic analysis of proofs, instead of working with equivalences between graphs.
For observe that the axioms Al-A5 + Hl-H2, that form a complete axiomatization of
branching congruence for closed terms, do not contain any occurrences of (atomic)
actions from A. Now assume we have a proof of some equality s=t between closed
terms, then this proof consists of a sequence of applications of axioms from Al-A5 +
Hl-H2. Since all these axioms are universal equations without actions from A, the
actions from s and t can be replaced by general variables, and the proof will still hold.
Hence, every equation is an instance of a universal equation without any actions.
Immediately we find that we can substitute arbitrary closed terms for these variables,
obtaining refinement for closed terms.
Nevertheless, the semantic proof of the refinement theorem is important since it also
holds for larger graphs from GBPAthat are not representable by closed BPA,:-terms.

In the setting of BCCS, a substitution should be a mapping r: A ➔ Gccs\{O}, where
0 denotes the trivial graph. Then the semantic proof of the refinement theorem goes
exactly as in the setting of BPA. However the syntactic proof breaks down on the
absence of general sequential composition and on the presence of actions in the axioms
for branching congruence. In the setting of basic ACP, Definition 6.1 should be
adapted such that r' is identified not with all endnodes of lli!l, but with all nodes of ruu
that have an outgoing termination edge. These termination edges should then be
deleted. Furthermore if certain parts in the resulting graph have become disconnected

160 Ill. Branching time and abstraction in bisimulation semantics

from the root, they should be deleted as well. Now both the semantic and the syntactic
proof of the refinement theorem remain valid. Finally it should be noted that refinement
as defined in this section is a meaningful notion that can be used in the design of
systems only if these system are assumed to be sequential (i.e . performing only one
action at a time). In the presence of parallel composition, process graphs as presented
here are not sufficiently expressive for defining a refinement operator. For this pupose
one may better use causality based models of concurrency, such as event structures or
Petri nets. This will be the topic of the following chapter.

161

Chapter IV

Refinement of Actions in Causality Based
Models

Rob van Glabbeek & Ursula Goltz

In this chapter we consider an operator for refinement of actions to be used
in the design of concurrent systems. Actions on a given level of abstraction are
replaced by more complicated processes on a lower level. This is done in such a
way that the behaviour of the refined system may be inferred compositionally
from the behaviour of the original system and from the behaviour of the pro­
cesses substituted for actions. We define this refinement operation for causality
based models like event structures and Petri nets. For Petri nets, we relate it
to other approaches for refining transitions.

Note~ This chapter appeared as Arbeitspapiere der GMD 428 , Sankt Augustin 1990,
and will be published in: Proceedings of the REX Workshop on Stepwise Re­
finement of Distributed Systems: Models , Formalism, Correctness , Mook, The
Netherlands 1989, eds . J.W . de Bakker, W.- P. de Roever & G. Rozenberg,
LNCS 430, Springer- Verlag, 1990, pp. 267-300.
The research of the second author was supported by Esprit Basic Research
Action 3148 (DEMON).

Contents

Introduction

1 Refinement of actions in prime event structures

2 Refinement of actions in flow event structures

3 Configuration structures and refinement of actions

4 Refinement of transitions in Petri nets

Related work

162

169

175

182

186

202

162 IV. Refinement of actions in causality based models

Introduction

In this chapter we consider the design of concurrent systems in the framework
of approaches where the basic building blocks are the actions which may occur
in a system. By an action we understand here any activity which is considered
as a conceptual entity on a chosen level of abstraction. This allows to design
systems in a top-down style, changing the level of abstraction by interpreting
actions on a higher level by more complicated processes on a lower level. We
refer to such a step in the design of a system as refinement of actions. An
action could be refined by the sequential execution of several su bactions, or by
activities happening ind ependently in parallel. One could also implement an
action by a set of alternatives , of which only one should be taken.

0.1 Example

Consider the design of a sender, repeatedly reading data and sending
them to a certain receiver. A first description of this system is given
by the Petri net shown below. An introduction to Petri nets and the
way they model concurrent systems can be found in REISIG [110] ; the
refinement mechanism used in this example will be treated formally in
Section 4.

l r-\ L-:::7 Q send data J
\!J-~- -~t_o r_ec_.eiv_er~

On a slightly less abstract description level the action "send data to re­
ceiver" might turn out to consist of two parts "prepare sending" and
"carry out sending", to be executed sequentially. This corresponds to the
following refined Petri net .

C0 ~ o ~---~:e-p~~~-------0----------~.:;~~:--J
-- read data - --+-- sending - - d" : ., .__ __ ___, sen 1ng 1

' ' ' ' ~-------------------------------------

Refinement by a sequential process

Then the action "prepare sending" may be decomposed in two indepen­
dent. activities "prepare data for transmission" and ''get permission to
send", to be executed on different processors :

Introduction 163

'

0 prepare data ~
/ ~~f_o_r_tr_a_n_s_m_i_ss_i_on__,--t-v~ ~---~ fe'l-1 read data I/ ,

0

' , carry out
V ~ , / sending

0
-....-,: get permission ~. /

to send ~

' ' ______ ______ ______ __ .,

R efin em ent by a parallel process

Furthermore it may turn out that there are two alternative channels for
sending messages. Each tim e the sender should choose one of them to send
a message , perhaps depending on which one is available at the moment.

0 -~~-o~_r_;r_:_:_se_m_~_:s_\:_n~--0>: cii::~:in 1 0-I read data I(' ""o- get permission --o--.--, send on
to send channel 2

R efinement by alt ernative actions

On an even more concrete level of abstraction, channel 2 may happen to
be rather unreliable, and getting a message at the other end requires the
use of a communicat ion protocol. On t he other hand , channel 1 may be
found to be reliabl e, and does not need such a precaution .

- --------------- - -----,---------I acknowl('dg"­
m"nt

R efinement by an infinite process

164 IV. Refinement of actions in causality based models

Here we see that it may happen that the process we have substituted for
the action "send on channel 2" does not terminate. It may happen that
the attempt of sending data always fails and this prevents the system of
reaching its initial state again.

Our aim is to define an operator for refinement of actions, taking as argu­
ments a system description on a given level of abstraction and an interpretation
of (some of) the actions on this level by more complicated processes on a lower
level , and yielding a system description on the lower level. This should be done
in such a way that the behaviour of the refined system may be inferred com­
positionally from the behaviour of the original system and from the behaviour
of the processes substituted for actions .

As illustrated above, we want to allow to substitute rather general kinds of
behaviours for actions. \Ve even allow the refinement of an action by an infinite
behaviour. This contradicts a common assumption that an action takes only a
finit e amount of time. It means that when regarding a sequential composition
a; b we can not be sure that b occurs under all circumstances; it can only occur
if the action a really terminates.

There is one type of refinement that we do not want to allow, namely to
"forget" actions by replacing them with the empty process.

0.2 Example

Continuing Example 0.1 we could imagine that getting permission to send
turns out to be unnecessary and can be skipped. Hence we replace the
corresponding action by the empty behaviour, thus obtaining

0 prepare data

0 _8 /~fu-r-tr_~_•_=_·•-•i-on ____ ,~---,

connect with - o -Bd t channel 2 \ sen a a

' I I

I tune-out 1-¢)
' ..___ __________________________ , acknowledge•

ment

Fo1·getful 1·efinement

Introduction 165

Even though this operation seems natural when applied as in the above
example, it may cause drastic changes in the possible behaviours of a system.
It may happen that executing a certain action a. prevents another action from
happening. This property should be preserved under refinement of a.. How­
ever, if a. is completely removed, it cannot prevent anything any more, which
can remove a deadlock possibility from the system. For this reason "forgetful"
refinements will not be considered here.

0.3 Example

Consider the Petri net

0
i

N= 0

and the net obtained when refining a by the empty behaviour:

•

N' =

In the first net it is possible to execute a. and b, and by this reach a state
where no further action is possible. If we try to deduce the behaviour
after refinement from the behaviour of N, we would expect that the
refined system may reach a state, by executing b, where no more action
is possible. However, this is not the case for N'. After b, it is always
possible to execute c in N'.

166 IV. Refinement of actions in causality based models

In order to define a suitable refinement operator, one first has to select a
model for the description of concurrent systems. The models of concurrency
found in the literature can roughly be distinguished in two kinds: those in
which the independent execution of two processes is modelled by specifying the
possible interleavings of their (atomic) actions , and those in which the causal
relations between the actions of a system are represented explicitly. The in­
terleaving based models were devised to describe systems built from actions
that are assumed to be instantaneous or indivisible. Nevertheless, one might
be tempted to use them also for the description of systems built from actions
that may have a duration or structure . However, the following example shows
that it is not possible to define the desired compositional refinement operator
on such models of concurrency without imposing some restrictions (as already
observed in PRATT (108] and CASTELLANO, DE MICHELIS & PoMELLO [36]).

0.4 Example

The systems P = a II b, executing the actions a and b independently,
and Q = a; b + b; a, executing either the sequence ab or the sequence ba,
cannot be distinguished in interleaving models ; they are represented by
the same tree in the model of synchronisation trees (MILNER [9 2]) .

tree (P) = tree (Q) =
ah
bl \a

After refining a into the sequential compositon of a 1 and a 2 , thereby
obtaining the systems

their tree representations are different:

tree (P') = tree (Q') =

b

The two systems are even non-equivalent , according to any reasonable
semantic equivalence, since only P' can perform the sequence of actions
a 1 ba2 • Hence, in the model of synchronisation trees the semantic repre­
sentation of the refined systems is not derivable from the semantic repre­
sentation of the original systems. The same holds for other interleaving
models.

Introduction 167

There are still ways left to define a compositional refinement operator on
interleaving based models. First of all one could restrict the kind ofrefinements
that are allowed in such a way that situations as in Example 0.4 cannot occur.
Of course this would exclude the possibility of refining a in a 1 ; a 2 in either P
or Q (or both). Although we consider this to be an interesting option , in this
thesis we choose to allow rather general refinements , including at least the one
of Example 0.4. Furthermore, some approaches have been proposed which are
based on a concept of "atomic" actions; refining an atomic action would then
result in an "atomic" process that cannot be "interupted" by other activities
(the refinement of Pin Example 0.4 would not have the execution a1ba2) . We
will comment on these approaches in the concluding section. In this work we
choose not to assume action atomicity in any way, and to allow the parallel
or independent execution of actions. Hence interleaving based models are un­
suited for our approach. On the other hand we will show that the desired
compositional refinement operator can be defined on causality based models of
concurrency without imposing such restrictions. We will do this for semantic
models like Petri nets and event structures. Since these models are being used
as a semantics of languages like CCS, we hope that this will lead also to ex­
tending these languages by a mechanism for refinement.

0.5 Example

The systems P = a II b and Q = a; b + b; a from Example 0.4 may be
represented by the (labelled) Petri nets

/ 0 ,
> ~

er er T T
T T

and 9 9
0 0 ~ 0

D/

The Petri net representations of the refined systems P' and Q', where a is
replaced by the sequence a1 a2 , are then derivable by transition refinement
from the nets for the original systems. We obtain

168 IV. Refinement of actions in causality based models

r
T
0

and

We will use two kinds of semantic models. Both of them are based on the
idea of PETRI [104] to model causalities in concurrent systems explicitly and
thereby also representing independence of activities. Additionally, the models
we use represent the choice structure of systems; they show where decisions
between alternative behaviours are taken .

We will not distinguish external and internal actions here; we do not con­
sider abstraction by hiding of actions.

The more basic model, in particular when being concerned more with ac­
tions than with states, are event structures. \"le will consider three types of
event structures here: prime event structures with a binary conflict relation
[100], flow event structures, which are particularly suited as a semantic model
of CCS [32], and , as a more abstract and general model , configuration struc­
tures (families of configurations [128]), where a system is represented by its
subsets of events which determine possible executions.

The models considered so far are usually not applied to model systems di­
rectly, but rather as the underlying semantics of system description languages
like CCS . One of the reasons for this is that infinite behaviours can only be
represented by infinite structures (with an infinite set of events). So, finally,
we will consider Petri nets as a framework which is directly applicable in the
design process. Event structures may be derived from Petri nets as a partic­
ularly simple case, but Petri nets are more powerful. For example, infinite
behaviours may be represented as finite net structures together with the "to­
ken game". However , causality is then no longer a basic notion but has to

1. Refinement of actions in prime event structures 169

be derived. Petri nets with their appealing graphical representation are being
used extensively for the - more or less formal - representation of systems
and - mostly less formal - during the design process. A disciplined way for
developing net models systematically by refinement is therefore very important.

We start in Section 1 by presenting the basic notions for prime event struc­
tures and by showing how to refine actions by finite, conflict-free behaviours.
We show that, for refining actions with more general behaviours, it is conve­
nient to use more expressive models. In Section 2, we introduce flow event
structures and show how to refine actions also by (possibly infinite) behaviours
with conflicts. We show that, as for prime event structure refinement, the be­
haviour of a refined flow event structure may be deduced compositionally. In
Section 3, we introduce configuration structures and a refinement operation
for them. We show that the more "syntactic" constructions in the previous
sections are consistent with this general notion. Finally, we give an overview
on the work on refinement in Petri nets, and we suggest a rather general notion
of refinement of transitions which is still modular with respect to behaviour.
Related work is discussed in the concluding section.

1 Refinement of actions in prime event struc­
tures

In this section, we show how to refine actions in the most simple form of event
structures, prime event structures with a binary conflict relation (NIELSEN,
PLOTKIN & WINSKEL [100]). Furthermore, we motivate our move to more
general structures in the next two sections because of the limitations of this
approach .

We consider systems that are capable of performing actions from a given
set Act of action names. We will frequently give CCSP-expressions for our ex­
amples, to make them easier to understand: + will denote choice (as in CCS), I
will denote parallel composition (without communication) , a.P performs action
a and then behaves like P and nil denotes the empty process; a abbreviates
a. nil and the unary prefixing operator binds stronger than the binary ones,
as usual. Dots in expressions a.P will be omitted. However, this notation is
only used for intuition; formally our results are established for event structures.

1.1 Definition

A (labelled) prime event structure (over an alphabet Act) is a 4-tuple
[= (E, ::=;, #, l) where

- E is a set of events,

170 JV. Refinement of actions in causality based models

- :S ~ E x E is a partial order (the causality relation) satisfying the
principle of finite causes:

'r/e EE: {d E E [d :Se} is finite,

- # ~ E x Eis an irreflexive, symmetric relation (the conflict relation)
satisfying the principle of conflict heredity:

Vd,e,f EE: d '.Se A d#f ⇒ e# f,

- l : E - Act is a labelling function.

The components of a prime event structure £ will be denoted by Ee, :Se , #e
and le. If clear from the context, the index £ will be omitted. As usual, we
write d < e for d :S e I\ d #- e, etc.

A prime event structure represents a concurrent system in the following
way: action names a E Act represent actions the system might perform, an
event e E E labelled with a represents an occurrence of a during a possible run
of the system , d < e means that d is a prerequisite for e and d#e means that
d and e cannot happen both in the same run.

Causal independence (concurrency) of events is expressed by the derived
relation co~ E x E: d co e iff , (d < e V e < d V d#e). By definition, <, >, #
and co form a partition of E x E.

Throughout the paper , we assume a fixed set Act of action names as labelling
set . Let IE prime denote the domain of prime event structures labelled over Act.

A prime event structure £ is finite if Ee is finite; £ is conflict- free if #c = 0.
0 denotes the empty event structure (0, 0, 0, 0).

For X ~ Ee , the restriction of£ to Xis defined as

nx = (X, :S n (X X X), # n (X X X), ljX) .

Two prime event structures £ and :Fare isomorphic (£ = :F) iff there exists
a bijection between their sets of events preserving :S, # and labelling. Gener­
ally, we will not distinguish isomorphic event structures.

Isomorphism classes of conflict- free prime event structures are called porn­
sets (PRATT [108]) . They have also been coinsidered under the name partial
words in GRABOWSKI [65). Pomsets generated by certain subsets of events may
be considered as possible "executions" of the system represented by the event
structure. The partial order between action occurrences then represents causal

1. Refinement of actions in prime event structures 171

dependencies in the execution. Subsets of events representing executions (called
configurations) have to be conflict-free; furthermore they must be left-closed
with respect to :S: (all prerequisites for any event occurring in the "execution"
must also occur). It is assumed that in a finite period only finitely many ac­
tions are performed. We will consider only finite executions when describing
the behaviour of systems. So, unlike WINSKEL [128], we require configurations
to be finite. We will comment on this point in Section 3.

1.2 Definition

1. A subset X <;;: E of events in a prime event structure £ is left - closed in
£ iff, for all d, e E E, e E X I\ d :S: e ⇒ d E X.
X is conflict-free in £ iff £ f X is conflict-free.

11. A subset X <;;: E will be called a (finite) configuration of a prime event
structure £ iff X is finite, left-closed and conflict-free in £. Conj(£)
denotes the set of all configurations of£. A configuration X E Conj (£)
is called complete iff Vd E E : d (/. X ⇒ :le E X with d#e .

Configurations may be considered as possible states of the system; they
determine the remaining behaviour of the system as being the set of all events
which have not yet occurred and are not excluded because of conflicts . Note
that a configuration X is complete iff it is maximal , i.e. X <;;: Y E Conj(£)
implies X = Y.

1.3 Example

Let us consider the event structure £ corresponding to the expresswn
alb+ ab.

In graphical representations , only immediate conflicts - not the inherited
conflicts - are indicated . The :S:-relation is represented by arcs, omitting
those derivable by transitivity. Furthermore, instead of events only their
labels are displayed; if a label occurs twice it represents two different
events. Thus these pictures determine event structures only up to iso­
morphism .

Following these conventions, £ is represented as

a

a --+- b

b

172 IV. Refinement of actions in causality based models

The possible executions of E are represented by the pomsets

a
0, a, b, b and a-b.

: and a -b correspond to complete configurations.

We will now define a refinement operation substituting actions by finite,
conflict-free, non-empty event structures. As discussed in the introduction,
we will not allow forgetful refinements replacing actions by the empty event
structure. We will later explain why we have to restrict to finite and conflict­
free refinements of actions.

A refinement function will be a function ref specifiying, for each action a, an
event structure ref (a) which is to be substituted for a. Interesting refinements
(and also the refinements in our examples) will mostly refine only certain ac­
tions , hence replace most actions by themselves. However , for uniformity (and
for simplicity in proofs) we consider all actions to be refined.

Given an event structure E and a refinement function ref, we construct the
refined event structure ref (E) as follows . Each event e labelled by a is replaced
by a disjoint copy, E,, of ref (a). The causality and conflict structure is inher­
ited from £: every event which was causally before e will be causally before
all events of E, , all events which causally followed e will causally follow all the
events of E,, and all events in conflict with e will be in conflict with all the
events of E,.

Graphically, the idea may be sketched as follows (in this picture we omit
arcs derivable by transitivity and inherited conflicts).

□

□

1. Refinement of actions in prime event structures 173

1.4 Definition

(i) A function ref : Act - IE prime - { O} is called a refinement function
(for prime event structures) if 1:/a E Act : ref (a) is finite and conflict­
free .

(ii) Let [E IE prime and let ref be a refinement function .
Then ref ([) is the prime event structure defined by
- E.,..J (t:) = {(e, e')le E Ee, e' E E.,..J(lc(e))} ,
- (d , d') 'Sreflt:) (e , e') iff d <e e or (d = e I\ d' 'S reJ (lc(d)) e') ,
- (d, d') #reJ(t:)(e , e') iff d#ee,
- l.,..J (t:) (e, e') = l.,..J(lc(e)) (e') .

We show that refinement is a well- defined operation on prime event struc­
tures, even wh en isomorphic prime event structures are identified.

1.5 Proposition

(i) If [E IE prime and ref is a refinement function then ref ([) is a prime
event structure indeed .

(ii) If [E IE prime and ref, ref I are refinement functions with ref (a) =
ref '(a) for all a E Act then ref([)= ref'([).

(iii) If£ , :F E IE prime, ref is a refinement function and [= :F then ref([) =
ref(:F) .

Proof Straightforward. ■

1.6 Example

We consider a simplified version of the sender (Example 0.1) from the
introduction. We assume that the sende,r reads and sends only once. We
may carry out the first two steps of the design in terms of prime event
structures as follows .

~--re-ad-da_t_a_~II '--__ se-nd_d-at_a_~

174

read data

read data

IV. Refinement of actions in causality based models

r---,
' '

'
' prepare carry out
'
'

sending sending
' ' ' ' ~---~

prepare data for
transmission

get permission
to send

carry out
sending

The next refinement step would require a refinement of an action by
conflicting behaviours. This is not possible in our framework up to now.

The reason that we can only refine actions by conflict- free event structures
is the axiom of conflict heredity and the notion of configuration in prime event
structures. They imply that any event ·will always occur with a unique history
(in terms of its causal predecessors) [128).

a

Now consider e.g. [= l- Replacing a. by c#d would require to duplicate the
b

event labelled by b in some way, since b should then occur either caused by c or
by d. Since this would lead to a complicated definition , we will consider more
general forms of event structures that do not require duplication in Section 2
and 3.

The restriction to refinement of actions by finite event structures is neces­
sary to ensure that the resulting event structure will obey the axiom of finite
causes. In the more general models we will consider later, we will not assume
this axiom , and this will allow also refinements by infinite behaviours as dis­
cussed in the introduction.

Finally, we show how the behaviour of the refined event structure ref (E) is
determined by the behaviour of E and by the behaviour of the event structures
which are substituted for actions .

1. 7 Proposition

Let E E IE prime, let ref be a refinement function.

2. Refinement of actions in flow event structures 175

We call X a refinement of configuration X E Conj(£) by ref iff

- X = LJ {e} x X, where Ve E X: X , E Conj (ref (le(e))) - {0},
• EX

- e E busy(X) ==} e maximal in X with respect to S: c

where busy (X) := {e EX IX , not complete}.

Then Conj (ref (£)) = { X I X is a refinement of a configuration X E

Conj(£)}.

Proof [54] or as a special case of Proposition 2.8. ■

Hence the configurations of ref (£) are exactly those configurations which
are refinements of configurations of£ . A refin ement of a configuration X of£
is obtained by replacing each event e in X by a non-empty configuration X,
of ref (lc(e)). Events which are causally necessary for other events in X may
only be replaced by complete configurations.

2 Refinement of actions in flow event struc­
tures

In the previous section, we have indicated that for refining actions by event
structures with conflicts more general models than prime event structures are
appropriate. In BoUDOL & CASTELLANI [32] a form of event structures, called
flow event structures, is suggested which is particularly suited for giving se­
mantics to languages like CCS. Flow event structures are more general than
prime events in the following sense: they do not assume conflict heredity and
the axiom of finite causes, they allow inconsistent (self-conflicting) events and
the causality relation is not required to be transitive and may even contain
(syntactic) cycles. This makes it very easy to define operations like parallel
composition and restriction, and we will show here that they are also well
suited to deal with refinement of actions.

2.1 Definition

A (labelled) flow event structure (over an alphabet Act) is a 4-tuple £ =
(E, -<, #, l) where

- E is a set of events,
- -<<; E x Eis an irreflexive relation , the fiow relation,
- # <; E x E is a symmetric relation , the conflict relation,
- I : E -Act is the labelling function.

176 IV. Refinement of actions in causality based models

Let IE denote the domain of flow event structures labelled over Act. The
components of E E .IE will be denoted by Ee , --<e, #e and le. The index E
will be omitted if clear from the context. £ is conflict-free if #c = 0. For
X ~ Ee , EfX = (X, --< e fX, #e fX,le fX) is the restriction of£ to X.

Two flow event structures £ and :F are isomorphic (E = :F) iff there exists
a bijection between their sets of events preserving --<, # and labelling.

The interpretation of the conflict and the flow relation is formalised by defin­
ing configurations of flow event structures. Configurations must be conflict free;
in particular, self-conflicting events will never occur in any configuration. d --< e
will mean that dis a possible immediate cause for e. For an event to occur it is
necessary that a complete non-conflicting set of its causes has occurred. Here
a set of causes is complete if for any cause which is not contained there is a
conflicting event which is contained. Finally, no cycles with respect to causal
dependence may occur.

2.2 Definition Let £ E IE.

(i) X ~ Eis left-closed in E up to conflicts iff Vd , e E E : if e E X, d --< e
and d (/. X then there exists an f EX with f --< e and d#f.
X ~ E is conflict-free iff E f X is conflict- free .

(ii) X ~ E is a (finite) configuration of E iff X is finite, left-closed up
to conflicts and conflict-free and does not contain a causality cycle:
:Sx:= (-< n(X x X))* is an ordering. A configuration X is called
maximal iff X ~ Y E Conj (E) implies X = Y. A configuration X is
called complete iff Vd E E : d (/. X ⇒ :le E X with d#e. Conj(£)
denotes the set of all configurations of E.

The causal dependence between action occurrences in a configuration may
again, as for prime event structures, be represented by a pomset; for X E Conj
(E), we take the isomorphism class of (X, '.S x, le f X).

2.3 Example

The system ((a + b) 11 c); d may be represented by the flow event structure

(in graphical representations we omit names of events and represent --<
by arcs of the form -).

2. Refinement of actions in flow event structures

a----------­The pomsets ___-- d
figurations. c

b ----------­and ___--d
C

177

correspond to complete con-

Note that prime event structures are special flow event structures defining
d -< e iff d < e; the definition of configuration then coincides.

However, in contrast to prime event structures , not all maximal configura­
tions are complete. Partly this is due to the fact that, in flow event structures,
syntactic and semantic conflict not necessarily coincide, (two events are in se­
mantic confiict if there is no configuration containing them both). Flow event
structures where syntactic and semantic conflict coincide are called faithful in
Bouoo1 [30]. However , also in faithful flow event structures maximal configu­
rations are not necessarly complete , either due to inconsistent events, but also
in flow event structures without inconsistent events, as shown by the following
example.

2.4 Example

Let£

The configuration { c1 , c2 , c3 } is maximal but not complete.

Maximal but incomplete configurations may be interpreted as deadlocking
behaviours. Assume that a semantic sequential composition is defined for flow
event structures by putting all events in the first component in -<-relation with
the events of the second component. Any incomplete maximal configuration of
the first component would then disable the second component. Thus, in flow
event structures, deadlock and termination may be distinguished.

2.5 Definition

A flow event structure £ is deadlock - free iff every maximal configuration
of£ is complete.

178 IV. Refinement of actions in causality based models

Refinement of actions in flow event structures may now be defined as fol­
lows. We assume a refinement function ref: Act -- lE-{ O} (where O denotes
the empty flow event structure) and replace each event labelled by a by a dis­
joint copy of ref (a). The conflict and causality structure will just be inherited.

Hence, we may replace actions also by behaviours with conflicts and by
infinite behaviours.

2.6 Definition

(i) A function ref: Act -- .JE - { O} is called a refinement function (for
fiow event structures).

(ii) Let [E .lE and let ref be a refinement function.
Then the refinement of £ by ref, ref (£), is the flow event structure
defined by
- Eref(C) = {(e, e') fe E Ee, e' E Eref(lde))},
- (d, d') -<reJ(C) (e, e') iff d-< e or (d = e A d' -<reJ(lc(d)) e'),
- (d, d')#reJ(t:) (e, e') iff d#ce or (d = e A d' #-reJ(lc(d))e'),
- l,.,J(t:)(e, e') = lreJ(lc(e))(e').

As for prime event structures, we verify that ref (E) is well-defined, even
when isomorphic flow event structures are identified.

2. 7 Proposition

(i) If E E IE and ref is a refinement function then ref (E) is a flow event
structure indeed.

(ii) If E E IE and ref, ref I are refinement functions with ref (a) = ref 1 (a)
for all a E Act then ref (E) = ref'(E).

(iii) If£, :FE IE, ref is a refinement function and£= :F then ref (E) ='ref
(:F).

Proof Straightforward. ■

Finally, we show that, analogously to prime event structures, the behaviour
of a refined flow event structure ref (E) may be deduced compositionally from
the behaviour of [and the behaviour of the refinements of actions.

2.8 Proposition

Let [E IE, let ref be a refinement function for flow event structures.

We call X a refinement of configuration X E Conj (E) by ref iff

2. Refinement of actions in flow event structures 179

~ - X = U {e} x X. where Ve EX: X. E Conf(ref(le(e))) - {0},
eEX

- e E busy(X) ===!> e maximal in X with respect to :s; x

where busy (X) := {e E X I Xe not complete}.

Then Conj (ref (£)) = { X I X is a refinement of a configuration X E

Conj(£)}.

Proof

~ "~" Let X E Conf (ref(E)).

First we show that X := pr1 (X) E Conj(£) .

X is finite since X is finite.

X is left-closed in £ up to conflicts:
Let e E X, d E Ee with d -<!.. e e and d (/. X.
We have to show that there exists an f EX with f -<e e and f #ed.

Since e E X there must be some (e, e') E X .

There exists (d, d') E Eref(f) , (d, d') (/. X since ref (d) # 0 and d (/. X .
Furthermore (d , d') -<ref (e) (e,e') since d -<e e.

So 3(!,J') E X with (J, J') -<ref (£) (e, e') and (J , J') #ref (f)(d, d') .
f # d since f E X, d (/. X ===!> f #ed.
If f # e we have f -<e e and we are done.
Assume f = e then (d , d') -<..ref ({) (! , f') .

Then 3(g, g') E X with (g , g') -<ref (£) (! , f') = (e , J') and (g, g') #ref (e)(d, d') .
g# ed since g # d. Furthermore g E X.

If g # f = e then g -<'..e e and we are don e. Since X is finite, we will find
,..,_, ,.,,,,

(by repeating this), after finitely many steps, (f , f') E X with f #e d and

f -<'.. e e. Hence X is left-closed up to conflicts.

~ ~
(f ' f') ---+- . . . ---+- (g, g') ---+- (!, f') ---+- (e, e')

~
X

180 IV. Refinement of actions in causality based models

X is conflict-free:
Assumed, e EX with d#ee.

Then there exist (d, d'), (e, e') E X , (d, d')#reJ (e)(e, e').

This is a contradiction since X is conflict-free.

Finally we have to show that X does not contain a causality-cycle. As­
sume d, e E X , d # e, d :S: x e and e :S: x d (where :Sx is derived from --<e).

~ It is straightforward to verify that this implies 3(d, d') , (e, e') E X with
(d,d') # (e,e'), (d,d') :S; (e,e') and (e,e') :S:; (d,d'). This is in contra-

diction with the cyclefreeness of X .

Hence X = pr1(X) E Conj (E).

We will show that X is a refinement of X.

Let e E X and X e := {e' I (e, e') E X }. By construction Xe i- 0.
Let E, := ref (lt(e)). We want to show that X , E Conj (E,) .

Obviously Xe ~ Ee.-
~ Xe is finite, conflict-free and cycle-free since X is finite, conflict-free and

cycle-free. So it only remains to be shown that X , is left-closed up to conflicts.

Let d' E E., d' --< e. e' E X ., d' (/_ X,.
~ Then (e,d') E E,..1(e),(e,d')--<,..1(e) (e,e') EX and (e,d') (/_ X.

So there exists (f,f') E X with (f,f')--<,..J(e) (e,e') and (f , J')#,..1(e)(e,d') .
J, e E X ===:> -,(j#ee) ===:> j = e I\ f' #e. d' ===:> J' E X, and j' --< e. e'.
Hence X, E Conj (E,).

From what we have shown by now it follows that X = U { e} x X, with
eEX

X E Conj (E) and, for all e EX, X, E Conj (ref(lt(e))) - {0}.

Now let e E busy (X). We have to show that e is maximal in X whith
respect to :S: x.

Suppose e is not maximal in X.

Then th ere exists j E X with e --< e j , and there exists (f, f') E X .
Since X, is not complete there exists d' E Ee. - X, with

(*) \le' E X, : -,(d'#e/) .

We have (e, d') --<reJ (e) (f , J') , (e, d') (J_ X .
~ Since X is a configuration, there then exists (g, g') E X with

(g , g') --< reJ (e) (f, J') and (g , g') #reJ (e)(e, d').

2. Refinement of actions in .iow event structures

Since g, e EX, we have ,(g#ce).
Hence g = e and g' E X,, g'#c,d'.
However this contradicts (*).

";2" Let X be a refinement of XE Conj(£).

We show that X E Conj (ref(£)).

181

It follows in a straightforward manner from the corresponding properties of

X and the X, 's that X is finite and conflict-free and contains no causality
~ cycles. Hence it suffices to show that X is left-closed up to conflicts .

~ ~
So let (e, e') E X , let (d, d') E Eref(C) - X with (d, d') --<ret{t:) (e, e').

We have to show that there exists (f, f') E .X with (!, f') --< reJ(t:) (e, e') and
(f, f')#ret(t:) (d, d').

First assume d = e. Then this follows immediately from the corresponding
property of X,.

Now let di- e.
If d (/_ X then the requirement follows from the corresponding property of X.
So we now consider the remaining case that d i- e and d E X. Then d' (/_ X d.

Since di- e we have d --< t: e, hence dis not maximal in X.
Then Xa must be complete.
Sod'(/. Xa implies 3f' E Xd with f'#ref(ldd))d' .

Hence (d,f') EX ,(d,f')--<reJ(t:) (e,e') and (d,f') #reJ(C)(d,d'). ■

We end this section with a lemma that will be useful later on.

2.9 Lemma Let£ E IE, XE Conj(£) and busy ~ X.

Then Ve E busy: e maximal in X with respect to :S x
¢:=>VY~ busy : X - YE Conj(£).

Proof
" ==;, " Let £ E IE, X E Conj(£), Y ~ X and Ve E Y : e maximal in X
w.r.t. :S x - It suffices to prove that X - Y E Conj(£). X - Y is finite and
conflict-free and does not contain causality cycles since X has these properties.
It remains to be shown that X - Y is left-closed up to conflicts.
Suppose e E X - Y, d --<t: e and d (/_ X - Y. If d E Y then d would be maximal
in X w.r.t. :S x, contradicting d --< c e. Thus d (/_ X. Hence there is an f E X
with f --<t: e and d#cf. Since f --<t: e, f is not maximal in X w.r.t. :Sx, so
f EX - Y , which had to be proven .

182 IV. Refinement of actions in causality based models

"{=" Let [E JE , X E Conj([) , d E X and X - {d} E Conj (e). It suffices
to proof that dis maximal w.r.t . Sx.
Suppose it is not, then 3e E X with d --< c e. Since X - {d} E Conj(£), there
exists an f E X -{ d} with f --< c e and d#cf , contradicting the conflict-freeness
of X. ■

This means that , in Proposition 2.8, the condition "e E busy(X) ==> e

maximal in X w.r.t . S x" can be replaced by "for all Y ~ busy(X), X - Y E
Conj([)".

3 Configuration structures and refinement of
actions

In the previous section we have shown that flow event structures may be used
for refinement of actions , even when substituting actions by behaviours with
conflicts or by infinite behaviours. However , the refinement operation we have
defined depends on the particular "syntax" of flow event structures. In this
section, our aim is to define a refinement operation for a very general model of
concurrent systems, such that refinement operations for particular representa­
tions, as flow event structures, are obtained as a special case.

We will consider a model where a system is represented by its set of con­
figurations . As in the previous sections, occurrences of actions are represented
by events labelled by the corresponding action names. A configuration is a
set of events representing a state of the system where exactly its elements
have happened. We only consider finite configurations here. Following ideas of
WINSKEL [128] we represent a system by a family of configurations satisfying
certain consistency requirements.

3.1 Definition

A (labelled) configuration structure (over an alphabet A ct) is a pair C =
(C, l) where C is a family of finite sets (configurations) such that
- 0 EC,
- X , Y, Z E C, X u Y ~ Z ==> X u Y E C,
- X E C I\ d , e E X, d # e ==> 3Y EC with Y ~ X and (d E Y ~ e (/:

Y),
and I : U X --+ Act is a labelling funct ion.

X EC

The requirements for a family of sets of events to form a configuration
structure may be explained as follows. The initial state of a system is the state
where no action has been performed yet. Hence 0 is always a configuration.

3. Configuration structures and refinement of actions 183

Now, if two configurations X, Y are contained in a third configuration Z then
X UY is consistent or conflict-free; e.g. all its elements can happen together in
one run. Since both X and Y represent already possible runs , it should then
also be possible to execute just the events in X and Y, hence X U Y should be
a configuration. If we consider two distinct events occurring in some run , then
there must be an intermediate state where already one of them has occurred
whereas the other has not yet occurred (coincidence can not be enforced) . This
is guaranteed by the third requirement.

Finally, a remark on our requirement that configurations should be finite .
As usual, we assume that in a finite period only finitely many actions may be
performed. Now the requirement says that we only consider states that are
reachable in a finite period of time. WJNSKEL [128] allows configurations to be
infinite, thus representing also those states which can be reached in an infinite
period of time. However, his infinite configurations are completely determined
by the finite ones. Hence configuration structures as defined here are equally
expressive as Winskel's families of configurations.

Convention We will denote the components of a configuration structure C
by Cc and le respectively. By abuse of language , Cc will also be denoted by C.
Furthermore the set Ee of events of C is defined by Ee = U X.

X EC

Let (I; denote the domain of configuration structures labelled over Act.

3.2 Example

We consider the example refered to as a "parallel switch" in [128].
We have two actions O and 1 interpreted as closing switch O and closing
switch 1, respectively, in an electric circuit . As soon as at least one of

th, switches is dosed, a bu~ Js is ~esent,d as an action b.

This may be represented by the following configuration structure (with a
unique correspondence bet.ween actions and events) :

{O , l,b}

{O,b}@{l,b}
{O, l}

{O} {l}

0

The b- event may occur here without a unique "causal history" ; in the
configuration {O, 1, b} it is not clear whether bis caused by O or by 1.

184 IV. Refinement of actions in causality based models

Usually, the names of events are not important ; hence we will not distin­
guish configuration structures which are isomophic in the sense that they only
differ with respect to names of events .

3.3 Definition

A configuration structure isomorphism between two configuration struc­
tures C, 1) E ([: is a bijective mapping f : Ee ----> E'D such that
- X E C ¢=;, f(X) E 1J for X s:;; Ee,
- and lTJ(f(e)) = le(e) fore E Ee.
C and 1) are isomorphic - notation C = 1) - if there exists a configura­
tion structure isomorphism between them.

In configuration structures, completeness and maximality of configurations
coincide. Deadlock and termination may not be distinguished .

3.4 Definition

A configuration X of a configuration structure C is called complete iff
there is no Y f:. X in C containing X.

We may now associate a configuration structure with each flow event struc­
ture (and via this also with each prime event structure).

3 .5 Definition Let [E IE.

The configuration structure of E, C(E), is defined as

C(E) = (Con/ (E), le f U X).
X E Conj(£)

There is no unique corresponence in general: different flow event structures
may have the same configuration structure (but not vice versa). In particular,
the distiction between deadlock and termination is lost.

Next, we define refinement of actions for configuration structures. A refine­
ment will be specified by a function ref specifying for each action a a configura­
tion structure ref (a) which is to be substituted for a. Again we only consider
non- forgetful refinements here, hence ref (a) f:. 0 for all a E Act where 0
denotes the empty configuration structure with Co = {0} . Apart from this
restriction , we may replace an action by any configuration structure.

3.6 Definition

(i) A function ref: Act---+- (f; - {O} is called a refinement function (for
configuration structures).

3. Configuration structures and refinement of actions 185

(ii) Let C be a configuration structure and let ref be a refinement function.

We call X a refinement of a configuration X E C by ref iff

- X= U {e} x X, where Ve EX: X, E ref (lc(e)) - {0},
• EX

- for all Y ~ busy (X), X - Y E C,

where busy (X) = {e E X IX, not complete}.

The refinement of C by ref is defined as ref (C) = (C.,..1 (c), l.,..1(c)) with

C.,..J(c) := { X I X is a refinement of some X E C by ref}

and

lttf(C)(e, e') = l.,..J(lc(e)(e') for all (e, e') E u x .
X E Cref (C)

Intuitively, this definition may be explained as follows.

The configuration structure ref (C) is obtained by taking all possible re­
finements of configurations of C. A refinement of a configuration X of C is
obtained by replacing each event e in X by a non-empty configuration X, of
ref (lc(e)) . Events which are causally necessary for other events in X may only
be replaced by complete configurations, hence it must be possible to take any
subset of"uncompleted" or busy events out of X, again obtaining a configura­
tion.

Next we show that refinement is a well-defined operation on configuration
structures, even when isomorphic configuration structures are identified.

3. 7 Proposition

(i) If C E <E and ref is a refinement function then also ref (C) is a config­
uration structure.

(ii) IfC E <E and ref, ref' are refinement functions with ref (a)= ref'(a)
for all a E Act then ref (C) = ref' (C).

(iii) If C, 1) E <I: , ref is a refinement function and C = 1) then ref (C) = ref
(V).

Proof (i) cumbersome and omitted here, (ii) and (iii) straightforward. ■

Finally, we want to show that the easier syntactic refinement operation for
flow event structures defined in section 2 is consistent with the refinement op­
eration for configuration structures. However, since the distinction between

186 IV. Refinement of actions in causality based models

deadlock and termination is lost in configuration structures, this is only true
for deadlock-free refinements.

3.8 Theorem

Let E E IE, let ref be a refinement function for flow event structures
with Va E Act : ref(a) deadlock-free.

Then C(ref (E)) = ref'(C(E))
where ref'(a) = C(ref (a)) for all a E Act.

Proof

It has to be shown that Cc(ref(f)) = C,ef'(C(f)) and lC(reJ (f)) = l,ef'(C(f))·

The first requirement translates to

Conf(ref(E)) = { X IX is refinement of some X E Conj (E) by ref'}.

From Proposition 2.8 we know

Conf(ref(E)) = { X IX is a refinement of some X E Conf(E) by ref}.

So it suffices to establish that a refinement by ref' is the same as a refine­
ment by ref. This follows immediately from Proposition 2.8 and Lemma 2.9 in
combination with Definition 3.6, provided that for a E Act : X is a complete
configuration of ref (a) iff X is complete in ref' (a) = C(ref (a)) . This is the
case if ref is deadlock-free.

The second requirement is straightforward. ■

4 Refinement of transitions in Petri nets

We start by giving some basic definitions and notations for Petri nets ; for ex­
planations and concepts we refer to introductory texts on nets , e.g. REISIG

[110].

For simplicity we assume that th ere is a one to one correspondence between
the transitions in the net and the actions that the system modelled by the net
can perform; we do not consider nets with labelled transitions. However, we
will show later that our approach can easily be extended to this case.

4.1 Definition N = (S, T, F) is called a net structure iff

- S is a set (of places),

4. Refinement of transitions in Petri nets 187

- Tis a set (of transitions) , S n T = 0,

- F ~ (S x T) U (T x S) such that
Vt ET: :ls, s' with sFt and tFs' (transitions have non-empty pre- and
postsets)
and Vs E 5 : sFt ===> -, tF s (no self-loops).

The restrictions we have made here - non-empty pre- and postsets of
transitions and no self-loops - will be needed for our refinement construction.

Two nets N = (S, T , F) and N' = (S' , T', F') are isomorphic - notation
N == N' - if T = T' and there exists a bijective mapping f : 5--+- S' satisfy­
ing sFt <==> f(s)F't and tFs <==> tF'f(s) .

Generally, we will not distinguish isomorphic net structures.

As usual , we introduce the following notations.
For x E 5 U T , let • x := {y E 5 U T /yFx} (preset of x),
x • := {y E 5 U T /xFy} (postset of x).
Let O N := { x E 5 U T /"x = 0} (initial places of N),
N° := {x E 5 U T /x " = 0} (final places of N).
Note that O N, N° ~ 5 .

The components of a net N will be denoted by 5 N , TN, FN (the index is
omitted when clear from the context). We will sometimes use the characteristic
mapping of Fas a function F: (5 x T) U (T x 5)-------, {O, 1}.

A concurrent system may be modelled by a net structure where the places
carry tokens , indicating the state of the system . The dynamic behaviour of the
system is derived by the so called firing rule. We assume that all places have
unbounded capacities; any mapping M : SN _______. IN will be called a marking
of the net N. However, we will restrict our considerations to one-safe nets
here. We will illustrate later why refinement in non- one-safe nets may lead to
problems.

4.2 Definition

(N , M 0) is called a P / T-system or a marked net iff N is a net structure
and M 0 : 5 -- IN (initial marking).

By abuse of notation, we will use N both for (N , M 0) (when M 0 is clear
from the context) and for the underlying net structure.

4.3 Definition Let (N, M 0) be a marked net, M , M': 5 --- IN , t E T.

(i) tis enabled by M iff Vs E "t : M(s) > 0.

188 IV. Refinement of actions in causality based models

(ii) M' is reached from M by firing t (M[t > M') iff
t is enabled by M and
Vs E S: M'(s) = M(s) - F(s , t) + F(t , s).

The marking class [N, M 0 > of a marked net (N, M 0) is then defined as the
set of all markings reachable from M0 by finitel y many transition firings. A
marked net is one- safeifVM E [N,M0 >, Vs ES: M(s) :::; 1. In one-safe nets,
we may use set notations for markings: M ~ S is the marking where exactly
the places in M carry a token.

Vlhenever refering to a marked net m the following, we assume it to be
one-safe.

A conceptual framework for refinement in Petri nets are net morphisms [50].
A net morphism is a mapping between the elements of two net structures such
that the distinction between places and transitions is observed to some extent .
It is possible to map, for example, a place to a transition, but only if this place
is surrounded by transitions with the same image.

4.4 Definition Let N = (S , T, F), N' = (S' , T' , F') be net structures.

(i) A mapping f : SU T - S' U T' is called a net morphism iff
Vx,y E SuT with f(x) -:f. f(y) and (x,y) E F: [(f(x) , f(y)) E F' and
x ES<=} f(x) E S'].

(ii) A net morphism f: S UT -S'u T' is called a quotient iff f is surjective
and (x' , y') E F' =? :3(x, y) E F with f(x) = x', f(y) = y' (surjectivity
also with respect to arcs).

A quotient can be thought of as a factorisation. The net is partitioned such
that sorts are preserved : each subset of elements forming a class in this par­
tition must have a boarder consisting just of places or just of transitions and
is then considered as one place or one transition, respectively. A quotient N1

of a net N2 is considered as an abstraction of N 2 (REISIG [111)). Conversely,
N2 is then called a refinement of N1 . In this framework, transitions as well as
places may be refined .

However, behavioural aspects are not taken precisely into account and this
may lead to problems.

4. Refinement of transitions in Petri nets

4.5 Example

Consider

o-□-o o ~ r/
/□" o-□-o ~o

The net Ni is an abstraction of

189

by the quotient mapping all elements inside the broken line to r (and
otherwise the identity). Conversely, N2 is considered as a refinement of
Ni.

However, consider the slightly enlarged systems

and

N' I

190

N' 2

IV. Refinement of actions in causality based models

1

□
/_ - - - - - - - - - - - - - - r - - - - ,

o-□-o+□-o~ /O
: □~·
I / / I I t

O--D--0--+-D--O :Q
2 ~ -- -- _____ ,

□
Again, N{ is a quotient of N~, hence N~ may be considered as a refine­
ment of N{.

Assuming that places 1 and 2 are initially marked , we find that the net
N{ is deadlock- free in the sense that it is possible to fire transitions until
the two final places are both marked. However , even though the part of
N~ corresponding tor is also deadlock-free (namely N 2 is deadlock- free) ,
N~ may reach a deadlock situation by firing t and t'.

This shows that the notion of a net morphism or quotient is in general not
strong enough to reason about the behaviour of refin ements in a compositional
way. An attempt to restrict it in such a way that behavioural aspects are
taken more strongly into account has been made in DESEL & MERCERON
[4 7]. They identify a subclass of morphisms they call vicinity respecting. The
essential idea is that those net morphisms respect the impact of elements on
their environment.

4.6 D efinition

A net morphism f N - N' is said to be vicinity respecting iff Vx E

S U T:

- J(0 x) = {f(x)} V J(0x) =0 f(x) , and

- f(x 0) = {f(x)} V /(x0) = /(x)0,

where 0x := {x} U "x, x0 := {x} U x •, respectively.

The morphisms considered in Example 4.5 are not vicinity respecting. We
will discuss later to what extent this notion does indeed characterise the refine­
ments we are interested in .

4. Refinement of transitions in Petri nets 191

In order to avoid confusion, we have to mention here another notion of mor­
phism suggested for Petri nets by WINSKEL [128]. This notion is particularly
tailored to take behavioural aspects into account , however it does not allow
to contract for example a line of two transitions into one transition. So it is
not suited for treating refinement. More recent approaches in the categorical
framework [88, 80] have not yet been evaluated under this aspect .

For the case of refining transitions, which we are interested in here, also
more constructive approaches are being considered explaining how to replace
a transition in a net by a "refinement net". The problem is to specify how
to connect the "refinement net" to the environment of the refined transition,
and to investigate what restrictions on refinement nets are then necessary for
a sensible refinement operation.

One possibility is to require a one to one correspondence between "input / out­
put-places" of the refinement net and the surrounding places of the refined
transition. In VOGLER [124], a construction for this case is proposed , and it
is shown that it is then necessary to impose certain restrictions on refinement
nets, in particular disallowing initial concurrency (otherwise a situation as in
Example 4.5 might occur) .

Most constructions for refining transitions are based on distinguishing ini­
tial and final transitions in a refinement net and connecting them to the preset
and postset , respectively, of the refined transition (VALETTE [123] and sub­
sequently SUZUKI & MURATA [115], VOGLER [125) and BEST , DEVILLERS,
KIEHN & PoMELLO [27]).

In these approaches , the main idea is that a transition may only be replaced
by a net behaving like a transition with respect to its effect on the environment:

- it cannot move without being activated by the environment,
- it has the same possible behaviours whenever it is activated ,
- it may not deadlock ,
- it consumes and produces tokens in a coincident manner.

The final condition ensures that the problemati c situation explained in Ex­
ample 4.5 may not occur. VALETTE [123] and others ensure this property by
allowing only refinements for transitions with at most one initial and at most
one final transition. VOGLER [125] generalises this by allowing several initial
transitions which must be in conflict (and, symmetrically, the same for final
transitions). This means that we may not have initial or final concurrency rn
refinement nets.

The other requirements are usually ensured by extending the net which is
supposed to be substituted for a transition by a new place supplying a token to

192 IV. Refinement of actions in causality based models

the initial transition(s) and receiving a token from the final transition(s) and
then analysing the behaviour of t his net.

start

~------------ ----, •

The interesting problem discussed in Example 4.5 was to refine a transition
by some behaviour exhibiting initial concurrency. Symmetrically, we also want
to allow refinements with final concurrency. This may not be handled in these
approaches (VOGLER [124] excludes only initial concurrency). A possibility to
get rid of this restriction which has not yet been persued further is to restrict
the environment of transitions which are refined.

Here we propose a construction which generalises the approach of VALETTE

[123] and VOGLER [125] for the class of one- safe nets without self- loops , and
which offers the possibility ofrefining transitions also with initial and final con­
currency. This will be achieved by extending these approaches by specifying
explicitly which initial transitions should be concurrent or in conflict (addition­
ally to constraints already imposed by the internal structure of the refinement
net). For this , we extend the refinement net with initial places in the preset
of initial transitions. Similarly, we add end places specifying the relationsship
between final transitions. Clearly, in the refinement net, initial places have
no ingoing arcs and final places have no outgoing arcs . When analysing the
behaviour of a refinement net , we assume that all initial places (and no final
places) carry tokens . As in VALETTE [123], we allow that also other places in
a refinement net carry initial tokens. The approaches of VALETTE [123] and
VOGLER [125] may be seen as a special case of our approach by splitting the
start- place consid ered above into two places: one initial and one final place.
Since we will require as VALETTE [123] that a refinement net has the same
possible behaviour whenever it is activated , it is reasonable to assume that the
initial places are just those places without ingoing arcs and the final places just
those without outgoing arcs. The initial and final places will then be used in
the embedding construction to ensure that causal dependencies are preserved

4. Refinement of transitions in Petri nets

by the refenement operation.

4.7 Example

Consider again the net N{ of Example 4.5.

N' 1

1 3 /□~ 5

o-□-o/ ~o
~r/
□ o-□-o/ ~o

2 4 ~□/ 6

193

We tried to refine r by two concurrent transitions followed by another
transition which causally depends on both of them. This refinement of r
may be represented as

R

7

0-□-o~ 9

□-0 /
0-□-0/

8

Places 7 and 8 are initial places, place 9 is the final place.

Now R is inserted into N{ for the transition r by taking th e cartesian
product of the preplaces of r with the initial places of R and of the
post places of r with the final places of R. We obtain

194

N~'

IV. Refinement of actions in causality based models

3

□
5

I r -----------------

o-□ 0-0\
□ =

D-0/
o-□

2 □ 6

4

N~' is a again a quotient of N{, however the mapping between places is
no longer the identity. We see that, even though tokens are not removed
coincidently by the refinement of r, we have ensured that either both
transitions in the refinement of r will fire or none of them, hence N~' will
not deadlock. This has been achieved by preserving precisely the conflict
and causality structure.

In contrast to the approaches similar to VALETTE [123], we do allow to refine
transitions by deadlocking behaviours (where we use the word deadlock in the
usual intuitive meaning rather than in the net theoretic sense). The reason
is that we do not expect that the properties of the original net, like deadlock­
freeness, are preserved by refinement. We only require that the properties of the
resulting net are derivable in a compositional way. Whether or not a net to be
inserted deadlocks is specified by its behaviour with respect to its final places.
A refinement net deadlocks if it may reach a situation where no transition may
fire but not all its final places are marked. This may be explained by putting
the refinement net in a context by connecting its final and its initial places by
a transition.

4. Refinement of transitions in Petri nets

t
-_-_-_-_-_-_-_-_-_-_-_-_-_-_-_--,...,, -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -_ -

~

initial places

0

0

0
~

final places

The refinement net deadlocks iff t may not occur.

4.8 Example
1 r 2 t

Let N 0-□-0-□-o

Let R
n-o

0-□-O/L_J
~-0

R will deadlock since not all its final places can get a token.

When replacing R for r, we get

r

1

0-+--D-O
I

where t will never occur.

However, replacing r by

2

t

□--0

195

196 IV. Refinement of actions in causality based models

R'

gives r

1 t t

0-+-□ □--0
I

~--- ------------------ J

where t will occur.

The next example shows that it is not possible to consider places which
have ingoing arcs as initial places of a refinement net.

4.9 Example

Let N and

consider the net

R

If we would replace R for r, we would obtain

which has not the expected behaviour, since once the refined r has been
chosen, no a should be possible any more.

This problem can be solved by using labelled nets and unfolding R into

4. Refinement of transitions in Petri nets 197

Inserting R' into N yields

which has indeed the expected behaviour.

Next, we will define our construction formally and, in particular, describe
formally the requirements on nets which may be inserted for transitions. We
will then relate our construction to the notion of vicinity respecting net mor­
phisms and to our approach for refinement in event structures.

4.10 Definition

(N, M 0) with N = (5, T, F) is a refinement net iff

-
0 N :f- 0 and N° :f- 0,

-
0 N ~ Mo and N° n Mo = 0,

- not ET is enabled by M 0 -
0 N,

- for any ME [N,M0 > with N° ~ M we have M - N° = M0 -
0 N,

(N will exhibit identical behaviour when reactivated).

4.11 Definition

Let (N, M 0) be a marked net, let r E TN.

Let (R, M/;) be a refinement net, w.l.o.g. TN n TR = 0, SN n SR = 0.

Then N[R/ r] := (5, T, F) is defined by

198 IV. Refinement of actions in causality based models

S := (SN - ("r U r 0
)) U (SR - (0 RU R 0))u Int

where Int := ("r x OR) U (r 0 x R0
) ,

T := (TN -{r}) u TR,

F := (FN u FR)f(S x T UT x S)
u {((sN , sR) , t) l(sN , sR) E Int,
(t E TN \ {r} /\ (sN , t) E FN) V (t E TR I\ (sR , t) E FR)}
u {(t, (sN, sR)) l(sN , sR) E Int ,
(t E TN \ {r} /\ (t , SN) E FN) V (t E TR I\ (t , sR) E FR)}

and (N, M0)[R/ r] = (N [R/ r], M£R!r]) with

M£R!r](s) = M0 (s) iff s E SN, M£R fr](s) = Mf(s) iff s E SR,
M£R!r](s) = M0 (sN) iff s = (sN, SR) E Int.

It is straightforward to verify that N[R/ r] is again a on e-safe net.

The following example illustrates why we restrict ourselves to one- safe nets
(a similar example is given in BEST, DEVILLERS, KIEHN & PoMELLO [27]).

4.12 Example

Consider the net

refinement

R =

N =
?
~
0

A
[] GJ
! !
00
/v~
0 0 [I]
~ !/

0
When replacing r by R, we would obtain

and the

for r .

4. Refinement of transitions in Petri nets 199

However, this net has not the expected behaviour, since the two inde­
pendent occurrences of the refined r-transition may now cooperate and
execute d. As remarked in VALETTE [123], this problem can only occur
if in N the refined transition can be "two-enabled".

Next we show that the order in which transitions are replaced does not mat­
ter. In particular, this means (at least for finite nets) that we can extend our
approach to non-injective labellings of transitions by action names by refining
all transitions labelled by the same action one by one by disjoint copies of the
corresponding refinement net.

4.13 Proposition

Let (N , M0) be a marked net, r 1 ,r2 E TN, r 1 # r2, and let R1,R2 be
refinement nets. Then Ni = ((N, M 0)[R i/r1])[R 2/ r 2] is isomorphic to
N2 = ((N, M 0)[R2/r2])[R ifri].

Proof Straightforward. ■

We now show that, for any refinement N[R / r], there exists a canonical
vicinity respecting net morphism from N[R / r] to N.

4.14 Proposition

Let (N, M0) be a marked net , let r E TN, let R be a refinement net.

Then f: N[R/r] --. N with

f(x) = { :
SN

iff x E (SN -("r u r")) u (TN - {r}) ,
iff x E (Sn -(0 R u R 0)) u Tn,
iff x = (s N , s R) E J nt

200 IV. Refinement of actions in causality based models

is a vicinity respecting morphism , in particular a quotient.

Proof Straightforward ■

We have shown that our construction may be understood in terms of vicin­
ity respecting quotients . However , one could now pose the converse question.
May any vicinity respecting quotient which refines only transitions , that is
never maps a transition to a place, be generated by our construction? The an­
swer is no , as shown in the following example. However , we would not consider
the morphism in this example as a sensible transition refinement .

4.15 Example

Consider

and

□

The broken lines in N2 indicate a quotient from N2 to N1 which is vicinity
respecting and maps no transition to a place. However , we would not like
to consider this as a transition refinement. To execute both transitions
corresponding tor , an interm ediate occurrence of u is necessary. N2 may
not be generated as a refinement of N1 with ou r construction.

An interesting probl em is t o find a further restriction to obtain a class of
net morphisms characterising refinem ent .

4. Refinement of transitions in Petri nets 201

Finally, we would like to show that the construction for refinement of tran­
sitions we have presented is consistent with the refinement operation on event
structures. This would mean in particular, that this construction for nets in­
deed preserves precisely the conflict- and causality structure. We will show
this for the special case of occurrence nets, nets with acyclic. flow relation and
only forward branched places. These nets correspond directly to prime event
structures as defined in Section 1. As refinement nets, we will consider spe­
cial (finite) occurrence nets, called causal nets, with only unbranched places.
Causal nets correspond to conflict-free prime event structures. This yields pre­
cisely the class of refinements which we have considered in Section 1.

4.16 Definition

(i) A net structure N is an occurrence net iff

- the transitive closure of F is irreflexive,
-VsESN: f•sf :S: l,
- #N is irreflexive, where for x, y E S U T ,

x# NY <==> 3t, t' E TN with t f- t', t• n •t1 f- 0, tF" x and t' p· y,
- Vt E TN: {t' E TN jt'F"t} finite (axiom of finite causes).

(ii) A net structure N is a causal net iff N is an occurrence net and Vs E
SN : Is• I :S: 1.

4.17 Definition Let N be an occurrence net.

The (prime) event structure of N, Ev(N), is defined as

It is straightforward to verify that Ev(N) is indeed a prime event structure
[100].

Using these notions , we may now show the consistency of transition refine­
ment in this class of nets with prime event structure refinement as defined in
Section 1.

4.18 Theorem

Let N be an occurrence net , let r E TN; let R be a finite causal net.
Then Ev(N[R/ r]) =' ref(Ev(N)) where

ref(r) :=

r e f (t) :=

Ev(R),
({ t} , { (t , t)} , 0, { { t, t)}) for t f- r
(identical refinem ent).

202 IV. Refinement of actions in causality based models

Proof Omitted . •
More general consistency results, by unfolding marked nets or associating

configuration structures with marked nets and relating with our refinement
notion in Section 3, have to be left for further research .

Related work

In this chapter we defined a compositional refinement operator on three kinds
of event structures and on Petri nets. Our operator on nets can be regarded
as a generalisation of the refinement operators of VALETTE [123], SUZUKI &
MURATA [115], BEST , DEVILLERS, KIEHN & POMELLO [27] and VOGLER [125]
(although we use a less general kind of nets), and we have compared it with
the notions of net morphism (REISIG [111]) and vicinity respecting quotients
(DESEL & MERCERON [47]) . The operator on prime event structures was in­
troduced in VAN GLABBEEK & GOLTZ [54] . It has been defined on sets of
pomsets - a linear time variant of the model of prime event structures - in
GISCHER [5 1] and on process graphs modelling only sequential processes m
VAN GLABBEEK & WEIJLAND [63] (Section 6 of the previous chapter).

In principle there are two ways to treat "syntactic" action refinement in sys­
tem description languages like CCS. One of them is to use the CCS- actions for
modelling the refinabl e actions of this paper. In the absence of communication
(or synchronisation) refinement can simply be defined as syntactic substitution
of an action by a process expression. This approach has been taken in ACETO
& HENNESSY [3] and NIELSEN, ENGBERG & LARSEN [99], and has also been
mentioned in CASTELLANO, DE MICHELIS & PoMELLO [36]. In the presence
of communication defining such a refinement operator is much more difficult.
A first proposal , for the simple case of an operator only splitting actions in two
parts to be executed sequentially, can be found in VAN GLABBEEK & VAAN­
DRAGER [59].

An alternative is to use the actions of CCS for modelling "atomic" or instan­
taneous actions that cannot be refined , and representing our refinable actions
by means of variables or parameters. This approach requires a general sequen­
tial composition op erator and has been carried out in BERGSTRA & TUCKER
[26] in the setting of ACP. In particular [26] shows that there is no problem in
defining a refinem ent operator while working in interleaving semantics: atomic
actions a , b cannot be refin ed , so the equation a II b = a; b + b; a is harmless;
parameters x, y can be refined , but there is no equation x II y = x ; y + y; x.
Of course the refin ement operator, ordinary substitution, is defined in the lan­
guage (that still contains all information about causal dependenc e) and not
in the associated interleaving model (which would be impossible according to

Related work 203

Example 0.4).

A completely different approach is taken in GORRIERI, MARCHETTI &
MONTANARI [64] and Bouno1 [29]. There all actions are assumed to be
"atomic", and this property should be preserved if they are refined. In [29]
even two kinds of atomicity are proposed , corresponding with two kinds of re­
finement. In [64] this kind of refinement is carried out in an interleaving based
model, as mentioned in the introduction.

Refinement in more concrete programming languages 1s treated m GRI­

BOMONT [67].

It is often argued that a concurrent system should not be represented just
by a Petri net or an event structure, but rather by an equivalence class of such
objects. Action refinement is only well-defined on a quotient domain induced
by a semantic equivalence if this equivalence is a congruence for refinement, i.e.
if P = Q ==;, ref(P) = ref(Q). The search for suitable equivalences has been
reported e.g. in [36, 54, 53, 125, 3, 99, 27 and 63], aJld will be the topic of the
remaining chapters of this thesis .

205

Chapter V

Partial Order Semantics for Refinement of
Actions

- neither necessary nor always sufficient

but appropriate when used with care -

Rob van Glabbeek & Ursula Goltz

Notes: This chapter appeared originally in Bulletin of the EATCS 38, pp. l 54-163.
It also appeared as Report CS-N8901, Centre of Mathematics and Computer
Science, Amsterdam 1989.
Here it serves as an informal summary of the remaining two chapters of this
thesis . It uses Petri nets rather then event structures and contains no techni­
calities like definitions and proofs. Instead more attention has been paid to the
examples .
The research of the first author was supported by Esprit project 432
(METEOR).

Originally this chapter was written in continuation of a series of papers
m the Bulletin of the EATCS about the relative merits of partial order se­
mantics and interleaving semantics , starting with CASTELLANI, DE MICHELIS
& PoMELLO [36]. That paper pointed out a significant advantage of partial
order semantics , by formulating a desirable property of semantic equivalences
that is not met by interleaving equivalences. This property is preservation un­
der refinement of actions. A semantic equivalence is preserved under action
refinement if two equivalent processes remain equivalent after replacing all oc­
currences ofan action a by a more complicated process r(a). For example, r(a)
may be a sequence of two actions a 1 and a 2 . This property may be desirable
in applications where concurrent systems are modelled at different levels of
abstraction, and where the actions on an abstract level turn out to represent
complex processes on a more concrete level. Therefore for example PRATT [108]
and LAMPORT [83] already advocate the use of semantic equivalences that are
not based on action atomicity.

206 V. Partial Order Semantics for Refinement of Actions

CASTELLANO, DE MICHELIS & Po MELLO [36) showed by means of a simple
example that none of the interleaving equivalences - not even bisimulation - is
preserved under action refinement. Furthermore they claim that 'on the other
hand , the approaches based on partial order are not constrained to the assump­
tion of atomicity'. Indeed, they give a proof that "linear time" partial order
semantics, where a system is identified with the set of its possible (partially
ordered) runs , is preserved by refinement. They conclude that 'interleaving
semantics is adequate only if the abstraction level at which the atomic actions
are defined is fixed. Otherwise, partial order semantics should be considered'.

In this chapter we would like to point out that this conclusion is not so
obvious. In particular we will argue

that there are several equivalences based on partial orders which are not

preserved by refinement (namely when taking the choice structure of sys­
tems into account);

that nevertheless a " branching time" partial order equivalence can be found
that is preserved under refinement;

but that, in order to achieve preservation under refinement it is not nec­
essary to employ partial order semantics: there exist equivalences that
abstract from the causal structure of concurrent systems and are still pre­
served under refinement .

In interleaving semantics, the possible runs of a system are represented as
sequences of action occurrences, modelling parallelism by arbitrary interleaving
of actions . The example of [36] consisted of the two systems M and N which
may not be distinguished in this kind of semantics:

M = a II b (two actions a and b, executed independently);
N = a; b + b; a (either the sequence ab or the sequence ba. is executed).

They have the following Petri net representations (labelling transitions by ac­
tion names) :

neither necessary nor sufficient but appropriate when used with care 207

M N

It was shown that after refining a into the sequential composition of a 1 and
a 2 , thereby obtaining the systems

M' = (a1; a2) 11 b and N' = (a1 ; a2) ; b + b; (a1 ; a2),

M' can perform the sequence of actions a1ba2, while N' cannot do this.
Hence M' and N' are not equivalent in interleaving semantics.

A first attempt to capture parallelism more precisely is made by so called
step semantics. Here it is specified that in a run of a parallel system several
independent actions may occur together in one step. We can think of a system
having a global clock where at each clock tick several actions occur simultane­
ously. This view is taken in calculi like SCCS [94], CIRCAL [91] and MEIJE

[6]. Step semantics also have been given to CCS in (41] and to TCSP in [116].

It is easy to see that the two systems M and N considered above are already
distinguished in step semantics: In M it is possible to execute the step { a, b}
whereas in N it is not. So the example in [36] is not well chosen to advocate
partial order semantics; already step semantics would be sufficient in this case.
Therefore, we will now give a slightly more elaborate example. Consider the
following two systems:

P = (a;b) II c,
Q = a; (b II c) + (a II c) ; b.

In both of these systems the actions a, band care executed, and b occurs after
completion of a. However, in P the c action occurs independently of both a

208 V. Partial Order Semantics for Refinement of Actions

and b whereas in Q c may only occur either "causally behind" a or "causally
before" b. P and Q may be represented by the following Petri nets (using a
construction explained for instance in [59] for implementing +).

p a

0

P and Qare identified when considering their possible sequences of steps. Both
of them take into account the five possibilities for c: occurring before a, simul­
taneous with a, between a and b, simultaneous with b, or after b. However,
after substituting (c1 ; c2) for c only the first system can perform the sequence
of actions c1 abc2 . Thus also this semantics is not preserved under refinement.

On the other hand , P and Q can be distinguished by considering the partial
orders of action occurrences they allow .

a - b
C

(a followed by b and
independently c)

is a computation of P but not of Q. In [36] it was shown that partial order se­
mantics - when identifying a system with its set of possible (partially ordered)
runs - is preserved under action refinement.

However , when taking the choice structure of systems into account, the sit­
uation becomes less obvious.

Before discussing the problem in detail , we would like to give an overview,
by classifying the equivalences being currently investigated (without claiming
completeness). They may be positioned in a two dimensional diagram as shown

neither necessary nor sufficient but appropriate when used with care 209

below, distinguishing them firstly with respect to the preserved level of detail in
runs of systems (as discussed above) and secondly with respect to the preserved
level of detail of the choice structure of systems (we do not consider abstrac­
tion from internal actions here) . In trace semantics ("linear time" semantics),
a system is fully determined by its set of possible runs , thereby completely
neglecting the branching structure. On the other end, bisimulation semantics
preserve the information where two different courses of action diverge (although
branching of identical courses of action is still neglected). In between there are
several " decorated trace semantics", where part of the branching structure is
taken into account. Mostly these are motivated by the observable behaviour of
processes , according to some testing scenerio (see Chapter I).

runs sequences sequences partial orders
of actions of steps

branching
structure

interleaving step pomset
paths trace trace trace

equivalence equivalence equivalence

: e.g. testing

interleaving step e.g. pomset
bisimulation bisimulation bisimulation bisimulation

equivalence equivalence equivalence

Up to now we have only considered the trace equivalences in the upper row of
the diagram . We recalled from [36] that pomset trace equival ence is preserved
under action refinem ent , while interleaving trace equivalence is not. More­
over we have shown that also step trace equivalence is not preserved under
refinement . Next we will try to establish similar results for the corresponding
branching time equivalences and for the testing equivalences in between.

In interl eaving semantics this generalisation is quite simple. As observed
in [36], the systems M and N are identified even in interl eaving bisimulation
semantics while the refined systems M' and N ' are not even identified in in­
t erleaving trace semantics. So there is one single example showing that neither
interleaving bisimulation equivalence nor interleaving trace equivalence is pre­
served under refinement. As a consequence, also none of the decorated trace
equivalences based on interl eaving, which are m ore discriminating then inter­
leaving trace equivalence, but less discriminating then interl eaving bisimulati on

210 V. Partial Order Semantics for Refinement of Actions

equivalence, is preserved under refinement; in each of the decorated trace se­
mantics based on interleaving, M and N are identified , while M' and N' are
distinguished.

Our example against step trace equivalence however cannot be used to show
that also step bisimulation equivalence is not preserved under refinement; the
systems P and Q happen to be different in step bisimulation semantics already:
after performing an a-action the system P is always able to continue with a
b-action , whereas Q can perform an a-action and reach a state where it is not
possible to continue with b. Nevertheless , the following example shows that
also step bisimulation semantics is not preserved under refinement. Consider
the two systems M and L which may not be distinguished in step bisimulation
semantics:

M = a ll b
L = a II b + a; b

(two actions a and b, executed independently);
(either a and b are executed independently or
the sequence ab is executed).

They have the following Petri net representations:

M L

The systems M' = (a1;a2) II band L' = (a1;a2) II b+ (a 1 ;a2) ;b which are ob­
tained by substituting a1; a 2 for a are no longer step bisimulation equivalent;
only L' can perform a1, and reach a state where it is not possible to continue
with b.

Hence, neither step trace nor step bisimulation equivalence is preserved
under refinement. However , M' and L' happen to be step trace equivalent, so
none of the previous two examples is adequate for both equivalences. In order
to tackle the whole range of equivalences included between step trace and step
bisimulation equivalence we need yet another example, which simultaneously
shows that both step trace and step bisimulation equivalence are not preserved
under refinement. Consider the systems

neither necessary nor sufficient but appropriate when used with care 211

Q = a; (b II c) + (a II c); b and
R = Q + P = a; (b II c) + (a II c); b + (a; b) II c.

The Petri net associated to Q has been shown before, and the net for R is
drawn in [59], where it was also pointed out that Q and Rare step bisimulation
equivalent. However, after refining c into c1 ; c2 the two systems are not even
interleaving trace equivalent; only the second system can perform the sequence
of actions c1abc2 . As a consequence, none of the decorated trace equivalences
based on steps, such as the step failure semantics of [116], is preserved under
refinement.

A rath er straightforward combination of the ideas of bisimulation and of
capturing causal dependencies by partial orders has been proposed in BoUDOL

& CASTELLANI [3 1]. They suggest to consider transition systems as for the
usual interleaving bisimulation, but to label the arcs in these transition sys­
tems by pomsets (partially ordered multisets of action occurrences) instead of
single actions. However, it turns out that the obtained equivalence, usually
called pomset bisirnulation, is not preserved by refinement of actions.

Consider the two systems K and L below.

K L

0

In both systems either a and b are execu ted independently or the sequence ab
is executed. However, in L the choice between these two options is made at
the beginning , while in K this choice can be postponed until the execution of
a has been completed.
The system K can behave as follows:

it performs the single acti on a and the remaining behaviour is b + b, which
is identifi ed with b;

212 V. Partial Order Semantics for Refinement of Actions

it performs the single action b and the remaining behaviour is a;

it performs the pomset : (a and b executed independently) and there is

no remaining behaviour;

or it performs the pomset a - b (a followed by b) and again there is no
remaining behaviour.

The behaviour of L can be described in exactly the same way and for this
reason the two systems are pomset bisimulation equivalent.

Now let us imagine that a is refined into a 1 ; a2 • The systems K' and L'
which are obtained in this way can be distinguished in pomset bisimulation
semantics, and even in interleaving bisimulation: only L' can refuse to do a
b-action after execution of a 1 .

Hence pomset bisimulation semantics is not preserved under refinement of
actions. Another example for this are the two terms

a; (b + c) + (a II b) and a; (b + c) + (a II b) + (a; b)

(again refining a into a1 ;a2). However the example given before can also
be used to show that even the notion of generalised pomset bisimulation, as
discussed in VAN GLABBEEK & VAANDRAGER [59], is not preserved under re­
finement. Of course we cannot find an example tackling the whole range of
equivalences included between pomset trace and pomset bisimulation seman­
tics, since we already observed that pomset trace equivalence is preserved under
refinement. However, the systems K' and L' can already be distinguished in
interleaving failure semantics, as employed in [33, 43] . Thus no equivalence
that is at least as discriminating as interleaving failure equivalence but less
discriminating then pomset bisimulation equivalence can be preserved under
refinement.

The interplay of equivalence notions and refinement of actions as discussed
up to now is investigated in detail in Chapter VI. There all the equivalence
notions and examples presented so far are given formally in the framework of
event structures; refinement of actions is performed by replacing actions by
non-empty pomsets. That paper concludes by showing that another "partial
order bisimulation" is indeed preserved by refinement. In order to avoid tech­
nical details, we just ouline these results here.

After we realised that pomset bisimulation is not preserved by refinement,
another equivalence was considered, hoping that it would solve the problem
(see e.g. DEVILLERS [48]). This equivalence had been considered before un­
der the name NMS partial ordering equivalence in DEGANO, DE NICOLA &

neither necessary nor sufficient but appropriate when used with care 213

MONTANARI [40]. The main idea is to bisimulate transition systems where the
states are labelled by their (partially ordered) histories. In the next chapter
it is shown that this equivalence is indeed preserved by refinement when we
restrict ourselves to systems without autoconcurrency, that is to systems which
do not allow concurrent occurrences of the same action like in a. II a. However ,
for systems with autoconcurrency it turns out that NMS po equivalence is not
preserved by refinement. Even more , it does not even respect pomset bisim­
ulation equivalence in this case. The example showing both these facts was
suggested to us by Alex Rabinovich who used it to show that this equivalence
is not a congruence with respect to a TCSP-like parallel composition. To ob­
tain a conguence, a stronger version of NMS po equivalence was suggested in
RABINOVICH & TRAKHTENBROT [109]. In the next chapter it is shown that
this "partial order bisimulation equivalence" is indeed always preserved by re­
finement.

So we have shown that it is not automatically sufficient to move to partial
order semantics for refinement of actions . When considering the choice struc­
ture, this has to been done with care. In the remaining part of this note, we
argue that on the other hand it is not even necessary to move to partial orders
(as one may conclude from [36]).

A branching time semantics lying strictly between step semantics and par­
tial order semantics has been proposed in VAN GLABBEEK & VAANDRAGER
[59]. This ST-bisimulation semantics is based on the idea that actions have a
duration, and may overlap in time. Contrary to step semantics, it recognises
the possibility that , in P = (a; b) II c, action c may have an overlap with both a
and b, while b can only occur after completion of a. . However when in a run of
a system an action b happens after completion of a, it is not taken into account
whether or not there is a causal link between the two actions .

Compare for instance the systems M and K that have been presented be­
fore .

Both systems perform an a-action and a b-action. In M these actions are
always independent, whereas in K it is possible to perform a b-action which
causally depends on a: so M and K are distinguished in partial order seman­
tics. However, in ST-bisimulation semantics the only execution of K which is
not possible in M (first a and then the b which is causally dependent on this
a) can not be distinguished from another execution of K (and of M) , namely :
first a and then the b which is independent of this a. In K , the choice between
both runs is only made after completion of a, and in that state the remaining
part of both executions is the same: just b. Hence M and K are identified in
ST-bisimulation semantics.

214 V. Partial Order Semantics for Refinement of Actions

So ST-bisimulation equivalence abstracts from the causal structure of con­
current systems. Nevertheless it is preserved under refinement, as will be shown
in Chapter VII. A similar result can be proved for linear time semantics as well.
A variant of this can be found in NIELSEN, ENGBERG & LARSEN [99]. Fur­
thermore a variant of failure semantics, based on the same ideas that underly
ST-bisimulation semantics has been proposed in [125]. There it is proven that
also this equivalence respects refinement.

This shows that indeed partial order semantics (in the strong sense) are not
necessary for the type of refinement we have considered. Nevertheless, we need
partial order bisimulation semantics when it is required to model the interplay
of causality and branching in full detail.

We hope that this note, and the formal versions of it in the next chapters,
help to clarify th e relationship between various equivalences being currently
considered. However, we do not intend to advocate any particular type of
equivalence here. We just want to illustrate that the appropriate equivalence
notion has to be chosen carefully with regard to the considered questions .

215

Chapter VI

Equivalence Notions for Concurrent Systems
and Refinement of Actions

Rob van Glabbeek & Ursula Goltz

In this chapter we investigate equivalence notions for concurrent systems. We
consider "linear time" approaches where the system behaviour is characterised
as the set of possible runs as well as "branching time" approaches where the
conflict structure of systems is taken into account. We show that the usual
interleaving equivalences, and also the equivalences based on steps (multisets
of concurrently executed actions) are not preserved by refinement of atomic
actions. We prove that "linear time" partial order semantics, where causality
in runs is explicit , is invariant under refinement. Finally, we consider various
bisimulation equivalences based on partial orders and show that the strongest
one of them is preserved by refinement whereas the others are not.

Notes This chapter is based on our paper Equivalence Notions for Concurrent Systems

and Refinement of Actions, Arbeitspapiere der GMD 366, Sankt Augustin 1989,

an extended abstract of which has been published in Proc. MFCS 89, LNCS

379, Springer-Verlag, pp. 237-248, 1989. However, the introduction of prime

event structures and the refinement operator as well as the proof of its compo­

sitionality has been omitted since this is covered by Section 1 of Chapter IV

already. Furthermore our results are reformulated in such a way that they are

not only valid for prime event structures but also for flow event structures, as

presented in Section 2 of Chapter IV . On flow event structures, infinite refine­

ments and refinements with conflicts are no longer excluded, which strenghtens

our r efinement theorems.

The research of the first author was supported by Esprit project 432

(METEOR).

Contents

Introduction

1 Interleaving semantics

2 Step semantics

3 "Linear time" partial order semantics

4 "Branching time" partial order semantics

Conclusion

216
217

219
223

224

231

216 VI. Equivalence notions for concurrent systems and refinement of actions

Introduction

A large body of research is devoted to equivalence notions for concurrent sys­
tems. Most of the equivalence notions currently being considered are based on
a semantics where concurrency is modelled by arbitrary interleaving of atomic
actions. In PRATT [108] and in CASTELLANO , DE MICHELIS & POMELLO [36]
it is pointed out that this approach has a severe drawback . It leads to complica­
tions when changing the level of atomicity of events; " ... we would like a theory
of processes to be just as usable for events having a duration or structure , where
a single event can be atomic from one point of view and compound from an­
other" ([108]). In [36], an example is given, showing that the usual interleaving
equivalence is not invariant under refinement of actions when this is simply
modelled by textual replacement. Both [108] and [36) claim that modelling
concurrency by expressing causal dependencies explicitly using partial orders
could help to solve this problem. However, the two systems considered in [36]
can already be distinguished by considering interleavings of "steps" (multisets
of concurrently executable actions). So their example does not show that it is
indeed necessary to consider partially ordered executions. Furthermore, their
proof of the claim that partial order equivalence is preserved by refinement is
only valid for "linear time" partial order semantics, where the set of all pos­
sible executions of a system is considered, without taking into account where
conflicts are resolved . This is also the model considered by Pratt.

In this chapter , we will consider various equivalence notions based on steps
and on partial orders. We will discuss ''linear time" semantics, but we will
also take the conflict structure of systems into account by considering various
forms of bisimulation ("branching time" semantics). We will show that the
known equivalences based on steps are not invariant under action refinement.
We will rephrase in our framework the proof of [36], showing that "linear time"
partial order semantics is indeed robust against changing the level of atomic­
ity. Then we consider several equivalence notions based on "branching time"
partial order semantics. We give examples, showing that pomset bisimulation
equivalence of BollDOL & CASTELLANI [31] and also the NMS partial ordering
equivalence suggested in DEGANO, DE NICOLA & MONTANARI [40], are not
preserved by refinement of atomic actions. An equivalence notion for Petri
nets which coincides with the notion of NMS partial ordering equivalence was
suggested in DEVILLERS [48] where the refinement problem has also been dis­
cussed. We also show that NMS partial ordering t'quivalence does not imply
pomset bisimulation (and vice versa); hence these notions are incomparable.
Finally we show that a stronger equivalence notion, proposed in RABINOVICH
& TRAKHTENBROT [109] under the name BS-bisimulation, is indeed preserved
by refinement. This equivalence does respect pomset bisimulation.

We do not intend to advocate any particular equivalence notion here , the

1. Interleaving semantics 217

purpose of this investigation is to find out about the consequences of the dif­
ferent approaches. There will certainly be a tradeoff between simplicity and
distinguishing power. We just want to illustrate that the appropriate notion
has to be chosen carefully with regard to the questions considered.

1 Interleaving sen1antics

In this paper, concurrent systems are represented by event structures. It is
written in such a way that the text applies both to prime event structures as
to flow event structures (but in case of prime event structures ~ x should be
read as ~). The reader is refered to Section 1 - for prime event structures -
or Section 2 - for flow event structures - of Chapter IV , for an introduction to
event structures and action refinement. There it is also explained how config­
urations model the states of a concurrent system.

We may now ask which actions may occur rn a configuration and which
configuration is then obtained.

Definition Let £ be an event structure,

1. X -->c X' if X , X' E Conf(E) and X C X'.

11. X-.'.:. X' iff a E Act, X -->c X' and X' \ X = {e} with
l(e) = a.

Note that X -->c X' implies that Ef(X' \ X) is finite and conflict- free.

a
Here X- X' says that if E is in the state represented by X, then

it may perform an action a and reach a state represented by X'. Likewise,
X _.£ X' says that [may evolve from X to X'.

a
Considering transitions X- X' only, one can define the usual inter-

leaving semantic s. The simplest form is that of comparing just the possible
sequences of action occurrences.

Definition

w = a1 ···an E Act' is a (sequential) trace of an event structure £
iff there exist configurations X 0 , • · ·, Xn of [such that X 0 = 0 and
X;_1 ~X; (i= l,···,n) .
SeqTraces (£) denotes the set of all sequential traces of an event
structure [.

218 VI. Equivalence notions for concurrent systems and refinement of actions

Two event structures £, :F are called interleaving trace equ.ivalent
(£ :=::::; 1 :F) iff SeqTraces (£) = SeqTraces (:F).

With the concept of labelled transition systems, we obtain a stronger equiv­
alence notion based on the idea of bisimulation [103, 92]. For example, the
systems a(b + c) and ab+ ac have the same traces but are distinguished by
bisimulation equivalence.

Definition Let [,:F be event structures.

A relation R ~ Conj(£) x Conf(:F) is called an interleaving bisim­
ulation between [and :F iff (0, 0) E R and if (X, Y) E R then

- X ~ X' ⇒ :lY' with Y ~ Y' and (X', Y') E R,

- X ~ Y' ⇒ :lX' with X ~ X' and (X', Y') ER.
[and :F are interlea ving bisimulation equivalent ([:=::::;b :F) iff there
exists an interleaving bisimulation between [and :F.

Clearly, [:=::::;b :F implies £ :=::::;1 :F.

Example 1.1

We now recall the example of [36], showing that both :::::it and :=::::;b

art not preserved by refinement.
They considered the two systems P = a lb and Q = ab+ ba, repre­
sentable by the following event structures.

[p a b a # b

l l
b a

In all known interleaving semantics, P and Q are considered e4uiv­
alent, we have [p ::::o;b Eq . However, ifwe allow to refine the action
a into the pomset a 1 ~ a 2 , this gives rise to the two systems

[p, a1 b [Q ' a1 # b

l l
a.2 a2 a1

l l
b a2

and they are not interleaving e4uivalent; indeed they are not even
interleaving trace e4uivalent: [p, allows for the st'quence a 1 ba2
whereas Eq, doesn't.

2. Step semantics 219

This shows that both interleaving trace equivalence and interleaving bisimula­
tion equivalence are not preserved by action refinement. Even more, the same
can be said for all equivalences identifying P and Q and respecting interleaving
trace equivalence, e.g. failure equivalence [33], testing equivalence [43].

As an event structure equivalence which is indeed preserved by refinement
one could consider event structure isomorphism.

Theorem Let E, :F be event structures, let ref be a refinement.

Then E; :F ⇒ ref(E) ; re f(:F).

Proof Straightforward. •
However, the main purpose of introducing an equivalence notion is to ab­

stract from certain details in a system representation . For example, we would
like to express that the processes a and a + a exhibit the same behaviour. Fur­
thermore, we would like to identify processes like {a /(b + c)) + (a /b) + ((a + c) /b)
and (a [(b+c)) + ((a+c) /b) (absorption law , see [31]) . This is not possible when
using event structure isomorphism.

Hence , in the sequel we will consider various equivalence notions in be­
tween these two extremes (interleaving trace equivalence and event structure
isomorphism) , taking into account the concurrency and the conflict structure
("branching-time" semantics) in more and more detail.

2 Step semantics

A more discriminating view of concurrent systems than that offered by in­
terleaving semantics is obtained by modelling concurrency as either arbitrary
interleaving or simultaneous execution. This view is taken in calculi like SCCS
[94], CIRCAL [91] and MEIJE [6]. In TAUBNER & VOGLER [116], this idea
is applied to give a non-interleaving semantics to theoretical CSP, called step
fa i lu.re semantics. The word step originates from Petri net theory where it
denotes a set (or multi set) of concurrently executable transitions . Recently, a
step semantics for CCS has been defined [41), inspired by [6]. Step semantics
give a more precise account of concurrency than interleaving semantics, e.g.
the systems a[b and ab+ ba are distinguished. This means that the example
given in [36] constitutes an argument against interleaving semantics but not
against step semantics. We will formalise some step equivalence notions and
then discuss examples which show that even these equivalences are not pre­
served by refinement.

220 VJ. Equivalence notions for concurrent systems and refinement of actions

Step semantics are defined by generalising the single action transitions

a A
X- X' from Section 1 to transitions of the form X- X' where A is

a multiset over Act, representing actions occurring concurrently. In particular,
we allow actions to occur concurrently with themselves (" autoconcurrency").
Using this new kind of transitions, step trace equivalence and step bisimulation
equivalence are straightforward generalisations of the corresponding interleav­
ing equivalences, see e.g. POMELLO [107).

Definition Let [be an event structure.

X ~ X' iff A E JNAct (A is a multiset over Act) , X ->c X' and
X' \ X = G such that Ve , e' E Ge co e' and l(G) = A
where l(G)(a) = l{e E G ll(e) = a} I.

Definition

W = A 1 ···An where A; E JNAct (i = l, · ·· , n) is a step trace of
an event structure [iff there exist configurations X 0 , • • ·, Xn of [

such that X 0 = 0 and X;-1 ~ X; (i = 1, · · · , n).
Step Traces (E) denotes the set of all step traces of an event structure
[.

Two event structures [,:Fare called step trace equivalent ([:::::,t :F)
iff Step Traces ([) = Step Traces (:F) .

Definition Let [, :F be event structures.

A relation R ~ Conj([) x Conf(:F) is called a step bisimulation
between [and :F iff (0 , 0) ER and if (X, Y) E R then

- X ~ X' ==;- 3Y' with Y ~ Y' and (X , Y) E R,

- Y ~ Y' ==;- 3X' with X ~ X' and (X , Y) E R.
[and :F are step bisim ulation equiva.lent ([::::: , b :F) iff there exists
a step bisimulation between [and :F.

As for interleaving, [:::::,b :F implies [:::::,t :F. Moreover (as far as we know) all
other interesting step equivalence notions are positioned somewhere in between
(recall that we do not consider abstraction from internal actions) .

Considering the two systems P = alb and Q = ab + ba from [36], represented
as event structures [p and [Qin Example 1.1, we find that [p and [Qare not
equivalent in step semantics. The step { a, b} is possible in [p but not in [Q· So
the example in [36) is not adequate for step semantics. Here we give examples
showing that both :::::, 1 and :::::,b are not invariant under refinement of actions,
as well as all equivalences included between them , e.g. step failure equivalence.

2. Step semantics 221

The following example shows that step trace semantics is rn general not
invariant under refinement.

Example 2.1

We consider the two systems
a

£ = l C

b
and

a C a

:F= '\, / + /"\,
b b C

The +-sign in the second system is supposed to indicate that this
a

system either behaves like
C

/
b

or like
a

/"\,
b

, that is
C

either performs a and c in parallel and then b, or first a and then
b and c in parallel. The +-sign may easily be "implemented" by
indicating that all events in the first component are in conflict with
all events in the second component and vice versa. (For represent­
ing the whole system as a term, we would need to use a sequential
composition operator or a TCSP-like parallel composition.)

These two systems are step trace equivalent. However, when refin­
ing c into c1 ----> c2 , the resulting systems

a C1 C1 a
£'= l l and :F' = a l + /"\,

b C2 \ ;2 b C1

l
b C2

are not step trace equivalent (not even interleaving trace eqmva­
lent).

This example shows that -;,;;, 1 is not preserved by refinement. However, the
example is not adequate for step bisimulation equivalence since [and F are
not step bisimulation equivalent (after performing a, the bis always possible in
[but not always in :F). The next example shows that also -;,;;,b is not preserved
by refinement.

Example 2.2

Consider P = a lb and Q = (a lb)+ ab,

cp = a b [Q = a# a # b .
l
b

222 VI. Equivalence notions for concurrent systems and refinement of actions

It is easy to verify that [p ~,b Eq. However, refining a into a 1 -> a2

yields

[p, a1 Eq, a1 # a1 # b

l b l l
a2 a2 a2

l
b

After the step { ai}, the step {b} is always possible in [p,. How­
ever, in Eq ,, it may be the case that the step {b} is impossible
after executing a 1 (choosing the branch a 1 -> a 2 -> b). Hence Ep,
and Eq , are not step bisimulation equivalent (not even interleaving
bisimulation equivalent).

However, this example is still not suitable for disqualifying the whole range of
equivalence notions included between ~,t and ~,b, as the example of [36] does
in the interleaving case (see Example 1.1), since the refined systems [p , and
Eq , turn out to be step trace equivalent. A slightly more complicated example
may be given, disqualifying all equivalence notions between ~,band ~,t·

Example 2 .3

First consider the following three systems:

a

/".
b C

a C

". /
b

Now we consider the two composed systems

a

[3 = l C

b

We have E ~,b :F [59]. However, when refining c into c1 -> c, only
the refinement of :F may perform the sequence of actions c1 a b c2 •

The resulting systems E' and :F' are not even interleaving trace
equivalent.
So let~ be an equivalence included between ~,t and ~,b, then also
E ~ :F , but E' '/:; :F'.

Thus we have shown that all the currently known versions of step equivalence
are not preserved by refin ement .

223

3 "Linear time" partial order semantics

In [36] it was claimed that equivalence based on considering partially ordered
executions is preserved by refinement. In this section we will make this claim
more precise. We will show that this is indeed true when considering the set
of all possible executions of systems (traces) , formalising the proof sketch from
[36] in terms of event structures. However , in the next section, we will consider
equivalence notions taking account of the timing of choices, based on the idea
of bisimulation , and we will show that in this case this claim is not so obvious.

In Chapter IV, we discussed that the possible executions of a system may
be represented as isomorphism classes of labelled partial orders (pomsets), thus
taking full account of the causality relation for event occurrences.

Definition

(i) Let X = (X , 'S x , lx) and Y = (Y, ,S y , ly) be partial orders which are
labelled over Act. X and Y are isomorphic (X = Y) iff there exists a
bijection between X and Y respecting the ordering and the labelling.
The isomorphism class of a partial order labelled over Act is called a
pomset over Act.

(ii) Let £ be an event structure.
Pomsets (E) := { [(X, 'S x , ldX)]~ IX E Conf(E)}.

(iii) Two event structures £ and :Fare pomset trace equivalent
(£ ::::;;pt :F) if Pomsets (£) = Pomsets (:F).

Clearly, pomset trace equivalence implies step trace equivalence. Example
2.1 shows that pomset trace equivalence is strictly stronger than step trace
equivalence. On the other hand , pomset trace equivalence and step bisimulation
equivalence (or interleaving bisimulation equivalence) are incomparable: a(b +
c) ~pt ab + ac and for [p and Eq of Example 2.2 , [p ::::;;, b Eq but [p fp t Eq.

?'- ,b

Theorem Let [, :F be flow event structures.

Then£ ::::;;pt :F implies ref(£) ::::;;pt ref(:F) for any refin ement function ref.

Proof
Let £ ::::;;pt :F and let ref be a refinement function. We have to show

Pomsets (ref(£)) =Pomsets (ref (:F)).

"C" Let u E Pomsets (ref(£)).
~ ~

Then u = [(X , 'S x, l, e!(C) f X)]~ where X E Conf (ref (£)).

224 Equivalence Notions for concu11ent systems and refinement of actions

With Proposition 1.7 or 2.8 from Chapter IV , we have that X is a refine­
ment of some configuration X of £. Since Pomsets (E) = Pomsets (.F), there
exists Y E Conf(.F) such that (X, Sx, lcf X) and (Y, SY, l.:,. W) are isomor­
phic. Since isomorphism preserves labelling, we can refine Y to a configuration

Y (by choosing identical refinements for corresponding events) such that

(x, s;,1,,f(nr x) = (Y , sy, 1,,1(:F)r y),
hence uE Pomsets (ref(.F)) .

" :) " by symmetry.

4 "Branching time" partial order semantics

■

In this section, we discuss several suggestions to define equivalence notions
based on partial orders and recording where choices are made. We show that
most of these fail in general to be preserved by refinement. Finally we show that
the last and strongest notion is indeed invariant with respect to refinement.

4.1 Pomset bisimulation equivalence

In BounoL & CASTELLANI [31) it was suggested to generalise the idea of
bisimulation by considering transitions labelled by pomsets. So we consider

u
now transitions X- X' where u is a pomset over Act.

Definition Let £ be an event structure.

X ~ X' iff X -+c X' and u is the isomorphism class of [f(X' \ X).

Definition Let £, .F be event structures.

A relation R <;;; Conj(£) x Conf(.F) is called a pomset bisimulation
between£ and .F iff (0 , 0) E R and if (X, Y) E R then
- X ~ X' ⇒ :lY' with Y ~ Y' and (X' , Y') E R ,
- Y ~ Y' ⇒ :lX' with X ~ X' and (X', Y') E R .
£ and .F are pomset bisimulation equivalent (£ ::::::pb .F) iff there
exists a pomset bisimulation between £ and .F.

This equivalence notion is clearly stronger than both step bisimulation equiv­
alence and pomset trace equivalence: £ ::::::pb .F implies £ ::::::,b :F and £ ~pt .F;

"Branching time" partial order semantics 225

moreover , the processes alb and (a lb) + ab considered in Example 2.2 are sb­
equivalent but not pb-equivalent; a(b+c) and ab+ac are pomset trace equivalent
but not pb-equivalent.

However, pb-equivalence is not preserved by refinement.

Example 4.1

Consider a(b+c) + (alb) and a(b +c)+ (a lb) + ab. We have P -:::::pb Q.
However , when refining a into a 1 -+ a 2 and executing a 1 , we may
arrive in a situation in the second system where a 2 and b may be
only executed sequentially and where c is excluded. This is not
possible in the first system.

In VAN GLABBEEK & VAANDRAGER [5 9], the pomset bisimulation was criti­
sized for violating "the real combination of causality and branching time". The
criticism is that only the first system of Example 4.1 has the property that any
action a that is causally preceeding b is also preceeding the choice between b
and c. Therefore they suggested a generalised pomset bisimulation equivalence,
that is finer then pomset bisimulation equivalence, does not identify the two
systems of Example 4.1, and still satisfies a= a + a and the absorption law of
Section 1.

However , generalised pomset bisimulation equivalence is also not preserved by
refinement.

Example 4.2

a

E = l
b # b

a a

:F = l + l
b # b b

These two systems are generalised pomset bisimulation equivalent
[59]. However , when refining a into a 1 ---> a 2 , the resulting systems

a1 a1 a1

l l l
[' = a2 and :F' = a2 + a2

l l l
b # b b # b b

are not even interleaving bisimulation equivalent. After the action
a 1 the action b is always possible in [' . However in :F' it may be
the case that bis impossible after executing a 1 (choosing the branch
a1 -+ a2 b).

226 Equivalence Notions for concurrent systems and refinement of actions

4.2 History preserving bisimulation

Another equivalence notion based on the idea of bisimulation with partial or­
ders that might be preserved by refinement was suggested independently by
Devillers and Van Glabbeek at the workshop on "Combining Compositionality
and Concurrency" [101, 48]. It turned out that this notion coincides with the
NMS partial ordering equivalence suggested earlier in DEGANO, DE NICOLA &
MONTANARI [40]. We rephrase the definition here in terms of event structures
as follows.

Definition Let £, :F be event structures.

A relation R ~ Conf(E) x Conf(:F) is called a weak history preserv­

ing bisimulation between£ and :F iff (0, 0) E Rand if (X, Y) E R
then
- there is an isomorphism between (X, '.S x, le fX) and (Y, '.S Y, l.;.fY),
- X -c X' ⇒ :lY' with Y -.r Y' and (X', Y') ER,
- Y -.r Y' ⇒ :lX' with X -c X' and (X' , Y') ER.
£ and :Fare weakly history preserving equivalent(£ ~wh :F) iffthere
exists a weak history preserving bisimulation between £ and :F.

Note that the isomorphism requirement guarantees that the labels of the events
in X' \ X and Y' \ Y correspond as well.

As observed in [48], it is sufficient to consider only those transitions
X -c X', (resp. Y -F Y') where X'(Y') is obtained from X(Y) by exe­
cuting exactly one event.

The two systems considered in Example 4.1 are pomset bisimulation equiv­
alent but not weakly history preserving equivalent. However, wh-equivalence
is not stronger than pomset bisimulation, as shown by the following exam­
ple; the two notions are in general incomparable. We will show later that
wh-equivalence does respect pomset bisimulation for systems without autocon­
currency.

The following example will also show that wh-equivalence is in general not
preserved by refinement. This example was suggested to us by Rabinovich. He
used it for showing that -::,;;wh is not a congruence with respect to a TCSP-like
parallel composition .

Example 4.3

Let £ =
a # a a

l l
b # b

a #
and :F =

"Branching time" partial order semantics

It is straightforward to check that £ ~wh :F. However, £ and :F
are not pomset bisimulation equivalent. After executing a, it is
alway possible to execute a -, bin £, in :Fit may be impossible
to execute a _, b after a. When refining a into a 1 _, a2 , the
resulting systems are no longer wh-equivalent, not even interleaving
bisimulation equivalent. This can be proven by providing a formula
in Hennessy-Milner logic (Section 1.13 of Chapter I) that is satisfied
by the refinement of :F, but not by the refinement of £. Such a
formula is:

227

An equivalence respecting both pomset bisimulation and wh-equivalence may
be considered by extending the definition of pomset bisimulation with the re­
quirement that, for any (X, Y) E 'R, £f X and ;: ry should be isomorphic.
However, the following example shows that also this equivalence would not
preserve refinement .

Example 4.4

£= :F =

As is quite difficult to check, £ and :F are equivalent according to
the equivalence notion proposed above , but after refining a into
a 1 -, a2 they are not even bisimulation equivalent. The formula
a 1 a 1 •a2 ,b T is satisfied by £ , but not by :F.

We finally define a stronger version of history perserving equivalence which will
respect pomset bisimulation. This notion was first suggested by Trakhtenbrot,
Rabinovich & Hirshfeld in terms of behaviour structures (see [109]) . We will
show that this equivalence is preserved by refinement. For systems without au­
toconcurrency, this equivalence coincides with ~wh· This will imply the result
that ~wh is invariant against refinement for systems without autoconcurrency.

Definition Let £, :F be event structures.

A relation R ~ Conf(E) x Conf(:F) x P(Ee x E:F) is called a
history preserving bisimulation between E and :F if (0, 0, 0) E· R
and whenever (X, Y, f) E R then

- f is an isomorphism between (X, :::'. x , le r X) and (Y, :::'. Y, le rY),

228 Equivalence Notions for concurrent systems and refinement of actions

- X-+c X' ⇒ :lY',J' with Y-+:,:Y', (X',Y',J')E Rand f' 1X=f,

- Y -+:,: Y' ⇒ :lX', f' with X -+c X', (X', Y', f') ER and f' 1X=f.

£ and :F are history preserving equivalent (£ ;:::;;h :F) iff there exists
a history preserving bisimulation between £ and :F.

Clearly, we have £ ;:::;;h :F ⇒ £ ;:::;;wh :F. However the two systems of Example
4.3 are not h-equivalent.

Proposition

Proof
We show that any history preserving bisimulation between [and :F is also a
pomset bisimulation between [and :F (after leaving out the isomorphism com­

ponent). Let R be a h-bisimulation, and suppose (X,Y,f) ER and X ~ X'.
Then X -+c X', thus :lY',J' with Y -+:,: Y',(X',Y',f') E R and f'1X = f.
Since f' is an isomorphism and f' 1X = f, range (f' 1(X' \ X)) = range (f') \
range (f) = Y' \ Y, so f' 1(X1

\ X) is an isomorphism between X' \ X and
Y' \ Y . Hence Y ~ Y' , so R satisfies the first clause of a pomset bisimulation.
The second clause follows by symmetry. ■

From this proof we learn that h-bisimulation not only respects pomset
bisimulation but even the previous proposal combining weak history preserv­
ing equivalence and pomset bisimulation. Thus ;:::;;h is the strongest equivalence
considered so far (except for event structure isomorphism of course). Never­
theless it is possible to abstract from certain details in a system representation:
we have a ;:::;;h a+a and (a l(b+c))+(a lb)+((a + c) lb) ;:::;;h (a l(b+c))+((a+c) lb)
(absorption law).

We now show that considering only those transitions X -+c X', Y -+:,: Y' ,
respectively, where X'(Y') is obtained from X(Y) by executing exactly one
event yields the same equivalence. We write X l> c X' for X -+c X' and
IX' \ XI = l. Let ;::;;oh be the equivalence notion obtained by replacing -+ by
I> in the definition of ;:::;;h.

Proposition For event structures [, :F: [;:::;;h :F iff £ ;::;;oh :F.

Proof
The implication [;:::;;h :F ⇒ [;::;;oh :F is trivial. The implication £ ;:::;; 0 h :F ⇒
£ ;:::;;h :F immediately follows from the observation that whenever X -+c X' ,
there exist configurations X 1 , ... ,Xn(n E IN) such that X = X 1 l>c . .. l> c
Xn = X'. ■

Next we show that ;:::;;h is preserved by refinement.

"Branching time" partial order semantics 229

Theorem Let £,:FE IE and let ref be a refinement function.

Then£ ~h :F ==> ref (E) ~h ref (:F).

Proof
Let R <:;; Conf(E) x Conf(:F) x P(Ec x E:,:) be a history preserving bisimulation

between E and :F. Define the relation R by:

- - - -
R = {(X, Y, f) E Conf (ref(£)) x Conf (ref (:F)) x P(E-ref(t:) x E-re/(:FJ)I

3(X, Y, f) E R such that

- X is a refinement of X,

- Y is a refinement of Y

- - - -- and f :X-Y is a bijection, satisfying f (e , e') = (f(e), e')}.

We show that R is a history preserving bisimulation between ref (E) and
ref (:F) .

1. (0 , 0, 0) ER since (0 , 0, 0) E R .

......, - -
11. Suppose (X, Y , f) ER . Take (X, Y, f) E R. such that

- X is a refinement of X,

- Y is a refinement of Y - - -
- and f :X-Y is bijection, satisfying f (e , e') = (f(e), e') .
Now three things have to be established:

~ ~ ~
1. f satisfies (d ,d') :S; (e, e') <;=:;, f (d , d') :S .;; f (e,e') and

l,,..1(:F) (f (e, e')) = z,,..1(t:) (e, e').

- - - - - -
2. X-,,..J(t:JX'==> 3 Y' , f' such that Y--ref (:F) Y' , f' fX = f and - - -

(X', Y', f') ER.

-, - -
3. Y - ,..J(:FJY' ==> 3 X' , f' such that X__,ref (t:J X' , f' fX = f and

~ ~ ~
(X', Y' , f') ER.

ad 1. Straightforward.
ad 2.

Suppose X -ref(£) X' , i.e. X' E Conf (ref (E)) and X C X' .

We have X' = U {e} xx; where X' E Con/(£) and
eEX '

230 Equivalence Notions for concurrent systems and refinement of actions

Ve E X' : x; E Conf (ref (lc(e))) - {0}.

Then X = pri(X) and X' = pr1 (X'), so X --->c X'.

Since R is a history preserving bisimulation,
3Y',f' with Y--->:F Y',f' fX = f and (X',Y',f') E R.

~
Let Y' = {(f'(e), e')l(e, e') E X}

and f' = {((e, e'), (f'(e), e'))l(e, e') E X' }.

It now suffices to show that Y' is a refinement of Y', since then it follows
immediately with Proposition 1. 7 or 2.8 from Chapter IV that
~ ~ ~
Y' E Conf (ref (:F)) , Y --->ref(:F) Y' (using that f' fX = !), f' fX = f

~
(likewise) and (X' , Y' , f') E R.

- By construction Y' = U {f'(e)} x x; = u {e} x Y: where
eEX' eEY'

Ve E Y': Y: = X1,_ ,(e) E Conf (ref(lc(f'- 1 (e)))) - {0} =
Conf (ref(l:F(e))) -{0}.

- e E busy(Y') = { e E Y' IY: not complete } <==>
~

f' - 1 (e) E busy(X') = {e E X' JX; not complete} by construction.
Furthermore, e maximal in Y' ¢:==:;> r-1 (e) maximal in X', since f' is an
isomorphism.

Hence e E busy(Y') implies e maximal in Y', since X' is a refinement of
X'.

From this it follows that Y' is a refinement of Y'.

ad 3. By symmetry. ■

Finally we show that ~wh and ~h coincide for event structures where con­
current events may not carry the same label. As a corrollary we then have that
also ~wh is preserved by refinement in this case and respects pomset bisimula­
tion .

Definition E is an event structure without autoconcu1'1'ency iff

't/d,e E Ee: d coe and l(d) = l(e) ⇒ d = e.

Theorem For event structures E, :F without autoconcurrency,

E ~wh :F q E ;:;:;;h :F.

Proof
First note that a wh-bisimulation can be regarded as a h-bisimulation without

Conclusion

the requirements that f' f X = f.
Now"¢:" is trivial.

231

In order to establish" ⇒" we will show that any wh-bisimulation between event
structures E, :F without autoconcurrency is also a h-bisimulation. So let r be a
h-bisimulation between such E and :F, without the requirements f' f X = f. We
proof that these requirements are met nevertheless. Assume that (X, Y, f) ER
and X -->c X' . Then there exists (X',Y',f') E R with Y -->p Y'. Suppose
f' fX-:/- f. Then there exists an e EX with f'(e)-:/- f(e).

Now observe that if g is an isomorphism between two arbitrary partial
orders (X, :Sx, lx) and (Y, :SY, ly), and g(ei) = e2 then

l{e' E Xfe' :S x ei} I = l{e' E Yfe' :SY e2} f.

Hence we cannot have f'(e) < f(e) or f(e) < f'(e).
Since Y' is conflict-free we conclude f'(e) co f(e).
Moreover, f' and f preserve labelling, so l:,:(f'(e)) = lc(e) = l:,:(f(e)).
This is a contradiction since :F was assumed to have no autoconcurrency. ■

Corollary Let [, :F be event structures without autoconcurrency and

let ref be a refinement.
Then [-;::c::wh :F ⇒ ref (E) -;:::::wh ref (:F).

Conclusion

In this chapter we have shown that equivalences based on interleaving of atomic
actions or of steps (multisets of concurrently executable actions) are not pre­
served when changing the level of atomicity of actions. However, we could
show that certain equivalences based on modelling causal relations explicitly
by partial orders are indeed preserved by refinement of actions. We consid­
ered "linear time" approaches, where the behaviour of a system is equated to
the set of possible runs, and "branching time" approaches, where the conflict
structure of systems is taken into account. We could show the negative results
about the interleaving approaches regardless of the level of detail in modelling
the conflict behaviour. However, for the positive results about the partial or­
der approaches, the conflict structure turned out to be crucial. An interesting
topic for further research would be to investigate testing equivalences based on
partial orders, taking the conflict structure in a weaker form into account. For
an overview consider the following diagram:

232 VI. Equivalence notions for concurrent systems and refinement of actions

runs sequences
conflict of actions
structure

paths

: e.g. testing

bisimulation

sequences
of steps

means: not preserved by refinement

pomsets

This diagram is not at all complete. A naturally arising question is to what
extent it is actually necessary to move to partial orders to achieve invariance
of equivalence under refinement (here we have only shown that steps are not
sufficient). This question will be addressed in the last chapter of this thesis.
Another equivalence being preserved by refinement was proposed by HENNESSY

[71 ,3], however it is defined on a syntactical level and is not applicable to such a
wide class of systems as considered here, e.g. it is not possible to treat full CCS.

The refinement operation we have considered replaced actions by arbi­
trary non-empty event structures. As remarked in Chapter IV, it is debatable
whether one should consider refinements where replacing actions by the empty
event structure is allowed (forgetful refinements). Such refinements can drasti­
cally change the structure of processes, they can not be explained by a change
in the level of abstraction at which processes are regarded . Nevertheless, our re­
sults hold also for forgetful refinements (with slightly more complicated proofs).

Finally we would like to address the question whether history preserving
bisimulation as defined here is the coarsest equivalence respecting pomset bisim­
ulation and being preserved by refinement . We conjecture that this is not the
case, in particular, that for

Conclusion

£= and :F =
a

b~~a # b

~#___,/
£ ~h :F, but for any refinement ref, ref(£) :::::pb ref(:F).

233

Nevertheless, if it is required to model the interplay of causality and branch­
ing in full detail, history preserving bisimulation seems to be the coarsest suit­
able equivalence.

235

Chapter VII

The Refinement Theorem for ST-bisimulation Semantics

R.J. van Glabbeek

In this chapter I prove that ST-bisimulation equivalence, as introduced in (58) ,
is preserved under refinement of actions. This implies that it is possible to
abstract from the causal structure of concurrent systems without assuming
action atomicity.

Note: This chapter appeared as Report CS-R9002, CW/, Amsterdam 1990, and
will be published in: Proceedings IFIP Working Conference on Programming
Concepts and Methods, Sea of Gallilee, Israel 1990 (M. Broy & C.B. Jones,
eds.), North-Holland 1990.

TABLE OF CONTENTS

Introduction
1. Concurrent systems and refinement of actions
2. The behaviour of concurrent systems I
3. Equivalence notions for concurrent systems I
4. The behaviour of concurrent systems II
5. Equivalence notions for concurrent systems II
6. The refinement theorems
Concluding remarks

INTRODUCTION

235
239
241
242
247
249
257
260

Virtually all semantic equivalences employed in theories of concurrency are
defined in terms of actions that concurrent systems may perform (cf [1-18]).
Mostly, these actions are taken to be atomic, meaning that they are considered
not to be divisible into smaller parts. In this case, the defined equivalences are
said to be based on action atomicity.

However, in the top-down design of distributed systems it might be fruitful
to model processes at different levels of abstraction. The actions on an
abstract level then turn out to represent complex processes on a more concrete
level. This methodology does not seem to be compatible with non-divisibility
of actions and for this reason PRATI [107], LAMPORT [82] and others plead for
the use of semantic equivalences that are not based on action atomicity.

As indicated in CASTELLANO, DE MICHELIS & POMELLO [36], the concept of

236 VII. The refinement theorem for ST-bisimulation semantics

action atorruc1ty can be formalized by means of the notion of refinement of
actions. A semantic equivalence is preserved under action refinement if two
equivalent processes remain equivalent after replacing all occurrences of an
action a by a more complicated process r(a). In particular, r(a) may be a
sequence of two actions a I and a 2 • An equivalence is strictly based on action
atomicity if it is not preserved under refinement.

Most semantic equivalences can be positioned in a two dimensional
classification diagram, such as the one of Figure l . On the x-axis equivalences
are ordered with respect to the preserved level of detail of runs of processes.
Three well-known points on this axis are interleaving semantics, where runs are
represented by sequences of action occurrences, step semantics, where runs are
represented by sequences of multisets of action occurrences - the multisets (or
steps) representing simultaneous occurrences - and partial order semantics, in
which all causal dependencies between action occurrences in runs of processes
are preserved. On the y-axis the equivalences are ordered with respect to the
preserved level of detail of the branching structure of these runs. Two well­
known points on this axis are trace semantics, where a process is fully deter­
mined by the set of its possible (partial) runs, thereby completely neglecting
the branching structure of processes, and bisimulation semantics, where also the
information is preserved where two different courses of action diverge
(although branching of identical courses of action is still neglected). In
between there are several decorated trace semantics, where part of the branch­
ing structure is taken into account. Mostly these are motivated by the observ­
able behaviour of processes, according to some testing scenario. In Figure l
the equivalences become finer, or more discriminating, when moving upwards
or to the right.

bisimulation semantics ~ib--------~sb ________ ~h

decorated trace semantics

trace semantics ~it ~------~SI ---------t;::::::::,pl

interleaving
semantics

step
semantics

FIGURE I. Semantic equivalences

partial order
semantics

In (36], CASTELLANO, DE MICHELIS & PoMELL0 show by means of a simple

Introduction 237

example that none of the interleaving equivalences - not even bisimulation - is
preserved under action refinement. Furthermore they claim that 'on the other
hand, the approaches based on partial order are not constrained to the
assumption of atomicity'. Therefore they conclude that 'interleaving semantics
is adequate only if the abstraction level at which the atomic actions are defined
is fixed. Otherwise, partial order semantics should be considered'.

In [54] (the previous chapter of this thesis), URSULA GOLTZ & I elaborated
on this argument by providing examples, showing that also none of the step
equivalences is preserved under refinement, and by formalizing the proof
sketch of [36] that trace equivalence based on partial orders is invariant under
refinement. We also wanted to prove this for bisimulation equivalence based
on partial orders, but surprisingly we found that none of the partial order
bisimulation equivalences proposed before publication of [36] is preserved
under action refinement. However, we did prove a refinement theorem for a
new notion of bisimulation equivalence based on partial orders, proposed
recently by Hirshfeld, RABINOVICH & ThAKHTENBROT [l08]. We chose to call
this equivalence history preserving bisimulation equivalence, notation R::-h •

Hence, even in bisimulation semantics, the requirements of preservation under
action refinement and capturing causal dependencies in processes by means of
partial orders can be conciliated. But of course, this still does not show that in
case preservation under refinement is required, it is necessary to employ partial
order semantics. In this chapter I will show that it is not.

Event structures and Petri nets have been established as suitable domains for
modelling (both branching and causal aspects of) concurrent systems. Usually
a state of a concurrent system is represented by a configuration of the associ­
ated event structure, or by a marking of the associated net. In this chapter I
argue that when events or transitions are considered to have a duration or
structure, configurations or markings do not properly represent all the states of
concurrent systems. Instead I propose to use so-called ST-configurations or
ST-markings. The idea to model a state in a safe labelled marked net as the
set of places (Stellen) containing a token, together with the set of transitions
(Transitionen) which are currently firing (an ST-marking) originates from VAN
GLABBEEK & V AANDRAGER [58]. In this chapter I translate this idea to the
realm of event structures by introducing ST-configurations.

All interleaving, step and partial order equivalences on event structures or
Petri nets considered so far, have been defined in terms of configurations or
markings. If the constructions from interleaving semantics are applied on ST­
configurations instead of ordinary configurations two new points on the x-axis
of Figure I emerge. Split-semantics is just interleaving semantics, but based on
interleaving of beginnings and ends of events, instead of entire events; ST­
semantics is a refinement of split semantics where in addition a link is required
between the beginning and the end of any event. Split semantics is more
discriminating than step semantics, whereas ST-semantics is as least as discrim­
inating as split semantics. Furthermore ST-trace semantics is less discriminat­
ing than trace semantics based on partial orders and ST-bisimulation

238 VII. The refinement theorem for ST-bisimulation semantics

semantics is less discriminating than history preserving bisimulation semantics
(but incomparable with the other bisimulation semantics based on partial ord­
ers proposed so far). Hence the situation is as indicated in Figure 2.

~ib ~sb ~2b ... ~:,jlfE ~h

j j j j j
~ ~;, ~ ~st ;=::::::21 IIE ~ST: t;:::::jpl

interleaving step split ST- partial order
semantics semantics semantics semantics semantics

FIGURE 2. More semantic equivalences

ST-bisimulation equivalence was introduced by FRITS V AANDRAGER & ME in
[58). In the same paper we observed that for systems without autoconcurrency
ST-bisimulation equivalence coincides with split bisimulation equivalence and
provided a complete axiomatization on closed ACP-terms for the latter notion.
Split bisimulation equivalence was proposed in HENNESSY [70) for a subset of
CCS. ACETO & HENNESSY [3] proved that on this subset split bisimulation
equivalence is preserved under action refinement. HENNESSY [70) also provided
a complete axiomatization for split bisimulation equivalence on this subset.
Since - if one forgets about -r-moves - this proof system is sound for ST­
bisimulation equivalence, and even for history preserving bisimulation
equivalence, it follows that on the domain considered in [70) the three
equivalences coincide. In combination with the refinement theorem for history
preserving bisimulation equivalence of the previous chapter this yields an alter­
native proof of Aceto & Hennessy's refinement theorem. Split trace
equivalence has been considered in V AANDRAGER [119). In a joint paper with
FRITS V AANDRAGER [60) we will show that on the domain of labelled event
structures (prime event structures with binary conflict), or on full CCS, split
semantics is not proof against refinement. In fact the equivalences obtained by
splitting an event into two parts (its beginning and its end) turned out to be
different from the equivalences obtainable by splitting an event into three
parts. This was established by means of a rather complicated example (the owl
example), that also shows that split semantics is strictly less discriminating
than ST-semantics. By means of even more complicated examples we esta­
blished that for each n EN split-a semantics is also different from split-n + 1
semantics.

The result contributed by the present chapter is that ST-bisimulation seman­
tics as well as ST-trace semantics are preserved under action refinement. In

1. Concurrent systems and refinement of actions 239

[58] it was shown that these semantics do not respect causality. It follows that
it is possible to abstract from the causal structure of concurrent systems
without assuming action atomicity.

I. CONCURRENT SYSTEMS AND REFINEMENT OF ACTIONS
Also in this chapter I consider systems that are capable of performing actions
from a given set Act of action names. Following [54], as my model for this
kind of systems I have chosen labelled prime event structures with a binary
conflict relation as introduced in NIELSEN, PLOTKIN & WINSKEL [99]); I could
have chosen other models like Petri nets or behaviour structures [108] as well.
In this chapter I will not distinguish external and internal actions; I do not
consider abstraction by hiding of actions.

DEFINITION. A (labelled) event structure (over an alphabet Act) is a 4-tuple
S =(E, < , #, /), where

E is a set of events ;
< c;;,E X E is a partial order (the causality relation) satisfying the principle
of finite causes:

{ e' EE I e' <e} is finite fore EE;

#CE X E is an irreflexive, symmetric relation (the conflict relation) satisfy­
ing the principle of conflict heredity:

e 1#e 2 <e3 => e 1#e 3 ;

/: £-+Act is a labelling function.

An event structure represents a concurrent system in the following way: action
names a EAct represent actions the system may perform, an event e EE
labelled with a represents an occurrence of a during a possible run of the sys­
tem, e' <e means that e' is a prerequisite for e and e'#e means that e' and e
cannot happen both in the same run.

One usually writes e' ~e for e'<e V e'=e, > for < - 1 and ~ for ~ - 1•

Causal independence (concurrency) of events is expressed by the derived rela­
tion -c;;,E X E defined by : e'-e iff -,(e'#e V e'<e V e'>e V e'=e). By
definition<, =, > , #and - form a partition of E X E. The concurrency rela­
tion co c;;, E X E, originating from Petri net theory, is defined slightly different
from-: e' co e iff e'-e V e'=e.

The components of an event structure 6 will be denoted by respectively
E s , < s , #s and 11,, . The derived relations will be denoted ~s , co s , ~ s, > s
and ~ s-

Throughout the chapter, I assume a fixed set Act of action names as labelling
set. Let IE denote the domain of event structures labelled over Act.

240 VII. The refinement theorem for ST-bisimulation semantics

DEFINITION. An event structure isomorphism between two event structures
0,(!J"EIE is a bijective mapping/: E s-E'ff such that

f(e) < 'ff f(e') ~ e < s e',
f(e) #<ff f(e') ~ e #s e' and
l'ff(f(e)) = /0(e).

0 and '!fare isomorphic - notation t;;~'!f - if there exists an event structure iso­
morphism between them. Generally, one does not distinguish isomorphic
event structures.

DEFINITION. The restriction of an event structure 0 to a set X CEs of events
is the event structure 0 t X=(X, < s n(XXX), #s n(XXX), Is t X).

An event structure 0 is finite if E s is finite; 0 is conflict free if #s = 0.
0 denotes the empty event structure (0, 0, 0, 0).

In (36) it is shown that equivalence notions based on interleaving are not
preserved when replacing an action in a system by a sequence of two actions.
In Section 1 of Chapter IV we considered a more general version of this opera­
tion, which I will also use in the present chapter: replacing actions by finite,
conflict-free, non-empty event structures. Replacing actions by infinite event
structures could in general invalidate the principle of finite causes. As
explained in Chapter IV, replacing actions by event structures containing
conflicts would require a more sophisticated notion of refinement or, alterna­
tively, a more general form of event structures where the axiom of conflict
heredity is dropped, e.g. flow event structures as in Section 2 of Chapter IV.
The generalization of the results of this chapter to flow event structures seems
to be completely straightforward, but has still to be carried out. Finally,
replacing actions by the empty event structure can drastically change the struc­
ture of processes; it can not be explained by a change in the level of abstrac­
tion at which processes are regarded (Chapter IV). In the concluding section I
will discuss possible extensions of my result to these cases.

A refinement will be a function r specifying for each action a an event struc­
ture r(a) which is to be substituted for a. Interesting refinements will mostly
refine only certain actions, hence replace most actions by themselves. How­
ever, for uniformity (and for simplicity in proofs) I consider all actions to be
refined.

Given an event structure 0 and a refinement r, the refined event structure
r(&) is constructed as follows. Each event e labelled by a is replaced by a dis­
joint copy, r(e), of r(a). The causality and conflict structure is inherited from
0: every event which was causally before e will be causally before all events of
r(e), all events which causally followed e will causally follow all the events of
r(e), and all events in conflict with e will be in conflict with all the events of
r(e).

DEFINITION. A refinement r :Act-E - {O} is a function that takes any action
aEAct into a finite, conflict-free, non-empty event structure r(a)EIE. If &E IE

2. The behaviour of concurrent systems I

and r is a refinement, then r(&) is the event structure defined by:
E,(t;) = {(e,e') I eEE t;, , e'EE,(l,(e))};

(e 1,e 1') <,(/;) (e 2,e/)iffe 1 < & e2 or(e 1 =e2 /\ e 1' <,(t,.(e.)) ei');

(ei,e 1 ') #,(/;) (e2,ei') iff e 1 #& e2;

l,(&)(e,e') = 1,(1,(e))(e').

PROPOSITION I :
1. If 0E'f. and r is a refinement then r(&) is an event structure indeed.

241

u. If 0E'f. and r,r' are refinements with r(a)~r'(a) for a EAct, then
r(&)~r'(&).

w. If &,<ffE'f., r is a refinement and &~'!f, then r(&)~r('!J).

PROOF: Straightforward. □

This proposition says that refinement is a well-defined operation on event
structures, even when isomorphic event structures are identified.

2. THE BEHAVIOUR OF CONCURRENT SYSTEMS I
Let & be an event structure, modelling the behaviour of a concurrent system P.
Classically, a state S of P is given by a set of events from &. Such a set is
called a configuration. Its elements represent the occurrences of actions that
happened before P reached the state S. If two events e' and e cannot happen
both in the same run (e'#&e) then they also cannot occur in the same
configuration. So configurations have to be con.flictjree. Furthermore, if e
occurs in a configuration C and e' is a prerequisite for e (e' < t;, e) then also e'
must occur in C. Hence configurations must be left-closed with respect to < &­

Finally, as is usual, in this thesis it is assumed that in a finite period only
finitely many actions are performed. Therefore, unlike in many other papers,
configurations are required to be finite here.

DEFINITION. A set X<;;;_E t;, of events in an event structure & is left-closed in &
if for all e,e'EEt;,

e'< t;, eEX ~ e'EX.

X is con.flictjree in f; if f; t X is conflict-free. A configuration of f; is a finite,
left-closed, conflict-free subset of E t;, . Let Q:&) be the set of configurations of

&. Write X ➔t;, X' if X,X'EQ:&) and X<;;;_X'.

X ➔t;, X' says that both X and X' represent states of the concurrent system
represented by 0, and that this system may evolve from the state represented
by X to the one represented by X'.

As the lemma below will show, the behaviour of a refined event structure r(&)
may be deduced from the behaviour of & and from the behaviour of the event
structures which are substituted for actions. On the other hand, one may

242 VII. The refinement theorem for ST-bisimulation semantics

derive information about the behaviour oft; from the behaviour of r(f;).
Let r(e) abbreviate r(/t;; (e)) and let pr 1 denote projection to the first com­

ponent.

LEMMA 2: Let t; be an event structure and r a refinement.

1. C <:E,(£0 is a configuration of r(f;) ifJ

C ={(e,e')leEC, e'ECe} where

C is a configuration of &,
Ce is a configuration of r (e) for e EC,
Ce= E,(e) if e is not maximal in C with respect to < t;;-

- - - -
u. If C ~,(f;) C' thenpr 1(C) ~ t;; pr 1(C').

PROOF: See [54]. A similar lemma has been proved in the Chapter IV. □

3. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS I
In this section the semantic equivalences of Figure l are defined in terms of
configurations.
The interleaving equivalences can be defined by means of the single action

transition relations ~ & <:0'.f0 X0'.f0 for aEAct and &E IE .

DEFINITION. C ~ t,, C' iff C ~ t;; C' and C' - C = { e} with l t;; (e) = a.

Here C ~ &C' says that if the system represented by t; is in the state
represented by C, then it may perform an action a and reach the state
represented by C'.

DEFINITION. A sequence a 1 · · · an EA ct• is a (sequential) trace of an event
structure t; if there exist configurations C0 , · · · ,Cn of t; such that C0 = 0 and

a, .
C; - t ~ t;; C; (1 = l , · · · ,n).
SeqTraces (0) denotes the set of all sequential traces of &.
Two event structures t; and '!I are interleaving trace equivalent - notation &~;1'!I
- if SeqTraces (0) = SeqTraces ('!}).

DEFINITION. Let t;,'!IE IE. A relation R C0'.f0X0'.'!J) is called a (sequential)
bisimulation between t; and '!I if (0 , 0) ER and whenever (C, D) ER then for
a EAct:

C ~ t;; C' ~ 3D' with D ~ "SD' and (C',D')ER;

D ~ "SD' ~ 3C' with C ~ t;; C' and (C',D')ER.
t; and '!I are interleaving bisimulation equivalent - &~;b '!I - if there exists a
sequential bisimulation between them.

Step equivalences can be defined by generalizing the single action transition

3. Equivalence notions for concurrent systems I

relations ~ & C a'.0) X a'.0) to step transition relations
where A is a multiset over Act.

243

DEFINITION. Let & be an event structure and A :Act--+N a multiset over Act.
For XCE& let /&(X)ENAc, be the multiset of labels of the events from X,
defined by /&(X)(a)= I { e EX I l&(e)=a} I -
Then C 4 &C' iff C ~ &C' and C'-C=GCE& such that 've,e'EG:
e co& e' and l&(G)=A.

Here C 4 & C' says that if the system represented by & is in the state
represented by C, then it may concurrently perform the multiset of actions A
and reach the state represented by C'. Since A is a multiset rather than a set,
actions may occur concurrently with themselves ('autoconcurrency').

DEFINITION. A sequence A 1 ··· An of multisets A;E1NAcr (i = l, ... ,n) is a step
trace of an event structure & if there exist configurations C0 , · · · ,Cn of S such

A, .
that C 0 = 0 and C; _ 1 ~ &C; (1 = l, ... ,n).
StepTraces(t;) denotes the set of all step traces of &.
Two event structures & and '!J are step trace equivalent - f;,R:;st '!J - if
Step Traces (0) = Step Traces(§).

DEFINITION. Let &, §'E IE. A relation RC 0::0) X a'.§) is called a step bisimu/a­
tion between & and §' if (0, 0)ER and whenever (C,D)ER then for A ENAcr:

C 4 -C' ⇒ 3D' with D 4 D' and (C' D')ER· b 5 , ,

D 4 !1D' ⇒ 3C' with C 4 i; C' and (C',D')ER.
& and '!J are step bisimu/ation equivalent - fi,R:;sb '!J - if there exists a step bisimu­
lation between them.

A trace equivalence preserving causal dependencies between action occurrences
in runs of processes is the pomset trace equivalence as implicitly employed, for
instance, in PRATT [I 07].

DEFINITION. A partially ordered multiset (pomset) is an isomorphism class of
conflict-free event structures. A pomset u is a pomset trace of an event struc­
ture & if u is the isomorphism class of & t C for some configuration CE 0::0).
Pomsets (0) denotes the set of all pomset traces of &.
Two event structures & and §' are pomset trace equivalent - fi, R:;p, '!J - if
Pomsets (0) = Pomsets (§).

Sequential traces, step traces as well as pomset traces of an event structure &
represent possible (partial) runs of the system represented by &. A trace of
each of these three types specifies a multiset of actions, executed during such a
run. However, whereas sequential and step traces in addition only specify a
possible order in which these actions may occur (with and without the

244 VII. The refinement theorem for ST-bisimulation semantics

possibility of simultaneous occurrences), a pomset trace specifies all causal
dependencies between the occurrences of these actions, through the partial
order inherited from &. From this information all the possible orders in which
the actions may occur can be derived.

Like pomset trace equivalence, most of the equivalences that preserve causal
dependencies between occurrences of actions are defined by means of partial
orders. Therefore, such equivalences are called partial order equivalences. It
happens that on E there is only one reasonable trace equivalence based on par­
tial orders - namely ~p, - and the same can be said about trace equivalences
based on steps and on interleaving and about bisimulation equivalences based
on steps and on interleaving. However, of late years several bisimulation
equivalences based on partial orders have been defined on E:
1986: the NMS partial ordering equivalence of DEGANO, DE NICOLA & MON­

TANARI [40],
1986: the pomset bisimulation equivalence or equipollence of BOUDOL &

CASTELLANI [31],
1987: the generalized pomset bisimulation equivalence of VAN GLAB BEEK &

VAANDRAGER[58]and
1988: the behaviour structure bisimulation equivalence of RABINOVICH & TRA-

KHTENBROT [l 08].
In my opinion only the last - and finest - one fully captures the interplay of
causality and branching and is most worthy of filling up the right upper corner
of Figure l. Originally it was defined on behaviour structures [108], but in [54]
(Chapter VI of this thesis) the notion was defined on event structures as well,
under the name history preserving bisimulation equivalence.

DEFINITION. Let &,'?J'E IE . A relation R <;;;J~{,&) X~'!f)X0'(E 1,, X E {j) is called a his­
tory preserving bisimulation between & and '!I' if (0, 0, 0) ER and whenever
(C,D,f)ER then :

f :C-D is an isomorphism between & t C and '!I' t D;

C ➔1,, C' => 3D',f with D ➔{jD', (C',D' ,f)ER and f tC=f;

D ➔{jD' => 3C',f with C ➔1,, C', (C' ,D',f)ER and f tC = f
& and '!I' are history preserving bisimulation equivalent - s~h '!I' - if there exists a
history preserving bisimulation between them.

PROPOSITION 3: For all equivalences ~ 1 and ~ 2 defined in this section, the for­
mula

'<I&, '!I'E IE: s~1 '!I' => s~2 '!I'

holds iff there is a path ~ 1 - · · · - ~ 2 in Figure 1.
PROOF: The implications follow directly from the definitions; in order to prove
the absence of other implications, it suffices to provide counterexamples

against ~p, - ~ib• ~ib - ~s, and ~sb - ~pt·

COUNTEREXAMPLES. In the graphical representations of event structures below,

3. Equivalence notions for concurrent systems I 245

the conventions of [119] are followed: the conflict relation is denoted by means
of dotted lines, only immediate conflicts - not the inherited ones - are indi­
cated; the causality relation is represented by arrows, orniting those derivable
by transitivity ; and instead of events only their labels are displayed, if a label
occurs twice it represents two different events. Thus these pictures determine
event structures only up to isomorphism.

a a• ·· · · a

I\ t t
b-· . . . ··C b C

FIGURE 3. Pomset trace equivalent but not interleaving bisimulation equivalent
(standard example)

The two event structures of Figure 3 are pomset trace equivalent: their pomset
traces are a-b, a-c, a and the empty pomset. However, they are not inter­
leaving bisimulation equivalent: both systems represented perform first the
action a and then either b or c, but the first system makes the choice between b
and c after the execution of a whereas the second one starts with making this
choice.

a b a b

t t
b a

FIGURE 4. Interleaving bisimu/ation equivalent but not step trace equivalent
(standard example)

The first system represented in Figure 4 performs two actions a and b con­
currently. The second one either performs b after completion of a or vice
versa. In interleaving semantics these systems are identified. However, they
are not step trace equivalent: only the first system can perform a and b simul­
taneously.

246 VII. The refinement theorem for ST-bisimulation semantics

a

a

t C

b !)\
..

C

FIGURE 5. Step bisimulation equivalent but not pomset trace equivalent (new)

The two systems represented in Figure 5 are step bisimulation equivalent: both
systems perform the actions a, b and c exactly once; in both cases a is a prere­
quisite for b, and c can happen before a, simultaneous with a, between a and
b, simultaneous with b, or after b; and in both cases all choices between alter­
native courses of action are made only when one of the alternatives actually
occurs. However, they are not pomset trace equivalent: the pomset resembling
the first event structure of Figure 5 is a pomset trace of this first event struc­
ture, but not of the second one. D

THEOREM: Of all equivalences mentioned in this section, only ~pi and ~h are
preserved under action refinement.
PROOF: The two event structures of Figure 5 are step bisimulation equivalent.
However, after refining c in CJ -c2 the resulting event structures (below) are
not even interleaving trace equivalent.

a

a CJ /l\ t t
b C2

b .
C2 _CJ

·· ... _ t __ .. ·· t

FIGURE 6. Refined event structures

Only the first one has a trace CJ a b c1 . This shows that no equivalence that
is at least as fine as interleaving trace equivalence and at least as coarse as step
bisimulation equivalence is preserved under refinement of actions. More coun­
terexamples and the refinement theorems for ~pi and ~h can be found in
Chapter VI. D

3. Equivalence notions for concurrent systems I 247

4. THE BEHAVIOUR OF CONCURRENT SYSTEMS II

4. The behaviour of concurrent systems II. A configuration of an event struc­
ture f;j represents a state S of the system represented by f;j by considering two
kinds of events with respect to S: those that happened before the system
reached this state and those that did not happen (yet). I argue that when
events or transitions are considered to have a duration or structure, such
configurations do not properly represent all the states of the represented sys­
tem. Instead I propose to consider a third kind of events with respect to S:
those that are currently happening when the system is in state S. This gives
rise to the introduction of ST-configurations (a name explained in the introduc­
tion).

DEFINITION. An ST-configuration of f;j is a pair (C,P) of subsets of E s, such
that P CC, C is finite and conflict-free and

e'<seEC ~ e'EP.

Thus both P and C are configurations and C - P contains only maximal ele­
ments in C. An ST-configuration (C,P) represents the state of a concurrent
system where C is the set of events whose execution has been started and P
(the past) is the set of events whose execution has been completed. An ordi­
nary configuration can be regarded as an ST-configuration with P = C. Let

~ f;j) be the set of ST-configurations of 0. Write (C,P) ~ s(C',P') if
(C,P),(C',P')E~f;j), CCC' and PCP'.

As in Section 2, the behaviour of a refined event structure r(f;j) may be
deduced from the behaviour of t; and from the behaviour of the event struc­
tures which are substituted for actions.

NOTATION. For each pair (C, P)E 0'(E,(f,)) X0'(E,(f,)) with P CC, there are

unique sets Ce,Pe C E,(e) for every e Epr 1 (C) such that

C ={(e,e')leEpr 1(C), e'ECe} and P ={(e,e')leEpr 1(C), e'EPe}- In fact

Ce={e'l(e,e')EC} and Pe={e'l(e,e')EP}. Now r - 1(C , P) denotes the

unique pair (C,P)E 0'(Es) X0'(Es) such that C =pr 1(C) and

P={eECIPe= E,(e)}-

LEMMA 4: Let t; be an event structure and r a refinement.

1. (C, P)E 0'(E,(f,)) X0'(E,(f,)) is an ST-configuration ofr(f;j) ifJ

C ={(e,e')leEC, e'ECe} and P ={(e,e')leEC, e'EPe} where

(C, P) is an ST-configuration oft;,
(Ce,Pe) is an ST-configuration of r(e)for eEC,
Pe=E,(e) iff eEP.

248 VII. The refinement theorem for ST-bisimulation semantics

II .
-- - - 1- - 1 - -

Jf(C , P) ~,(i;)(C' , P') then, - (C ,P) ~ & , - (C' ,P').

PROOF: i. "⇒" . Let (C, P)E~r(t;)).

First I show that (C,P): =, - 1
(C, P)E~t;).

PC C by definition.
C is finite and conflict-free since C is finite and conflict-free.

Suppose d< i; e E C. I have to show that dEP.

Since e EC = pr 1 (C) there exists (e,e')E C ;
since r(d) is non-empty there exists (d,d')EE,<0, ;

since d< 0 e one has (d,d')<,<SJ (e,e')E C;
and since (C, P) is an ST-configuration it follows that (d,d')E P C C .
Thus dEC. So it remains to be proven that Pd=E,(d)·
Obviously PdCE,(d)·
Now let d'EE,(d)· Then (d,d')EE,(SJ· Exactly as above one obtains
(d,d')E P, and hence d'EPd. Thus Pd=E,(d) and dEP.

Next let e EC. Put Ce= { e' I (e,e')E C } and Pe= { e' I (e,e') E P }.

I show that (Ce, Pe)E ~ r(e)).

Pe CCe since P CC .
Ce is finite since C is finite.

Ce is conflict-free since r(e) is conflict-free.

Suppose e' < , (e)e" E Ce. Then (e,e')<,(SJ (e,e")E C. Hence (e,e')E P

and e' EPe-
Finally the third requirement is met by construction.

"<=-" . Let (C,P)E ~t;) and (Ce ,Pe)E~r(e)) for eEC. Suppose

Pe= E,(e) <=> e E P for e E C. Put C = {(e,e')le E C, e' E Ce} and

P = {(e,e')Je E C, e' E Pe }- I show that (C , P)E~r(t;)).

PC C since PeCCe for e E C.

C is finite since C and Ce are finite.

C is conflict-free since C = pr 1(C) is conflict-free.

Suppose (d,d')< , (SJ (e,e') E C. Then d<i; e or d = e /\ d ' <,(e)e' .

If d <1,,e then d E P, since e E C and (C,P) E~ t;). Thus d E C and

Pd = E,(d)· Since d'EE,(d)=Pd = {d'l(d,d')E P} it follows that (d,d') E P .

If d = e then d' EPe =Pd, since d'<,(e>e'ECe and (Ce,Pe)E~r(e)) . So
also in this case one has (d,d')E P , which had to be proved.

ii. Suppose (C, P) ~,(SJ (C', P'), i.e. (C, P),(C' , P') E~r(t;)), C CC'

5. Equivalence notions for concurrent systems II 249

and Pc;;; P'. Then r - 1(C,P), r - 1(C' , P')E'&{_&) (by i.) and

D

I will end this section with a proposition saying that the ST-configurations of
an event structure &; describe the behaviour of the represented concurrent sys­
tem in the same way as the ordinary configurations of the split event structure
split(&), obtained from &; by splitting every action a into the sequence of
actions a + and a - , representing the beginning and the end of a.

DEFINITION. For A a set of labels, let IE(A) denote the domain of event struc­
tures labelled over A. So IE= IE(Act).
A A -refinement r :Act-lE(A)- {O} is a function that talces any action a EA ct
into a finite, conflict-free, non-empty event structure r(a)EIE(A). So a
refinement as defined in Section l of this chapter is an Act-refinement. If 0E IE
and r is a A-refinement, then r(&)EIE(A) is defined exactly as in Section 1.

DEFINITION. Put Act ±= {a + I a EA ct} U { a - I a EA ct}. Let the Act ± -
refinement split:Act-lE(Act±) be defined by Esplit(a)={a +, a - },
a + <split(a)a - and lsplit(a)(a +)=a +, lsplit(a)(a -)=a - . It induces a function
split :IE(Act)-IE(Act ±). This function was introduced on Petri nets in [58], and
on event structures in [119].

PROPOSITION 4: For each event structure 0E IE, there exists a bijective mapping
i 0 :'&<_&)-f:l...split(&)), such that for SE'&{_&):

S ➔0S' <=> i0(S) ➔split(&) i e, (S').

PROOF: i 0(C,P) = {(e, (/0 (e))+) I eEC} U {(e, (/0 (e)) -) I eEP}.
all requirements is straightforward.

5. EQUIVALENCE NOTIONS FOR CONCURRENT SYSTEMS II

Verification of
D

In this section the remaining equivalences of Figure 2 are defined in terms of
ST-configurations.
The most straightforward generalization of interleaving semantics to the setting
of ST-configurations yields split semantics. Split equivalences can be defined

by generalizing the single action transition relations ~ 0 c;:;; f:1...&) X f:1...&) to split
a + a -

transition relations ~ &, ~ 0 c;:;;'&(_&) X'&(_&), for aEAct and 0 EIE.

DEFINITION. (C,P) ~ 0(C',P') iff(C,P) ➔0(C', P'), P'=P and C' - C={e}
with l 0(e)=a.

(C,P) ~ 0(C',P') iff (C,P) ➔0(C',P'), C'=C and P'-P = {e}
with l 0(e)=a.

250 VII. The refinement theorem for ST-bisimutation semantics

Here (C,P) ~ 1c, (C',P') says that if the system represented by 0 is in the state
represented by (C,P), then it may start performing an action a and reach the
state represented by (C',P').

Furthermore (C,P) ~ 1c, (C',P') says that if the system is in the state
represented by (C,P), then it may end performing an action a and reach the
state represented by (C',P').

DEFINITION. A sequence a 1 · · · an E(Act ±)* is a split trace of an event struc­
ture 0 if there exist ST-configurations (C0 ,P0), · · · ,(Cn,Pn) of 0 such that

a
(C0,P0)=(0 , 0) and (Ci - hpi _ i) ➔1c,(Ci,P;) (i = I, · · · ,n). SplitTraces (fi,)
denotes the set of all split traces of &.
Two event structures 0 and '5" are split trace equivalent - &~21 '5" - if
SplitTraces (0) = Split Traces('§) .

DEFINITION. Let 0 ,'5"EE. A relation R CS(fi,) XS(§} is called a split bisimula­
tion between fi, and '5" if ((0, 0),(0, 0))ER and whenever ((C,P),(D,Q))ER
then for a EA ct ±:

(C,P) ~ 1c, (C',P') ~ 3D',Q' with (D,Q) ~<j{_D',Q')
and ((C',P'),(D',Q'))ER;

(D,Q) ~ <j(_D',Q') ~ 3C',P' with (C,P) ~ 1c, (C',P')
and ((C' ,P'),(D',Q'))ER.

fi, and '5" are split bisimu/ation equivalent - &~2h '5" - if there exists a split bisimu­
lation between them.

Alternatively, split equivalences can be defined as ordinary interleaving
equivalences on split event structures, and even as step equivalences on split
event structures. The following proposition says that this yields the same trace
and bisimulation equivalences as the definitions above.

PROPOSITION 5.1: 0 ~ 21 '5" - split(&) ~it split('§) - split(&) ~st split(§}
0 ~2h '5" - split (6:,) ~ib split(§) - split (0) ~sb split('§).

PROOF: Let i & :S(&)-C1._split (&)) be the bijection from the previous proposition,

then for SES{&} and aEAct ± : S ~ 1c,S' - i 1c, (S) ~splir(toii&(S'). Further­
more, if C,C'EC1._split(fi,)) and A is a multiset over Act ± consisting of the
actions at , · · · ,a;; ,b1 , · · · ,b;;; then

A , a t a + b ,
C ~ splir(&) c - C ~ split(&) . . . ~ split(&) ~ split (&)

From this the proposition follows immediately.

b;;, C' ~split(&) ·

□

Split-semantics is just interleaving semantics, but based on interleaving of
beginnings and ends of action occurrences, instead of entire action
occurrences. However, since different occurrences of the same action can not
be distinguished, it is in general not possible to tell when an occurrence of a +

5. Equivalence notions for concurrent systems II 251

and an occurrence of a - originate from to the same occurrence of a. ST­
semantics is a refinement of split semantics, where occurrences of a + and a -
are explicitly connected if they represent the beginning and end of the same
occurrence of a.

DEFINITION. A pre-interval sequence is a triple (E,I, o) with E a set, I: £-Act
a labelling function and a a sequence over E ± = { e + I e E £} U { e - I e E £}
whose elements are all different, and which can contain e - only after e + (for
eEE). For I: £-Act define 1± : £ ±-Act ± by l(e +)= (/(e)) + and
l(e -)= (/(e)) -. Let (E,l, a) with a=a 1 • • • anE(E ±)* be a pre-interval
sequence and let I ~i <J~n. a; and a1 are connected, notation a;-<.a1, if
a; =e+ and a1= e - for certain eEE. Now two pre-interval sequences
(E,l,a 1 ·· ·an) and (£',/',/J1 • • • /Jm) are isomorphic if n =m, l ±(a;)=l'±(/J;)
for 1 ~i ~n, and a; -<.a1 <=> /3;-<./31 for I ~i <J ~n. An interval sequence is an
isomorphism class of pre-interval sequences.

EXAMPLE: Let E = { e0 ,e 1 ,e 2, e3 ,e4 }, l(e 1)=l(e 2)= l(e 3)=a and
l(e0)=l(e4)=b. Figure 7 shows a pre-interval sequence over E, together with
its associated interval sequence. The connectedness relation -<. is represented
by arcs.

a a

FIGURE 7. Pre-interval sequence and interval sequence

DEFINITION. (C,P) ~ 1,; (C',P') iff (C,P) ~ 1,;(C',P'), P'=P and
C' - C={e} .

(C,P) ➔0(C', P') iff (C,P) ~ r, (C',P'), C'=C and
P' - P={e}.

A structure (E r, ,lr, ,a1 • • • an) is a pre-ST-trace of an event structure 0 if there
exist ST-configurations (C0 ,P0), · · · ,(Cn,Pn) of 0 such that (C0,P0)=(0 , 0)

a
and (C; - i,P; - i) ➔0(C;,P;) (i = l , · · · ,n). An ST-trace of 0 is an interval
sequence which is the isomorphism class of a pre-ST-trace of 0.
ST-Traces(&) denotes the set of all ST-traces of 0.
Two event structures 0 and <5" are ST-trace equivalent - 0~sn <5" - if ST­
Traces (0) =ST-Traces(§).

Next I propose another characterization of ST-trace equivalence that will be
more convenient later on.

252 VII. The refinement theorem for ST-bisimulation semantics

DEFINITION. & -:SsTr '!f iff for every chain of ST-configurations

(0,0) ~ 0(C1,Pi) ~ & • · · ~ 0 (Cn ,Pn)

in & there is a chain

(0,0) ~iD1,Qi) ~ 5 · · · ~iDn,Qn)

in '!f and a bijection f :Cn-Dn, satisfying l#(e)) = /0 (e), f (C;)=D; and
f(P;)=Q; for i = 1, · · · ,n.

PROPOSITION 5.2: &~sn'!f ¢,) (&-:Ssn'!f /\ '!f-:SsTr&).
PROOF: Write & -:S~n '!f iff for every chain

«1 a2 an
(0, 0) ~ 0 (C1,Pi) ~ & · · · ~ s(Cn,Pn)

in & (with a;EEt") there is a chain

/3, /3,_ /3.
(0, 0) ~iD1,Q1) ~ 5 · · · ~iDn,Qn)

in '!f and a bijection f :Cn-Dn, satisfying l#(e)) = /0 (e), f (C;)=D; and
f(P;)=Q; fori=l, · · · ,n.
Furthermore write & ;.S ~~1 '!f iff for every chain

0:1 a2 an
(0, 0) ~ 0(C1,P1) ~ & · • · ~ 0 (Cn,Pn)

in & (with a; EEt") there is a chain

/3, Q) /32 /3.) (0, 0) ~iD1, 1 ~ 5 · · · ~iDn ,Qn

in '!f such that It;-(a;)=Ii (/3;) for I:e;;;;i,o;;;;n, and a;-<.a1 ~ /3;-<./31 for
I:e;;;;i<J:e;;;;n.
CLAIM 1: &::Ssn '!f ¢,) &-:S ~n <!I:
CLAIM 2: 0-:$ ~Tr 'if ¢,) &-:$ ~~t <!f.
CLAIM 3: &;.S~~1'!f ¢,) ST-Traces(&)CST-Traces(liJ).
Now the proposition follows by combination of these claims.
Proof of claim 1: "⇒". Suppose &::Ssn'!f and

(0,0) ➔0(Ci,P 1) ➔0 • · · ~ s(Cn,Pn) is a chain in ti, with a;EE[.

Then there must be a chain (0,0) ~iD1,Q1) ~ 5 · · · ~ i Dn,Qn)
in '!f and a bijection f :cn-Dn, satisfying l#(e)) = /0(e), f(C;)=D; and
f(P;)=Q; for i = 1, · · · ,n. Because of this bijection - only considering
the 'sizes' of D; and Q; - there must be /3; EEf for i = 1, · · · ,n such that

(C;-1,P; _ i) ~ s(C;, P;)-
" ;;=". This follows from the observation that whenever in an event struc-

ture & (C,P) ~ 0(C',P'), there exist ST-configurations (C0 ,P0), · · ·

,(Ck>Pk) of & and a sequence a 1 • • • ak E(Et")* such that (C0 ,P0)=(C,P),

(C;- 1,P; - d ➔0(C;,P;) (i = I, · · · ,k), and (Ck>Pd=(C',P').

Proof of claim 2: "⇒". Let (0, 0) ➔& · · · ~ 0 (Cn,Pn) and

5. Equivalence notions for concurrent systems II 253

(0, 0) 4 'ff • • • ~ iDn, Qn) be chains of ST-configurations in 0 and '5'
with a; EE"i,'- and /3; EEi for i = I , · · · ,n and let f :cn-Dn be a bijec­
tion, satisfying IGJ(f(e)) = / 17, (e) , f(C;)=D; and f(P;)=Q; for
i = I, ··· ,n. Since f(C;)=D; and f(P;)=Q; it follows that
a; = e+ ~/3;=f(e)+ and a;=e - ~/3;=f(e)- for i=I, · · · ,n. Hence
{i,'- (a;)=li (/3;) for J.;;;i.;;;n, and a;-<.a1 ~ /3;-<./31 for l.;;;i<J.;;;n.

"¢=". Let (0 , 0) ~ & • • • ➔17, (Cn , Pn) and (0, 0) 4 '!f · · · ~ 'ff

(Dn, Qn) be chains of ST-configurations in 0 and '5' with a; EEf and
/3;EE f for i=I , · · · ,n such that tf (a;)=li (/3;) for J.;;;i.;;;n, and
a;-<.a1 ~/3;-<./31 for J.;;;i<J.;;;n. Note that C;={eEE17, l3J.;;;i: a1 =e +}
and P; = { e EE& I 3J.;;;i : a1 =e - } and similarly for D; and Q;. Define
f:Cn-Dn by f(e)=d ~ 3i.;;;n: (a;=e + I\ /3;=d +). Since
rf (a;)= ti (/3;) for I.;;;; .;;;n, f is well-defined and bijective, and satisfies
IGJ(f(e)) = / 17, (e) and f (C;)=D; for i = I, · · · ,n. Finally
eEP; ~ 3k<J.;;;i: (ak=e+ I\ a1=e-) ~ 3k<J.;;;i: (/3k=f(e)+ I\
(usingak-<.a1 ~/3k-<./31) /31=/(e)-) ~ f(e)EQ; sof(P;)=Q;
fori=l , · · · ,n.

Finally claim 3 follows directly from the definitions. □

ST-bisimulation equivalence will be defined in the same style as the alternative
characterization of ST-trace equivalence. The connection of occurrences of a +
and a - that represent the beginning and end of the same occurrence of a is
implemented by means of a bijection between related ST-configurations.

DEFINITION. Let 0,'5'E IE . A relation R<;:§(_0) X§(_§)X0'(E17,X E '!f) is called an
ST-bisimulation between 0 and '5' if ((0, 0),(0, 0), 0)ER and whenever
((C,P),(D,Q),j)ER then:

f :C-D is a bijection, satisfying IGJ(f(e)) = / 17, (e) andf(P)=Q;

(C,P) ➔17, (C', P') ⇒ 3D',Q',f with (D,Q) ➔iD',Q'),

((C' ,P'),(D',Q') ,f)ER andf tC=f;

(D,Q) ➔iD', Q') ⇒ 3C',P',f with (C,P) ➔0(C',P'),

((C',P'),(D',Q') ,f)ER andf tC=f
0 and '5' are ST-bisimulation equivalent - &~ STb '5' - if there exists an ST­
bisimulation between them.

Remark that the same equivalence is obtained if in the definition above the

general transition relations ➔ are replaced by the split transition relations

~ for a EA ct±. One direction follows from the requirements for the bijec­
tion f; the other one follows as in the proof of Proposition 5.2. (Analogously,
in the previous chapter it was shown that the definition of history preserving
bisimulation equivalence is invariant under replacement of the general transi-

tion relations ➔ by the single action transition relations ~ for a EA ct.)
Now it is not difficult to show that if in this version of the definition of ST-

254 VII. The refinement theorem for ST-bisimulation semantics

bisimulation equivalence the requirement f (P) = Q would be skipped, the
resulting equivalence would be split bisimulation equivalence again. This
requirement ensures the connection of occurrences of a + and a - originating
from the same occurrence of a.

As for split equivalences, the ST-equivalences can be defined alternatively by
means of split event structures. First some preliminary definitions.

DEFINITION. For &EE(Act ±), define the connectedness relation -< i; C..E i; X E i;
by

e'-< i; e iff li;(e)=a - for certain aEAct and for dEE r,,: (d< i; e <=> d~i;e').

DEFINITION. Write C ➔i; C' iff C ➔i;C' and C'-C={e}. A sequence
a 1 • • • an EEi; is a pre-trace of an event structure &EE(Act±) if there exist

configurations CO, • • • , Cn of & such that CO = 0 and C; _ 1 ➔ i; C;
(i = l, · · · ,n). Two pre-traces a 1 ···an and P 1 • • • Pm of & and ~ are -<­
isomorphic if n =m, li; (a;)=l'!f{P;) for l~i~n, and a;-< i;a1 <=> P;-< GJPJ for
l~i<j~n. A -<-trace of & is the isomorphism class of a pre-trace of &. -<­
Traces(&) denotes the set of all -<-traces of &. Two event structures & and
~EE(Act ±) are -<-trace equivalent - &~-<, ~ - if -<-Traces(&)= -<-Traces(<§).

DEFINITION. Let &, ~EE(Act ±). A relation R c._f{_&) X f{_qJ)X '5'(E i; X E GJ) is
called a -< -bisimulation between & and ~ if (0 , 0, 0) ER and whenever
(C,D,j)ER then:

f :C-+D is a bijection, satisfying loJJ(e)) = l i; (e) and
f(e) -< GJ f(e') <=> e -<s e';

C ➔i; C' ~ 3D',f with D ➔GJD', (C' ,D',f)ER andf tC=f;

D ➔GJD' ~ 3C',f with C ➔i; C', (C',D',f)ER andf tC=f
& and ~ are -< -bisimulation equivalent - &~ -<b ~ - if there exists a -<­
bisimulation between them.

PROPOSITION 5.3: 6, ~ST, ~ <=> split(&)~-<, split(<§)
& ~STb ~ <=> split(&) ~-<b split(<§).

PROOF: For &E E define i:E'1,;- -+Esplit(f0 by i(e +)=(e,(/i; (e)) +) and
i(e -)=(e, (l i; (e)) -). Now the bijections i i;:~&)-+f{,split(&)) from Proposition
4 satisfy for SE~&) and aEE'1,;-:

S ~ i;S' <=> i i;(S) ;~split(f;) i t;;(S').

Hence a 1 • • • an E(E'1,;-)* (actually (E i;, li;, a) with o=a1 • • • an) is a pre-ST­
trace of an event structure & iff i(a 1) • • • i(an)EE;plit(f0 is a pre-trace of
split(&). Furthermore two pre-ST-traces a 1 • • • an and P1 • • • Pm of & are iso­
morphic iff i(ai) · · · i(an) and i(P1) • • • i(Pm) are -<-isomorphic. Thus -<­
Traces(split(&)) is derivable from ST-Traces(&) and vice versa. From this the

5. Equivalence notions for concurrent systems II 255

first statement of the proposition follows.
As for the second statement, let 0, '!!E IE.

01(0, §) = {((C,P),(D,Q),f}ES{t,;) XS{~X'!P{E t; X E '!f) I

f :C➔D is a bijection, satisfying lisJJ(e)) = l0(e) andf(P)=Q}.

For (S, T,f) and (S', T',f)E01{0, §) write (S, T,f) ➔ (S', T',f) if S ➔0S',

T ➔'!IT', andf tC=f

0\p1;1(0, §) = { (C,D,f)Eff...split (t,;)) X ff...split (~) X GJ(Esplit(&) X Esplit('!J)) I

f :C➔D is a bijection, satisfying lisJ!(e)) = l0(e) and f(e) -<. '!I f(e')

<=> e -<. 0 e'}.

For (C,D,f) and (C',D',f)E 0\p1it(0,~ write (C,D,f) ➔ (C',D',f) if

C . ➔split(&) C', D ➔split('!J'J D', and f tC=f Define i:01(0,~➔0\piit(0,~ by
i(S,T,f)=(i 0(S),i '!f(T) ,i(f)) where i0 and i '!f are the bijections from Proposi­
tion 4 and i(f):i 0(S)➔i '!f(T) is defined by i(f)(e,a +)=(f(e),a+) and
i (f)(e,a -) = (f (e),a -). Now it is not difficult to establish that i is a bijection,
satisfying

(S, T,f) ➔ (S', T' ,f) <=> i (S, T,f) ➔ i (S', T' ,f).

From this it follows that R C0\(0, ~ is an ST-bisimulation between 0 and 1J iff
i(R) = {i(S,T,J)l(S,T,f)ER}C0\p1i,(0,~ is a -<.-bisimulation between split(&)
and split(~- D

PROPOSITION 5.4: For all equivalences ::::::: 1 and :::::::2 on IE defined so far, the for­
mula

V0,1fE IE: 0:=:::::11f ~ 0 :=:::::2 1f

holds ifJ there is a path ::::::: 1 ➔ · · · ➔ ::::::: 2 in Figure 2.
PROOF: In order to prove the announced implications, it suffices to restrict
attention to the ones corresponding with an arrow ::::::: 1 ➔ :::::::2 in Figure 2.
Five of them are dealt with in Proposition 3 already. In order to prove the
implications :::::::2, ➔ :::::::5, and :=:::::2b ➔ :=:::::sb, consider, for 0 EIE , the mapping
j :ff...t,;)➔S(t,;) defined by J(C)=(C,C). Note that j is a well-defined injection
with range())= {(C,P)ES(t,;) IC =P}. Now for CEff...t,;), A a multiset over act,
and a 1 · · · an EA ct an arbitrary enumeration of A, it is easily obtained that

A ai a: a) a;
3C': C ~ &C' I\ J(C')=(S,T) <=> J(C) ~ & · · · ~ & ~ & · · · ~ 0(S,T).

From this the required implications follow immediately. In order to prove the
remaining six implications, first consider the implications between equivalences
on IE(Act ±) displayed in Figure 8. These implications follow immediately
from the definitions. The proofs in Chapter VI that :::::::p, and :=:::::h are preserved
under refinement can be trivially extended to a setting with A-refinements for

256 VII. The refinement theorem for ST-bisimulation semantics

~ib 4'------~-<. b ______ R:!h

~;,------~-<.,------~pt

FIGURE 8. Some semantic equivalences on IE(Act ±)

any labelling set A. So it follows that

& R:!pr CfJ" ~ split(&) R:!pr split(Cff) and & R:!h CfJ" ~ split(&) R:!h split(Cff) .

Now the remaining six implications on E(Act) follow from Propositions 5.1
and 5.3.

In order to prove the absence of other implications, it suffices to provide
counterexamples against R:!pr ➔ R:!;b , R:!;b ➔ R:!sr, R:!sb ➔ R:!21 , R:!2b ➔ R:!s n

and R:!sTb ➔ R:!pr· The first two counterexamples where given already in Sec­
tion 3. For the third counterexample consider the two event structures of Fig­
ure 5. In Section 3 it was established already that they are step bisimulation
equivalent. Furthermore they are not split trace equivalent, since
a + c + a - b + c - b - is a split trace of the first one but not of the second
one.

a b a

t
b ····· b

FIGURE 9. ST-bisimulation equivalent but not pomset trace equivalent
(A variant of Example 7.1.2.a.ii of [58]).

The fourth counterexample will be provided in [60). For the last counterexam­
ple consider the two systems represented in Figure 9. Both systems perform
the actions a and b exactly once. In the first system these actions can only be
independent, whereas in the second one b can be executed either dependent or
independent of a. The difference between the two systems does not occur
before (and unless) they reach a state where the execution of a is completed
and the execution of b is not yet begun. However, in this state both systems
have exactly the same future, consisting of exactly one occurrence of b. Hence
they are identified in ST-bisimulation semantics. On the other hand the porn­
set a➔b is a pomset trace of the second system, but not of the first. So the

6. The refinement theorems 257

two systems are not pomset trace equivalent. This example also shows that
ST-semantics does not respect causality. □

6. THE REFINEMENT THEOREMS

Finally I will prove the announced refinement theorems for ST-semantics. In
VAN GLABBEEK & V AANDRAGER [60] it will be shown that such a theorem does
not hold for split semantics.

THEOREM: Let 0, §'E IE and r be a refinement. Then

t; ~STb §' ⇒ r(&) ~STb r(§).

PROOF: Let R <;;;Ji,(E t;)X?i,<._E Gf)X<if(E0 XEGf) be an ST-bisirnulation between 0
and <J. Define the relation R by:

R = {((C 'j,),(D 'Q),./)E?i,{E,(&))X?i,(E,(§))X0'(£,(&) XE,(§)) I

3((C,P),(D,Q),/)ER such that , - 1(C, P)=(C,P), ,- 1(D, Q)=(D,Q)

and j: C - D is a bijection, satisfying j (e,e')=(f (e),e') and j (P)= Q }.

I show that R is an ST-bisirnulation between r(&) and r('!J).

1. ((0, 0),(0, 0), 0)E R since ((0, 0),(0, 0), 0)ER.

u. Suppose ((C, P),(D, Q),./)ER. Take ((C,P),(D,Q),f)ER such that

, - 1(C,P)=(C,P), , - 1(D,Q)=(D,Q) and j:c-i> is a bijection,

satisfying f (e,e')=(f (e),e') and j (P)= Q. Now three things have to

be established:

1. f: c -i> is a bijection, satisfying 1,(§'>(f(e,e')) = l,(&) (e,e') and

f(P)=Q.

2. (C , P) ~,(&)(C' ,P') ⇒ 3D', Q' ,]' with]' t C = j,

(D, Q) ~r(§)(D', Q') and ((C', P'),(D', Q'),]')ER.

3. (D,Q)~,(§)(D',Q') ⇒ 3C',P',]' with]' tc=j,

(C ,P) ~,(&)(C' ,P') and ((C' ,P'),(D', Q'),]')ER

ad 1. By construction j : C - D is a bijection, satisfying j (P) = Q .

Moreover 1,(§)(f (e,e')) = 1,(§) (f (e),e') = l,(l.,(f(e)))(e') =

= /,(1,.(e))(e') = l,(&) (e,e').

ad 2. Suppose (C, P) ~,(&) (C' , P'), i.e. (C' , P')E?i,(r(&)),

258 VII. The refinement theorem for ST-bisimulation semantics

C C C' and P C P' .
Let (C',P')=r - 1

(c', P'). Using Lemma 4.ii,

(C,P) ~ ti, (C',P'). Since R is an ST-bisimulation, 3D',Q',f

with (D,Q) ~~D',Q'), ((C',P'),(D',Q'),f)ER andf tC=f

Let fy ={(f(e),e')l(e,e')E C' },

Q' = {(f(e),e') I (e,e')E P' } and

]' = {((e,e'),(f(e),e')) I (e,e')E C' }.
For eEpr 1(C') let

Ce= { e' I (e,e')E C' } and Pe= { e' I (e,e')E P' };
ford Epr 1 (D') let

Dd = { e' I (d,e')E D' } and Qd = { e' I (d,e')E Q' }.
Remark that Qf(e) = { e' I (f(e),e')E Q' } = { e' I (e,e')E P' } =Pe

and similarly Df(e) = Ce.

I prove that (D , Q) ~,c'ifJ(D', Q'),
((C',P'),(D',Q'),]')ER and]' tc=j.

6. The refinement theorems 259

ad 3.

I start with proving that (D', Q')E~r(§')).

pr 1(D')= (f(e) I eEpr 1(C')} = f(C')=D'

so D' = {(d,e') I dED', e'EDd},

Q' = {(d,e') I dED', e'EQd}-

Using Lemma 4.i, it is then sufficient to show that

(D',Q') is an ST-configuration of§';

(1)

(Dd,Qd) is an ST-configuration of r(/'!l._d)) for dED',
Qd = E,(/, (d)) iff d E Q'. (2)

The first requirement is already implicit m

(D,Q) ~'!I._D',Q').

Since D'= f(C') one may substitute f(e) for d and eEC'

for dED' in the remaining two requirements.

Since Df(e)=Ce, Qf(e)=Pe, l'!/._f(e)) = l0 (e) and Q'=f(P')
they reduce to

(Ce,Pe) is an ST-configuration of r(/0 (e)) for eEC' and
Pe= E,{/,.{e)) iff e E P'.

These follow from Lemma 4.i, using that (C' , P')E~r(t;))

and ,- 1
(C', P')=(C',P').

Hence (D', Q')E~r(§')).

Now (l) and (2) above say that D'=pr 1(D') and

Q'= {dED' I Qd=E,(l • .(d))}- Hence , - 1(D', Q')=(D',Q').

It follows that ((C', P'),(D', Q'),]')ER.

Finally]' t C = j, D ~ D' and Q ~ Q' by construction,

using that f tC=f With (D', Q')E~r(§')), it follows that

(D, Q) ~,(GJ)(D', Q').

By symmetry. D

THEOREM: Let 6:i, '!JEIE and r be a refinement. Then

$ 6:i ~STt <!J ~ r(t;) ~STt r(§)$.

PROOF: It suffices to proof 0 ~STt <!J ~ r(t;) ~STt r(§'), so let 0, '!JEIE with
6:i~sn'!J and let r be a refinement. Suppose in r(t;) there is a chain of ST­
configurations

260 VII. The refinement theorem tor ST-bisimulation semantics

By Lemma 4.ii there is a chain of ST-configurations

(0,0) ➔1,;(C1 , P1) ➔s · · · ➔s(Cn , Pn)

in & with (C; ,P;)=r - 1
(C; , P;) for i = 1, · · · ,n. Hence there must be a chain

(0,0) ➔.,{D1,Q1) ➔'5 · · · ➔.,{Dn , Qn)

in '!I and a bijection f :Cn-+Dn , satisfying /.,(/(e)) = 11,; (e) , f (C;) = D; and
f(P;)=Q; for i = 1, · · · ,n.
Let D; ={(f(e),e')l(e,e')E C; },

Q; ={(f(e),e')l(e,e')EP;} and

j ={((e,e'),(f(e),e'))l(e,e')E en}.

It remains to be shown that

is a chain of ST-configurations in r('!J) and j: Cn -+ Dn is a bijection satisfy­

ing lr('!f'J (f(e,e')) = lr(&) (e,e'), f(C;)=D; and f(P;)=Q; for i = l, · · · ,n.

The only nontrivial part of this consist of proving that (D; , Q;)E~r('!J)) for

i = 1, · · · ,n. This goes exactly as in the previous proof. D

CONCLUDING REMARKS

In this chapter ten semantic equivalences for concurrent systems are defined
on a domain of labelled event structures, and their interdependencies are
classified as indicated in Figure 2 of the introduction. It has been established -
in [36, 54] and [60] respectively - that interleaving, step and split equivalences
are strictly based on action atomicity. In particular, the owl example of [60]
shows that no equivalence that can be localized between split bisimulation and
interleaving trace equivalence is preserved under refinement of actions. On the
other hand it has been shown - in [36] and in the previous Chapter - that the
two partial order equivalences of Figure 2 are preserved under action
refinement and thus need not to be based on action atomicity. Now this
chapter added that also ST-trace and ST-bisimulation equivalence are
preserved under refinement. So the borderline is between split and ST­
semantics.

It should be remarked that at all places where split semantics was used
before it was studied for a restricted class of concurrent systems (Petri nets
without autoconcurrency in (58], a subset of CCS in (3, 70] and deterministic
event structures in [119]) on which it coincides with ST-semantics. The exam­
ples of [60] suggest that outside such a class, split semantics is not an interest­
ing notion. The reason for mentioning it in this chapter is that it seems to be
a natural simplification of ST-semantics and in order to indicate that for the

Concluding remarks 261

purposes of this thesis this simplification should not be made.
The refinement operation considered in this chapter replaced actions by

finite, conflict-free, non-empty event structures. As remarked earlier, a gen­
eralization to infinite refinements, leaving all definitions the same, is incompa­
tible with the principle of finite causes: try to refine a in

a ~b by

If one would drop this principle, there are (at least) two possibilities of inter­
preting event structures: events which have an infinite set of causes can happen
in a finite time, or they can not. The last interpretation is slightly simpler to
grasp, more common, and compatible with the view of this chapter, in which
the behaviour of concurrent systems - together with all semantic equivalences -
is explained in terms of finite configurations (or ST-configurations) only.
Using this interpretation any 'generalized' event structure can be transformed
in an ordinary prime event structure satisfying the principle of finite causes, by
removing all events that have infinitely many causes. A transformed event
structure and its original are equivalent with respect to all equivalences of Fig­
ure 2. On the domain of 'generalized' event structures one may drop the res­
triction that refinements need to be finite, and all theorems and definitions of
this chapter remain valid. In fact also all proofs remain valid, since (except in
the proof of Proposition l .i) the principle of finite causes is never used. How­
ever, it can be argued that infinite refinements change the behaviour of the
considered systems in a way that cannot be explained by a change in the level
of abstraction at which processes are regarded: consider a system performing
the actions a and b one time each, where the occurrence of b is dependent of
the occurrence of a (as depicted above); after replacement of a by an infinite
event structure, b cannot happen any more; it occurs in no (finite)
configuration. Finally notice that it is also possible to describe this type of
refinement on the domain of prime event structures satisfying the principle of
finite causes, by adding to the definition of refinement that after refinement in
the sense of Section 1, events with infinitely many causes should be left out.

A generalization to refinements containing conflicts can be obtained analo­
gously as the above generalization to infinite refinements, but is technically
more complicated. On the domain of prime event structures used in this
chapter, refinements with conflicts are incompatible with the principle of
conflict heredity: try to replace a in

a_.. b by a1 az.

This problem has been solved in Chapter IV by moving to a more general
form of event structures where the axiom of conflict heredity is dropped,
namely flow event structures [32). On flow event structures we could define a
refinement operator for any function r :Act-IE - {O}, thus allowing both

262 VII. The refinement theorem for ST-bisimulation semantics

infinite refinements and refinements with conflicts. I expect that all theorems
of this chapter remain valid in the setting of flow event structures. Each flow
event structure is equivalent to a prime event structure (with respect to any of
the equivalences of Figure 2). Hence an alternative solution consists of
appending to the definition of refinement some transformation that turns the
refined event structure into an equivalent prime event structure.

Contrary to the previous generalization, a generalization of the refinement
operator to forgetful refinements, where replacing actions by the empty event
structure is allowed, does not seem very natural. Such refinements can drasti­
cally change the behaviour of concurrent systems and can not be explained by
a change in the level of abstraction at which these systems are regarded
(Chapter IV). Moreover, unlike the refinement theorems for partial order
semantics (Chapter VI) the refinement theorem for ST-bisimulation semantics
does not hold for forgetful refinements, as is demonstrated by the following
counterexample.

a ···· ·· · C a · · · · · · · C

i i
b b b

The two event structures above are ST-bisimulation equivalent. However, after
replacing a by the empty event structure, the resulting event structures (below)
are not ST-bisimulation equivalent.

C C

i f
b ······ · b b

The refinement theorems for ST-semantics show that in case preservation
under refinement is required, it is not necessary to employ partial order seman­
tics. From this the natural question arises if it is necessary to employ at least
ST-semantics, i.e. if any equivalence finer then a given interleaving equivalence
that is preserved under refinement is also finer then some ST-equivalence. Let
~ x be an equivalence on IE . Define ~,x by

£.; ~,x '?f iff for all refinements r :Act-lE-{O} one has r(f.j) ~x r('!J).

Then, ~,x is finer then ~ x and preserved under refinement. Moreover it is
coarser then any other equivalence with these properties. In other words, ~,x

is fully abstract with respect to ~ x and refinement. Of course the definition

Concluding remarks 263

above is parametrized by the concept of refinement. Let ~rx be defined under
reference to general refinements r :Act-E - {O} (using flow event structures);
and let ~r'x be defined under reference to refinements as defined in Section 1
of this chapter. Then I conjecture that ~STb coincides with ~rib, i.e. ST­
bisimulation equivalence is fully abstract with respect to interleaving bisimula­
tion equivalence and action refinement, and also ~sr, coincides with ~rit· To
be more precise, let re be the refinement that replaces actions a EAct by

at at at

! ! !
a1 a2 a3

Then I think that & ~STb qj' ~ re(&) ~ib re(§) and likewise
& ~STt qj' ~ re(&) ~it re(§), from which the conjecture follows. Furthermore,
together with Walter Vogler I observed that for finite event structures ~sTb

even coincides with ~r'ib· On the other hand ~r'it is strictly coarser then ~,;, ,
as follows from an example in LARSEN [83], see also [60].

In VOGLER [124] a 'failures semantics based on interval semiwords' was
presented that can be regarded as the ST-version of failure semantics. He
proved that this semantics is preserved under refinement of actions and also
established that it is fully abstract with respect to interleaving failure semantics
and refinement (allowing refinements with conflicts, but without initial and
final parallism, see Section 4 of Chapter IV). The same results he obtained for
ST-trace semantics.

Topics for further research include
generalizing the refinement theorems to a setting with infinite refinements
and refinements with conflicts, as in Chapter IV.
defining 'syntactic refinement' (replacing action symbols by terms in pro­
cess expressions) on process specification languages, investigating the
interaction with communication, proving syntactic refinement theorems
and establishing the correspondence with 'semantic refinement', as
employed in this chapter (cf. [3, 58, 83, 98]),
proving the full abstraction results conjectured above,
proving refinement theorems and full abstraction results for the ST­
versions of decorated trace semantics - for failure semantics this has been
done already in VOGLER [124] in a setting of Petri nets, and for a variant
of trace semantics, in the absence of autoconcurrency, modelling a process
as a set of semiwords, this has been done in NIELSEN, ENGBERG & LAR­
SEN [98] and LARSEN [83]
and generalizing the entire theory to a setting with silent actions, or T­

moves (possibly combining the notions of branching bisimulation (for
refinement of systems with silent actions) (Chapter III) and ST­
bisimulation or history preserving bisimulation (for refinement of non-

264 VII. The refinement theorem for ST-bisimulation semantics

sequential systems)).
PRATI (107) and CASTELLANO, DE MICHELIS & POMELLO (36) use the issue of
action atomicity as an argument for using partial order semantics instead of
interleaving semantics. This chapter shows that it is not necessary to employ
partial order semantics if one does not want to assume action atomicity; ST­
semantics turns out to be sufficient. In VAN GLABBEEK & V AANDRAGER [58]
we introduced the (related) criterion of real-time consistency. A semantics is
real-time consistent if it does not identify systems with a different real-time
behaviour. Of course interleaving semantics are not real-time consistent, but
again the criterion did not force us to consider partial order semantics: also for
this purpose ST-bisimulation semantics turned out to be sufficient. Therefore
the question remains whether or not there exists a convincing testing scenario,
or some natural operator, that reveals the full distinguishing power of partial
order semantics.

265

Samenvatti ng

In dit proefschrift worden semantieken voor parallelle systemen met elkaar
vergeleken. Een systeem is parallel als het verscheidene activiteiten tegelijk
kan vertonen. Een semantiek voor parallelle systemen is een criterium dat zegt
wanneer twee systemen zich hetzelfde gedragen. Dit is ondermeer van belang
voor het correct bewijzen van implementaties van gespecificeerde systemen.

Het proefschrift bevat een introductie en zeven hoofdstukken die alle op
afzonderlijke artikelen gebaseerd zijn. Het eerste hoofdstuk bevat een
classificatie van semantieken voor een eenvoudig type systemen. Semantieken
die in de literatuur voorkomen worden op een uniforme, model-onafhankelijke
wijze gepresenteerd. De semantieken worden gemotiveerd met behulp van een­
voudige machinemodellen waarmee men het observeerbare gedrag van syste­
men kan beschrijven. Voor tien van de semantieken wordt bovendien een
complete axiomatizering gegeven.

Hoofdstuk II laat zien hoe semantische begrippen gebruikt kunnen worden
in protocolverificaties en andere toepassingen. Dit hoofdstuk wordt geheel in
algebrai'sche stijl gepresenteerd. Teneinde axiomasystemen te combineren die
moeilijk te verenigen semantische noties vertegenwoordigen wordt een nieuwe
notie van bewijs geintroduceerd.

Hoofdstuk III introduceert de vertakkende bisimulatie, een variant van
Milner's 'observatie equivalentie', die de vertakkingsstructuur van systemen
beter behoudt. Anders dan observatie equivalentie, blijft de equivalentie
behouden onder verfijning van acties (zie verderop) zolang acties niet parallel
kunnen plaatsvinden en is zij verenigbaar met modale logica met 'uiteindelijk'
operator. Recent onderzoek heeft bovendien uitgewezen dat algorithmen voor
het beslissen van vertakkende bisimulatie in practische toepassingen in het
algemeen sneller zijn en minder ruimte gebruiken dan de corresponderende
algorithmen voor observatie equivalentie.

266

In het vierde hoofdstuk wordt een operator voor verfijning van acties voor­
gesteld, en gedefinieerd op drie soorten 'event structures' en op Petri-netten.
In 'event structures' en Petri-netten kunnen systemen worden opgebouwd uit
bepaalde nog niet nader gemterpreteerde acties. De verfijningsoperator staat
toe om in het ontwerp van parallelle systemen deze acties te vervangen door
samengestelde systemen.

In de laatste drie hoofdstukken wordt onderzocht welke semantieken
behouden blijven onder actie-verfijning, in die zin dat equivalente systemen
equivalent blijven na vervanging van alle voorkomens van bepaalde acties door
hun interpretatie op een concreter niveau van abstractie.

267

References

[1] S. ABRAMSKY (1987): Observation equivalence as a testing equivalence.
Theoretical Computer Science 53, pp. 225-241.

[2] S. ABRAMSKY & S. VICKERS (1990): Quanta/es, observational logic, and pro­
cess semantics, Department of Computing Report DOC 90/1, Imperial
College.

[3] L. ACETO & M. HENNESSY (1989): Towards action-refinement in process
algebras. In: Proceedings 4th Annual Symposium on Logic in Computer
Science (LICS 89), Asilomar, California, IEEE Computer Society Press,
Washington, pp. 138-145.

[4] P. AczEL (1988): Non-wellfounded sets, CSLI Lecture Notes No.14, Stan­
ford University.

[5] P. AMERICA (1985): Definition of the programming language POOL-T.
ESPRIT project 415, Doc. Nr. 91, Philips Research Laboratories, Eindho­
ven.

[6] D. AusTRY & G. BouooL (1984): Algebre de processus et synchronisations.
Theoretical Computer Science 30(1), pp. 91-131.

[7] J .C.M. BAETEN & J.A. BERGSTRA (1988): Global renaming operators in con­
crete process algebra. I&C 78(3), pp. 205-245 .

[8] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP (1987): Conditional axioms
and al /3 calculus in process algebra. In: Formal Description of Program­
ming Concepts - III, Proceedings of the third IFIP WG 2.2 working
conference, Ebberup 1986 (M. Wirsing, ed.), North-Holland, Amsterdam,
pp. 53-75.

[9] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP (1987) : On the consistency of
Koomen's fair abstraction rule. Theoretical Computer Science 51(1/2), pp.

268

129-176.
(10] J.C.M. BAETEN, J.A. BERGSTRA & J.W. l<LOP (1987): Ready-trace seman­

tics for concrete process algebra with the priority operator. The Computer
Journal 30(6), pp. 498-506.

(11] J.C.M. BAETEN & R.J. VAN GLABBEEK (1987): Another look at abstraction
in process algebra. In: Proceedings ICALP 87, Karlsruhe (Th. Ottman,
ed.), LNCS 267, Springer-Verlag, pp. 84-94.

(12] J.C.M. BAETEN & R.J. VAN GLABBEEK (1987): Merge and termination in
process algebra. In: Proceedings 7th Conference on Foundations of
Software Technology & Theoretical Computer Science, Pune, India (K.V.
Nori, ed.), LNCS 287, Springer-Verlag, pp. 153-172.

(13] J.W. DE BAKKER, J.A. BERGSTRA, J.W. l<LOP & J.-J.CH. MEYER (1984) :
Linear time and branching time semantics for recursion with merge. Theoret­
ical Computer Science 34, pp. 135-156.

(14] J.W. DE BAKKER, J.N. KOK, J.-J.CH. MEYER, E.-R. OLDEROG & J .I.
ZUCKER (1986): Contrasting themes in the semantics of imperative con­
currency . In : Current trends in concurrency (J.W. de Bakker, W.-P. de
Roever & G. Rozenberg, eds.), LNCS 224, Springer-Verlag, pp. 51-121.

(15] J.W. DE BAKKER & J.I. ZUCKER (1982): Processes and the denotational
semantics of concurrency . I&C 54(1/2), pp. 70-120.

(16] J.A. BERGSTRA (1985): A process creation mechanism in process algebra.
Logic Group Preprint Series Nr. 2, CIF, State University of Utrecht, to
appear in: Applications of process algebra, (J.C.M. Baeten, ed.), Cam­
bridge University Press, 1990, pp. 81-88.

(17] J.A. BERGSTRA, J. HEERING & P. KLINT (1988): Module algebra (revised
version). Report P8823, Programming Research Group, University of
Amsterdam, to appear in: JACM. This report is a revised version of CWI
Report CS-R8617, Amsterdam 1986.

(18] J.A. BERGSTRA & J.W. l<LOP (1984): The algebra of recursively defined
processes and the algebra of regular processes. In: Proceedings ICALP 84,
Antwerp (J. Paredaens, ed.), LNCS 172, Springer-Verlag, pp. 82-95.

(19] J.A. BERGSTRA & J.W. l<L0P (1984): Process algebra for synchronous com­
munication. I&C 60(1/3), pp. 109-137.

(20] J.A. BERGSTRA & J.W. KLoP (1985): Algebra of communicating processes
with abstraction. Theoretical Computer Science 37(1), pp. 77-121.

(21] J .A. BERGSTRA & J.W. KLoP (1988): A complete inference system for regu­
lar processes with silent moves. In: Proceedings Logic Colloquium 1986
(F.R. Drake & J .K. Truss, eds.), North Holland, Hull, pp. 21-81.

(22] J.A. BERGSTRA & J.W. l<LOP (1989): Process theory based on bisimulation
semantics. In: Proceedings REX School/Workshop on Linear Time,
Branching Time and Partial Order in Logics and Models for Concurrency,
Noordwijkerhout (J.W. de Bakker, W.-P. de Roever & G. Rozenberg,
eds.), LNCS 354, Springer-Verlag, pp. 50-122.

(23] J.A. BERGSTRA, J.W. l<L0P & E.-R. OLDER0G (1987): Failures without
chaos: a new process semantics for fair abstraction. In: Formal Description
of Programming Concepts - III, Proceedings of the third IFIP WG 2.2

269

working conference, Ebberup 1986 (M. Wirsing, ed.), North-Holland,
Amsterdam, pp. 77-103.

[24] J.A. BERGSTRA, J.W. KLOP & E.-R. OLDEROG (1988): Readies and failures
in the algebra of communicating processes. SIAM Journal on Computing
17(6), pp. 1134-1177.

[25] J.A. BERGSTRA & J. TIURYN (1987): Process algebra semantics for queues.
Fund. Inf. X, pp. 213-224.

[26] J.A. BERGSTRA & J.V. TuCKER (1985): Top down design and the algebra of
communicating processes. SCP 5(2), pp. 171-199.

[27] E. BEST, R. DEVILLERS, A. KIEHN & L. POMELLO (1989): Fully concurrent
bisimulation. Technical Report LIT 202, Universite Libre de Bruxelles,
Laboratoire d' Informatique Theorique.

[28] B. BLOOM, S. ISTRAIL & A.R. MEYER (1988): Bisimulation can't be traced:
preliminary report. In: Conference Record of the 15th ACM Symposium
on Principles of Programming Languages (POPL), San Diego, California,
pp. 229-239.

[29] G . BouDOL (1989): Atomic actions (note). Bulletin of the EATCS 38, pp.
136-144.

[30] G. BOUDOL (1990): Computations of distributed systems, part 1: flow event
structures and flow nets, Report INRIA Sophia Antipolis, in preparation.

[31] G. BOUDOL & I. CASTELLANI (1987): On the semantics of concurrency: par­
tial orders and transition systems. In: Proceedings TAPSOFT 87, Vol. I
(H. Ehrig, R. Kowalski, G. Levi & U. Montanari, eds.), LNCS 249,
Springer-Verlag, pp. 123-137.

[32] G. BOUDOL & I. CASTELLANI (1989): Permutation of transitions: an event
structure semantics for CCS and SCCS. In: Proceedings REX
School/Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijkerhout (J.W. de Bakker,
W.-P. de Roever & G. Rozenberg, eds.), LNCS 354, Springer-Verlag, pp.
411-427.

[33] S.D. BROOKES, C.A.R. HOARE & A.W. ROSCOE (1984): A theory of com­
municating sequential processes. JACM 31(3), pp. 560-599.

[34] M.C. BROWNE, E.M. CLARKE & 0. GRUMBERG (1988): Characterizing
finite Kripke structures in propositional temporal logic. Theoretical Com­
puter Science 59(1,2), pp. 115-131.

[35] M. BROY (1987): Views of queues. Report MIP-8704, Fakultlit filr
Mathematik und Informatik, Universitat Passau.

[36] L. CASTELLANO, G . DE MICHELIS & L. POMELLO (1987): Concurrency VS

Interleaving: an instructive example. Bulletin of the EATCS 31, pp. 12-15.
[37] E.M. CLARKE & E.A. EMERSON (1981): Design and synthesis of synchroni­

zation skeletons using branching-time temporal logic. In : Proceedings of the
Workshop on Logics of Programs, Yorktown Heights (D. Kozen, ed.),
LNCS 131 , Springer-Verlag, pp. 52-71.

[38] PH. DARONDEAU (1982): An enlarged definition and complete axiomatisa­
tion of observational congruence of finite processes. In: Proceedings interna­
tional symposium on programming: 5th colloquium, Aarhus (M. Dezani-

270

Ciancaglini & U. Montanari, eds.), LNCS 137, Springer-Verlag, pp. 47-62.
[39] PH. DARONDEAU & P. DEGANO (1989): About semantic action refinement.

Technical Report TR - 11/89, Dipartimento di Informatica, Universita di
Pisa, to appear in: Fundamenta Informaticae.

[40] P. DEGANO, R. DE NICOLA & U. MONTANARI (1987): Observational
equivalences for concurrency models. In : Formal Description of Program­
ming Concepts - III, Proceedings of the third IFIP WG 2.2 working
conference, Ebberup 1986 (M. Wirsing, ed.), North Holland, pp. 105-129.

[41] P. DEGANO, R. DE NICOLA & U. MONTANARI (1988): A distributed opera­
tional semantics for CCS based on condition/ event systems. Acta Informa­
tica 26(112), pp. 59-91.

[42] R. DE NICOLA (1987): Extensional equivalences for transition systems. Acta
Informatica 24, pp. 211-237.

[43] R. DE NICOLA & M. HENNESSY (1984): Testing equivalences for processes.
Theoretical Computer Science 34, pp. 83-133.

[44] R. DE NICOLA, U. MONTANARI & F .W. VAANDRAGER (1990): Back and
forth bisimulations, submitted. To appear as CWI report.

[45] R. DE NICOLA & F.W. VAANDRAGER (1990): Three logics for branching
bisimulation, to appear as CWI Report. Extended abstract to appear in:
Proceedings 5th Annual Symposium on Logic in Computer Science (LICS
90), Philadelphia, USA, IEEE Computer Society Press, Washington.

[46] T. DENVIR, W. HARWOOD, M. JACKSON & M. RAY (1985): The analysis of
concurrent systems, Proceedings of a Tutorial and Workshop, Cambridge
University 1983, LNCS 207, Springer-Verlag.

[47] J. DESEL & A. MERCERON (1989): Vicinity respecting net morphisms. In:
Proceedings of the 10th International Conference on Petri Nets, Bonn, pp.
115-138.

[48] R. DEVILLERS (1988): On the definition of a bisimulation notion based on
partial words. Petri Net Newsletter 29, Gesellschaft fiir Informatik, Bonn,
pp. 16-19.

[49] E.A. EMERSON & J.Y. HALPERN (1986): 'Sometimes' and 'Not Never'
revisited: on branching time versus linear time temporal logic. JACM 33(l),
pp. 151-178.

[50] H.J. GENRICH & E. STANKIEWICZ-WIECHNO (1980) : A dictionary of some
basic notions of Petri nets. In : Net Theory and Applications, Proceedings
advanced course on general net theory of processes and systems, Hamburg
1979 (W. Brauer, ed.), LNCS 84, Springer-Verlag, pp. 519-535.

[51] J.L. GISCHER (1988): The equational theory of pomsets. Theoretical Com­
puter Science 61 , pp. 199-224.

[52] R.J. VAN GLABBEEK (1987): Bounded nondeterminism and the approxima­
tion induction principle in process algebra. In: Proceedings STACS 87 (F.J.
Brandenburg, G. Vidal-Naquet & M . Wirsing, eds.), LNCS 247, Springer­
Verlag, pp. 336-347.

[53] R.J. VAN GLABBEEK (1990): The refinement theorem for ST-bisimulation
semantics. Report CS-R9002, Centrum voor Wiskunde en Informatica,
Amsterdam, to appear in: Proceedings IFIP Working Conference on

271

Programming Concepts and Methods, Sea of Gallilee, Israel 1990 (M.
Broy & C.B. Jones, eds.), North-Holland, 1990.

[54] R.J. VAN GLABBEEK & U. GOLTZ (1989): Equivalence notions for con­
current systems and refinement of actions. Arbeitspapiere der GMD 366,
Sankt Augustin, extended abstract in: Proceedings 14th Symposium on
Mathematical Foundations of Computer Science (MFCS), Poq1bka­
Kozubnik, Poland, August/September 1989 (A. Kreczmar & G. Mir­
kowska, eds.), LNCS 379, Springer-Verlag, pp. 237-248.

[55] R.J. VAN GLABBEEK & U. GOLTZ (1989): Partial order semantics for
refinement of actions - neither necessary nor always sufficient but appropriate
when used with care. Bulletin of the EA TCS 38, pp. 154-163.

[56] R.J. VAN GLABBEEK & J.J.M.M. RUTTEN (1989): The processes of De
Bakker and Zucker represent bisimulation equivalence classes. In: J .W. de
Bakker, 25 jaar semantiek, liber amicorum, pp. 243-246.

[57] R.J. VAN GLABBEEK, S.A. SMOLKA, B. STEFFEN & C.M.N. TOFTS (1990):
Reactive, generative, and stratified models of probabilistic processes, to
appear in: Proceedings 5th Annual Symposium on Logic in Computer Sci­
ence (LICS 90), Philadelphia, USA, IEEE Computer Society Press, Wash­
ington.

[58] R.J. VAN GLABBEEK & F.W. VAANDRAGER (1987): Petri net models for
algebraic theories of concurrency . In: Proceedings PARLE conference,
Eindhoven, Vol. II (Parallel Languages) (J.W. de Bakker, A.J. Nijman &
P.C. Treleaven, eds.), LNCS 259, Springer-Verlag, pp. 224-242.

[59] R.J. VAN GLABBEEK & F.W. V AANDRAGER (1988) : Modular specifications
in process algebra - with curious queues. Report CS-R8821, Centrum voor
Wiskunde en Informatica, Amsterdam, under revision for TCS. An
extended abstract appeared in: Algebraic Methods: Theory, Tools and
Applications (M. Wirsing & J.A. Bergstra, eds.), LNCS 394, Springer­
Verlag, pp. 465-506.

[60] R.J. VAN GLABBEEK & F.W. VAANDRAGER (1990): The difference between
splitting in n and n + 1, in preparation.

[61] R.J. VAN GLABBEEK & W.P. WEIJLAND (1989): Branching time and
abstraction in bisimulation semantics (ex tended abstract). In: Information
Processing 89 (G.X. Ritter, ed.), North Holland, pp. 613-618.

[62] R.J. VAN GLABBEEK & W.P. WEIJLAND (1989): Refinement in branching
time semantics. Report CS-R8922, Centrum voor Wiskunde en Informa­
tica, Amsterdam, also appeared in : Proceedings AMAST Conference,
May 1989, Iowa, USA, pp. 197-201.

[63] R. GORRIERI, S. MARCHETTI & U. MONTANARI (1988): A 2 CCS: a simple
extension of CCS for handling atomic actions. In: Proceedings CAAP 88,
Nancy, France (M. Daughet & M . Nivat, eds.), LNCS 299, Springer­
Verlag, pp. 258-270.

[64] J. GRABOWSKI (1981): On partial languages. Fundamenta Informaticae
IV(2), pp. 427-498.

[65] S. GRAF & J. SIFAKIS (1987): Readiness semantics for regular processes with
silent actions. In : Proceedings ICALP 87, Karlsruhe (Th. Ottman, ed.),

272

LNCS 267, Springer-Verlag, pp. 115-125.
(66] E.P. GRIBOMONT (1989): Stepwise refinement and concurrency: a small

exercise. In: Mathematics of program construction (J.L.A. van de Snep­
scheut, ed.), LNCS 375, Springer-Verlag, pp. 219-238.

(67] J.F. GROOTE & F.W. V AANDRAGER (1988): Structured operational seman­
tics and bisimulation as a congruence. Report CS-R8845, Centrum voor
Wiskunde en Informatica, Amsterdam, under revision for I&C. An
extended abstract appeared in: Proceedings ICALP 89, Stresa (G.
Ausiello, M. Dezani-Ciancaglini & S. Ronchi Della Rocca, eds.), LNCS
372, Springer-Verlag, pp. 423-438.

(68] J.F. GROOTE & F.W. V AANDRAGER (1990): An efficient algorithm for
branching bisimulation and stuttering equivalence. Report CS-R9001, Cen­
trum voor Wiskunde en Informatica, Amsterdam, to appear in: Proceed­
ings ICALP 90, Warwick, UK, LNCS, Springer-Verlag.

(69] M. HENNESSY (1985): Acceptance trees. JACM 32(4), pp. 896-928.
(70] M. HENNESSY (1988): Axiomatising finite concurrent processes. SIAM Jour­

nal on Computing 17(5), pp. 997-1017.
(71] M. HENNESSY & R. MILNER (1980): On observing nondeterminism and con­

currency. In: Proceedings ICALP 80 (J. de Bakker & J. van Leeuwen,
eds.), LNCS 85, Springer-Verlag, pp. 299-309, a preliminary version of:

[72] M . HENNESSY & R. MILNER (1985): Algebraic laws for nondeterminism and
concurrency. JACM 32(1), pp. 137-161.

[73] M. HENNESSY & G.D. PLOTKIN (1980): A term model for CCS. In:
Proceedings 9'h Symposium on Mathematical Foundations of Computer
Science (MFCS) (P. Dembinski, ed.), LNCS 88, Springer-Verlag, pp. 261-
274.

[74] C.A.R. HOARE (1980): Communicating sequential processes. In: On the
construction of programs - an advanced course (R.M. McKeag & A.M.
Macnaghten, eds.), Cambridge University Press, pp. 229-254.

(75] C.A.R. HOARE (1985): Communicating sequential processes, Prentice-Hall
International.

(76] HE JIFENG & C.A.R. HOARE (1987): Algebraic specification and proof of a
distributed recovery algorithm. Distributed Computing 2(1), pp. 1-12.

[77] B. JONSSON & J. PARROW (1989): Deciding bisimu/ation equivalences for a
class of non-finite-state programs. In: Proceedings ST ACS 89, Paderborn
(B. Monien & R. Cori, eds.), LNCS 347, Springer-Verlag.

[78] J.K. KENNAWAY (1981): Formal semantics of nondetermism and parallel­
ism. Ph.D. Thesis, University of Oxford.

[79] W . KORCZYNSKI (1988): An algebraic characterization of concurrent sys­
tems. Fundamenta Informaticae 11(2), pp. 171-194.

(80] C.P.J. KOYMANS & J.C. MULDER (1986): A modular approach to protocol
verification using process algebra. Logic Group Preprint Series Nr. 6, CIF,
State University of Utrecht, to appear in: Applications of process algebra,
(J.C.M. Baeten, ed.), Cambridge University Press, 1990, pp. 261-306.

(81] L. LAMPORT (1983): What good is temporal logic?. In: Information Pro­
cessing 83 (R.E. Mason, ed.), North Holland, pp. 657-668.

273

(82) L. LAMPORT (1986): On interprocess communication. Distributed Comput­
ing l, pp. 77-101.

(83) K.S. LARSEN (1988): A fully abstract model for a process algebra with
refinements. Master Thesis, Aarhus University, Denmark.

(84) K.G. LARSEN & R. MILNER (1987): A complete protocol verification using
re/ativized bisimulation. In: Proceedings ICALP 87, Karlsruhe (Th.
Ottmann, ed.), LNCS 267, Springer-Verlag, pp. 126-135.

(85) K.G. LARSEN & A. SKOV (1988): Bisimulation through probabilistic testing.
R 88-29, Institut for Elektroniske Systemer, Afdeling for Matematik og
Datalogi, Aalborg Universitetscenter, a preliminary report appeared in:
Conference Record of the 16th Annual ACM Symposium on Principles of
Programming Languages (POPL), Austin, Texas, ACM Press, New York
1989.

[86) S. MAuw (l 987): An algebraic specification of process algebra, including two
examples. Report FYI 87-06, Dept. of Computer Science, University of
Amsterdam, extended abstract in: Algebraic Methods: Theory, Tools and
Applications (M. Wirsing & J.A. Bergstra, eds.), LNCS 394, Springer­
Verlag, pp. 507-554:

(87] S. MAUW & G.J. VELTINK (1988): A process specification formalism.
Report P8814, Programming Research Group, University of Amsterdam,
to appear in: Fundamenta Informaticae.

(88) J. MESEGUER & U. MONTANARI (1988): Petri nets are monoids: a new
algebraic foundation for net theory. In: Proceedings 3th Annual Sympo­
sium on Logic in Computer Science (LICS 88), Edinburgh, IEEE Com­
puter Society Press, Washington, pp. 155-164.

[89] A.R. MEYER (1985): Report on the 5th international workshop on the seman­
tics of programming languages in Bad Honnef Bulletin of the EATCS 27,
pp. 83-84.

[90] G.J. MILNE (1985): CIRCAL and the representation of communication, con­
currency, and time. TOPLAS 7(2), pp. 270-298.

(91] R. MILNER (1980): A Calculus of Communicating Systems, LNCS
92, Springer-Verlag.

(92] R. MILNER (1981): A modal characterisation of observable machine­
behaviour. In: Proceedings CAAP 81 (G. Astesiano & C. Bohm, eds.),
LNCS 112, Springer-Verlag, pp. 25-34.

(93] R. MILNER (1983): Calculi/or synchrony and asynchrony. Theoretical Com­
puter Science 25, pp. 267-310.

[94] R. MILNER (1985): Lectures on a Calculus for Communicating Systems. In:
Seminar on Concurrency (S.D. Brookes, A.W. Roscoe & G. Winskel,
eds.), LNCS 197, Springer-Verlag, pp. 197-220.

(95] R. MILNER (1989): Communication and concurrency, Prentice-Hall Interna­
tional.

[96] F. MOLLER (1989): Axioms for concurrency. Ph.D. Thesis, Report CST-
59-89, Department of Computer Science, University of Edinburgh.

(97] J.D. MONK (1976): Mathematical logic, Springer-Verlag.
(98] M. NIELSEN, U. ENGBERG & K.S. LARSEN (1989): Fully abstract models

274

for a process language with refinement. In: Proceedings REX
School/Workshop on Linear Time, Branching Time and Partial Order in
Logics and Models for Concurrency, Noordwijkerhout (J.W. de Bakker,
W.-P. de Roever & G. Rozenberg, eds.), LNCS 354, Springer-Verlag, pp.
523-548.

(99] M. NIELSEN, G.D. PLOTKIN & G. WINSKEL (1981): Petri nets, event struc­
tures and domains, part I. Theoretical Computer Science 13(1), pp. 85-108.

(100] E.-R. OLDEROG, U. GOLTZ & R.J. VAN GLABBEEK (1988): Combining
compositionality and concurrency, summary of a GMD-workshop,
Konigswinter, March 1988. Arbeitspapiere der GMO 320, Sankt Augus­
tin.

[IOI] E.-R. OLDEROG & C.A.R. HOARE (1986): Specification-oriented semantics
for communicating processes. Acta Informatica 23, pp. 9-66.

(102] D.M.R. PARK (1981): Concurrency and automata on infinite sequences.
In: Proceedings 5th GI <;:onference (P. Deussen, ed.), LNCS 104,
Springer-Verlag, pp. 167-183.

[103] C.A. PETRI (1977): Non-sequential processes. Interner Bericht ISF-77-05,
Gesellschaft fiir Mathematik und Datenverarbeitung, Sankt Augustin.

(104] I.C.C. PHILLIPS (1987): Refusal testing. Theoretical Computer Science 50,
pp. 241-284.

(105] A. PNUELI (1985): Linear and branching structures in the semantics and
logics of reactive systems. In: Proceedings ICALP 85, Nafplion (W.
Brauer, ed.), LNCS 194, Springer-Verlag, pp. 15-32.

(106] L. POMELLO (1986): Some equivalence notions for concurrent systems. An
overview. In: Advances in Petri Nets 1985 (G. Rozenberg, ed.), LNCS
222, Springer-Verlag, pp. 381-400.

[107] V.R. PRATT (1986): Modelling concurrency with partial orders. Interna­
tional Journal of Parallel Programming 15(1), pp. 33-71.

(108] A. RABINOVICH & B.A. TRAKHTENBROT (1988): Behavior Structures and
Nets. Fundamenta Informaticae 11(4), pp. 357-404.

(109] W. REISIG (1985): Petri nets - an introduction, EATCS Monographs on
Theoretical Computer Science, Volume 4, Springer-Verlag.

[I IO] W. REISIG (1987): Petri nets in software engineering. In: Petri Nets:
Applications and Relationships to Other Models of Concurrency,
Advances in Petri Nets 1986, Part II; Proceedings of an Advanced
Course, Bad Honnef, September 1986 (W. Brauer, W. Reisig & G. Rozen­
berg, eds.), LNCS 255, Springer-Verlag, pp. 63-96.

(111] W.C. ROUNDS & S.D. BROOKES (1981): Possible futures, acceptances,
refusals and communicating processes. In: Proceedings 22nd Annual Sym­
posium on Foundations of Computer Science, Nashville, USA 1981,
IEEE, New York, pp. 140-149.

(112] D.T. SANNELLA & A. TARLECKI (1988): Toward formal development of
programs from algebraic specifications: implementations revisited. Acta
Informatica 25, pp. 233-281.

(l 13] D.T. SANNELLA & M. WIRSING (1983): A kernel language for algebraic
specification and implementation (extended abstract). In: Proceedings

275

International Conference on Foundations of Computation Theory,
Borgholm (M. Karpinski, ed.), LNCS 158, pp. 413-427, long version:
Report CSR-131-83, Dept. of Computer Science, Univ. of Edinburgh,
1983.

[114) I. SUZUKI & T. MURATA (1983): A method for stepwise refinement and
abstraction of Petri nets. Journal of Computer and System Sciences 27(1),
pp. 51-76.

[115] D.A. TAUBNER & W. VOGLER (1989): Step failure semantics and a com­
plete proof system. Acta Informatica 27, pp. 125-156.

[116] F.W. V AANDRAGER (1986): Verification of two communication protocols by
means of process algebra. Report CS-R8608, Centrum voor Wiskunde en
Informatica, Amsterdam.

[117] F.W. V AANDRAGER (1986): Process algebra semantics of POOL. Report
CS-R8629, Centrum voor Wiskunde en Informatica, Amsterdam, to
appear in : Applications of process algebra, (J.C.M. Baeten, ed.), Cam­
bridge University Press, 1990, pp. 173-236.

[118] F.W. V AANDRAGER (1988): Some observations on redundancy in a context.
Report CS-R8812, Centrum voor Wiskunde en Informatica, Amsterdam,
to appear in: Applications of process algebra, (J.C.M. Baeten, ed.), Cam­
bridge University Press, 1990, pp. 237-260.

[119] F.W. V AANDRAGER (1988): Determinism - (event structure isomorphism
= step sequence equivalence). Report CS-R8839, Centrum voor Wiskunde
en Informatica, Amsterdam, to appear in: Theoretical Computer Science.

[120] F.W. VAANDRAGER (1989): personal communication.
[121] F.W. VAANDRAGER (1990): Algebraic techniques for concurrency and their

application. Ph.D. Thesis, University of Amsterdam.
[122] R. VALETTE (1979): Analysis of Petri nets by stepwise refinements. Journal

of Computer and System Sciences 18, pp. 35-46.
[123] W. VOGLER (1987): Behaviour preserving refinements of Petri nets. In :

Proceedings 12th International Workshop on Graph-Theoretic Concepts in
Computer Science, Bernried, 1986 (G. Tinhofer & G. Schmidt, eds.),
LNCS 246, Springer-Verlag, pp. 82-93.

[124] W. VOGLER (1989): Failures semantics based on interval semiwords is a
congruence for refinement. Bericht TUM-I8905, Institut fiir Informatik,
Technische Universitat Miinchen, to appear in : Proceedings STACS 90,
LNCS, Springer-Verlag.

[125] D.J. WALKER (1990): Bisimulation and divergence. I&C 85(2), pp. 202-
241.

[126] W.P. WEIJLAND (1989): Synchrony and asynchrony in process algebra.
Ph.D. Thesis, University of Amsterdam.

[127] G. WINSKEL (1987): Event structures. In: Petri Nets : Applications and
Relationships to Other Models of Concurrency, Advances in Petri Nets
1986, Part II ; Proceedings of an Advanced Course, Bad Honnef, Sep­
tember 1986 (W. Brauer, W. Reisig & G. Rozenberg, eds.), LNCS 255,
Springer-Verlag, pp. 325-392.

-

Propositions

Added to the thesis

Comparative concurrency semantics
and refinement of actions

R.J. van Glabbeek

May 16, 1990

1. Let xEEc;:Rn , E open, Vc;:Rn and f :E-V a two times continuous
differentiable bijection. lnen any sufficiently small open ball around x in
E is mapped on a convex subset of V.

From this it follows in an elementary way that every open covering of a
paracompact differentiable manifold has a refinement G/.L = { U; }; ~1, with
the property that each non-empty finite intersection U;, n · · · n U;, is
diffeomorphic with JR n .

See: R.J. VAN GLABBEEK, Good coverings, Report nr. 3, Mathematical
Institute, University of Leiden, The Netherlands 1985.

2. In the following formulation, Craig's interpolation theorem holds for
equational logic:
If /3 is an equation and A a set of equations such that A 1- /3 , then there
exists a finite set I of equations, the signature of which is contained in
that of A and that of /3, such that A 1-J and / 1-/3.

See: P.H. RODENBURG & R.J. VAN GLABBEEK, An interpolation theorem in
equational logic, Report CS-R8838, Centre for Mathematics and Computer
Science, Amsterdam 1988.

3. Consider the language with CCS operators 0, action-prefixing and + , and
a parallel composition operator II without synchronizatiua . A closed term
Pis prime (up to a semantic equivalence:=:::::) if Pr::l:!0 and P:=:::::Q II R implies
R :::::::0 or Q :::::::0. R. Milner proved that any closed term in this language
can be expressed uniquely , up to (interleaving) bisimuJation equivalence,
as the parallel composition of a set of primes. The following example
shows that this unique decomposition theorem for bisimulation semantics
does not generalize to failure semantics.

(a + aa) II (a + aa) = a II (a + aa + aaa) .

In fact this example works for all semantics from completed trace seman­
tics to ready trace semantics in Figure 1 of Chapter I of this thesis.

See: R. MILNER & F. MOLLER, Unique decomposition of processes, to
appear in Bulletin of the EA TCS 41, 1990.

4. Consider the process modules REC, AIP and KFAR, as defined in
Chapter II of this thesis, let BPA • be the submodule of ACP, + PR con­
sisting of the axioms A, T, TI , and PR, and let CA (the commutativi~F of
abstraction) be the module T {a) 0 T{b) = -r{h) 0 T(u)· All these modules are
valid in various models of concurrency. However, their combination is
inconsistent in the sense that it doesn' t respect deadlock behaviour:

BPA• + REC + AIP + CA + KFAR 1- -r = -r + -r8.

See: R.J. VAN GLABBEEK, Bounded nondeterminism and the approx imation
induction principle in process algebra. In: Proceedings STACS 87 (F.J .
Brandenburg, G. Vidal-Naquet & M. Wirsing, eds.), LNCS 247, Springcr­
Verlag, pp. 336-347, 1987.

5. When assuming maximal parallelism, ST-failure trace equivalence and all
finer equivalences are real-time consistent, whereas step equivalences and
ST-readiness equivalence are not (using the combined terminology of
Chapters I and VII of this thesis).

Real-time consistency was defined in: R.J. VAN GLABBEEK & F .W. VAAN­
DRAGER, Petri net models for algebraic theories of concurrency. In :
Proceedings PARLE conference, Eindhoven, Vol II (Parallel Languages)
(J.W. de Bakker, A.J . Nijman & P.C. Treleaven, eds.), LNCS 259,
Springer-Verlag, pp. 224-242, 1987.

6. The use of 'we' in sentences like 'We will now prove our main theorem' in
scientific publications with only one author can be interpreted in only a
few ways:
(i) The author (mistakenly) expects his audience to join him in proving

his main theorem;
(ii) The author claims to be royal ;
(iii) The author tries to shift the scientific responsibility for his theorem

on the professional community as a whole - for instance in order to
increase his authority on the subject and/ or to display humbleness by
sharing his result with others.

I prefer the use of 'I'.

Compare: A. RAND, Anthem, New American Library.

7. In social and political disputes the preferable position lies in the middle
about as often as mountain-tops can be found half-way up a slope.

