
P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free
Multiplicative-Additive Linear Logic

DOMINIC J. D. HUGHES and ROB J. VAN GLABBEEK
Stanford University

A cornerstone of the theory of proof nets for unit-free multiplicative linear logic (MLL) is the abstract
representation of cut-free proofs modulo inessential rule commutation. The only known extension to
additives, based on monomial weights, fails to preserve this key feature: a host of cut-free monomial
proof nets can correspond to the same cut-free proof. Thus, the problem of finding a satisfactory
notion of proof net for unit-free multiplicative-additive linear logic (MALL) has remained open
since the inception of linear logic in 1986. We present a new definition of MALL proof net which
remains faithful to the cornerstone of the MLL theory.

Categories and Subject Descriptors: F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—Proof theory

General Terms: Theory

Additional Key Words and Phrases: Linear logic, proof nets, additives, cut elimination

1. INTRODUCTION

The beautiful theory of proof nets for unit-free multiplicative linear logic (MLL)
appeared alongside the introduction of linear logic [Girard 1987]. A proof net
is an abstract representation of a proof: the translation of cut-free proofs into
proof nets identifies proofs modulo inessential rule commutation. The identi-
fications have since been verified as canonical from a semantic perspective,
with numerous full completeness results for MLL, for example, Abramsky and

An extended abstract of this article appeared in Proceedings of the 18th Annual IEEE Symposium
on Logic in Computer Science (LICS 2003) (Ottawa, Ont., Canada, June), IEEE Computer Society
Press, Los Alamitos, CA, pp. 1–10.
A preliminary version of some of the material was presented at Linear Logic 2002 (Copenhagen,
Denmark, July), 2002.
This article was finalised while R. J. van Glabbeek worked at National ICT Australia (NICTA) and
at University of New South Wales (UNSW).
Authors’ current addresses: D. Hughes, Department of Computer Science, Stanford University,
353 Serra Mall, Stanford, CA 94305-9405; email: dominic@theory.stanford.edu; R. J. van Glabbeek,
National ICT Australia (Sydney Laboratory), Locked Bag 6016, The University of New South Wales,
Sydney, NSW 1466, Australia; email: rvg@cs.stanford.edu; rvg@cse.unsw.edu.su.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2005 ACM 1529-3785/05/1000-0001 $5.00

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005, Pages 1–59.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

2 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 1. Example of the inductive translation of a cut-free MALL proof into one of our cut-free
proof nets. The concluding proof net has two linkings, one drawn above the sequent, the other
below. Each contains two axiom links. The proof nets further up in the derivation have one or two
linkings, correspondingly above and/or below the sequent. Had we switched the order of the right-
hand tensor rule and the plus rule, we would have obtained exactly the same pair of linkings; thus
we identify cut-free proofs modulo a commutation of rules.

Jagadeesan [1994], Hyland and Ong [1993], Loader [1994], Tan [1997], Blute
and Scott [1996], and Devarajan et al. [1999]. Furthermore, the identifications
correspond to coherences of free star-autonomous categories [Blute et al. 1996].

The problem of finding a satisfactory extension of the theory of proof nets to
unit-free multiplicative-additive linear logic (MALL) has remained open since
the inception of linear logic [Girard 1987]. Progress towards a solution was made
by Girard [1996] with a notion of MALL proof net based on monomial weights.
Unfortunately, monomial proof nets failed to extend the MLL theory faithfully:
a single cut-free proof may correspond to a host of monomial proof nets, and
there is no natural map from cut-free proofs onto monomial proof nets. To quote
Girard [1996], monomial proof nets are “far from being absolutely satisfactory.”
We illustrate the problems in detail in Section A.1.

In this article, we propose a new notion of MALL proof net (Section 4) which
adheres faithfully to the original MLL theory: we provide a simple function
from cut-free proofs to cut-free proof nets, yielding the sought-after abstract
representations of cut-free proofs modulo inessential commutation of rules. We
define a cut-free proof net on a sequent � as a set of linkings on � satisfy-
ing a geometric correctness criterion,1 and prove that a set of linkings is the
translation of a proof if and only if it is a proof net (Theorem 4.18, the cut-free
Sequentialization Theorem). The definition of proof net is pleasingly succinct,
taking only 11 lines. The reader can glean an impression of our approach by
perusing Figure 1.

In Section 5, we extend our proof nets with cuts, and present a notion
of cut elimination (and turbo cut elimination). Cut elimination is simply de-
fined, strongly normalizing, and yields a category of cut-free proof nets that
is semi (i.e., unit-free) star-autonomous, with products and coproducts. For
an impressionistic overview, see Figures 2 (cut), 3 (cut elimination), and

1Relaxing the criterion slightly yields a notion of proof net for MALL with mix (Section 4.9).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 3

Fig. 2. Example of the translation of a proof with a cut into one of our proof nets. The con-
cluding proof net is on what we call a cut sequent: a MALL sequent (the formulas P⊥ and
P ⊗ ((Q

&

Q⊥) ⊕ (R

&

R⊥))) together with a cut pair [P ⊕ P]∗ [P⊥&P⊥] formed using the cut con-
nective ∗. The concluding proof net comprises two linkings of three axiom links each, one linking
drawn above the cut sequent, the other below. When transitioning through the cut rule, the axiom
link on P⊥, P ⊕ P on the left becomes duplicated, so that a copy appears in each of the two final
linkings; in general, when m linkings pass through the left of a cut rule, and n through the right,
we construct all m × n disjoint unions of the linkings on the conclusion. (Here m = 1 and n = 2.)

Fig. 3. Example of cut elimination, normalizing in two steps. The top proof net, two linkings, was
derived in Figure 2. The first elimination step, aside from eliminating the ⊕ and & to leave a literal
cut [P]∗ [P⊥], deletes the underhanging linking: our rule for additive elimination is simply delete
inconsistent linkings, where a linking is inconsistent if it chooses opposite arguments for the cut ⊕
and &. (Here the underhanging linking chooses ⊕-left and &-right, and is therefore inconsistent,
hence, deleted in the cut elimination step.) Note that the end result is a cut-free proof net: it is the
translation of the left branch of the &-rule in Figure 2.

4 (composition). After extending to cut, the definition of proof net remains suc-
cinct: see Definition 2. As with Girard’s monomial proof nets, in the presence
of cuts, multiple proof nets may correspond to the same proof. However, from
a semantic point of view (viz. full completeness), the provision of abstract rep-
resentations of MALL proofs modulo rule commutation is crucial only in the
cut-free setting.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

4 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 4. Example of composition f , g �→ g f in our category N of cut-free proof nets. Objects
are MALL formulas, and a morphism h : A → B is a cut-free proof net on the sequent A⊥, B.
The morphisms f (top-left) and g (top-right) are the left- and right hypotheses of the cut rule in
Figure 2. The first step of composition is to cut the two morphisms; in doing so we are emulating
precisely the cut rule of Figure 2. Having negated on the left of the arrow →, the two cut formulas
are no longer dual but identical; thus we are afforded the additional economy of superimposing
them. The two ensuing computation steps are exactly those of Figure 3, modulo this superposition.

A crisp notion of cut-free MALL proof net is fully motivated from a proof-
theoretic perspective alone. However, just as MLL has blossomed through nu-
merous fully complete semantics via cut-free MLL proof nets, we hope that the
new definition of cut-free proof net presented here will lead to a similar blossom-
ing of MALL. Since cut-free monomial proof nets for MALL are unsatisfactory
for the reasons outlined earlier (detailed in Appendix A.1), any MALL full com-
pleteness result based on them (e.g., the concurrent games model [Abramsky
and Melliès 1999] or the hypercoherence model [Blute et al. 2005]) suffers ac-
cordingly, particularly with regard to faithfulness. Our new definition of MALL
proof net should yield cleaner and more accessible MALL full completeness
results.2

1.1 Liberation from Monomials

The technical starting point for our definition of proof net was Girard’s definition
of monomial proof net [1996], and we employ variants of Girard’s ingenious
notions of slice and jump. One of our contributions relative to Girard [1996] is

2Part of the first author’s motivation for finding a satisfactory notion of proof net came from a
collaboration with Gordon Plotkin and Vaughan Pratt aiming to extend the Chu space full com-
pleteness result [Devarajan et al. 1999] to MALL: We were initially encumbered by the complexity
of monomial proof nets. Ultimately, we discovered that full completeness does not extend: The
Gustave example (see Section 4.6.1) inhabits the model.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 5

Fig. 5. (a) Four-linking example of one of our proof nets. Rather than draw all four linkings on
one sequent, we have drawn two linkings (one above, one below) on each of two copies of the
sequent. Section 4.8 shows how to encode a proof net as a collection of axiom links labelled with
predicates (‘weights’, c.f. [Girard 1996]). (b) shows the weight encoding of (a). To distinguish the
&s, we have subscripted them. Every &-assignment (assignment of left or right to each of &x and
& y) determines a linking by restricting to axiom links whose predicates hold, where we read the
predicate x (respectively, x) as “&x is assigned left (respectively, right)” (and y analogously), ∧ is
and and ∨ is or. We invite the reader to verify that taking each of the four possible &-assignments
in turn produces the four original linkings.

that we do not partition weights into monomials. Girard [1996] remarks that
he had been trying to circumvent this technical limitation since 1990, and lists
three specific problems that must be solved in any attempt to eliminate it, that
is, to define what he calls “more liberal proof-nets”, such as ours:

Weights must be monomials. However, weights of the form p ∪ q
will naturally occur if we want to allow more superimpositions. The
present state of affairs is as follows:
(1) in spite of years of efforts, I never succeeded in finding the right

correctness criterion for these more liberal proof-nets;
(2) general boolean coefficients might be delicate to represent (on the

other hand, the case we consider has a natural presentation in
terms of coherent spaces);

(3) normalization in the full case might be messy.

[Girard 1996, Appendix A.1.5]

An important stepping-stone towards finding the right criterion to address
(1) was to first settle the open problem of whether Girard’s criterion becomes
insufficient without partitioning weights into monomials. We show that this is
indeed the case: in Appendix A.2 we present a nonmonomial proof structure
that does not correspond to any proof (i.e., it is not sequentializable), yet sat-
isfies Girard’s criterion. We address (2) by leaving weights implicit, defining a
proof net on a sequent � as a set of linkings on an extension of � by zero or more
cut pairs A∗ A⊥, B ∗ B⊥, etc. (See Figure 5 for an example of extracting weights

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

6 • D. J. D. Hughes and R. J. van Glabbeek

from a proof net.) Issue (3) is addressed by the fact that our definition of cut
elimination is very simple: confluence and strong normalization are immediate.

The proof that our correctness criterion captures proof translations (the
Sequentialization Theorem) hinges on an ordering on vertices called
domination.3 By introducing domination we avoid the use of empires [Girard
1987, 1996], thereby sidestepping the problem of stability of maximal empires
[Girard 1996, Sect. 1.5.3]—the main technical problem that led Girard to resort
to monomials.

In Appendix A.4, we define a surjection collapsing Girard’s proof nets to ours.
There are more Girard proof nets than ours because of the redundancy issues
related to monomials (see Appendix A.1).

2. MALL

By MALL, we mean multiplicative-additive linear logic without units [Girard
1987]. Formulas are built from literals (propositional variables P, Q , . . . and
their negations P⊥, Q⊥, . . .) by the binary connectives tensor ⊗, par

&

, with &
and plus ⊕. Negation (−)⊥ extends to arbitrary formulas with P⊥⊥ = P on
propositional variables, and de Morgan duality: (A⊗ B)⊥ = A⊥ &

B⊥, (A

&

B)⊥ =
A⊥ ⊗ B⊥, (A⊕ B)⊥ = A⊥&B⊥, and (A&B)⊥ = A⊥ ⊕ B⊥. Throughout the article,
we shall identify a formula with its parse tree, a tree labeled with literals at the
leaves and connectives at internal vertices. A sequent is a nonempty disjoint
union of formulas. Thus, a sequent is a particular kind of labeled forest. We
write comma for disjoint union. For example,

P⊥, (P ⊗ P⊥)

&

P

is the graph
P⊥ P

⊗

P⊥

&

P

�� ��

�
�

�
�

�
��

Throughout the article, we adopt the convention of Mother Nature, and depict
the leaves of a tree above, and the root below. Sequents are proved using the
following rules:

Here, and throughout this document, P, Q , . . . range over propositional vari-
ables, A, B, . . . over formulas, and �, �, . . . over (possibly empty) disjoint unions
of formulas. Without loss of generality, we restrict the axiom rule to literals
[Girard 1987].

3Unrelated to domination in flowgraphs.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 7

Fig. 6. An example of the translation of a cut-free MLL proof into a linking, that is, into a cut-free
MLL proof structure.

3. BACKGROUND: CUT-FREE MLL PROOF NETS

For didactic purposes, we review the definition of cut-free MLL proof net
[Girard 1987; Danos and Regnier 1989]. MLL is the subsystem of MALL ob-
tained by omitting the additive connectives, ⊕ and &. Our style of presentation
anticipates the subsequent definition of MALL proof net.

An axiom link or simply link on an MLL sequent � is an edge between comple-
mentary leaves in �, that is, between leaves in � labeled with complementary
literals P and P⊥. A linking on � is a partitioning of the leaves of � into links,
that is, a set of disjoint links whose union contains every leaf of �. A linking on
an MLL sequent is also called a cut-free MLL proof structure.

Example 3.1. Two linkings are possible on the sequent P⊥, (P ⊗ P⊥)

&

P :

.

3.1 A Function from Cut-Free MLL Proofs to Linkings

Let � be a cut-free MLL proof of a sequent �. By downwards tracking of formula
leaves, the axiom rules of � determine a linking λ� on �. Alternatively, one can
define the same function from proofs to linkings by induction. The base case of
an axiom rule P, P⊥ defines the linking P, P⊥. Writing λ �� for the judgment
“λ is a linking on �”, the inductive translation is as follows:

λ � �, A λ′ � B, �

λ ∪ λ′ � �, A ⊗ B, �
⊗ λ � �, A, B

λ � �, A

&

B

&

.

Here we use the implicit tracking of formula leaves above the line of a rule to
leaves below the line. Figure 6 shows an example. Any linking λ that is the
image of a proof is sequentializable, and any such proof is a sequentialization
of λ. In general, a linking has many distinct sequentializations, corresponding
to the fact that MLL proof nets are canonical abstract representations of MLL
proofs modulo inessential rule commutation.

3.2 Geometric Characterization of Sequentializability

Given a linking λ on �, the graph Gλ of λ is the graph � together with the edges
λ. A

&

-switching of a linking λ on � is any subgraph of Gλ obtained by deleting
one of the two argument edges of each

&

-vertex.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

8 • D. J. D. Hughes and R. J. van Glabbeek

Example 3.2. One of two possible

&

-switchings of the first linking of
Example 3.1:

Definition 3.3. A linking on an MLL sequent (i.e., a cut-free MLL proof
structure) is a cut-free MLL proof net if each of its

&

-switchings is a tree (acyclic
and connected).

Example 3.4. The second linking of Example 3.1 fails to be a cut-free MLL
proof net. This

&

-switching is not a tree:

The first linking of Example 3.1 is a proof net: both

&

-switchings (one of
which was depicted in Example 3.2) are trees.

THEOREM 3.5 (CUT-FREE MLL SEQUENTIALIZATION). A linking is the transla-
tion of a cut-free proof iff it is a cut-free proof net.

This was proved by Girard [1987], for a different geometric criterion, based
on long trips. Danos and Regnier [1989] simplified the criterion to the elegant
one above, showing it to be equivalent to Girard’s. Several other equivalent
formulations will be presented in Sections 4.7.1 and 4.7.2.

4. CUT-FREE MALL PROOF NETS

We begin by defining a linking on a MALL sequent, and a simple function from
cut-free MALL proofs to sets of linkings. With such a function in hand, it is
natural to ask about its image and kernel:

(I) Image. Can one characterize the sound sets of linkings, that is, those that
come from proofs?

(K) Kernel. Does the kernel exactly characterize proof equivalence modulo rule
commutation?

We answer both in the affirmative. In Section 4.3, we present a geometric char-
acterization of those sets of linkings that arise as the translations of cut-free
MALL proofs, and call them proof nets. In a sibling article, we show that any

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 9

Fig. 7. Top: two additive resolutions of P⊥⊕(Q ⊕P⊥), (P&P)⊗(R⊕R), (R⊥⊗R)

&

R⊥. Equiva-
lent compact ‘in-line’ representations are shown underneath.

two cut-free MALL proofs are equal modulo rule commutation if and only if
they map to the same proof net (see Section 4.11). Thus:

Our cut-free MALL proof nets provide canonical abstract representations of
cut-free MALL proofs modulo rule commutation.

4.1 Linkings

An additive resolution of a MALL sequent � is any result of deleting one argu-
ment subtree of every additive connective (& or ⊕) of �. See Figure 7 for ex-
amples. An axiom link or simply link on � is an edge between complementary
leaves in �, that is, between leaves in � labeled with complementary literals P
and P⊥. A linking λ on � is a set of disjoint links on � such that ∪λ is the set of
leaves of an additive resolution of �; this additive resolution is denoted � �λ.

Example 4.1. Let � be the sequent

P⊥⊕(Q ⊕P⊥), (P&P)⊗(R⊕R), (R⊥⊗R)

&

R⊥.

The following set λ of three disjoint links is an example of a linking on �:

.

For λ to be a linking, as opposed to merely an ad hoc collection of disjoint links,
it must take the leaves of some additive resolution of �. This is indeed the case:
the leaves of (the links of) λ are exactly those of the first of the two additive
resolutions depicted in Figure 7:

.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

10 • D. J. D. Hughes and R. J. van Glabbeek

Example 4.2. Multiple linkings can have the same additive resolution. For
example, the following linking λ′

.

has the same additive resolution as the linking λ of Example 4.1, that is,
� �λ = � �λ′:

Note that λ and λ′ are the only two linkings possible on this additive resolution.

Example 4.3. This pair of disjoint links fails to be a linking:

It is not a linking because it contains a leaf on each side of the &.

Numerous other examples of linkings can be seen in Figures 1 and 2. One
can easily verify that each of them takes the leaves of an additive resolution.
See also Figure 5.

4.1.1 Every Linking Induces an MLL Proof Structure. Every additive con-
nective (⊕/&) remaining in an additive resolution is unary (i.e., has one re-
maining argument), by construction. One can observe this, for example, in the
parse trees in Figure 7. Thus, any additive resolution R of a MALL sequent �

induces an MLL sequent R− by collapsing its additive connectives. A linking λ

on �, viewed as being on (� �λ)−, is a cut-free MLL proof structure (as defined
in Section 3), which we call the MLL proof structure induced by λ.

Example 4.4. The MLL proof structure induced by the linking λ of
Example 4.1:

.

4.2 A Function from Cut-Free MALL Proofs to Sets of Linkings

Every cut-free MALL proof � of � defines a set θ� of linkings on � as follows:
Define a &-resolution R of � to be any result of deleting one branch above each
&-rule of �. By downwards tracking of formula leaves, the axiom rules of R
determine a linking λR on �. Define θ� = {λR : R is a &-resolution of �}. See
Figure 8 for an example. Alternatively, Table I defines the same function by
induction; see Figure 1 for an example.

By structural induction, each linking is well-defined (i.e., takes the leaves of
an additive resolution); thus the translation is well defined. The fact that the
above procedures yield the same set of linkings follows from a simple structural
induction on proofs. A set of linkings � is sequentializable if it is the translation
of a proof; any such proof is a sequentialization of �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 11

Fig. 8. Example of the mapping of a cut-free MALL proof into a set of linkings. At the top is a proof
�, followed by its three possible &-resolutions R1, R2, R3, followed by the corresponding linkings
λ1, λ2, λ3. Each linking comprises a single link. Categorically, this example expresses associativity
(P × Q)× R → P × (Q × R). Note the compactness of the representation as a set of linkings relative
to the size of the proof.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

12 • D. J. D. Hughes and R. J. van Glabbeek

Table I. Inductive Definition of the Function from Cut-Free MALL Proofs to Sets of Linkings

Here θ � � is the judgment “θ is a set of linkings on �”. We use the implicit tracking of formula leaves downwards
through rules. The base case ax is a singleton set of linkings whose only linking comprises a single link, between
P and P⊥.

4.3 Geometric Characterization of Sequentializability

In this section, we define a proof net as a set of linkings satisfying three con-
ditions. These conditions characterize the image of the function from cut-free
proofs to sets of linkings defined in Section 4.2: in Theorem 4.18 (the cut-free
Sequentialization Theorem), we prove that a set of linkings is the translation
of a proof if and only if it is a proof net. The definition of proof net is pleasingly
succinct, and is given in Definition. In the remainder of this section, we clar-
ify the definition and work through examples. As in the standard approach to
MLL (and as in Girard [1996]), we define a proof structure as a stepping-stone
towards the definition of proof net.

4.3.1 Resolution Condition. Similar to the definition of additive resolution
in Section 4.1, define a &-resolution of a sequent � to be any result of deleting
one argument subtree of every & of �.

Example 4.5. The two possible &-resolutions of the sequent

P⊥⊕(Q ⊕P⊥), (P&P)⊗(R⊕R), (R⊥⊗R)

&

R⊥

featured in Examples 4.1 and 4.2 are:

A linking λ on � is on a &-resolution �� of � if every leaf of λ is in ��. A set of
linkings θ on � is a cut-free proof structure if it satisfies

(P1) RESOLUTION. For any &-resolution �� of �, exactly one linking of θ is on ��.

Definition 1. Cut-Free MALL Proof Net on a Sequent �

Additive resolution: Deletion of one argument subtree of each ⊕/&; &-
resolution analogous.
(Axiom) link on �: Edge between complementary leaves (literal occur-
rences) in �.
Linking λ on �: Partitioning of the leaves of an additive resolution � �λ of �

into links.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 13

A set � of linkings on � toggles a & w if both arguments of w are in � �� ≡⋃
λ∈� � �λ.

Graph G�: � � � + ∪� + jump edges l—w—l ′ if {l , l ′} ∈ λ\λ′ and {λ, λ′} ⊆ �

toggles w only.&

-switching of λ: Any subgraph of G{λ} obtained by deleting one argument
edge of each

&

.
Switching cycle: Cycle with ≤ 1 switch edge (= jump or argument edge) of
each

&

/&.

A set θ of linkings on � is a proof net if it satisfies:

RESOLUTION: Exactly one linking of θ is on any given &-resolution of �.
MLL: Every

&

-switching of every λ ∈ θ is a tree (i.e., each λ ∈ θ induces an
MLL proof net).4

TOGGLING: Every set � of ≥2 linkings of θ toggles a & that is in no switching
cycle of G�.5

Example 4.6. Here is a two-linking proof structure θ = {λ1, λ2} on the se-
quent of Example 4.5, with λ1 drawn above the sequent and λ2 drawn below:

.

To verify RESOLUTION, we must check that exactly one of the linkings fits on each
of the two &-resolutions of �, depicted in Example 4.5. Taking the &-resolution
��

1,

,

we see that λ1 is on ��
1 (all six of its leaves are in ��

1), but λ2 is not (its P literal
is not in ��

1). Similarly, taking the second &-resolution ��
2,

,

we see that λ2 is on ��
2 (all six of its leaves are in ��

2), but λ1 is not (its P literal
is not in ��

2). Hence, RESOLUTION is satisfied.

Example 4.7. The pair of linkings

fails RESOLUTION: any &-free sequent is its own unique &-resolution, and there-
fore RESOLUTION will hold if and only if there is a single linking.

4Tree = acyclic + connected. Dropping the connectedness requirement in the MLL condition yields
a cut-free proof net for MALL augmented with the mix rule. See Section 4.9.
5In fact, it suffices to verify TOGGLING merely for saturated sets of linkings �, namely, such that any
strictly larger subset of θ toggles more &s than �. There is exactly one saturated set of linkings in
θ for each partial &-resolution of �, the latter being any result of deleting at most one argument
subtree of each & of �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

14 • D. J. D. Hughes and R. J. van Glabbeek

Example 4.8. The singleton set of linkings

(comprising just one link) satisfies RESOLUTION. Note that the sequent has two
distinct &-resolutions, but there is only one linking.

Remark 4.9. In the restricted case of an MLL sequent �, since there are no
&s, a set of linkings satisfies the resolution condition iff it comprises a single
MLL linking on � (in the sense of Section 3). Thus, our cut-free MALL proof
structures generalise cut-free MLL proof structures.

Example 4.10. We invite the reader to verify the resolution condition for
the sets of linkings in Figures 1, 2 and 5.

Section 4.4 provides intuition for the resolution condition. The resolution
condition, on its own, suffices as a correctness criterion for pure additive proof
nets: see Section 4.10. Section 4.8 shows how to encode a proof structure us-
ing weights (c.f. Girard [1996]), as illustrated by the example in Figure 5. In
Appendix A.3 we detail the relationship between RESOLUTION and Girard’s so-
called technical condition.

4.3.2 MLL Condition. The second requirement for a set of linkings θ to be
a proof net is “pointwise MLL correctness”:

(P2) MLL. Every linking of θ induces an MLL proof net.

In other words, for each linking λ ∈ θ , the MLL proof structure induced by λ

(as defined in Section 4.1.1), is an MLL proof net (as defined in Section 3).

Example 4.11. See Figures 9(a)–9(d).

Example 4.12. The proof structure θ = {λ1, λ2} in Example 4.6 satisfies the
MLL condition. Both λ1 and λ2 induce the same MLL proof net, whose graph is
Figure 9(c).

Naturally, one need not collapse to an MLL proof structure to check the
MLL condition for a linking λ: one can simply leave the unary ⊕/&s of the
additive resolution in place, and verify that every

&

-switching is a tree. For self-
containedness of our definition of cut-free MALL proof net, without reference
to MLL proof nets, we describe this formally.

Construct the graph Gλ of λ from the graph of the additive resolution � � λ

(a subgraph of �) by adding the edges λ. For example, Figure 9(e) shows the
graph Gλ1 of the linking λ1 of Figure 9(a). A

&

-switching of a linking λ on � is
any subgraph of Gλ obtained by deleting one of the two argument edges of each&

. See Figure 9(f) for an example. Clearly, the induced MLL proof structure
of a linking λ is an MLL proof net if and only if every

&

-switching of λ (in Gλ)
is a tree. Thus, we can reformulate the MLL condition on a set of linkings θ ,

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 15

Fig. 9. (a) shows a linking λ1 on a MALL sequent �, which is shown on its additive resolution
in (b). (c) is the MLL proof structure induced by λ1, which is an MLL proof net since each of its&

-switchings is a tree. (d) shows one of its two

&

-switchings. (e) is the graph Gλ1 of λ1 on �, and (f)
is the

&

-switching of λ1 in Gλ1 corresponding to the

&

-switching (d) of the induced MLL proof net
(c).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

16 • D. J. D. Hughes and R. J. van Glabbeek

without reference to MLL proof nets, as follows:

(P2) MLL. Every

&

-switching of every linking of θ is a tree (acyclic and connected).

Relaxing the connectedness requirement yields a notion of cut-free proof net
for MALL augmented with the mix rule. See Section 4.9.

4.3.3 Toggling Condition. We require some auxiliary concepts to state our
third and last proof net condition. A set of linkings � toggles a &-vertex w of �

if both arguments of w are present in
⋃

λ∈� � �λ, that is, there exist λl , λr ∈ �

such that the left argument of w is present in the additive resolution � �λl and
the right argument of w is present in the additive resolution � �λr .

Example 4.13. Recall our running example,

.

The pair of linkings θ = {λ1, λ2} toggles the & of the underlying sequent �

because its left argument (the left P) is present in the additive resolution � �λ1,
and its right argument (the right P) is present in the additive resolution � �λ2.
Neither {λ1} nor {λ2} toggles the &: a single linking can never toggle a & because
all additives are unary in an additive resolution.

Let � be a set of linkings. A link a depends on w in � if, inside �, a can be
made to vanish by toggling w alone: there exist λ, λ′ ∈ � such that a∈λ, a �∈λ′,
and w is the only & toggled by {λ, λ′}.

Example 4.14. In

let w be the & of the sequent. The link between the leftmost R and the leftmost
R⊥ depends on w in � = {λ1, λ2}: it is present in λ1 ∈ � but not in λ2 ∈ �, and
w is the only & toggled by {λ1, λ2}. The link between the rightmost R and R⊥

does not depend on w in �, since it is present in both λ1 and λ2. It is the only
one of the five links in � (more precisely, in

⋃
�) that does not depend on w in

�.

We now extend the definition of the graph of a linking to the graph of a set � of
linkings on �. The partial additive resolution of � is the graph � �� = ⋃

λ∈� � �λ,
the union (superposition) of the additive resolutions of the linkings of �. Some
additives of � �� may be unary, some binary. The graph G� of � is � �� together
with each edge {l , l ′} of (a linking of) �, and jump edges from l and l ′ to any &-
vertex on which {l , l ′} depends in �. For example, Figure 10(b) shows the graph
of the pair of linkings in Figure 10(a) and Figure 10(f) shows the graph of the
pair of linkings in Figure 10(c). Note that � ⊆ �′ implies G� ⊆ G�′ , and that for
any linking λ, G{λ} = Gλ (the graph of a single linking, defined in Section 4.3.2),
because G{λ} has no jumps (since a single linking toggles no &s).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 17

Fig. 10. (a) is a pair of linkings � = {λ1, λ2} whose graph G� is depicted in (b). To distinguish
jumps, we draw them as curved edges (unless the jump edge was already present as an argument
edge, in which case it remains straight). There is no jump to a leaf of the right-most link, since it
does not depend on the & in �. (This was explained in detail in Example 4.14.) (c) and (d) show
switching cycles of G�. (e) is a pair of linkings θ = {λ1, λ′

2}, whose graph Gθ is (f). This pair of linkings
satisfies the toggling condition: the only subset of θ of two or more linkings is θ itself, so to verify
the condition, we need only confirm that Gθ contains no switching cycle; this is apparent from the
depiction of Gθ in (f).

A switch edge of a &- or

&

-vertex x of G� is an edge between x and one of
its arguments, or a jump to x (if x is a &). For example, Figure 9(e) has three
switch edges, the left argument edge of the &, and both argument edges of the&

. Figure 10(b) has 9 switch edges, the two argument edges of the

&

and the 7
jumps to the & (two of which are argument edges).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

18 • D. J. D. Hughes and R. J. van Glabbeek

A cycle of G� is a subgraph of G� with vertex set {x1, . . . , xn} for n ≥ 3,
all xi distinct, and an edge xi — xi+1 for all i (mod n). A cycle switches or is
switching if it contains at most one switch edge of each & and

&

. For example,
the graph G� of Figure 10(b) contains the switching cycles C and C′ shown below
it (Figures 10(c) and 10(d)). Our third and final proof net condition on a set of
linkings θ is:

(P3) TOGGLING. Every set � of two or more linkings of θ toggles a & that is not in
any switching cycle of G�.

It is clear from the definition of the graph G� that it suffices to verify TOGGLING

for saturated sets of linkings �, namely, such that any strictly larger subset
of θ toggles more &s than �. Note that there is exactly one saturated set of
linkings in θ for each partial &-resolution of �, the latter being any result of
deleting at most one argument subtree of each & of �. We retain the more
general quantification over � in the formulation of the toggling condition so
that the definition of proof net is more succinct.

Example 4.15. The pair of linkings � in Figure 10(a) fails the toggling
condition, because of the switching cycle C of Figure 10(c), which traverses the
&.

More generally, whenever every & is in a switching cycle (in the case of
Example 4.15, just one &), the toggling condition fails. Another example of this
will be given in Appendix A.2.

Example 4.16. The pair of linkings θ in Figure 10(e) satisfies the toggling
condition. Any switching cycle in the graph Gθ (Figure 10(f)) is only permitted
to use one switch edge of the &, and therefore to traverse the & it must go via
the ⊗ immediately below it. Since there is no cycle containing the ⊗, there is
no switching cycle through the &.

Definition 1 defines a cut-free MALL proof net as a set of linkings on a MALL
sequent satisfying all three conditions introduced above: (P1) RESOLUTION, (P2)
MLL, and (P3) TOGGLING. (In other words, a cut-free MALL proof net is a cut-
free MALL proof structure satisfying the MLL and toggling conditions.) In the
example below, we go through the full process of verifying all three conditions.

Example 4.17. Consider the pair of linkings on the sequent � ≡
P⊥ & P⊥, P⊕P obtained as follows:

.

Let λ1 and λ2 be the upper and lower linking of the concluding sequent,
respectively (each having just one link). We shall verify that θ = {λ1, λ2}
is a cut-free proof net. � has two &-resolutions, ��

1 ≡ P⊥ & P⊥ , P⊕P and
��

2 ≡ P⊥ & P⊥, P⊕P . The resolution condition holds, since θ contains exactly

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 19

one linking on ��
i , namely λi. Here are the graphs Gλ1 , Gλ2 , and Gθ :

Each λi has just one

&

-switching, namely Gλi ; since each Gλi is a tree, the MLL
condition holds. Finally, the toggling condition holds since θ toggles the &, which
is not in any switching cycle of Gθ . (An outermost &, i.e., one that is not an
argument of any other connective, can never be in a switching cycle.)6

Section 4.6 provides proof-theoretic intuition for the toggling condition.

THEOREM 4.18 (CUT-FREE SEQUENTIALIZATION). A set of linkings is the trans-
lation of a cut-free proof iff it is a cut-free proof net.

By a simple induction, the translation of a cut-free proof is a cut-free proof
net. The proof of the converse reduces to a simple induction on the number of&

s and &s (Section 4.13) once we prove (Section 4.12):

LEMMA 4.19 (SEPARATION LEMMA). For any cut-free proof net θ , if Gθ has a

&

or &, then it has a

&

or & that separates.

Here a

&

- or &-vertex x separates if it is not an argument (i.e., is an outermost
connective), or it is the argument of y and deleting the edge between x and
y disconnects7 Gθ . We shall prove the Separation Lemma via an ordering on
&s, and

&

s which we call domination,8 a concept reminiscent of the ordering
induced by the notion of an empire of Girard [1996], but different in an essential
way.

The remainder of this section is structured as follows: Sections 4.4, 4.5 and
4.6 provide intuition for the resolution, MLL and toggling conditions, respec-
tively. Section 4.7 presents some alternative formulations of the definition
of proof net. Section 4.8 describes how to encode a proof structure/net using

6More generally, there are nm proof nets on the sequent &m P⊥, ⊕n P (above m = n = 2), in bijection
with natural transformations

∐m X → ∐n X on sets, or equivalently,
∏n X → ∏m X .

7In the case with mix, read “disconnects” as “increases the number of connected components of”.
8Unrelated to domination in flowgraphs.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

20 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 11. (a) A proof � of a sequent � illustrating a collapse from &-assignments of � to &-resolutions
of � to &-resolutions of �. The sequent � has 23 = 8 &-assignments, more than its 3 × 2 = 6 &-
resolutions, more than the 4 &-resolutions of �. (b) The set of linkings associated with �, one from
each of its &-resolutions. It is convenient to show all four linkings on the same copy of the sequent;
no ambiguity arises because every linking has only one link. (c) For additional clarity, we show the
same set of four singleton linkings displayed on the parse trees of the two formulas (i.e., we show
the union of the graphs Gλ for each of the four linkings λ).

weights. Section 4.9 defines a mix net as the analogue of a proof net in the case
of MALL augmented with the mix rule. Section 4.10 notes that the resolution
condition, on its own, suffices as a correctness criterion for additive proof nets.
Section 4.11 observes that our cut-free proof nets exactly capture cut-free MALL
proofs modulo commutation of rules. We conclude by proving the cut-free se-
quentialisation theorem in Sections 4.12 and 4.13 (the Separation Lemma and
the main induction, respectively).

4.4 Intuition for the Resolution Condition

Recall from Section 4.2 that the set θ� of linkings obtained from a cut-free
MALL proof � comprises one linking λR ∈ θ� per &-resolution R of �. This
correspondence between proof &-resolutions and linkings is what is captured
in the resolution condition. (One can observe this correspondence in Figures 8
and 11.)

Define a &-assignment of a sequent � to be a choice of left or right for each
of its &s, that is, a function from the set of &-vertices of � to {l , r} (l = left, r =
right). Every &-assignment ϕ defines a &-resolution �ϕ in the obvious way, by
restricting each & to the argument dictated by its assignment (i.e., delete the
right (respectively, left) argument subtree of w iff ϕ(w) = l (respectively, r)). In

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 21

turn, every &-resolution �� of a sequent � induces a &-resolution ���� of a proof
� of �: Work upwards from the concluding rule of � and delete branches of &-
rules according to which branch of the corresponding &-occurrence is deleted
in ��. Note that more than one &-assignment can give rise to the same &-
resolution of the sequent �, and that more than one &-resolution of � can give
rise to the same &-resolution of a proof � of �: see Figure 11.

4.5 Intuition for the MLL Condition

Every &-resolution R of a proof � has all additive rules unary. (The ⊕ rules
are unary at the outset, and the & rules become unary upon taking the &-
resolution.) Collapsing the unary additive rules of R (and the now-unary con-
nectives in the corresponding formula parse trees) yields an MLL proof. Since
every linking of θ� comes from a &-resolution of �, that is, from a disguised
MLL proof, we demand that every linking of a MALL proof net be MLL correct.

4.6 Intuition for the Toggling Condition

In the preceding sections, we saw how a cut-free MALL proof � determines a set
of cut-free MLL proofs, one per &-resolution of �. However, � is more than just a
set of noninteracting MLL proofs, as each of them is implicitly embedded inside
the tree of �. Correspondingly, a set of linkings merely satisfying the resolution
and MLL conditions need not be sequentialisable, as one must capture the
constraint associated with the superposition of branches of the &-resolutions
of � inside the tree structure of �. We have already seen an example: the pair
of linkings � = {λ1, λ2}

of Figure 10(a) satisfies the resolution condition (verified in Example 4.6) and
the MLL condition (Example 4.12), but � is not sequentializable. It fails to
sequentialize because we cannot write down a rule to introduce the central
tensor: its left argument P&P must go in the left hypothesis of the rule, and
its right argument R ⊕ R in the right hypothesis; but then the & will not be
available in the right branch to superimpose a left-⊕ and right-⊕ rule as would
be required to obtain λ1 with the left R of R ⊕ R and λ2 with the right R.

There is a conflict between the central ⊗ and the &: the tensor wishes to
separate its & argument from its ⊕ argument, into distinct noninteracting
proofs; meanwhile, the & argument interacts with the ⊕ argument since in the
λi the ⊕ goes left iff the & goes left, a direct dependency (interaction) across
the tensor. Via jumps, the toggling condition captures this kind of dependency,
and rules out � as a proof net: the graph G� (Figure 10(b)) of � contains the
switching cycle

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

22 • D. J. D. Hughes and R. J. van Glabbeek

(copied from Figure 10(c)) traversing the only &, and therefore breaking the
toggling condition. The jump captures the communication between the & and
the ⊕.

In contrast, the pair of linkings θ = {λ1, λ′
2}

of Figure 10(e), formed from � by shifting the end of just one link in λ2 to
create λ′

2, is sequentializable: after writing down the rule introducing the
central tensor, choose the left-⊕ rule for R ⊕ R, since both linkings λ1 and
λ′

2 choose the left argument of R ⊕ R. In contrast to the case � = {λ1, λ2}
above, there is no communication across the tensor between the & and the
⊕. Thus, the graph Gθ of θ (Figure 10(f)) does not possess a jump across the
tensor; hence, θ satisfies the toggling condition, and is a proof net (verified in
Example 4.16).

4.6.1 The Gustave Example. In the previous section, we saw sequential-
ization hampered by a dependency across a tensor, and how this was captured
by the toggling condition. In this section, we examine a case of dependency
across the other unswitched connective, the plus, yielding additional intuition
for the toggling condition.

The following remarkable nonsequential function γ is due to Gustave, stud-
ied by G. Berry in the context of sequential algorithms:

γ (1, 0, z) = u
γ (0, y , 1) = v
γ (x, 1, 0) = w

for all x, y , and z, possibly divergent/halting. The actual outputs u, v, w
are of no concern, so long as they are nondivergent. Both γ (1, 1, 1) and
γ (0, 0, 0) are divergent. This partial function cannot be implemented sequen-
tially. For example, suppose our implementation inspects the argument x of
γ (x, y , z) first. If x diverges, while y = 1 and z = 0, the equations for
γ dictate an output w; however, our implementation would diverge, hav-
ing become stuck on the divergent x. By symmetry, we cannot choose to
inspect y or z first either, hence there is no sequential implementation of
γ .

Girard [1999, Sect. 5.5.4] and Abramsky and Melliès [1999] have studied a
corresponding example in the context of models of linear logic. Analogous to
Girard/Abramsky/Melliès, in our setting one can capture the three equations
specifying γ as part of a set of five linkings on the sequent

(P&Q) ⊕ (P⊥ ⊗ Q⊥), (Q&(P⊥ ⊗ Q⊥)) ⊕ P, ((P⊥ ⊗ Q⊥)&P) ⊕ Q ,

satisfying the resolution and toggling conditions. To emphazise the rotational
symmetry, write R for P⊥ ⊗ Q⊥, so that the sequent becomes the more

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 23

palatable

� = (P & Q) ⊕ R , (Q & R) ⊕ P , (R & P) ⊕ Q

and write the “triplet” linking

to abbreviate a pair of links

The Gustave proof structure9 G consists of the following five linkings on �, three
shown above, and two below.

From left to right, the three &s correspond to the arguments x, y , z of the
Gustave function γ . Values 1/0 for x, y , z correspond to the &s being left/right,
respectively. Thus, the eight possible (nondivergent) inputs to the Gustave
function correspond to the eight &-resolutions of the sequent. The top three
linkings correspond to the three Gustave equations, in order, from top to
bottom. For example, the top linking takes the first & left, the second &
right, and is ambivalent to the third &; this corresponds to the equation
for γ (1, 0, z). The two underhanging linkings correspond to the divergent
γ (1, 1, 1) and γ (0, 0, 0), and are added so that the resolution condition holds.
(One can readily verify the resolution condition by working through each of
the eight &-resolutions and checking that exactly one linking fits in each
case.) The MLL property holds since every linking induces the same MLL
proof net, the pair of links displayed immediately prior to the five Gustave
linkings.

The Gustave proof structure is not the translation of any cut-free proof: any
proof of � must end in a final ⊕-rule (a simple syntactic observation), hence any
translation of a proof of � has at least one of the six ⊕-arguments uninhabited
(corresponding to softness [Joyal 1995]); G touches all six arguments. Thus, by
the sequentialization theorem, we should be able to witness the failure of the

9The corresponding structure in Girard’s setting is not a proof structure. See the end of Appendix A.3
for a direct verification, or footnote 30, which shows that every Girard proof structure must be soft.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

24 • D. J. D. Hughes and R. J. van Glabbeek

toggling condition. This is indeed the case, since every & is contained in the
following switching cycle of the graph of G:

(Note that we did not require jumps to forge this switching cycle.)

4.6.2 Strong—but not too Strong. We have seen from the previous two
sections that the toggling condition captures unwanted dependencies across
⊗s and ⊕s by finding switching cycles through &s. In this section, we illustrate
a subtle feature of the toggling condition: it is possible to have switching cycles
through &s without obstructing sequentializability. One has to be extremely
discerning of those switching cycles through &s which are essential, in the sense
that they represent intrinsic parallelism, versus those which are harmless, and
do not impair sequentialization.

We shall define a proof net θ on a sequent � of three &s, with 23 = 8 linkings
(one per &-assignment of three independent &s). The graph Gθ of θ will have
the shape

with the portion

constituting a switching cycle of Gθ between the &-occurrences &P and &Q .
The underlying sequent will be

(1 ⊕ 1) ⊗ (P&P), (1 ⊕ 1) ⊗ (Q&Q), (P⊥ ⊗ Q⊥) ⊗ R⊥, R &R

where 1 denotes the tensor unit. (As with MLL proof nets, our MALL proof
nets extend trivially to the tensor unit 1: view each occurrence of 1 as (P

&

P⊥)
for a fresh atom P each time.10) Links on the atoms P, Q , R are forced, so to

10Similarly, one can define the plus unit 0 as P⊥ ⊗ P for a fresh atom P each time. Note the
interesting complementarity between 0 and 1, units which are not dual in the logic.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 25

determine the eight linkings of θ it suffices to specify how the ⊕s choose their
1s:

(a) in (1 ⊕ 1) ⊗ (P&P) choose the right 1 iff R&R is left and Q&Q is right;
(b) in (1 ⊕ 1) ⊗ (Q&Q) choose the right 1 iff R&R is right and P&P is right.

The set of linkings θ is sequentializable. (Figure 12 shows a sequentialization.)
The graph Gθ of θ contains the following switching cycle C:

Due to the way we defined the linkings in clauses (a) and (b) above, given a set
� of two or more linkings of θ :

(1) jump1 exists in G� only if &R possesses its left argument in G�, and
(2) jump2 exists in G� only if &R possesses its right argument in G�.

Therefore, C can be in G� only if � toggles &R . Since &R is outermost, it
cannot be in a switching cycle; hence, C cannot witness a failure of the toggling
condition. We deduce that θ satisfies the toggling condition, and is therefore
a proof net. Thus, C is harmless, in the sense that it does not represent any
inherent lack of sequentialisability in θ .

Here we witness the subtlety of the toggling condition at work: it must rule
out many switching cycles—but not too many.

Proof-Theoretic Analogue. Additional intuition for the toggling condition
follows from analyzing the harmless switching cycle above at the proof-theoretic
level. The &-rule skeleton of the sequentialization of θ depicted in Figure 12 is:

Here each &-rule is marked with the &-vertex it introduces into �, for example,
each &P introduces &P (the &-vertex of P&P) into (a subsequent of) �.

In the left branch of the proof, &P is forced to come above &Q , and in the
right branch, &Q is forced to come above &P , forced in the sense that every
sequentialization of θ must have exactly the same &-rule skeleton. The &-rules
simply do not commute past each other. Similarly, &R is forced to come below
&P and &Q . Writing &P

� &Q for “ &P is forced to come above &Q ”,

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

26 • D. J. D. Hughes and R. J. van Glabbeek

F
ig

.1
2.

A
se

qu
en

ti
al

iz
at

io
n

of
θ
.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 27

we derive the following precedence graph:

The back-and-forth cycle between &P and &Q in this graph is the direct ana-
logue of the switching cycle C of Gθ analyzed earlier. That C is harmless corre-
sponds to the fact that the cycle here is a relic of the superposition of the two
branches of the proof: &P

� &Q holds only in the left branch of the proof, and
&Q

� &P holds only in the right branch.

4.7 Alternative but Equivalent Definitions of Proof Net

This section considers alternative definitions of a proof net obtained by varying
(P1) RESOLUTION, (P2) MLL and (P3) TOGGLING.

4.7.1 Acyclicity, Balance, and Connectedness. Say that a linking λ on a
MALL sequent � is balanced if |ax| = |⊗| + 1, where |ax| denotes the number
of links in λ and |⊗ | the number of tensors in the additive resolution � � λ.
Consider the following properties:

(A) every

&

-switching of λ is acyclic (a) some

&

-switching of λ is acyclic
(B) λ is balanced
(C) every

&
-switching of λ is connected (c) some

&
-switching of λ is connected

By definition, the MLL condition (P2) holds for a linking λ precisely when λ

satisfies (A)∧(C).

PROPOSITION 4.20. The following conditions are all equivalent to the MLL
condition (P2) on a linking λ: (A)∧(C), (A)∧(c), (a)∧(C), (A)∧(B) and (B)∧(C).

The proof is essentially due to the simple combinatorial relationship between
the number of vertices and the number of edges of a tree. See Appendix C.

4.7.2 Switching Acyclicity and Switching Connectedness. It is immedi-
ately clear that (A) above is equivalent to Gλ being switching acyclic, that is,
containing no switching cycle. In the presence of (A), condition (C) is equivalent
to Gλ being switching connected, that is, any two vertices of Gλ are connected by
a switching path, a path that does not traverse two switch edges of any given&

. Switching connectedness is clearly implied by (C); the equivalence with (C)
follows from the observation that one can carry out sequentialization (specif-
ically, the MLL restriction of the proof of the sequentialization theorem) with
this condition in place of (C).11 Thus, we have proved:

11The three subcases of the primary induction step in 4.13 use the fact that [θ satisfies (P2)] implies
[θi (or θ on �′, in case (a)) satisfies (P2)]. This implication also holds for the variant of (P2) with
switching connectedness instead of (C). There are three other places in the primary and secondary
induction of the sequentialization proof where (C) is used, listed in Footnote 21; in each case, the
property derived is also a consequence of switching connectedness.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

28 • D. J. D. Hughes and R. J. van Glabbeek

PROPOSITION 4.21. The MLL condition (P2) on a set of linkings θ is equivalent
to:

(S) For every linking λ ∈ θ , the graph Gλ is switching acyclic and switching
connected.

4.7.3 Illegal Unions of Switching Cycles. We provide an alternative for-
mulation of the toggling condition (P3), assuming the MLL condition (P2). Call
a union S of switching cycles of Gθ illegal if it is nonempty and for some � ⊆ θ

with S ⊆ G�, every & toggled by � is in S.

(P3l) Gθ contains no illegal union of switching cycles.

Note that this condition implies condition (A) for each linking (every

&

-
switching is acyclic). The proof of equivalence with (P3) follows from simple
manipulation using Proposition 4.20 above. Details are in Appendix D.

CONJECTURE 4.22 (SINGLE SWITCHING CYCLE CONJECTURE). Property (P3l) is
equivalent to:

(P3l−) Gθ contains no illegal switching cycle.

In other words, the original toggling condition (P3) is equivalent to:

(P3−) For any set � of two or more linkings of θ and any switching cycle C of
G�, � toggles a & that is not in C.

4.7.4 Additional Jumps. We shall use the following variation of the MLL
condition (P2) in comparing Girard’s proof nets to ours in Appendix A.1. Given
a set of linkings θ on a sequent � and a subset � ⊆ θ , let Gθ

� be defined as G� but
with jump edges between every &-vertex w ∈ G� and the leaves of every link
a ∈ G� depending on w in θ (rather than in �, as in the definition of G�). Note
that G� = G�

� . Define the variant (P2∗) of (P2) by using Gθ
{λ} in place of Gλ in the

definition of a

&

-switching of λ, and in taking the switching delete in addition
all but one switch edge of each & (i.e., we move from

&

-switchings to “

&

/&-
switchings”). Clearly (P2∗) implies (P2), since it involves more switchings. In
fact, (P2∗) is strictly stronger than (P2): for θ = {λ1, λ2} of Example 4.6, the graph
Gθ

λ1
has a switching cycle (cycle C in Figure 10(c)), whereas Gλ1 (Figure 9(e))

does not. However, (P2∗) is implied by the MLL condition (P2) and the toggling
condition (P3) together:

PROPOSITION 4.23. (P2) ∧ (P3) =⇒ (P2∗).

PROOF. Let θ be a set of linkings satisfying (P2) and (P3), and let λ ∈ θ .
By (P2), λ is balanced. It suffices to show that Gθ

λ has no switching cycle, for
this implies that every

&

/&-switching of λ within Gθ
λ is acyclic, and hence also

connected, by (the proof of) Proposition 4.20.
Towards a contradiction, assume C is a switching cycle of Gθ

λ . If C does not
contain a jump edge, it is a switching cycle of Gλ, contradicting (P2). Otherwise,
let � be the largest set of linkings in θ containing λ and toggling only &s
occurring in C. For every jump edge in C from a leaf to a &-vertex w, there
is a linking λ′ ∈ θ such that w is the only & toggled by {λ, λ′}. Hence, λ′ ∈ �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 29

Thus, all jumps in C are also present in G�, so C is a switching cycle of G�

containing all &s toggled by �. Since |�| ≥ 2, this contradicts (P3).

We could also define a variant (P3∗) of (P3) with more jumps, using Gθ
� instead

of G�. By an argument similar to the one above, this variant is equivalent to
(P3).

4.7.5 Other Variations. In Appendix A.3, we develop a correspondence be-
tween the resolution condition (P1) and Girard’s so-called technical condition
[Girard 1996]. We also present alternative formulations of (P1) and the techni-
cal condition, and note that, without monomials, the Abramsky–Melliès refor-
mulation [1999] of the technical condition is no longer valid.

4.8 Weights

This section describes how to encode any proof structure (hence, any proof net)
as a single set of links labeled with predicates, called weights (c.f. Girard [1996]).
Figure 5 conveys the idea informally with an example.

Recall from Section 4.4 that a &-assignment of a sequent � is a function
from its &-vertices to {l , r} (l = left, r = right), and that every &-assignment ϕ

defines a &-resolution �ϕ by restricting each & to the argument dictated by ϕ.
Multiple &-assignments can determine the same &-resolution. For example, if
� = (P&1 Q)&2 R, then the assignments &1 �→ l , &2 �→ r and &1 �→ r, &2 �→
r both determine the &-resolution (P&1 Q) &2 R retaining only R. See also
Figure 11 (page 20) for more on the relationship between &-assignments and
&-resolutions.

Let θ be a proof structure on �. Given a &-assignment ϕ of �, write λϕ for
the unique linking of θ which is on the &-resolution �ϕ of ϕ (existence and
uniqueness due to the resolution condition (P1)). Every link a of θ determines
a predicate on &-assignments, its weight µ(a), by ϕ ∈ µ(a) iff a ∈ λϕ . One
can then represent θ by its links labeled with weights, as in Figure 5, for
example.

Weights can be expressed succinctly as follows. First, mark each &-vertex
with a distinct subscript, x, y , Write x as shorthand for { ϕ : ϕ(&x) = l }
(all &-assignments that take &x to the left) and x as shorthand for { ϕ :
ϕ(&x) = r } (all &-assignments that take &x to the right); ∨ and ∧ are union
and intersection, respectively. Again, see Figure 5 for an example.

The set of linkings of a proof structure is recoverable from its weight presen-
tation as follows. Every &-assignment ϕ determines a linking λϕ by deleting
each link a whose predicate does not hold, that is, λϕ = {a : ϕ ∈ µ(a)}. Taking
each &-assignment in turn produces the full set of linkings.

4.9 Mix Nets

Let MALLmix denote the extension [Girard 1987] of MALL with the additional
rule

� �

�, �
mix

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

30 • D. J. D. Hughes and R. J. van Glabbeek

and define the following variant of the MLL condition on a set of linkings θ by
relaxing connectedness:

(P2mix) MLLmix. Every

&

-switching of every linking of θ is acyclic.

A cut-free mix net is a cut-free MALL proof net but for relaxing connectedness
of

&

-switchings, that is, a set of linkings satisfying (P1) RESOLUTION, (P2mix)
MLLmix, and (P3) TOGGLING.

THEOREM 4.24 (CUT-FREE MIX SEQUENTIALIZATION). A set of linkings is the
translation of a cut-free MALLmix proof iff it is a cut-free mix net.

We prove this theorem concurrently with the main sequentialization theo-
rem. Only very minor modifications are necessary.

Proof nets for MLL with mix and weakening were discovered prior even to
linear logic [Ketonen and Weyhrauch 1984]. (Bellin and Ketonen [1992] correct
a bug in the proof of the sequentialization theorem.)

4.10 The Resolution Condition Suffices for Pure Additive Proof Nets

The RESOLUTION condition, on its own, suffices as a correctness criterion for pure
additive proof nets. Let additive linear logic, ALL, be MALL without ⊗ and&

. Every ALL sequent has exactly two formulas. When a cut-free ALL proof
translates into a set of linkings, every linking is merely a single link between
the two formulas of the sequent. Thus, every cut-free ALL proof � of the sequent
� = A, B translates into a set L of links between A and B, a binary relation
between the leaves of A and the leaves of B. In this simple pure additive case,
the RESOLUTION condition for L on � reduces to:

RESOLUTION′. For any &-resolution �� of �, a unique link of L is on ��.

This yields a proof net for cut-free ALL: by a simple induction, the condition
characterises the image of the translation from cut-free ALL proofs.12 The
category of cut-free ALL proof nets is the free (binary) product-sum category
generated by the set of literals [Hughes 2002, 2005]. Relaxing uniqueness in
RESOLUTION′ characterises free distributive lattice categories13 [Hughes 2005],
and (also relaxing the inter-formula restriction on links) captures the image of
proofs in classical propositional sequent calculus with mix (translated in the
obvious way) [Lamarche and Straßburger 2005]. For abstract classical proofs
with a richer graph-theoretic structure on axiom links, rather than simply a
set (or multiset) of axiom links, see Hughes [2004].

12Using softness: given an ALL proof net on A ⊕ B, C ⊕ D one can apply a ⊕-rule; otherwise there
are edges A–C and B–D (or A–D and B–C), contradicting uniqueness in RESOLUTION′. Composition
(see Section 5.2) is also simple in the special case of ALL proof nets: it reduces to the standard path
composition of binary relations.
13Dos̆en and Petrić [2004] define a distributive lattice category as a product-sum category with a
distribution, equipped with certain coherence laws.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 31

Fig. 13. Two examples of rule commutation. The commutations can be read in either direction.

4.11 Representation of Cut-Free Proofs Modulo Rule Commutation

The kernel of our function from cut-free MALL proofs to sets of linkings coin-
cides precisely with equivalence modulo rule commutation. A rule commuta-
tion is a local conversion on a proof that retains the subproofs of its hypotheses,
with possible duplication/identification. Figure 13 shows two examples of rule
commutation.

In a sibling paper, we prove that two cut-free MALL proofs translate to the
same proof net if and only if they can be converted into each other by a series of
rule commutations. The same paper explores other aspects of rule commutation
in MALL (with/without the mix rule, with/without the cut rule).

4.12 Proof of the Separation Lemma

This section proves the Separation Lemma (Lemma 4.19), the key to the
Sequentialization Theorem.

Throughout this section, θ is a cut-free proof net on a sequent �. For vertices
x and y of the graph Gθ , write x— y if there is an edge between x and y , and
write x → y iff x is an argument of y , {x, y} is a link,14 or there is a jump from
x to y (i.e., x is a leaf of a link depending on a &-vertex y of θ).

Henceforth “

&

/&” abbreviates “

&

or &”. A path from x0 to xn in Gθ is a se-
quence of distinct vertices x0x1 · · · xn (n = 0 permitted) such that xi — xi+1 for
0 ≤ i < n. (Note that a path cannot intersect itself.) A path switches or is switch-
ing if it does not traverse two switch edges of any

&

/& (i.e., xi−1 → xi ← xi+1
only if xi is not a

&

/&.) A strong path x0 · · · xn is a switching path that does not
start from a

&

/& along one of its switch edges (i.e., x0 ← x1 only if x0 is not a&

/&).
Suppose paths π = x0 · · · xn and π ′ = y0 · · · ym are disjoint but for xn = y0,

so that the composite π ; π ′ = x0 · · · xn y1 · · · ym is a well-defined path (non-self-
intersecting). If π and π ′ switch:

—π ; π ′ need not switch (namely, if xn = y0 is a &/

&

and xn−1 → xn = y0 ← y1),
even if π is strong.

14Note that if {x, y} is a link then x ↔ y , that is, x → y and x ← y .

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

32 • D. J. D. Hughes and R. J. van Glabbeek

—if π ′ is strong, then π ; π ′ switches.
—if π and π ′ are strong, then π ; π ′ is strong.

Let X be a set of vertices in Gθ . A path is in X if each of its vertices is in X .
Write x ⇒X y (and/or y ⇐X x) if there is a strong path in X from x to y .

Example 4.25. If C is a switching cycle, then x ⇒C y for all x, y ∈ C (case
x = y included), by going round C one way or the other to avoid departing along
a switch edge of x, if x is a

&

/&.

Note that the relation ⇒X is reflexive, but in general not transitive.15 We
shall sometimes overload the notation x ⇒X y , using it to denote a specific
choice of strong path in X from x to y . For example, if x ⇒X y and y ⇒Y z, with
X and Y disjoint but for y , then we may speak of the strong path x ⇒X y ⇒Y z
in X ∪ Y from x to z.

A set X of vertices in Gθ is an x-zone if, for all y ∈ X , there exists z ∈ X with
y ⇒X z → x.

Example 4.26. Let x be a vertex in a switching cycle C. Then C is an x-zone:
let z be a vertex adjacent to x on C with z → x (uniquely determined if x is a&

/&, since C switches), then y ⇒C z for any y ∈ C (see Example 4.25).

Given a

&

/&-vertex x and a vertex y , define x dominates y , denoted x � y ,
if y is in an x-zone. If x is not dominated, it is free.16

LEMMA 4.27 (PROPERTIES OF DOMINATION).

—SWITCH. If x ← y is a switch edge, then x � y.
—TRANSITIVITY. Domination is transitive.
—SELF. A

&

/&-vertex dominates itself iff it is in a switching cycle.
—JUMP-CYCLE. If w ← l is a jump and l is in a switching cycle C, then w domi-

nates every vertex of C.
—EXTEND. If x � y0 and there is a path y0 · · · yn that never enters a

&

/& from
above (i.e., yi−1 → yi only if yi is not a

&

/&), then x � yn.
—FORK. Let x be a

&

/& and let y0 · · · yn be a switching path with y0 → x ← yn.
Then x � yi for each i.

—MEET. If x � y � z for distinct free

&

/&-vertices x and z, then there exists a
switching path x y0 · · · ynz with x ← y0 and yn → z.

PROOF

SWITCH. { y} is an x-zone.
TRANSITIVITY. We show that if X is an x-zone, y ∈ X and Y is a y-zone, then

X ∪ Y is an x-zone. Take z ∈ Y \ X . We have z ⇒Y y ′ → y ⇒X x ′ → x for
some x ′ ∈ X and y ′ ∈ Y . If the strong path z ⇒Y y ′ does not intersect X , then
z ⇒Y y ′ → y ⇒X x ′ is a strong path, so we are done. Otherwise, let y ′′ be the

15If x → p ← y and p → t, p a

&

and t a ⊗, and X = {x, p, y , t}, then x ⇒X t ⇒X y yet x �⇒X y .
16The union of all x-zones is itself an x-zone, which we call the realm of x, a concept reminiscent of
the notion of empire of Girard [1996], but different in an essential way. The realm of x is the set of
all vertices dominated by x.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 33

Fig. 14. Dependency between domination properties and lemmas (and Corollary 4.35) en route to
the Separation Lemma, denoted “Sep.” above. A rough mnemonic guide is shown to the right of the
diagram.

first vertex along z ⇒Y y ′ that is in X . Since y ′′ ∈ X , we have y ′′ ⇒X x ′′ → x
for some x ′′, and the initial subpath of z ⇒Y y ′ from z to y ′′ is a strong path
z ⇒Y y ′′; the composition of these paths yields z ⇒X ∪Y x ′′ → x, since the only
common vertex is y ′′.

SELF. If x � x, then x ⇒X z → x for some x-zone X , hence x is in a
switching cycle. Conversely, every switching cycle containing x is an x-zone (see
Example 4.26).

JUMP-CYCLE. C is a w-zone. (See Example 4.25.)
EXTEND. Let X be an x-zone containing y0, and let yk be the last vertex of

y0 · · · yn in X . Then, yk ⇒X z → x for some z. Now Y = X ∪ { yk+1, . . . , yn} is
an x-zone, since for each i > k the composite yi yi−1 · · · yk+1 yk ⇒X z is a strong
path in Y .

FORK. { y0, . . . , yn} is an x-zone.
MEET. Let X be an x-zone containing y , so there is a strong path πx = x0 · · · xn

in X with x0 = y and xn → x. Let xk be the last vertex of πx with z � xk . Since
z � xk there is a strong path πz in a z-zone from xk to some z ′ with z ′ → z.
Now xxnxn−1 · · · xk+1πz z is the desired switching path, well-defined because:
(a) every vertex is distinct (none of the included xi is in πz , since z �� xi and
z dominates all of πz (because πz is in a z-zone); none of the xi equals x or z,
since x � xi (because πx is in an x-zone) and x and z are free; neither x nor
z is in πz , since every vertex of πz is dominated by z, and x and z are free),
and (b) the path xnxn−1 · · · xk+1πz switches (since xnxn−1 · · · xk switches and πz
is strong).

Figure 14 shows the dependency between the above domination properties
and the forthcoming lemmas (and one corollary) en route to the Separation
Lemma. We do not use any properties of domination other than the seven shown
in the figure (those of Lemma 4.27).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

34 • D. J. D. Hughes and R. J. van Glabbeek

A subset � ⊆ θ is saturated if any strictly larger subset of θ toggles more &s
than �. Clearly, θ itself is saturated. For � a set of linkings and w a & of �, let
�w denote the set of all linkings in � whose additive resolution does not contain
the right argument of w. Write λ

w= λ′ if linkings λ, λ′ ∈ θ are either equal or w
is the only & toggled by {λ, λ′}. It is straightforward to check that:

(S1) If � is saturated and toggles w, then �w is saturated.
(S2) If � is saturated and toggles w and λ ∈ �, then λ

w= λw for some λw ∈ �w.
(S3) If � is saturated and toggles w and λ

x= λ′ for λ, λ′ ∈ �, then

for some λw, λ′
w ∈ �w.

Examples below illustrate (S2) and (S3).

Example 4.28 (S2). Let � be the following set of three linkings, each having
just one link:

.

Two linkings are shown above and one below, and w is the second &. �w is the
top pair of linkings. If λ is the bottom linking, either of the top two linkings
suffices for λw in (S2).

Example 4.29 (S3). Let � be the following set of four linkings, each having
just one link:

Call the linkings rr, rl , ll , lr, from top to bottom. The left & is x, and the right
& is w, thus �w = {rl , ll }. Here are two possible instances of the square in (S3):

.

Example 4.30. Let � be the same set of three linkings as in Example 4.28:

.

Let λ, λ′, λ′′ be the three (single-link) linkings, from top to bottom. Thus
�w = {λ, λ′}. Here is a degenerate instance of the (S3) square, in which the

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 35

(suppressed) bottom edge is λ′′ = λ′′:

This illustrates why the definition of λ1
x= λ2 includes equality λ1 = λ2.

LEMMA 4.31. Let w be a & toggled by a saturated set � ⊆ θ , and let e be an
edge in G� originating from a leaf l , such that e �∈ G�w . Then the jump l → w is
in G�.

PROOF. Let e be l → x. If e is not a jump, e �∈ G�w implies l �∈ G�w . Choose
λ ∈ � with l a leaf of some link a ∈ λ. By (S2) λ

w= λw for some λw ∈ �w. Since
a �∈ λw (for l �∈ G�w), the jump l → w is in G�.

If e is a jump, we have λ, λ′ ∈ � with a ∈ λ, a �∈ λ′, l a leaf of a, and λ
x= λ′.

By (S3) λ
w= λw

x= λ′
w

w= λ′ for λw, λ′
w ∈ �w. Either a �∈ λw or a ∈ λ′

w, else e ∈ G�w ;
either way, the jump l → w is in G�.

LEMMA 4.32. Every nonempty union S of switching cycles of Gθ has a jump
out of it: for some leaf l ∈ S and &-vertex w �∈ S, there is a jump l →w in Gθ .

PROOF. Let � be a minimal saturated subset of θ with G� containing S.
By (P2),

&
-switchings of singleton subsets of θ are acyclic, so � contains at

least two linkings. Let w be a & toggled by � that is not in any switching
cycle of G� (existing by (P3)), so w �∈ S. Since � is minimal, S �⊆ G�w (using
(S1)), so some edge e of S is in G� but not in G�w . Without loss of generality,
e is an edge from a leaf l , because for any other edge y → x in S we have
l → z1 → · · · → zn = y → x in S for some leaf l , and y → x is in G�w whenever
l → z1 is in G�w . By Lemma 4.31, the jump l → w is in G�, hence also in Gθ .

LEMMA 4.33. If x � x, then y � x for some &-vertex y �� y.

PROOF. By domination property SELF, x is in a switching cycle. Iterate
Lemma 4.32, adding switching cycles until jumping to a &-vertex y not in
a switching cycle. Then y � x by JUMP-CYCLE and TRANSITIVITY, and y �� y by
SELF.

LEMMA 4.34. Every

&

/& of Gθ is either free or is dominated by a free

&

/&.17

PROOF. If x0 is neither free nor dominated by a free

&

/&-vertex, then we can
build an infinite chain x0 � x1 � · · · of distinct vertices with the same property.
If xi � xi, obtain xi+1 �� xi+1 � xi from Lemma 4.33; xi+1 is fresh otherwise
xi+1 � xi+1 by TRANSITIVITY. If xi �� xi, then xi+1 exists since xi is not free; xi+1 is
fresh otherwise xi � xi by TRANSITIVITY.

17This lemma is not specific to proof nets, but is a general observation about binary relations �. Say
that x is �-dominated if y � x for some y , and �-free otherwise. For any finite transitive binary
relation � such that x � x implies y � x for some y �� y (c.f. Lemma 4.33), every x is either �-free
or y � x for some �-free y .

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

36 • D. J. D. Hughes and R. J. van Glabbeek

COROLLARY 4.35. If Gθ has a

&

/&, then it has a free

&

/&.

Distinct

&

/&-vertices x and y or Gθ are face-to-face, denoted x ←→ y , if
there is a switching path xz0 · · · zn y in Gθ such that x ← z0 and zn → y , and
are back-to-back, denoted x →← y , if there exists a path xz0 · · · zn y in Gθ such
that x → z0 and zn ← y , and none of the zi are

&

/&-vertices (so in particular
xz0 · · · zn y is a strong path).

Recall that a

&

/&-vertex x of Gθ separates if it is not an argument (i.e., is an
outermost connective), or it is the argument of y and deleting the edge between
x and y disconnects18 Gθ .

LEMMA 4.36. If a

&

/&-vertex x is free and does not separate, then x →← y
and x ←→ z for free y and z.

PROOF. Since x does not separate, it is in a cycle C (say clockwise) whose
first (respectively, last) edge is oriented out of (respectively, into) x. Take y to
be the first

&

/& reached clockwise along C from x. Then x →← y (otherwise,
y � x by SWITCH, then EXTEND) and y is free since y ′ � y implies y ′ � x by
EXTEND, contradicting the freedom of x.

By SWITCH, the anticlockwise neighbor of x in C is dominated by x. Let v be
the first vertex reached anticlockwise from x that is not dominated by x, and
let v′ be its predecessor. Since x � v′, we have v a

&

/& and v′ → v; otherwise,
x � v by EXTEND. Let z = v if v is free; otherwise, let z be a free

&

/& dominating
v provided by Lemma 4.34; in the first case, z � v′ by SWITCH; in the second case,
by EXTEND.

Note that z �= x since either v �= x (case z = v) or z � v �� x (otherwise). Apply
MEET to z � v′ � x.

All the auxiliary material is in place for us to prove the Separation Lemma (if
Gθ has a

&

/& then it has a separating19 &

/&).

PROOF OF LEMMA 4.19 (SEPARATION LEMMA). If Gθ had no separating

&

/& then
x0 ←→ x1 →← x2 ←→ x3 →← · · · for free

&

/&-vertices xi with xi+1 �= xi
by Lemma 4.36, and x0 existing by Corollary 4.35. By finiteness, the composite
π of the paths witnessing the ←→ and →← relations eventually intersects
itself at a vertex x, yielding a path π ′ = x y0 · · · yn such that {x, y0, . . . , yn} is
a cycle. Each witness is a switching path, so π ′ is a switching path (since by

18In the case with mix, read “disconnects” as “increases the number of connected components of”.
19We actually prove a stronger result, that if Gθ has a

&

/& then it has a separating free

&

/&.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 37

design, composition at each xi avoids introducing consecutive switch edges of
xi). Furthermore, one of the xi must be among the y j (since each witness is a
path of distinct vertices). Using SELF if {x, y0, . . . , yn} is a switching cycle, and
FORK otherwise, this xi is dominated, a contradiction (since xi is free).

4.13 Proof of the Cut-Free Sequentialization Theorem

With the Separation Lemma in hand, the proof that every cut-free proof net is
the translation of a cut-free proof reduces to simple induction.

Let θ be a proof net on �. We proceed by induction on the sum of the number
of

&

s and &s of Gθ .

Base case (primary induction). � is

&

/&-free, hence θ comprises a single
linking λ on �. We proceed by induction on the number of connectives of �.

• Base case (secondary induction). � contains no connectives, so � has the form
P1, P⊥

1 , . . . , Pn, P⊥
n for n ≥ 0 and propositional variables P1, . . . , Pn, and λ

links Pi and P⊥
i for i = 1, . . . , n. By (P2) n = 1. The axiom rule with conclusion

P1, P⊥
1 is a sequentialization of θ .

• Induction step (secondary induction). With no

&

s, Gλ is the only

&

-switching
of λ, so by (P2) Gλ is a tree.
—Suppose � = �, A⊕ B, with ⊕-vertex x ∈ Gλ corresponding to A⊕ B. Since

� � λ is an additive resolution, x is unary in Gλ, that is, there is a unique
y ∈ Gλ with y → x. Depending on whether y is the left/right argument
of x, let ρ be a left/right ⊕-rule, with conclusion �, A ⊕ B and hypothesis
�′ = �, A or �, B, correspondingly. The linking λ on � also constitutes a
linking λ′ on �′, since no leaves of the deleted ⊕-argument were incident
with a link of λ. The graph Gλ′ is a tree, because Gλ is a tree. Hence, θ ′ = {λ′}
is a proof net on �′. By induction, θ ′ is the translation of a cut-free MALL
proof of �′, which when followed by ρ constitutes a cut-free MALL proof of
� whose translation is θ .

—Suppose � = �, A0 ⊗ A1, with ⊗-vertex x ∈ Gλ corresponding to A0 ⊗ A1.
Deleting x separates the tree Gλ into a left tree T0 and right tree T1 whose
respective conclusions define sequents �0 and �1, a partitioning of �.
Let ρ be a ⊗-rule with conclusion � and hypotheses �0, A0 and �1, A1.
Since Gλ is a tree, no link of λ goes between �0, A0 and �1, A1: hence, λ

partitions to form linkings λ0 and λ1 on �0, A0 and �1, A1, respectively.
Each θi = {λi} is a proof net on �i, Ai since each Gλi = Ti is a tree. Appeal
to the induction hypothesis with θ0 and θ1, in the manner of the ⊕ case
above.

Induction step (primary induction). � has a

&

/&. By (P2), Gθ is connected.

(a) Suppose � = �, A

&

B, with

&

-vertex x ∈ Gθ corresponding to A

&

B. Let ρ

be a

&

-rule with conclusion � and hypothesis �′ = �, A, B. The sequents
� and �′ have the same leaves and (aside from the presence/absence of x)
the same &- and additive resolutions, so θ constitutes a proof structure on
�′. On �′, the

&

-switchings of the linkings of θ are trees, since they are
obtained from those on � by deleting x. Any subset � ⊆ θ toggles the same

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

38 • D. J. D. Hughes and R. J. van Glabbeek

&s in �′ as it does in �, and G� has the same switching cycles with respect
to �′ as with respect to �. Therefore, θ is a proof net on �′. Appeal to the
induction hypothesis with the proof net θ on �′; follow the resulting proof
with ρ.

(b) Suppose � = �, A0&A1, with vertex w ∈ Gθ corresponding to A0&A1. Let ρ

be a &-rule with conclusion � and hypotheses �0 = �, A0 and �1 = �, A1.
Define the sets of linkings θi on �i to comprise those linkings of θ which are
on �i ⊆ �. Trivially, each θi is a proof net. Appeal to the induction hypothesis
with each θi; combine the resulting proofs with ρ.

(c) Suppose Gθ has no →-terminal (i.e., concluding)

&

or &. By the Separation
Lemma Gθ has a

&

/&-vertex x such that the deletion of the edge x → y
disconnects Gθ into G0 and G1.

Let G0 be the component containing x, and let �0 comprise the formulas
corresponding to the →-terminal vertices of G0 (some formulas of � together
with the subformula A&B corresponding to x). Define20 θ0 = {λ��0 : λ ∈ θ}
on �0 (each λ��0 is well defined since no a ∈ λ goes between G0 and G1).

Let �1 be the subsequent of � containing the formulas corresponding to
the →-terminal vertices of G1. In G1, y is →-initial. Form G+

1 from G1 by
adding literals P and P⊥ with a link edge a between them. Let �̂1 be �1
with P substituted for the subformula A&B corresponding to x, and let
�+

1 = �̂1, P⊥. Define θ1 = {λ� �̂1 ∪ {a} : λ ∈ θ} on �+
1 .

CLAIM. x ∈ � �λ for all λ ∈ θ .

PROOF. If not, there is λ ∈ θ and a &-vertex w with x in � �λ but not in
� �λw for some λw ∈ θ such that λ

w= λw. Thus, there is a jump l → w in Gθ

for some l ∈ G0 with l in a link of λ\λw. Since linkings are total on additive
resolutions there is a leaf l ′ in a link of λw \ λ connecting to the formula
containing x, but not satisfying l ′ → · · · → x, so there is a jump l ′ → w in
Gθ . If w ∈ G0, then l ′ → w is a jump from G1 to G0, and if w ∈ G1, then
l → w is a jump from G0 to G1; either case violates the disconnectedness
of G0 from G1.

The claim implies that θ0 and θ1 are sets of linkings on �0 and �+
1 , respec-

tively. Moreover, Gθ0 = G0 and Gθ1 = G+
1 . We now check that θ0 and θ1 are

proof nets, that is, satisfy (P1)–(P3). Since θ satisfies (P1), θ0 (respectively,
θ1) has at least one linking on every &-resolution of �0 (resp. �+

1). Had θi
two distinct linkings on the same &-resolution, there would be a jump from
a link in Gi to a & in G1−i, violating the disconnectedness of G0 from G1.
Thus, θi satisfies (P1). (P2) is trivially inherited from θ . Finally, (P3) holds
since any set �′ of linkings in θ0 or θ1 corresponds to a set � of linkings in
θ toggling the same &s, such that any switching cycle of G�′ is a switching
cycle of G�.

Since �0 has an outermost &, by case (b) above θ0 is the translation of a
cut-free proof �0 of �0. Since Gθ1 has less

&

s and &s than Gθ , by induction

20This instance λ ��0 of restriction is a normal instance of restriction, and should not be confused
with the notation � �λ for the additive resolution of a linking λ on �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 39

θ1 is the translation of a cut-free proof �1. Substituting �0 for the axiom
rule with conclusion P, P⊥ in �1 yields a proof whose translation is θ . �

In the case of MALLmix, the connectedness requirement of (P2) does not apply.
In each of the cases (a)–(c) of the primary induction step above we check that θ

satisfying (P2) implies θi (or θ on �′, in case (a)) satisfies (P2); note that this also
works for (P2mix). Additionally, connectedness is used three times in the above
proof.21 To prove that a set of linkings is the translation of a cut-free MALLmix

proof, if it is a cut-free mix net, in each part of the inductive proof above, the
case that Gθ is not connected can be dealt with by partitioning � into a number
of nonempty subsequents �i, each harbouring a connected component of Gθ . The
mix net θ projects to mix nets θi on �i, which by induction are translations of cut-
free MALLmix proofs �i. By the mix rule these combine into a sequentialization
of θ .

5. CUT

This section extends proof nets with cuts. Section 5.1 defines a simple and
strongly normalizing cut elimination on proof nets, which can be executed in
a single step (turbo cut elimination, Section 5.1.1). Normalization yields an
associative composition of cut-free MALL proof nets, whence a category N of
cut-free MALL proof nets which is semi (i.e., unit-free) star-autonomous with
products and sums (Section 5.2). Section 5.3 defines a translation from MALL
proofs to sets of linkings, and proves the Sequentialization Theorem: a set of
linkings is a translation of a MALL proof iff it is a MALL proof net.

A cut pair is a formula A∗ A⊥ where A is any MALL formula. The connective
∗ is called cut. By definition, we take ∗ to be unordered, that is, A ∗ A⊥ =
A⊥ ∗ A. This is in contrast to MALL formulas, where connectives are ordered,
for example, A ⊗ B �= B ⊗ A when A �= B. We continue to identify a formula
with its parse tree (including a cut pair, whose root is a ∗-labeled vertex with
two unordered children). A cut sequent is a disjoint union of a MALL sequent
and zero or more cut pairs. (Recall that a MALL sequent is a nonempty disjoint
union of MALL formulas.) Given a (possibly empty) disjoint union � of cut pairs
and a MALL sequent �, write [�] � for the cut sequent that is the disjoint union
of � and �.

A cut-additive resolution of a cut sequent � is any result of deleting zero or
more cut pairs from � and one argument subtree of every additive connective
(& or ⊕). Thus, every remaining & and ⊕ is unary.

Example 5.1. Here is a cut sequent followed by one of its cut-additive res-
olutions:

21In the base case of the secondary induction, to conclude n = 1; in the secondary induction step,
to conclude that (P2) can be reformulated as Gλ being a tree; and in the primary induction step, to
conclude that Gθ is connected.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

40 • D. J. D. Hughes and R. J. van Glabbeek

Definition 2. MALL Proof Net
Cut pair: Formula A∗ A⊥ (= A⊥ ∗ A) for any MALL formula A.
Cut sequent �: Disjoint union of a MALL sequent and any number of cut
pairs.
&-resolution: Deletion of one argument subtree of each &.
Cut-additive resolution: Deletion of some cuts and one argument subtree of
each ⊕/&.
(Axiom) link on �: Edge between complementary leaves (literal occurrences)
in �.
Linking λ on �: Partitioning of the leaves of an additive resolution ��λ of �

into links.
A set � of linkings on � toggles a & w if both arguments of w are in ��� ≡⋃

λ∈� ��λ.
Graph G�: ��� + ∪� + jump edges l—w—l ′ if {l , l ′}∈λ\λ′ and {λ, λ′}⊆�

toggles w only.
Switching cycle: Cycle with ≤ 1 switch edge (= jump or argument edge) of
each

&

/&.

A set θ of linkings on � is a proof net if it satisfies:

CUT: Every cut pair has a leaf in θ .
RESOLUTION: Exactly one linking of θ is on any given &-resolution of �.
MLL: Every

&

-switching of every linking in θ is a tree (acyclic and connected).22

TOGGLING: Every set � of ≥2 linkings of θ toggles a & that is in no switching
cycle of G�.23

A link on a cut sequent � is a pair of complementary leaves in �, that is, a
pair of leaves in � labeled with complementary literals P and P⊥. A linking λ on
� is a set of disjoint links on � such that ∪λ is the set of leaves of a cut-additive
resolution of �; this cut-additive resolution is denoted ��λ.

Example 5.2. Here are two examples of sets of linkings on cut sequents:

Each of θ and φ has two linkings, one shown above the cut sequent, the other
below. Each linking has two links. Note that each linking takes the leaves of a
cut-additive resolution.

In the presence of cut, we update all the auxiliary definitions of Section 4
(&-resolution, G�, switching cycle, etc.) by substituting cut sequent for sequent
and cut-additive resolution for additive resolution throughout.

22By dropping connectedness, we obtain a proof net for MALL augmented by the mix rule.
23In fact, it suffices to verify TOGGLING merely for saturated sets of linkings �, namely, such that any
strictly larger subset of θ toggles more &s than �. There is exactly one saturated set of linkings in
θ for each partial &-resolution of �, the latter being any result of deleting at most one argument
subtree of each & of �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 41

Definition 5.3. A set θ of linkings on a cut sequent � is a proof net if it
satisfies:

(P0) CUT. At least one leaf of every cut pair is in θ (i.e., in some link of some
linking of θ).

(P1) RESOLUTION. For any &-resolution �� of �, exactly one linking of θ is on ��.
(P2) MLL. Every

&

-switching of every linking in θ is a tree (acyclic and
connected).22

(P3) TOGGLING. Every set � of two or more linkings of θ toggles a & that is not
in any switching cycle of G�.23

The definition is summarized in Definition 2. Note that (P1)–(P3) are inher-
ited from the cut-free case. We say that θ is a proof structure if it satisfies (P0)
and (P1).

Alternative Definitions of Proof Net. The material in Section 4.7 still applies
now that we have extended proof nets with cut, with one small change: in the
equation-defining balance, add the number of cuts to the number of tensors.
The equivalence proofs (Appendices C and D) extend verbatim once a cut is
viewed as a tensor.

5.1 Cut Elimination

Let θ be a set of linkings on a cut sequent �, and let A∗ A⊥ be a cut pair in �.
Define the elimination of A∗ A⊥ (or, of the cut ∗ between A and A⊥) as follows.

(a) If A is a literal, delete A ∗ A⊥ from �, and replace any pair of links
{l , A}, {A⊥, l ′} in a linking of θ (l and l ′ being other occurrences of A⊥ and
A, respectively) with the link {l , l ′}.

(b) If A = A1 ⊗ A2 and A⊥ = A⊥
1

&

A⊥
2 (or vice-versa), replace A∗ A⊥ with two

cut pairs A1 ∗ A⊥
1 and A2 ∗ A⊥

2 . Retain all the original linkings.
(c) If A = A1&A2 and A⊥ = A⊥

1 ⊕ A⊥
2 (or vice-versa), replace A∗ A⊥ with two

cut pairs A1∗A⊥
1 and A2∗A⊥

2 . Delete the inconsistent linkings, namely those
λ ∈ θ such that in � � λ the children & and ⊕ of the cut take opposite
arguments (i.e., such that the right argument of the & is in � � λ and the
left argument of the ⊕ is in � � λ, or vice-versa). Finally, “garbage collect”
by deleting Ai ∗ A⊥

i if no leaf of Ai ∗ A⊥
i is in any of the remaining linkings.

An example of cut elimination was presented in Figure 3.

PROPOSITION 5.4. Eliminating a cut from a proof net yields a proof net.24

PROOF. Section 5.4.

THEOREM 5.5. Cut elimination of proof nets is strongly normalizing.24

PROOF. Confluence is immediate from the definition; cut elimination reduces
the size of the cut sequent, and is therefore strongly normalizing.

24Proposition 5.4 and Theorem 5.5 also hold for mix nets: that elimination preserves (P2mix) is part
of the argument that it preserves (P2).

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

42 • D. J. D. Hughes and R. J. van Glabbeek

5.1.1 Turbo Cut Elimination. Cut elimination can be completed in a single
step. For l , the ith leaf of A in a cut pair A∗ A⊥, let l⊥ denote the ith leaf of
A⊥.25 A linking λ on a cut sequent � matches if, for every cut pair A∗ A⊥ in �,
any given leaf l of A∗ A⊥ is in ��λ iff l⊥ is in ��λ.

Example 5.6. The first linking below matches, the second does not:

.

Note that, although not matching, this second linking is consistent (the op-
posite of inconsistent, defined above).

A linking matches iff it is hereditarily/iteratively consistent: when (non-
turbo) cut elimination is carried out, the linking never becomes inconsis-
tent in the sense of case (c) in the definition of (nonturbo) cut elimination
above.

Suppose a linking λ on a cut sequent � matches. The reduction � of � is the
result of deleting all cut pairs from �. The reduction λ of λ is the linking on �

obtained by replacing every set of links {l0, l1}, {l⊥
1 , l2}, {l⊥

2 , l3}, . . . , {l⊥
n−1, ln} in

λ in which only l0 and ln occur in � by the single link {l0, ln}.

Example 5.7. Here is an example of the reduction of a matching linking.
The informal intermediate step is for visualization only.

Let θ be a set of linkings on the cut sequent �. The normal form of θ is the
set of linkings θ on � obtained from θ by deleting every non-matching linking
and reducing every linking which remains. By a simple structural induction on
the size of the cut pairs in �, the set of linkings θ is precisely the normal form
obtained by (nonturbo) cut elimination.

25Remember that cut ∗ is unordered, that is, A∗ A⊥ = A⊥ ∗ A; thus, l⊥⊥ = l , as one would expect.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 43

Example 5.8. Let θ be the following proof net with four linkings (two shown
on each of two copies of the sequent):

.

Only the first of the four linkings is consistent:

.

Reducing this linking yields the following one-linking normal form of θ :

.

Note that turbo cut elimination operates independently on each linking: a given
linking is either deleted (if nonmatching) or reduced using path composition (if
matching), without reference to any other linking. This is similar to the situa-
tion in proof nets for polarized linear logic [Laurent and Tortura de Falco 2004].

5.2 The Category of Proof Nets

Noncategorists can skip to Section 5.3 without loss of continuity.
Cut elimination yields a category N of MALL proof nets. Objects are MALL

formulas, and a morphism A → B is a cut-free proof net on the sequent A⊥, B.
The composition of θ : A → B and θ ′ : B → C is the normal form of the proof net
{λ∪λ′ : λ ∈ θ , λ′ ∈ θ ′} on A⊥, B∗B⊥, C. See Figure 4. Composition is associative,
since cut elimination is strongly normalizing.26 The identity morphism idA :
A → A is defined as follows. An identity link on the sequent A⊥, A is a link
between the ith leaf of A⊥ and the ith leaf of A, for some i. An identity linking
is one whose every link is an identity link. The set idA comprises every identity
linking on A⊥, A.

Define a semi star-autonomous category as a category C equipped with the fol-
lowing structure of a star-autonomous category [Barr 1979], not involving units:

—Tensor. A functor − ⊗ − : C × C → C.
—Associativity. A natural isomorphism aA,B,C : (A ⊗ B) ⊗ C → A ⊗

(B ⊗ C) natural in objects A, B, C ∈ C such that the following pentagon
commutes:

26Associativity is also straightforward with turbo cut elimination as the primary definition, since
linking reduction is path composition.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

44 • D. J. D. Hughes and R. J. van Glabbeek

—Symmetry. A natural isomorphism cA,B : A ⊗ B → B ⊗ A natural in objects
A, B ∈ C such that cB, A ◦ cA,B = idA⊗B and the following hexagon commutes:

—Involution. A functor (−)⊥ : C
op → C with a natural isomorphism A → A⊥⊥.

—An isomorphism C(A⊗B, C⊥) → C(A, (B⊗C)⊥) natural in all objects A, B, C.

The category N has a very simple semi star-autonomous structure. Tensor
− ⊗ − : N ×N → N acts symbolically on objects (i.e., the tensor of formulas A
and B is the formula A⊗ B), and the tensor θ ⊗θ ′ : A⊗C → B⊗ D of θ ′ : A → B
and θ ′ : C → D is obtained as follows, using the notation of Table I:

.

Duality/negation (−)⊥ : N op → N on objects is as already defined on formu-
las (i.e., (A⊗ B)⊥ = A⊥ &

B⊥ etc.). On morphisms it is trivial, since a proof net on
A, B can be read equally well as a morphism A⊥ → B or B⊥ → A. Tensor asso-
ciativity is immediate since the formula graphs A⊗ (B⊗C) and (A⊗ B)⊗C are
topologically equivalent, in particular having the same leaves. Symmetry, and
the natural isomorphism N (A⊗ B, C⊥) ∼= N (A, (B ⊗ C)⊥), are similarly trivial.

A semi star-autonomous category, as axiomatised above, is but a very rudi-
mentary notion of “unitless” star-autonomous category. For example, the ax-
iomatization does not appear to provide a map A → A ⊗ (B

&

B⊥), which is
present in the proof net category N .

Products and Sums. The category N of MALL proof nets has products and
sums (coproducts). (By duality, the one yields the other.) Product is & and sum
is ⊕, each acting syntactically on objects and defined on morphisms in a manner
analogous to tensor above. The universal property of & holds because it takes
the disjoint union of nonempty sets of linkings; ⊕ is dual.

Softness. The category N of proof nets is soft [Joyal 1995], that is, any mor-
phism ⊗1≤i≤m(Ai&A′

i) → &

1≤ j≤n(Bj ⊕ B′
j) factorises through either a product

projection on the left or a coproduct injection on the right. This is immediate,
via sequentialization, from the corresponding observation at the level of proofs.
(Alternatively, it is straightforward to verify softness directly.)

5.3 Sequentialization

This section defines a translation from MALL proofs to sets of linkings, and
proves the Sequentialization Theorem: a set of linkings on a cut sequent is a

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 45

Table II. Rules for Deriving Cut Sequents in MALLcut

Here P ranges over propositional variables, A, B range over MALL formulas, �, � range over (possibly
empty) disjoint unions of MALL formulas, and �, �, �′ range over (possibly empty) disjoint unions of
cut pairs. Note that the &-rule may superimpose one or more cut pairs from its two hypotheses (if � is
nonempty), or may leave all cut pairs separate (if � is empty).

translation of a MALL proof iff it is a proof net. The translation goes via a
technically convenient variant MALLcut of MALL in which cuts are retained in
sequents.

5.3.1 A Function from MALLcut Derivations to Sets of Linkings. Cut se-
quents are derived in MALLcut using the rules in Table II. Example MALLcut

derivations are shown in Figure 15. Every MALLcut derivation projects to a
MALL proof in the obvious way, by deleting the cut pairs. For example, the
MALLcut derivations of Figure 15 project to the MALL proofs of Figure 16, as
follows:

The system MALLcut is an extension of cut-free MALL. The function tak-
ing a cut-free MALL proof to a set of linkings on a MALL sequent (defined in
Section 4.2) extends in the obvious way to a function taking a MALLcut deriva-
tion D to a set θD of linkings on a cut sequent �. Define a &-resolution R of D
to be any result of deleting one branch above each &-rule of D. By downwards
tracking of formula leaves, the axiom rules of R determine a linking λR on �.
Define θD = {λR : R is a &-resolution of D}. Alternatively, Table III defines the
same function by induction, a direct extension of the cut-free case in Table I.
Figure 17 shows how each derivation Di in Figure 15 translates into a set of
linkings.

By structural induction, each linking is well defined (i.e., takes the leaves
of a cut-additive resolution); thus, the translation is well defined. The fact
that the above procedures yield the same set of linkings follows from a simple
structural induction on derivations. A set of linkings � on a cut sequent � is
cut-sequentializable if it is the translation of a MALLcut derivation of �; any
such derivation is a cut-sequentialization of �.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

46 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 15. Examples of derivations of cut sequents in MALLcut. The only difference between deriva-
tions D1 and D2 is a commutation of the cut and ⊕1 rules in the right branch. Both derivations
yield the same cut sequent. The only difference between derivations D2 and D3 is the final &-rule:
the application in D2 keeps the cut pairs in the hypotheses separate (an instance of the Table II
&-rule taking � empty and � = �′ = P⊥∗P), whereas the application in D3 superimposes the two
cut pairs (� = P⊥ ∗ P and each of � and �′ empty). Derivation D4 yields the same cut sequent as
D3, but with the cut and & rules commuted.

5.3.2 Translating a MALL Proof Into a Set of Linkings. We have seen that
every MALLcut derivation D of a cut sequent [�] � projects to a MALL proof �D
of the underlying MALL sequent �, and also translates into a set of linkings
θD on [�] �. For example, the MALLcut derivations Di in Figure 15 project and
translate as follows:

.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 47

Fig. 16. The MALL proofs projected from the MALLcut derivations D1, D2, D3, D4 in Figure 15.
Derivation D1 projects to �, derivations D2 and D3 project to �′, and D4 projects to �′′. All three
proofs yield the same MALL sequent. The only difference between proofs � and �′ is a commutation
of the cut and ⊕1 rules in the right branch. The only difference between �′ and �′′ is a commutation
of the cut and & rules.

Table III. Inductive Definition of the Function from MALLcut Derivations to Sets of Linkings

Here θ � � is the judgment “θ is a set of linkings on the cut sequent �.” We use the implicit tracking of
formula leaves downwards through rules. The base case ax is a singleton set of linkings whose only linking
comprises a single link, between P and P⊥. Here, as in the presentation of the rules of MALLcut in Table II, P
ranges over propositional variables, A, B range over MALL formulas, �, � range over (possibly empty) disjoint
unions of MALL formulas, and �, �, �′ range over (possibly empty) disjoint unions of cut pairs. This table is a
direct extension of the inductive translation of cut-free MALL proofs, Table I; every cut-free MALL proof is in
particular a MALLcut derivation.

The leftward arrows show projection to the MALL proofs � j of Figure 16,
and the rightward arrows show translation into the sets of linkings θ and φ of
Example 5.2, with translations shown in Figure 17.

Let θ be a set of linkings on a cut sequent. A MALL proof � translates into
θ , or is a sequentialization of θ , if � is the projection of a MALLcut derivation

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

48 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 17. Translating each MALLcut derivation Di of Figure 15 into a set of linkings on a cut
sequent, using the function defined inductively in Table III.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 49

translating to θ ; we say that θ is sequentializable,27 and write � s� θ . For
example, the projection/translation diagram above yields

(the composite of the previous diagram of relations: from left to right, the in-
verse of projection, followed by translation). Restricted to the cut-free case, the
sequentialization relation s� is a function taking a proof to a set of linkings
on a MALL sequent, exactly the cut-free translation defined in Table I. In the
presence of cuts, more than one set of linkings on a cut sequent may correspond
to the same MALL proof. In the diagram above, the MALL proof �′ of Figure 16
is a common sequentialization of θ and φ .

Our definition of proof net (Definition 5.3) characterizes the image of the
s� sequentialization relation on MALL proofs (i.e., the image of the function

on MALLcut derivations defined in Table III). Section 5.3.4 considers two alter-
native notions of sequentialization, one in which the &-rule superimposes no
cuts, the other in which it superimposes as many cuts as possible. It finishes
with a variation of sets of linkings in which each linking has its own local set
of cut pairs.

5.3.3 The Sequentialization Theorem

THEOREM 5.9 (SEQUENTIALIZATION). A set of linkings on a cut sequent is a
translation of a MALL proof iff it is a proof net.

PROOF. Section 4.12, the proof of the Separation Lemma, applies verbatim
when θ is a proof net on a cut sequent �. We adapt the proof of Theorem 4.18
(Cut-free Sequentialization) in three places to deal with cut. First, in the base
case of the primary induction, treat a cut as an outermost tensor. Second, in
the case � = �, A0&A1, garbage collect to ensure that θ1 and θ2 satisfy (P0):
delete from �i every cut pair without a leaf in θi. Finally, if the appeal to the
Separation Lemma in case (c) of the primary inductive step yields a separating&

/&-vertex x inside a cut pair A∗ A⊥, immediate separation would destroy the
complementarity of the cut (since in G1 a strict subformula of either A or A⊥

will have been removed). The following claim will allow us to substitute a tensor
A ⊗ A⊥ for A∗ A⊥, so that lack of complementary is no longer a problem.

CLAIM. If a cut pair A∗ A⊥ contains a free

&

/&-vertex y, then every linking
in θ visits leaves in A∗ A⊥.

PROOF. If not, there is λ ∈ θ and a &-vertex w with the cut c in � �λ but not
in � � λw for some λw ∈ θ such that λ

w= λw. Thus, there are jumps l → w and
l ′ → w in Gθ for leaves l ∈ A and l ′ ∈ A⊥. By domination property FORK (with
y0 · · · yn as the path from l down to c and back up to l ′), w � c, and hence, by
EXTEND (travelling up from c to y), w � y , contradicting the freeness of y .

27Thus, by definition, θ is sequentializable iff it is cut-sequentializable.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

50 • D. J. D. Hughes and R. J. van Glabbeek

The Separation Lemma always yields a separating free

&

/& (see Footnote 19).
Thus, x is free, and the claim with y = x implies every linking in θ visits
A ∗ A⊥. Therefore, θ remains a proof net upon replacing A ∗ A⊥ by A ⊗ A⊥,
and the argument in the proof of Theorem 4.18 yields a sequentialization. This
sequentialization remains a MALL proof upon replacing the tensor by a cut,
and that MALL proof is a sequentialization of θ .

5.3.4 Alternative Notions of Sequentialization. This section explores two
alternative definitions of sequentialization. It concludes with a variation on
sets of linkings in which each linking has its own local set of cut pairs.

For reference, recall the projection/translation diagram in Section 5.3.2 in-
volving the MALL proofs of Figure 16 and the MALLcut derivations of Figure 15,
and the resulting sequentialization s� relation:

.

Superimposing No Cuts. To obtain a deterministic translation (i.e., a func-
tion) from MALL proofs (including the cut rule) to sets of linkings, we can force
� to be empty in the &-rule in Table II, that is, “never superimpose cuts”. Let
MALLcut

sep (with sep standing for “keep cuts separate”) be the restriction of
MALLcut obtained by replacing the &-rule in Table II with

.

The restriction to MALLcut
sep of the projection from MALLcut derivations to MALL

proofs is a bijection: every MALL proof � is the projection of a unique MALLcut
sep

derivation. Thus, the translation becomes a function. For example, of the deriva-
tions Di in Figure 15, only D3 is not in MALLcut

sep, so the projection/translation
diagram above restricts to:

yielding a function from MALL proofs to sets of linkings:

.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 51

By keeping cuts separate, never superimposing them (i.e., by going via MALLcut
sep

rather than MALLcut), we have obtained a function from MALL proofs to sets of
linkings. However, the notion of proof net defined above, which was a simple and
natural extension of our cut-free definition, producing a nice category of proof
nets, does not characterize the image of this function; rather, it characterizes the
image of the original MALLcut-based s� relation (or equivalently, the image
of the translation function from MALLcut derivations to sets of linkings on cut
sequents, Table III). For example, the following proof net can be derived only
via an instance of the &-rule in Table III that superimposes cuts (� nonempty
in the rule)

and is therefore the translation of a MALLcut derivation, but not a translation
of a MALLcut

sep derivation; thus, it is a proof net beyond the image of the cut-
separating function defined above.

Characterizing the image of the cut-separating function would require ad-
ditional conditions in the definition of proof net. For example, that every cut
must have monomial weight is necessary (though not sufficient, as witnessed
by the proof net above, in which the cut has monomial weight). The kernel of
the cut-separating function does not include the commutation of the cut rule
with the & rule. For example, the function maps the MALL proofs �′ and �′′

(Figure 16), to distinct proof nets θ and φ, yet the proofs differ only by a com-
mutation of cut- and &-rules (the first rule commutation in Figure 13, with cut
in place of ⊗).

Superimposing as Many Cuts as Possible. We discussed above the possibility
of taking � in the &-rule of Table II minimal, that is, empty, yielding a function
from MALL proofs to sets of linkings. The alternative of taking � maximal,
that is, “superimpose as many cuts as possible”, does not define a function,
since there may be a choice of how to identify cuts.

Let MALLcut
sup (with sup standing for “superimpose as many cuts as possi-

ble”) be the restriction of MALLcut obtained by limiting the &-rule in Table II
with the side condition that � and �′ have no common cut pair. Two MALLcut

sup
derivations D and D′ are shown in Figure 18, followed by their common pro-
jection to a MALL proof �. The derivations differ only in how they choose
to superimpose two equal cuts. Figure 19 translates each derivation into
a set of linkings on a cut sequent. Let θ and θ ′ be the translations of
D and D′, respectively. Then, we have the following projection/translation
relationship:

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

52 • D. J. D. Hughes and R. J. van Glabbeek

Fig. 18. Derivations D and D′ in MALLcut
sup, the restriction of MALLcut in which the &-rule super-

imposes as many cuts as possible, followed by the MALL proof � to which both D and D′ project.
In each derivation, one cut occurrence, together with the rule that introduces it, has been marked,
so that that the two derivations can be distinguished. The difference between the derivations is
that in D the marked cut ∗ is the last cut introduced in each branch of the &-rule, whereas in D′
the marked cut ∗ is the last cut introduced in the left branch but the first cut introduced in the
right branch.

yielding the following relation between the MALL proof and the two sets of
linkings:

Girard [1996; Appendix A.1.6] was aware of this issue in the context of mono-
mial proof nets.

Local Cuts. A final variation is to depart from sets of linkings on a fixed
cut sequent, and permit each linking its own set of cut pairs. This yields a
deterministic translation (function) from MALL proofs. Define a cut linking on
a MALL sequent � as a linking on a cut sequent [�] � with � a disjoint union
of cut pairs. In order to abstract from the identity of the cut pairs we consider
� (but not �) up to isomorphism.

Every MALL proof � of � yields a set of cut linkings on � in the obvious way:
each &-resolution R of � (any result of deleting one branch above each &-rule

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 53

Fig. 19. Translating each MALLcut
sup derivation D and D′ of Figure 18 into a set of linkings on a cut

sequent. The second of the two depictions of the inductive translation of D′ includes an equality, to
help the reader track the superposition of literals and cuts.

of �) yields a cut linking λR on � by downwards tracking of leaves; the axiom
(respectively, cut) rules of R are in bijection with the axiom links (respectively,
cut pairs) of λR . This translation identifies more proofs than the translations
discussed above. All three MALL proofs in Figure 16 translate to the same set
of cut linkings, the pair

.

Since there is no information indicating how to identify cuts between dif-
ferent cut linkings, it is not immediately clear how to define a meaningful

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

54 • D. J. D. Hughes and R. J. van Glabbeek

correctness criterion to characterize the image of the translation. All we have
is that a set of cut linkings is the translation of a proof iff if can be obtained
from a proof net as in Definition 5.3 by localizing the cut pairs to the linkings in
whose cut-additive resolution they occur. Note that this localization erases the
differences between the superposition variants of sequentialization discussed
above. (In other words, translation to a set of cut linkings factorizes through
any of the translations considered above to a set of linkings on a cut sequent.)

5.4 Proof that Eliminating a Cut from a Proof Net Yields a Proof Net

In this section, we establish that cut elimination preserves (P0)–(P3). Preser-
vation of (P0) is trivial. Preservation of (P1) for a literal or multiplicative cut is
also trivial; for an additive cut, it is an immediate consequence of the following
lemma:

LEMMA 5.10. Let A ∗ A⊥ be an additive cut pair in a cut sequent � with
A = A0& A1 and A⊥ = A⊥

0 ⊕ A⊥
1 (or vice-versa), and let λ, λ′ be linkings of a proof

net on � such that the cut & is the only & toggled by {λ, λ′}. Then λ and λ′ take the
same argument of A⊥, that is, exactly one of A⊥

0 and A⊥
1 is in both � �λ and � �λ′.

PROOF. If λ and λ′ took opposite arguments of A⊥, a leaf of A⊥ would depend
on the cut &. The resulting jump yields a switching cycle of G{λ,λ′} containing
the only & toggled by {λ, λ′}, violating (P3).

Preservation of (P2) is straightforward for a literal or additive cut, since

&

-
switchings correspond before and after the elimination. For the multiplicative
case, consider a linking λ on �, and let �′ be � after eliminating a multiplicative
cut. Any switching cycle C′ of λ on �′ induces a switching cycle C of λ on �: if C′

doesn’t traverse both new cuts of �′, obtain C by rerouting a possible passage
through a cut of �′ to go through the cut of � instead; if it does, a portion
of C′ yields a switching cycle via the cut or cut tensor of �. Thus, switching
acyclicity is preserved. Balance (see Section 4.7.1, but counting a cut as a tensor)
is preserved (for we lose a tensor and gain a cut), so (P2) is preserved.

The remainder of this section proves that cut elimination preserves (P3).
Fix a proof net θ on a cut sequent �. We localize the notion of domination of

Section 4.12 from θ to any saturated set of linkings � ⊆ θ . Write x →� y if the
edge x → y of Gθ is in G�. A set X of vertices in G� is an x-zone under � if for
all y ∈ X there exists z with y ⇒X z →� x. Given a

&

/&-vertex x ∈ G� and a
vertex y ∈ G�, define x dominates y in �, denoted x �� y , if y ∈ X for some
x-zone X under �. The domination properties of Lemma 4.27 localize from θ to
any saturated set of linkings � ⊆ θ , as follows:

LOCALISED LEMMA 4.27 (PROPERTIES OF LOCALIZED DOMINATION)

——L-SWITCH. If x ←� y is a switch edge, then x �� y .28

—L-TRANSITIVITY. Localized domination �� is transitive.

28We shall not actually use this localized property in the proof that cut elimination is well defined
on proof nets; we include the property here to maintain the correspondence with the original
Lemma 4.27.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 55

—L-SELF. Let x be a

&

/&. Then, x �� x iff x is in a switching cycle of G�.
—L-JUMP-CYCLE. If w ← l is a jump in G� and l is in a switching cycle C of G�,

then w �� y for all vertices y ∈ C.
L-EXTEND. If x �� y0 and there is a path y0 · · · yn in G� which never enters a&

/& from above (i.e., yi−1 →� yi only if yi is not a

&

/&), then x �� yn.
—L-FORK. Let x be a

&

/& and y0 · · · yn a switching path in G� with y0 →� x ←�

yn. Then x �� yi for each i.
—L-MEET. If x �� y �� z for distinct free

&

/&-vertices x and z, there exists a
switching path x y0 · · · ynz in G� with x ←� y0 and yn →� z.28

PROOF. Make the following substitutions in the proofs of the original domi-
nation properties in Lemma 4.27: � for θ , �� for �, →� for →, and zone under
� for zone.

Lemmas 4.32 and 4.33 of Section 4.12 localize similarly.

LOCALIZED LEMMA 4.32. For every nonempty union S of switching cycles of
G� there is a jump l →� w from a leaf l ∈ S to a &-vertex w �∈ S toggled by �.

PROOF. A relatively straightforward adaptation of the proof of the original
Lemma 4.32. Let �m be a minimal saturated subset of � with G�m containing
S. Switchings of singleton sets of linkings are cycle-free by (P2), so �m contains
at least two linkings. Let w be a & toggled by �m that is not in any switching
cycle of G�m (existing by (P3)), so w �∈ S. Since �m ⊆ �, w is certainly toggled
by �. Since �m is minimal, S �⊆ G�w

m
(using (S1)), so some edge e of S is in G�m

but not in G�w
m
. Without loss of generality, e is an edge from a leaf l , because

for any other edge y → x in S we have l → z1 → · · · → zn = y → x in S for
some leaf l , and y → x is in G�w

m
whenever l → z1 is in G�w

m
. By Lemma 4.31,

the jump l → w is in G�m , hence also in G�.

LOCALIZED LEMMA 4.33. If x �� x, then y �� x for some &-vertex y ��� y
toggled by �.

PROOF. We essentially repeat the original proof of Lemma 4.33. By domina-
tion property L-SELF, x is in a switching cycle of G�. Iterate Localized Lemma
4.32, adding switching cycles until jumping to a &-vertex y not in a switching
cycle of G�. Then, y �� x by L-JUMP-CYCLE and L-TRANSITIVITY, and y ��� y by
L-SELF.

Proof that Cut Elimination Preserves the Toggling Condition (P3)

Preservation is immediate for the elimination of a literal cut pair P∗P⊥, since
for every set � of linkings on �, the &-vertices toggled by � and the switching
cycles of G� correspond before and after the elimination. Thus, consider the
elimination of an additive cut pair (A0&A1) ∗ (A⊥

0 ⊕ A⊥
1) or multiplicative cut

pair (A0

&

A1)∗ (A⊥
0 ⊗ A⊥

1).
Let θ ′ on the cut sequent �′ be the result of eliminating (A0&A1)∗(A⊥

0 ⊕ A⊥
1)

or (A0

&

A1)∗(A⊥
0 ⊗ A⊥

1) from the proof net θ on �. Let x be the & or

&

and y the

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

56 • D. J. D. Hughes and R. J. van Glabbeek

⊕ or ⊗ of the cut, let x0, x1 and y0, y1 be the arguments of x and y respectively,
and let c be the cut vertex∗between x and y .

.

Thus, in �′ each of c, x and y have been deleted, and cut vertices c0 between x0
and y0 and c1 between x1 and y1 have been added,

unless one of A0, A⊥
0 or A1, A⊥

1 disappeared in the “garbage collection” phase of
additive elimination, in which case only one of c0 or c1 is present.

Suppose θ ′ fails (P3), that is, there exists a set of two or more linkings �′ ⊆ θ ′

such that every & in �′ toggled by �′ is in a switching cycle of G�′ .

LEMMA 5.11. There exists a saturated set of linkings � ⊆ θ on � such that �

on � toggles the same &s as �′ on �′, except perhaps x in addition; x is toggled
by � on � iff the cut is additive and there are λl , λr ∈ �′ such that x0 is present
in � �λl and x1 is present in � �λr .

PROOF. Since eliminating an additive or multiplicative cut at most deletes
linkings, �′ can also be viewed as a set of linkings on �, and �′ ⊆ θ . Further-
more, �′ on � toggles exactly the same &s as �′ on �′, except perhaps x in
addition (in the case indicated in the lemma). Let � be a minimal saturated set
of linkings of θ on � containing �′. By minimality, � on � toggles the same &s
as �′ on �.

LEMMA 5.12. The vertex y is not in a switching cycle of G�.

PROOF. If y is in a switching cycle, by L-SELF then Localized Lemma 4.33,
� toggles a &-vertex w �� y with w ��� w. By L-SELF, w is in no switching
cycle of G�, and w �� x by L-EXTEND. Necessarily w �= x; otherwise, w �� w, a
contradiction. By Lemma 5.11, w is toggled by �′ on �′, hence29 is in a switching
cycle C of G�′ .

Suppose C does not go through both c0 and c1. Then, C induces a switching
cycle of G�, still containing w, obtained by rerouting a possible passage through
c0 or c1 to go through c instead, a contradiction.

Suppose C goes through both c0 and c1. Rerouting both passages to go through
c instead either yields two switching cycles through c with w in one of them,
a contradiction, or yields a switching cycle Cy through y and a switching path
πx = z0 · · · zn in G� with z0 →� x and zn →� x, such that w is either in Cy or

29Recall that �′ was chosen as a witness to the failure of (P3) for θ ′: any & in �′ toggled by �′ is in
a switching cycle of G�′ .

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 57

πx . The first possibility immediately yields a contradiction, so assume w ∈ πx .
By L-FORK x �� w, so by L-TRANSITIVITY w �� w, a contradiction.

LEMMA 5.13. Every &-vertex v �=x toggled by �on � is in a switching cycle of
G�.

PROOF. By Lemma 5.11, v is toggled by �′ on �′, hence29 is in a switching
cycle C of G�′ . Suppose C goes through c0 and/or c1. By rerouting the passage(s)
through c0 and/or c1 to go through c instead, C induces a switching cycle of G�

that contains y , contradicting Lemma 5.12. Thus, C avoids c0 and c1. Hence, C
is also a switching cycle of G�, containing v.

COROLLARY 5.14. If the cut is multiplicative, every & toggled by � on � is in
a switching cycle of G�.

Thus, if the cut is multiplicative, θ fails to be a proof net, a contradiction.
Henceforth, we assume the cut is additive.

LEMMA 5.15. The &-vertex x is the unique & toggled by � that is not in any
switching cycle of G�.

PROOF. Since θ is a proof net, � toggles a &-vertex v in no switching cycle
of G�. By Lemma 5.13, necessarily v = x.

Since � toggles x, by Lemma 5.11, there are λl , λr ∈ �′ such that x0 ∈ � �λl
and x1 ∈ � � λr . On �, every linking of �′ is consistent, so y0 ∈ � � λl and
y1 ∈ � �λr . No linking in � has an additive resolution containing both y0 and
y1, so y0 �∈ � � λr . Since � is saturated on �, there must be a &-vertex u in �

and λ0, λ1 ∈ � such that y0 ∈ � �λ0, y0 �∈ � �λ1 and u is the only & toggled by
{λ0, λ1}.

If y1 ∈ � � λ1, then, for i = 0, 1, there are leaves li above yi with jumps
li →� u; otherwise, y1 �∈ � �λ1 so c �∈ � �λ1 and c ∈ � �λ0 and there are leaves l0
above y and l1 above x with jumps li →� u. In either case, y lies on a switching
path from l0 to l1, so we have u �� y by L-FORK. Using L-EXTEND, we obtain
u �� x.

If u = x, then by L-SELF x is in a switching cycle in G�, a contradiction. Thus,
u �= x, so, by Lemma 5.13, u is in a switching cycle of G�; hence, u �� u by L-SELF,
so x �� u by Localized Lemma 4.33, Lemma 5.15 and L-SELF. Thus, x �� x by
L-TRANSITIVITY, so by L-SELF x is in a switching cycle of G�, a contradiction.

This completes the proof that eliminating a cut preserves the toggling condi-
tion (P3), and hence the proof that cut elimination is well defined on proof nets
(Proposition 5.4).

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital
Library.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

58 • D. J. D. Hughes and R. J. van Glabbeek

ACKNOWLEDGMENTS

Many thanks to Vaughan Pratt for invaluable feedback and support during the
long development of this work, and to Stanford University for its financial and
institutional support under account 1DMA644. Thanks to Paul-André Melliès
for suggesting to the first author in 1999 that the search for a satisfactory
notion of MALL proof net was an interesting and potentially fruitful research
topic. We are extremely grateful to Pierre-Louis Curien, Masahiro Hamano and
Robin Houston for their insightful and detailed technical comments. Thanks to
Nil Demirçubuk and Selena Clancy for their support and understanding.

REFERENCES

ABRAMSKY, S. AND JAGADEESAN, R. 1994. Games and full completeness for multiplicative linear
logic. J. Symb. Logic 59, 2, 543–574.

ABRAMSKY, S. AND MELLIÈS, P.-A. 1999. Concurrent games and full completeness. In Proceedings
of the 14th Annual IEEE Symposium on Logic in Computer Science (Trento, Italy, July). IEEE
Computer Society Press, Los Alamitos, CA, 431–442.

BARR, M. 1979. ∗-Autonomous categories. Lecture Notes in Mathematics, vol. 752. Springer-
Verlag, New York.

BELLIN, G. AND KETONEN, J. 1992. A decision procedure revisited: Notes on direct logic, linear logic
and its implementation. Theoret. Comput. Sci. 95, 115–142.

BLUTE, R. F., COCKETT, J. R. B., SEELY, R. A. G., AND TRIMBLE, T. H. 1996. Natural deduction and
coherence for weakly distributive categories. J. Pure Appl. Alg. 113, 229–296.

BLUTE, R., HAMANO, M., AND SCOTT, P. 2005. Softness of hypercoherences and MALL full complete-
ness. Ann. Pure Appl. Logic 131, 1–63.

BLUTE, R. F. AND SCOTT, P. J. 1996. Linear Läuchli semantics. Ann. Pure Appl. Logic 77, 101–142.
DANOS, V. AND REGNIER, L. 1989. The structure of multiplicatives. Arch. Math. Logic 28, 181–203.
DEVARAJAN, H., HUGHES, D. J. D., PLOTKIN, G. D. P., AND PRATT, V. R. 1999. Full completeness of the

multiplicative linear logic of Chu spaces. In Proceedings of the 14th Annual IEEE Symposium
on Logic in Computer Science (Trento, Italy, July). IEEE Computer Society Press, Los Alamitos,
CA, 234–245.

DOS̆EN, K. AND PETRIĆ, Z. 2004. Proof-Theoretical Coherence. Preprint, Mathematical Institute,
Belgrade.

GIRARD, J.-Y. 1987. Linear logic. Theoret. Comput. Sci. 50, 1–102.
GIRARD, J.-Y. 1990. Quantifiers in linear logic II. In Proceedings of the Nuovi problemi della logica

e della filosofia della scienze (Viareggio, Italy). Clueb, Bologna.
GIRARD, J.-Y. 1996. Proof-nets: The parallel syntax for proof theory. In Logic and Algebra. Lecture

Notes In Pure and Applied Mathematics, vol. 180. Marcel Dekker, New York.
GIRARD, J.-Y. 1999. On the meaning of logical rules I: Syntax vs. semantics. In Computational

Logic, U. Berger and H. Schwichtenberg, Eds., NATO ASI Series 165, vol. 14. Springer-Verlag,
New York, 215–272.

HAMANO, M. 2004. Softness of MALL proof-structures and a correctness criterion with Mix. Arch.
Math. Logic 43, 6, 751–794.

HUGHES, D. J. D. 2002. A canonical graphical syntax for non-empty finite products and sums.
Technical report, http://boole.stanford.edu/~dominic/papers.

HUGHES, D. J. D. 2004. Proofs without syntax. Submitted for publication, August 2004. Archived:
http://arxiv.org/abs/math/0408282.

HUGHES, D. J. D. 2005. Logic without syntax. Submitted to a conference, January 2005.
http://boole.stanford.edu/~dominic/papers.

HYLAND, J. M. E. AND ONG, C.-H. L. 1993. Fair games and full completeness for multiplicative
linear logic without the MIX-rule. On Ong’s web page, http://users.comlab.ox.ac.uk/luke.ong.

JOYAL, A. 1995. Free bicomplete categories. Math. Reports XVII, 219–225.
KETONEN, J. AND WEYHRAUCH, R. 1984. A decidable fragment of predicate calculus. Theoret. Com-

put. Sci. 32, 297–307.

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

P1: IAZ
ACMJ086-07 ACM-TRANSACTION September 21, 2005 3:21

Proof Nets for Unit-Free Multiplicative-Additive Linear Logic • 59

LAMARCHE, F. AND STRASSBURGER, L. 2005. Naming proofs in classical propositional logic. In Typed
Lambda Calculi and Application (TCLA 2005). Lecture Notes in Computer Science, vol. 3461.
Springer-Verlag, New York, 246–261.

LAURENT, O. AND TORTURA DE FALCO, L. 2004. Slicing polarized additive normalization. In Linear
Logic in Computer Science, T. Ehrhard, J.-Y. Girard, P. Ruet and P. Scott, Eds. London Mathe-
matical Society Lecture Note Series 316, Cambridge University Press.

LOADER, R. 1994. Linear logic, totality and full completeness. In Proceedings of the 9th Annual
IEEE Symposium on Logic in Computer Science (Paris, July). IEEE Computer Society Press, Los
Alamitos, CA, 292–298.

TAN, A. 1997. Full completeness for models of linear logic. Ph.D. thesis, King’s College, University
of Cambridge.

Received November 2003; revised January 2005; accepted March 2005

ACM Transactions on Computational Logic, Vol. 6, No. 4, October 2005.

