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While for synchronous deterministic cellular automata there is an accepted definition of reversibility,
the situation is less clear for asynchronous cellular automata. We first discuss a few possibilities and
then investigate what we call phase space invertible asynchronous cellular automata in more detail.
We will show that for each Turing machine there is such a cellular automaton simulating it, and that
it is decidable whether an asynchronous cellular automaton has this property or not, even in higher
dimensions.

1 Introduction

For synchronous deterministic cellular automata the topic of reversibility has gained a good deal of
attention. Reversibility is known to be decidable in one dimension [1] and undecidable in two and more
dimensions [4]. Reversible synchronous cellular automata are also computationally universal (see, for
example, [7] for the one-dimensional case).

In the present paper we take a first look at the analogous questions for asynchronous cellular au-
tomata. Hence the rest of this paper is organized as follows: In section 2 we introduce some notation
used in this paper and two variants of asynchronicity. In section 3 we discuss several possibilities for
the definition of “reversibility” of asynchronous cellular automata. In section 4 we show that each Tur-
ing machine can be simulated by a phase space invertible purely asynchronous cellular automaton, and
in section 5 that the property of being phase space invertible is decidable for several variants of asyn-
chronous cellular automata.

This paper is based on the diploma thesis of the first author [11].

2 Basics

2.1 General Notation

We write N for the set of natural numbers without 0, Z for the set of integers, 0 ∈ Zd for the d-tuple with
each component equal to zero, BA for the set of all total functions from A to B, and 2M for the powerset
of a set M. The cardinality of a set M is denoted as |M|. The restriction of a function f : A→ M to a
subset B⊆ A of its domain is written f |B.

In this paper we are interested in d-dimensional cellular automata
(d ∈ N) and the set of cells is usually denoted as R, that is, R = Zd . If the set of states of one

cell is denoted as Q, the set of all (global) configurations is QR. A neighborhood is a finite set N =
{n1, . . . ,nk} ⊆ Zd of d-tuples of integers. A
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local configuration is a mapping ` : N→ Q; thus QN is the set of all local configurations. The local
configuration ci+N observed by cell i ∈ R in the global configuration c ∈ QR is defined as

ci+N : N→ Q,

n 7→ c(i+n).

The behavior of each single cell of a deterministic cellular automaton is described by the local transition
function δ : QN → Q.

2.2 Asynchronous Updating Schemes

A local structure (R,N,Q,δ ) of a deterministic cellular automaton together with a prescription how cells
are updated induces a global transition relation R ⊆QR×QR describing the possible global steps which
satisfies

c R c′ =⇒∀i ∈ R : c′(i) ∈ {δ (ci+N),c(i)}.

We will use the same symbol for the related global transition function

R : QR→ 2QR
,

c 7→ {c′ | c R c′}.

With this notation c R c′ is equivalent to c′ ∈R(c) and both indicate that it is possible to reach global
configuration c′ ∈ QR in one step from global configuration c ∈ QR.

In a global step each cell has two possibilities: to be active and make a state transition according to
the rule or to be passive and maintain its state. Restrictions made by different updating schemes lead to
different possible behaviors, that is, different relations/functions R, of cellular automata.

Now, we will have a look at two different types of asynchronous updating.

Purely Asynchronous Updating. This version of asynchronous updating has been considered for
many years now [8, 3]. In order to distinguish it from the other form mentioned below we call it purely
asynchronous updating.

In each global step there are no restrictions on whether a cell may be active or passive. Thus in each
step there is a subset A ⊆ R of active cells which make a transition, while the cells in the complement
R\A are passive and simply maintain their state.

Note that A is is allowed to be empty. The additional requirement A 6= /0 might look irrelevant, but a
closer look at the constructions and theorems reveals that it would render the main results wrong (see for
example the remark after Lemma 6).

Given a deterministic cellular automaton and a set A⊆ R we define the function

∆A : QR→ QR,

∀i ∈ R : ∆A(c)(i) =

{
δ (ci+N) if i ∈ A,
c(i) if i /∈ A.

Synchronous updating is described by ∆R. The union of all ∆A, interpreted as relations, is the general
step relation for purely asynchronous updating, for which we will write

∆ =
⋃

A⊆R

∆A .
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Note that for each global configuration c ∈ QR holds

∆(c) = {∆A(c) | A⊆ R}.

Fully Asynchronous Updating. In the fully asynchronous updating scheme it is required that in each
global step exactly one cell is active. Using the notation from above one may say that one only looks at
the relations ∆{i} where the set of active cells is a singleton. For the union of these relations we will write

∆1 =
⋃
i∈R

∆{i} .

Even for relatively simple deterministic cellular automata, for example, the elementary deterministic
cellular automata or two-dimensional minority, the analysis of their behavior under fully asynchronous
updating is surprisingly “non-simple” [2, 9, 6].

To distinguish the global step relations of two purely or fully asynchronous cellular automata C and
G we will use ∆A, ∆, and ∆1 for the respective relations of C and ΓA, Γ, and Γ1 for the respective relations
of G.

3 Which Definition of Invertibility?

For the global transition function ∆ of a synchronous deterministic cellular automaton C the following
conditions are equivalent:
R1 Each global configuration c ∈ QR has exactly one predecessor under ∆.

R2 Each global configuration c ∈ QR has at most one predecessor under ∆.

R3 The inverse of the transition graph of C, that is, the direction of each transition is reversed, is the
transition graph of a(nother) synchronous deterministic cellular automaton C′.

For asynchronous cellular automata these are really different conditions. In that case, obviously, condi-
tion R1 still implies R2 as well as R3. But the reverse implications do not hold. In order to clarify this,
we first show that there is essentially only one asynchronous cellular automaton satisfying R1 or R2: The
identity.
Lemma 1. If a purely or fully asynchronous cellular automaton C = (R,N,Q,δ ) has a local transition
function δ which is non-trivial in the sense that δ (`) 6= `(0) holds for at least one local configuration `,
then there are two different global configurations ĉ and č and two singleton sets of active cells {â} and
{ǎ} such that ∆{â}(ĉ) = ∆{ǎ}(č). (Without loss of generality, we assume that 0 is in the neighborhood.)

In other words, there is a global configuration which has two different predecessors.
Lemma 1 shows that the requirement of R1 or R2 leaves the trivial identity as the only asynchronous

cellular automaton. Later, in section 4 and section 6, we will see, that there are non-trivial asynchronous
cellular automata satisfying R3. Therefore, for asynchronous cellular automata, R3 does not imply R1
or R2.
Proof (of Lemma 1). Let ` ∈ QN be a local configuration with q′ = δ (`) 6= `(0) = q.

Let a ∈ R be a cell large enough such that the neighborhoods (−a)+N and a+N are disjoint. We
consider a global configuration c∈QR in which cell−a and cell a both observe ` in their neighborhoods,
that is, c(−a)+N = ` and ca+N = `, in particular c(−a) = q and c(a) = q. Define two global configurations
ĉ and č which are identical to c with the only exceptions ĉ(−a) = q′ and č(a) = q′ respectively. Since
q′ 6= q the global configurations ĉ and č are different.

But the two global configurations ĉ′ = ∆{a}(ĉ) and č′ = ∆−a(č) are the same (see Figure 1).
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Figure 1: Displayed are the relevant parts of the global configurations c, ĉ, č, ĉ′ and č′ in the one-
dimensional case, that is, R = Z, with neighborhood N = {−1,0,1}. Grey colored cells are in state q and
black colored cells in state q′. The state of white colored cells is not further specified. The solid directed
lines indicate the two interesting global transitions.

• Each cell i /∈ {−a,a} is passive; therefore ĉ′(i) = ĉ(i) = c(i) = č(i) = č′(i).

• ĉ′(−a) = ĉ(−a) = q′ = δ (`) = δ (č(−a)+N) = č′(−a).

• ĉ′(a) = δ (ĉa+N) = δ (`) = q′ = č(a) = č′(a). �

In a short presentation given at Automata 2011 Sarkar and Das [10] also consider some kind of “re-
versibility of 1-dimensional asynchronous cellular automata”. We note that at least their setting is
completely different from ours: They only look at finite configurations (with both, periodic and null,
boundary conditions). And as far as we understand their Definitions 1 and 2 [10, p. 32], they call an
asynchronous cellular automaton, restricted to configurations of a fixed length, reversible if each (finite)
configuration has at least one predecessor. We do not pursue this line of thought.

Instead we use R3 as the guiding light. In order not to overload the word “reversible” with too many
meanings we will speak of phase space invertibility, which we will often abbreviate as invertibility.
Definition 2. A purely asynchronous cellular automaton C = (R,N,Q,δ ) is called phase space invert-
ible, if there is a purely asynchronous cellular automaton G = (R,M,Q,γ) such that for each pair of
global configurations c,c′ ∈ QR holds

c′ ∈ ∆(c) ⇐⇒ c ∈ Γ(c′),

which is equivalent to
∃A⊆ R : c′ = ∆A(c) ⇐⇒ ∃A′ ⊆ R : c = ΓA′(c′).

We give a name to the set of cells on which two global configurations differ in
Definition 3. The difference Dc,c′ of two global configurations c,c′ ∈ QR is defined as

Dc,c′ = {i ∈ R | ci 6= c′i}.

Note that Dc,c′ = Dc′,c.

Since for purely asynchronous cellular automata there are no restrictions on the set of active cells, cells
which do not change their state when active, can be removed from the activity set without changing the
outcome of a transition.

This suggests the characterization of invertibility given in
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Lemma 4. Two purely asynchronous cellular automata C = (R,N,Q,δ ) and G = (R,M,Q,γ) are inverse
to each other if, and only if, for each pair of global configurations c,c′ ∈ QR with Dc,c′ 6= /0 holds

c′ = ∆Dc,c′ (c) ⇐⇒ c = ΓDc,c′ (c
′).

Proof.

“only if”: Let C and G be inverse to each other. Moreover let c,c′ ∈ QR be an arbitrary pair of global
configurations with Dc,c′ 6= /0.
If c′ = ∆Dc,c′ (c), then there exists a set of active cells A′ such that c = ΓA′(c′) by premise. In this
case Dc,c′ ⊆ A′, since ci = c′i for each cell i 6∈ A′, and c = ΓDc,c′ (c

′), since ci = c′i for each cell
i ∈ A′ \Dc,c′ . Therefore

c′ = ∆Dc,c′ (c) =⇒ c = ΓDc,c′ (c
′).

The other direction follows by symmetry.

“if”: For each pair of global configurations c,c′ ∈ QR with Dc,c′ 6= /0 let

c′ = ∆Dc,c′ (c) ⇐⇒ c = ΓDc,c′ (c
′).

Moreover let c,c′ ∈ QR be an arbitrary pair of global configurations.
If there exists a set of active cells A such that c′ = ∆A(c), then c′ = ∆Dc,c′ (c), since Dc,c′ ⊆ A and
c′i = ci for each cell i ∈ A \Dc,c′ . In this case we get c = ΓDc,c′ (c

′) by premise if Dc,c′ 6= /0 or by
definition of Γ /0 and equality c = c′ if Dc,c′ = /0. Therefore

∃A⊆ R : c′ = ∆A(c) =⇒ c = ΓDc,c′ (c
′).

The other direction follows by symmetry. �

Analogously to definition 2 we define invertibility for fully asynchronous cellular automata in

Definition 5. A fully asynchronous cellular automaton C = (R,N,Q,δ ) is called phase space invertible,
if there is a fully asynchronous cellular automaton G = (R,M,Q,γ) such that for each pair of global
configurations c,c′ ∈ QR holds

c′ ∈ ∆1(c) ⇐⇒ c ∈ Γ1(c′),

which is equivalent to

∃a ∈ R : c′ = ∆{a}(c) ⇐⇒ ∃a′ ∈ R : c = Γ{a′}(c
′).

We characterize inversion for fully asynchronous cellular automata in

Lemma 6. Two fully asynchronous cellular automata C = (R,N,Q,δ ) and G = (R,M,Q,γ) are inverse
to each other if, and only if, for each pair of global configurations c,c′ ∈ QR with Dc,c′ = {a} holds

c′ = ∆{a}(c) ⇐⇒ c = Γ{a}(c
′)

and for each global configuration c ∈ QR holds

∃a ∈ R : c = ∆{a}(c) ⇐⇒ ∃a′ ∈ R : c = Γ{a′}(c).

A comparison with the formulation in lemma 4 shows a complication. This is due to the fact that for
fully asynchronous cellular automata one always needs at least one active cell.
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Proof (of lemma 6). Let c,c′ ∈ QR be an arbitrary pair of global configurations. There are three cases to
consider:

Case 1: |Dc,c′ | ≥ 2, that is, c and c′ differ in more than one cell. Then c′ /∈ ∆1(c) and c /∈ Γ1(c′), and
hence

c′ ∈ ∆1(c) ⇐⇒ c ∈ Γ1(c′).

Case 2: Dc,c′ = {a}, that is, c and c′ differ in exactly one cell a. To reach c′ in one step from c by C or c
in one step from c′ by G cell a must be active, thus

c′ ∈ ∆1(c) ⇐⇒ c′ = ∆{a}(c) and

c ∈ Γ1(c′) ⇐⇒ c = Γ{a}(c
′).

Case 3: Dc,c′ = /0, that is, c = c′. If c′ can be reached from c by C, that is, c′ ∈ ∆1(c), c may not be
reachable from c′ by G or be reachable with a different active cell, and vice versa. Thus, a better
characterization of this case is not as simple as in the other cases and is postponed until lemma 15.
Note, that for purely asynchronous cellular automata this case is trivial: Simply choose the empty
activity set. �

Lemma 4 is only correct because we allow the activity set to be empty. If we would not allow this, we
would additionally have to require for each global configuration c ∈ QR that

∃a ∈ R : c = ∆{a}(c) ⇐⇒ ∃a′ ∈ R : c = Γ{a′}(c).

As we will see, this makes it much more difficult to prove completeness and decidability.

4 Turing Completeness

We will show that invertible purely asynchronous cellular automata are computationally universal.
It is known that reversible deterministic synchronous cellular automata are computationally universal.

For one-dimensional cellular automata this can be shown by reversibly simulating reversible Turing
machines which are computationally universal; for d-dimensional cellular automata the result holds too
(more details can be found in [5]).

Hence any construction which transforms a reversible synchronous cellular automaton into an invert-
ible asynchronous cellular automaton is sufficient to show the computational universality of the latter
class. It turns out that Nakamura’s method [8] of transforming the local transition function of any syn-
chronous cellular automaton into one for an asynchronous cellular automaton while “basically preserving
its global behavior” (irrespective of reversibility) is all that is needed for purely asynchronous updating.

In general the following transformations which maintain local synchronicity and guarantee invert-
ibility are performed:

1. Each cell, additionally to its current state, remembers its previous state and manages a three-valued
time stamp.

2. Each active cell only changes its state, if thereby no information that may be needed by neighboring
cells is lost. This is the case, if neighboring cells have the same time stamp or are one step ahead.

3. Moreover, each active cell maintains its state, if the local configuration it observes is “illegal”.
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More specifically, let C = (R,N,Q,δ ) and G = (R,N,Q,γ) be two synchronous cellular automata with
corresponding global transition functions ∆ and Γ. The interesting case will be that they are inverse to
each other, that is, ∆−1 = Γ. Without loss of generality, we assume that the neighborhood includes 0 and
is symmetric, that is, N = {−n | n ∈ N}.

We will now construct an asynchronous cellular automaton C̄ = (R,N, Q̄, δ̄ ) from C. In order to
save parentheses we will occasionally write `n instead of `(n) (∀l ∈ QN ,n ∈ N) and ci instead of c(i)
(∀c ∈ QR, i ∈ R). The cellular automaton C̄ is defined as follows:

1. The set of states is Q̄ = Q×Q×{0,1,2}. For q̄ = (q1,q2, t) ∈ Q̄ we denote the first component as
curr(q̄), the second component as old(q̄) and the third as time(q̄).

2. Given a local configuration ¯̀ we say, that cell 0 is ahead (of its neighbors) if, and only if, there is
an n ∈ N such that time( ¯̀0) = time( ¯̀n)+1 ( mod 3).

3. If in a local configuration ¯̀ of C̄ cell 0 is not ahead define the corresponding current local C-
configuration curr( ¯̀) of C (not C̄ !) as

curr( ¯̀)n =

{
curr( ¯̀n) if time( ¯̀n) = time( ¯̀0),
old( ¯̀n) if time( ¯̀n) = time( ¯̀0)+1.

4. A local configuration ¯̀ is forward movable if cell 0 is not ahead and old( ¯̀0) = γ(curr( ¯̀)).

5. The local transition function δ̄ is then defined by

δ̄ ( ¯̀) =

{
( δ (curr( ¯̀)), curr( ¯̀0), time( ¯̀0)+1 ) if ¯̀ is forward movable,
¯̀0 otherwise.

Analogously, apply the following construction to G, resulting in Ḡ = (R,N, Q̄, γ̄).

1. Q̄ = Q×Q×{0,1,2}, curr(q̄), old(q̄) and time(q̄) are defined as above.

2. Given a local configuration ¯̀ we say, that cell 0 is behind (of its neighbors) if, and only if, there is
an n ∈ N such that time( ¯̀0) = time( ¯̀n)−1 ( mod 3).

3. If in a local configuration ¯̀ of C̄ cell 0 is not behind define the corresponding old local C-
configuration old( ¯̀) of G (not Ḡ !) as

old( ¯̀)n =

{
old( ¯̀n) if time( ¯̀n) = time( ¯̀0),
curr( ¯̀n) if time( ¯̀n) = time( ¯̀0)−1.

4. A local configuration ¯̀ is backward movable if cell 0 is not behind and curr( ¯̀0) = δ (old( ¯̀)).

5. The local transition function δ̄ is then defined by

γ̄( ¯̀) =

{
( old( ¯̀0), γ(old( ¯̀)), time( ¯̀0)−1 ) if ¯̀ is backward movable,
¯̀0 otherwise.

We now have

Theorem 7. If C and G are synchronous cellular automata which are inverse to each other, then C̄ and
Ḡ are purely asynchronous inverses of each other.
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Proof. Let c,c′ ∈ Q̄R be two arbitrary global configurations and

D = Dc,c′ = {i ∈ R | ci 6= c′i}

their difference. According to lemma 4 it is sufficient to prove

c′ = ∆̄D(c) ⇐⇒ c = Γ̄D(c′).

We will prove in detail that
c′ = ∆̄D(c) =⇒ c = Γ̄D(c′).

Because of the symmetry of the constructions is it not surprising that a proof of the inverse implication
can be given analogously.

Now let c′ = ∆̄D(c). Consider an arbitrary cell i ∈D. Since ci 6= c′i = δ̄ (ci+N) the local configuration
ci+N is forward movable, because otherwise cell i would maintain its state by definition of δ̄ . Therefore

∀n ∈ N : time(ci+n) ∈ {time(ci), time(ci)+1},
old(ci) = γ(curr(ci+N)),

curr(c′i) = δ (curr(ci+N)),

old(c′i) = curr(ci), and

time(c′i) = time(ci)+1.

Now consider an arbitrary neighbor n ∈ N. Since we have assumed that N is symmetric, cell i is a
neighbor of cell i+n.

There are two possible cases:

Case 1: time(ci+n) = time(ci).

Case 1.1: i+n ∈ D: Then ci+n 6= c′i+n and therefore

time(c′i+n) = time(ci+n)+1 = time(ci)+1 = time(c′i) and

curr(ci+N)(n) = curr(ci+n) = old(c′i+n) = old(c′i+N)(n).

Case 1.2: i+n 6∈ D: Then ci+n = c′i+n and therefore

time(c′i+n) = time(ci+n) = time(ci) = time(c′i)−1 and

curr(ci+N)(n) = curr(ci+n) = curr(c′i+n) = old(c′i+N)(n).

Case 2: time(ci+n) = time(ci)+1. Since i is a neighbor of i+n and time(ci) = time(ci+n)−1 we have
c′i+n = ci+n. Therefore

time(c′i+n) = time(ci+n) = time(ci)+1 = time(c′i) and

curr(ci+N)(n) = old(ci+n) = old(c′i+n) = old(c′i+N)(n).

Taken together we always have

time(c′i+n) ∈ {time(c′i), time(c′i)−1} and

curr(ci+N)(n) = old(c′i+N)(n),
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and therefore curr(c′i) = δ (curr(ci+N)) = δ (old(c′i+N)). As a consequence c′i+N is backward movable
and hence

curr(ci) = old(c′i) = curr(ΓD(c′)i),

old(ci) = γ(curr(ci+N)) = γ(old(c′i+N)) = old(ΓD(c′)i), and

time(ci) = time(c′i)−1 = time(ΓD(c′)i),

which is a long-winded way of saying ci = ΓD(c′)i. �

The above proof is incorrect if we restrict purely asynchronous cellular automata to non-empty sets of
active cells. The problematic case happens when the minimal difference D is empty. In this case we
cannot use it as the set of active cells. But nevertheless c′ = c may be reachable from c by C̄ in one step
with a non-empty set of active cells and we need to prove that the same holds for Ḡ. We do not know
whether this is always the case.

One part of the problem is that even if c is a global configuration in which the registers old, current
and time do not conform we need to show the property. This could be solved by adding more restrictions
that do not corrupt the simulation as in the second part of the definitions of backward and forward
movable.

5 Decidability

We will show that phase space invertibility is decidable for arbitrary-dimensional purely asynchronous
cellular automata and one-dimensional fully asynchronous cellular automata by presenting two algo-
rithms which always terminate and for any given automaton find an inverse if one exists.

For any given asynchronous cellular automaton C these algorithms only look for inverses among the
finitely many automata with the same neighborhood as C. This is justified in section 5.1 where we prove
that if C is invertible there is an inverse with the same neighborhood.

To decide whether two asynchronous cellular automata C and G are inverse to each other the algo-
rithms only verify that C and G are inverse to each other on a subspace of the phase space that is restricted
to global transitions in which only cells of a fixed finite subset of cells are active. In sections 5.2 and 5.3
we prove that this is sufficient for arbitrary-dimensional purely and one-dimensional fully asynchronous
cellular automata respectively.

5.1 Inverse Neighborhood and Translation Invariance

Consider any set of all global configurations that agree on cell 0 and all its neighbors. For each of these
global configurations make the global transition step where only cell 0 is active. All resulting global
configurations again agree on cell 0 and all its neighbors.

An inverse can undo all these transitions, whereby at most cell 0 is active. Regardless of the states
of cells besides cell 0 and its neighborhood, the inverse does the same and can thus not benefit from a
larger neighborhood.

Definition 8. We say that a cellular automaton C = (R,N,Q,δ ) has minimal neighborhood if it has no
dummy neighbors, meaning for each neighbor n ∈ N there exist local configurations `,`′ ∈ QN with
`|N\{n} = `′|N\{n} and `n 6= `′n such that δ (`) 6= δ (`′).

With this term we can rigorously state and prove
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Lemma 9. Two inverse purely or fully asynchronous cellular automata C =(R,N,Q,δ ) and G=(R,M,Q,γ)
with minimal neighborhoods have the same neighborhood.

Proof (by contradiction). Assume N 6= M. Without loss of generality, let N \M 6= /0. Then there exists
a neighbor n̊ ∈ N \M. Because the neighborhoods are minimal there also exist local configurations
ˆ̀, ˇ̀∈ QN with ˆ̀|N\{n̊} = ˇ̀|N\{n̊} and ˆ̀n̊ 6= ˇ̀n̊ such that δ ( ˆ̀) 6= δ ( ˇ̀).

Choose global configurations ĉ, č ∈ QR with

ĉn̊ = ˆ̀n̊ as well as čn̊ = ˇ̀n̊,

ĉ|N\{n̊} = ˆ̀|N\{n̊} = ˇ̀|N\{n̊} = č|N\{n̊}, and

ĉ|R\N = č|R\N .

For the global configurations d̂ = ∆{0}(ĉ) and ď = ∆{0}(č) we obtain

d̂0 = δ ( ˆ̀) 6= δ ( ˇ̀) = ď0,

d̂n̊ = ˆ̀n̊ 6= ˇ̀n̊ = ďn̊,

d̂|R\{0,n̊} = ď|R\{0,n̊}, and

d̂|R\{0} = ĉ|R\{0} as well as ď|R\{0} = č|R\{0}.

Because C and G are inverse to each other we furthermore have

ĉ = ΓDĉ,d̂
(d̂) as well as č = ΓDč,ď

(ď).

Note that Dĉ,d̂ ,Dč,ď ⊆ {0}. See Figure 2 for a graphical representation of the situation.

ĉ

d̂

č

ď

6= n̊

∆{0}ΓDĉ,d̂ ∆{0} ΓDč,ď

6= 0, n̊

Figure 2: The labels on the dashed lines indicate on which cells the connected global configurations
differ, the solid lines show possible global transitions.

Case 1: n̊ 6= 0. Then ĉ0 = č0. With d̂0 6= ď0 it follows that d̂0 6= ĉ0 or ď0 6= č0. Without loss of generality,
let d̂0 6= ĉ0. Then ĉ = Γ{0}(d̂) and thus ĉ0 = γ(d̂0+M).

Consider global configuration d̊ ∈ QR with d̊|R\{0} = ď|R\{0} and d̊0 = d̂0. From n̊ /∈ M we have
d̊0+M = d̂0+M and therefore

Γ{0}(d̊)0 = γ(d̊0+M) = γ(d̂0+M) = ĉ0 = č0 and

Γ{0}(d̊)|R\{0} = d̊|R\{0} = ď|R\{0} = č|R\{0},
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ĉ

d̂

č

ď

d̊

6= n̊

∆{0} Γ{0} ∆{0}

6= 0, n̊

6= n̊

6= 0
Γ{0}

Figure 3: The labels on the dashed lines indicate on which cells the connected global configurations
differ, the solid lines show possible global transitions.

which is a long-winded way of saying č = Γ{0}(d̊).

From d̊0 = d̂0 6= ĉ0 = č0 we conclude d̊ = ∆{0}(č) = ď and ď0 = d̊0 = d̂0, which contradicts d̂0 6= ď0;
see Figure 3.

Case 2: n̊ = 0. Then 0 /∈M and hence d̂0+M = ď0+M as well as ĉ0+M = č0+M.

Case 2.1: ĉ0 6= d̂0 or č0 6= ď0. Without loss of generality, let ĉ0 6= d̂0. Then ĉ = Γ{0}(d̂) and
therefore ĉ0 = γ(d̂0+M). With d̂0+M = ď0+M it follows that ĉ0 = γ(ď0+M) and therefore č 6=
ĉ = Γ{0}(ď). Hence č = Γ /0(ď) = ď and ĉ = Γ{0}(č).
Finally, from ĉ0 6= č0 we have č = ∆{0}(ĉ) and conclude ď = d̂, which contradicts d̂0 6= ď0;
see Figure 4.

ĉ

d̂

č

ď

6= 0

6= 0

∆{0} Γ{0} ∆{0}

Γ{0}

Figure 4: The labels on the dashed lines indicate on which cells the connected global configurations dif-
fer, the solid lines show possible global transitions, and the rounded rectangle signifies that the enclosed
global configurations are found to be identical during the proof.

Case 2.2: ĉ0 = d̂0 and č0 = ď0. Then ĉ= d̂ and č= ď. Consider global configuration b=Γ{0}(ĉ) =
Γ{0}(č). From ĉ0 6= č0 it follows that b0 6= ĉ0 or b0 6= č0.
Without loss of generality, let b0 6= ĉ0. Then ĉ = ∆{0}(b) and with č 6= ĉ also č = ∆ /0(b) = b.
Therefore ĉ = ∆{0}(č) = ď = č, which contradicts ĉ0 6= č0; see Figure 5.

Because every possible case led to a contradiction, the assumption must be false, meaning N = M. �

Since dummy neighbors can be added and removed without affecting the phase space we get
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ĉ
∆{0}

č
∆{0}

b

6= 0

Γ{0}

∆{0}

Γ{0}

Figure 5: The labels on the dashed lines indicate on which cells the connected global configurations
differ, the solid lines show possible global transitions.

Corollary 10. For each invertible asynchronous cellular automaton exists an inverse with the same
neighborhood. �

Let us now briefly consider translation invariance.
Definition 11. For each translation vector j ∈ R the map τ j : QR→ QR with

∀i ∈ R : τ j(c)i = ci+ j

is called ( j-)translation.

Similar to synchronous, asynchronous cellular automata are also translation invariant – we only need to
translate the set of active cells as well.
Lemma 12. For each translation vector j ∈ R and set of active cells A⊆ R holds

τ j ◦∆A = ∆A− j ◦ τ j,

where A− j = {a− j | a ∈ A}. �

5.2 Purely Asynchronous Cellular Automata

If every transition of a purely asynchronous cellular automaton, in which only cell 0 is active as well as
arbitrary neighbors of cell 0, can be inverted by another automaton and vice versa, then these automata
are inverse to each other.

This follows from locality properties and translation invariance of purely asynchronous cellular au-
tomata and is rigorously stated and proved in
Lemma 13. Two purely asynchronous cellular automata C = (R,N,Q,δ ) and G = (R,N,Q,γ) are in-
verse to each other if, and only if, for each pair of global configurations c,c′ ∈QR with 0∈Dc,c′ ⊆{0}∪N
holds

c′ = ∆Dc,c′ (c) ⇐⇒ c = ΓDc,c′ (c
′).

Proof. The forward direction follows directly from lemma 4. For the backward direction consider any
global configurations c,c′ ∈ QR.

First, let c′ = ∆Dc,c′ (c). Choose any cell i ∈ Dc,c′ that changes its state during the transition from c to
c′. Because C and G are translation invariant it follows that

ΓDc,c′ (c
′)i = τi(ΓDc,c′ (c

′))0

= ΓDc,c′−i(τi(c′))0

= ΓDc,c′−i(τi(∆Dc,c′ (c)))0

= ΓDc,c′−i(∆Dc,c′−i(τi(c)))0.
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With 0 ∈ Dc,c′− i we further get

ΓDc,c′ (c
′)i = Γ{0}(∆Dc,c′−i(τi(c)))0.

Because the transition state of cell 0 only depends on its neighborhood we farther deduce

ΓDc,c′ (c
′)i = Γ{0}(∆(Dc,c′−i)∩({0}∪N)(

d︷︸︸︷
τi(c))︸ ︷︷ ︸

d′

)0.

We can make cells, which do not change state if active, inactive without disturbing the transition from d
to d′:

d′ = ∆Dd,d′ (d).

The difference Dd,d′ of d and d′ is contained in {0}∪N. From 0 ∈ (Dc,c′− i)∩ ({0}∪N) we furthermore
get

d0 = τi(c)0 = ci 6= c′i = δ (ci+N) = δ (τi(c)0+N) = d′0,

meaning 0 ∈ Dd,d′ . Thus, by the premise of the backward direction,

d = ΓDd,d′ (d
′)

and therefore
ΓDc,c′ (c

′)i = Γ{0}(d
′)0 = ΓDd,d′ (d

′)0 = d0 = τi(c)0 = ci.

Because cell i was arbitrarily chosen, c = ΓDc,c′ (c
′) and we have proved the implication

c′ = ∆Dc,c′ (c) =⇒ c = ΓDc,c′ (c
′).

By symmetry we conclude that the implication

c′ = ∆Dc,c′ (c)⇐= c = ΓDc,c′ (c
′)

holds as well. Because the global configurations c and c′ were arbitrarily chosen C and G are inverse to
each other according to lemma 4. �

Thus only cell 0, the neighbors of cell 0, and the neighbors of each neighbor of cell 0 have to be consid-
ered when testing whether two purely asynchronous cellular automata are inverse to each other, because
the transition state of cell 0 or an arbitrary neighbor of cell 0 only depends in its observed local configu-
ration.

Theorem 14. Phase space invertibility is decidable for purely asynchronous cellular automata.

Proof. Let C = (R,N,Q,δ ) be an arbitrary purely asynchronous cellular automaton. Consider each of
the |Q||Q||N| purely asynchronous cellular automata G = (R,N,Q,γ) in turn. Test whether for each pair
c,c′ ∈ Q{0}∪N∪(N+N) of finite configurations with 0 ∈ Dc,c′ ⊆ {0}∪N the equivalence

c′ = ∆Dc,c′ (c) ⇐⇒ c = ΓDc,c′ (c
′)

holds. If this is the case for one automaton G, then C and G are inverse to each other, and C is invertible.
Otherwise C is not invertible.

Note that N +N = {m+n | m,n ∈ N}. �
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Remark. It is in fact not necessary to consider all purely asynchronous cellular automata with the same
neighborhood. One can show that if C is invertible, the local transition function of its inverse can be
constructed easily from the one of C. Thus only one candidate needs to be considered.

For further details see [11, section 3.5].

The above proofs are incorrect if we restrict purely asynchronous cellular automata to non-empty sets of
active cells. But at least in the one-dimensional case invertibility is still decidable (see [11, section 6.2.3]
for further details). This is due to the fact that a purely asynchronous cellular automaton that is restricted
to non-empty sets of active cells is invertible if, and only if, it is invertible without the restriction and
invertible as fully asynchronous cellular automaton (see [11, corollary 3.15]). And, as we shall see, the
latter is decidable in the one-dimensional case.

5.3 Fully Asynchronous Cellular Automata

In each transition of fully asynchronous cellular automata exactly one cell is active, whereas in each
transition of purely asynchronous cellular automata arbitrary cells are active. One may naively think
that deciding invertibility is thus easier for fully than for purely asynchronous cellular automata. But the
added difficulty is that in every transition one cell must be active.

To decide whether two fully asynchronous cellular automata C and G are inverse to each other or not,
we have to show that if C transits a global configuration c into c′ when cell a is active, that G can transit
c′ into c when a cell a′ is active or that no such cell exists, and vice versa.

If ca 6= c′a then a and a′ must be the same cell or C and G are not inverse. But if ca = c′a then a and
a′ are in general different cells. So how or where can we either find such a cell a′ or decide that no such
cell exists?

We answer this question in the one-dimensional case in

Lemma 15. Let C = (Z,N,Q,δ ) and G = (Z,N,Q,γ) be two fully asynchronous one-dimensional cel-
lular automata. Define the maximal distance of a neighbor

m =

{
maxn∈N |n| if N 6= /0,
−∞ if N = /0,

and a finite set of active candidate cells

A =

{
{−|Q|2m+1, . . . ,−1,0,1, . . . , |Q|2m+1} if m 6=−∞,
{0} if m =−∞.

Then C and G are inverse to each other if, and only if, for each pair of global configurations c,c′ ∈ QZ

with Dc,c′ = {0}
c′ = ∆{0}(c) ⇐⇒ c = Γ{0}(c

′) (1)

and for each pair of global configurations c,c′ ∈ QZ with c = ∆{0}(c) and c′ = Γ{0}(c′)

∃a ∈A : c = Γ{a}(c) and ∃a′ ∈A : c′ = ∆{a′}(c
′). (2)

In the proof of this lemma we need segments of global configurations: For each global configuration
c ∈ QZ and cells i, j ∈ Z with i ≤ j the (i, j)-segment (of c) c[i, j] is the ( j− i+ 1)-tuple with c[i, j] =
(ci,ci+1, . . . ,c j).
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Proof. If there is only one state, meaning |Q|= 1, there is nothing to show. We thus assume |Q| ≥ 2.

“⇒” Let C and G be inverse to each other. According to lemma 6: Equality (1) holds. To show
equality (2) we choose an arbitrary global configuration c ∈ QZ with c = ∆{0}(c) or c = Γ{0}(c).
At first, let N = /0. Then A = {0}. Let c = ∆{0}(c). Assume c 6= Γ{0}(c). Consider the global
configuration c′ ∈ QZ with c′i = c0 for each cell i ∈ Z. Then c′ = ∆{0}(c′) and from

c′a = c0 6= Γ{0}(c)0 = Γ{a}(c
′)a

we obtain c′ 6= Γ{a}(c′) for each cell a ∈ Z – in contradiction to the premise that C and G are
inverse to each other. Thus our assumption is false, meaning c = Γ{0}(c). One can analogously
show that c = Γ{0}(c) implies c = ∆{0}(c).
Now let N 6= /0. The idea is to construct a global configuration c′ ∈ QZ for which

c′ ∈ ∆1(c′) ⇐⇒ c′ ∈ Γ1(c′)

does not hold if there does not exist a cell a ∈ A such that c = Γ{a}(c), if c = ∆{0}(c), or c =
∆{a}(c), if c = Γ{0}(c), contradicting that C and G are inverse to each other.

Consider the |Q|2m+1 +1 segments
c[α−m,α +m]

for cells α ∈ {0,1, . . . , |Q|2m+1}. Because at most |Q|2m+1 of these segments are different, there
exist two cells α,α ′ ∈ {0,1, . . . , |Q|2m+1} with α < α ′ such that

c[α−m,α +m] = c[α ′−m,α ′+m].

Analogously there exist two cells β ′,β ∈ {−|Q|2m+1, . . . ,1,0} with β ′ < β such that

c[β ′−m,β ′+m] = c[β −m,β +m].

β ′ β a

ca+N

α α ′

Define for each index k ∈ N

αk = α
′+(k−1)(α ′−α)−m,

α
′
k = α

′+ k(α ′−α)+m,

and

βk = β
′− (k−1)(β −β

′)+m,

β
′
k = β

′− k(β −β
′)−m.

β ′4, . . . ,β4

β ′3, . . . ,β3

β ′2, . . . ,β2

β ′1, . . . ,β1

β ′ β a

ca+N

α α ′

α1, . . . ,α
′
1

α2, . . . ,α
′
2
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Because 0≤ α < α ′ and β ′ < β ≤ 0 we have

−m < α
′−m = α1 < α2 < α3 < · · · ,

m < α
′+m < α

′+(α ′−α)+m = α
′
1 < α

′
2 < α

′
3 < · · · ,

and

· · ·< β3 < β2 < β1 = β
′+m < m,

· · ·< β
′
3 < β

′
2 < β

′
1 = β

′− (β −β
′)−m < β

′−m <−m.

Consider the global configuration c′ ∈ QZ with

c′[β ′−m,α ′+m] = c[β ′−m,α ′+m],

c′[αk,α
′
k] = c[α−m,α ′+m] (∀k ∈ N), and

c′[β ′k,βk] = c[β ′−m,β +m] (∀k ∈ N).

β ′4, . . . ,β4

β ′3, . . . ,β3

β ′2, . . . ,β2

β ′1, . . . ,β1

β ′ β a

ca+N

α α ′

α1, . . . ,α
′
1

α2, . . . ,α
′
2

This global configuration exists, because the rear and front parts in which the definitions of two
consecutive indices overlap are precisely the identical segments c[α−m,α +m] = c[α ′−m,α ′+
m] and c[β ′−m,β ′+m] = c[β −m,β +m]. In fact, for each index k ∈ N it holds that

{β ′−m, . . . ,α ′+m}∩{α1, . . . ,α
′
1}= {α ′−m, . . . ,α ′+m},

{β ′−m, . . . ,α ′+m}∩{β ′1, . . . ,β1}= {β ′−m, . . . ,β ′+m},
{αk, . . . ,α

′
k}∩{αk+1, . . . ,α

′
k+1}= {αk+1, . . . ,α

′
k}

= {α ′k−2m, . . . ,α ′k}
= {αk+1, . . . ,αk+1 +2m},

{β ′k, . . . ,βk}∩{β ′k+1, . . . ,βk+1}= {β ′k, . . . ,βk+1}
= {β ′k, . . . ,β ′k +2m}
= {βk+1−2m, . . . ,βk+1},

and

c′[α ′−m,α ′+m] = c[α ′−m,α ′+m]

= c[α−m,α +m] = c′[α1,α1 +2m],

c′[β ′−m,β ′+m] = c[β ′−m,β ′+m]

= c[β −m,β +m] = c′[β1−2m,β1],

c′[α ′k−2m,α ′k] = c[α ′−m,α ′+m]

= c[α−m,α +m] = c′[αk+1,αk+1 +2m],

c′[β ′k,β
′
k +2m] = c[β ′−m,β ′+m]

= c[β −m,β +m] = c′[βk+1−2m,βk+1].
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We will now show that for the global configuration c′ any cell whose neighborhood is not contained
in A behaves the same as at least one cell whose neighborhood is contained in A if active. Note
that N ⊆ {−m, . . . ,m}.
Assertion. For each cell a′ ∈ Z exists a cell a ∈ {β ′, . . . ,α ′} such that

c′[a′−m,a′+m] = c[a−m,a+m].

Proof. Let a′ ∈ Z be an arbitrary cell. If a′ ∈ {β ′, . . . ,α ′}, choose a = a′. From now on let
a′ /∈ {β ′, . . . ,α ′}. We consider only the case that a′ ≥ α ′+1. The case a′ ≤ β ′−1 can be shown
analogously. Thus let a′ ≥ α ′+1.
Because a′ ≥ α1 +m and each of the intersections {αk, . . . ,α

′
k}∩{αk+1, . . . ,α

′
k+1} (∀k ∈ N) and

{a′−m, . . . ,a+m} contains 2m+1 elements, there exists an index k ∈ N such that

{a′−m, . . . ,a′+m} ⊆ {αk, . . . ,α
′
k}.

Choose a = a′− k(α ′−α) ∈ {α, . . . ,α ′}. Then

c′[a′−m,a′+m] = c[a−m,a+m]. �

With this setup we can conclude the proof:

1. Let c = ∆{0}(c). From
c′[−m,m] = c[−m,m]

we have c′ = ∆{0}(c′). Assume that for each cell a ∈A it holds that c 6= Γ{a}(c). Choose an
arbitrary cell a′ ∈ Z. Then there is a cell a ∈ {β ′, . . . ,α ′} such that

c′[a′−m,a′+m] = c[a−m,a+m].

Because cell a is contained in A it holds that

c′a′ = ca 6= Γ{a}(c)a = Γ{a′}(c
′)a′

and thus c′ 6= Γ{a′}(c′). Because a′ ∈ Z was arbitrarily chosen, this contradicts the premise
that C and G are inverse to each other. Thus our assumption is false, meaning there exists a
cell a ∈A with c = Γ{a}(c).

2. Let c = Γ{0}(c). Like above one shows that there exists a cell a′ ∈A with c = ∆{a′}(c).

Therefore equality (2) holds as well.

“⇐” For each pair of global configurations c,c′ ∈ QR with Dc,c′ = {a} holds

c′ = ∆{a}(c) ⇐⇒ τa(c′) = τa(∆{a}(c)) = ∆{0}(τa(c))
eq. (1)⇐⇒ τa(c) = Γ{0}(τa(c′)) = τa(Γ{a}(c

′))

⇐⇒ c = Γ{a}(c
′),

and for each global configuration c ∈ QR holds

∃a ∈ R : c = ∆{a}(c)

=⇒ τa(c) = τa(∆{a}(c)) = ∆{0}(τa(c))
eq. (2)
=⇒ ∃a′ ∈ R : τa(c) = Γ{a′}(τa(c)) = τa(Γ{a′+a}(c))

=⇒ c = Γ{a′+a}(c),
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and analogously
∃a ∈ R : c = Γ{a}(c) =⇒∃a′ ∈ R : c = ∆{a′+a}(c).

Hence, by lemma 6, the cellular automata C and G are inverse to each other. �

Thus only cell 0, the neighbors of cell 0, the cells in A and the neighbors of each cell in A have to be
considered when testing whether two fully asynchronous one-dimensional cellular automata are inverse
to each other.
Theorem 16. Phase space invertibility is decidable for fully asynchronous one-dimensional cellular
automata.
Proof. Let C = (Z,N,Q,δ ) be an arbitrary fully asynchronous one-dimensional cellular automaton and
T = {0}∪N∪A ∪ (A +N). Consider each of the |Q||Q||N| fully asynchronous one-dimensional cellular
automata G = (Z,N,Q,γ) in turn. Test whether for each pair c,c′ ∈ QT of finite configurations with
Dc,c′ = {0} the equivalence

c′ = ∆{0}(c) ⇐⇒ c = Γ{0}(c
′)

holds and for each finite configuration c ∈ QT the implications

c = ∆{0}(c) =⇒∃a ∈A : c = Γ{a}(c) and

c = Γ{0}(c) =⇒∃a ∈A : c = ∆{a}(c)

hold. If this is the case for one automaton G, then C and G are inverse to each other, and C is invertible.
Otherwise C is not invertible.

Note that A +N = {a+n | a ∈A ,n ∈ N}. �

Remark. It is in fact not necessary to consider all fully asynchronous one-dimensional cellular automata
with the same neighborhood and states. One can show that if C is invertible, the local transition function
of its inverse can be constructed easily from the one of C. Thus only one candidate needs to be considered.

For further details see [11, section 3.5].

6 Elementary Cellular Automata

Using the decision algorithms it can easily be shown that exactly the purely asynchronous elementary
cellular automata with Wolfram numbers 0, 35, 43, 49, 51, 59, 113, 115, 204, and 255 are invertible and
that exactly the fully asynchronous elementary cellular automata with Wolfram numbers 33, 35, 38, 41,
43, 46, 49, 51, 52, 54, 57, 59, 60, 62, 97, 99, 102, 105, 107, 108, 113, 115, 116, 118, 121, 123, 131, 139,
145, 147, 150, 153, 155, 156, 195, 198, 201, 204, 209, and 211 are invertible.

For further details see [11, chapter 7].

7 Summary and Outlook

We have introduced a definition of invertibility for asynchronous cellular automata, namely phase space
invertibility, and shown that invertible purely asynchronous cellular automata are computationally uni-
versal, that invertibility can be decided for arbitrary-dimensional purely and one-dimensional fully asyn-
chronous cellular automata.

It remains open whether invertible fully asynchronous cellular automata are computationally univer-
sal and whether invertibility for higher-dimensional fully asynchronous cellular automata is decidable.
If the latter can be shown to be true then invertibility of purely asynchronous cellular automata restricted
to non-empty sets of active cells would also be decidable in higher dimensions.
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