
EPTCS 192

Proceedings of the

Thirteenth International Workshop on the

ACL2 Theorem Prover and Its
Applications

Austin, Texas, USA, 1-2 October 2015

Edited by: Matt Kaufmann and David L. Rager

Published: 18th September 2015
DOI: 10.4204/EPTCS.192
ISSN: 2075-2180
Open Publishing Association

i

Table of Contents

Table of Contents .. i

Preface .. iii

Extended Abstract: A Brief Introduction to Oracle’s Use of ACL2 in Verifying Floating-point and
Integer Arithmetic .. 1

David L. Rager, Jo Ebergen, Austin Lee, Dmitry Nadezhin, Ben Selfridge and Cuong K. Chau

Fix Your Types .. 3
Sol Swords and Jared Davis

Second-Order Functions and Theorems in ACL2 17
Alessandro Coglio

Fourier Series Formalization in ACL2(r) 35
Cuong K. Chau, Matt Kaufmann and Warren A. Hunt Jr.

Perfect Numbers in ACL2. .. 53
John Cowles and Ruben Gamboa

Extending ACL2 with SMT Solvers .. 61
Yan Peng and Mark Greenstreet

Reasoning About LLVM Code Using Codewalker 79
David S. Hardin

Stateman: Using Metafunctions to Manage Large Terms Representing Machine States 93
J Strother Moore

Proving Skipping Refinement with ACL2s 111
Mitesh Jain and Panagiotis Manolios

iii

Preface

This volume contains the proceedings of the Thirteenth International Workshop on the ACL2 Theorem
Prover and Its Applications, ACL2 2015, a two-day workshop held in Austin, Texas, USA, on October
1-2, 2015. ACL2 workshops occur at approximately 18-month intervals and provide a major techni-
cal forum for researchers to present and discuss improvements and extensions to the theorem prover,
comparisons of ACL2 with other systems, and applications ofACL2 in formal verification.

ACL2 is a state-of-the-art automated reasoning system thathas been successfully applied in academia,
government, and industry for specification and verificationof computing systems and in teaching com-
puter science courses. In 2005, Boyer, Kaufmann, and Moore were awarded the 2005 ACM Software
System Award for their work on ACL2 and the other theorem provers in the Boyer-Moore family.

The proceedings of ACL2 2015 include the eight technical papers and one extended abstract that
were presented at the workshop. Each submission received atleast three reviews. The workshop also
included two invited talks:Lessons Learned over 45 Years in Theorem Proving, by J Strother Moore,
andVerification in the Age of Integration, by John O’Leary. The workshop also included severalrump
sessionsdiscussing ongoing research and a panel discussion about the use of ACL2 within industry.

We thank the members of the Program Committee and their sub-reviewers for providing careful and
detailed reviews of all the papers. We thank the members of the Steering Committee for their help and
guidance. We thank EasyChair for the use of its excellent conference management system. We thank
EPTCS and the arXiv for publishing the workshop proceedingsin an open-access format.

Matt Kaufmann and David L. Rager
October 2015

iv

Program Chairs

Matt Kaufmann
David L. Rager

Program Committee

Rob Arthan Lemma 1 Ltd.
Jared Davis Centaur Technology Inc.
Ruben Gamboa University of Wyoming
David Greve Rockwell Collins Inc.
David Hardin Rockwell Collins Inc.
Marijn Heule The University of Texas at Austin
Warren A. Hunt, Jr. The University of Texas at Austin
Matt Kaufmann The University of Texas at Austin
Panagiotis Manolios Northeastern University
Francisco Jesús Martı́n Mateos University of Sevilla
John O’Leary Intel Corporation
Sam Owre SRI International
David L. Rager Oracle Corporation
Sandip Ray Intel Corporation
Julien Schmaltz Eindhoven University of Technology
Anna Slobodova Centaur Technology Inc.
Eric Smith Kestrel Institute
Freek Verbeek Open University of The Netherlands

Additional Reviewers

Coglio, Alessandro

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 1–2, doi:10.4204/EPTCS.192.1

c© Oracle and/or its affiliates

A Brief Introduction to Oracle’s Use of ACL2 in Verifying
Floating-point and Integer Arithmetic

David L. Rager, Jo Ebergen, Austin Lee, Dmitry Nadezhin, BenSelfridge
Oracle

{david.rager,jo.ebergen,austin.lee,dmitry.nadezhin,ben.selfridge}@oracle.com

Cuong K. Chau
The University of Texas at Austin

ckcuong@cs.utexas.edu

Oracle has developed new implementations for floating-point division and square root and integer
division. The Oracle implementations are a variant of the Goldschmidt algorithm [3], an algorithm that
serves as the basis for a different AMD K7 implementation [2]and other processors. Our task was to
verify the correctness of these implementations all the waydown to the Verilog by showing bit-for-bit
equivalence with the IEEE 754 Standard on floating-point arithmetic and the integer divide specification
in the SPARC ISA. Performing such verifications involved many steps:

• Parsing the Verilog and bringing the design into the ACL2 logic – parsing,

• Abstracting low-level bit-oriented primitives, (e.g.,nands, nors, muxes, etc.) to higher-level data
types and mathematical operations like addition and multiplication –algorithm extraction, and

• Proving that sequences of these mathematical operations satisfy the IEEE 754 and Integer Divide
specifications –algorithm verification.

This work is similar in spirit to work done by AMD [2], Centaur[4], and others.

1 Parsing

We wanted to make as few assumptions as reasonably possible,and we wanted as much of what we did
to be mechanically checked. As such, it was important to reason directly about the Verilog – not just an
abstraction of the Verilog created by hand that would then have to be maintained every time the Verilog
changed. If the implementation changes in a subtle and incorrect way, we wanted our proofs to break!

We used the ACL2 System and Libraries [1] to symbolically simulate the circuit and verify its cor-
rectness. Specifically, we used the GL system to quickly reason about finite objects (i.e., bit vectors).
We used the VL 2014 Parser to parse the Verilog, and we used Esim to determine the semantics of the
resulting parse trees. Finally, we used the Symbolic Test Vector (STV) framework to initialize values of
the circuit and provide the timing abstractions necessary to reason about values that the circuit receives
as input and returns as output.

2 Algorithm Extraction

The Goldschmidt algorithm consists of a repetition of multiplications, additions, and bit-wise comple-
ments. We wanted the person verifying the Goldschmidt algorithm against our specifications to be able
to reason in terms of these high-level primitives (as opposed to reasoning aboutnand’s andnor’s). As

2 A Brief Introduction to Oracle’s Use of ACL2 in Verifying Floating-point and Integer Arithmetic

such, we proved that various compositions of low-level operations implement these higher-level mathe-
matical operations. We found the GL system to be very helpfulin many of these proofs, but GL (really,
BDDs and SAT solvers) could not automatically prove all of the necessary abstractions. For example,
we used traditional ACL2 rewriting to reason about the composition of Booth encoders and CSA trees to
implement multiplication.

3 Algorithm Verification

Our final task was to show that the aforementioned series of mathematical operations implemented the
IEEE 754 specification of floating-point division and squareroot and our specification for integer di-
vision. This first required writing such specifications, which we validated against millions of concrete
test vectors. We then proved that the series of mathematicaloperations from the algorithm extraction
implement these specifications. This proof was a sizable effort.

4 Results

At the end of it all, we have proved, under some assumptions, that the Verilog matches bit for bit with
our extracted algorithm. We have also proved that the extracted algorithm satisfies the IEEE floating-
point division and square root specifications and the integer division specifications. Thus, transitively,
we know that the Verilog implements these specifications.

We discovered no errors with respect to the complete IEEE specification (including exceptions, de-
normals, and special values) in the Verilog design. As a result, we know, for example, that we have
neither omitted an entry from our lookup table, nor accidentally fused together a wire in our multiplier.

Despite the absence of RTL errors, this verification effort was still necessary because there was
simply no other way to obtain a reasonable amount of coverage. Another benefit of our work was the
discovery of several optimizations, which were all implemented and proven correct. Our thorough error
analysis led to an optimization in the lookup tables for division and square root, yielding a reduction of
75% and 50% in the two lookup tables, respectively. Other optimizations led to simplifications in the
hardware and in the proof. We look forward to reporting on these at a later date.

5 Acknowledgements

We thank Jeff Brooks, Greg Grohoski, Warren Hunt, Matt Kaufmann, Govind Murugan, Chris Olson,
and Greg A. Smith for their technical help and support.

References

[1] ACL2 (2015):ACL2 Documentation. Http://www.cs.utexas.edu/users/moore/acl2/v7-1/combined-manual/.

[2] S.F. Oberman (1999):Floating point division and square root algorithms and implementation in the AMD-
K7TM microprocessor. In: Computer Arithmetic, 1999. Proceedings. 14th IEEE Symposium on, pp. 106–115,
doi:10.1109/ARITH.1999.762835.

[3] S.F. Oberman & M. Flynn (1997):Division algorithms and implementations. Computers, IEEE Transactions
on46(8), pp. 833–854, doi:10.1109/12.609274.

[4] A. Slobodova, J. Davis, S. Swords & W. Hunt (2011):A flexible formal verification framework for indus-
trial scale validation. In: Formal Methods and Models for Codesign (MEMOCODE), 2011 9thIEEE/ACM
International Conference on, pp. 89–97, doi:10.1109/MEMCOD.2011.5970515.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 3–16, doi:10.4204/EPTCS.192.2

c© Sol Swords and Jared Davis
This work is licensed under the
Creative Commons Attribution License.

Fix Your Types

Sol Swords Jared Davis
Centaur Technology, Inc.

7600-C N. Capital of Texas Hwy, Suite 300
Austin, TX 78731

{sswords,jared}@centtech.com

When using existing ACL2 datatype frameworks, many theorems require type hypotheses. These
hypotheses slow down the theorem prover, are tedious to write, and are easy to forget. We describe a
principled approach to types that provides strong type safety and execution efficiency while avoiding
type hypotheses, and we present a library that automates this approach. Using this approach, types
help you catch programming errors and then get out of the way of theorem proving.

1 Introduction

ACL2 is often described as “untyped,” and this is certainly true to some degree. Terms like (+ 0

"hello"), which would be not be accepted by the static type checks of languages like Java, are legal
and well-defined in the logic, and can even be executed so long as guard checking is disabled. Terms like
(/ 5 0), which would be well-typed but would cause a run-time error in most programming languages,
are also logically well-defined and can also be executed when guards are not checked.

Of course, most ACL2 code is written with particular types in mind, often expressed as the guards
of the functions. When proving properties of such code, it’s easy to get tripped up by corner cases
where some variables of the theorem are of the wrong types. To avoid this, one strategy is to begin a
theorem with a list of type hypotheses, one for each variable mentioned. These hypotheses act as a kind
of insurance: we may not know whether they’re necessary or not, but including them might save us from
having to debug failed proofs caused by missing type assumptions.

On the other hand, lists of type hypotheses are often repetitive, take time to write, and make the
formulas we’re proving larger and less elegant. We can hide much of this with macros, e.g., the define
utility has special options like :hyp :guard for including the guard as a hypothesis in return-value
theorems. But even then, these hypotheses will cause extra work for the rewriter since it must relieve
them before it can apply our theorem, and may make it harder to carry out later proofs since our theorem
will not be applied unless its hypotheses can be relieved.

Accordingly, after we have proven a theorem, a good practice is to try to “strengthen” it by removing
any unnecessary hypotheses. There is even a tool, remove-hyps, that tries to automatically identify
unnecessary hypotheses ex post facto. While strengthening theorems is useful, it is limited. For instance,
we (of course) cannot eliminate type hypotheses that are actually necessary for the formula to be a
theorem. It can also be tedious, e.g., automation such as define’s :hyp :guard does not provide a
convenient way to remove parts of the guard. This is not a purely theoretical concern; see for instance
ACL2 Issue 167, a request for such a feature.

An alternate strategy, which is well-known and certainly not novel, is to more carefully code our
functions so that they always treat ill-typed inputs according to some particular fixing convention. By
following this approach, we can typically avoid the need for type hypotheses altogether. Many examples
of this approach can be found throughout ACL2. To name a few:

4 Fix Your Types

• Arithmetic functions treat non-numbers as 0; functions expecting a particular type of number
(integer, natural) treat anything else as 0—e.g., zp, nth, logbitp.

• Functions expecting a string treat a non-string as ""—e.g., char, (coerce x ’list).

• Any atom is treated as nil by car, cdr, endp, etc.

• The std/osets [5] library functions treat non-sets as nil.

Following this strategy typically takes a small bit of initial setup, e.g., to agree upon and implement
a fixing convention. But once this convention is in place, type hypotheses can be eliminated from many
theorems. For instance, we have unconditional theorems such as a + b = b + a without hypotheses
about a and b being numbers, and X ⊆ X without hypotheses about X being a set. By eliminating type
hypotheses, these theorems become easier to read and write, and can be more efficiently and reliably
used to simplifying later proof goals.

Unfortunately, existing datatype definition frameworks for ACL2 don’t provide any easy way to
follow the fixing strategy. For example, consider the available macros for introducing product types, like
defstructure [3], defdata [4], and defaggregate. These macros define constructors and accessor
functions that do not support any particular convention for dealing with ill-typed fields or products.
Consider a simple student structure introduced by:

(defaggregate student

((name stringp)

(age natp)))

The constructor and accessors for student structures will have strong guards that are useful for
revealing programming errors in function definitions. However, in the logic, nothing prevents us from
invoking the student constructor on ill-typed arguments. For instance, in cases like:

(make-student :name 6 :age "Calista")

the constructor fails to produce a valid student-p. The accessors suffer from similar problems, for
instance the following term is equal to 6, which is not a well-typed student name:

(student->name (make-student :name 6 :age "Calista"))

Consequently, reasoning about these structures almost always requires type hypotheses. Since the types
defined by these frameworks are often found at the lowest levels of ACL2 models, these hypotheses
percolate upwards, infecting the entire the code base!

In this paper, we address this problem with the following contributions:

• We present, in precise terms, a fixtype discipline for working with types in ACL2 (Section 2).
This discipline allows efficient reasoning via avoiding type hypotheses, strong type checking via
ACL2’s guard mechanism, and preserves efficient execution via mbe.

• Manually following the fixtype discipline would be tedious. Accordingly, we present a new library,
FTY (short for “fixtypes”), which provides automation for following the discipline (Section 3). The
FTY library contains tools that automate the introduction of new types and assist with creating
functions that “properly” operate on those types.

While there is room for improvement (Section 4), the approach and automation that we present is
practical and scales up to complex modeling efforts. We have successfully used FTY as the type system
for two large libraries: VL, which processes Verilog and SystemVerilog source code; and SV, a hardware
modeling and analysis framework. VL, in particular, involves a very complex hierarchy of types. For
instance, it includes a 30-way mutually recursive datatype that represents SystemVerilog expressions,
types, and related syntactic constructs.

Sol Swords and Jared Davis 5

2 The Fixtype Discipline

We begin, in this section, by describing in precise terms a fixtype discipline for working with types in
ACL2. In our experience, following this discipline is an effective way to obtain the benefits of strong
type checking while keeping types out of the way of theorem proving.

The basic philosophy behind the fixtype discipline is that all functions that take inputs of a particular
type should treat any inputs that are not of that type in a consistent way. This can be done using fixing
functions.

Definition 1. A fixing function fix for a (unary) type predicate typep is a (unary) function that (1) always
produces an object of that type, and (2) is the identity on any object of that type. That is, it satisfies:

(1) ∀x : typep(fix(x))
(2) ∀x : typep(x)⇒ fix(x) = x

Given a fixing function, an easy way to ensure that some new definition treats all of its inputs in a
type-consistent way is to immediately apply the appropriate fixing function to each input before proceed-
ing with the main body of the function. For guard-verified functions, this preliminary fixing can be done
for free using mbe. Alternatively, if all occurrences of an input variable in the function’s body occur in
contexts that are already type-consistent, then explicit fixing isn’t necessary.

When a function follows this approach, the fixing functions become “transparent” to that function.
For instance, since nth properly fixes its index argument to a natural number, the following holds:

(defthm nth-of-nfix

(equal (nth (nfix n) x)

(nth n x)))

Given any fixing function, we can define a corresponding equivalence relation. For instance, for
naturals, we can define nat-equiv as equality up to nfix:

(defun nat-equiv (x y)

(equal (nfix x) (nfix y)))

Functions that properly fix their arguments will satisfy a congruence for this equivalence under equal-
ity: that is, they produce equal results when given equivalent arguments. For instance, for nth:

(defthm nat-equiv-congruence-for-nth

(implies (nat-equiv n m)

(equal (nth n x)

(nth m x)))

:rule-classes :congruence)

We can now define our fixtype discipline.

Definition 2. A function follows the fixtype discipline if, for each typed input, the type has a corre-
sponding fixing function and equivalence relation, and the function produces equal results given type-
equivalent inputs.

A consequence of following the fixtype discipline is that theorems can avoid type hypotheses.

6 Fix Your Types

Theorem 1. Let typep be a type and let ≡ be the equivalence relation induced by a fixing function for
typep. Let C(x) be a conjecture satisfying the congruence

(x≡ x′)⇒
(
C (x)⇔C

(
x′
))

.

Then C(x) is a theorem if and only if typep(x)⇒C(x) is a theorem.

This congruence means that C(x) is a formula where the variable x is consistently treated according
to the fixing discipline for typep; in this case, it isn’t necessary to include typep(x) as a hypothesis. This
generalizes easily to additional variables.

3 The FTY Library

If we want to follow the fixtype discipline, all of our type predicates need to have corresponding fixing
functions and equivalence relations. Also, as we introduce new functions that operate on these types, we
need to prove that these functions satisfy the appropriate congruences, i.e., that they treat their inputs in
a type-consistent way.

Although these definitions and proofs are straightforward, it would be very tedious to carry them
out manually. It would also be difficult to make use of libraries like std/util or defdata since the
functions these frameworks introduce do not follow the fixtype discipline. This is unfortunate because
these libraries really make it far more convenient to introduce new types.

To address this, we have developed a new library, named FTY, which provides several utilities to
automate this boilerplate work and to facilitate the introduction of new types that follow the discipline.
Among these utilities, we have:

• deffixtype, which associates a type predicate with a fixing function and equivalence relation,
for defining base types like natp, stringp, and custom user-defined base types. (Section 3.1)

• deftypes and associated utilities defprod, deftagsum, deflist, defalist, and more, which
define new derived fixtype-compliant product types, sum types, list types, etc. (Section 3.2)

• deffixequiv and deffixequiv-mutual, which prove the appropriate type congruences for
functions that operate on these types. (Section 3.3)

We now briefly describe these utilities. We focus here on what these utilities automate and how this
helps to make it easier to follow the fixtype discipline. More detailed information on how to practically
make use of these utilities, their available options, etc., can be found in the FTY documentation [8] in
the ACL2+Books Manual.

3.1 Deffixtype

The FTY library uses an ACL2 table to record the associations between the name, predicate, fixing
function, and equivalence relation for each known type. This information is used by many later FTY
utilities to improve automation. For instance, when we define a new structure, this table allows us to
look up the right fixing function and equivalence relation to use for each field just by its type, without
needing to be repetitively told the fixing function and equivalence relation for every field.

The deffixtype utility is used to register new base types, i.e., types that are not defined in terms of
other FTY types, with this table. Here is an example, which registers a new type named nat, recognized
by natp, with fixing function nfix, and with the equivalence relation nat-equiv:

Sol Swords and Jared Davis 7

(deffixtype nat

:pred natp

:fix nfix

:equiv nat-equiv)

The type name does not need to be a function name; we typically use the name of the predicate
without the final “p” or “-p.” The predicate and fixing function must always be provided by the user
and defined ahead of time. Deffixtype can automatically define the equivalence relation based on the
fixing function, or it can use an existing equivalence relation.

We usually do not need to invoke deffixtype directly. FTY includes a basetypes book that sets up
these associations for basic ACL2 types like naturals, integers, characters, Booleans, strings, etc. When
new derived types are introduced by FTY macros like deftypes (Section 3.2), they are automatically
registered with the table. On the other hand, deffixtype is occasionally useful for defining low-level
custom base types, or types that use special encodings, or that for some other reason we prefer not to
introduce with deftypes.

Choosing a good fixing function for a type is not always straightforward. As far as the fixtype
discipline and the FTY library is concerned, any function that satisfies Definition 1 suffices. However,
the way in which ill-typed objects are mapped into the type affects which functions will have proper
congruences for the induced equivalence relation. Some choices are dictated by pre-existing ACL2
conventions; for example, if we wrote our own my-nat-fix function that coerced non-naturals to 5
instead of 0, then this fixing function wouldn’t be transparent to built-in functions such as zp and nth.

The fixing function’s guard may optionally require that the input object already be of the type. This
allows the fixing function to be coded so that it is essentially free to execute, using mbe so that the
executable body is just the identity. It is also generally useful to inline the fixing function to avoid the
small overhead of a function call. For example:

(defun-inline string-fix (x)

(declare (xargs :guard (stringp x)))

(mbe :logic (if (stringp x) x "")

:exec x))

3.2 Deftypes and Supporting Utilities

Whereas deffixtype is useful for registering base types and special, custom types, the deftypes suite
of tools can be used to easily define common kinds of derived types. The constructors, accessors, and
other supporting functions introduced for these types follow the fixtype discipline, and the new types are
automatically registered with deffixtype. There are utilities for introducing many kinds of types:

• defprod, which defines a product type,

• deftagsum, which defines a tagged sum of products,

• deflist, which defines a list type which has elements of a given type,

• defalist, which defines an alist type with keys and values of given types,

• defoption, which defines an option/maybe type,

• and others.

Using these macros is not much different than using other data definition libraries. For instance, we
can introduce a basic student structure as follows:

8 Fix Your Types

(defprod student

((name stringp)

(age natp)))

This is very much like introducting a structure with defaggregate: it produces a recognizer, con-
structor, accessors for the fields, b* binders, and readable make/change macros. Unlike defaggregate,
it also generates a fixing function, student-fix, an equivalence relation, student-equiv, and regis-
ters the new student type with deffixtype. The constructor and accessor functions for the new type
also follow the fixtype discipline, e.g., we unconditionally have theorems such as:

• (student-p (student name age))

• (stringp (student->name x))

• (natp (student->age x))

A notable feature of deftypes is that it also provides strong support for mutually recursive types. In
particular, several calls of utilities such as defprod, deflist, etc., may be combined inside a deftypes
form to create a mutually-recursive clique of types. For example, to model a simple arithmetic term
language such as:

aterm = Num {val :: integer}
| Sum {args :: List aterm}
| Minus {arg :: aterm}

We might write the following deftypes form:

(deftypes arithmetic-terms

(deftagsum aterm

(:num ((val integerp)))

(:sum ((args atermlist)))

(:minus ((arg aterm))))

(deflist atermlist

:elt-type aterm))

As you might expect, this form creates the basic predicates, fixing functions, and equivalence relations
for aterms that are needed for the fixtype discipline:

• Predicates aterm-p and atermlist-p,

• Fixing functions aterm-fix and atermlist-fix, and

• Equivalence relations aterm-equiv and atermlist-equiv.

It also registers the new types with deffixtype. The form also defines several functions and tools for
working with these new types, all of which have appropriate congruences for the fixtype discipline:

• A kind function, aterm-kind, to determine the kind of an aterm, e.g., :num, :sum, or :minus.

• Constructors for each kind of aterm: aterm-num, aterm-sum, and aterm-minus, and associated
make/change macros in the style of defaggregate/defprod.

• Accessors for each kind of aterm: aterm-num->val, aterm-sum->args, aterm-minus->arg
and associated b* binders.

Sol Swords and Jared Davis 9

• Measure functions, aterm-count and atermlist-count, appropriate for structurally recurring
over objects of these types.

For convenience, a macro aterm-case is also introduced. This macro allows us to implement the
common coding scheme of cases on the kind of an aterm, followed by binding variables to any needed
fields of the product. Here is a simple example of using aterm structures.

(defines aterm-eval

(define aterm-eval ((x aterm-p))

:measure (aterm-count x)

:returns (val integerp)

:verify-guards nil

(aterm-case x

:num x.val

:sum (atermlist-sum x.args)

:minus (- (aterm-eval x.arg))))

(define atermlist-sum ((x atermlist-p))

:measure (atermlist-count x)

:returns (val integerp)

(if (atom x)

0

(+ (aterm-eval (car x))

(atermlist-sum (cdr x)))))

///

(verify-guards aterm-eval))

3.3 Deffixequiv and Deffixequiv-mutual

Together, deffixtype and deftypes allow us to largely automate the process of introducing new types
that support the fixtype discipline. But this is only half the battle. When we define new functions
that make use of these types, we are still left with the task of proving that these functions satisfy the
appropriate congruences for every argument of these types. If our model or program involves many
function definitions, this can be a lot of tedious work.

To automate this process, FTY offers two related utilities, deffixequiv and deffixequiv-mutual.
These utilities are integrated with define and defines and also make use of the table of types from
deffixtype. This allows them to figure out what theorems are needed, often without any help at all. In
particular, the types of the arguments are inferred from the extended formals of the each function. The
corresponding fixing functions and equivalence relations can then be looked up from the table, and the
appropriate congruence rules can be generated. Besides congruence rules, we additionally generate rules
that normalize constant arguments to their type-fixed forms.

Consider the aterm-eval example above. To generate the congruence rules for both aterm-eval

and atermlist-eval, it suffices to invoke:

(deffixequiv-mutual aterm-eval)

The deffixequiv-mutual macro determines the types of the arguments by examining the guards spec-
ified in the define formals, and it uses the flag induction scheme produced by defines to automatically
prove the congruence.

10 Fix Your Types

For recursive or mutually-recursive functions, proving a congruence directly can be difficult because
there are two calls of the function in the statement of the theorem, and these two calls may suggest differ-
ent induction schemes that may not be simple to merge. However, the congruences we are concerned with
follow from the fact that the fixing function is transparent to the function, which can usually be proved
straightforwardly by induction on the function’s own recursion scheme. In practice, the deffixequiv

and deffixequiv-mutual utilities usually fully automate the derivation of the congruence from the
transparency theorem.

Even if we only need to write a deffixequiv or deffixequiv-mutual form after each definition,
this can be easy to forget. To further automate following the discipline, you can optionally enable a
post-define hook that will automatically issue a suitable deffixequiv command after each definition.
See the documentation for fixequiv-hook for details.

4 Challenges and Future Work

The FTY library provides a robust implementation of a type system that would feel familiar to users
of strongly typed functional programming languages such as Haskell or ML. However, there are a few
pitfalls in their practical use, which we discuss below along with potential solutions.

4.1 Generic Functions

The most common problem in working with the fixtype discipline is in the use of generic functions such
as assoc, append, and many others. These functions are designed to work on objects of nonspecific
type, and therefore don’t follow fixing conventions for specific types. One can always apply appropriate
fixing functions to the inputs of these functions, so programming with them in a fixtype discipline isn’t
hard. However, applying this simple strategy to theorems will often result in ineffective rewrite rules.

For example, suppose (bind-square-to-root key alist) fixes key to type natp and alist to
type nat-nat-alist-p, and we want to prove a theorem like the following:

(equal (assoc k (bind-square-to-root k rest))

(or (and (square-p k)

(cons k (nat-sqrt k)))

(assoc k rest)))

Presumably this isn’t true without some type assumptions. One way to fix the theorem is to apply
fixing functions everywhere that typed variables are used in generic contexts:

(equal (assoc (nfix k) (bind-square-to-root k rest))

(or (and (square-p k)

(cons (nfix k) (nat-sqrt k)))

(assoc (nfix k) (nat-nat-alist-fix rest))))

But this rewrite rule is not always applicable. The left hand side will match only when we have an
explicit nfix in our goal, but this nfix is likely to be simplfied away in cases where the key is known to
be a natural. In these cases, a formulation with a type hypothesis would work:

(implies (natp k)

(equal (assoc k (bind-square-to-root k rest))

...))

Sol Swords and Jared Davis 11

Unfortunately, this rule typically won’t allow us to simplify terms such as:
(assoc (nfix k) (bind-square-to-root k rest))

because it fails to unify. In general, both kinds of terms may be encountered and both formulations of
the rule may be useful. To solve this problem, one might consider automation to generate both forms of
the theorem, or to generate a theorem that catches both cases as follows:

(implies (and (syntaxp (or (equal k1 k) (equal k1 ‘(nfix ,k))))

(nat-equiv k1 k)

(natp k1))

(equal (assoc k1 (bind-square-to-root k rest))

...))

For the moment, unfortunately, reasoning about a mix of generic functions with fixtype-discipline
functions seems to require the sort of consideration of types that we had hoped to avoid. We generally
deal with these problems on an ad-hoc basis, either by proving both forms of the theorem or, in more
problematic cases, by introducing typed alternatives to the generic functions involved.

4.2 Subtypes

It is possible to use the FTY library to define two types that have a subtype relation, but the library
doesn’t have any automation for proving or making use of this relationship.

In practice, we have found it difficult to get subtype relations to work well. Proving theorems about
a mixture of functions that operate on sub- and supertypes has the same problems as proving theorems
with a mixture of generic and fixtype functions, as discussed above. Reasoning about a subtype hierarchy
also can lead to degraded prover performance, since proving that something is of type A may lead by
backchaining to attempting to prove it to be of each subtype of A.

4.3 Parameterized Types

Haskell and ML support types that take other types as parameters, e.g., List A signifying a list of objects
of type A, where A is a type variable. Function signatures may contain types that are not fully specified,
and these functions may later be used in contexts where the type variables are concretized as particular
types.

Selfridge and Smith [17] created a macro library that supports a form of polymorphism by automating
the creation of instances of the defsum macro. Polymorphic functions are then supported by another set
of macros that allow one to instantiate a template function definition with different substitutions for type
variables. A similar macro library could be used to add polymorphism via templates to FTY, but this has
not yet been done.

4.4 Dependent Types

Correct behavior of multiple-input functions often depends on constraints involving more than one of the
inputs. The fixtypes discipline is focused on unary types, but occasionally it is desirable for a product type
to contain multiple elements that have constraints linking them. We have experimentally implemented
support for this in defprod and deftagsum by allowing the user to specify these constraints along with
an extra fixing step that forces the fields to satisfy these constraints; this works in practice for simple
constraints like “a literal’s value should fit into its width.” We expect that there would be difficulties in
formulating constraints between subfields of a recursive data structure.

12 Fix Your Types

4.5 Symbolic and Logical Evaluation

Execution efficiency of functions using the fixtype discipline is highly dependent on the use of mbe to
avoid calling fixing functions. Evaluation in the logic (with guard checking turned off) is much more
expensive with such functions because the :logic part of the mbe then needs to be executed.

This problem also applies to symbolic evaluation with the GL system [18]. GL is used in hardware
verification at Centaur and elsewhere; it evaluates ACL2 functions on bit-level symbolic inputs, pro-
ducing bit-level symbolic results, allowing the use of SAT or BDD reasoning to prove ACL2 theorems.
However, GL ignores guards (except for concrete evaluation) and instead symbolically simulates the
logical definitions of functions. Therefore, when using GL on fixtype-compliant functions, these fixing
functions will be unnecessarily (symbolically) executed frequently.

This extra expense could be problematic in some cases. In future work we expect to address this by
adding a facility to FTY to generate extra GL rules to help it avoid executing fixing functions. Currently,
we have worked around this problem in some cases by using fixing functions that are cheap to symboli-
cally execute. For example, if we are dealing with, say, a 32-bit unsigned integer type, then for symbolic
simulation it is cheaper to use (loghead 32 x) rather than (if (unsigned-byte-p 32 x) x 0) as
the fixing function. This expense of fixing can also be avoided by creating custom symbolic counterparts,
which are used in important core routines in hardware verification frameworks like ESIM and SV.

4.6 Traversal of Complicated Data Structures

In languages like ML or Haskell, it is possible to write higher order functions for traversing deeply nested
data structures. This capability goes a long way toward making it reasonable to inspect and manipulate
such objects. Since ACL2 is first order, we cannot write these kinds of generic traversals. Instead, we
have to duplicate the boilerplate code for traversing a structure in each algorithm that operates on it. This
can become very tedious.

For example, the parsetree format for the VL Verilog/SystemVerilog toolkit contains 168 datatypes,
132 of which are defined in terms of other types (as a product, list, etc.), reflecting the complexity of
the SystemVerilog language. We might like to, for instance, collect all identifiers used in a module.
We might also like simplify all expressions throughout a module. Doing either of these will require
traversing many of the same structures (modules, declarations, assignments, etc.) to reach the objects of
interest (identifiers, expressions).

We have implemented an experimental utility, defvisitor, intended to generate the boilerplate code
necessary for these situations. The user provides code to be run on certain types and to combine results
from recursive calls, and the utility generates the boilerplate to traverse the data structures. The current
implementation is a proof of concept and its user interface is likely to change, but it has been used to
implement several algorithms within the VL library.

5 Related Work

5.1 Fixing Conventions

The use of fixing conventions to avoid hypotheses is well studied and has been used since the earliest
Boyer Moore provers. In Boyer and Moore’s 1979 A Computational Logic we find a fix function for
NQTHM’s naturals and hypothesis-free theorems such as the commutativity of plus. Boyer and Moore

Sol Swords and Jared Davis 13

credit A. P. Morse as the inspiriation for this approach, citing his treatment of set theory, A Theory of
Sets [16], and recalling1 that:

“Morse tried every way he could to fix every function that he introduced to eliminate
hypotheses if possible, without doing any damage. He delighted in such theorems as that and
and or distributed over one another for all arguments, no matter what objects the arguments
were, no matter that and was the exact same as set intersection and that or was the same as
set union.”

In their 1994 Design Goals for ACL2, Kaufmann and Moore reflect that “NQTHM’s logic gets incredible
mileage out of the notion that functions—especially arithmetic functions—default ‘unexpected’ inputs to
reasonable values so that many theorems are stated without hypotheses.” As a result, fixing conventions
were used liberally in their new theorem prover, e.g., throughout its completion axioms for primitive
functions on numbers, characters, strings, etc.

Since then, many ACL2 libraries such as std/osets [5] and bitops, have made heavy use of the
technique. Perhaps the most extreme examples are found in misc/records [14] and related work such
as typed records [11], defexec-enhanded records [12], memories [6], and defrstobj, which each use
sophisticated, convoluted fixing functions to achieve hypothesis-free read-over-write theorems.

Fixing conventions are often unnecessary in typed logics. In such a logic, when we define functions
such as PLUS : NAT×NAT→ NAT, there is no need to include any type hypotheses in theorems such as
the commutativity of PLUS, because any attempt to call or reason about PLUS on non-NAT arguments is
simply an error. On the other hand, even in such a logic, fixing conventions may be useful for modeling
behavior of operations whose intended domains are not easy to describe using types. Lamport and
Paulson [15] provide an engaging discussion of these sorts of issues.

5.2 Data Struture Libraries

There has been significant previous work to develop data structure libraries for ACL2. An early example
is Brock’s classic data-structures library, which featured macros such as defstructure [3]. As a
concrete example of using this macro, we might write:

(defstructure student

(name (:assert (stringp name) :type-prescription))

(age (:assert (natp age) :type-prescription)))

This produces a constructor that simply conses together its arguments and accessors that simply car/cdr
into their argument. No fixing is done, so the constructor only produces a well-formed student-p if its
arguments have the proper types, and the accessors may produce ill-typed results when applied to non-
student-p objects. Accordingly, reasoning about such structures typically requires type hypotheses.
The more recent defaggregate macro follows this same approach.

ACL2’s single threaded objects [2] are in many ways similar to defstructure and defaggregate.
Although it probably would make little sense to define a student structure as a stobj, we can do so:

(defstobj student

(name :type string :initially "")

(age :type (integer 0 *) :initially 0))

1Correspondence with Bob Boyer and J Moore.

14 Fix Your Types

The resulting recognizer, accessors, and mutators are similar to those produced by defstructure or
defaggregate and so reasoning about these operations usually requires type hypotheses. On the other
hand, the recent addition of abstract stobjs [10] makes it possible to develop alternative logical interfaces,
e.g., we could arrange so that the student stobj was logically viewed as an FTY product object.

The defdata [4] library by Chamarthi, Dillinger, and Manolios features an alternative macro, also
called defdata, that supports introducing richer types, such as sum types, mutually recursive types,
etc. This framework also features integrated support for counterexample generation, an exciting feature
which FTY does not yet have. To define a similar student structure with defdata we might write:

(defdata student (record (name . string)

(age . nat)))

This similarly results in a studentp recognizer, constructor, and accessors like student-age. Un-
like defstructure or defaggregate, the underlying representation of these functions is based on an
optimized variant [12] of Kaufmann and Sumners’ records book [14], and the macro provides special in-
tegration with ACL2’s Tau reasoning procedure. However, the general approach to type reasoning about
these structures is unchanged: we still require type hypotheses to establish that the construct produces a
valid studentp, that student-name returns a string, and so forth.

Despite type hypotheses, macros like defstructure, defaggregate, and defdata are certainly
very useful. Defstructure has long been used in ACL2 developments, including recent work such as
the modeling by Hardin, et al. [13] of the LLVM compiler project’s intermediate form in ACL2, and
the formalization by van Gastel and Schmaltz [9] of the xMAS language for communication networks
on multi-core processors and systems-on-chip. For many years, we used defaggregate and other
std/util macros at Centaur as the basis for our VL library, microcode model [7], and other internal
applications. In our experience, porting these libraries to FTY was not difficult and has helped to simplify
our code.

5.3 Make-Event Metaprogramming

In 2004, Vernon Austel developed [1] an experimental variant of ACL2 that added support for a certain
type system. He explained that this work had required modifying ACL2 because “a usable type system
must constantly extend the set of functions whose type it knows about; this seems to require storing type
information in the ACL2 world, which macros currently cannot do,” and proposed extending ACL2 with
something like make-event to “allow others to experiment with type systems without having to hack the
system code.” Indeed, our FTY library makes extensive use of make-event to record the associations
between type recognizers, fixing functions, and equivalence relations, and to look up (via define) the
type signatures for functions.

6 Conclusion

FTY is a new data structure library for ACL2 that provides deep support for using fixing functions
to avoid type hypotheses in theorems. Its successful use may require somewhat more discipline than
similar libraries such as std/util or defdata. In exchange, it provides a strongly typed programming
environment that can help to catch errors during development while largely avoiding type hypotheses
during theorem proving.

Having a good data structure library is tremendously useful when developing large systems in ACL2.
A fixing discipline is one part of this, but FTY is also increasingly mature and capable in other ways,

Sol Swords and Jared Davis 15

e.g., it retains much of the std/util look and feel, with features such as XDOC integration, convenient
b* binders, readable make/change macros, etc. We are now using FTY as for large ACL2 libraries such
as SV and VL libraries, and have been pleased with the results.

The source code for FTY is included in the ACL2 Community Books under the centaur/fty di-
rectory. Beyond this paper, the FTY library has extensive documentation, which includes more detailed
information on the available options for each macro. The centaur/fty directory also includes various
test cases that may serve as useful examples of using the library.

We hope you find FTY useful.

6.1 Acknowledgments

We thank Bob Boyer and J Moore for very interesting discussions about the origins of fixing disciplines
in Boyer-Moore provers. We thank Shilpi Goel and Cuong Chau for their corrections and feedback on
this paper.

References

[1] Vernon Austel (2004): Adding a typing mechanism to ACL2. ACL2 ’04. Available at http://www.cs.
utexas.edu/users/moore/acl2/workshop-2004/contrib/austel/acl2-types.pdf.

[2] Robert S. Boyer & J Strother Moore (2002): Single-Threaded Objects in ACL2. In: Practical Aspects of
Declarative Languages, LNCS 2257, Springer, pp. 9–27, doi:10.1007/3-540-45587-6 3.

[3] Bishop Brock (1997): Defstructure for ACL2. Available at http://www.cs.utexas.edu/users/moore/
publications/others/defstructure-brock.ps.

[4] Harsh Raju Chamarthi, Peter C. Dillinger & Panagiotis Manolios (2014): Data Definitions in the ACL2
Sedan. In: ACL2 ’14, EPTCS, pp. 27–48, doi:10.4204/EPTCS.152.3.

[5] Jared Davis (2004): Finite Set Theory based on Fully Ordered Lists. ACL2 ’04. Available at http://www.
cs.utexas.edu/users/moore/acl2/workshop-2004/contrib/davis/set-theory.pdf.

[6] Jared Davis (2006): Memories: Array-like records for ACL2. In: ACL2 ’06, ACM, pp. 57–60,
doi:10.1145/1217975.1217986.

[7] Jared Davis, Anna Slobodova & Sol Swords (2014): Microcode Verification: Another Piece of the Micropro-
cessor Verification Puzzle. In: ITP ’14, LNCS 8558, Springer, pp. 1–16, doi:10.1007/978-3-319-08970-6 1.

[8] Jared Davis & Sol Swords (2015): XDOC Documentation for FTY. Available at http://www.cs.utexas.
edu/users/moore/acl2/manuals/.

[9] Bernard van Gastel & Julien Schmaltz (2013): A formalisation of XMAS. In: ACL2 ’13, EPTCS, pp. 111–
126, doi:10.4204/EPTCS.114.9.

[10] Shilpi Goel, Warren A. Hunt, Jr. & Matt Kaufmann (2013): Abstract Stobjs and their application to ISA
modeling. In: ACL2 ’13, EPTCS, pp. 54–69, doi:10.4204/EPTCS.114.5.

[11] David Greve & Matthew Wilding (2003): Typed ACL2 Records. ACL2 ’03. Available at
http://www.cs.utexas.edu/users/moore/acl2/workshop-2003/contrib/greve-wilding_

defrecord/defrecord.pdf.

[12] David A. Greve, Matt Kaufmann, Panagiotis Manolios, J Strother Moore, Sandip Ray, José Luis Ruiz-Reina,
Rob Sumners, Daron Vroon & Matthew Wilding (2008): Efficient execution in an automated reasoning
environment. Journal of Functional Programming 18, pp. 15–46, doi:10.1017/S0956796807006338.

[13] David S. Hardin, Jennifer A. Davis, David A. Greve & Jedidiah R. McClurg (2014): Development of a
Translator from LLVM to ACL2. In: ACL2 ’14, EPTCS, pp. 163–177, doi:10.4204/EPTCS.152.13.

16 Fix Your Types

[14] Matt Kaufmann & Rob Sumners (2002): Efficient Rewriting of Data Structures in ACL2. ACL2
’02. Available at http://www.cs.utexas.edu/users/moore/acl2/workshop-2002/contrib/

kaufmann-sumners/rcd.pdf.
[15] Leslie Lamport & Lawrence C. Paulson (1999): Should Your Specification Language Be Typed. ACM Trans-

actions on Programming Languages and Systems 21(3), pp. 502–526, doi:10.1145/319301.319317.
[16] Anthony P. Morse (1965): A Theory of Sets. Academic Press.
[17] Benjamin Selfridge & Eric Smith (2014): Polymorphic Types in ACL2. In: ACL2 ’14, EPTCS, pp. 49–60,

doi:10.4204/EPTCS.152.4.
[18] Sol Swords & Jared Davis (2011): Bit-Blasting ACL2 Theorems. In: ACL2 ’11, Electronic Proceedings in

Theoretical Computer Science 70, pp. 84–102, doi:10.4204/EPTCS.70.7.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 17–33, doi:10.4204/EPTCS.192.3

Second-Order Functions and Theorems in ACL2

Alessandro Coglio
Kestrel Institute

http://www.kestrel.edu/~coglio

SOFT (‘Second-Order Functions and Theorems’) is a tool to mimic second-order functions and the-
orems in the first-order logic of ACL2. Second-order functions are mimicked by first-order functions
that reference explicitly designated uninterpreted functions that mimic function variables. First-order
theorems over these second-order functions mimic second-order theorems universally quantified over
function variables. Instances of second-order functions and theorems are systematically generated
by replacing function variables with functions. SOFT can be used to carry out program refinement
inside ACL2, by constructing a sequence of increasingly stronger second-order predicates over one
or more target functions: the sequence starts with a predicate that specifies requirements for the target
functions, and ends with a predicate that provides executable definitions for the target functions.

1 The SOFT Tool

SOFT (‘Second-Order Functions and Theorems’) is a tool to mimic second-order functions and theo-
rems [4] in the first-order logic of ACL2 [3]. Second-order functions are mimicked by first-order func-
tions that reference explicitly designated uninterpreted functions that mimic function variables. First-
order theorems over these second-order functions mimic second-order theorems universally quantified
over function variables. Instances of second-order functions and theorems are systematically generated
by replacing function variables with functions. Theorem instances are proved automatically, via auto-
matically generated functional instantiations [5].

SOFT does not extend the ACL2 logic. It is an ACL2 library, available in the ACL2 community
books, that provides macros to introduce function variables, second-order functions, second-order theo-
rems, and instances thereof. The macros modify the ACL2 state only by submitting sound and conserva-
tive events; they cannot introduce unsoundness or inconsistency on their own. The main features of the
macros are described and exemplified below; full details are in their documentation and implementation.

1.1 Function Variables

A function variable is introduced as

(defunvar fv (* ... *) => *)

where:

• fv is a symbol, which names the function variable.

• (* ... *) is a list of 1 or more *s, which defines the arity, i.e. type [6], of fv.

This generates the event

(defstub fv (* ... *) => *)

i.e. fv is introduced as an uninterpreted function with the given type. Furthermore, a table event is
generated to record fv in a global table of function variables.

For example,

18 Second-Order Functions and Theorems

(defunvar ?f (*) => *)

(defunvar ?p (*) => *)

(defunvar ?g (* *) => *)

introduce two unary function variables and one binary function variable. Starting function variable names
with ? provides a visual cue for their function variable status, but SOFT does not enforce this naming
convention.

1.2 Second-Order Functions

SOFT supports three kinds of second-order functions: plain second-order functions, choice second-order
functions, and quantifier second-order functions.

1.2.1 Plain Functions

A plain second-order function is introduced as

(defun2 sof (fv1 ... fvn) (v1 ... vm) doc decl ... decl body)

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) is a non-empty list without duplicates of previously introduced function variables,
whose order is immaterial, which are the function parameters of sof.

• The other items are as in defun: individual variables, optional documentation string, optional
declarations, and defining body.

• FV(body) ∪ FV(measure) ∪ FV(guard) = {fv1, . . . ,fvn}, where:

– measure is the measure expression of sof, or nil if sof is not recursive.
– guard is the guard of sof (t if not given explicitly in the declarations).
– FV(term) is the set of function variables that either occur in term or are function parameters

of second-order functions that occur in term.

I.e. the function parameters of sof are all and only the function variables that sof depends on.1

This generates the event

(defun sof (v1 ... vm) doc decl ... decl body)

i.e. sof is introduced as a first-order function using defun, removing the function variables. Further-
more, a table event is generated to record sof in a global table of second-order functions.

For example,

(defun2 quad[?f] (?f) (x)

(?f (?f (?f (?f x)))))

introduces a non-recursive function to apply its function parameter to its individual parameter four times.
The name quad[?f] conveys the dependency on the function parameter and provides a visual cue for
the implicit presence of the function parameter when the function is applied, e.g. in (quad[?f] x), but
SOFT does not enforce this naming convention.

As another example,

1Thus, defun2 could have been defined to have the same form as defun, i.e. without (fv1 ... fvn). However, the presence
of the functions parameters parallels that of the individual parameters, and the redundancy check may detect user errors.

A. Coglio 19

(defun2 all[?p] (?p) (l)

(cond ((atom l) (null l))

(t (and (?p (car l)) (all[?p] (cdr l))))))

introduces a recursive predicate (i.e. boolean-valued function) that recognizes nil-terminated lists whose
elements satisfy the predicate parameter.

As a third example,

(defun2 map[?f_?p] (?f ?p) (l)

(declare (xargs :guard (all[?p] l)))

(cond ((endp l) nil)

(t (cons (?f (car l)) (map[?f_?p] (cdr l))))))

introduces a recursive function that homomorphically lifts ?f to operate on nil-terminated lists whose
elements satisfy ?p. The predicate parameter ?p only appears in the guard, not in the body.

As a fourth example,

(defun2 fold[?f_?g] (?f ?g) (bt)

(cond ((atom bt) (?f bt))

(t (?g (fold[?f_?g] (car bt)) (fold[?f_?g] (cdr bt))))))

introduces a generic folding function on values as binary trees.

1.2.2 Choice Functions

A choice second-order function is introduced as

(defchoose2 sof (bv1 ... bvp) (fv1 ... fvn) (v1 ... vm) body key-opts)

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) are the function parameters, as in defun2.

• The other items are as in defchoose: bound variables, individual variables, constraining body,
and keyed options.

• FV(body) = {fv1, . . . ,fvn}.
This generates the event

(defchoose sof (bv1 ... bvp) (v1 ... vm) body key-opts)

i.e. sof is introduced as a first-order function using defchoose, removing the function variables. Fur-
thermore, a table event is generated to record sof in the same global table where plain second-order
functions are recorded.

For example,

(defchoose2 fixpoint[?f] x (?f) ()

(equal (?f x) x))

introduces a second-order function constrained to return a fixed point of ?f, if any exists.

20 Second-Order Functions and Theorems

1.2.3 Quantifier Functions

A quantifier second-order function is introduced as

(defun-sk2 sof (fv1 ... fvn) (v1 ... vm) body key-opts)

where:

• sof is a symbol, which names the second-order function.

• (fv1 ... fvn) are the function parameters, as in defun2 and defchoose2.

• The other items are as in defun-sk: individual variables, defining body, and keyed options.

• FV(body) ∪ FV(guard) = {fv1, . . . ,fvn}, where guard is the guard of sof (t if not given
explicitly in the :witness-dcls option).

This generates the event

(defun-sk sof (v1 ... vm) body key-opts)

i.e. sof is introduced as a first-order function using defun-sk, removing the function variables. Fur-
thermore, a table event is generated to record sof in the same global table where plain and choice
second-order functions are recorded.

For example,

(defun-sk2 injective[?f] (?f) ()

(forall (x y) (implies (equal (?f x) (?f y)) (equal x y))))

introduces a predicate that recognizes injective functions.

1.3 Instances of Second-Order Functions

An instance of a second-order function is a function introduced as

(defun-inst f (fv1 ... fvn) (sof (fv1’ . f1’) ... (fvm’ . fm’)) key-opts)

where:

• f is a symbol, which names the new function.

• (fv1 ... fvn) are optional function parameters. If present, f is a second-order function; if absent,
f is a first-order function.

• sof is a previously introduced second-order function.

• ((fv1’ . f1’) ... (fvm’ . fm’)) is an instantiation Σ, i.e. an alist whose keys fvi’ are distinct
function variables, whose values fi’ are previously introduced function variables, second-order
functions, or regular first-order functions, and where each fi’ has the same type as fvi’. Each fvi’

is a function parameter of sof. The notation (sof (fv1’ . f1’) ... (fvm’ . fm’)) suggests
the application of sof to the functions fi’; since the function parameters of sof are unordered,
the application is by explicit association, not positional. An instance of a second-order function
is introduced as a named application of the second-order function; SOFT does not support the
application of a second-order function on the fly within a term, as in the application of a first-order
function. Not all the function parameters of sof must be keys in Σ; missing function parameters
are left unchanged.

• key-opts are keyed options, e.g. to override attributes of f that are otherwise derived from sof.

A. Coglio 21

• If sof is a plain function, FV(Σ(body)) ∪ FV(Σ(measure)) ∪ FV(Σ(guard)) = {fv1, . . . ,fvn},
where body, measure, and guard are the body, measure expression (nil if sof is not recursive),
and guard of sof, and Σ(term) is the result of applying Σ to term (see below).

• If sof is a choice function, FV(Σ(body)) = {fv1, . . . ,fvn}, where body is the body of sof.

• If sof is a quantifier function, FV(Σ(body)) ∪ FV(Σ(guard)) = {fv1, . . . ,fvn}, where body

and guard are the body and guard of sof.

This generates a defun, defchoose, or defun-sk event, depending on whether sof is a plain, choice,
or quantifier function. The event introduces f with body Σ(body), measure Σ(measure) (if sof is
recursive, hence plain), and guard Σ(guard) (if sof is a plain or quantifier function). f is recursive iff
sof is recursive: defun-inst generates the termination proof of f from the termination proof of sof
using the techniques to instantiate second-order theorems described in Section 1.5.

Furthermore, defun-inst generates a table event to record f as the Σ instance of sof in a global
table of instances of second-order functions. If f is second-order, defun-inst also generates a table
event to record f in the global table of second-order functions.

Σ(term) is obtained from term by replacing the keys of Σ in term with their values in Σ. This
involves not only explicit occurrences of such keys in term, but also implicit occurrences as func-
tion parameters of second-order functions occurring in term. For example, if the pair (?f . f) is
in Σ, sof[...?f...] is a second-order function whose function parameters include ?f, and term

is (cons (?f x) (sof[...?f...] y)), then Σ(term) is (cons (f x) (sof[...f...] y)), where
sof[...f...] is the Σ’ instance of sof[...?f...], where Σ’ is the restriction of Σ to the keys that are
function parameters of sof[...?f...]. The table of instances of second-order functions is consulted
to find sof[...f...]. If the instance is not in the table, defun-inst fails: the user must introduce
sof[...f...], via a defun-inst, and then re-try the failed instantiation.

For example, given a function

(defun wrap (x) (list x))

that wraps a value into a singleton list,

(defun-inst quad[wrap]

(quad[?f] (?f . wrap)))

introduces a function that wraps a value four times.
As another example, given a predicate

(defun octetp (x) (and (natp x) (< x 256)))

that recognizes octets,

(defun-inst all[octetp]

(all[?p] (?p . octetp)))

introduces a predicate that recognizes nil-terminated lists of octets.
As a third example,

(defun-inst map[code-char]

(map[?f_?p] (?f . code-char) (?p . octetp)))

introduces a function that translates lists of octets to lists of corresponding characters. The replacement
code-char of ?f induces the replacement octetp of ?p, because the guard of code-char is (equivalent
to) octetp; the name map[code-char] indicates only the replacement of ?f explicitly.

As a fourth example,

22 Second-Order Functions and Theorems

(defun-inst fold[nfix_plus]

(fold[?f_?g] (?f . nfix) (?g . binary-+)))

adds up all the natural numbers in a tree, coercing other values to 0.
As a fifth example, given a function

(defun twice (x) (* 2 (fix x)))

that doubles a value,

(defun-inst fixpoint[twice]

(fixpoint[?f] (?f . twice)))

introduces a function constrained to return the (only) fixed point 0 of twice.
As a sixth example,

(defun-inst injective[quad[?f]] (?f)

(injective[?f] (?f . quad[?f])))

introduces a predicate that recognizes functions whose four-fold application is injective.

1.4 Second-Order Theorems

A second-order theorem is a theorem whose formula depends on function variables, which occur in the
theorem or are function parameters of second-order functions that occur in the theorem. Since function
variables are unconstrained, a second-order theorem is effectively universally quantified over the function
variables that it depends on. It is introduced via standard events like defthm.2

For example,

(defthm len-of-map[?f_?p]

(equal (len (map[?f_?p] l)) (len l)))

shows that the homomorphic lifting of ?f to lists of ?p values preserves the length of the list, for every
function ?f and predicate ?p.

As another example,

(defthm injective[quad[?f]]-when-injective[?f]

(implies (injective[?f]) (injective[quad[?f]]))

:hints

(("Goal" :use

((:instance

injective[?f]-necc

(x (?f (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))))

(y (?f (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))))

(:instance

injective[?f]-necc

(x (?f (?f (?f (mv-nth 0 (injective[quad[?f]]-witness))))))

(y (?f (?f (?f (mv-nth 1 (injective[quad[?f]]-witness)))))))

(:instance

injective[?f]-necc

2The absence of an explicit quantification over function variables in second-order theorems parallels the absence of an
explicit quantification over individual variables in first-order theorems.

A. Coglio 23

(x (?f (?f (mv-nth 0 (injective[quad[?f]]-witness)))))

(y (?f (?f (mv-nth 1 (injective[quad[?f]]-witness))))))

(:instance

injective[?f]-necc

(x (?f (mv-nth 0 (injective[quad[?f]]-witness))))

(y (?f (mv-nth 1 (injective[quad[?f]]-witness)))))

(:instance

injective[?f]-necc

(x (mv-nth 0 (injective[quad[?f]]-witness)))

(y (mv-nth 1 (injective[quad[?f]]-witness))))))))

shows that the four-fold application of an injective function is injective.
As a third example, given a function variable

(defunvar ?io (* *) => *)

for an abstract input/output relation, a predicate

(defun-sk2 atom-io[?f_?io] (?f ?io) ()

(forall x (implies (atom x) (?io x (?f x))))

:rewrite :direct)

that recognizes functions ?f that satisfy the input/output relation on atoms, and a predicate

(defun-sk2 consp-io[?g_?io] (?g ?io) ()

(forall (x y1 y2)

(implies (and (consp x) (?io (car x) y1) (?io (cdr x) y2))

(?io x (?g y1 y2))))

:rewrite :direct)

that recognizes functions ?g that satisfy the input/output relation on cons pairs when the arguments are
valid outputs for the car and cdr components,

(defthm fold-io[?f_?g_?io]

(implies (and (atom-io[?f_?io]) (consp-io[?g_?io]))

(?io x (fold[?f_?g] x))))

shows that the generic folding function on binary trees satisfies the input/output relation when its function
parameters satisfy the predicates just introduced.

1.5 Instances of Second-Order Theorems

An instance of a second-order theorem is a theorem introduced as

(defthm-inst thm (sothm (fv1 . f1) ... (fvn . fn)) :rule-classes ...)

where:

• thm is a symbol, which names the new theorem.

• sothm is a previously introduced second-order theorem.

• ((fv1 . f1) ... (fvn . fn)) is an instantiation Σ, where each fvi is a function variable that sothm
depends on. The notation (sothm (fv1 . f1) ... (fvm . fm)) is similar to defun-inst.

• The keyed option :rule-classes ... is as in defthm.

24 Second-Order Functions and Theorems

This generates the event
(defthm thm Σ(formula) :rule-classes ... :instructions proof)

where:
• formula is the formula of sothm.

• proof consists of two commands for the ACL2 proof checker to prove thm using sothm.
The first command of proof is
(:use (:functional-instance sothm (fv1 f1) ... (fvn fn) more-pairs))

i.e. thm is proved using a functional instance of sothm. The pairs that define the functional instance
include not only the pairs that form Σ (in list notation instead of dotted notation), but also, in more-pairs
above, all the pairs (sof f) such that sof is a second-order function that occurs in sothm and f is
its replacement in thm (i.e. f is the Σ’ instance of sof, where Σ’ is the restriction of Σ to the function
parameters of sof). These additional pairs are determined in the same way as when Σ is applied to
formula (see Section 1.3): thus, the result of (:functional-instance ...) above is Σ(formula),
and the main goal of thm is readily proved.

The use of the functional instance reduces the proof of thm to proving that, for each pair, the re-
placing function satisfies all the constraints of the replaced function. Since function variables are uncon-
strained, nothing needs to be proved for the (fvi fi) pairs. For each (sof f) pair in more-pairs, it
must be proved that f satisfies the constraints on sof. If sof references another second-order function
sof ’ that depends on some fvi, a further pair (sof ’ f ’) goes into more-pairs, where f ’ is the
appropriate instance of sof ’, so that the constraints on sof to be proved are properly instantiated. This
further pair generates further constraints to be proved. To properly instantiate these further constraints,
another pair (sof ’’ f ’’) goes into more-pairs, if sof ’’ is a second-order function referenced by
sof ’ that depends on some fvi, and f ’’ is the appropriate instance of sof ’’. Therefore, more-pairs
includes all the pairs (sof f) such that sof is a second-order function that is directly or indirectly
referenced by sothm and that depends on some fvi, and f is the appropriate instance of sof.

If sof is a quantifier second-order function, it references a witness function sofw introduced by
defun-sk. The defun-sk that introduces the instance f of sof also introduces a witness function
fw that is effectively an instance of sofw, but is not recorded in the table of instances of second-order
functions because sofw and fw are “internal”. The pair (sofw fw) goes into more-pairs as well.

For each pair (sof f) in more-pairs, the constraints of sof are: the definition of sof if sof is a
plain function; the constraining axiom of sof if sof is a choice function; the definition of sof and the
rewrite rule of sof if sof is a quantifier function (the rewrite rule of sof is generated by defun-sk;
its default name is sof -necc if the quantifier is universal, sof -suff if the quantifier is existential).
Instantiating these constraints yields the corresponding definitions, constraining axioms, and rewrite
rules of f, by the construction of the instance f of sof.

The second command of proof is
(:repeat (:then (:use facts) :prove))

where facts includes the names of all the f functions in more-pairs, which are also the names of their
definitions and constraining axioms; facts also includes the names of the rewrite rules for quantifier
functions. This command runs the prover on every proof subgoal, after augmenting each subgoal with
all the facts in facts. This command has worked on all the examples tried so far, but a more honed
approach could be investigated, should some future example fail; since the constraints are satisfied by
construction, this is just an implementation issue.

For example,

A. Coglio 25

(defthm-inst len-of-map[code-char]

(len-of-map[?f_?p] (?f . code-char) (?p . octetp)))

shows that map[code-char] preserves the length of the list.
As another example, given instances

(defun-inst injective[quad[wrap]] (injective[quad[?f]] (?f . wrap)))

(defun-inst injective[wrap] (injective[?f] (?f . wrap)))

the theorem instance

(defthm-inst injective[quad[wrap]]-when-injective[wrap]

(injective[quad[?f]]-when-injective[?f] (?f . wrap)))

shows that quad[wrap] is injective if wrap is.
An example instance of fold-io[?f_?g_?io] is in Section 2.

1.6 Summary of the Macros

defunvar, defun2, defchoose2, and defun-sk2 are wrappers of existing events that explicate func-
tion variable dependencies and record additional information. They set the stage for defun-inst and
defthm-inst.

defun-inst provides the ability to concisely generate functions, and automatically prove their ter-
mination if recursive, by specifying replacements of function variables.

defthm-inst provides the ability to concisely generate and automatically prove theorems, by spec-
ifying replacements of function variables.

2 Use in Program Refinement

In program refinement [9], a correct-by-construction implementation is derived from a requirements
specification via a sequence of intermediate specifications. Shallow pop-refinement (where ‘pop’ stands
for ‘predicates over programs’) is an approach to program refinement, carried out inside an interac-
tive theorem prover by constructing a sequence of increasingly stronger predicates over one or more
target functions. The sequence starts with a predicate that specifies requirements for the target func-
tions, and ends with a predicate that provides executable definitions for the target functions. Shallow
pop-refinement is a form of pop-refinement [8] in which the programs predicated upon are shallowly
embedded functions of the logic of the theorem prover, instead of deeply embedded programs of a pro-
gramming language as in [8].

SOFT can be used to carry out shallow pop-refinement in ACL2, as explained and exemplified below.
The example derivation is overkill for the simple program obtained, which can be easily written and
proved correct directly. But the purpose of the example is to illustrate techniques that can be used
to derive more complex programs, and how SOFT supports these techniques (which are more directly
supported in higher-order logic). The hints in some of the theorems below distill their proofs into patterns
that should apply to similarly structured derivations, suggesting opportunities for future automation.

2.1 Specifications as Second-Order Predicates

Requirements over n ≥ 1 target functions are specified by introducing function variables fv1, . . . ,fvn
that represent the target functions, and by defining a second-order predicate spec0 over fv1, . . . ,fvn that

26 Second-Order Functions and Theorems

asserts the required properties of the target functions. The possible implementations are all the n-tuples
of executable functions that satisfy the predicate. The task is to find such an n-tuple, thus constructively
proving the predicate, existentially quantified over the function parameters.

For example, given a function

(defun leaf (e bt)

(cond ((atom bt) (equal e bt))

(t (or (leaf e (car bt)) (leaf e (cdr bt))))))

to test whether something is a leaf of a binary tree, a function to extract from a binary tree the leaves that
are natural numbers, in no particular order and possibly with duplicates, can be specified as

(defunvar ?h (*) => *)

(defun-sk io (x y) ; input/output relation

(forall e (iff (member e y) (and (leaf e x) (natp e))))

:rewrite :direct)

(defun-sk2 spec[?h] (?h) ()

(forall x (io x (?h x)))

:rewrite :direct)

The task is to solve spec[?h] for ?h, i.e. to find an executable function h such that the instance spec[h]
of spec[?h] holds.

Properties implied by the requirements are proved as second-order theorems with spec0 as hypothe-
sis, e.g. for validation purposes. Since the function parameters are universally quantified in the theorem,
the properties hold for all the implementations of the specification.

For example, the members of the output of every implementation of spec[?h] are natural numbers:

(defthm natp-of-member-of-output

(implies (and (spec[?h]) (member e (?h x))) (natp e))

:hints (("Goal" :use (spec[?h]-necc (:instance io-necc (y (?h x)))))))

2.2 Refinement as Second-Order Predicate Strengthening

The specification spec0 is stepwise refined by constructing a sequence spec1, . . . ,specm of increasingly
stronger predicates over fv1, . . . ,fvn. Each such predicate embodies a decision that either narrows down
the possible implementations or rephrases their description towards their determination. The correctness
of each step j ∈ {1, . . . ,m} is expressed by the second-order theorem (implies (spec j) (spec j−1)).

The sequence ends with specm asserting that each fvi is equal to some executable function fi:
3

(defun-sk2 def1 (fv1) () (forall x (equal (fv1 x) (f1 x))))

...

(defun-sk2 defn (fvn) () (forall x (equal (fvn x) (fn x))))

(defun2 specm (fv1 ... fvn) () (and (def1) ... (defn)))

The tuple 〈f1, . . . ,fn〉 is the implementation. Chaining the implications of the m step correctness the-
orems yields the second-order theorem (implies (specm) (spec0)). Its Σ instance, where Σ is the
instantiation ((fv1 . f1) ... (fvn . fn)), is essentially Σ((spec0)) (because Σ((specm)) is trivially
true), which asserts that the implementation 〈f1, . . . ,fn〉 satisfies spec0.

More precisely, in the course of the derivation, function variables fvn+1, . . . ,fvn+p may be added
to represent additional target functions fn+1, . . . ,fn+p called by f1, . . . ,fn. This may happen as the task

3The body of each (defun-sk2 defi ...) is a first-order expression of the second-order equality fvi = fi.

A. Coglio 27

of finding f1, . . . ,fn is progressively reduced to simpler sub-tasks of finding fn+1, . . . ,fn+p. If fvn+k
is added at refinement step j, since spec j−1 does not depend on fvn+k, the universal quantification of
fvn+k over the step correctness theorem (implies (spec j) (spec j−1)) is equivalent to an existential
quantification of fvn+k over the hypothesis (spec j) of the theorem. The complete implementation that
results from the derivation is 〈f1, . . . ,fn,fn+1, . . . ,fn+p〉.

The function variables fvi are placeholders for the target functions in the spec j predicates. Each
fvi remains uninterpreted throughout the derivation; no constraints are attached to it via axioms. Each
spec j is defined, so it does not introduce logical inconsistency. Inconsistent requirements on the target
functions amount to spec0 being always false, not to logical inconsistency. Obtaining an implementation
witnesses the consistency of the requirements.

For example, spec[?h] from Section 2.1 can be refined as follows.

Step 1 Since the target function represented by ?h operates on binary trees, spec[?h] is strengthened
by constraining ?h to be the folding function on binary trees from Section 1.2.1:

(defun-sk2 def-?h-fold[?f_?g] (?h ?f ?g) ()

(forall x (equal (?h x) (fold[?f_?g] x)))

:rewrite :direct)

(defun2 spec1[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (spec[?h])))

(defthm step1 (implies (spec1[?h_?f_?g]) (spec[?h]))

:hints (("Goal" :in-theory ’(spec1[?h_?f_?g]))))

The predicate spec1[?h_?f_?g] adds to spec[?h] the conjunct def-?h-fold[?f_?g]. Thus, the
task of finding a solution for ?h is reduced to the task of finding solutions for ?f and ?g: instantiating
def-?h-fold[?f_?g] with solutions for ?f and ?g yields a solution for ?h, in Step 5 below.

Step 2 The theorem fold-io[?f_?g_?io] from Section 1.4, which shows the correctness of the
folding function (with respect to an input/output relation) under suitable correctness assumptions on the
function parameters, is instantiated with the input/output relation io used in spec[?h]:

(defun-inst atom-io[?f] (?f) (atom-io[?f_?io] (?io . io)))

(defun-inst consp-io[?g] (?g) (consp-io[?g_?io] (?io . io)))

(defthm-inst fold-io[?f_?g] (fold-io[?f_?g_?io] (?io . io)))

Since the conclusion (io x (fold[?f_?g] x)) of fold-io[?f_?g] equals the matrix (io x (?h

x)) of spec[?h] when def-?h-fold[?f_?g] holds, spec1[?h_?f_?g] is strengthened by replacing
the spec[?h] conjunct with the hypotheses of fold-io[?f_?g]:

(defun2 spec2[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (atom-io[?f]) (consp-io[?g])))

(defthm step2 (implies (spec2[?h_?f_?g]) (spec1[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec1[?h_?f_?g] spec2[?h_?f_?g] spec[?h]

def-?h-fold[?f_?g]-necc fold-io[?f_?g]))))

Step 3 The predicate atom-io[?f] specifies requirements on ?f independently from ?g and ?h. An
implementation f can be derived by constructing a sequence of increasingly stronger predicates over ?f,
in the same way in which spec[?h] is being refined stepwise. This is a possible final result:

28 Second-Order Functions and Theorems

(defun f (x) (if (natp x) (list x) nil))

(defun-inst atom-io[f] (atom-io[?f] (?f . f)))

(defthm atom-io[f]! (atom-io[f]))

The predicate spec2[?h_?f_?g] is strengthened by replacing the atom-io[?f] conjunct with one that
constrains ?f to be f:

(defun-sk2 def-?f (?f) () (forall x (equal (?f x) (f x))) :rewrite :direct)

(defun2 spec3[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (def-?f) (consp-io[?g])))

(defthm step3-lemma (implies (def-?f) (atom-io[?f]))

:hints (("Goal" :in-theory ’(atom-io[?f] atom-io[f]-necc

atom-io[f]! def-?f-necc))))

(defthm step3 (implies (spec3[?h_?f_?g]) (spec2[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec2[?h_?f_?g] spec3[?h_?f_?g] step3-lemma))))

Step 4 The predicate consp-io[?g] specifies requirements on ?g independently from ?f and ?h. An
implementation g can be derived by constructing a sequence of increasingly stronger predicates over ?g,
in the same way in which spec[?h] is being refined stepwise. This is a possible final result:

(defun g (y1 y2) (append y1 y2))

(defun-inst consp-io[g] (consp-io[?g] (?g . g)))

(defthm member-of-append ; used to prove CONSP-IO[G]-LEMMA below

(iff (member e (append y1 y2)) (or (member e y1) (member e y2))))

(defthm consp-io[g]-lemma ; used to prove CONSP-IO[G]! below

(implies (and (consp x) (io (car x) y1) (io (cdr x) y2))

(io x (g y1 y2)))

:hints (("Goal" :in-theory (disable io) :expand (io x (append y1 y2)))))

(defthm consp-io[g]! (consp-io[g]) :hints (("Goal" :in-theory (disable g))))

The predicate spec3[?h_?f_?g] is strengthened by replacing the consp-io[?f] conjunct with one
that constrains ?g to be g:

(defun-sk2 def-?g (?g) ()

(forall (y1 y2) (equal (?g y1 y2) (g y1 y2)))

:rewrite :direct)

(defun2 spec4[?h_?f_?g] (?h ?f ?g) ()

(and (def-?h-fold[?f_?g]) (def-?f) (def-?g)))

(defthm step4-lemma (implies (def-?g) (consp-io[?g]))

:hints (("Goal" :in-theory ’(consp-io[?g] consp-io[g]-necc

consp-io[g]! def-?g-necc))))

(defthm step4 (implies (spec4[?h_?f_?g]) (spec3[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec3[?h_?f_?g] spec4[?h_?f_?g] step4-lemma))))

Step 5 Substituting the solutions f and g into fold[?f_?g] yields a solution for ?h:

(defun-inst h (fold[?f_?g] (?f . f) (?g . g)))

(defun-sk2 def-?h (?h) () (forall x (equal (?h x) (h x))) :rewrite :direct)

The conjunct def-?h-fold[?f_?g] of spec4[?h_?f_?g] is replaced with def-?h, which is equiva-
lent to def-?h-fold[?f_?g] given the conjuncts def-?f and def-?g:

A. Coglio 29

(defun2 spec5[?h_?f_?g] (?h ?f ?g) () (and (def-?h) (def-?f) (def-?g)))

(defthm step5-lemma

(implies (and (def-?f) (def-?g)) (equal (h x) (fold[?f_?g] x)))

:hints (("Goal" :in-theory ’(h fold[?f_?g] def-?f-necc def-?g-necc))))

(defthm step5 (implies (spec5[?h_?f_?g]) (spec4[?h_?f_?g]))

:hints (("Goal" :in-theory ’(spec4[?h_?f_?g] spec5[?h_?f_?g]

def-?h-fold[?f_?g] def-?h-necc step5-lemma))))

This concludes the derivation: spec[?h_?f_?g] provides executable solutions for ?h, ?f, and ?g. The
resulting implementation is 〈h,f,g〉. Chaining the implications of the step correctness theorems shows
that these solutions satisfy the requirements specification:

(defthm chain[?h_?f_?g] (implies (spec5[?h_?f_?g]) (spec[?h]))

:hints (("Goal" :in-theory ’(step1 step2 step3 step4 step5))))

More explicitly, instantiating the end-to-end implication shows that h satisfies the requirements specifi-
cation:

(defun-inst def-h (def-?h (?h . h)))

(defun-inst def-f (def-?f (?f . f)))

(defun-inst def-g (def-?g (?g . g)))

(defun-inst spec5[h_f_g] (spec5[?h_?f_?g] (?h . h) (?f . f) (?g . g)))

(defun-inst spec[h] (spec[?h] (?h . h)))

(defthm-inst chain[h_f_g] (chain[?h_?f_?g] (?h . h) (?f . f) (?g . g)))

(defthm spec5[h_f_g]! (spec5[h_f_g])

:hints (("Goal" :in-theory ’(spec5[h_f_g]))))

(defthm spec[h]! (spec[h])

:hints (("Goal" :in-theory ’(chain[h_f_g] spec5[h_f_g]!))))

3 Related Work

The instance-of-defspec tool [14] and the make-generic-theory tool [17] automatically gener-
ate instances of functions and theorems that reference functions constrained via encapsulation [15], by
replacing the constrained functions with functions that satisfy the constraints. The instantiation mecha-
nisms of these tools are similar to the ones of SOFT; constrained functions in these tools parallel function
variables in SOFT. However, in SOFT function variables are unconstrained; constraints on them are ex-
pressed via second-order predicates (typically with quantifiers), and the same function variables can
be used as parameters of different constraining predicates. Unlike SOFT, instance-of-defspec and
make-generic-theory do not handle choice and quantifier functions, and do not generate termination
proofs for recursive function instances. SOFT generates one function or theorem instance at a time,
while instance-of-defspec and make-generic-theory can generate many. These two tools are
more suited to developing and instantiating abstract and parameterized theories; SOFT is more suited to
mimic second-order logic notation.

The :consider hint [19] heuristically generates functional instantiations to help prove given the-
orems. SOFT generates function and theorem instances for given replacements of function variables;
from these replacements, the necessary functional instantiations are generated automatically.

The def-functional-instance tool in the ACL2 community books generates theorem instances
for given replacements of functions. This tool has more general use than SOFT’s defthm-inst, but it

30 Second-Order Functions and Theorems

requires a complete functional instantiation, while defthm-inst only requires replacements for function
variables.

Wrapping existing events to record information for later use (as done by SOFT’s defunvar, defun2,
defchoose2, and defun-sk2) has precedents. For example, the def:un-sk tool [11] is a wrapper of
defun-sk that records information to help prove theorems involving quantifiers. It may be useful to
combine def:un-sk with SOFT’s defun-sk2 wrapper.

There are several tools to generate functions and theorems according to certain patterns, such as
std::deflist in the ACL2 standard library and fty::deflist in the FTY library [23]. These tools
may use SOFT to generate some of the functions and theorems as instances of pre-defined second-order
functions and theorems.

A general-purpose theorem prover like ACL2 can represent a variety of specification and refinement
formalisms, e.g. [1, 2, 12, 13, 18, 20, 22]; derivations can be carried out within the logic. But given the
close ties to Applicative Common Lisp, a natural approach to program refinement in ACL2 is to specify
requirements on one or more target ACL2 functions, and progressively strengthen the requirements until
the functions are executable and performant.

Alternatives to SOFT’s second-order predicates, for specifying requirements on ACL2 functions, in-
clude encapsulate (possibly via the wrappers defspec and defabstraction in the ACL2 community
books), defaxiom, and defchoose. But these are not as suited to program refinement:

• An encapsulate involves exhibiting witnesses to the consistency of the requirements, which
amounts to writing an implementation and proving it correct. But it is the purpose of program
refinement to construct an implementation and its correctness proof.

• A defaxiom obviates witnesses but may introduce logical inconsistency.

• A defchoose obviates witnesses and is logically conservative, but:

– It expresses requirements on single functions, necessitating the combination of multiple tar-
get functions into one.

– It expresses requirements on function results (the bound variables) with respect to function
arguments (the free variables), but not requirements involving different results and different
arguments, such as injectivity, non-interference [10], and other hyperproperties [7].

– It prescribes underspecified but fixed function results. For example, there is no clear refine-
ment relation between the function introduced as (defchoose f (y) (x) (> y x)) and the
function introduced as (defun g (x) (+ x 1)).

In contrast, a second-order predicate can specify any kind of requirements, on multiple functions, main-
taining logical consistency, and doing so without premature witnesses.

In the derivation in Section 2.2, the use and instantiation of the generic folding function on binary
trees is an example of the application of algorithm schemas in program refinement, as in [21] but here
realized via second-order functions and theorems. Second-order functions express algorithm schemas,
and second-order theorems show their correctness under suitable conditions on the function parameters.
Applying a schema adds a constraint that defines a target function to use the schema, and introduces
simpler target functions corresponding to the function parameters, constrained to satisfy the conditions
for the correctness of the schema.

A refinement step from a specification spec j can be performed manually, by writing down spec j+1
and proving (implies (spec j+1) (spec j)). It is sometimes possible to generate spec j+1 from spec j,
along with a proof of (implies (spec j+1) (spec j)), using automated transformation techniques. Au-
tomated transformations may require parameters to be provided and applicability conditions to be proved,

A. Coglio 31

but should generally save effort and make derivations more robust against changes in requirements spec-
ifications. At Kestrel Institute, we are developing ACL2 libraries of automated transformations for pro-
gram refinement.

4 Future Work

Guards defun-inst could be extended with the option to override the default guard Σ(guard) with a
different guard’, generating the proof obligation (implies guard’ Σ(guard)). This would be useful
in at least two situations.

A first situation is when the function instance has more guard conditions to verify than the second-
order function being instantiated, due to the replacement of a function parameter (which has no guards)
with a function that has guards. Providing a stronger guard to the function instance would enable the
verification of the additional guard conditions. For example, an instance quad[cdr] of quad[?f] from
Section 1.2.1 could be supplied with the guard (true-listp x).

A second situation is when the guard of the second-order function being instantiated includes condi-
tions on function parameters that involve a quantifier, e.g. the condition that the binary operation ?op of
a generic folding function over lists is closed over the type ?p of the list elements. Instantiating ?p with
natp and ?op with binary-+ satisfies the condition, but Σ(guard) still includes a quantifier that makes
the instance of the folding function non-executable. Supplying a guard’ that rephrases Σ(guard) to
omit the satisfied closure condition would solve the problem. As guard obligations on individual param-
eters are relieved when functions are applied to terms in a term, it makes sense to relieve guard obligations
on function parameters when second-order functions are “applied” to functions in defun-inst.

defun-inst could also be extended with the ability to use the instances of the verified guard condi-
tions of the second-order function being instantiated, to help verify the guard conditions of the function
instance. This may completely verify the guards of the instance, when no guard overriding is needed.

Partial Functions SOFT could be extended with a macro defpun2 to introduce partial second-order
functions, mimicked by partial first-order functions introduced via defpun [16]. defun-inst could
be extended to generate not only partial function instances, but also total function instances when the
instantiated :domain or :gdomain restrictions are theorems. Partial second-order functions would be
useful, in particular, to define recursive algorithm schemas whose measures and whose argument updates
in recursive calls are, or depend on, function parameters. An example is a general divide-and-conquer
schema.4

Mutual Recursion SOFT could be extended with a macro mutual-recursion2 to introduce mutu-
ally recursive plain second-order functions (with defun2), mimicked by mutually recursive first-order
functions introduced via mutual-recursion. defun-inst could be extended to generate instances of
mutually recursive second-order functions.

Lambda Expressions defun-inst and defthm-inst could be extended to accept instantiations that
map function variables to lambda expressions, similarly to :functional-instance.

4The folding function from Section 1.2.1 is a divide-and-conquer schema specialized to binary trees.

32 Second-Order Functions and Theorems

Instantiation Transitivity If sof ’ is introduced as the Σ instance of sof, and f is introduced as the
Σ’ instance of sof ’, then f should be the Σ” instance of sof, where Σ” is a suitably defined composition
of Σ and Σ’. Currently defun-inst does not record f as an instance of sof when f is introduced, but
it could be extended to do so. With this extension, injective[quad[wrap]] in Section 1.5 would be
the ((?f . quad[wrap])) instance of injective[?f] in Section 1.2.3.

In a related but different situation, given sof, sof ’, f, Σ, Σ’, and Σ” as above, but with f introduced
as the Σ” instance of sof, and sof ’ introduced as the Σ instance of sof, in either order (i.e. f then
sof ’, or sof ’ then f), then f should be the Σ’ instance of sof ’. Currently defun-inst does not
record f as an instance of sof ’ when f (after sof ’) or sof ’ (after f) is introduced, but could be
extended to do so. With this extension, if injective[quad[wrap]] were introduced as the ((?f .

quad[wrap])) instance of injective[?f], and injective[quad[?f]] were introduced as the ((?f
. quad[?f])) instance of injective[?f] as in Section 1.3, then injective[quad[wrap]] would
be the ((?f . wrap)) instance of injective[quad[?f]].

An alternative to these two extensions of defun-inst is to extend SOFT with a macro to claim
that an existing instance of a second-order function is also an instance of another second-order function
according to a given instantiation. The macro would check the claim (by applying the instantiation and
comparing the result with the function) and extend the table of instances of second-order functions if the
check succeeds. In the first scenario above, the macro would be used to claim that f is the Σ” instance of
sof ; in the second scenario above, the macro would be used to claim that f is the Σ’ instance of sof ’.

Function Variable Constraints Currently the only constraints on function variables are their types.
defunvar could be extended to accept richer signatures for function variables, with multiple-value re-
sults and single-threaded arguments and results. defun-inst and defthm-inst would then be extended
to check that instantiations satisfy these additional constraints. A more radical extension would be to at-
tach logical constraints to certain function variables, as in encapsulations.

Automatic Instances As explained in Section 1.3, when an instantiation is applied to a term, the
table of instances of second-order functions is consulted to find replacements for certain second-order
functions, and the application of the instantiation fails if replacements are not found. Thus, all the needed
instances must be introduced before applying the instantiation, e.g. in Section 1.5 the two defun-insts
had to be supplied before the last defthm-inst. SOFT could be extended to generate automatically the
needed instances of second-order functions.

SOFT could also be extended with a macro defthm2 to prove a second-order theorem via defthm

and to record the theorem in a table, along with information about the involved second-order functions.
defun-inst could be extended with the option to generate instances of the second-order theorems that
involve the second-order function being instantiated. defthm2 could include the option to generate
instances of the theorem that correspond to the known instances of the second-order functions that the
theorem involves. These extensions would reduce the use of explicit defthm-insts.

The convention of including function variables in square brackets in the names of second-order func-
tions and theorems, could be exploited to name the automatically generated function and theorem in-
stances, as suggested by the examples throughout the paper.

Other Events SOFT could be extended to provide second-order counterparts of other function and
theorem introduction events, e.g. define, defines, and defrule in the ACL2 community books.

A. Coglio 33

References

[1] Martı́n Abadi & Leslie Lamport (1991): The Existence of Refinement Mappings. Journal of Theoretical
Computer Science 82(2), doi:10.1016/0304-3975(91)90224-P.

[2] Jean-Raymond Abrial (1996): The B-Book: Assigning Programs to Meanings. Cambridge University Press,
doi:10.1017/CBO9780511624162.

[3] The ACL2 Theorem Prover. http://www.cs.utexas.edu/~moore/acl2.

[4] Peter B. Andrews (2002): An Introduction to Mathematical Logic and Type Theory: To Thruth Through
Proof. Springer, doi:10.1007/978-94-015-9934-4.

[5] R. S. Boyer, D. M. Goldschlag, M. Kaufmann & J S. Moore (1991): Functional Instantiation in First Order
Logic. Technical Report 44, Computational Logic Inc.

[6] Alonzo Church (1940): A Formulation of the Simple Theory of Types. The Journal of Symbolic Logic 5(2),
doi:10.2307/2266170.

[7] Michael Clarkson & Fred Schneider (2010): Hyperproperties. Journal of Computer Security 18(6),
doi:10.3233/JCS-2009-0393.

[8] Alessandro Coglio (2014): Pop-Refinement. Archive of Formal Proofs. http://afp.sf.net/entries/

Pop_Refinement.shtml, Formal proof development.

[9] Edsger W. Dijkstra (1968): A Constructive Approach to the Problem of Program Correctness. BIT 8(3),
doi:10.1007/BF01933419.

[10] Joseph Goguen & José Meseguer (1982): Security Policies and Security Models. In: Proc. IEEE Symposium
on Security and Privacy, doi:10.1109/SP.1982.10014.

[11] David Greve (2009): Automated Reasoning with Quantified Formulae. In: Proc. 8th International Workshop
on the ACL2 Theorem Prover and Its Applications (ACL2-2009), doi:10.1145/1637837.1637855.

[12] C. A. R. Hoare (1972): Proof of Correctness of Data Representations. Acta Informatica 1(4),
doi:10.1007/BF00289507.

[13] Cliff Jones (1990): Systematic Software Development using VDM, second edition. Prentice Hall.

[14] Sebastiaan J. C. Joosten, Bernard van Gastel & Julien Schmaltz (2013): A Macro for Reusing Abstract
Functions and Theorems. In: Proc. 11th International Workshop on the ACL2 Theorem Prover and Its
Applications (ACL2-2013), doi:10.4204/EPTCS.114.3.

[15] Matt Kaufmann & J Strother Moore (2001): Structured Theory Development for a Mechanized Logic,
doi:10.1023/A:1026517200045.

[16] Panagiotis Manolios & J Strother Moore (2003): Partial Functions in ACL2,
doi:10.1023/B:JARS.0000009505.07087.34.

[17] F. J. Martı̀n-Mateos, J. A. Alonso, M. J. Hidalgo & J. L. Ruiz-Reina (2002): A Generic Instantiation Tool
and a Case Study: A Generic Multiset Theory. In: Proc. 3rd International Workshop on the ACL2 Theorem
Prover and Its Applications (ACL2-2002).

[18] Robin Milner (1971): An Algebraic Definition of Simulation between Programs. Technical Report CS-205,
Stanford University.

[19] J Strother Moore (2009): Automatically Computing Functional Instantiations. In: Proc. 8th International
Workshop on the ACL2 Theorem Prover and Its Applications (ACL2-2009), doi:10.1145/1637837.1637839.

[20] Carroll Morgan (1998): Programming from Specifications, second edition. Prentice Hall.

[21] Douglas R. Smith (1999): Mechanizing the Development of Software. In Manfred Broy, editor: Calculational
System Design, Proc. Marktoberdorf Summer School, IOS Press.

[22] J. M. Spivey (1992): The Z Notation: A Reference Manual, second edition. Prentice Hall.

[23] Sol Swords & Jared Davis (2015): Fix Your Types. In: Proc. 13th International Workshop on the ACL2
Theorem Prover and Its Applications (ACL2-2015).

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 35–51, doi:10.4204/EPTCS.192.4

c© C. Chau, M. Kaufmann & W. Hunt
This work is licensed under the
Creative Commons Attribution License.

Fourier Series Formalization in ACL2(r)

Cuong K. Chau
Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
ckcuong@cs.utexas.edu

Matt Kaufmann
Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
kaufmann@cs.utexas.edu

Warren A. Hunt, Jr.
Department of Computer Science
The University of Texas at Austin

Austin, TX, USA
hunt@cs.utexas.edu

We formalize some basic properties of Fourier series in the logic of ACL2(r), which is a variant of
ACL2 that supports reasoning about the real and complex numbers by way of non-standard analysis.
More specifically, we extend a framework for formally evaluating definite integrals of real-valued,
continuous functions using the Second Fundamental Theorem of Calculus. Our extended framework
is also applied to functions containing free arguments. Using this framework, we are able to prove
the orthogonality relationships between trigonometric functions, which are the essential properties
in Fourier series analysis. The sum rule for definite integrals of indexed sums is also formalized by
applying the extended framework along with the First Fundamental Theorem of Calculus and the sum
rule for differentiation. The Fourier coefficient formulas of periodic functions are then formalized
from the orthogonality relations and the sum rule for integration. Consequently, the uniqueness of
Fourier sums is a straightforward corollary.

We also present our formalization of the sum rule for definite integrals of infinite series in
ACL2(r). Part of this task is to prove the Dini Uniform Convergence Theorem and the continuity
of a limit function under certain conditions. A key technique in our proofs of these theorems is to
apply the overspill principle from non-standard analysis.

1 Introduction

In this paper, we present our efforts in formalizing some basic properties of Fourier series in the logic
of ACL2(r), which is a variant of ACL2 that supports reasoning about the real and complex numbers
via non-standard analysis [8, 12]. In particular, we describe our formalization of the Fourier coefficient
formulas for periodic functions and the sum rule for definite integrals of infinite series. The formalization
of Fourier series will enable interactive theorem provers to reason about systems modeled by Fourier
series, with applications to a wide variety of problems in mathematics, physics, electrical engineering,
signal processing, and image processing.

We do not claim to be developing new mathematics. However, as far as we know the mechanized
formalizations and proofs presented in this paper are new. The research contributions of this paper are
twofold: a demonstration that a mechanized proof assistant, in particular ACL2(r), can be used to verify
properties of Fourier series; and infrastructure to support that activity, which we expect to be reusable
for future ACL2(r) verifications of continuous mathematics. Our formalizations presented in the paper
assume that there exists a Fourier series, i.e., a (possibly infinite) sum of sines and cosines for any
periodic function. Future work could include proving convergence of the Fourier series for any suitable
periodic function.

The proofs of Fourier coefficient formulas depend on the orthogonality relationships between trigono-
metric functions and the sum rule for integration of indexed sums. A key tool for proving these prop-
erties is the Second Fundamental Theorem of Calculus (FTC-2). Cowles and Gamboa [5] implemented
a framework for formally evaluating definite integrals of real-valued continuous functions using FTC-2.

36 Fourier Series Formalization in ACL2(r)

However, their framework is restricted to unary functions, while formalizing Fourier coefficient formulas
requires integration for indexed families of functions fn(x), which we represent as f (x,n). We call such
n a free argument. Hence, we extend the FTC-2 framework of Cowles and Gamboa to apply to functions
with free arguments. We call the extended framework the FTC-2 evaluation procedure. One may expect
the usual ACL2 functional instantiation mechanism to apply, by using pseudo-lambda expressions [1] to
handle the free arguments. However, in ACL2(r) there are some technical issues and restrictions on the
presence of free arguments in functional substitutions, which make functional instantiation not trivial [4].
We describe these issues in detail and show how we deal with them in Section 4. Once the FTC-2 eval-
uation procedure is built, we can use it to prove the orthogonality relationships between trigonometric
functions. The sum rule for definite integrals of indexed sums is also formalized by applying the FTC-2
evaluation procedure along with the First Fundamental Theorem of Calculus (FTC-1) and the sum rule
for differentiation. The Fourier coefficient formulas for periodic functions are then verified using the
orthogonality relations and the sum rule for integration. Consequently, the uniqueness of Fourier sums is
a straightforward corollary of the Fourier coefficient formulas.

The other main contribution of our work is the formalization of the sum rule for definite integrals
of infinite series under two different conditions. This problem deals with the convergence notion of a
sequence of functions. We consider two types of convergence: pointwise convergence and uniform con-
vergence. Our formalization requires that a sequence of partial sums of real-valued continuous functions
converges uniformly to a continuous limit function on the interval of interest. We approach this require-
ment in two ways, corresponding to two different conditions. One way is to prove that if a sequence of
continuous functions converges pointwise on a closed and bounded interval, then it converges uniformly
on that interval, given that the sequence is monotonic and the limit function is continuous. This is known
as the Dini Uniform Convergence Theorem [15]. Another way is to prove that if a sequence of continuous
functions is not required to be monotonic but converges uniformly to some limit function on the interval
of interest, then the limit function is also continuous on that interval. A key technique in our proofs for
both cases is to apply the overspill principle from non-standard analysis [9, 13]. Thus, we also formalize
the overspill principle in ACL2(r) and apply this principle to prove Dini’s theorem and the continuity of
the limit function as mentioned.

FTC-2 FTC-1

Orthogonality
relations

Sum rule for
integration

Fourier coefficient formulas

Uniqueness of
Fourier sums

Overspill principle

Sum rule for
integration of
infinite series

Figure 1. Overview of the formalization of the Fourier coefficient formulas and the sum rule for definite
integrals of infinite series.

Figure 1 gives an overview of the work presented in this paper. The remainder of the paper is
organized as follows. Section 2 reviews some basic notions of non-standard analysis in ACL2(r) that we

C. Chau, M. Kaufmann & W. Hunt 37

use later in the paper. Section 3 reviews two versions of the Fundamental Theorem of Calculus that we
extend to support our Fourier series formalization. Section 4 describes the FTC-2 evaluation procedure
as an extended framework for applying FTC-2 to functions with free arguments. The formalization of the
orthogonality relations for trigonometric functions and the sum rule for definite integrals of indexed sums
are described in Sections 5 and 6 respectively. The formalization of the Fourier coefficient formulas and
the uniqueness of Fourier sums are described in Section 7. The preceding results apply to finite series,
but as we look ahead to dealing with infinite Fourier series, we take a step in Section 8, which presents
our formalization of the sum rule for definite integrals of infinite series. Finally, Section 9 concludes the
paper and points out some possible future work.

2 Basic Non-Standard Analysis Notions in ACL2(r)

Here we review basic notions of non-standard analysis in ACL2(r) that are used in the remainder of this
paper. All notions introduced here are considered non-classical, while functions whose definitions do
not depend on any of these notions are classical. Let x be a real number.

• A primitive notion is that x is standard, which intuitively means that x is a “traditional” real number.
In particular, x is standard if it can be defined. For example, 1, -2, 3.65, π , e5, and

√
2 are standard.

A natural number is considered standard if it is finite, otherwise it is non-standard. We will refer
to the standard notion of natural numbers when stating the overspill principle in Section 8. We
feel free to relativize our quantifiers. For example, “∀stn . . .” means “for all standard n . . .”, and
“∃¬stn . . .” means “there exists non-standard n . . .”.

• x is i-small (infinitesimal) iff |x|< r for all positive standard reals r.

• x is i-large iff |x|> r for all positive standard reals r.

• x is i-limited (finite) iff |x|< r for some positive standard real r.

• x is i-close (≈) to a real y iff (x− y) is i-small.

• Suppose x is i-limited. Then standard-part(x), or simply st(x), is the unique standard real
that is i-close to x.

3 Fundamental Theorem of Calculus

This section reviews two versions of the Fundamental Theorem of Calculus that we need to extend
to functions with free arguments, as part of our Fourier series formalization. The two versions are
sometimes called the First and Second Fundamental Theorem of Calculus.

First Fundamental Theorem of Calculus (FTC-1): Let f be a real-valued continuous function on
the interval [a,b]. We can then define a corresponding function g(x) as follows: g(x) =

∫ x
a f (t)dt. Then

g′(x) = f (x) for all x ∈ [a,b].
Second Fundamental Theorem of Calculus (FTC-2): If f is a real-valued continuous function on

[a,b] and g is an antiderivative of f on [a,b], i.e., g′(x) = f (x) for all x ∈ [a,b], then
∫ b

a
f (x)dx = g(b)−g(a).

In the next two sections, we extend FTC-2 to functions with free arguments and apply it to prove
the orthogonality relations of trigonometric functions, respectively. The extension of FTC-1 and its
application to the sum rule for definite integrals of indexed sums is described in Section 6.

38 Fourier Series Formalization in ACL2(r)

4 FTC-2 Evaluation Procedure

This section describes how we apply the FTC-2 theorem to evaluate definite integrals of real-valued
continuous functions f in terms of their antiderivatives g, even when f and g contain free arguments,
that is, arguments other than the variable with respect to which we perform integration or differentiation.
In particular, we extend the existing FTC-2 framework [5] to functions with free arguments, and call the
extended framework the FTC-2 evaluation procedure. This procedure consists of the following steps:

• Prove that f returns real values on [a,b].

• Prove that f is continuous on [a,b].

• Specify a real-valued antiderivative g of f and prove that f is the derivative of g on [a,b]; i.e.,
prove that g returns real values and g′(x) = f (x) for all x ∈ [a,b].

• Formalize the integral of f on [a,b] as the Riemann integral.

• Evaluate the integral of f on [a,b] in terms of g by applying the FTC-2 theorem.

The first two steps are trivial in comparison to the last three. In the following subsections, we describe
the challenges manifest in the last three steps and how we tackle them.

4.1 Automatic Differentiator

In order to apply the FTC-2 evaluation procedure to evaluate the definite integral of a function f , we
need to specify and prove the correctness of a real-valued antiderivative g of f . The specifying task
can be done by appealing to a computer algebra system such as Mathematica [16]. Notably, we must
mechanically check in ACL2(r) that f is indeed the derivative of g. Fortunately, we don’t have to prove
this manually for every function. An automatic differentiator (AD) implemented by Reid and Gamboa
[6, 7] symbolically computes the derivative f of the input function g and automatically derives a proof
demonstrating the correctness of the differentiation, i.e., automatically proves the following formula:

f (x)≈ g(x)−g(y)
x− y

,

for all x and y in the domain of g such that x is standard, x ≈ y, but x 6= y. For example, the user can
employ the AD to prove that f (x) = ncos(nx) is the derivative of g(x) = sin(nx) with respect to x, by
calling the macro defderivative with the input function g as follows:

(defderivative sine-derivative

(acl2-sine (* n x)))

The following theorem is then introduced and proved automatically:

(defthm sine-derivative

(implies (and (acl2-numberp x)

(acl2-numberp (* n x))

(acl2-numberp y)

(acl2-numberp (* n y))

(standardp x)

(standardp n) (acl2-numberp n)

(i-close x y) (not (equal x y)))

C. Chau, M. Kaufmann & W. Hunt 39

(i-close (/ (- (acl2-sine (* n x))

(acl2-sine (* n y)))

(- x y))

(* (acl2-cosine (* n x))

(+ (* n 1) (* x 0))))))

The AD requires using the symbol x as the name of the variable with respect to which the (partial)
derivative is computed. Notice that the hypotheses (acl2-numberp (* n x)) and (acl2-numberp

(* n y)) in the above theorem are redundant since they can be implied from the set of hypotheses
(acl2-numberp x), (acl2-numberp y) and (acl2-numberp n). In addition, the above theorem
states that the derivative of sin(nx) is cos(nx)(n∗1+x∗0), which indeed equals ncos(nx). This AD does
not perform such simplifications. Nevertheless, the user can easily prove the desired theorem from the
one generated by the macro defderivative.

4.2 Formalizing the Riemann Integral with Free Arguments

We formalize the definite integral of a function as the Riemann integral, following the same method as
implemented by Kaufmann [11]. When functions contain free arguments, this formalization encounters
a problem with functional instantiations of non-classical theorems containing these functions. We will
describe the problem in detail and how we deal with it. Let’s consider the following definition of the
Riemann integral of a unary function, which uses an ACL2(r) utility, defun-std [4], for introducing
classical functions defined in terms of non-classical functions. Note that defun-std defines a function
which is only guaranteed to satisfy its definition on standard inputs.

(defun-std strict-int-f (a b)

(if (and (inside-interval-p a (f-domain))

(inside-interval-p b (f-domain))

(< a b))

(standard-part (riemann-f (make-small-partition a b)))

0))

The form above introduces the Riemann integral of a function f as a classical function, even though
it contains two non-classical functions, standard-part and make-small-partition1. The proof
obligation here is to prove the integral returns standard values with standard inputs. More specifically,
we need to prove that the standard part of the Riemann sum of f , for any partition of [a,b] with standard
endpoints into infinitesimal-length subintervals, returns standard values. This is true only if that Riemann
sum is limited. In fact, for a generic real-valued continuous unary function rcfn, this limited property
was proven for a corresponding Riemann sum, as follows [11].

(defthm limited-riemann-rcfn-small-partition

(implies (and (standardp a)

(standardp b)

(inside-interval-p a (rcfn-domain))

(inside-interval-p b (rcfn-domain))

(< a b))

(i-limited (riemann-rcfn (make-small-partition a b)))))

1We use the non-classical function make-small-partition to partition a closed and bounded interval into subintervals
each of infinitesimal length.

40 Fourier Series Formalization in ACL2(r)

We are now interested in extending the above theorem for functions containing free arguments using
functional instantiation with pseudo-lambda expressions. Unfortunately, free arguments are not allowed
to occur in pseudo-lambda expressions in the functional substitution since the theorem we are trying to
instantiate is non-classical and the functions we are trying to instantiate are classical; the following exam-
ple shows why this requirement is necessary [4]. For an arbitrary classical function f (x), the following
is a theorem.

standardp(x)⇒ standardp(f (x))

Substitution of λ (x).(x+ y) for f into the above formula yields the formula

standardp(x)⇒ standardp(x+ y)

which is not valid, since the free argument y can be non-standard.
Instead of using functional instantiation, we prove the limited property of Riemann sums (as dis-

cussed above) from scratch by applying the following theorem.

Theorem 1 (The boundedness of Riemann sums [11]). Assume that there exist finite values m and M
such that

m≤ f (t)≤M, for all t ∈ [a,b].

Then the Riemann sum of f over [a,b] with any partition P = {x0,x1, . . . ,xn} is bounded by

m(b−a)≤
n

∑
i=1

f (ti)(xi− xi−1)≤M(b−a)

where ti ∈ [xi−1,xi], x0 = a, and xn = b.

From Theorem 1, proving the Riemann sum of f over [a,b] is bounded reduces to proving f is
bounded on that interval. Given a specific real-valued continuous function f , it is usually straightfor-
ward to specify the bounds of f on a closed and bounded interval. The problem becomes more chal-
lenging when applying to generic real-valued continuous functions since it is impossible to find either
their minimum or maximum. However, the boundedness of these functions on a closed and bounded
interval still holds by the extreme value theorem. But again, this was just proven for unary functions
[5]. We also want to apply this property to functions with free arguments. Our solution at this point
is to re-prove the extreme value theorem and consequently the limited property of Riemann sums for
generic functions with free arguments. Since the number of free arguments is varied, it would be trou-
blesome to prove the same properties independently for each number of free arguments. Indeed, we
just need to add only one extra argument representing a list of the free arguments to the constrained
functions and re-prove the concerned non-classical theorems. The necessary hypotheses for the extra
argument can be added throughout the proof development. Note that non-classical theorems proven for
the new constrained functions with only one extra argument added can also be derived for functions
with an arbitrary number of free arguments, using functional and ordinary instantiation. (See lemmas
limited-riemann-f-small-partition-lemma and limited-riemann-f-small-partition be-
low for an example of how this works.) The question is how can we avoid the problem of the appearance
of free arguments in functional instantiations of non-classical theorems as described above? The trick is
to treat the extra argument in the constrained functions as a list of free arguments. Thus, no free argu-
ment appears in the functional instantiations. To illustrate the proposed technique, let us investigate the
constrained function rcfn-2 below. It contains one main argument x and one extra argument arg.

C. Chau, M. Kaufmann & W. Hunt 41

(encapsulate

((rcfn-2 (x arg) t)

(rcfn-2-domain () t))

;; Our witness real-valued continuous function is the

;; identity function of x. We ignore the extra argument arg.

(local (defun rcfn-2 (x arg) (declare (ignore arg)) (realfix x)))

(local (defun rcfn-2-domain () (interval nil nil)))

... ;; Non-local theorems about rcfn-2 and rcfn-2-domain

)

We then prove the extreme value theorem for rcfn-2 and consequently the limited property of
the Riemann sum of rcfn-2, using the same proofs for the case of unary function rcfn existing in
the ACL2 community books [2], file books/nonstd/integrals/continuous-function.lisp. The
limited property of the Riemann sum of rcfn-2 is stated as follows:

(defthm limited-riemann-rcfn-2-small-partition

(implies (and (standardp arg)

(standardp a)

(standardp b)

(inside-interval-p a (rcfn-2-domain))

(inside-interval-p b (rcfn-2-domain))

(< a b))

(i-limited (riemann-rcfn-2 (make-small-partition a b) arg))))

As claimed, the above non-classical theorem can also be applied to functions with an arbitrary num-
ber of free arguments, using the trick we describe in the following example. In this example, the function
f (x,m,n) contains two free arguments m and n. Then, the parameter arg in the above theorem should be
considered as the list (list m n). Having said that, we first need to prove a lemma stating that every
element in a standard list is standard. This can be proven easily by using defthm-std [4].

(defthm-std standardp-nth-i-arg

(implies (and (standardp arg)

(standardp i))

(standardp (nth i arg)))

:rule-classes (:rewrite :type-prescription))

The functional instantiation with pseudo-lambda expressions can now be applied to prove the limited
property of the Riemann sum of f as follows.

(1) (defthm limited-riemann-f-small-partition-lemma

(implies (and (standardp arg)

(standardp a)

(standardp b)

(inside-interval-p a (f-domain))

(inside-interval-p b (f-domain))

(< a b))

(i-limited (riemann-f (make-small-partition a b)

42 Fourier Series Formalization in ACL2(r)

(nth 0 arg)

(nth 1 arg))))

:hints (("Goal"

:by (:functional-instance

limited-riemann-rcfn-2-small-partition

(rcfn-2 (lambda (x arg)

(f x (nth 0 arg) (nth 1 arg))))

(rcfn-2-domain f-domain)

(map-rcfn-2

(lambda (p arg)

(map-f p (nth 0 arg) (nth 1 arg))))

(riemann-rcfn-2

(lambda (p arg)

(riemann-f p (nth 0 arg) (nth 1 arg))))))))

Note that the functional instantiation in the above lemma does not contain any free arguments. How-
ever, this lemma constrains the two free arguments to be members of a list. In order to eliminate this
constraint, we need a lemma stating that a list of length two is standard if both of its elements are stan-
dard. Again, we can prove this using defthm-std.

(defthm-std standardp-list

(implies (and (standardp m)

(standardp n))

(standardp (list m n)))

:rule-classes (:rewrite :type-prescription))

We are finally able to prove the desired theorem as an instance of the lemma (1).

(defthm limited-riemann-f-small-partition

(implies (and (standardp m)

(standardp n)

(standardp a)

(standardp b)

(inside-interval-p a (f-domain))

(inside-interval-p b (f-domain))

(< a b))

(i-limited (riemann-f (make-small-partition a b) m n)))

:hints (("Goal"

:use (:instance limited-riemann-f-small-partition-lemma

(arg (list m n))))))

4.3 Applying FTC-2 to Functions with Free Arguments

The FTC-2 theorem was stated and proven in the ACL2 community books for generic unary functions
as follows [5]:

(defthm ftc-2

(implies (and (inside-interval-p a (rcdfn-domain))

(inside-interval-p b (rcdfn-domain)))

C. Chau, M. Kaufmann & W. Hunt 43

(equal (int-rcdfn-prime a b)

(- (rcdfn b) (rcdfn a)))))

Again, we would like to apply this theorem for functions with free arguments via functional instanti-
ation. Since this theorem is classical, free arguments are allowed to occur in pseudo-lambda expressions
of a functional substitution as long as classicalness is preserved [4]. Through functional instantiation
with pseudo-lambda terms, we encounter several proof obligations that require free arguments to be
standard. Unfortunately, attempting to add this assumption to pseudo-lambda terms, e.g., (lambda (x)

(if (standardp n) (f x n) (f x 0))), is not allowed in ACL2(r) since the terms become non-
classical by using the non-classical function standardp, violating the classicalness requirement. To
deal with this issue of functional instantiation, we propose a technique using an encapsulate event with
zero-arity classical functions (constants) representing free arguments. Since the zero-arity functions are
classical, they must return standard values. Using this technique, we can instantiate the FTC-2 theorem
to evaluate the definite integral of a function containing free arguments in terms of its antiderivative.
For example, suppose we want to apply the FTC-2 theorem to a real-valued continuous function f (x,n),
where n is a free argument of type integer. Also suppose that g is an antiderivative of f . Our proposed
technique consists of four steps as described below:

• Step 1: Define an encapsulate event that introduces zero-arity classical function(s) representing
free argument(s).

(encapsulate

(((n) => *))

(local (defun n () 0))

(defthm integerp-n

(integerp (n))

:rule-classes :type-prescription))

• Step 2: Prove that the zero-arity classical function(s) return standard values using defthm-std.

(defthm-std standardp-n

(standardp (n))

:rule-classes (:rewrite :type-prescription))

• Step 3: Prove the main theorem, modified by replacing the free argument(s) with the corresponding
zero-arity function(s) introduced in step 1. Without free argument(s), the functional instantiation
can be applied straightforwardly.

(defthm f-ftc-2-lemma

(implies (and (inside-interval-p a (g-domain))

(inside-interval-p b (g-domain)))

(equal (int-f a b (n))

(- (g b (n))

(g a (n)))))

:hints (("Goal"

:by (:functional-instance

ftc-2

(rcdfn

(lambda (x) (g x (n))))

(rcdfn-prime

(lambda (x) (f x (n))))

44 Fourier Series Formalization in ACL2(r)

(rcdfn-domain g-domain)

... ;; Instantiate other constrained

;; functions similarly.

(int-rcdfn-prime

(lambda (a b) (int-f a b (n))))))))

• Step 4: Prove the main theorem by functionally instantiating the zero-arity function(s) in the
lemma introduced in step 3 with the corresponding free argument(s).

(defthm f-ftc-2

(implies (and (integerp n) ;; we assume the type of n is integer.

(inside-interval-p a (g-domain))

(inside-interval-p b (g-domain)))

(equal (int-f a b n)

(- (g b n)

(g a n))))

:hints (("Goal"

:by (:functional-instance f-ftc-2-lemma

(n (lambda ()

(if (integerp n) n 0)))))))

5 Orthogonality Relations of Trigonometric Functions

By applying the FTC-2 evaluation procedure, we can mechanically prove in ACL2(r) the orthogonality
relations of trigonometric functions, which are the essential properties in Fourier series analysis. The
orthogonality relations of trigonometric functions are a collection of definite integral formulas for sine
and cosine functions as described below:

∫ L

−L
sin(m

π
L

x)sin(n
π
L

x)dx =

{
0, if m 6= n∨m = n = 0
L, if m = n 6= 0

(5.1)

∫ L

−L
cos(m

π
L

x)cos(n
π
L

x)dx =

0, if m 6= n
L, if m = n 6= 0
2L, if m = n = 0

(5.2)

∫ L

−L
sin(m

π
L

x)cos(n
π
L

x)dx = 0 (5.3)

where x,L ∈ R; L 6= 0; and m,n ∈ N. As mentioned, these integral formulas can be proven using the
FTC-2 evaluation procedure. Let’s consider the case m 6= n in formula (5.1); the other cases can be
proven similarly. When m 6= n, formula (5.1) states that

∫ L
−L f (x,m,n,L)dx = 0 where f (x,m,n,L) =

sin(m π
L x)sin(n π

L x). Using the automatic differentiator, we can easily prove that the function g defined
below is indeed an antiderivative of f when m 6= n:

g(x,m,n,L) =
1
2

(
sin
(
(m−n)π

L x
)

(m−n)π
L

− sin
(
(m+n)π

L x
)

(m+n)π
L

)

C. Chau, M. Kaufmann & W. Hunt 45

Then, by the FTC-2 theorem,

∫ L

−L
f (x,m,n,L)dx = g(L,m,n,L)−g(−L,m,n,L)

=
1
2

(
sin((m−n)π)

(m−n)π
L
− sin((m+n)π)

(m+n)π
L

)
− 1

2

(
sin(−(m−n)π)

(m−n)π
L

− sin(−(m+n)π)
(m+n)π

L

)

=
1
2
(0−0)− 1

2
(0−0) = 0

6 Sum Rule for Definite Integrals of Indexed Sums

As part of the Fourier coefficient formalization, we need to formalize the sum rule for definite integrals
of indexed sums, which is stated as the following theorem:

Theorem 2 (Sum rule for definite integrals of indexed sums). Let { fn} be a set of real-valued continuous
functions on [a,b], where n = 0,1,2, ...,N. Then

∫ b

a

N

∑
n=0

fn(x)dx =
N

∑
n=0

∫ b

a
fn(x)dx

Note that fn(x) abbreviates f (x,n), which contains a free argument, n. Kaufmann [11] formalized
the FTC-1 theorem for generic unary functions as a non-classical theorem. We re-prove it for generic
functions with an extra argument added, following the method for extending the limited property of
Riemann sums as described in Section 4.2. Then, by applying the FTC-2 evaluation procedure along
with the extended version of FTC-1 and the sum rule for differentiation, the above theorem can be
proven as follows:

Proof. For all x ∈ [a,b] and n = 0,1, . . . ,N, let

gn(x) =
∫ x

a
fn(t)dt.

By FTC-1, g′n(x) = fn(x) for all x ∈ [a,b],n = 0,1, ...,N.
By the sum rule for differentiation,

(
∑N

n=0 gn(x)
)′
= ∑N

n=0 g′n(x) = ∑N
n=0 fn(x) for all x ∈ [a,b]. Then,

by FTC-2,

∫ b

a

N

∑
n=0

fn(x)dx =
N

∑
n=0

gn(b)−
N

∑
n=0

gn(a)

=
N

∑
n=0

∫ b

a
fn(t)dt−

N

∑
n=0

∫ a

a
fn(t)dt =

N

∑
n=0

∫ b

a
fn(x)dx

7 Fourier Coefficient Formulas

From the orthogonality relations and the sum rule for integration, the Fourier coefficients of periodic
functions can be stated as follows:

46 Fourier Series Formalization in ACL2(r)

Theorem 3 (Fourier coefficient formulas). Consider the following Fourier sum f (x) for a periodic func-
tion with period 2L:

f (x) = a0 +
N

∑
n=1

(
an cos(n

π
L

x)+bn sin(n
π
L

x)
)

(7.1)

Then

a0 =
1

2L

∫ L

−L
f (x)dx, (7.2)

an =
1
L

∫ L

−L
f (x)cos(n

π
L

x)dx, (7.3)

bn =
1
L

∫ L

−L
f (x)sin(n

π
L

x)dx. (7.4)

The proof of this theorem is straightforward from the orthogonality relations and the sum rule for
integration, after applying the definition of f in (7.1) to the Fourier coefficient formulas (7.2), (7.3), and
(7.4). Consequently, we can easily derive the following corollary. This is known as the uniqueness of
Fourier sums:

Corollary 1 (Uniqueness of Fourier sums). Let

f (x) = a0 +
N

∑
n=1

(
an cos(n

π
L

x)+bn sin(n
π
L

x)
)

and

g(x) = A0 +
N

∑
n=1

(
An cos(n

π
L

x)+Bn sin(n
π
L

x)
)

Then f = g⇔

a0 = A0

an = An, for all n = 1,2, ...,N
bn = Bn, for all n = 1,2, ...,N

Proof. (⇒) Follows immediately from the Fourier coefficient formulas:

a0 =
1

2L

∫ L

−L
f (x)dx =

1
2L

∫ L

−L
g(x)dx = A0,

an =
1
L

∫ L

−L
f (x)cos(n

π
L

x)dx =
1
L

∫ L

−L
g(x)cos(n

π
L

x)dx = An,

bn =
1
L

∫ L

−L
f (x)sin(n

π
L

x)dx =
1
L

∫ L

−L
g(x)sin(n

π
L

x)dx = Bn.

(⇐) Obviously true by induction on n.

8 Sum Rule for Definite Integrals of Infinite Series

Our formalization of the sum rule for integration in Section 6 only applies to finite sums. However,
Fourier series can be infinite. Thus, the sum rule for integration needs to be extended to infinite series;
we do so in this section.

C. Chau, M. Kaufmann & W. Hunt 47

Our basic result is the following sum rule for integrals of infinite series, formalized using non-
standard analysis. (We define uniform convergence below.)

Theorem 4. Suppose that { fn(x)} is a sequence of real-valued continuous functions whose sequence of
partial sums converges uniformly to a continuous limit function on a given interval. Then

∫ b

a
st

(
H0

∑
n=0

fn(x)

)
dx = st

(
H1

∑
n=0

∫ b

a
fn(x)dx

)
(8.1)

for all infinitely large natural numbers H0 and H1.

Remark. The conclusion above is equivalent to the following formula using the epsilon-delta defi-
nition of limit [14]:

∫ b

a
lim

N→∞

(
N

∑
n=0

fn(x)

)
dx = lim

N→∞

(
N

∑
n=0

∫ b

a
fn(x)dx

)
(8.2)

We turn now to two variants of this theorem that relax its requirements. We start by recalling well-
known formulations of convergence in non-standard analysis.

• Pointwise convergence: Suppose { fn} is a sequence of functions defined on an interval I. The
sequence { fn} converges pointwise to the limit function f on the interval I if fH(x)≈ f (x) for all
standard x ∈ I and for all infinitely large natural numbers H.

• Uniform convergence: Suppose { fn} is a sequence of functions defined on an interval I. The
sequence { fn} converges uniformly to the limit function f on the interval I if fH(x)≈ f (x) for all
x ∈ I (both standard and non-standard) and for all infinitely large natural numbers H.

Clearly, uniform convergence is stronger than pointwise convergence. A sequence that converges
uniformly to a limit function also converges pointwise to that function, but the reverse is not guaranteed.
We meet the hypothesis of Theorem 4 — uniform convergence to a continuous limit function — in two
ways corresponding to two different conditions, as follows. Note: Only the second condition is relevant
to Fourier series, but the first also leads to an interesting result.

• Condition 1: A monotone sequence of partial sums of real-valued continuous functions converges
pointwise to a continuous limit function on the closed and bounded interval of interest.

• Condition 2: A sequence of partial sums of real-valued continuous functions converges uniformly
to a limit function on the interval of interest.

The following theorem [15] shows that Condition 1 implies the hypothesis of Theorem 4.

Theorem 5 (Dini Uniform Convergence Theorem). A monotone sequence of continuous functions { fn}
that converges pointwise to a continuous function f on a closed and bounded interval [a,b] is uniformly
convergent.

Our proof of Dini’s theorem relies on the overspill principle from non-standard analysis [9, 13].
Thus, we now discuss our formalization of this principle in ACL2(r) [3].

Overspill principle (weak version): Let P(n,x) be a classical predicate. Then

∀x.
((
∀stn ∈ N.P(n,x)

)
⇒∃¬stk ∈ N.P(k,x)

)
. (8.3)

In words, if a classical predicate P holds for all standard natural numbers n, P must be hold for some non-
standard natural number k. By applying this principle, we can even come up with a stronger statement
as follows:

48 Fourier Series Formalization in ACL2(r)

Overspill principle (strong version): Let P(n,x) be a classical predicate. Then

∀x.
((
∀stn ∈ N.P(n,x)

)
⇒∃¬stk ∈ N.∀m ∈ N.(m≤ k⇒ P(m,x))

)
. (8.4)

In words, if a classical predicate P holds for all standard natural numbers n, there must exist some non-
standard natural number k such that P holds for all natural numbers less than or equal to k. (8.4) can be
derived from (8.3) through a classical predicate P∗(n,x) defined in terms of P(n,x) as follows:

(defun P* (n x)

(if (zp n)

(P 0 x)

(and (P n x)

(P* (1- n) x))))

The proof of (8.4) now proceeds as follows.

1. Fix x and assume (∀stn ∈ N.P(n,x)).

2. Then, we can show that (∀stm ∈ N.P∗(m,x)).

3. Applying (8.3) to P∗: ∃¬stk ∈ N.P∗(k,x).

4. From the definition of P∗: ∃¬stk ∈ N.∀m ∈ N.(m≤ k⇒ P(m,x)).

We formalize (8.4) for a generic classical predicate P(n,x) in ACL2(r) and provide the overspill

utility, which automates the application of (8.4). In particular, the user needs only to define a classical
predicate P1 and then call the overspill macro with the input P1 so that (8.4) will be applied to P1
automatically via a functional instantiation. We can thus apply the overspill principle (8.4) to prove
Dini’s theorem as shown below.

Proof of Theorem 5. Without loss of generality, assume { fn} is monotonically increasing. We want to
prove f (x)≈ fH(x) for all x ∈ [a,b] and for all infinitely large H ∈ N.

Fact: If x ∈ [a,b] then st(x) ∈ [a,b] (note that this is only true on closed and bounded intervals).
(A) Since st(x) is standard and x≈ st(x), f (x)≈ f (st(x)) by the continuity of f .
(B) Since st(x) is standard, f (st(x))≈ fH(st(x)) by the pointwise convergence of { fn}.
We will make the following two claims.
Claim 1. For some non-standard k ∈ N, we have: for all H ≤ k, fH(st(x))≈ fH(x).
Claim 2. Suppose k ∈ N such that fk(x)≈ f (x). Then for all H > k, f (x)≈ fH(x).
For the moment, assume both claims. Choosing k according to Claim 1, then by the transitivity of

i-close and Steps (A) and (B) above, we have f (x) ≈ fH(x) for all infinitely large H ≤ k. Applying
Claim 2 to that same k takes care of H > k, so we are done once we prove the claims.

To prove Claim 1, we must find a non-standard k such that fH(st(x))≈ fH(x) for all H ≤ k. We first
observe that by the continuity of { fn}, we have fn(st(x)) ≈ fn(x),∀x ∈ [a,b] and ∀stn ∈ N. We apply
the overspill principle — which requires a classical predicate — to the following classical predicate
P(n,x0,x).

P(n,x0,x)≡ | fn(x0)− fn(x)|<
1

n+1
If x0,x ∈ [a,b], x0 is standard, and x0 ≈ x, then P(n,x0,x) holds for all standard n ∈ N since fn(x0)−
fn(x) ≈ 0 by the continuity of { fn}. Hence, by the overspill principle (8.4), there exists a non-standard
k ∈ N s.t. P(m,x0,x) holds for all m ∈ N and m ≤ k. Now suppose that H is infinitely large but H ≤ k.
Then fH(x0)≈ fH(x) since

C. Chau, M. Kaufmann & W. Hunt 49

0≤ | fH(x0)− fH(x)|<
1

H +1
≈ 0.

Let’s pick x0 to be st(x); then fH(st(x))≈ fH(x), concluding the proof of Claim 1.
To prove Claim 2, by hypothesis pick k ∈N such that fk(x)≈ f (x), and assume H > k. Then fk(x)≤

fH(x) ≤ f (x) by the increasing monotonicity of { fn}. Hence, 0 ≤ | f (x)− fH(x)| ≤ | f (x)− fk(x)| ≈ 0.
Thus, f (x)≈ fH(x), which concludes the proof of Claim 2 and also the proof of Theorem 5. �

Dini’s theorem shows that pointwise convergence of a sequence of continuous functions on a closed
and bounded interval also implies its uniform convergence if the sequence is monotonic and the limit
function is continuous. Unfortunately, it is not applicable to Fourier series since Fourier series are not
required to be monotonic. As a result, Fourier series cannot meet the requirement for our proof of (4)
from Condition 1. In fact, Fourier series can satisfy Condition 2 under suitable criteria [10]. Then, from
Condition 2, we need to prove that the limit function is continuous in order to meet the requirement for
our proof of (4). This can be proven by applying the overspill principle.

Theorem 6. Suppose that a sequence of continuous functions { fn} converges uniformly to a limit func-
tion f on an interval I. Then f is also continuous on I.

Proof. The goal is to prove f (x0) ≈ f (x) for all x0,x ∈ I such that x0 is standard and x0 ≈ x. By the
uniform convergence of { fn}, we have f (x0) ≈ fH(x0) and f (x) ≈ fH(x) for all infinitely large H ∈ N.
If we can show that fH(x0) ≈ fH(x), then we obtain our goal by the transitivity of ≈. By applying
the overspill principle in the same way as in our proof of Theorem 5, we claim that there must exist a
non-standard k ∈ N s.t. fH(x0) ≈ fH(x) if H ≤ k. When H > k, we know that fH(x0) ≈ fk(x0) (since
they are both i-close to f (x0) by the uniform convergence of { fn}) and similarly fH(x)≈ fk(x). Thus,
fH(x0)≈ fk(x0)≈ fk(x)≈ fH(x) and we are done.

From Condition 2 and Theorem 6, in order to apply the sum rule for integration (4) to infinite Fourier
series, we need to prove that the Fourier series converge uniformly to limit functions. As mentioned
above, this is provable under suitable criteria [10].

9 Conclusions

We described in this paper our extension of the framework for formally evaluating definite integrals of
real-valued continuous functions containing free arguments, using FTC-2. Along with this extension, we
also presented our technique for handling the occurrence of free arguments in pseudo-lambda expressions
of functional instantiations. Using the extended framework, we showed how to prove the orthogonality
relations of trigonometric functions as well as the sum rule for definite integrals of indexed sums. These
properties were then applied to prove the Fourier coefficient formulas and consequently used to derive
the uniqueness of Fourier sums as a corollary.

We also presented our formalization of the sum rule for definite integrals of infinite series under
two different conditions. Along with this task, we formalized the overspill principle and provided the
overspill utility that automates the application of the overspill principle, thus strengthening the rea-
soning capability of non-standard analysis in ACL2(r). Our proofs of Dini’s theorem and the continuity
of the limit function as described in Section 8 illustrate this capability.

Some possible areas of future work are worth mentioning. First, the automatic differentiator needs
to be extended to support partial differentiation. The current AD has limited support for automating

50 Fourier Series Formalization in ACL2(r)

partial differentiation. Although we extended the AD to support partial derivative registrations of binary
functions, this extension is still very limited for automatic differentiation. In particular, our extension
imposes a constraint on the free argument of binary functions that either its symbolic name must be arg0
or it has to be a constant. As a result, the AD cannot be applied to expressions containing several binary
functions with different free arguments. Our current solution in this case is to break those expressions
into smaller expressions such that the AD can be applied directly to these smaller expressions, and
then manually combine them to get the final result for the original expressions. Future work might
make the partial differentiation process more automatic. Another possibility for future work is to prove
convergence of the Fourier series for a periodic function, under sufficient conditions.

In summary, we have developed and extended frameworks for mechanized continuous mathematics,
which we applied to obtain results about Fourier series and an elegant proof of Dini’s theorem. We
are confident that our frameworks can be applied to future work on Fourier series and, more generally,
continuous mathematics, to be carried out in ACL2(r).

Acknowledgements

We thank Ruben Gamboa for useful discussions. We also thank the reviewers for useful comments. This
material is based upon work supported by DARPA under Contract No. N66001-10-2-4087.

References
[1] ACL2: ACL2 Documentation on Lemma-Instance. See URL http://www.cs.utexas.edu/users/

moore/acl2/current/manual/index.html?topic=ACL2____LEMMA-INSTANCE.
[2] ACL2 Community Books: Available at https://github.com/acl2/acl2.
[3] Overspill Principle Formalization Source Code: Available at https://raw.githubusercontent.com/

acl2/acl2/master/books/nonstd/nsa/overspill.lisp.
[4] R. Gamboa & J. Cowles (2007): Theory Extension in ACL2(r). Journal of Automated Reasoning 38(4), pp.

273–301, doi:10.1007/s10817-006-9043-0.
[5] J. Cowles & R. Gamboa (2014): Equivalence of the Traditional and Non-Standard Definitions of Concepts

from Real Analysis. In: Proc of the Twelfth International Workshop on the ACL2 Theorem Prover and its
Applications (ACL2-2014), pp. 89–100, doi:10.4204/EPTCS.152.8.

[6] P. Reid & R. Gamboa (2011): Automatic Differentiation in ACL2. In: Proc of the Second International
Conference on Interactive Theorem Proving (ITP-2011), pp. 312–324, doi:10.1007/978-3-642-22863-6 23.

[7] P. Reid & R. Gamboa (2011): Implementing an Automatic Differentiator in ACL2. In: Proc of the
Tenth International Workshop on the ACL2 Theorem Prover and its Applications (ACL2-2011), pp. 61–69,
doi:10.4204/EPTCS.70.5.

[8] R. Gamboa (1999): Mechanically Verifying Real-Valued Algorithms in ACL2. Ph.D. thesis, The University
of Texas at Austin.

[9] R. Goldblatt (1998): Lectures on the Hyperreals: An Introduction to Nonstandard Analysis. Springer.
[10] D. Jackson (1934): The Convergence of Fourier Series. The American Mathematical Monthly 41(2), pp.

67–84, doi:10.2307/2300327.
[11] M. Kaufmann (2000): Modular Proof: The Fundamental Theorem of Calculus. In M. Kaufmann, P. Manolios

& J S. Moore, editors: Computer-Aided Reasoning: ACL2 Case Studies, chapter 6, 4, Springer US, pp. 75–
91, doi:10.1007/978-1-4757-3188-0 6.

[12] R. Gamboa & M. Kaufmann (2001): Non-Standard Analysis in ACL2. Journal of Automated Reasoning
27(4), pp. 323–351, doi:10.1023/A:1011908113514.

C. Chau, M. Kaufmann & W. Hunt 51

[13] H. J. Keisler (1976): Foundations of Infinitesimal Calculus. Prindle Weber & Schmidt.
[14] H. J. Keisler (1985): Elementary Calculus: An Infinitesimal Approach. Prindle Weber & Schmidt.
[15] W. A. J. Luxemburg (1971): Arzela’s Dominated Convergence Theorem for the Riemann Integral. The

American Mathematical Monthly 78(9), pp. 970–979, doi:10.2307/2317801.
[16] Inc. Wolfram Research (2015): Mathematica. Available at http://www.wolfram.com/mathematica/.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 53–59, doi:10.4204/EPTCS.192.5

c© J. Cowles & R. Gamboa
This work is licensed under the
Creative Commons Attribution License.

Perfect Numbers in ACL2

John Cowles Ruben Gamboa
Department of Computer Science

University of Wyoming
Laramie, Wyoming, USA

cowles@uwyo.edu ruben@uwyo.edu

A perfect number is a positive integer n such that n equals the sum of all positive integer divisors
of n that are less than n. That is, although n is a divisor of n, n is excluded from this sum. Thus
6 = 1 + 2 + 3 is perfect, but 12 6= 1 + 2 + 3 + 4 + 6 is not perfect. An ACL2 theory of perfect
numbers is developed and used to prove, in ACL2(r), this bit of mathematical folklore: Even if
there are infinitely many perfect numbers, the series below, of the reciprocals of all perfect numbers,
converges.

∑
perfectn

1
n

1 Perfect Numbers

The smallest perfect numbers are 6= 2 ·3= 21(22−1), 28= 4 ·7= 22(23−1), 496= 16 ·31= 24(25−1),
8128 = 64 · 127 = 26(27− 1). In each of these examples, the second factor, 3,7,31,127, of the form
2k−1, is a prime. The Greek Euclid proved [2, page 3]:

Theorem 1 If 2k−1 is prime, then n = 2k−1(2k−1) is perfect.

Primes of the form 2k−1 are called Mersenne primes. Thus every new Mersenne prime leads to a
new perfect number. According to Wikipedia [5], less than 50 Mersenne primes are known. The largest
known Mersenne prime is 257,885,161− 1, making 257,885,160(257,885,161− 1) the largest known perfect
number, with over 34 million digits. It is not known if there are infinitely many Mersenne primes, nor if
there are infinitely many perfect numbers.

All perfect numbers built from Mersenne primes are even. The Swiss Euler proved every even perfect
number is built from some Mersenne prime [2, page 10]:

Theorem 2 If n is an even perfect number, then n = 2k−1(2k−1), where 2k−1 is prime.

It is not known if there are any odd perfect numbers, but Euler also proved [6, page 250]:

Theorem 3 If n is an odd perfect number, then n = pim2, where p is prime and i, p, m are odd.

ACL2 is used to verify each of these three theorems.
If there are only finitely many perfect numbers, then clearly the series

∑
perfectn

1
n

converges. ACL2(r) is used to verify that even if there are infinitely many perfect numbers, the series
converges.

54 Perfect Numbers in ACL2

2 The ACL2 Theory

In number theory, for positive integer n, σ(n) denotes the sum of all (including n) positive integer divisors
of n. The function σ(n) has many useful properties, so the definition of a perfect number is reformulated
in terms of σ [2, pages 8–9]:

perfect(n) if and only if σ(n) = 2n

.
These six properties of σ are among those formulated and proved in ACL2:

1. p is prime if and only if σ(p) = p+1.

2. If p is prime, then σ(pk) = ∑k
i=0 pi = pk+1−1

p−1 .

3. If p and q are different primes, then σ(p ·q) = σ(p) ·σ(q).

4. σ(k ·n)≤ σ(k) ·σ(n)

5. If gcd(k,n) = 1, then σ(k ·n) = σ(k) ·σ(n).

6. If p is prime, then gcd(pk,σ(pk)) = 1.

If n = 2i(2i+1− 1) is an even perfect number, then the exponent i is computed by an ACL2 term,
(cdr (odd-2^i n)), that returns the largest value of i such that 2i divides n.

If n = pim2 is an odd perfect number, then p, i,m are respectively computed by the ACL2 terms

• (car (find-pair-with-odd-cdr

(prime-power-factors n)))

• (cdr (find-pair-with-odd-cdr

(prime-power-factors n)))

• (product-pair-lst (pairlis$ (strip-cars

(remove1-equal

(find-pair-with-odd-cdr

(prime-power-factors n))

(prime-power-factors n)))

(map-nbr-product

1/2

(strip-cdrs

(remove1-equal

(find-pair-with-odd-cdr

(prime-power-factors n))

(prime-power-factors n))))))

These terms implement the following computation:

1. Factor n = ∏k
j=0 peJ

j into the product of powers of distinct odd primes.

2. Exactly one of the exponents, say e0, will be odd and all the other exponents will be even.

3. p is the prime with the odd exponent and i is the unique odd exponent. So n = pi ·∏k
j=1 p2 f j

j .

J. Cowles & R. Gamboa 55

4. Then m = ∏k
j=1 p f j

j and n = pim2.

ACL2 is used to verify a result of B. Hornfeck, that different odd perfect numbers, n1 = pi1
1 m2

1 6=
n2 = pi2

2 m2
2 have distinct mi [6, page 251]:

Theorem 4 If n1 = pi1
1 m2

1 and n2 = pi2
2 m2

2 are odd perfect numbers and m1 = m2, then n1 = n2.

Theorems 2, 3, and 4 are enough to prove the folklore that the series, of the reciprocals of all perfect
numbers, converges.

3 ACL2(r)

ACL2(r) [3] is based on Nonstandard Analysis [7, 4] which provides rigorous foundations for reasoning
about real, complex, infinitesimal, and infinite quantities. There are two versions of the reals

1. The Standard Reals, stR, is the unique complete ordered field. This means that

• Every nonempty subset of stR that is bounded above has a least upper bound.

There are no non-zero infinitesimal elements, nor are there are any infinite elements in stR.

2. The HyperReals, ?R, is a proper field extension of stR: stR& ?R. There are non-zero infinitesimal
elements and also infinite elements in ?R.

Here are some technical definitions.

• x ∈ ?R is infinitesimal: For all positive r ∈ stR, (|x|< r).
0 is the only infinitesimal in stR.
(i-small x) in ACL2(r).

• x ∈ ?R is finite: For some r ∈ stR, (|x|< r).
(i-limited x) in ACL2(r).

• x ∈ ?R is infinite: For all r ∈ stR, (|x|> r).
(i-large x) in ACL2(r)

• x,y ∈ ?R are infinitely close, x≈ y: x− y is infinitesimal.
(i-close x y) in ACL2(r).

• n∞ is an infinite positive integer constant.
(i-large-integer) in ACL2(r).

Every (partial) function f : stRn 7−→ stRk has an extension ? f : ?Rn 7−→ ?Rk such that

1. For x1, · · · ,xn ∈ stR, ? f (x1, · · · ,xn) = f (x1, · · · ,xn).

2. Every first-order statement about f true in stR is true about ? f in ?R.
Example.
(∀x)[sin2(x)+ cos2(x) = 1] is true in stR.
(∀x)[?sin2(x)+ ?cos2(x) = 1] is true in ?R.

Any (partial) function f : stRn 7−→ stRk is said to be classical.

• Identify a classical f with its extension ? f .
That is, use f for both the original classical function f and its extension ? f .

56 Perfect Numbers in ACL2

• Use (∀stx) for (∀x ∈ stR), i.e. “for all standard x.”
Use (∃stx) for (∃x ∈ stR), i.e. “there is some standard x.”

• “(∀x)[sin2(x)+ cos2(x) = 1] is true in stR” becomes “(∀stx)[sin2(x)+ cos2(x) = 1] is true in ?R.”
“(∀x)[?sin2(x)+ ?cos2(x) = 1] is true in ?R” becomes “(∀x)[sin2(x)+ cos2(x) = 1] is true in ?R.”

Numeric constants, c, are viewed as 0-ary functions, c : stR0 7−→ stR or c : ?R0 7−→ ?R. Thus, elements
of stR, such as 2,4,−1, are classical. But elements of ?R− stR, such as the infinite positive integer n∞,
are not classical. Functions defined using the nonstandard concepts of infinitesimal, finite, infinite, and
infinitely close are not classical.

Let f be a (partial) unary function, whose domain includes the nonnegative integers, into the reals.
Here are three possible definitions for the real series ∑∞

i=0 f (i) converges. The first two are versions
of Weierstrass’ traditional definition that the real series converges. One version for the standard reals,
another version for the hyperreals.

1. (defun-sk

Series-Converges-Traditional-Standard ()

(∃stL)(∀stε > 0)(∃st integer M > 0)(∀st integer n)(n > M⇒ |∑n
i=0 f (i)−L|< ε)

)

2. (defun-sk

Series-Converges-Traditional-Hyper ()

(∃L)(∀ε > 0)(∃ integer M > 0)(∀ integer n)(n > M⇒ |∑n
i=0 f (i)−L|< ε)

)

3. (defun-sk

Series-Converges-Infinitesimal ()

(∃stL)(∀ infinite integer n > 0)(∑n
i=0 f (i)≈ L)

)

For classical f , ACL2(r) verifies these three definitions are equivalent. ACL2(r) also verifies for classical
f , with nonnegative range, these definitions are equivalent to this nonstandard definition [1]:
• (defun

Series-Converges-Nonstandard ()

∑n∞
i=0 f (i) is finite

)

Recall that the upper limit, n∞, on this ∑n∞
i=0 f (i), is an infinite positive integer constant.

4 The Series Converges

Use the definition, Series-Converges-Nonstandard, to verify, in ACL2(r), the convergence of

∑
perfect(k)

1
k

=
∞

∑
k=1

perfect(k)

1
k

by showing this sum is finite:
n∞

∑
k=1

perfect(k)

1
k

J. Cowles & R. Gamboa 57

Recall n∞ is an infinite positive integer constant.
Verify the previous sum is finite by showing both of the summands on the right side below are finite.

n∞

∑
k=1

perfect(k)

1
k

=
n∞

∑
k=1

perfect(k)
even(k)

1
k

+
n∞

∑
k=1

perfect(k)
odd(k)

1
k

By Theorem 2, even perfect numbers, k, have the form k = 2i(2i+1 − 1). Since 2i(2i+1 − 1) ≥ 2i,
1

2i(2i+1−1) ≤
1
2i . Induction on n verifies ∑n

i=0
1
2i = 2− 1

2n . Thus for any positive integer, n, including
n = n∞:

0 ≤
n

∑
k=1

perfect(k)
even(k)

1
k

=
n

∑
k=1

perfect(k)
k=2i(2i+1−1)

1
2i(2i+1−1)

≤
n

∑
k=1

perfect(k)
k=2i(2i+1−1)

1
2i ≤

n

∑
i=0

1
2i = 2− 1

2n < 2

By Theorem 3, odd perfect numbers, k, have the form k = pim2. Since pim2 ≥ m2, 1
pim2 ≤ 1

m2 . By
Theorem 4, no square, m2, appears more than once in

n

∑
k=1

perfect(k)
k=pim2

1
m2

Induction on n verifies ∑n
m=1

1
m2 ≤ 2− 1

n , Thus for any positive integer, n, including n = n∞:

0 ≤
n

∑
k=1

perfect(k)
odd(k)

1
k

=
n

∑
k=1

perfect(k)
k=pim2

1
pim2 ≤

n

∑
k=1

perfect(k)
k=pim2

1
m2 ≤

n

∑
m=1

1
m2 ≤ 2− 1

n
< 2

Therefore, for any positive integer, n, including n = n∞:

0 ≤
n

∑
k=1

perfect(k)

1
k

=
n

∑
k=1

perfect(k)
even(k)

1
k

+
n

∑
k=1

perfect(k)
odd(k)

1
k

< 2+2 = 4

and
n∞

∑
k=1

perfect(k)

1
k

is finite.

The heart of this proof is that the partial sums

n

∑
k=1

perfect(k)

1
k

are bounded above (by 4). This can be stated and carried out entirely in ACL2. The Reals and ACL2(r)
are required to formally state and prove the series converges.

58 Perfect Numbers in ACL2

A ACL2(r) Books

A.1 prime-fac.lisp

Unique Prime Factorization Theorem for Positive Integers.
An ACL2 book as well as an ACL2(r) book.

A.2 perfect.lisp

Perfect Positive Integers.
An ACL2 book as well as an ACL2(r) book.
Over 500 events, incrementally built Summer 2013 – Spring 2015.

A.3 series1.lisp

The CLASSICAL series, Ser1, converges (to a STANDARD real L).

A.4 series1a.lisp

The CLASSICAL NONNEGATIVE series, Ser1a, converges (to a STANDARD real L).

A.5 sumlist-1.lisp

Some nice events from sumlist.lisp plus additional events.

A.6 sum-recip-e-perfect.lisp

The sum of the RECIPROCALS of the EVEN PERFECT positive integers converges.

A.7 sum-recip-o-perfect.lisp

The sum of the RECIPROCALS of the ODD PERFECT positive integers converges.

A.8 sum-recip-perfect.lisp

The sum of the RECIPROCALS of the PERFECT positive integers converges.

References
[1] John Cowles & Ruben Gamboa (2014): Equivalence of the Traditional and Non-Standard Definitions of Con-

cepts from Real Analysis. In Freek Verbeek & Julien Schmaltz, editors: Proceedings of the Twelfth Inter-
national Workshop of the ACL2 Theorem Prover and its Applications (ACL2-2014), Vienna, Austria, pp.
89–100, doi:10.4204/EPTCS.152.8.

[2] William Dunham (1999): Euler: The Master of Us All. Mathematical Association of America.

[3] Ruben Gamboa (1999): Mechanically Verifying Real-Valued Algorithms in ACL2. Ph.D. thesis, University of
Texas at Austin.

[4] Edward Nelson (1977): Internal Set Theory: A New Approach to Nonstandard Analysis. Bulletin of the
American Mathematical Society 83, pp. 1165–1198, doi:10.1090/S0002-9904-1977-14398-X.

J. Cowles & R. Gamboa 59

[5] (2015): Perfect Number: From Wikipedia, the free encyclopedia. Available at en.wikipedia.org/wiki/
Perfect_number.

[6] Paul Pollack (2009): Not Always Buried Deep: A Second Course in Elementary Number Theory. American
Mathmatical Society.

[7] Abraham Robinson (1966): Non-Standard Analysis. North-Holland Publishing Co.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 61–77, doi:10.4204/EPTCS.192.6

c© Y. Peng & M. Greenstreet
This work is licensed under the
Creative Commons Attribution License.

Extending ACL2 with SMT Solvers

Yan Peng Mark Greenstreet
University of British Columbia

Vancouver, Canada
yanpeng,mrg@cs.ubc.ca

We present our extension of ACL2 with Satisfiability Modulo Theories (SMT) solvers using ACL2’s
trusted clause processor mechanism. We are particularly interested in the verification of physical sys-
tems including Analog and Mixed-Signal (AMS) designs. ACL2 offers strong induction abilities for
reasoning about sequences and SMT complements deduction methods like ACL2 with fast nonlinear
arithmetic solving procedures. While SAT solvers have been integrated into ACL2 in previous work,
SMT methods raise new issues because of their support for a broader range of domains including
real numbers and uninterpreted functions. This paper presents Smtlink, our clause processor for
integrating SMT solvers into ACL2. We describe key design and implementation issues and describe
our experience with its use.

1 Introduction

This paper presents Smtlink, a clause processor for using satisfiability modulo theory (SMT) solvers
to discharge proof goals in ACL2. Prior work has [21, 23] incorporated SAT solving into ACL2, and
Manolios and Srinivasan [16, 22] described an extension of ACL2 with the Yices SMT solver. Our work
explores the use of SMT solvers for their decision procedures for linear and non-linear arithmetic which,
to the best of our knowledge, has not been addressed in prior work.

Interactive theorem proving and SMT solving provide complementary strengths for verification.
SMT solvers can automatically discharge proof obligations that would be tedious to handle with an
interactive theorem prover alone. Conversely, theorem provers provide methods for proof by induction
and proof structuring methods. While there has been some work on automatically proving induction
proofs using SMT solvers (see [15]), theorem provers such as ACL2 offer a much more comprehensive
framework for induction proofs. For many problems, SMT solvers cannot prove the main result in a
single step; in fact, the main theorem may not even be expressible in the logic of the SMT solver. How-
ever, the SMT solver can discharge key lemmas to simplify the proof process, and the theorem prover
can ensure that the proofs for the main theorems are, indeed, complete. When used from within an in-
teractive theorem prover, the user can identify key goals and relevant facts to make effective use of the
SMT solver. Doing so can avoid sending the SMT solver down a path of an intractable number of useless
branches and lead instead to a proof of the desired goal.

Our intended application of the combination of ACL2 with an SMT solver is to verify properties
of Analog and Mixed-Signal (AMS) circuits and other cyber-physical systems. AMS circuits are mixed
analog and digital systems, typically consisting of multiple analog and digital feedback loops operating at
much different time scales. It is not practical to simulate AMS circuits for all possible device parameters,
initial conditions, inputs, and operating conditions. In fact, running just one such simulation may require
more time than the design schedule. Most AMS circuits are intended to be correct for relatively simple
reasons - errors occur because the designer’s informal reasoning overlooked some critical case or had
some simple error. Our approach is to verify that the intuitive argument for correctness is indeed correct

62 Extending ACL2 with SMT Solvers

by reproducing the argument in an automated, interactive theorem prover, ACL2. The advantage of
using a theorem prover is soundness and generality: by using a carefully designed and thoroughly tested
theorem prover, we have high confidence in the theorems that it establishes. The critical limitation of
using a theorem prover is that formulating the proofs can require large amounts of very highly skilled
effort. Our solution is to integrate a SMT solver, Z3, into ACL2. This allows many parts of the proof,
especially those involving large amounts of tedious algebra, to be performed automatically. While our
focus is on AMS, the issues addressed here are common to those in most computing devices and other
physical systems.

Our implementation uses ACL2’s trusted clause processor mechanism for integrating external pro-
cedures. Our goal is to provide a flexible framework for developing proofs in a relatively new applica-
tion domain. Thus, our clause processor is designed to be easily configured and modified by the user.
However, too much freedom to change the behaviour of the clause processor also raises the spectre of
unsoundness. We address this with a two-pronged solution. Our clause processor is available with a stan-
dard configuration, where the soundness depends mainly on the soundness of ACL2, the SMT solver, and
a small amount of interface code. There is also a customizable configuration that has a separate trust-
tag. This facilitates experimentation, but places the burden for soundness directly upon the user. We
describe our use of the two approaches, and show how this combination provides a flexible environment
for experimentation and a safe environment for “production” use.

The key contributions of this work are:

• We present our software architecture for integrating an SMT solver into ACL2 as a trusted clause
processor.

• We describe the issues that arose in this integration, our solutions, and the rationale behind our
design choices.

• Our emphasis is on using the arithmetic capabilities of the Z3 SMT solver. This differs from most
prior work on integrating SMT solvers into theorem provers that has focused on using decision
procedures for SAT, integer arithmetic, and discrete data structures.

• We show how some simple customizations of the general framework can lead to a dramatic reduc-
tion in proof effort.

The rest of this paper is organized as follows: Section 2 introduces our clause processor with three
simple examples. Section 3 describes our software architecture, the issues that arise when integrating an
SMT solver into ACL2, and our solutions to these issues. Section 4 describes how the SMT interface can
be customized. In particular, we show how adding a simple inference engine that provides an incomplete
theory of expt greatly simplifies our proofs for verifying properties of an AMS circuit. Sections 5 and 6
present related work and a summary of the current work respectively.

2 A Short Tour

This section presents simple theorems that can be proven using Smtlink. The examples here assume
that the Smtlink book has been downloaded from:

https://bitbucket.org/pennyan/smtlink

and certified using cert.pl (see the instructions in the README file). Program 2.1 shows how to
include the Smtlink book where /dir/to/smtlink is the directory with the Smtlink book. The
(tshell-ensure) form allows Smtlink to invoke the SMT solver in a separate process. Smtlink

Y. Peng & M. Greenstreet 63

Program 2.1 Including the Smtlink book

1 (add-include-book-dir :cp "/dir/to/smtlink")

2 (include-book "top" :dir :cp)

3 (tshell-ensure)

Program 2.2 A theorem about a system of polynomial inequalities

1 (defthm poly-ineq-example-a

2 (implies (and (rationalp x) (rationalp y)

3 (<= (+ (* 4/5 x x) (* y y)) 1)

4 (<= (- (* x x) (* y y)) 1))

5 (<= y (- (* 3 (- x 17/8) (- x 17/8)) 3)))

6 :hints (("Goal"

7 :clause-processor

8 (Smtlink clause nil))))

9

10 (defthm poly-ineq-example-b

11 (implies (and (rationalp x) (rationalp y)

12 (<= (+ (* 2/3 x x) (* y y)) 1)

13 (<= (- (* x x) (* y y)) 1))

14 (<= y (+ 2

15 (- (* 4/9 x))

16 (- (* x x x x))

17 (* 1/4 x x x x x x))))

18 :hints (("Goal"

19 :clause-processor

20 (Smtlink clause nil))))

supports two configurations. The examples in this section use Smtlink, which uses default settings. The
other, Smtlink-custom-config, can be configured by the user and is described in Section 4.

Program 2.2 shows two examples involving systems of polynomial inequalities: nil is a list of ad-
ditional hints for the clause processor as no further hints are needed for these examples. Why would we
want to prove such theorems? Simple, they illustrate the challenges of using ACL2 to reason about sys-
tems of polynomial inequalities as often appear in models of physical systems including AMS verifica-
tion. Without the clause-processor, the proofs fail in ACL2 with the :nonlinearp hint enabled and with
or without any of the arithmetic books (i.e. arithmetic/top-with-meta, arithmetic-2/meta/top,
arithmetic-3/top, and or arithmetic5/top). Of course, a patient and savvy user could guide ACL2
through a sequence of lemmas and eventually discharge the claims. Using the SMT solver, the theorems
are proven automatically.

Some theorems, while tedious to prove in ACL2, simply cannot be proven by SMT techniques alone.
Consider Program 2.3. Again, when just using ACL2, the proof fails with or without a :nonlinearp

hint or any of the arithmetic books. As formulated, poly-of-expt-example would appear to be
unsuitable for proof with our SMT techniques because we are using Z3 as our SMT solver, and Z3
does not support reasoning about non-polynomial functions such as expt. Our solution is to allow
the user to give hints to the clause processor. These hints allow the user to direct the clause pro-

64 Extending ACL2 with SMT Solvers

Program 2.3 A claim with non-polynomial arithmetic

1 (defthm poly-of-expt-example

2 (implies (and (rationalp x) (rationalp y) (rationalp z) (integerp m)

3 (integerp n) (< 0 z) (< z 1) (< 0 m) (< m n))

4 (<= (* 2 (expt z n) x y) (* (expt z m) (+ (* x x) (* y y)))))

5 :hints(("Goal"

6 :clause-processor

7 (Smtlink clause ’((:let ((expt_z_m (expt z m) rationalp)

8 (expt_z_n (expt z n) rationalp)))

9 (:hypothesize ((< expt_z_n expt_z_m)

10 (< 0 expt_z_m)

11 (< 0 expt_z_n)))

12)))))

cessor to replace all occurrences of a given expression with a new, free variable, and to express con-
straints that are satisfied by these variables. A complete description of these hints is presented in Sec-
tion 3. To prove poly-of-expt-example, we use the clause-processor hint. We also include the book
arithmetic-5/top. The two :let hints direct Smtlink to replace all occurrences of (expt z m)with
the variable expt z m; furthermore, we are asserting that the value (expt z m) satisfies rationalp.
Likewise for expt z n replacing all occurrences of (expt z n). The three :hypothesize hints state
additional constraints on the values of expt z m and expt z m for use by the SMT solver. With these
substitutions and constraints, Z3 readily discharges the main claim.

For this approach to be sound, these substitions, type-assertions, and constraints must all be implied
by the hypotheses of the original theorem. If the SMT solver discharges the main claim, then Smtlink

returns each of these added assumptions and new clauses to be proven by ACL2. In other words, Smtlink
has replaced a clause that would be difficult to prove using ACL2 alone, with a moderate number of
simpler clauses that are simpler for ACL2 to establish, plus one clause (the augmented, original claim)
that is proven by the SMT solver. In this case, runes from arithmetic-5/top enable the returned
clauses to be discharged without further assistance. This also illustrates the synergies that are available
by combining SMT techniques with theorem proving.

3 Software architecture of Smtlink

Figure 1 shows the structure of Smtlink. The clause processor translates ACL2 clauses into a Python
representation inspired by Z3’s Python API. The translation process is divided into two phases. The first
phase translates from ACL2 to ACL2. This translation allows the clause-processor to accept a fairly
expressive subset of the ACL2 language while the expanded clauses output by this phase use only a
small set of primitive Lisp functions (See Section 3.2.2). The second phase translates the simplified (but
expanded) ACL2 clauses to our Python API – this process is the main “trusted” aspect of our trusted
clause processor. The SMT solver verifies a clause by showing that its negation is unsatisfiable. If this
is the case, then Smtlink returns a list of clauses for subgoals that arose in the translation process.
Essentially, Smtlink asks ACL2 to verify that the expanded clause implies the original, and to verify
any type assertions or additional hypotheses that were provided by the user. If the SMT solver fails to
show that the clause is unsatisfiable, it typically provides a counter-example that Smtlink then prints

Y. Peng & M. Greenstreet 65

expanded
clause

ACL2 (lisp)
to smt−py
translate

generate
return
clause

simplify
expand &original

clause
ACL2 (lisp)

generate
return
clause

Not(clause)
satisfiable? Z3

(python)
SMT clause

step 2
translation

lisp (ACL2) python (z3)

(proven)

yes

step 1
translation

original expanded

(implies
expanded
original)

false ?unsatno

return

sat, unsat,
unknownor

acl2SMT

GSMTG

G′, A1, A2, ..., Am

A1∧A2∧ ...∧Am∧ (G′⇒ G)

¬GSMT

Figure 1: Top-level architecture of Smtlink

Program 3.1 A putative theorem without type constraints

1 (defthm not-really-a-theorem

2 (iff (equal x y) (zerop (- x y))))

to the ACL2 comment window, although is some cases it may simply report that the satisfiability of the
clause is “unknown”. In these cases, Smtlink prints the counter-example or “unknown” status to the
ACL2 comment window and aborts the proof attempt.

3.1 The first translation phase

The first phase of translation transforms clauses written in a fairly expressive subset of ACL2 into a very
small subset. Most of the complexity of the translation process is in this first phase. As described in
Section 3.3, Smtlink constructs a new clause that is proven by ACL2 to validate this translation. The
key issues in the first phase are:

• ACL2 is untyped whereas SMT solvers support many-sorted logics.

• ACL2 clauses often include user-defined functions.

• The user may add type assertions and/or extra hypotheses to enable the SMT solver to discharge a
claim. These must be verified by ACL2.

• The user may need to provide hints to enable ACL2 to discharge subgoals that are returned by the
clause processor.

3.1.1 Types

Consider the putative theorem shown in Program 3.1. ACL2 is untyped and requires all functions to be
total. Accordingly, (- x y) is defined for all values for x and y, including non-numeric values. As
defined in ACL2, arithmetic operators such as - treat non-numeric values as if they were 0. Thus, x =

66 Extending ACL2 with SMT Solvers

Program 3.2 A simple theorem with type constraints

1 (defthm rational-minus-and-equal

2 (implies (and (rationalp x) (rationalp y))

3 (iff (equal x y) (zerop (- x y)))))

’dog and y = (list "hello" 2 ’world) is a counter-example to not-really-a-theorem. On
the other hand, Z3 uses a typed logic, and each variable must have an associated sort. If we treat x and y

as real-valued variables, the z3py equivalent to not-really-a-theorem is

>>> x, y = Reals([’x’, ’y’])

>>> prove((x == y) == ((x - y) == 0))

proved

In other words, not-really-a-theorem as expressed in the untyped logic of ACL2 is not a theorem,
but the “best” approximation we can make in the many-sorted logic of Z3 is a theorem. To solve these
problems, Smtlink requires that each free variable in a theorem is constrained by an ACL2 type rec-
ognizer such as integerp and rationalp. These are then translated to corresponding SMT sorts with
the design requirement that the set of values in the SMT sort must be a superset (or equal to) the set of
values admitted by the type recognizer.

Although ACL2 is untyped, it is common for users to include assertions such as (rationalp x) that
constrain the types of free-variables appearing in a theorem. Program 3.2 shows the previous, putative
theorem with type recognizers added to the hypotheses. ACL2 proves rational-minus-and-equal
without any assistance from the user. Note that rational-minus-and-equal holds for all values of x
and y including values that are not rational, and values that are not even numeric, such as x = ’dog and
y = (list "hello" 2 ’world). For such cases, the antecedent of the theorem is not satisfied, and
the theorem holds vacuously.

Let G be the clause to be proven by Smtlink; G is the “goal”. In the first translation phase, Smtlink
traverses G looking for terms of the form (typep var) where typep is one of booleanp, integerp, or
rationalp; var is a symbol (but not nil); and the clause holds vacuously if (not (typep var)).
In other words, such terms are type hypotheses. Smtlink identifies type hypotheses syntactically by
walking the tree for the expression, recognizing the constructions for if, implies, not, and the type-
recognizers (note: the ACL2 macros “and” and “or” expand to terms written with if).

Let T = (list T1 T2 ...Tm) be the list of all type-hypotheses; T̂ denote the conjunction of the
elements of T ; and and GT be G rewritten by replacing each of the Ti’s with the boolean constant t. We
could now construct the terms T̂ ⇒ GT , T̂ ∨G, and ((T̂ ∨G)∧ (T̂ ⇒ GT))⇒ G. We could then invoke
the SMT solver to determine if GT holds for all valuations of the free variables that satisfy T . If the
SMT solver can show this, then T̂ ⇒ GT is established. Then, we could return the terms T̂ ∨G, and
((T̂ ∨G)∧ (T̂ ⇒ GT))⇒ G to ACL2 to be proven. If these proofs are successful, then we can conclude
that G is a theorem as well. Smtlink uses this approach; however, rather than checking each step of the
first translation phase, it checks the final result. Section 3.3 describes this process.

3.1.2 Functions

The second phase of translation supports a small set of ACL2 built-in functions (see Section 3.2).
Smtlink handles other functions by expanding their calls. In particular (fun actual-parameters) be-

Y. Peng & M. Greenstreet 67

Program 3.3 :expand hint

1 :hints(("Goal"

2 :clause-processor

3 (Smtlink ’(...

4 (:expand ((:functions ((fun1 type1p) (fun2 type2p) ...

5 (funk typekp)))

6 (:expansion-level 1)))

7 ...))))

comes
((lambda (fresh-variables-for-formals) body-of-fun) actual-parameters) (1)

Because body-of-fun may have function instances that need to be expanded, Smtlink recursively applies
this function-expansion operation to body-of-fun and each term in actual-parameters.

If the function fun has a recursive definition, then the expansion procedure described will not termi-
nate. To avoid this problem, we require the user to specify a maximum expansion depth and the return
type for each function. Smtlink replaces each call beyond the expansion limit with an unconstrained,
fresh SMT variable of the specified return type. The type-hypothesis for each such variable is added to
the type-hypothesis list, T , and the function call instance that this variable replaces is added to a list of
function calls instances, F . As described in Section 3.3, Smtlink produces a clause for ACL2 to check
to verify that each function call in F returns a value of the user-claimed type. Replacing the function’s
return value with an unconstrained variable is a simple form of generalization.

The user controls function expansion by Smtlink with a :expand hint as shown in Program 3.3.
Each function is specified with its return type, and the :expansion-level parameter specifies the maximum
depth to which any function will be expanded. We write GF to denote the clause produced by expanding
the function calls in GT .

Smtlink also supports translating function calls in ACL2 into uninterpreted function instances. For
example,

(:uninterpreted-functions ((expt rationalp integerp rationalp)))

says that the function expt should be treated as an unintepreted function whose first argument satisfies
rationalp, whose second argument satisfies integerp, and whose return value satisfies rationalp.
Smtlink records each uninterpreted function declaration in a list, U, and each call in F .

The mechanisms for function expansion and uninterpreted functions are similar. In particular, the
replacement of a recursive function call with a fresh variable is a weaker version of replacing it with
an uninterpreted function. On the other hand, we discovered that Z3 does not combine its theories of
non-linear arithmetic and uninterpreted functions: if a formula includes an uninterpreted function, the
non-linear arithmetic solver is silently disabled. Thus, in many cases, using fresh variables is preferred to
using uninterpreted functions. We are examining these trade-offs in examples of real proofs and expect to
formulate a more unified treatment of function expansion and uninterpreted functions in a future version
of Smtlink.

3.1.3 Adding Hypotheses

Often, the proof of a theorem may depend on results that have already been established in ACL2’s logical
world. However, Smtlink only translates the current goal for the SMT solver. In practice, this is critical:

68 Extending ACL2 with SMT Solvers

while it is tempting to give the SMT solver every constraint that might be relevant, this would often
cause the SMT solver to require more time or memory than is available for the proof. A key feature
of the integration of SMT solvers into a theorem prover is that the user can identify the relevant facts,
and these can be included with :hypothesize hints as illustrated in Program 2.3. Of course, the user
can include any term they like in these hints. If the SMT solver discharges the clause, then each of the
:hypothesize hints is returned as a subgoal. If it corresponds to a previously proven theorem, then
ACL2 will (usually) discharge it without any further assistance. We write H to denote the set of all
hypotheses introduced by :hypothesize hints, Ĥ to denote the conjunction of the elements of H, and
GH = Ĥ⇒ GF = ¬Ĥ ∨GF to denote the goal clause augmented with these hypotheses.

3.1.4 Substitutions

Proof goals may include terms that do not have a representation in the theories of the chosen SMT solver.
For example, the theorem in Program 2.3 used the expt function that raises its first argument to an
arbitrary integer power and is not representable in Z3 which only supports fixed-degree polynomials and
rational functions. Rather than abandoning the advantages offered by the SMT solver, Smtlink allows
the user to specify a replacement of offending sub-expressions by fresh variables of the appropriate
types. All occurrences of the given sub-expression are replaced by the specified variable. This is another
example of generalization by replacing the return value of a function with a fresh variable. It is quite
common, in our experience, to combine these substitutions with :hypothesize hints that constrain the
values of these variables. Furthermore, the type-hypothesis for each new variable is included in the
type-hypotheses list, T , and the substitutions are recorded in a list S.

These substitutions are the final step of the first phase of translation. We write G′ to denote the result
of this first phase, and refer to it as the “expanded clause”.

3.2 The second translation phase

Given an original goal, G, along with user provided hints, the first translation phase produces an “ex-
panded goal”, G′; a list of type-assertions, T ; a list of functions to be treated as uninterpreted, U ; a list
of function call instances, F ; a list of additional hypotheses, H; and a list of substitutions, S. The second
translation phase uses these to produce the variable declarations for the SMT solver and the claim that
the SMT solver is to discharge. If the SMT solver shows that (not (implies H G′)) is unsatisfiable
for valuations of the free variables that satisfy the type-hypotheses, T , and the uninterpreted function
definitions, U , then Smtlink concludes that (implies H G′) is a theorem. Unlike the first phase, the
results of the transformations performed in this second phase are not returned to ACL2 to be verified.
Our design goal was to keep this part of the connection as simple as possible to avoid errors and enable
code inspection by cautious users.

3.2.1 Types

For each free-variable, xi, occurring in G (and thus in G′) there should be a corresponding type-assertion,
Ti that is a conjunct of T . For each type assertion, (typepi vari), Smtlink generates a corresponding
variable declaration for the SMT solver. For example,

(rationalp x)
translates to

x = SMT .isReal("x")

Y. Peng & M. Greenstreet 69

Program 3.4 The irrationality of
√

2

1 (defthm sqrt-of-2-is-irrational

2 (implies (rationalp x) (not (equal (* x x) 2))))

In our implementation, the Python interface to the SMT solver is in the form of an object, SMT . For
example, SMT .isReal("x") creates a real-valued, symbolic variable for the SMT solver that underlies
SMT . If a type-assertion is omitted, then an undeclared variable will appear in the formula to be checked

by the SMT solver, and the SMT solver will report an error and fail.
For soundness, if Smtlink maps the ACL2 type recognizer typepi to the SMT sort sorti, then every

value that satisfies typepi must be an element of sorti. Note that sorti may include other values as well,
this simply strengthens the claim G′ and may result in a failure to prove a valid goal, but this will not
cause Smtlink to prove an invalid goal. Smtlink maps the ACL2 type recognizers booleanp to SMT
booleans; the type correspondence is strict. The type recognizers integerp and rationalp are both
mapped to SMT reals. We did this because most SMT solvers (e.g. Z3) provide decision procedures
for real numbers, whereas ACL2 provides rationals. As noted above, this strengthens the claim. For
example, the theorem shown in Program 3.4 can be proven in ACL2 [10], we cannot discharge it using
Smtlink. It will report the counter-example for x equal to the square-root of two, described as an
algebraic number. Smtlink can also be used with ACL2r, in which case the mismatch between rationals
and reals can be avoided entirely.

Our choice to broaden integerp to SMT rationals (instead of SMT integers) was pragmatic. Our
initial implementation uses the Z3 SMT solver, and we make extensive use of its non-linear arithmetic
solver. Z3 disables the non-linear solver when a formula includes integer-valued variables. By mapping
ACL2 integers to SMT reals, Smtlink strengthens the theorem. We expect to add mechanisms to allow
the user to control whether ACL2 integers map to SMT integers or reals in a future version of Smtlink.

3.2.2 Functions

The nine functions supported are binary-+, unary--, binary-*, unary-/, equal, <, if, not, and
lambda along with the constants t, nil, and arbitrary integer constants. As in ACL2, integers in Python
can be arbitrarily large; thus, Smtlink translates them directly. Smtlink translates ACL2 lambda ex-
pressions into Python lambda expressions. The other eight functions are translated directly to their
counterpart methods of the SMT object. For example, the ACL2 function binary-+ is mapped to
SMT .plus. Smtlink generates declarations for all uninterpreted functions, again using the SMT in-

terface.
If G′ includes any functions that are not in the list of eight above or in U , then Smtlink will not

prove G but instead will fail with an error message. In particular, unexpanded occurrences of user-
defined functions will create an error. Furthermore, any type-recognizer such as rationalp in G′ will
create an error – Smtlink requires that all type-recognizer terms occur in contexts that it can recognize
as type-hypotheses; others generate errors. Likewise, G cannot include quantification operators such as
exists or forall. This ensures that all variables appearing in G′ are free which is essential for our
approach of using SMT sorts that are super-sets of their ACL2 equivalents. For example, one cannot
state a theorem that 2 has a rational square root and “prove” it using Smtlink to find a real-valued x

such that x*x = 2.
In the SMT world, each operation (such as +) is defined for specific sorts for its arguments and

70 Extending ACL2 with SMT Solvers

defined to to produce a (symbolic) value of a specific sort for its result. Some of these operations (such
as +) are overloaded to operate on multiple types. If an operator is applied to arguments for which it is not
defined, then the SMT solver fails, and Smtlink fails to prove the goal. For example, if the original goal,
G, (and thus G′) includes a term of the form (+ x b) where x is real and b is boolean, then the SMT
solver will fail even though the operation is defined in ACL2. This interpretation of ACL2 operators is
conservative: Smtlink will not discharge an invalid theorem due to the type restrictions of operators in
the SMT world.

Smtlink translates (/ m) in ACL2 to SMT .reciprocal(m), where the SMT function divides
the constant 1 by m. If m 6= 0, the ACL2 and SMT operations are identical. If m = 0, then the SMT
version produces an unconstrained integer (if m is an integer) or real (if m is real). The ACL2 operator
is defined to return 0. Because the SMT version allows the ACL2 semantics, the SMT version is more
general. Thus, Smtlink proves a more general claim, and a proof of G′ implies a proof of G. This relies
on our restriction that G cannot include quantification operators.

3.2.3 Hypotheses and Substitutions

These are handled entirely in the transformation of the original goal, G, to the expanded goal, G′, in the
first translation phase and do not impact the second phase.

3.3 Ensuring soundness

Our design goal with Smtlink has been to trust ACL2, the chosen SMT solver (Z3, in our current
implementation), and as little other code as practical. At the same time, our intended use for Smtlink
is for the verification of AMS circuits and other cyber-physical systems. Because we are developing
verification techniques as we go, we want Smtlink to provide a flexible framework for prototyping new
ideas. Our solution is to put most of the functionality and complexity of Smtlink into the first translation
phase. If the SMT solver discharges the translated clause, then Smtlink generates a set of return clauses
to check the correctness of this translation. The second phase is trusted; this code is both small and
simple.

Our basic approach is simple: let A denote the additional assumptions that were added to the goal by
type assertions for variables and function return values, hypotheses, and substitutions. Let GSMT denote
the clause that is tested by the SMT solver. If the SMT solver proves GSMT , then Smtlink returns the
clauses

Q1 = (G′∧A)⇒ G
Q2 = A∨G

(2)

for proof by ACL2. We are trusting the translation of G′ to GSMT and the SMT solver itself, Modulo that
trust, the truth of GSMT implies the truth of G′; in which case Q1 is equivalent to A⇒ G. Accordingly,
when ACL2 proves Q1 and Q2, G is established as a theorem.

We make two observations before describing how each step of the translation process contributes to
A. First, the correctness of this argument does not depend on the choice of A. Of course, deriving the
intended A is important to ensure that Q1 and Q2 can actually be proven. Second, A is the conjunction of
the various assumptions that were added by Smtlink. Smtlink expresses Q2 as a separate subgoal for
each conjunct of A.

Y. Peng & M. Greenstreet 71

3.3.1 Types

Each type-hypothesis identified by Smtlink is included in A. Let Ti = (typepi vari) be such a type-
hypothesis. When proving Q2, ACL2 verifies Ti ∨G which means that for all values of vari that do
not satisfy typepi, G trivially holds. By the trust that Smtlink declares vari to be of an SMT sort that
includes all values that satisfy typepi, the translation is valid.

3.3.2 Functions

When a function call is expanded in the first translation phase, the equivalence is checked by ACL2 when
it verifies Q1. We are trusting the translation of ACL2 lambda-expressions to their Python equivalents in
phase 2. When a function call is replaced by a variable, ACL2 must check that the user-claimed type for
the return value of the function is valid. This is done by generating a clause for each function call in F .
Let f be such a function call (i.e. an ACL2 term), and let type f be the user-claimed type for the return
value of f . Smtlink includes a conjunct of the form

(or (type f f) G) (3)

in Q2. A technical detail is that f may include variables that are bound by lambda expression arising
from other function expansions; such variables are free in the clause depicted in Equation 3 as generated
by Smtlink. This means that these variables are less constrained in the check performed by ACL2 than
they are in G′ or GSMT . Because ACL2 has proven the more general case, we can safely conclude the
more restricted version as well.

3.3.3 Added Hypotheses

Each hypothesis, Hi, added by the user, is included in A. The clause (Hi ∨G) is verified by ACL2;
therefore, it is safe to add Hi as a hypothesis for G′ (and thus for GSMT).

3.3.4 Substitutions

Smtlink records the user-defined substitutions in the list S. When generating Q1 and Q2, Smtlink uses
lambda expressions to bind the variables declared in substitution hints to their corresponding expressions
– this is similar to the way that function expansions are handled. Furthermore, the user-claimed types of
these expressions are included in T , and Smtlink generates clauses for ACL2 to check these claims in
the same manner as checking the types of values returned by function calls.

3.3.5 The Python Interface

Smtlink relies on software packages that are outside the ACL2 world, namely the Python interpreter
and an SMT solver (Z3 for the purposes of this paper). This creates the potential unsoundness that these
external components can be modified without detection. Our implementation of Smtlink takes several
measures to prevent the most likely causes of unsoundness. First, Smtlink has a default configuration
that is encoded in config.lisp. There is a script for creating config.lisp; once run, the config-
uration includes full path names to the Python interpreter and sets the path variable for searching for
Python classes. Likewise, the Python code to define the class for the interface object, SMT described
in Section 3.2 is provided as the string returned by the function ACL22SMT. The file ACL22SMT.lisp
is generated from a Python source file that is specific for the intended SMT solver. The consequence of

72 Extending ACL2 with SMT Solvers

this approach is that the paths to the Python interpreter and the SMT solver (and therefore the choice
of the SMT solver), along with the Python class definition for the interface between Smtlink and the
SMT solver are all baked into the certified ACL2 code for Smtlink. We believe that this should make
Smtlink quite robust to unintentional changes of the computing environment. Of course, a nefarious
user could replace the executable image for the Python interpreter, or the dynamic library for the SMT
solver, but these are in “system” directories (under /usr/bin in our installation) rather than user direc-
tories; so such changes are unlikely to be accidental. Such changes are likely to occur as a consequence
of regular software updates. We are considering adding checksum information to our config.lisp to
ensure that such changes are detected and reported. We would like to devise an SMT-solver independent
way of recording such checksums.

3.3.6 Remarks

In the current implementation of Smtlink, the construction of the goals Q1 and Q2 is done within the
trusted code of the clause processor. Although the arguments for the correctness of these constructions
are straightforward, the fact that this is unverified code does present a risk of errors. As we have learned
more about ACL2, we now see that an alternative would be to restructure Smtlink to provide a function
that returns G′ and the lists T , F , U , H, and S described above. From these, a local theorem, that G′

holds would be proven using a trusted clause processor corresponding to phase 2 of the current Smtlink.
Additional local theorems would be proven by ACL2 to prove Q1 and each clause of Q2 from Equation 2.
Then, the main theorem, G would be proven by ACL2 using these local theorems. This should be a
relatively straightforward restructuring Smtlink that would isolate the small amount of trusted code.
We plan to do this in the near future.

Even greater confidence could be achieved by adopting the “skeptical” approach advocated by Har-
rison [11], for example by using proof reconstruction [6, 9, 17, 2, 18] or proof certificates [5]. We see
such efforts as complementary to the approach that we have taken with Smtlink. We are using Smtlink

to develop proof methods for domains where formal methods have had little prior use. As described in
Section 4, the relatively lightweight interfaces in Smtlink facilitate such experimentation. We gain this
flexibility at the risk that an error in critical parts of our code (or in the SMT solver itself) could lead to a
“proof” of a non-theorem. We believe that this risk is small compared with other risks that are inherent
in the verification of physical artifacts: most notably, “Does the model of the physical system actually
capture all possible behaviours?” Being able to prototype and develop proofs quickly lets us explore
the consequences of the models more thoroughly than would be possible with a less flexible approach.
Thus, we regard the slight risk of an error as being justified by the opportunity to verify designs that are
otherwise outside the reach of formal tools. We see this as complementary to work on proof reconstruc-
tion and proof certificates. If we demonstrate the kinds of proofs that are useful in practice, that should
illuminate where proof reconstruction and certificates would offer the greatest increase in confidence in
critical designs.

4 Customizing Smtlink

The design choices described in Section 3.3.5 protect the user from unintentional changes to the external
components of Smtlink. What if such changes are desired? To facilitate such experimentation, we
provide a second version of Smtlink, Smtlink-custom-config, where the user can easily change
the configuration of external components. Using Smtlink-custom-config requires a different trust-

Y. Peng & M. Greenstreet 73

Table 1: Rules for expt

1. (expt x 0) → 1

2. (expt 0 n) → 0, if n> 0
3. (expt x (+ n1 n2)) → (* (expt x n1) (expt x n2))

4. (expt x (* c n)) → (* (expt x n) (expt x n) . . . (expt x n))

5. (< (expt x m) (expt x n)), if 1 < x and m< n

6. ...

Notes: All rules have a precondition of that either the base is non-zero or the exponent is positive;
furthermore, new instances of expt are only generated if they can be shown to satisfy the same condition.
For rule 4, the right-hand side of → is the multiplication of c copies of (expt x n). Rule 4 is only
applied if c is small and positive.

tag than that for the standard configuration, Smtlink. Thus, it is easy to track theorems whose proofs
descend from a custom configuration of the clause processor. The remainder of this section describes
one such custom configuration to illustrate how these features facilitate experimentation.

Our largest use of Smtlink to date has been the proof of global convergence for a digital phase-
locked loop (The code can be found at [19] and see [20] for more details.). The original proof was a 13
page long latex document, with lots of tedius algebra. Using the standard configuration of Smtlink, we
completed the same proof using ACL2. The proof is about 1700 lines of ACL2 code. While Smtlink

made the proof possible, it didn’t make it as easy as we had hoped. A key complication is that the phase-
locked loop (PLL) model uses recurrence functions whose solutions make extensive use of ACL2’s
expt function. As described earlier, Smtlink can handle these, but each occurrence requires :let and
:hypothesize hints. Furthermore, function expansion renames variables; so, the proofs involved many
lemmas whose sole purpose was to explicitly expand functions and rewrite terms so as to make the calls
to expt visible in the theorem statement and thus amenable to these hints.

Our solution was to define a new Python class for the SMT interface object. This class is called
RewriteExpt, and it extends the default ACL2 to Z3 that was complied into ACL22SMT.lisp as de-
scribed above. To use this extension, expt is declared to be an uninterpreted function. RewriteExpt

overrides the SMT .prove method to add a pre-processing step finds instances of expt in the claim.
For each instance, the code checks to see if the hypotheses of the theorem imply the guard for expt:
the base must be non-zero, or the exponent must be non-negative. If the guard can’t be proven, an error
is reported and the proof fails. Otherwise, RewriteExpt applies a small number of simple proof rules
about expt. If the antecedent of one of these rules is satisfied, then the consequent is added as a new
hypothesis. Table 1 shows some examples of these rules.

Preliminary experiments with this customized clause processor have been very promising. For exam-
ple, one theorem in the PLL proof that required 19 supporting lemmas for a total of 334 lines of ACL2
code was replaced by a single theorem stated in 13 lines of ACL2 code. The proofs with the customized
clause processor are much shorter, much simpler, and much easier to understand.

We are in the process of writing a new proof for the PLL based on the customized clause processor.
We see many directions that we could pursue to extend this approach after revising the PLL proof. First,
the customized clause processor uses a set of proof-rules that are hard-coded into RewriteExpt.py.
These correspond to runes for existing ACL2 theorems about expt. We expect that we could forward
such runes from ACL2 to the SMT interface and write a simple, generic inference engine in Python.

74 Extending ACL2 with SMT Solvers

The advantage of performing the inference with the SMT solver is that it can discharge pre-conditions
for runes that ACL2 does not resolve with its waterfall. On the other hand, the ACL2 framework is
much more general than what can be described in the theories of an SMT solver; so we see the two
as complementary. We also note that once our inference engine has discovered a useful hypothesis,
it also has the justification. Thus, we could return these to ACL2 and use them to generate the :let

and :hypothesize needed to discharge the goal with the standard configuration of Smtlink. If this
approach were implemented, then our customized processor would be an elaborate computed hint, but
the goal would be discharged with Smtlink, and no additional trust would be required.

5 Related work

There has been extensive work in the past decade on integrating SAT and SMT solvers into theorem
provers. Srinivasan [22] integrated the Yices [8] SMT solver into ACL2 for verifying bit-level pipelined
machines. They also use the mechanism of a trusted clause processor with a translation process quite
similar to ours. They appear to have mostly used the bit-vector arithmetic and SAT solving capabilities
of Yices. While they also produce an expanded formula that is then translated to SMT-LIB [4], they don’t
describe using ACL2 to check this translation as we have done. Prior to that, in [16], they integrated a
decision procedure called UCLID [14] into ACL2 to solve a similar problem.

Works on integrating SMT solvers or techniques into other theorem provers include [17, 9, 5, 2, 18,
6, 7]. Many of these papers have followed Harrison and Théry’s “skeptical” approach [11] and focused
on methods for verifying SMT results within the theorem prover using proof reconstruction, certificates,
and similar methods. Several of the papers showed how their methods could be used for the verification
of concurrent algorithms such as clock synchronization [9], and the Bakery and Memoir algorithms [18].
While [9] used the CVC-Lite [3] SMT solver to verify properties of simple quadratic inequalites, the use
of SMT in theorem provers has generally made light use of the arithmetic capability of such solvers. In
fact [6] (Isabelle/Sledgehammer with Z3) reported better results for SMT for several sets of benchmarks
when the arithmetic theory solvers were disabled!

The work that resembles our approach is [7]; they present a translation of Event-B sequents from
Rodin [1] to the SMT-LIB format [4]. Like our work, [7] verifies a claim by using a SMT solver to show
that its negation is unsatisfiable. They address issues of types and functions. They perform extensive
rewriting using Event-B sequents, and then have simple translations of the rewritten form into SMT-LIB.
While noting that proof reconstruction is possible in principle, they do not appear to implement such
measures. The main focus of [7] is supporting the set-theoretic constructs of Event-B. In contrast, our
work shows how the procedures for non-linear arithmetic of a modern SMT solver can be used when
reasoning about analog and mixed-signal circuits.

Our work demonstrates the value of theorem proving combined with SMT solvers for verifying
properties that are characterized by functions on real numbers and vector fields. Accordingly, the linear
and non-linear arithmetic theory solvers have a central role. As our concern is bringing these techniques
to new problem domains, we deliberately take a pragmatic approach to integration and trust both the
theorem prover and the SMT solver.

Prior work on using theorem proving methods to reason about dynamical systems includes [13]
which uses the Isabelle theorem prover to verify bounds on solutions to simple ODEs from a single initial
condition. Harutunian [12] presented a very general framework for reasoning about hybrid systems using
ACL2 and demonstrated the approach with some very simple examples. Here we demonstrate that by
discharging arithmetic proof obligations using a SMT solver, it is practical to reason about much realistic

Y. Peng & M. Greenstreet 75

designs.

6 Conclusion and future work

This paper presented Smtlink, a clause-processor that we have used to integrate the Z3 SMT solver into
ACL2. Reasoning about systems of polynomial and rational function equalities and inequalities can be
greatly simplified by using Z3’s non-linear arithmetic capabilities. ACL2 complements Z3 by providing
a versatile induction capability along with a mature environment for proof development and structuring.
Smtlink offers two configurations: the default, standard configuration where the interface code and the
pathways to the external tools (Python and Z3) are fixed when book is certified; and a customizable
interface that allows the user to experiment with extending these capabilities.

Section 3 described our software architecture, issues that arose when integrating an SMT solver into
ACL2, and our solutions to these issues. A key aspect of the design is a two-phase translation process
for converting ACL2 clauses into formulas that can be discharged by the SMT solver. The first phase
translates a fairly expressive subset of ACL2 into a simple subset consisting of nine built-in functions.
This first phase includes methods for handling types, function expansion, uninterpreted functions, and
sub-expression replacement; all of these can be understood as various versions of generalizing the origi-
nal clause to produce a stronger clause that is suitable for discharging with an SMT solver. Most of the
complexity of the translation process is in the first phase. Because ACL2 verifies that the clause produced
by this first phase implies the original, this first phase greatly improves the usability of the clause proces-
sor while raising minimal concerns about soundness. The second phase transliterates the nine remaining
functions to equivalents in a Python API – this is the code that is most critical for sondness.

Section 4 showed how the customizable interface can be used to automate tedious aspects of a mod-
erately large (1700 line) proof that we performed with the original version of the clause processor. By
adding a few simple rules for transforming expressions involving the ACL2 expt functions into the
SMT interface, we showed that we could dramatically reduce the length and complexity of some of the
proofs. We believe that this demonstrates the value of Smtlink as an experimental platform. Once
a proposed functionality is shown to have sufficient value, then a more rigorous version could be im-
plemented. The fast prototyping that is enabled by Smtlink can help guide this process by avoiding
investing large amounts of effort on some approach that ultimately provides small improvements to the
proof development process.

Prior work on integrating SMT solvers into theorem provers has focused on using the non-numerical
decision procedures of an SMT solver. Our work focuses on the value of bringing an SMT solver into a
theorem prover for reasoning about systems where a digital controller interacts with a continuous, analog,
physical system. The analysis of such systems often involves long, tedious, and error-prone derivations
that primarily use linear algebra and polynomials. These are domains where SMT solvers combined with
induction and proof structuring have great promise.

6.1 Future work

Smtlink returns clauses to ACL2 to check the translation of the original goal to a small subset of ACL2.
As noted in Section 3.3.6, a moderate restructuring of this code could allow most of this work to be done
within ACL2 and reduce the amount of code that must be trusted in Smtlink. We believe that this could
be done with minimal impact on the flexibility of Smtlink for experimenting with SMT solvers and their
applications.

76 Extending ACL2 with SMT Solvers

We have used ACL2 with Smtlink to prove the most challenging part of a global convergence
argument for a digital Phase-Locked Loop (PLL) using Smtlink. Global convergence is a response
property, and we can show that the PLL makes progress through four distinct phases. We used ACL2
with Smtlink to verify the phase for which a hand-written proof was the most complicated. We would
like to write proofs in ACL2 for the other three phases and use ACL2 to prove that those results are
sufficient to prove correct convergence from any initial condition. This will involve constructing Skolem
functions to compose the individual pieces of the proof and should demonstrate the strength of using
ACL2 to prove properties that cannot be expressed in the logic of the SMT solver.

We would like to add a bounded model checking capability to SMT link. For example, in the PLL
proof, there is a tedious proof at the boundary of two of the phases. Z3 provides an “easy” proof by
showing that within eight steps of the recurrence, the transition between phases is complete and correct.
We would lke to integrate this capability into Smtlink and thus into ACL2.

The current implementation of Smtlink provides very restricted support for recursive functions.
This is because most recursive functions are non-numerical and/or use “fixing” functions or recognizers
to ensure termination when called with bogus arguments. While this has not been problematic for our
PLL proof, we would like to generalize the handling of types by Smtlink to allow a wider range of
applications.

Many of the type-checking steps performed by Smtlink reconstruct facts that are already present in
ACL2s type-alist. We would like to see if this information could be used by Smtlink and thus spare
the user of many of the type declaration that Smtlink now requires.

Presently, Smtlink prints counter-examples from the SMT solver to the ACL2 comment window.
We would like to make them available to the user within the ACL2 environment. This could be similar
to the env$ argument used in Satlink. New issues arise in the SMT case because SMT formulas don’t
have a single, syntactical form like CNF for SAT. Furthermore, if the counter-example included irrational
numbers, then it cannot be represented in ACL2 – although this should be addressed in ACL2(r).

Acknowledgments

We would like to thank the many members who have patiently answered our many questions while de-
veloping Smtlink, especially Matt Kaufmann and David Rager. We are also thankful to the anonymous
reviewers for the insightful and inspiring feedback.

References

[1] J.-R. Abrial, M. Butler, S. Hallerstede & L. Voisin (2006): An Open Extensible Tool Environment
for Event-b. In: 8th Int’l. Conf. Formal Methods and Software Engineering, Springer, pp. 588–605,
doi:10.1007/11901433 32.

[2] M. Armand, G. Faure, B. Grégoire, C. Keller, L. Théry & B. Werner (2011): A Modular Integration of
SAT/SMT Solvers to Coq Through Proof Witnesses. In: 1st Int’l. Conf. Certified Programs and Proofs,
Springer, pp. 135–150, doi:10.1007/978-3-642-25379-9 12.

[3] C. Barrett & S. Berezin (2004): CVC Lite: A New Implementation of the Cooperating Validity Checker. In:
Computer Aided Verification, LNCS 3114, Springer, pp. 515–518, doi:10.1007/978-3-540-27813-9 49.

[4] C. Barrett, A. Stump & C. Tinelli (2010): The SMT-LIB Standard: Version 2.0. http://www.cs.nyu.edu/
~barrett/pubs/BST10.pdf. [Online; accessed 17-August-2015].

[5] F. Besson (2007): Fast Reflexive Arithmetic Tactics the Linear Case and Beyond. In: 2006 Int’l. Conf. Types
for Proofs and Programs, Springer, pp. 48–62, doi:10.1007/978-3-540-74464-1 4.

Y. Peng & M. Greenstreet 77

[6] J.C. Blanchette, S. Böhme & L.C. Paulson (2013): Extending Sledgehammer with SMT Solvers. J. Automated
Reasoning 51(1), pp. 109–128, doi:10.1007/s10817-013-9278-5.

[7] D. Déharbe, P. Fontaine, Y. Guyot & L. Voisin (2014): Integrating SMT Solvers in Rodin. Sci. Comput.
Program. 94(P2), pp. 130–143, doi:10.1016/j.scico.2014.04.012.

[8] B. Dutertre (2014): Yices2.2. In: Computer Aided Verification, LNCS 8559, Springer, pp. 737–744,
doi:10.1007/978-3-319-08867-9 49.

[9] P. Fontaine, J.-Y. Marion, S. Merz, L.P. Nieto & A. Tiu (2006): Expressiveness + Automation + Soundness:
Towards Combining SMT Solvers and Interactive Proof Assistants. In: 12th Int’l. Conf. Tools and Algorithms
for the Construction and Analysis of Systems, Springer, pp. 167–181, doi:10.1007/11691372 11.

[10] R.A. Gamboa (1997): Square Roots in ACL2: A Study in Sonata Form. Technical Report, University of Texas
at Austin. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.57.4803.

[11] J. Harrison & L. Théry (1998): A Skeptic’s Approach to Combining HOL and Maple. J. Automated Reasoning
21(3), pp. 279–294, doi:10.1023/A:1006023127567.

[12] Shant Harutunian (2007): Formal Verification of Computer Controlled Systems. Ph.D. thesis, Univer-
sity of Texas, Austin. Available at https://www.lib.utexas.edu/etd/d/2007/harutunians68792/
harutunians68792.pdf.

[13] F. Immler (2014): Formally Verified Computation of Enclosures of Solutions of Ordinary Differential Equa-
tions. In: NASA Formal Methods, LNCS 8430, Springer, pp. 113–127, doi:10.1007/978-3-319-06200-6 9.

[14] S.K. Lahiri & S.A. Seshia (2004): The UCLID Decision Procedure. In: Computer Aided Verification, LNCS
3114, Springer, pp. 475–478, doi:10.1007/978-3-540-27813-9 40.

[15] K. Leino & Rustan M. (2012): Automating Induction with an SMT Solver. In: Verification, Model Checking,
and Abstract Interpretation, LNCS 7148, Springer, pp. 315–331, doi:10.1007/978-3-642-27940-9 21.

[16] P. Manolios & S.K. Srinivasan (2006): A Framework for Verifying Bit-Level Pipelined Machines Based
on Automated Deduction and Decision Procedures. J. of Automated Reasoning 37(1-2), pp. 93–116,
doi:10.1007/s10817-006-9035-0.

[17] S. Mclaughlin, Cl. Barrett & Y. Ge (2006): Cooperating theorem provers: A case study combining HOL-Light
and CVC Lite. In: In Proc. 3rd Workshop on Pragmatics of Decision Procedures in Automated Reasoning,
ENTCS 144(2), Elsevier, pp. 43–51, doi:10.1016/j.entcs.2005.12.005.

[18] S. Merz & H. Vanzetto (2012): Automatic Verification of TLA+; Proof Obligations with SMT Solvers. In:
18th Int’l. Conf. Logic for Programming, Artificial Intelligence, and Reasoning, Springer, pp. 289–303,
doi:10.1007/978-3-642-28717-6 23.

[19] Y. Peng (2015): Global convergence proof for a digital Phase-Locked Loop. https://bitbucket.org/

pennyan/smtlink/src/7fdd38280be9e492a96947019f9b0c8cf10b3d91/examples/DPLL/DPLL_

proof.lisp?at=master. [Online; accessed 17-August-2015].
[20] Y. Peng & M. Greenstreet (2015): Integrating SMT with Theorem Proving for Analog/Mixed-Signal Circuit

Verification. In: NASA Formal Methods, LNCS 9058, Springer, pp. 310–326, doi:10.1007/978-3-319-17524-
9 22.

[21] E. Reeber & W.A. Hunt Jr. (2006): A SAT-Based Decision Procedure for the Subclass of Unrollable
List Formulas in ACL2 (SULFA). In: Automated Reasoning, LNCS 4130, Springer, pp. 453–467,
doi:10.1007/11814771 38.

[22] S.K. Srinivasan (2007): Efficient Verification of Bit-level Pipelined Machines Using Refinement. Ph.D. thesis,
Georgia Institute of Technology.

[23] S. Swords & J. Davis (2011): Bit-Blasting ACL2 Theorems. In: 10th Int’l. Workshop on the ACL2 Theorem
Prover and its Applications, pp. 84–102, doi:10.4204/EPTCS.70.7.

[24] M. Weiser (1999): The Computer for the 21st Century. SIGMOBILE Mob. Comput. Commun. Rev. 3(3), pp.
3–11, doi:10.1145/329124.329126.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 79–92, doi:10.4204/EPTCS.192.7

Reasoning About LLVM Code Using Codewalker

David S. Hardin

Advanced Technology Center
Rockwell Collins

Cedar Rapids, IA, USA

david.hardin@rockwellcollins.com

This paper reports on initial experiments using J Moore’s Codewalker to reason about programs
compiled to the Low-Level Virtual Machine (LLVM) intermediate form. Previously, we reported on
a translator from LLVM to the applicative subset of Common Lisp accepted by the ACL2 theorem
prover, producing executable ACL2 formal models, and allowing us to both prove theorems about
the translated models as well as validate those models by testing. That translator provided many
of the benefits of a pure decompilation into logic approach, but had the disadvantage of not being
verified. The availability of Codewalker as of ACL2 7.0 has provided an opportunity to revisit this
idea, and employ a more trustworthy decompilation into logic tool. Thus, we have employed the
Codewalker method to create an interpreter for a subset of the LLVM instruction set, and have used
Codewalker to analyze some simple array-based C programs compiled to LLVM form. We discuss
advantages and limitations of the Codewalker-based methodcompared to the previous method, and
provide some challenge problems for future Codewalker development.

1 Introduction

In previous work [9] [11], we built a translator from Low-Level Virtual Machine (LLVM) intermediate
form [16] to the applicative subset of Common Lisp [15] accepted by the ACL2 theorem prover [12],
and performed verification on the translated form using ACL2’s automated reasoning capabilities.

LLVM is the intermediate form for many common compilers, including theclang compiler used
by Apple OS X and iOS developers. LLVM supports a number of language frontends, and LLVM
code generation targets exist for a wide variety of machines, including both CPUs and GPUs. LLVM
is a register-based intermediate language in Static SingleAssignment (SSA) form [4]. As such, LLVM
supports any number of registers, each of which is only assigned once, statically (dynamically, of course,
a given register can be assigned any number of times). AndrewAppel has observed that “SSA form is
a kind of functional programming” [1]; this observation, inturn, inspired us to build a translator from
LLVM to the applicative subset of Common Lisp accepted by theACL2 theorem prover. Our translator,
written in OCaml [5], produced an executable ACL2 specification that was able to support proof-based
verification, as well as validation via testing.

The above approach was satisfactory for the technology thatwe had at hand for use with ACL2
in 2013, but had the obvious weakness of relying on a fair amount of unverified code. The situation
changed in late 2014, when J Moore released the initial version of Codewalker, an instruction-set-neutral
decompilation-into-logic system, with ACL2 7.0 [18]. Thus, an experiment began in early 2015 to
determine whether Codewalker could be used to produce a similar proof environment for LLVM code.

80 Reasoning About LLVM Code Using Codewalker

unsigned long occurrences(unsigned long val, unsigned int n,

unsigned long *array) {

unsigned long num_occur = 0;

unsigned int j = 0;

for (j = 0; j < n; j++) {

if (array[j] == val) num_occur++;

}

return num_occur;

}

Figure 1: Example C code to count occurrences of an input value in an array.

2 An Example

As an example, consider the C source code of Figure 1. This function counts the number of occurrences
of a given value in the first n elements of an array. (NB: By default theclang compiler treats allint
values as 32 bits wide, and alllong values as 64 bits wide.)

This is an admittedly simple example, but it allows us to narrate a complete analysis within the con-
fines of this paper, and should be within Codewalker’s capabilities to analyze. We have also performed
similar analyses for other small C programs, namely tail-recursive factorial, as well as a program to
compute the sum of array elements.

LLVM code for this function is produced by invokingclang as follows: clang -O1 -S

-emit-llvm occurrences.c. The generated LLVM code for clang version 6.1.0 (which supports
LLVM 3.6.0) is excerpted in Figure 2; this is essentially thesame code as reported in [9].

Observe that LLVM output is similar to assembly code, with labels and low-level opcodes likebr
(branch),icmp (integer compare) andload (load from memory). Registers are prepended with the “%”
character, and are given sometimes-meaningful names. Consistent with the SSA philosophy, no register
appears on the left hand side of an assignment (“=”) more thanonce. A peculiar feature of LLVM code
is thephi instruction, which provides register renaming at a branch target.

2.1 Translation to ACL2 Syntax

In previous work, we automatically translated the above LLVM program into an ACL2 functional pro-
gram. In the current work, we merely translate the LLVM assembly code syntax into a form that is easier
for ACL2 to process. The translated form for the LLVM code of Figure 2 is depicted in Figure 3.

The instruction format is straightforward: if the LLVM instruction isa = ins b c, then the ACL2
syntax is(INS A B C). Thus,(ADD x y z) stores the sum of the contents of registers (locals) y and z
in register x; and(BR E F G) branches to the instruction word at the current program counter + offset F
if register E is nonzero, and to the instruction word at the current program counter + offset G otherwise.
A few new instructions have been added to aid in phi processing: (CONST X) pushes a constant value X
on a LIFO stack;(PUSH Y) pushes the contents of register Y onto the stack; and(POPTO Z) pops the
top of stack value into register Z. We also define a(HALT) instruction so we don’t have to worry about
defining a return linkage (this is future work).

Each instruction occupies one instruction word (of indeterminate size), and each register holds an

D. Hardin 81

define i64 @occurrences(i64 %val, i32 %n, i64* %array) {

%1 = icmp eq i32 %n, 0

br i1 %1, label %._crit_edge, label %.lr.ph

.lr.ph:

%indvars.iv = phi i64 [%indvars.iv.next, %.lr.ph], [0, %0]

%num_occur.01 = phi i64 [%.num_occur.0, %.lr.ph], [0, %0]

%2 = getelementptr inbounds i64* %array, i64 %indvars.iv

%3 = load i64* %2, align 8, !tbaa !1

%4 = icmp eq i64 %3, %val

%5 = zext i1 %4 to i64

%.num_occur.0 = add i64 %5, %num_occur.01

%indvars.iv.next = add nuw nsw i64 %indvars.iv, 1

%lftr.wideiv = trunc i64 %indvars.iv.next to i32

%exitcond = icmp eq i32 %lftr.wideiv, %n

br i1 %exitcond, label %._crit_edge, label %.lr.ph

._crit_edge:

%num_occur.0.lcssa = phi i64 [0, %0], [%.num_occur.0, %.lr.ph]

ret i64 %num_occur.0.lcssa

}

Figure 2: LLVM code for the occurrences example.

82 Reasoning About LLVM Code Using Codewalker

;; reg[2] contains val

;; reg[1] contains n

;; reg[0] contains array base address

(CONST 0) ; 0

(POPTO 3) ; 1 reg[3] <- 0

(EQ 4 1 3) ; 2 n == 0?

(CONST 0) ; 3

(POPTO 5) ; 4 phi(j), j <- 0

(CONST 0) ; 5

(POPTO 6) ; 6 phi(num_occur), num_occur <- 0

(BR 4 14 1) ; 7 branch to ._crit_edge if n == 0

;; .lr.ph:

(GETELPTR 7 0 5) ; 8 reg[7] <- mem address of arr[index]

(LOAD 8 7) ; 9 reg[8] <- mem[reg[7]] = arr[index]

(EQ 9 8 2) ; 10 reg[8] == val?

(ADD 10 6 9) ; 11 num_occur conditional increment

(CONST 1) ; 12

(POPTO 11) ; 13

(ADD 12 5 11) ; 14 reg[12] <- j+1

(EQ 13 12 1) ; 15 j+1 == n?

(PUSH 12) ; 16

(POPTO 5) ; 17 phi(j), j <- j+1

(PUSH 10) ; 18

(POPTO 6) ; 19 phi(num_occur)

(BR 13 1 -12) ; 20 loop back to .lr.ph if j+1 < n

;;._crit_edge:

(PUSH 6) ; 21 push num_occur on stack

(HALT) ; 22

Figure 3: ACL2 representation of the LLVM code for the occurrences example.

D. Hardin 83

unbounded integer. This represents a slight loss of fidelityrelative to the previous work, but we thought
it unwise to tackle issues related to both Codewalker and modular arithmetic at the same time.

3 LL2: An LLVM Subset Interpreter

Before being able to utilize Codewalker, we must first define an operational semantics, or interpreter,
for the target instruction set. The Codewalker sources provide one such example interpreter, for the M1
subset of the Java Virtual Machine (JVM) [14]. We used this ACL2 code as the basis for our LLVM
subset interpreter, called LL2. As is typical with such an interpreter written in ACL2, a machine state
data structure is declared, and passed as a parameter to all functions that read and/or write elements
of the state. If a given function updates the state, the modified state must be returned. Obviously,
for a large state, functional update of the state can become quite expensive. Thus, an ACL2 single-
threaded object (stobj) [2] is often used to represent state. The destructive update property of stobjs
provides good performance when executing functions on concrete state. The LL2 machine stobj, called
simply s, contains fields for the Program Counter (PC), local variables, memory, stack, and program
storage. All but the first can be thought of as lists. Accessorand updater functions are defined for
all fields, with updaters preceded by a ‘!’ character; thus(loi k s) retrieves the kth local variable
(or register, in LLVM parlance), while(!loi j val s)) updates the value of the jth register toval.
Note that(loi k s) is defined as(nth k (rd :locals s)), and(!loi j val s) is defined as
(wr :locals (update-nth j val (rd :locals s)) s).

Once the machine state data structure is defined, semantic functions need to be written for all sup-
ported instructions. For example, the semantic function for (EQ x y z) is as follows:

(defun execute-EQ (inst s)

(declare (xargs :stobjs (s)))

(let* ((s (!loi (arg1 inst)

(if (= (loi (arg2 inst) s) (loi (arg3 inst) s)) 1 0) s))

(s (!pc (+ 1 (pc s)) s)))

s))

whereinst is the list form of an instruction (as depicted in Figure 3),(arg1 inst) is (nth 1

inst), (arg2 inst) is (nth 2 inst), and(arg3 inst) is (nth 3 inst). Thus,execute-EQ
stores the value 1 in the register indicated by the first argument if the value stored in the register indicated
by the second argument is equal to the value stored in the register indicated by the third argument; the
value 0 is stored in the first argument register otherwise. Finally, the program counter is incremented.

Once semantic functions have been written for every supported instruction, a simple instruction se-
lector function can be composed, as follows:

(defun do-inst (inst s)

(declare (xargs :stobjs (s)))

(if (equal (op-code inst) ’ADD)

(execute-ADD inst s)

(if (equal (op-code inst) ’BR)

(execute-BR inst s)

(if (equal (op-code inst) ’CONST)

(execute-CONST inst s)

... s)))...)

84 Reasoning About LLVM Code Using Codewalker

This instruction selector function is called by the instruction stepper function:

(defun step (s)

(declare (xargs :stobjs (s)))

(let ((s (do-inst (next-inst s) s)))

s))

where(next-inst s) is (nth (pc s) (program s)).
Finally, the instruction stepper is called by the top-levelLL2 interpeter:

(defun ll2 (s n)

(declare (xargs :stobjs (s)))

(if (zp n)

s

(let* ((s (step s)))

(ll2 s (- n 1)))))

Note that this is all fairly standard technique for defining an instruction set interpreter in ACL2;
one peculiarity, however, is that the top-level interpreter argument order (namely, state followed by step
count) is mandated by Codewalker.

3.1 Concrete Execution

It is advantageous to be able to validate LLVM programs by running them against concrete inputs. Since
all of our interpreter functions are executable, we can readily perform such validation testing. In the
ACL2 code of Figure 4, we set up an initial state, establishing an array of length 8 starting at address
100. We write various values into memory at increasing addresses. The array base address is stored in
local 0, followed by then andval parameters, in locals 1 and 2, respectively. The program is written
using the(wr :program ’(...)) form. The program is stepped to conclusion by invoking(ll2 s

113); the return value can be found at(loi 6 s).
As we have written the value 399 into the array three times, when we run the interpreter and fetch the

return result as described above, we obtain the expected value: 3. The interpreter executes approximately
226,000 LLVM instructions per second on an ordinary laptop computer. This is approximately one-tenth
the speed of our previous method, as is to be expected for an interpreted vs. compiled approach, but this
performance level is still more than adequate for validation testing.

4 Codewalker

Now that the interpreter for LL2 is in place, we can begin to use Codewalker to perform decompilation
into logic for LLVM programs, producing semantic functionsfor those programs that the ACL2 user can
further reason about. The end goal is to prove that the LLVM code for a given function implements a
much more abstract function, written in ACL2, about which wecan readily prove interesting correctness
properties. In the extensive code documentation for Codewalker, the system is described as follows [18]:

Two main facilities are provided by Codewalker: the abstraction of a piece of code into an
ACL2 “semantic function” that returns the same machine state, and the “projection” of such
a function into another function that computes the final value of a given state component
using only the values of the relevant initial state components.

D. Hardin 85

(include-book "LL2")

(in-package "LL2")

(!loi 0 100 s)

(!loi 1 8 s)

(!loi 2 399 s)

(!memi 100 399 s)

(!memi 101 234 s)

(!memi 102 0 s)

(!memi 103 75 s)

(!memi 104 399 s)

(!memi 105 399 s)

(!memi 106 (1- (expt 2 64)) s)

(!memi 107 20 s)

(!pc 0 s)

(wr :program ’((CONST 0)...))

(ll2 s 113) ;; run to HALT

Figure 4: Concrete test case for the occurrences example.

Codewalker is independent of any particular machine model,as long as a step-based opera-
tional semantics for the machine is defined in ACL2. To facilitate this language-independent
analysis, the user must declare a “model API” that allows Codewalker to access functionality
of the model (e.g., setting the pc in a symbolic state). Generally speaking, Codewalker ac-
cesses the model by forming symbolic ACL2 expressions that answer certain questions, then
applying the ACL2 simplifier with full access to user-provedlemmas, and then inspecting
the resulting term to recover the answer.

Thus, to begin, we tell Codewalker about our operational semantics usingdef-model-api, telling it
the name of our interpreter function, the state variable, whether the state is a stobj, the name of the step
function, and so on. We next introduce the program to be analyzed, and prove some simple theorems
about it, e.g. that writes to state fields other than the program field don’t affect the program.

Next, we provide Codewalker with important program-level invariants as well as loop invariants. We
also assist the system by providing a measure for the loop clock function, as illustrated in Figure 5.

Finally, we set Codewalker to work, by invoking itsdef-semantics function. First, we ask Code-
walker to generate a semantic function for the “preamble” ofthe code (before the loop), then ask it to
produce a semantic function for the loop itself, as shown in Figure 6. We often wish to break up the
processing in this way, and not give the entire function to Codewalker in a single chunk. One reason for
this is that it can be tricky to craft just the right invariants that are true for preamble, as well as the loop
and postlude, and that Codewalker will be able to process successfully.

Codewalker development is still in its early phase, and the system is a bit “touchy” when it comes to
the combination of focus regions, invariants, measure annotations, and so on that will result in success.
In Codewalker’s defense, it is very sophisticated softwareattempting a very difficult job. To quote the

86 Reasoning About LLVM Code Using Codewalker

(defun hyps (s)

(declare (xargs :stobjs (s)))

(and (sp s)

(natp (rd :pc s))

(< (rd :pc s) (len (rd :program s)))

(< 16 (len (rd :locals s)))

(integer-listp (rd :locals s))

(integer-listp (rd :memory s))

(integer-listp (rd :stack s))))

(defun-nx loop-pc-p (s)

(= 8 (rd :pc s)))

(defun-nx loop-inv (s)

(< (nth 5 (rd :locals s))

(nth 1 (rd :locals s))))

(defun-nx program-inv (s)

(and (natp (nth 0 (rd :locals s)))

(natp (nth 1 (rd :locals s)))

(integerp (nth 2 (rd :locals s)))

(natp (nth 3 (rd :locals s)))

(natp (nth 5 (rd :locals s)))

(natp (nth 6 (rd :locals s)))))

(defun-nx clk-8-measure (s)

(nfix (if (not (loop-pc-p s))

(nth 1 (rd :locals s))

(- (nth 1 (rd :locals s))

(nth 5 (rd :locals s))))))

Figure 5: Some invariants and measures provided to Codewalker.

D. Hardin 87

(def-semantics

:init-pc 0

:focus-regionp (lambda (pc) (and (<= 0 pc) (< pc 8)))

:root-name preamble

:hyps+ ((occurrences-programp s)

(program-inv s)))

(def-semantics

:init-pc 8

:focus-regionp (lambda (pc) (>= pc 8))

:root-name loop

:hyps+ ((occurrences-programp s)

(loop-inv s) (program-inv s)

(<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s)))

(len (rd :memory s))))

:annotations ((clk-loop-8 (declare (xargs :measure (clk-8-measure s))))

(sem-loop-8 (declare (xargs :measure (clk-8-measure s))))))

Figure 6: Invocations of Codewalkerdef-semantics for the occurrences example.

Codewalker documentation: “Def-semantics actually prints a lot of stuff as it goes. It also often fails!
Some of its error messages make supposedly helpful suggestions as to what’s ‘wrong.’ Often your
response will be to prove more lemmas because things aren’t being reduced to the canonical forms.
Another response might be to restrict the focus region or strengthen the invariant so as to avoid certain
cases.” [18]

Codewalker produces decompilations of the indicated code segments, which we can then assemble
using functional composition, e.g.:

(defun-nx composition (s)

(sem-loop-8 (sem-preamble-0 s)))

Codewalker also produces correctness theorems about the generated semantics functions, e.g.:

(DEFTHM SEM-PREAMBLE-0-CORRECT

(IMPLIES (AND (HYPS S)

(OCCURRENCES-PROGRAMP S)

(PROGRAM-INV S)

(EQUAL (RD :PC S) 0))

(EQUAL (LL2 S (CLK-PREAMBLE-0 S))

(SEM-PREAMBLE-0 S))))

(DEFTHM SEM-LOOP-8-CORRECT

(IMPLIES (AND (HYPS S)

(OCCURRENCES-PROGRAMP S)

(LOOP-INV S)

(PROGRAM-INV S)

88 Reasoning About LLVM Code Using Codewalker

(<= (+ (NTH 0 (RD :LOCALS S))

(NTH 1 (RD :LOCALS S)))

(LEN (RD :MEMORY S)))

(EQUAL (RD :PC S) 8))

(EQUAL (LL2 S (CLK-LOOP-8 S))

(SEM-LOOP-8 S))))

The latter theorem states that if the LL2 interpreter is poised at the top of the loop (pc = 8) then
running the LL2 interpreter with the occurrences program loaded for a proper number of steps (given by
(CLK-LOOP-8 S) yields the same result as executing the generated semantic function.

5 Reasoning about LLVM Code via Codewalker Semantic Functions

In order to reason about a function such asoccurrences in ACL2, we first need to perform abstraction
on the data types; particularly, we wish to abstract the input array to a Lisp list. Since we are utilizing
stobjs, however, this abstraction has already been provided for us. (Recall that stobjs provide a list
abstraction for array data types that feature an efficient, in-place, destructive implementation.)

Next, we need a “golden” list-based specification ofoccurrences. This function should be easy to
reason about using ACL2, and so should be written in non-tail-recursive style, as in the following:

(defun occurlist (val lst)

(declare (xargs :guard (and (integerp val) (integer-listp lst))))

(if (endp lst)

0

(+ (if (= val (car lst)) 1 0)

(occurlist val (cdr lst)))))

We wish to prove that the execution of the LLVM instructions of the compiledoccurrences func-
tion operating over an array in memory produces a result equal to the occurlist function operating
over a list. Unfortunately for the proof of the above, the semantic functions generated by Codewalker
are tail-recursive. The proof actually proceeds by the use of two additional functions, a pair of tail-
recursive/non-tail-recursive functions that are generated and proved equal bydefiteration, a book
found in centaur/misc in the standard ACL2 distribution. (This technique was earlier described
in [10].) The call todefiteration is as follows:

(acl2::defiteration occur-arr (num val s)

(declare (xargs :stobjs s

:guard (and (integerp num) (integerp val))))

(ifix (+ (if (= (nth ix (rd :memory s)) val) 1 0) num))

:returns num

:index ix

:last (len (rd :memory s)))

We first prove that the value stored in thenum occur register (register 6) after execution of the
composition of semantic functions generated by Codewalkeris equal to the result of the tail-recursive
function generated by the call todefiteration above:

D. Hardin 89

(defthm composition-=-occur-arr-tailrec

(implies

(and (hyps s)

(program-inv s)

(occurrences-programp s)

(<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s)))

(len (rd :memory s)))

(= (nth 1 (rd :locals s)) (len (rd :memory s))))

(= (nth 6 (rd :locals (sem-loop-8 (sem-preamble-0 s))))

(occur-arr-tailrec 0 0 (nth 2 (rd :locals s)) s)))

:hints (("Goal" :in-theory (enable occur-arr-tailrec)

:cases ((= (len (rd :memory s)) 0) (> (len (rd :memory s)) 0)))))

We then prove that the non-tail-recursive function generated bydefiteration is equal to occurlist:

(defthm occur-arr-iter-=-occurlist

(implies

(and (sp s) (integerp val) (integer-listp (rd :memory s))

(= (len (rd :memory s)) (len (rd :memory s))))

(= (occur-arr-iter (len (rd :memory s)) 0 val s)

(occurlist val (rd :memory s)))))

The above theorem can be proved by first proving the followinglemma:

(defthm occur-arr-iter-=-occurlist-take--thm

(implies

(and

(sp s) (natp xx) (integerp val)

(integer-listp (rd :memory s))

(<= xx (len (rd :memory s))))

(= (occur-arr-iter xx 0 val s)

(occurlist val (take xx (rd :memory s)))))

:hints (("Subgoal *1/1" :in-theory (enable occur-arr-iter))))

Sinceoccur-arr-iter andoccur-arr-tailrec are already proved equal bydefiteration, the
proof ofcomposition-=-occurlist then follows readily.

(defthm composition-=-occurlist

(implies

(and (hyps s)

(program-inv s)

(occurrences-programp s)

(<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s)))

(len (rd :memory s)))

(= (nth 1 (rd :locals s)) (len (rd :memory s))))

(= (nth 6 (rd :locals (sem-loop-8 (sem-preamble-0 s))))

(occurlist (nth 2 (rd :locals s)) (rd :memory s)))))

Finally, given the semantic function correctness theoremsgenerated by Codewalker (namely,
SEM-PREAMBLE-0-CORRECTandSEM-LOOP-8-CORRECT, the desired final theorem, depicted in Figure 7,
can be stated and proved.

90 Reasoning About LLVM Code Using Codewalker

(defthm ll2-running-occurrences-code-=-occurlist

(implies

(and (hyps s)

(program-inv s)

(occurrences-programp s)

(<= (+ (nth 0 (rd :locals s)) (nth 1 (rd :locals s)))

(len (rd :memory s)))

(= (nth 1 (rd :locals s)) (len (rd :memory s)))

(equal (rd :pc s) 0))

(= (nth 6 (rd :locals (ll2 (ll2 s (clk-preamble-0 s))

(clk-loop-8 (ll2 s (clk-preamble-0 s))))))

(occurlist (nth 2 (rd :locals s)) (rd :memory s))))

:hints (("Goal" :cases ((= (len (rd :memory s)) 0)

(> (len (rd :memory s)) 0)))

("Subgoal 2" :in-theory (enable clk-loop-8))))

Figure 7: Final theorem, equating the result of executing the LLVM instructions for the occurrences
program to its abstract “golden” specification.

6 Related Work

The technique of compiling to a Virtual Machine instructionset has made a significant comeback in the
past twenty years, starting with the JVM, and continuing with Microsoft’s CIL, Android Dalvik, and
LLVM. Our work on verification at the virtual machine instruction set level was inspired by J Moore’s
pioneering work on JVM verification [17], as well as Eric Smith’s more recent Axe system, which was
used to verify a number of Java cryptographic programs at thebytecode level [20].

Zhao et al. [23] produced several different formalizations of operational semantics for LLVM in
Coq [21], noting that their intention is to produce a verifiedLLVM compiler, similar to the CompCert
verified compiler due to Leroy [13] (CompCert does not utilize the LLVM intermediate form). The goal
of Zhaoet al. was not to produce a verification environment for LLVM bitcode, unlike the present work,
but rather to prove the correctness of compiler passes that manipulate LLVM. Jules Villard at Imperial
College London is developing llStar, a formal analysis toolfor LLVM bitcode. Villard’s work so far has
focused on proving properties of small LLVM programs that manipulate algebraic data types, utilizing
the coreStar symbolic execution engine, separation logic,and SMT technology [22]. LLBMC [7] is
a bounded model checker used in bug-finding for C programs that operates on LLVM bitcode. Simi-
lary, KITTeL [6] performs termination analysis on C programs by examining LLVM bitcode. Finally,
KLEE [3] is a symbolic execution tool that operates on LLVM bitcode to produce coverage test cases
and find bugs in C programs.

Codewalker was directly influenced by Magnus Myreen’s “decompilation into logic” work [19].
It would be interesting to attempt to replicate the work donehere using a combination of Myreen’s
decompiler and Anthony Fox’s L3 instruction set description language [8].

D. Hardin 91

7 Conclusion and Future Work

We have used Codewalker, an instruction-set-neutral decompilation-into-logic system included with the
ACL2 theorem prover, to formally analyze C programs that have been compiled to the LLVM interme-
diate form. Work began by defining a stobj-based interpreterfor a subset of the LLVM instruction set,
guided by an existing interpreter for the M1 subset of the Java Virtual Machine. Several C programs,
including programs to compute factorial, sum of array elements, and number of occurrences of a value
in an array, were compiled to LLVM form, and hand-translatedto an ACL2-friendly form that could be
fed to the interpreter. Validation testing was then conducted on these programs using concrete inputs,
before the programs were given to Codewalker for formal analysis. Program-wide invariants, as well as
loop invariants and clock measure functions, were defined inorder to help Codewalker create semantic
functions for program code segments. The composition of these semantic functions was then proved
equivalent to more abstract functions: first to a tail-recursive form; then to a non-tail-recursive form (the
equality of the latter two having previously been established by thedefiteration facility); and finally
to a top-level non-tail-recursive “golden” specification.Thus, we were able to prove that several sample
LLVM programs implement the top-level specifications for those programs.

Future work will focus on using Codewalker to analyze more complex C functions, in particular
functions that feature nested loops, as well as functions that employ runtime-allocated memory. We
have successfully processed the “straight-line” segmentsfor an LLVM insertion sort program (which
features a nested loop) using Codewalker, but have not yet successfully composed the generated semantic
functions into a whole program for further analysis. Additionally, now that basic programs operating on
unbounded integers have been successfully analyzed using Codewalker, a new version of the LLVM
interpreter should be developed that can support differentfinite data word sizes, as well as the LLVM
call andret instructions. Finally, we would like to apply Codewalker toadditional instruction set
architectures, focusing on physical ISAs, as opposed to virtual ISAs like LLVM.

8 Acknowledgments

Many thanks to J Moore for developing Codewalker. I also wishto express my appreciation to J and Matt
Kaufmann for several emails that clarified my understandingof Codewalker’s capabilities. Thanks also
to the anonymous reviewers for their helpful comments. Finally, I wish to acknowledge the wonderful
support of my wife, Lori Hardin.

References

[1] Andrew W. Appel (1998):SSA is Functional Programming. In: SIGPLAN Notices, 33, ACM, pp. 17–20,
doi:10.1145/278283.278285.

[2] Robert S. Boyer & J Strother Moore (2002):Single-Threaded Objects in ACL2. PADL 2002, doi:10.1007/
3-540-45587-6_3.

[3] Cristian Cadar, Daniel Dunbar & Dawson Engler (2008):KLEE: Unassisted and Automatic Generation of
High-coverage Tests for Complex Systems Programs. In: Proceedings of the 8th USENIX Conference on
Operating Systems Design and Implementation, OSDI’08, USENIX Association, pp. 209–224. Available at
http://dl.acm.org/citation.cfm?id=1855741.1855756.

[4] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman & F. Kenneth Zadeck (1991):Efficiently
Computing Static Single Assignment Form and the Control Dependence Graph. In: TOPLAS, 13, ACM, pp.
451–490, doi:10.1145/115372.115320.

92 Reasoning About LLVM Code Using Codewalker

[5] Damien Doligez, Alain Frisch, Jacques Garrigue, DidierRemy & Jerome Vouillon (2014):The OCaml
System Release 4.02 Documentation and Users Guide. http://caml.inria.fr/distrib/ocaml-4.02/
ocaml-4.02-refman.pdf.

[6] Stephan Falke, Deepak Kapur & Carsten Sinz (2011):Termination Analysis of C Programs Using Compiler
Intermediate Languages. In: Proceedings of the 22nd International Conference on Rewriting Techniques and
Applications (RTA ’11), pp. 41–50, doi:10.4230/LIPIcs.RTA.2011.41.

[7] Stephan Falke, Florian Merz & Carsten Sinz (2013):The Bounded Model Checker LLBMC (Tool Demon-
stration). In: Proceedings of the 28th International Conference on Automated Software Engineering (ASE
’13).

[8] Anthony Fox (2012):Directions in ISA Specification. In: ITP 2012, doi:10.1007/978-3-642-32347-8_
23.

[9] David S. Hardin, Jennifer A. Davis, David A. Greve & Jedidiah R. McClurg (2014):Development of a
Translator from LLVM to ACL2. In F. Verbeek & J. Schmaltz, editors:Proceedings of the 12th International
Workshop on the ACL2 Theorem Prover and its Applications, 152, EPTCS, pp. 163 – 177, doi:10.4204/

EPTCS.152.13.

[10] David S. Hardin & Samuel S. Hardin (2013):ACL2 Meets the GPU: Formalizing a CUDA-based Paral-
lelizable All-Pairs Shortest Path Algorithm in ACL2. In R. Gamboa & J. Davis, editors:Proceedings of the
11th International Workshop on the ACL2 Theorem Prover and its Applications, 114, EPTCS, pp. 127 – 142,
doi:10.4204/EPTCS.114.10.

[11] David S. Hardin, Jedidiah R. McClurg & Jennifer A. Davis(2013):Creating Formally Verified Components
for Layered Assurance with an LLVM-to-ACL2 Translator. In: Proceedings of the 2013 Layered Assurance
Workshop, ACM.

[12] Matt Kaufmann, Panagiotis Manolios & J Strother Moore (2000):Computer-Aided Reasoning: An Approach.
Kluwer Academic Publishers, doi:10.1007/978-1-4757-3188-0.

[13] Xavier Leroy (2009):Formal Verification of a Realistic Compiler. In: Communications of the ACM, 52, pp.
107–115, doi:10.1145/1538788.1538814.

[14] Tim Lindholm, Frank Yellin, Gilad Bracha & Alex Buckley: The Java Virtual Machine Specification, Java
SE 8 Edition. https://docs.oracle.com/javase/specs/jvms/se8/jvms8.pdf.

[15] LispWorks Ltd.:Common Lisp HyperSpec. http://www.lispworks.com/documentation/HyperSpec/
Front/index.htm.

[16] LLVM Project: The LLVM Compiler Infrastructure. http://llvm.org/.

[17] J Strother Moore (1999):Proving Theorems about Java-like Byte Code. In E.-R. Olderog & B. Steffen,
editors:Correct System Design — Recent Insights and Advances, Lecture Notes in Computer Science1710,
Springer-Verlag, pp. 139–162, doi:10.1007/3-540-48092-7_7.

[18] J Strother Moore (2014):Codewalker source code. Standard ACL2 distribution athttp://www.cs.
utexas.edu/users/moore/acl2.

[19] Magnus O. Myreen, Michael J. C. Gordon & Konrad L. Slind (2012):Decompilation into Logic — Improved.
In: FMCAD’12, ACM/IEEE.

[20] Eric Smith (2011):Axe: An Automated Formal Equivalence Checking Tool for Programs. Ph.D. thesis,
Stanford University.

[21] The Coq Development Team (2015):The Coq Proof Assistant Reference Manual, Version 8.4pl6. https://
coq.inria.fr/distrib/current/files/Reference-Manual.pdf.

[22] Jules Villard (2013):Here be wyverns! Verifying LLVM bitcode with llStar. Unpublished manuscript at
http://www.doc.ic.ac.uk/~jvillar1/pub/llstar-draft-oct13.pdf.

[23] Jianzhou Zhao, Santosh Nagarakatte, Milo M. K. Martin &Steve Zdancewic (2012):Formalizing the LLVM
Intermediate Representation for Verified Program Transformations. In: POPL’12, ACM, doi:10.1145/
2103621.2103709.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 93–109, doi:10.4204/EPTCS.192.8

c© J S. Moore
This work is licensed under the
Creative Commons Attribution License.

Stateman: Using Metafunctions to Manage Large Terms
Representing Machine States

J Strother Moore
Department of Computer Science
The University of Texas at Austin

moore@cs.utexas.edu
∗

When ACL2 is used to model the operational semantics of computing machines, machine states are
typically represented by terms recording the contents of the state components. When models are
realistic and are stepped through thousands of machine cycles, these terms can grow quite large and
the cost of simplifying them on each step grows. In this paperwe describe an ACL2 book that uses
HIDE and metafunctions to facilitate the management of large terms representing such states. Be-
cause the metafunctions for each state component updater are solely responsible for creating state
expressions (i.e., “writing”) and the metafunctions for each state component accessor are solely re-
sponsible for extracting values (i.e., “reading”) from such state expressions, they can maintain their
own normal form, useHIDE to prevent other parts of ACL2 from inspecting them, and use honsing
to uniquely represent state expressions. The last feature makes it possible to memoize the meta-
functions, which can improve proof performance in some machine models. This paper describes
a general-purpose ACL2 book modeling a byte-addressed memory supporting “mixed” reads and
writes. By “mixed” we mean that reads need not correspond (inaddress or number of bytes) with
writes. Verified metafunctions simplify such “read-over-write” expressions while hiding the poten-
tially large state expression. A key utility is a function that determines an upper bound on the value
of a symbolic arithmetic expression, which plays a role in resolving writes to addresses given by
symbolic expressions. We also report on a preliminary experiment with the book, which involves the
production of states containing several million function calls.

1 Background

ACL2 [3, 2] is frequently used to model computing machines via operational semantics. It is not difficult
to configure the ACL2 theorem prover so that it can use the definitions of the machine semantics and a few
well-chosen rewrite rules to step through code sequences, split on tests, induct on loops, etc. Examples
of these methods being used to prove functional correctnessof code under formal operational semantics
may be found in numerous publications [6, 7, 10, 1]. Such symbolic state terms can grow quite large
when many steps are composed. The question addressed here is: how can we exploit ACL2’s rewriter
to symbolically execute formalized code while preventing it from slowing down as state expressions get
large?

This paper describes the Stateman book for managing large terms representing machine states in
ACL2 models of computing machines. “Stateman” stands for “state management.” This is a work in
progress and this paper has many brief descriptions of intendedFuture Work .

The idealistic dream is that a user wishing to model some byte-addressed computing machine and
do code proofs or run the Codewalker tool1 might build the operational semantics on top of the state

∗This work was partially supported by ForrestHunt, Inc.
1Codewalker extracts ACL2 functions from machine code giventhe formal operational semantics of the ISA and is sim-

94 Stateman

provided by Stateman and thereby inherit the state management techniques here described. But machine
models are very idiosyncratic. Users may actually need to design their own states and merely exploit the
basic techniques described here. Thus, this paper focuses mainly on the design decisions in our work. As
usual, readers are welcome, indeed encouraged, to read the Stateman book itself and use it as the basis
of their own versions.

We start with a brief description of our generic state, then we present the highlights of our state
management techniques, provide some examples, discuss a few details, and present some preliminary
performance measures.

2 The Generic State

The book provides a generic single-threaded object,ST (henceforth,st), providing three fields. See :DOC
stobj.2

(defstobj st

(I :type unsigned-byte :initially 0) ; program counter

(S :initially nil) ; status

(M :type (array (unsigned-byte 8) (*m-size*)) ; memory

:initially 0

:resizable nil

)

:inline t

:renaming

((UPDATE-I !I)

(UPDATE-S !S)

(UPDATE-MI !MI)

(M-LENGTH ML)))

The primitive accessors areI, S, andMI, and the primitive updaters are!I, !S, and!MI.3 TheI and
S fields were originally intended for the machine’s instruction counter and status flag, andMI provides
a byte addressed memory of 8-bit bytes. The person using thisbook to model the state of a computing
machine need not use theI andS fields for their implied purposes. The modeler might, for instance,
choose to store all state information including the instruction counter and various status bits in the byte
addressed memory and ignore theI andS fields altogether.

Byte-addresses are integers starting at 0. The byte-addressed memory is of fixed size,*m-size*,
which is currently only5312. This constant is a holdover from the earliest use of the state and (Future
Work) will be generalized in future work. Indeed, the whole development would have been easier were
there no upper bound on memory size. Imposing an upper bound forced certain issues to be dealt with –

ilar to the HOL decompilation work by Magnus Myreen[8, 9]. See the README file in the Community Book directory
projects/codewalker/. The version of Codewalker used here is still experimental.

2When we say “See :DOCx” we mean see the documentation topicx in the ACL2 documentation, which may be found by
visiting the ACL2 home page[4], clicking on The User’s Manuals, then clicking on the ACL2+Books Manualand typingx into
the “Jump to” box.

3The third field of the single-threaded object is namedM and is an array, but only the elements can be accessed or changed,
with MI and!MI.

J S. Moore 95

issues that are necessarily raised in any realistic model. The magnitude of that upper bound is practically
irrelevant from the research perspective.

The Stateman book usesMI and!MI only to provide support for two more general utilities,R and!R,
for reading and writing an arbitrary number of bytes. We do not think of MI and!MI as “visible” to the
user of Stateman.

It is best to think of the generic state as providing the following functionality:

expression value
(I st) instruction counter of statest
(S st) status flag of statest
(R a n st) natural number obtained by readingn bytes starting

at addressa in the memory of statest
(!I v st) new state obtained from statest by setting

the instruction counter tov
(!S v st) new state obtained from statest by setting the status

flag tov
(!R a n v st) new state obtained by writingn bytes of natural

numberv into the memory ofst starting at addressa

R and!R use the “Little Endian” convention. For example,(!R a n v st) writes the less signifi-
cant bytes ofv to the lower addresses, with the least significant byte written to addressa and all other
bytes written to larger addresses. (Future Work) We would like to support either Little or Big Endian
conventions.

Nests of!I, !S, and!R applications are calledstate expressionsor state termsbecause they denote
machine states. Any term whose top function symbol isI, S, or R applied to a state expression is
called aread-over-writeexpression. Any term whose top function symbol is!I, !S, or !R applied to
a state expression is called awrite-over-writeexpression. Of course, write-over-write expressions are
themselves state expressions.

Our concern here is simplifying read-over-write and write-over-write expressions in support of code
proofs and code walks. These issues are straightforwardly managed with rewrite rules. For example, the
read over write expression(R 24 8 (!R 40 8 v st)) can be simplified to(R 24 8 st). But as state
expressions grow large – and they can grow very large when long code sequences are involved – two
problems crop up.

First, the rewriter tends to re-simplify parts of states that have already been simplified. Second, the
traditional rewrite rules for handling byte-addressed memory involve backchaining to establish that byte
sequences do not overlap. For example, the rewrite rules that replace(R a n (!R b k v st)) by (R a
n st) have the hypotheses(natp a), (natp b), (natp n), (natp k), and either(< (+ a n) b) or
(< (+ b k) a). The inequalities can get very expensive whena andb are large arithmetic expressions.
Furthermore,a andb typically become large arithmetic expressions when the code being explored is
doing indexed addressing (as in array access) and long code sequences are involved in the computation
of the indices. Every read-over-write and write-over-write expression raises such anoverlapquestion.
Furthermore, a read of a deeply nested state expression typically raises an overlap question for each write
in the nest. For speed we must answer overlap questions without resorting to heavy-duty arithmetic.

96 Stateman

3 Highlights of Key Design Decisions

Some of the key decisions in the design of Stateman are listedand briefly elaborated below. In the next
section, where we give examples, we discuss the implications of some of these decisions.

• Manage read-over-write and write-over-write expressionsexclusively with metafunctions:
Stateman defines a metafunction for each ofI, S, R, !I, !S, and!R. These metafunctions are
namedmeta-I, meta-S, etc. Like all metafunctions, they take terms as input and yield possibly
different terms as output.4 The metafunctions forR and!R are extended metafunctions and thus
additionally take the metafunction context and ACL2 state as arguments. These two metafunctions
only use the type-alist in the metafunction context and theyignore the ACL2 state. However, the
biggest problem faced by these functions is the read-over-write overlap questions: “is one address
less than another?”, given only the syntactic expressions representing the two addresses. This
motivates the next item.

• Implement a syntactic interval inference mechanism: Imagine a function that when given an
arithmetic/logical term, can infer an upper bound. This is quite different functionality than nor-
mally found in ACL2. ACL2 can be configured to answer questions like “Is α less than 16?” but
here we want a utility for answering “What number isα less than?” This functionality is especially
important in codewalking unknown code. Suppose the code in question usesα as an index into
some array at locationbase. What part of the state is changed if the code writes tobase+α? If
you know enough about the code to know the bound on the array, you could undertake to prove
thatα is in bounds and thus conclude that only the array is affectedby the write. But if you do not
know much about the code, you need an inference mechanism to deduce a bound onα . Stateman
provides a verified interval inference mechanism namedAinni which is discussed in more detail
in Section 5.

• Implement syntactic means of deciding some inequalities: GivenAinni, it is possible to im-
plement the extended metafunctionmeta-< that takes an inequality and the metafunction context
and decides many inequalities,(< α β), by computing intervals forα andβ and comparing their
endpoints, e.g., if the upper bound ofα is below the lower bound ofβ , then the inequality is true.
This can save backchaining into linear arithmetic on large arithmetic/logical expressions.

• Implement syntactic means of simplifying someMOD expressions: In machine arithmetic, ex-
pressions of the form(MOD α ’n) frequently arise, wheren is some natural number. Some ex-
pressions of this sort can be simplified by syntactic means given the ability to infer bounds onα .
See Section 6.

• Use syntactic means to decide overlap questions: Suppose the type-alist tells us that the 32-bit
word at address 8, i.e.,(R 8 4 st) is less than 16. Then a quick syntactic scan of the address
expression(+ 3200 (* 8 (R 8 4 st))) reveals that the value lies in the interval [3200, 3320]
and so reading, say, 3 bytes from that address might touch anyaddress in the interval [3200, 3322].

• Insist that all byte counts be quoted constants: This facilitates the interval analysis mentioned
above. We do not regard it as a restriction given Stateman’s intended application for code analysis.
In most ISAs the number of bytes to be manipulated by an instruction is explicitly given in the
instruction or else is fixed by the instruction or the architecture.

4Metafunctions traffic in fully translated terms but the examples in this paper generally show untranslated terms for read-
ability.

J S. Moore 97

• Do not put nested!R-expressions into address order: We leave the most recent writes at the
top of the state expression under the assumption that program code tends to read from addresses
recently written.

• Eliminate perfectly shadowed writes: When!R, with addressa and byte countn, is applied
to a state expression already containing an application of!R with addressa with byte countn,
Stateman eliminates the inner (earlier) one. Similar considerations apply to nested!I and!S
calls. This reduces the size of the final state expression. But Stateman does not try to eliminate
partially shadowed writes. We explain below.

• Usehons rather than cons to create state expressions: This means that if the same state ex-
pression is created along different paths of a code proof or walk, no additional space is allocated;
furthermore, hons facilitates the use of memoization.

• HIDE the state expressions produced by the metafunctions: This ensures that no rewrite rule
touches them. For example, if a machine model mentions an expression like

(!R 32 4 v

(!R 8 4 (+ (R 8 4 st) 4)

(!I 123

(!S NIL st))))

as would happen if it set the status flag toNIL, the instruction pointer to123, incremented the
word at address 8 by 4 and wrotev to the word at address 32, then the inside-out rewriting of
ACL2 would invoke the metafunctions for!S, then!I, and then!R (twice) and ripple aHIDE out
so the final term would be as exactly as above but with a singleHIDE around it at the top level. It
would never be further simplified except by these metafunctions.

• HIDE some values extracted by reads from hidden states to avoid re-simplifying them: This
is a controversial decision and is still quite unsettled. (Future Work) The issue is that over long
codewalks (involving thousands of instructions) the expressions built up as values in the memory
can be huge. By embedding extracted values inHIDE expressions, they are not re-simplified. The
downside is that it can be impossible to decide simple tests because one does not know much
about the hidden expressions. A compromise would be to bury the HIDEs several levels down
in the extracted expressions, leaving the top few function symbols available. At the moment, all
extracted values are hidden except constants and calls ofR. This means that the metafunctions here
must remove someHIDEs from values before storing them into memory.

• Prove guards and well-formedness guarantees of the metafunctions: ACL2 users should be
well aware of the efficiency advantages of verifying the guards on functions used in heavy-duty
computations. A less familiar topic, though, is discussed in the new feature documented in :DOC
well-formedness-guarantee. It has long been the case that when a metafunction is applied the
theorem prover checks that the result is a well-formed term,by running the functiontermp on the
output and the current ACL2 world. This hidden cost of metafunctions goes all the way back to the
origin of ACL2 in 1989. However, when the output of a metafunction is huge, the well-formedness
check can be expensive, and the basic supposition in the Stateman work is that state expressions
are huge. A new feature of ACL2 Version 7.2 makes it possible to skip the well-formedness check
by proving that the metafunction always returns atermp. We have found that providing such
well-formedness guarantees is worthwhile in Stateman. See[5]. We give some data on this below.

98 Stateman

4 Examples

We illustrate these ideas with a few examples. The reader maynotice two odd aspects to our examples.
The first is that most addresses illustrated are quoted constants. The second is that when non-constant
expressions occur as addresses the only variable involved is st and it always occurs in a primitive state
accessor like(R a n st). We do not believe these are serious constraints if Statemanis used for code
analysis: Typical code, especially binary machine code, refers to fixed addresses or offsets from other
addresses (as in array indexing and stack slots relative to some stack or frame pointer in a register); “vari-
ables” are just the contents of memory locations at such addresses. However (Future Work) it would
not be difficult to support variable symbols provided the context established natural number bounds on
their values.

Examples (1)–(7) below are extracted verbatim from a session log that started in a fresh ACL2 with
the inclusion of the Stateman book. Because this is a work in progress, we keep the version number as
part of the book name right now. This log started by includingstateman22.lisp which is included in
the supplemental material. The supplemental material alsoincludessimple-examples.lsp, a file (not
a book) showing the actual input forms for these and some other examples in this paper. We hope those
forms can help the user who wishes to extend Stateman’s functionality.

ACL2 !>(meta-!I ’(!I ’123 st)) ;(1)
(HIDE (!I ’123 ST))

ACL2 !>(meta-!R ’(!R ’0 ’4 (R ’16 ’4 st) (HIDE (!I ’123 ST))) ;(2)
nil state)

(HIDE (!R ’0 ’4 (R ’16 ’4 ST) (!I ’123 ST))) ;(st′)

ACL2 !>(meta-I ’(I (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST))))) ;(3)
’123

ACL2 !>(meta-R ’(R ’0 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(4)
nil state)

(R ’16 ’4 ST)

ACL2 !>(meta-R ’(R ’2 ’2 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(5)
nil state)

(HIDE (ASH (R ’16 ’4 ST) ’-16))

ACL2 !>(meta-R ’(R ’8 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(6)
nil state)

(R ’8 ’4 ST)

ACL2 !>(meta-R ’(R ’2 ’4 (HIDE (!R ’0 ’4 (R ’16 ’4 st) (!I ’123 ST)))) ;(7)
nil state)

(HIDE (BINARY-+ (ASH (R ’4 ’2 ST) ’16)

(ASH (R ’16 ’4 ST) ’-16)))

J S. Moore 99

In example (1) we call the metafunction for!I on the term(!I ’123 st), just as the rewriter does
when it encounters a!I-term. The result is a hidden state. Notice that metafunctions traffic in fully
translated terms.

In example (2) we call the metafunction for!R on the!R-term that writes the 4-byte value of(R ’16

’4 ST) to location0 in the previously produced (now hidden) state. Note that themetafunction for!R
takes two additional arguments, the metafunction context,in this casenil, and the ACL2 state object,
sincemeta-!R is an extended metafunction. Again, nothing significant happens except the new state is
hidden. Henceforth in this narrative we will refer to the state produced by (2) asst′.

In example (3) we use the metafunction forI to extract the instruction counter ofst′.
In example (4) we use the metafunction forR to read (4 bytes of) the contents of address 0 inst′. The

result is exactly what was written in (2) because it was 4 bytes long.
In example (5) we read the last two bytes of that previously written quantity, that is, we read 2 bytes

starting at address 2 inst′. Two things are noteworthy. One is that it is reported as the 4-byte quantity that
was written in (2), shifted down by 16 bits. The second is thatit is hidden – the “controversial” decision.

In example (6) we read from an address above any affected by the write inst′. The result is whatever
was there in the original statest.

In example (7) we read 4 bytes starting at address 2 inst′. This is a “mixed” read in the sense that the
result involves the last two bytes from what was written at address 0 and the bytes that were at locations
4 and 5 of the original statest. It is expressed as a sum, with the latter bytes shifted up. Again, it is
(controversially) hidden.

It is important to realize that all of these transformationsare carried out by verified metafunctions
without involving rewrite rules, linear arithmetic, or other heavy-duty theorem proving. Consequently,
these transformations are very fast.

Since theI andS slots are unaffected by writes to memory and do not involve addresses or overlap
issues our examples below focus onR- and!R-terms.

Henceforth, we will display untranslated terms for both input and output and will not exhibit the calls
of the relevant metafunction. Instead, the reader should understand that the notation “α =⇒ β ” means
that α is transformed toβ by the metafunction appropriate for the top function symbolof α . Since
bothmeta-R andmeta-!R take a metafunction context we make clear in the surroundingnarrative what
the context is. This only involves describing the governingassumptions (as encoded in the type-alist).
Finally, instead of writing something like “α =⇒ (IF hyp β α)” we will generally write “α =⇒† β ”
and describe the side conditionhypgenerated by the metafunction in the accompanying narrative. Recall
that before such anα is replaced byβ the rewriter must establishhyp.

Given a metafunction context in which the type-alist is empty, we can thus recap lines (1)–(7) above
with:

(!I 123 st) ;(1)
=⇒
(HIDE (!I 123 st))

(!R 0 4 (R 16 4 st) (HIDE (!I 123 st))) ;(2)
=⇒
(HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))

(I (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(3)
=⇒

100 Stateman

123

(R 0 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(4)
=⇒
(R 16 4 st)

(R 2 2 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(5)
=⇒
(HIDE (ASH (R 16 4 st) -16))

(R 8 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(6)
=⇒
(R 8 4 st)

(R 2 4 (HIDE (!R 0 4 (R 16 4 st) (!I 123 st)))) ;(7)
=⇒
(HIDE (+ (ASH (R 4 2 st) 16)

(ASH (R 16 4 st) -16)))

Relatively little work is done on simplifying writes, asidefrom looking for shadowed writes to be
deleted. For example, one might wonder at the simple

(!R 8 4 v st) ;(8)
=⇒
(HIDE (!R 8 4 v st))

sincev might be too big to fit in 4 bytes. But instead of truncatingv on write we do so on read:

(R 8 4 (HIDE (!R 8 4 v st))) ;(9)
=⇒
(HIDE (MOD (IFIX v) 4294967296))

Now let the metafunction context encode the assumption that(R 16 4 st) is less than 16. In the
example below, we treat(R 16 4 st) as an index into a QuadWord array (8-byte per entry) based at
address 3200.

(R (+ 3200 (* 8 (R 16 4 st))) 8 ;(10)
(HIDE (!R 3600 4 v (!R 8 4 w st))))

=⇒†

(R (+ 3200 (* 8 (R 16 4 st))) 8 st)

(!R (+ 3200 (* 8 (R 16 4 st))) 8 u ;(11)
(HIDE (!R 3600 4 v

(!R 8 4 w
(!R (+ 3200 (* 8 (R 16 4 st))) 8 x

st)))))

J S. Moore 101

=⇒
(HIDE (!R (+ 3200 (* 8 (R 16 4 st))) 8 u

(!R 3600 4 v
(!R 8 4 w st))))

The “†” on the transformation in (10) indicates that a side condition was generated. That side condition
is (<= (R 16 4 st) 15), and it must be established before the replacement is made. Establishing such
side conditions should be trivial since they are extracted from the type-alist in the metafunction context.
Given that condition, we see that the 8-byte read at(+ 3200 (* 8 (R 16 4 st))) may only touch
bytes in the interval [3200, 3327]. We discuss this intervalanalysis further below. But because of it, the
metafunction can determine that neither of the two writes inthe hidden state of (10) is relevant since the
4 bytes starting at 3600 are above the target interval and 4 bytes starting at 8 are below it.

Interestingly, no side condition is necessary on transformation (11). If(R 16 4 st) is sufficiently
large the new write at(+ 3200 (* 8 (R 16 4 st))) mightshadow out the write at 3600, but that does
not matter because the new write is added at the top of the expression (chronologically after the write at
3600), so the answer above is correct. And, regardless of themagnitude of(R 16 4 st), the new write
shadows out the earlier one at the exact same address and the earlier write can be dropped.

Our final example is contrived to show a mixed read that spans several chronologically separated
writes. The empty metafunction context is sufficient for this example. We will ultimately read 8 bytes
starting at address 3. But consider the writes that create the relevant memory. The write of 4 bytes ofv
at address 2 is partially shadowed by the write of 4 bytes ofu at address 0. The writes at 14 and 19 are
irrelevant because we only need bytes 3 through 10. The first byte of our answer is the high order byte
of u written at address 3. The next two bytes are the two high orderbytes ofv at addresses 4 and 5. Then
we get 3 bytes from the originalst at addresses 6, 7, and 8, and finally we get the two low order bytes
from w at addresses 9 and 10. We then assemble these 8 bytes using theLittle Endian notation and put
the final sum into ACL2’s term order.

(R 3 8 ;(12)
(HIDE

(!R 14 5 x
(!R 0 4 u

(!R 19 8 y
(!R 9 2 w

(!R 2 4 v st)))))))
=⇒
(HIDE (+ (ASH (R 6 3 st) 24)

(+ (MOD (ASH (IFIX u) -24) 256)

(+ (ASH (MOD (IFIX w) 65536) 48)

(ASH (MOD (ASH (IFIX v) -16) 65536) 8)))))

(Future Work) We are dissatisfied with the normal form of expressions denoting the results of mixed
reads. To be more precise, we do not have enough experience with it yet to know whether it is sufficient
for our purposes. The current implementation usesIFIX to convert terms to integer form as required
by basic rules forASH (if syntactic analysis cannot establish that the term returns an integer), usesMOD
to truncate unneeded higher order bits, and usesASH to shift bits into the right locations. The question
however is this: Suppose such an expression is written to a memory location and then one must read a
few bytes from it. The current metafunctions produceASH/MOD-terms that could be further simplified.

102 Stateman

But given the controversial decision toHIDE the complicated results of reads, that simplification should
be done insidemeta-R.

Stateman does not produce normalized states for at least tworeasons. First, it does not put writes
into address order. Second it does not eliminate partial shadows. Why bother to eliminate partially
shadowed material if one can read out the answers if and when needed? This consideration is especially
relevant since resolving a partial shadow generally makes the state syntacticallylarger, e.g., to resolve
the shadowing of the write at 2 above one would replace(!R 2 4 v st) by the larger term(!R 4 2

(ASH (IFIX v -16)) st). It is not clear this is an improvement. Furthermore, we suspect partial
shadowing is fairly rare compared to “perfect shadowing” where then bytes starting at addressa are
repeatedly reused for differentn byte values.

(Future Work) But the lack of normalization raises the question of determining state equality. State-
man does not support state equality at the moment. But the plan is to support it by a metafunction that
announces the equality of two states formed by different sequences of writes to the same initial state by
checking that every read of every byte written to either state produces the same expression.

5 Ainni: Abstract Interpreter for Natural Number Intervals

Perhaps the most important idea to come out of this work so faris the development and verification of
an ACL2 function that takes the quotation of a term together with a type-alist and attempts to determine
a closed natural number interval containing the value of theterm. This function is calledAinni, which
stands forAbstract Interpreter for Natural Number Intervals. Ainni can be thought of as a “type-
inference” mechanism for a class of ACL2 arithmetic expressions, except the “types” it deals with are
intervals over the naturals.

Ainni explores terms composed of constants, the statest, and the function symbols+, -, *, R, HIDE,
MOD, ASH, LOGAND, LOGIOR, andLOGXOR.5 (Future Work) This set of function symbols was determined
by seeing what functions were introduced by the codewalk of aparticularly large and challenging test
program: an implementation of DES. Essentially,Ainni should support all of the basic functions used
in the semantics of the ALU operations of the machine being formalized. We therefore anticipate that
the list here will have to grow.

Ainni recursively descends through the term “evaluating” the arguments of function calls – only in
this case that means computing intervals for them – and then applying bounders (see the discussion of
“bounders” in :DOCtau-system) corresponding to the function symbols to obtain an interval contain-
ing all possible values of the function call. At the bottom, which in this case are calls ofR, Ainni uses
the type-alist to try to find bounds on reads that are tighter than the syntactically apparent 0≤ (R a n
st) ≤ 28n−1. (Future Work) It is here, at the “bottom” of the recursion, that we could add support for
variable symbols or unknown function symbols.

For example, consider the quotation of the term

(+ 288 (* 8 (LOGAND 31 (ASH (R 4520 8 st) -3)))).

In the absence of any contextual information,Ainni returns the natural number interval [288,536]. The
reasoning is straightforward: we know that(R 4520 8 st) is a natural in the interval [0, 264−1]. The
tau-bounder forASH tells us that shifting it right 3 reduces that to [0, 261−1], and then the tau-bounder
for LOGAND tells us that bitwise conjoining it with31 shrinks the interval to [0,31]. Multiplying by8
makes the interval [0, 248], and adding288 makes it [288, 536].

5Several of these symbols are macros that expand into calls offunction symbols thatAinni actually recognizes.

J S. Moore 103

By default(R 4520 8 st) is known to lie in [0,264−1], but the type-alist might restrict it to a smaller
interval. For example, it might assert that(R 4520 8 st) < 24, in which caseAinni determines that
the term above lies in the interval [288,304].

In addition to returning the interval,Ainni also returns a flag indicating whether the term was one
thatAinni could confine to a bounded natural interval and a list of hypotheses that must be true for its
interval to be correct. These hypotheses have two sources: (i) assumptions extracted from the context
and (ii)Ainni’s inherent assumptions (such as a built-in assumption thatno computed value is negative6,
which might translate to the hypothesis(not (< x y)) if the term is(- x y)).

Finally, Ainni is verified to be correct. That is, the certification of Stateman involves a proof of the
formal version of:

Let x be the quotation of an ACL2 term andta be a type-alist. Letf lg, (h1 . . . hk) and
[lo, hi] be the flag, hypotheses, and the interval returned byAinni on x andta. Then if f lg
is true:

• (h1 . . . hk) is a list of quotations of terms,
• lo andhi are natural numbers such thatlo ≤ hi, and
• if (E hi a) = T for each 1≤ i ≤ k, thenlo ≤ (E x a) ≤ hi, whereE is an evaluator

that recognizes the function symbols handled byAinni.

Ainni is used inmeta-R to handle the overlap questions that arise. In addition, it is used inmeta-<
to decide some inequalities and inmeta-MOD to simplify someMOD expressions.

Furthermore,Ainni is fast. For example, in the codewalk of the DES algorithm, one particular index
expression is a nest of 382 function calls containing every one of the function symbols known toAinni.
Just for fun, here is the expression, printed “almost flat” (without much prettyprinting):
(LOGIOR

(LOGAND 32 (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840

(R 4520 8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520

8 ST)) -3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST))

-5) (ASH (MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH

(MOD (ASH (R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST))

15) (ASH (MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD

(ASH (R 4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8

ST) -3) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+

4376 (* 8 (R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2))

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520

8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))

-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH

(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH

(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH

(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R

4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)

2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (* 8

(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 32) -1)

(ASH (MOD (ASH (MOD (ASH (LOGXOR (LOGIOR (ASH (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) 0) 2) 31) (ASH (LOGAND 4026531840 (R 4520

8 ST)) -1) (ASH (MOD (ASH (R 4520 8 ST) -27) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -28) 2) 25) (ASH (LOGAND 251658240 (R 4520 8 ST))

-3) (ASH (MOD (ASH (R 4520 8 ST) -23) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -24) 2) 19) (ASH (LOGAND 15728640 (R 4520 8 ST)) -5) (ASH

(MOD (ASH (R 4520 8 ST) -19) 2) 14) (ASH (MOD (ASH (R 4520 8 ST) -20) 2) 13) (ASH (LOGAND 983040 (R 4520 8 ST)) -7) (ASH (MOD (ASH

(R 4520 8 ST) -15) 2) 8)) -8) 24) (ASH (LOGIOR (ASH (MOD (ASH (R 4520 8 ST) -16) 2) 31) (ASH (LOGAND 61440 (R 4520 8 ST)) 15) (ASH

(MOD (ASH (R 4520 8 ST) -11) 2) 26) (ASH (MOD (ASH (R 4520 8 ST) -12) 2) 25) (ASH (LOGAND 3840 (R 4520 8 ST)) 13) (ASH (MOD (ASH (R

4520 8 ST) -7) 2) 20) (ASH (MOD (ASH (R 4520 8 ST) -8) 2) 19) (ASH (LOGAND 240 (R 4520 8 ST)) 11) (ASH (MOD (ASH (R 4520 8 ST) -3)

2) 14) (ASH (MOD (ASH (R 4520 8 ST) -4) 2) 13) (ASH (MOD (R 4520 8 ST) 16) 9) (ASH (ASH (R 4520 8 ST) -31) 8)) -8)) (R (+ 4376 (* 8

(R 4536 8 ST)) (* 8 (- (R 4528 8 ST)))) 8 ST)) -40) 256) -2) 2) 4))

While the first argument of theLOGIOR is easy to bound the second and third are problematic.Ainni

bounds theLOGIOR to [0,63] in less than one hundredth of a second on a MacBook Pro laptop with a 2.6
GHz Intel Core i7 processor.

By the way, the second argument of theLOGIOR above actually lies in [0,15] and the third in [0,16].
But proving those two bounds with, say,arithmetic-5/top, takes about 33 seconds each, without
Ainni andmeta-<. But the main point is thatAinni infersa correct bound.

6We anticipate that any ISA employing Stateman’s byte-addressed memory would use twos-complement arithmetic.

104 Stateman

6 Syntactic Simplification of MOD Expressions

Machine arithmetic introduces manyMOD expressions in which the second argument is constant. State-
man provides the extended metafunctionmeta-MOD that implements the following rules, wherei, j, and
k are natural constants. The function also uses a concept called “syntactic integer” realized by a function
which takes the quotation of a term and determines whether itis obviously integer valued. For exam-
ple, a sum expression is a syntactic integer provided the twoarguments are syntactic integers, anASH

expression is a syntactic integer provided the first argument is, and aLOGAND expression is a syntactic
integer regardless of the shape of the arguments. In the rules below,x, x1, . . . ,x j must be syntactic integer
expressions.

• (MOD x 0) = x

• (MOD i k) can be computed if both arguments are constants

• (MOD (MOD z j) k) = (MOD z j), if j ≤ k

• (MOD (MOD x j) k) = (MOD x k), if k divides j

• (MOD (R a i st) k) = (R a i st), if 256i ≤ k

• (MOD (+ x1 . . . (MOD x j) . . . x j) k) = (MOD (+ x1 . . . x . . . x j) k), if k divides j

• (MOD x k) = x, if Ainni claims the upper bound ofx is belowk

The last rule is not only applied to the argument ofmeta-MOD but also to the output of the second-
to-last rule.

Some of these rules are built intoarithmetic-5/top but in the interests of speed, Stateman does
not exportarithmetic-5/top and does much arithmetic simplification in its metafunctions.

7 Some Details of Meta-R and Meta-!R

The most complicated of the metafunctions aremeta-R andmeta-!R, which use all of the functionality
described above. The former is actually more complicated than the latter because the former deals with
mixed read-over-write. We briefly discuss some design issues for these two functions, starting with the
simpler,meta-!R, but we urge the interested reader to inspect the code in the Stateman book.

Since a successful application ofmeta-!R will transform (!R a ’n v (HIDE st′)) into (HIDE

(!R a ’n v st′)), we must be careful not to fire the metafunction too soon: noneof the subterms will
be rewritten again! Thusmeta-!R checks whethera or v contain terms that might still be rewritten, e.g.,
embeddedIFs, unexpandedLAMBDA applications, or read-over-writes that have not yet been resolved. If
such subterms are found, the metafunction does not fire and(!R a ’n v (HIDE st′)) continues to be
subject to rewriting.

If we decide to fire, we remove allHIDES in a andv; remember they are probably arithmetic/logical
expressions formed by the semantics of an instruction operating on data extracted from memory and thus
(controversially) hidden. When we removeHIDEs we actually compute the depth of the deepestHIDE

first and then copy only that far into the term so as to avoid re-copying a honsed term.
Then we dive throughst′ looking for a perfect shadow of a write toa of n bytes. This is actually a

little more complicated than just looking for a deeper(!R a n . . .) because the addresses may not be
fully normalized. By usingAinni we can identify some non-identical addresses that are semantically
equivalent in the current context. As we dive throughst′ looking for a shadowed assignment we also
compute its depth, so we can come back and delete it without further interval analysis.

J S. Moore 105

Moving on tometa-R, the main complication is mixed read-over-write. The question is, given(R a
’n (!R b ’k v st)), does part of the answer lie withinv or not? Ainni can be used to handle many
general overlap questions but we prefer not to useAinni if simpler techniques apply. For example, if both
a andb are constants we can just skip over this!R or extract the appropriate bytes fromv (remember
n andk are constants). But more generally, we ask whethera and b are offsets from some common
address, e.g.,a might be(+ 8 sp) andb might be(+ 16 sp) wheresp is some expression denoting,
say, the stack pointer. While neither address is constant wecan still determine whether readingn bytes
from a takes us into the region written, by doing arithmetic on the two constant offsets (8 and16 in this
example) and the constantsn andk. When no common reference address can be found, we useAinni.
Space does not permit further description of mixed read-over-write and we urge the reader to see the
Stateman code.

Furthermore, space does not permit discussion of the proof issues. But correctness, guards, and
well-formedness guarantees are all proved. Probably the most interesting and difficult proofs concerned
mixed read-over-write and the validity of removing a deeplyburied perfectly shadowed writewithout
being able to determine whether intervening writes also shadow it, i.e., how do you justify transforming

(!R a n v1

(!R b k w
(!R a n v2 st)))

to

(!R a n v1

(!R b k w st))

without knowing the relations betweena, n, b andk? The formalization of the general result we need is
an inductively provedLOCAL lemma, namedLEMMA3 in stateman22.lisp, establishing the correctness
of a function that deletes a perfectly shadowed write at an arbitrary depth.LEMMA3 is used in the proof
of META-!R-CORRECT.

8 Memoization

We have experimented with memoization of the metafunctionsintroduced by Stateman. Memoization is
theoretically useful in code proofs because the same symbolic state might be produced on different paths
through the code. In addition, the contents of the same addresses might be read multiple times from the
same state. On the other hand, memoization imposes an overhead and is thus not always worthwhile.

Memoization hits most often if all of the arguments are honsed rather than consed. For example, if
f is memoized and one has typed(f ’(a . b)) at the top-level, then the value off on that cons pair
is stored in the hash table forf. But if one then types(f (cons ’a ’b)) the memoized answer is not
found andf is recomputed. In Common Lisp terms, the argument must beEQ notEQUAL. All of the state
expressions produced by our metafunctions are honsed and thus uniquely represented. But this alone
will not make(memoize ’meta-R), for example, particularly useful.

First, memoization cannot be applied to an extended metafunction because one of the arguments is the
ACL2 (live) state. Someta-R, which takesstate as an argument (because it is a requirement of extended
metafunctions) but which ignoresstate, is defined in terms of a wrapper,memoizable-meta-R which
does not takestate and which takes only the type-alist from the metafunction context, not the whole
context.

106 Stateman

Second, the term argument ofmeta-R is of the form(R a ’n (HIDE st′)) and typically came from
simplifying someR-term in the model. The(HIDE st′) is honsed because it was produced by one of our
metafunctions. But the rest of the term is not. So wehons-copy it before calling the wrapper. These
hons-copys are not as expensive as they may seem because the (very large) states and values extracted
from them are already honsed.

Third, we must similarlyhons-copy the type-alist.
Thus,

(defun meta-R (x mfc state)

(declare (xargs :stobjs (state)

:guard (pseudo-termp x))

(ignore state))

(memoizable-meta-R (hons-copy x)

(hons-copy (mfc-type-alist mfc))))

Experiments have indicated that it is not worthwhile memoizing meta-I, meta-S, meta-!I or
meta-!S: they are too simple. We have settled on:

(memoize ’memoizable-meta-r)

(memoize ’memoizable-meta-!r)

(memoize ’memoizable-meta-mod)

(memoize ’memoizable-meta-<)

While Ainni is an obvious candidate for memoization, the functions above include all ofAinni’s
callers so it is not worthwhile.

Finally, when a metafunction fires – even a metafunction witha well-formedness guarantee – the
output is put intoquote normal formby which we mean all ACL2 primitives applied to constants are
evaluated to constants. That is,(CONS ’1 ’2) is not in quote normal form, but’(1 . 2) is. This re-
duction to quote normal form is done by applying the empty substitution to the term with the ACL2 utility
sublis-var1. We have found it worthwhile to memoize this function, but only when the substitution is
empty and the form being normalized is hidden (and thus probably one produced by our metafunctions
and thus honsed).

(memoize ’sublis-var1

:condition ’(and (null alist)

(consp form)

(eq (car form) ’HIDE)))

(Future Work) More experimentation must be done before we are comfortable with these decisions.
In addition, it might be practical to make well-formedness guarantees ensure quote normal form.

9 Preliminary Performance Results

We have tested Stateman on only one very stressful example. Roughly put the setup for this example
(which is not provided here) is as follows: Using the state provided by Stateman, we defined an ISA
for a register machine that provides conventional but realistic arithmetic/logical functionality, addressing

J S. Moore 107

modes, and control flow. We then implemented a compiler from asubset of ACL2 into this ISA. After
allocating declared arrays, constants, etc., the compileruses the rest of the memory to provide a call stack
whose stack and frame pointers are among the earlier addresses. The compiler then compiles a system of
ACL2 functions and a main program as though it were running ona stack machine, e.g.,(LOGAND x y)
is compiled by compilingx andy so as to leave two items on the stack, and then laying down a block of
code to pop those two items into temporary registers, apply theLOGAND instruction to those registers, and
push the result. Addressing modes are used whenever possible to minimize the number of instructions
needed. We then compiled an ACL2 implementation of the DES algorithm.7 The result is a code block
of 15,361 instructions. We then ran an experimental versionof Codewalker on this code.

Using Codewalker and the state management techniques described here, ACL2 explores the code
above and generates both clock and semantic functions for DES.8

The largest symbolic state in the decompilation of the DES algorithm represents one path through
the 5,280 instructions in the decryption loop. The state contains 2,158,895 function calls consisting of
one call of!I and!S each and 58 calls of!R to distinct locations. That state expression also contains
459,848 calls ofR and 1,698,987 calls of arithmetic/logical functions such as+, and*, LOGAND, LOGIOR,
LOGXOR, ASH, andMOD. The values written are often very large. The largest value expression written is
given by a term involving 147,233 function applications, 31,361 of which are calls ofR and the rest are
calls of arithmetic/logical functions.

We would like to be able to compare the performance of the current version of Stateman to older
techniques (in which rewrite rules alone are used to canonicalize symbolic states) but Codewalker is
unable to complete the exploration of our implementation ofDES using those older techniques. The
time it takes to symbolically execute successive instructions increases alarmingly, sometimes apparently
exponentially (depending on the instruction being executed) as the state sizes increase. Of course, one
might address that with better rewrite rules, metafunctions, etc., but that was the origin of the Stateman
project.

However, we can provide some timing statistics on differentversions of Stateman. The times shown
are times taken to generate the clock and semantics functions of our DES implementation on a MacBook
Pro laptop with a 2.6 GHz Intel Core i7 processor with 16 GB of 1600 MHZ DDR3 memory. Times are
as measured bytime$ and reported as “realtime” on a otherwise unloaded machine.

Roughly put, guard verification saved 33 seconds, well-formedness guarantees saved 337 more sec-
onds, honsing as opposed to consing the metafunction answers saved 124 more seconds even though no
memoization was employed, and memoizing then saved 119 moreseconds. Of particular interest is that
well-formedness guarantees were an order of magnitude moreeffective than guard verification and that

7Warren Hunt provided the definitions of the ISA and the DES algorithm in ACL2.
8As of this writing the Codewalker exploration of DES does notperform its standard “projection” (the transformation of

functions that describe the entire state to functions that describe the contents of specific state components) because ACL2 gets
a stack overflow trying to handle states of such large size. (Future Work) Clearly, additional work is necessary on Codewalker
and/or ACL2 itself to handle the terms being produced by Stateman.

108 Stateman

honsing even without memoization was a win (presumably because less time was spent in allocation).

without guard verification, well-formedness guarantees, 988 seconds
honsing or memoization

with guard verification but without well-formedness 955 seconds
guarantees, honsing, or memoization

with guard verification and well-formedness guarantees, 618 seconds
but without honsing or memoization

with guard verification, well-formedness guarantees, 494 seconds
and honsing, but without memoization

with guard verification, well-formedness guarantees, 375 seconds
honsing, and the memoization described

10 Acknowledgments

I especially thank Warren Hunt for his invaluable help during the development of this software. Warren
developed the definitions and proved many of the basic rewrite rules forI, S, R, !I, !S, and!R, as well
as an ACL2 implementation of DES and the formal semantics forthe ISA to which the stack machine
compiles. I thank Matt Kaufmann, who gave me some strategic advice on lemma development to prove
the correctness of one of the metafunctions as well as his usual extraordinary efforts to maintain ACL2
while I pursue topics such as this one. Finally, the reviewers of this paper improved it significantly and I
am grateful for their careful and constructive criticism.

References

[1] S. Goel, W.A. Hunt & M. Kaufmann (2014): Simulation and Formal Verification of x86
Machine-Code Programs that make System Calls. In K. Claessen & V. Kuncak, editors: FM-
CAD’14: Proceedings of the 14th Conference on Formal Methods in Computer-Aided Design,
http://www.cs.utexas.edu/users/hunt/FMCAD/FMCAD14/proceedings/final.pdf, EPFL, Switzerland, pp. 91–
98, doi:10.1109/FMCAD.2014.6987600.

[2] M. Kaufmann, P. Manolios & J S. Moore, editors (2000):Computer-Aided Reasoning: ACL2 Case Studies.
Kluwer Academic Press, Boston, MA.

[3] M. Kaufmann, P. Manolios & J S. Moore (2000):Computer-Aided Reasoning: An Approach. Kluwer Aca-
demic Press, Boston, MA., doi:10.1007/978-1-4615-4449-4.

[4] M. Kaufmann & J S. Moore (2014):The ACL2 Home Page. In: http://www.cs.utexas.edu/users/
moore/acl2/ , Dept. of Computer Sciences, University of Texas at Austin.

[5] M. Kaufmann & J S. Moore (2015):Well-Formedness Guarantees for ACL2 Metafunctions and Clause
Processors. In: (submitted for publication).

[6] H. Liu & J S. Moore (2004):Java Program Verification via a JVM Deep Embedding in ACL2. In K. Slind,
A. Bunker & G. Gopalakrishnan, editors:17th International Conference on Theorem Proving in Higher

J S. Moore 109

Order Logics: TPHOLs 2004, Lecture Notes in Computer Science3223, Springer, pp. 184–200, doi:10.

1007/978-3-540-30142-4_14.

[7] J S. Moore & M. Martinez (2009):A Mechanically Checked Proof of the Correctness of the Boyer-
Moore Fast String Searching Algorithm. In: Engineering Methods and Tools for Software Safety and Se-
curity (Proceedings of the Martoberdorf Summer School, 2008), IOS Press, pp. 267–284, doi:10.3233/

978-1-58603-976-9-267.

[8] Magnus O. Myreen (2009):Formal verification of machine-code programs. Ph.D. thesis, University of
Cambridge.

[9] Magnus O. Myreen, Konrad Slind & Michael J. C. Gordon (2012): Decompilation into Logic Improved. In:
Formal Methods in Computer-Aided Design (FMCAD), 2012, pp. 78–81.

[10] E. Toibazarov (2013):An ACL2 Proof of the Correctness of the Preprocessing for a Variant of the Boyer-
Moore Fast String Searching Algorithm. Honors Thesis, Computer Science Dept., University of Texas at
Austin. Seehttp://www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf.

M. Kaufmann and D. Rager (Eds.): ACL2 Workshop 2015 (ACL2 2015).
EPTCS 192, 2015, pp. 111–127, doi:10.4204/EPTCS.192.9

© Mitesh Jain & Panagiotis Manolios
This work is licensed under the
Creative Commons Attribution License.

Proving Skipping Refinement with ACL2s

Mitesh Jain Panagiotis Manolios
Northeastern University

{jmitesh,pete}@ccs.neu.edu *

We describe three case studies illustrating the use of ACL2s to prove the correctness of optimized
reactive systems using skipping refinement. Reasoning about reactive systems using refinement in-
volves defining an abstract, high-level specification system and a concrete, low-level implementation
system. Next, one shows that the behaviors of the implementation system are allowed by the specifi-
cation system. Skipping refinement allows us to reason about implementation systems that can “skip”
specification states due to optimizations that allow the implementation system to take several specifi-
cation steps at once. Skipping refinement also allows implementation systems to stutter, i.e., to take
several steps before completing a specification step. We show how ACL2s can be used to prove skip-
ping refinement theorems by modeling and proving the correctness of three systems: a JVM-inspired
stack machine, a simple memory controller, and a scalar to vector compiler transformation.

1 Introduction

Refinement is a powerful method for reasoning about reactive systems. The idea is that a simple high-
level abstract system acts as a specification for a low-level implementation of a concrete system. The
goal is then to prove that all observable behaviors of the concrete system are behaviors of the abstract
system. It is often the case that the concrete system requires several steps to match one high-level step
of the abstract system, a phenomenon commonly known as stuttering. Therefore, notions of refinement
usually directly account for stuttering [2, 5, 8]. However, in the course of engineering an efficient imple-
mentation, it is often the case that a single step of the concrete system can correspond to several steps
of the abstract system, a phenomenon that is dual of stuttering. For example, in order to reduce memory
latency and effectively utilize memory bandwidth, memory controllers often buffer requests to memory.
The pending requests in the buffer are analyzed for address locality and then at some time in the future,
multiple locations in the memory are read and updated simultaneously. Similarly, to improve instruction
throughput, superscalar processors fetch multiple instructions in a single clock cycle. These instructions
are analyzed for instruction-level parallelism (e.g., the absence of data dependencies), and where possible
multiple instructions are executed in parallel, retired in a single clock cycle. In both the above examples,
updating multiple locations in memory and retiring multiple instructions in a single clock cycle, results
in scenario where a single step in the optimized implementation may correspond to multiple steps in the
abstract system. A notion of refinement that only account for stuttering is therefore not appropriate for
reasoning about such optimized systems.

In our companion paper [10], we proposed skipping refinement, a new notion of correctness for rea-
soning about optimized reactive systems and a proof method that is amenable for mechanical reasoning.
The applicability of skipping refinement was shown using three case studies: a JVM-inspired stack ma-
chine, an optimized memory controller, and a vectorizing compiler transformation. In [10] we focused
on finite-state models for the systems in the first two case studies and used model-checkers to verify

*This research was supported in part by DARPA under AFRL Cooperative Agreement No. FA8750-10-2-0233, by NSF
grants CCF-1117184 and CCF-1319580, and by OSD under contract FA8750-14-C-0024.

112 Proving Skipping Refinement with ACL2s

skipping refinement. In this paper, we consider their corresponding infinite-state models and prove their
correctness in ACL2s, an interactive theorem prover [7]. We also discuss in detail the modeling of vec-
torizing compiler transformation and its proof of correctness. In Section 2, we motivate the need for a
new notion of refinement with an example. In Section 3, we define well-founded skipping simulation.
In Section 4 we discuss the three case studies. We end the paper with conclusion and future work in
Section 5.

2 Motivating Example

To illustrate the notion of skipping simulation, we consider an example of a discrete-time event simula-
tion (DES) system [10]. An abstract high-level specification of DES is described as follows. Let E be
set of events and V be set of variables. Then a state of abstract DES is a three-tuple 〈t,Sch,A〉, where t
is a natural number denoting current time; Sch is a set of pairs (e, te), where e is an event scheduled to
be executed at time te ≥ t; A is an assignment to variables in V . The transition relation for the abstract
DES system is defined as follows. If at time t there is no (e, t) ∈ Sch, i.e., there is no event scheduled
to be executed at time t, then t is incremented by 1. Else, we (nondeterministically) choose and execute
an event of the form (e, t) ∈ Sch. The execution of event may result in modifying A and also adding
finite number of new pairs (e′, t ′) in Sch. We require that t ′ > t. Finally execution involves removing the
executed event (e, t) from Sch.

Now, consider an optimized, concrete implementation of the abstract DES system. As before, a
state of the concrete system is a three-tuple 〈t,Sch,A〉. However, unlike the abstract system which just
increments time by 1 when no events are scheduled for the current time, the optimized system uses a
priority queue to find the next event to execute. The transition relation is defined as follows. An event
(e, te) with the minimum time is selected, t is updated to te and the event e is executed, as in the abstract
DES.

Notice that when no events are scheduled for execution at the current time, the optimized implemen-
tation of the discrete-time event simulation system can run faster than the abstract specification system
by skipping over abstract states. This is not a stuttering step as it results in an observable change in the
state of the concrete DES system (t is update to te). Also, it does not correspond to a single step of the
specification. Therefore, it is not possible to prove that the implementation refines the specification using
notions of refinement that only allow stuttering [2, 13], because that just is not true. But, intuitively,
there is a sense in which the optimized DES system does refine the abstract DES system. The notion
of skipping refinement proposed in [10] is an appropriate notion to relate such systems: a low-level
implementation that can run slower (stutter) or run faster (skip) than the high-level specification.

3 Skipping Refinement

In this section, we first present the notion of well-founded skipping simulation [10]. The notion is de-
fined in the general setting of labeled transition systems (TS) where labeling is on states. 1 We also place
no restriction on the state space sizes and the branching factor, and both can be of arbitrary infinite car-
dinalities. The generality of TS is useful to model systems that may exhibit unbounded nondeterminism,
for example, modeling a program in a language with random assignment command x =?, which sets x to
an arbitrary integer [3].

1Note that labeled transition system are also used in the literature to refer to transition systems where transitions (edges) are
labeled. However, we prefer to work with TS where states are labeled.

Mitesh Jain & Panagiotis Manolios 113

We first describe the notational conventions used in the paper. Function application is sometimes
denoted by an infix dot “.” and is left-associative. For a binary relation R, we often use the infix notation
xRy instead of (x,y) ∈ R. The composition of relation R with itself i times (for 0 < i≤ ω) is denoted Ri

(ω =N and is the first infinite ordinal). Given a relation R and 1 < k ≤ ω , R<k denotes
⋃

1≤i<k Ri and
R≥k denotes

⋃
ω>i≥k Ri . Instead of R<ω we often write the more common R+.] denotes the disjoint

union operator. Quantified expressions are written as 〈Qx : r : p〉, where Q is the quantifier (e.g., ∃,∀), x
is the bound variable, r is an expression that denotes the range of x (true, if omitted), and p is the body
of the quantifier.

Definition 1 A labeled transition system (TS) is a structure 〈S,→ ,L〉, where S is a non-empty (possibly
infinite) set of states,→ ⊆ S×S is a left-total transition relation (every state has a successor), and L is
a labeling function: its domain is S and it tells us what is observable at a state.

Skipping refinement is defined based on well-founded skipping simulation, a notion that is amenable
for mechanical reasoning. This notion allows us to reason about skipping refinement by checking mostly
local properties, i.e., properties involving states and their successors. The intuition is, for any pair of
states s,w, which are related and a state u such that s−→ u, there are four cases to consider (Definition 3):
(a) either we can match the move from s to u right away, i.e., there is a v such that w−→ v and u is related
to v, or (b) there is stuttering on the left, or (c) there is stuttering on the right, or (d) there is skipping on
the left.

Definition 2 (Well-founded Skipping) B ⊆ S× S is a well-founded skipping relation on a transition
system M = 〈S,−→,L〉 iff:

(WFSK1) 〈∀s,w ∈ S : sBw : L.s = L.w〉
(WFSK2) There exist functions, rankt : S× S→W, rankl : S× S× S→ ω , such that 〈W,≺〉 is well-

founded and

〈∀s,u,w ∈ S : s−→ u∧ sBw :

(a) 〈∃v : w−→ v : uBv〉 ∨
(b) (uBw∧ rankt(u,w)≺ rankt(s,w)) ∨
(c) 〈∃v : w−→ v : sBv∧ rankl(v,s,u)< rankl(w,s,u)〉 ∨
(d) 〈∃v : w→≥2 v : uBv〉〉

In the above definition, conditions (WFSK2a) to (WFSK2c) require reasoning only about single step
→ of the transition system. But condition (WFSK2d) requires us to check that there exists a v such that v
is reachable from w in two or more steps and uBv holds. Reasoning about reachability, in general, is not
local. However, for the kinds of optimized systems we are interested in the number of abstract steps that a
concrete step corresponds to is bounded by a constant—a bound determined early on in the design phase.
For example, the maximum number of abstract steps that a concrete step of a superscalar processor can
correspond to is the number of instruction that the designer decides to retire in a single cycle. This is

114 Proving Skipping Refinement with ACL2s

a constant that is decided early on in the design phase. Therefore, for such systems we can still reason
using “local” methods. Furthermore, in the case this constant is a “small” number, condition (WFKS2d)
can be checked by simply unrolling the transition relation of the concrete system, an observation that
we exploit in our first two case studies. On the other hand, this simplification is not always possible.
For example, in the optimized DES system describe above, notice that number of abstract steps that
optimized DES can take corresponds to the difference between current time and earliest time an event is
scheduled for execution. This difference can not be a priori bounded by a constant.

We now define the notion of skipping refinement, a notion that relates two transition systems: an
abstract transition system and a concrete transition system. In order to define skipping refinement, we
make use of refinement maps, functions that map states of the concrete system to states of the abstract
system. Informally, if the concrete system is a skipping refinement of the abstract system then its observ-
able behaviors are also behavior of the abstract system modulo skipping (which includes stuttering). For
example, in our running example of DES, if the refinement map is the identity function then it is easy
to see that any behavior of the optimized system is a behavior of the abstract system modulo skipping.
In practice, the abstract system and the concrete system are described at different levels of abstraction.
Refinement maps along with the labeling function enable us to define what is observable at concrete
states from the view point of the abstract system.

Definition 3 (Skipping Refinement) Let MA = 〈SA,
A−→,LA〉 and MC = 〈SC,

C−→,LC〉 be transition sys-
tems and let r : SC→ SA be a refinement map. We say MC is a skipping refinement of MA with respect
to r, written MC .r MA, if there exists a relation B⊆ SC×SA such that all of the following hold.

1. 〈∀s ∈ SC :: sBr.s〉 and

2. B is an WFSK on 〈SC] SA,
C−→] A−→,L 〉 where L .s = LA(s) for s ∈ SA, and L .s = LA(r.s) for

s ∈ SC.

Well-founded skipping gives us a simple proof rule to determine if a concrete transition system MC

is a skipping refinement of an abstract transition system MA with respect to a refinement map r. Given a
refinement map r : SC→ SA and relation B⊆ SC×SA, we check the following two conditions: (a) for all
s∈ SC, sBr.s and (b) if B is a WFSK on the disjoint union of MC and MA. If (a) and (b) hold, MC .r MA.
For a more detailed exposition of skipping refinement we refer the reader to our companion paper [10].

Notice that we place no restrictions on refinement maps. When refinement is used in specific contexts
it is often useful to place restrictions on what a refinement map can do, e.g., we may require for every
s ∈ SC that LA(r.s) is a projection of LC(s). The generality of refinement map is useful in all three case
studies considered in this paper, where a simple refinement map that is a projection function would not
have sufficed.

4 Case Studies

We consider three case studies. The first case study is a hardware implementation of a JVM-inspired stack
machine with an instruction buffer. The second case study is a memory controller with an optimization
that eliminates redundant writes to memory. The third case study is a compiler transformation that
vectorizes a list of scalar instructions. For each case study we model the abstract system and the concrete
system in ACL2s. We define an appropriate refinement map and prove that the implementation refines
the specification using well-founded skipping simulation.

We first briefly list some conventions used to describe the syntax and the semantics of the systems.
Adding element e to the beginning or end of a list (or an array) l is denoted by e :: l and l ::e, respectively.

Mitesh Jain & Panagiotis Manolios 115

Each transition consists of a state :condition1,. . . ,conditionn pair above a line, followed by the next state
below the line. If a concrete state matches the state in a transition and satisfies each of the conditions,
then the state can transition to the state below the line. We formalize the operational semantics of the
machines by describing the effect of each instruction on the state of the machine. The proof scripts are
publicly available [1].

4.1 JVM-inspired Stack Machine

In this case study, we verify a stack machine inspired by the Java Virtual Machine (JVM). Java proces-
sors have been proposed as an alternative to just-in-time compilers to improve the performance of Java
programs. Java processors such as JME [9] fetch bytecodes from an instruction memory and store them
in an instruction buffer. The bytecodes in the buffer are analyzed to perform instruction-level optimiza-
tions e.g., instruction folding. In this case study, we verify BSTK, a simple hardware implementation of
part of the JVM. BSTK is an incomplete and inaccurate model of JVM that only models an instruction
memory, an instruction buffer and a stack. Only a small subset of JVM instructions are supported (push,
pop, top, nop). However, even such a simple model is sufficient to exhibit the applicability of skipping
simulation and the limitations of current hardware model-checking tools.

STK is the high-level specification with respect to which we verify the correctness of BSTK, the
implementation. Their behaviors are defined using abstract transition systems. The syntax and the oper-
ational semantics are shown in Fig. 1.

The state of STK consists of an instruction memory imem; a program counter pc; and a stack stk.
An instruction is one of push, pop, top, and nop. We use the listof combinator in defdata to
encode the instruction memory as list of instructions and stack as a list of elements [6]. The program
counter is encoded as a natural number using the primitive data type nat. We then compound these
components to encode state of STK using the defdata record construct. The defdata framework
introduces a constructor function sstate, a set of accessor functions for each field (e.g., sstate-imem),
a recognizer function sstatep identifying the state, an enumerator nth-sstate and several useful
theorems to reason about compositions of these functions.

(defdata el all)

(defdata stack (listof el))

(defdata inst (oneof (list ’pop) (list ’top)

(list ’nop) (list ’push el)))

(defdata inst-mem (listof inst))

(defdata sstate (record (imem . inst-mem)

(pc . nat)

(stk . stack)))

STK fetches an instruction from the instruction memory, executes it, increases the program counter,
and possibly modifies the stack, as outlined in Fig. 1.

STK fetches an instruction from the imem, executes it, increments the pc by 1, and possibly modifies
the stk, as outlined in Fig. 1. Since STK is a deterministic machine, we formalize its transition relation
using a function spec-step, which uses an auxiliary function stk-step-inst to capture the effect of

116 Proving Skipping Refinement with ACL2s

stk := [] | el ::stk (Stack)

inst := 〈push e〉 | 〈pop〉 | 〈top〉 | 〈nop〉 (Instruction)

imem := [] | inst :: imem (Program)

pc := 0 | 1 | · · · | n | · · · (Program Counter)

ibuf := [inst1, . . . , instk] (Instruction Buffer)

sstate := 〈imem,pc,stk〉 (STK State)

istate := 〈imem,pc, ibuf ,stk〉 (BSTK State)

STK (A−→) where s = capacity of stk, t = |stk|

〈imem,pc,stk〉 : imem[pc] = 〈push v〉, t < s

〈imem,pc+1,v ::stk〉

〈imem,pc,stk〉 : imem[pc] = 〈push v〉, t = s

〈imem,pc+1,stk〉
〈imem,pc, []〉 : imem[pc] = 〈pop〉

〈imem,pc+1, []〉
〈imem,pc,v ::stk〉 : imem[pc] = 〈pop〉

〈imem,pc+1,stk〉
〈imem,pc,stk〉 : imem[pc] = 〈top〉

〈imem,pc+1,stk〉
〈imem,pc,stk〉 : imem[pc] = 〈nop〉

〈imem,pc+1,stk〉
〈imem,pc,stk〉 : imem[pc] = nil

〈imem,pc+1,stk〉

BSTK (C−→) where k = capacity of ibuf , m = |ibuf |

〈imem,pc, ibuf ,stk〉 : m < k, imem[pc] 6= 〈top〉
〈imem,pc+1, ibuf :: imem[pc],stk〉

〈imem,pc, ibuf ,stk〉 : imem[pc] = 〈top〉,
〈ibuf ,0,stk〉 A−→m〈ibuf ,m,stk′〉
〈imem,pc+1, [],stk′〉

〈imem,pc, ibuf ,stk〉 : imem[pc] = nil,

〈ibuf ,0,stk〉 A−→m〈ibuf ,m,stk′〉
〈imem,pc+1, [],stk′〉

〈imem,pc, ibuf ,stk〉 : m = k,

〈ibuf ,0,stk〉 A−→m〈ibuf ,m,stk′〉
〈imem,pc+1, [imem[pc]],stk′〉

Figure 1: Syntax and Semantics of Stack and Buffered Stack Machine

Mitesh Jain & Panagiotis Manolios 117

executing an instruction on the stack. We are now ready to define the transition system MA of STK
machine. The set of states SA in the transition system MA is is the set of all states satisfying the predicate
sstatep. Two states s,u∈ SA are related by transition relation A−→ iff it is possible in one step to transition
from s to u, i.e., u = (spec-step s). The labeling function, LA is the identity function.
(defun stk-step-inst (inst stk)

"returns next state of stk"

(let ((op (car inst)))

(cond ((equal op ’push)

(mpush (cadr inst) stk))

((equal op ’pop)

(mpop stk))

((equal op ’top)

(mtop stk))

(t stk))))

(defun spec-step (s)

"single step of STK machine"

(let* ((pc (sstate-pc s))

(imem (sstate-imem s))

(inst (nth pc imem))

(stk (sstate-stk s)))

(if (instp inst)

(sstate imem (1+ pc) (stk-step-inst inst stk))

(sstate imem (1+ pc) stk))))

The state of BSTK is similar to STK, except that it also includes an instruction buffer ibuf. The
instruction buffer is encoded as a list of instructions with an additional restriction on its capacity
(ibuf-capacity). To encode ibuf in the defdata framework, we have at least two choices. We can
use the oneof defdata construct to encode it as an empty list or list of one, two, or three instructions.
Another way is to use the capability of the defdata framework to define custom data types. In the later
case, we first define a recognizer function inst-buffp and an enumerator function nth-inst-buff.
(defun inst-buffp (l)

(and (inst-memp l)

(<= (len l) (ibuf-capacity))))

(defun nth-inst-buff (n)

(let ((imem (nth-inst-mem n)))

(if (<= (len imem) (ibuf-capacity))

imem

(let ((i1 (car imem))

(i2 (cadr imem))

(i3 (caddr imem)))

(list i1 i2 i3)))))

We can now register our custom type inst-buff using the register-custom-type macro. Once we
have registered it as a defdata type we can use it just like other type directly introduced using defdata

construct.

118 Proving Skipping Refinement with ACL2s

(register-custom-type inst-buff :enumerator nth-inst-buff

:predicate inst-buffp)

We can now define state of BSTK machine using defdata record construct.

(defdata istate

(record (imem . inst-mem)

(pc . nat)

(stk . stack)

(ibuf . inst-buff)))

BSTK fetches an instruction from the instruction memory, and if the instruction fetched is not top
and the instruction buffer is not full (function stutterp below), it queues the fetched instruction to the
end of the instruction buffer and increments the program counter. If the instruction buffer is full, then
the machine executes all buffered instructions in the order they were enqueued, thereby draining the
instruction buffer and obtaining a new stack. It also updates the instruction buffer so that it only contains
just the current fetched instruction. If none of the transition rules match, then BSTK drains the instruction
buffer (if it is not empty) and updates the stack accordingly. Since BSTK is also a deterministic machine,
we encode its transition relation (C−→) as the function impl-step. Having defined the transition relation
and the state of BSTK machine, we can define its transition system MC.

(defun stutterp (inst ibuf)

"BSTK stutters if ibuf is not full or the current instruction is not ’top"

(and (< (len ibuf) (ibuf-capacity))

(not (equal (car inst) ’top))))

(defun impl-step (s)

"single step of BSTK"

(let* ((stk (istate-stk s))

(ibuf (istate-ibuf s))

(imem (istate-imem s))

(pc (istate-pc s))

(inst (nth pc imem)))

(if (instp inst)

(let ((nxt-pc (1+ pc))

(nxt-stk (if (stutterp inst ibuf)

stk

(impl-observable-stk-step stk ibuf)))

(nxt-ibuf (if (stutterp inst ibuf)

(impl-internal-ibuf-step inst ibuf)

(impl-observable-ibuf-step inst))))

(istate imem nxt-pc nxt-stk nxt-ibuf))

(let ((nxt-pc (1+ pc))

(nxt-stk (impl-observable-stk-step stk ibuf))

(nxt-ibuf nil))

(istate imem nxt-pc nxt-stk nxt-ibuf)))))

Before we describe the correctness of BSTK based on skipping refinement, we first discuss why an
existing notion of refinement such as stuttering refinement [12] will not suffice. If BSTK takes a step,

Mitesh Jain & Panagiotis Manolios 119

which requires it to drain its instruction buffer (the buffer is full or the current instruction fetched is
top), then the stack will be updated to reflect the execution of all instructions in ibuf, something that is
neither a stuttering step nor a single transition of the STK system. Therefore, it is not possible to prove
that BSTK refines STK, using stuttering refinement and a refinement map that does not transform the
stack.

We now formulate the correctness of BSTK based on the notion of skipping refinement. We show
MC .r MA, using Definition 2. We define the refinement map, but first we note that we do not have
to consider all syntactically well-formed STK states. We only have to consider states whose instruc-
tion buffer is consistent with the contents of the instruction memory, so called good states [15]. One
way of defining a good state is as follows: state s is good iff pc≥ |ibuf | and stepping BSTK from
〈imem,pc−|ibuf |, [],stk〉 state for |ibuf | steps yields state s, where |ibuf | is number of instructions in the
instruction buffer of state s. We define a predicate good-statep recognizing a good state and show that
the set of good states is closed under the transition relation of BSTK.

(defun commited-state (s)

(let* ((stk (istate-stk s))

(imem (istate-imem s))

(ibuf (istate-ibuf s))

(pc (istate-pc s))

(cpc (nfix (- pc (len ibuf)))))

(istate imem cpc stk nil)))

(defun good-statep (s)

"if state s is reachable from a commited-state in |ibuf| steps"

(let ((pc (istate-pc s))

(ibuf (istate-ibuf s)))

(and (istatep s)

(>= pc (len ibuf))

(let* ((cms (commited-state s))

(s-cms (cond ((endp ibuf)

cms)

((endp (cdr ibuf))

(impl-step cms))

((endp (cddr ibuf))

(impl-step (impl-step cms)))

((endp (cdddr ibuf))

(impl-step (impl-step (impl-step cms))))

(t cms))))

(equal s-cms s)))))

(defthm good-state-inductive

(implies (good-statep s)

(good-statep (impl-step s))))

The refinement map ref-map, a function from a set of good states to set of abstract states (sstatep)
is defined as follows.

120 Proving Skipping Refinement with ACL2s

(defun ref-map (s)

(let* ((stk (istate-stk s))

(imem (istate-imem s))

(pc (istate-pc s))

(ibuf (istate-ibuf s))

(ibuflen (len ibuf))

(rpc (nfix (- pc ibuflen))))

(sstate imem rpc stk)))

Given ref-map, we define B to be the binary relation induced by it, i.e., sBw iff s is a good state and
w = ref-map(s).

Now observe that when the instruction is full or the current instruction is top, one step of BSTK
corresponds to largest number of STK steps. In both cases, the BSTK machine executes all instructions
in the instruction buffer and if the current instruction is top, it executes it as well. The condition WFSK2d
in Definition 2 that requires us to reason about reachability, hence can easily be reduced to bounded
reachability. Hence, we set j = k+ 2, where k is the capacity of the instruction buffer, and condition
WFSK2d is 〈∃v : w→< j v : uBv〉.

Since STK and BSTK are deterministic machines and STK does not stutter, we only need to define
one rank function, a function from set of good states to non-negative integers.

(defun rank (s)

"rank of an istate s is capacity of ibuf - |ibuf|"

(- (ibuf-capacity) (len (istate-ibuf s))))

With above observations we simplify WFSK2 (Definition 2) to following condition.
For all s,u such that s and u are good states and u = (ref-map s)

(ref-map s)
A−→< k+2(ref-map u) ∨

((ref-map u)= (ref-map s)∧(rank u)< (rank s)) (1)

Notice that since BSTK is deterministic, u is a function of s, so we can remove u from the above
formula. Since k + 2 is a constant, we can expand out A−→< k+2 using only A−→ instead. We formalize
Equation 1 in ACL2s by first defining a function spec-step-skip-rel, which takes as input STK
states v and w and returns true only if v is reachable from w in (ibuf-capacity) + 1 steps.

(defthm bstk-skip-refines-stk

(implies (and (good-statep s)

(equal w (ref-map s))

(equal u (impl-step s))

(not (and (equal w (ref-map u))

(< (rank u) (rank s)))))

(spec-step-skip-rel w (ref-map u))))

Once the definitions were in place, proving bstk-skip-refines-stk with ACL2s was straight-
forward. Next, we evaluated how amenable is SKS for automated reasoning, i.e., using only symbolic
simulation and no additional lemmas. We model BSTK with instruction buffer capacity of 2, 3, and 4.
while no other restrictions were placed on the machines. In particular, the instruction memory (imem)
and the stack (stk) component of the state for BSTK and STK machines are unbounded. The experi-
ments were run on a 2.2 GHz Intel Core i7 with 16 GB of memory. For the BSTK with instruction buffer

Mitesh Jain & Panagiotis Manolios 121

capacity of 2 instructions, it took ∼ 12 minutes to complete the proof and for a BSTK with instruction
buffer capacity of 3 instructions, it took ∼ 2 hours. For BSTK with instruction buffer capacity of 4
instructions the proof did not finish in over 3 hours.

4.2 Memory Controller

A memory controller is an interface between a CPU and a memory, and synchronizes communication
between them. Designers implement several optimizations in a memory controller to maximize available
memory bandwidth utilization and reduce the latency of memory accesses, known bottlenecks in optimal
performance of programs. In this case study, we consider OptMEMC, a simple model of such an opti-
mized memory controller. In our simplified model, a CPU is modeled as a list of memory request (reqs)
and memory as a list of natural numbers (mem).

OptMEMC fetches a memory request from location pt in a queue of CPU requests, reqs. It enqueues
the fetched request in the request buffer, rbuf and increments pt to point to the next CPU request in
reqs. The capacity of rbuf is k, a fixed positive integer. If the fetched request is a read or the request
buffer is full, then before enqueuing the request into rbuf , OptMEMC first analyzes the request buffer
for consecutive write requests to the same address in the memory (mem). If such a pair of writes exists
in the buffer, it marks the older write requests in the request buffer as redundant. Then it executes
all the requests in the request buffer except the one that are marked redundant. Requests in the buffer
are executed in the order they were enqueued. In addition to read and write commands, the memory
controller periodically issues a refresh command to preserve data in memory. A refresh command reads
all memory locations and immediately writes them back without modification. Refresh commands are
required to periodically reinforce the charge in the capacitive storage cells in a DRAM. In effect, a
refresh command leaves the data memory unchanged. We define the function mrefresh and prove that
the memory is same before and after execution of the refresh command. This is the only property of
mrefresh that we would require.

(defthm mrefresh-mem-unchanged

(equal (mrefresh mem)

mem))

To reason about the correctness of OptMEMC using skipping refinement, we define a high-level
abstract system, MEMC, that acts as the specification for OPTMEMC. It fetches a memory request from
the CPU and immediately executes the request. The syntax and the semantics of MEMC and OPTMEMC
are given in Fig. 2, using the same conventions as described previously in the stack machine section.

We now formulate the correctness of OptMEMC based on the notion of skipping refinement. Let
MA = 〈SA,

A−→,LA〉 and MC = 〈SC,
C−→,LC〉 be transition systems for MEMC and OptMEMC respectively.

Like in the previous case study, we encode the state of the machines using defdata and formalize the
transition relation of OptMEMC and MEMC using a step function that describes the effect of each
instruction on the state of the machine. The labeling function LA and LC are the identity functions. Given
a refinement map ref-map : SC → SA, we use Definition 2 to show that MC .r MA. As was the case
with the previous case study, OptMEMC and MEMC are deterministic machines and MEMC does not
stutter. WFSK2 (Definition 2) can again be simplified to Formula 1.

Once the definitions of the transition systems for the two machines were in place, it was straight-
forward to prove skipping refinement with ACL2s. Like in the previous case study, we also prove the
theorem using only symbolic execution and no additional lemmas, for configurations of OPTMEMC
with buffer capacity of 2 and 3. For OptMEMC with buffer capacity of 2, the final theorem was proved

122 Proving Skipping Refinement with ACL2s

mem := [] | v ::mem (Memory)

req := 〈write addr v〉 | 〈read addr〉 | 〈re f resh〉 (Request)

pt := 0 | 1 | · · · | n | · · · (Request Location)

reqs := [] | req ::reqs (Requests)

rbuf := [req1, . . . ,reqk] (Request Buffer)

sstate := 〈reqs,pt,mem〉 (MEMC State)

istate := 〈reqs,pt,rbuf ,mem〉 (OptMEMC State)

MEMC (A−→)

〈reqs,pt,mem〉, reqs[pt] = 〈write addr v〉
〈reqs,pt+1,mem[addr]← v〉

〈reqs,pt,mem〉, reqs[pt] = 〈read addr〉
〈reqs,pt+1,mem〉

〈reqs,pt,mem〉, reqs[pt] = 〈refresh〉
〈reqs,pt+1,mem〉

OptMEMC (C−→)
Let |rbuf |= j

〈reqs,pt,rbuf ,mem〉, j < k,req 6= top

〈reqs,pt,rbuf ::reqs[pt],mem〉
〈reqs,pt,rbuf ,mem〉, reqs[pt] = 〈read addr〉,

〈rbuf ,0,mem〉 A−→ j〈rbuf , j,mem′〉
〈reqs,pt, [],mem′〉

〈reqs,pt,rbuf ,mem〉, j = k,

〈rbuf ,0,mem〉 A−→ j〈rbuf ,k,mem′〉
〈reqs,pt,rbuf ::reqs[pt],mem′〉

Figure 2: Syntax and Semantics of MEMC and OptMEMC

Mitesh Jain & Panagiotis Manolios 123

in∼ 2 minutes and with OptMEMC buffer capacity of 3, it took∼ 1 hour to prove the final theorem. The
proof with buffer capacity of 4 instructions did not finish in over 3 hours.

4.3 Superword Level Parallelism with SIMD instructions

An effective way to improve the performance of multimedia programs running on modern commodity
architectures is to exploit Single-Instruction Multiple-Data (SIMD) instructions (e.g., the SSE/AVX in-
structions in x86 microprocessors). Compilers analyze programs for superword level parallelism and
when possible replace multiple scalar instructions with a compact SIMD instruction that concurrently
operates on multiple data [11]. In this case study, we illustrate the applicability of skipping refinement
to verify the correctness of such a compiler transformation.

For the purpose of this case study, we make some simplifying assumptions: the state of the source and
target programs (modeled as transition systems) is a three-tuple consisting of a sequence of instructions, a
program counter and a store. We also assume that a SIMD instruction simultaneously operates on two sets
of data operands and that the transformation analyzes the program at a basic block level. Therefore, we
do not model any control flow instruction. Fig. 3 shows how two add and two multiply scalar instructions
are transformed into corresponding SIMD instructions. Notice that the transformation does not reorder
instructions in the source program.

a = b + c
d = e + f

→ a
d = b

e
+SIMD

c
f

u = v × w
x = y × z

→ u
x =

v
y ×SIMD

w
z

Figure 3: Superword Parallelism

The syntax and operational semantics of the scalar and vector machines are given in Fig. 4, using
the same conventions as described previously in the stack machine section. We denote that x, . . . ,y are
variables with values vx, . . . ,vy in store by {〈x,vx〉, . . . ,〈y,vy〉} ⊆ store. We use [[(sop vx vy)]] to denote
the result of a scalar operation sop and [[(vop 〈va vb〉〈vd ve〉)]] to denote the result of a vector operation
vop. Finally, we use store|x:=vx,...,y:=vy to denote that variables x, . . . ,y are updated (or added) to store
with values vx, . . . ,vy. Notice that the language of a source program consists of scalar instructions while
the language of the target program consists of both scalar and vector instructions. As in the previous two
case studies, we model the transition relation of a program (both source and target program) by modeling
the effect of an instruction on the state of machines.

We use the translation validation approach to verify the correctness of the vectorizing compiler trans-
formation [4], i.e., we prove the equivalence between a source program and the generated vector program.
As in the previous two case studies, the notion of stuttering simulation is too strong to relate a scalar pro-
gram and the vector program produced by the vectorizing compiler, no matter what refinement map we
use. To see this, note that the vector machine might run exactly twice as fast as the scalar machine and
during each step the scalar machine might be modifying the memory. Since both machines do not stutter,
in order to use stuttering refinement, the length of the vector machine run has to be equal to the run of
the scalar machine.

Let MA = 〈SA,
A−→,LA〉 and MC = 〈SC,

C−→,LC〉 be transition systems of the scalar and vector ma-
chines, respectively corresponding to the source and target programs. The vector program is correct iff
MC refines MA. We show MC .r MA, using Definition 2. Determining j, an upper-bound on skipping

124 Proving Skipping Refinement with ACL2s

loc := {x,y,z,a,b,c, . . .} (Variables)

sop := add | sub | mul | and | or | nop (Scalar Ops)

vop := vadd | vsub | vmul | vand | vor | vnop (Vector Ops)

sinst := sop〈z x y〉 (Scalar Inst)

vinst := vop〈c a b〉〈f d e〉 (Vector Inst)

sprg := [] | sinst ::sprg (Scalar Program)

vprg := [] | (sinst | vinst) ::vprg (Vector Program)

store := [] | 〈x,vx〉 ::store (Registers)

Scalar Machine (A−→) 〈sprg,pc,store〉, {〈x,vx〉,〈y,vy〉} ⊆ store,
sprg[pc] = sop〈z x y〉, vz = [[(sop vx vy)]]

〈sprg,pc+1,store|z:=vz〉

Vector Machine (C−→) 〈vprg,pc,store〉, {〈x,vx〉,〈y,vy〉} ⊆ store,
sprg[pc] = sop〈z x y〉, vz = [[(sop vx vy)]]

〈vprg,pc+1,store|z:=vz〉
〈vprg,pc,store〉, vprg[pc] = vop〈c a b〉〈f d e〉,
{〈a,va〉,〈b,vb〉,〈d,vd〉,〈e,ve〉} ⊆ store,
〈vc,vf 〉= [[(vop 〈va vb〉〈vd ve〉)]]
〈vprg,pc+1,store|c:=vc,f :=vf 〉

Figure 4: Syntax and Semantics of Scalar and Vector Program

that reduces condition WFSK2d in Definition 2 to bounded reachability is simple because the vector
machine can perform at most 2 steps of the scalar machine at once; therefore j = 3 suffices.

We next define the refinement map. Recall that refinement maps are used to define what is observable
at concrete states from viewpoint of the abstract system. Let sprg be the source program and vprg be the
compiled vector program. We first define a function pcT that takes as input the vector machine’s program
counter pc and a vector program vprg and returns the corresponding value of the scalar machine’s
program counter.

(defun num-scaler-inst (inst)

(cond ((vecinstp inst)

2)

((instp inst)

1)

(t 0)))

(defun pcT (pc vprg)

"maps values of the vector machine’s pc to the corresponding values of

the scalar machine’s pc"

(let ((inst (nth pc vprg)))

Mitesh Jain & Panagiotis Manolios 125

(cond ((or (not (integerp pc))

(< pc 0))

0)

((zp pc)

(num-scaler-inst inst))

(t (+ (num-scaler-inst inst) (pcT (1- pc) vprg))))))

We next define a function scalarize-vprg that takes as input a vector program vprg. It walks
through the list of instructions in vprg and translates each instruction in one the following ways: if it
is a vector instruction it scalarizes it into a list of corresponding scalar instructions, else if it is a scalar
instruction it returns the list containing the instruction itself (function scalarize below). The result of
scalarize-vprg is a scalar program. Notice that this function is significantly simpler than the compiler
transformation procedure. This is because the complexity of a compiler transformation typically lies in
its analysis phase, which determines if the transformation is even feasible, and not in the transformation
phase itself.

(defun scalarize (inst)

"scalerize a vector instruction"

(cond ((vecinstp inst)

(let ((op (vecinst-op inst))

(ra1 (car (vecinst-ra inst)))

(ra2 (cdr (vecinst-ra inst)))

(rb1 (car (vecinst-rb inst)))

(rb2 (cdr (vecinst-rb inst)))

(rc1 (car (vecinst-rc inst)))

(rc2 (cdr (vecinst-rc inst))))

(case op

(vadd (list (inst ’add rc1 ra1 rb1)

(inst ’add rc2 ra2 rb2)))

(vsub (list (inst ’sub rc1 ra1 rb1)

(inst ’sub rc2 ra2 rb2)))

(vmul (list (inst ’mul rc1 ra1 rb1)

(inst ’mul rc2 ra2 rb2))))))

((instp inst) (list inst))

(t nil)))

(defun scalarize-vprg-aux (pc vprg)

"scalerize the vector program from [0,pc]"

(if (or (not (integerp pc))

(< pc 0))

nil

(let ((inst (nth pc vprg)))

(cond

((zp pc) ;=0

(scalarize inst))

(t

(append (scalarize-vprg (1- pc) vprg) (scalarize inst)))))))

126 Proving Skipping Refinement with ACL2s

(defun scalarize-vprg (vprg)

(scalarize-vprg-aux (len vprg) vprg))

The refinement map ref-map: SC→ SA, now can be defined as follows.

(defun ref-map (s)

(let* ((store (vstate-store s))

(vprg (vstate-vprg s))

(isapc (pcT (1- (vstate-pc s)) vprg)))

(sstate isapc store (scalarize-vprg (len vprg) vprg))))

Given ref-map, we define B to be the binary relation induced by the refinement map, i.e., sBw iff s ∈ SC

and w = (ref-map s). Notice that since the machines do not stutter, WFSK2 (Definition 2) can be
simplified as follows. For all s,u ∈ SC such that s C−→ u:

(ref-map s)
A−→< 3(ref-map u) (2)

Since the vector machine is deterministic, u is a function of s, so we can remove u from the above
formula, if we wish. Also, we can expand out A−→< 3 to obtain a formula using only A−→ instead. We prove
the appropriate lemmas to prove the final theorem: vector machine refines scalar machine.
(defthm vprg-skip-refines-sprg

(implies (and (vstatep s)

(equal w (ref-map s)))

(spec-step-skip-rel w (ref-map (vec-step s)))))

where vstatep is the recognizer for a state of vector machine; vec-step is a transition function for
vector machine; and spec-step-skip-rel is a function that takes as input two states of scalar machine
and returns true if the second is reachable from the first in less than three steps.

Note that pcT(pc,vprg) can also be determined using a history variable and would be a preferable
strategy from verification efficiency perspective.

5 Conclusion and Future Work

In this paper, we used skipping refinement to prove the correctness of three optimized reactive systems
in ACL2s. The concrete optimized systems can run “faster” than the corresponding abstract high-level
specifications. Skipping refinement is an appropriate notion of correctness for reasoning about such
optimized systems. Furthermore, well-founded skipping simulation gives “local” proof method that is
amenable for automated reasoning. Stuttering simulation and bisimulation have been used widely to
prove correctness of several interesting systems [14, 16, 17]. However, we have shown that these notions
are too strong to analyze the class of optimized reactive systems studied in this paper. Skipping simula-
tion is a weaker and more generally applicable notion than stuttering simulation. In particular, skipping
simulation can be used to reason about superscalar processors, pipelined processors with multiple in-
structions completion, without modifying the specification (ISA), an open problem in [16]. We refer the
reader to our companion paper [10] for a more detailed discussion on related work.

For future work, we would like to develop a methodology to increase proof automation for prov-
ing correctness of systems based on skipping refinement. In [10], we showed how model-checkers can
be used to analyze correctness for finite-state systems. Similarly, we would like to use the GL frame-
work [18], a verified framework for symbolic execution in ACL2, to further increase the efficiency and
automation.

Mitesh Jain & Panagiotis Manolios 127

Acknowledgments

We would like to thank Harsh Raju Chamarthi for help on the proof of vectorizing compiler transforma-
tion.

References
[1] Skipping Simulation Model. Available at http://www.ccs.neu.edu/home/jmitesh/sks.
[2] Martı́n Abadi & Leslie Lamport: The Existence of Refinement Mappings. In: Theoretical Computer Science,

1991. Available at http://dx.doi.org/10.1016/0304-3975(91)90224-P.
[3] Krzysztof R Apt & Gordon D Plotkin: Countable nondeterminism and random assignment. Available at

http://dx.doi.org/10.1145/6490.6494.
[4] Clark W. Barrett, Yi Fang, Benjamin Goldberg, Ying Hu, Amir Pnueli & Lenore D. Zuck: TVOC: A Trans-

lation Validator for Optimizing Compilers. In: CAV, 2005. Available at http://dx.doi.org/10.1007/
11513988_29.

[5] Michael C. Browne, Edmund M. Clarke & Orna Grumberg: Characterizing Finite Kripke Structures in
Propositional Temporal Logic. In: Theoretical Computer Science, 1988. Available at http://dx.doi.
org/10.1016/0304-3975(88)90098-9.

[6] Harsh Raju Chamarthi, Peter C. Dillinger & Panagiotis Manolios: Data Definitions in the ACL2 Sedan. In:
ACL2 2014. Available at http://dx.doi.org/10.4204/EPTCS.152.3.

[7] Harsh Raju Chamarthi, Peter C. Dillinger, Panagiotis Manolios & Daron Vroon: The ACL2 Sedan Theorem
Proving System. In: TACAS 2011. Available at http://dx.doi.org/10.1007/978-3-642-19835-9_27.

[8] Rob J. van Glabbeek: The Linear Time-Branching Time Spectrum (Extended Abstract). In: CONCUR 1990.
Available at http://dx.doi.org/10.1007/BFb0039066.

[9] David S Hardin: Real-time objects on the bare metal: an efficient hardware realization of the Java TM Virtual
Machine. In: ISORC, 2001, doi:10.1109/ISORC.2001.922817.

[10] Mitesh Jain & Panagiotis Manolios: Skipping Refinement. In: CAV, 2015. Available at http://dx.doi.
org/10.1007/978-3-319-21690-4_7.

[11] Samuel Larsen & Saman P. Amarasinghe: Exploiting superword level parallelism with multimedia instruction
sets. In: PLDI, 2000. Available at http://doi.acm.org/10.1145/349299.349320.

[12] P. Manolios: Mechanical verification of reactive systems. Ph.D. thesis, University of Texas.
[13] Panagiotis Manolios: A Compositional Theory of Refinement for Branching Time. In: CHARME 2003.

Available at http://dx.doi.org/10.1007/978-3-540-39724-3_28.
[14] Panagiotis Manolios: Correctness of Pipelined Machines. In: FMCAD, 2000. Available at http://dx.

doi.org/10.1007/3-540-40922-X_11.
[15] Panagiotis Manolios & Sudarshan K. Srinivasan: A computationally effecient method based on commitment

refinement maps for verifying pipelined machines. In: MEMOCODE, 2005. Available at http://dx.doi.
org/10.1109/MEMCOD.2005.1487914.

[16] Sandip Ray & Warren A. Hunt Jr.: Deductive Verification of Pipelined Machines Using First-Order Quantifi-
cation. In: CAV 2004. Available at http://dx.doi.org/10.1007/978-3-540-27813-9_3.

[17] Sandip Ray & Rob Sumners: Specification and Verification of Concurrent Programs Through Refinements.
In: Journal of Automated Reasoning. Available at http://dx.doi.org/10.1007/s10817-012-9258-1.

[18] Anna Slobodová, Jared Davis, Sol Swords & Warren A. Hunt Jr.: A flexible formal verification framework
for industrial scale validation. In: MEMOCODE, 2011. Available at http://dx.doi.org/10.1109/
MEMCOD.2011.5970515.

