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Abstract

We define (bi)simulations up-to a preorder and show how we can use them to pro-
vide a coinductive, (bi)simulation-like, characterisation of semantic (equivalences)
preorders for processes. In particular, we can apply our results to all the semantics
in the linear time-branching time spectrum that are defined by preorders coarser
than the ready simulation preorder.

The relation between bisimulations up-to and simulations up-to allows us to find
some new relations between the equivalences that define the semantics and the
corresponding preorders. In particular, we have shown that the simulation up-to an
equivalence relation is a canonical preorder whose kernel is the given equivalence
relation. Since all of these canonical preorders are defined in an homogeneous way,
we can prove properties for them in a generic way. As an illustrative example of
this technique, we generate an axiomatic characterisation of each of these canonical
preorders, that is obtained simply by adding a single axiom to the axiomatization
of the original equivalence relation. Thus we provide an alternative axiomatization
for any axiomatizable preorder in the linear time-branching time spectrum, whose
correctness and completeness can be proved once and for all.

Although we first prove, by induction, our results for finite processes, then we
see, by using continuity arguments, that they are also valid for infinite (finitary)
processes.
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1 Introduction and Related Work

Process algebras have been largely used to specify and study the behaviour of
reactive systems and have given rise to well known languages such as CSP [3],
CCS [4] or ACP [5]. But, besides these classic ones, along the years a great
variety of process semantics have been proposed under different settings and
from quite dissimilar points of view. The comparative study of concurrency
semantics tries to shed light on this heterogeneous field to bring up differences
and similarities that will allow to order and classify the variety of semantics,
in spite of the different ways they are defined.

Clearly, the thorough work of Van Glabbeek is a cornerstone in the field of
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comparative concurrency semantics. In [6] he presents the well known lin-
ear time-branching time spectrum for processes without internal transitions.
There he presented a quite extensive collection of semantics, each of which was
characterised by a natural testing scenario, a modal logic to identify the set of
equivalent processes, and a finite axiomatization (whenever that was possible)
that allows to do a pure algebraic study of the generated equivalence relation
between pairs of finite processes. Figure 1 shows these axiomatized semantics
(but for the tree semantics) ordered by inclusion.

Whenever a semantic framework is introduced to define the meaning of some
kind of formal language, an equivalence relation is also introduced that equates
two terms if they have the same semantics. Reciprocally, an equivalence re-
lation provides a way to define an abstract semantics by associating to each
term the equivalence class to which it belongs.

bisimulation

ready simulation

possible worlds

complete simulation ready trace

failure trace readiness

failure

simulation complete trace

trace

Fig. 1. Axiomatic Semantics in the Linear Time-Branching Time Spectrum I

Moreover, a semantics can be also defined by a preorder which compares pairs
of processes in a natural way. These can be easily generated whenever we
have a testing scenario or a modal logic characterising the semantics, simply
saying that a process is better than another when it passes more tests or,
equivalently, when it satisfies more formulas of the logic. Certainly, preorders
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and equivalence relations are closely related, the latter being just a partic-
ular (symmetric) case of the former, while any preorder defines an induced
equivalence relation by means of its kernel.

These order relations between processes have also interesting applications by
themselves when they correspond to relations such as “is an implementation
of” [7] , “is faster than” [8], or “has less amortised cost than” [9]. Besides,
an order relation is also needed to specify continuity requirements in semantic
domains, by means of which we can define the semantics of recursive processes.

In [6] both equivalences and preorders have been introduced using a classical
testing approach: “given two processes p and q, we have that p is better than
q whenever p passes as many tests as q does”, following the ideas in [10,11].
Besides, the inclusion order between semantics corresponds to the different
expressive power of the families of tests defining each of them, and as a con-
sequence it is the same for both behaviour preorders and equivalences.

Bisimulation semantics is the strongest of all the equivalence semantics in the
spectrum and also one of the most important. Bisimulation equivalence can be
easily defined due to its coinductive flavour and thus coalgebraic techniques
can be applied, which provides a fruitful alternative to the classic approach
based on induction and continuity arguments.

Bisimulation can also be presented as a game [12,13], and this provides a
fruitful metaphor: by playing the game of bisimulation an attacker can check
that two processes are not bisimilar in a finite number of steps; however, if the
attacker has no strategy to win the game, the two processes are bisimilar. It
is also characterised by a simple and natural logic, the well known Hennessy-
Milner Logic (HML) [14]. Finally, bisimilarity can be easily established either
by means of explicit bisimulations described in a symbolic way or, in the case of
finite state processes, by an efficient algorithm [15,16] based on which several
tools that can effectively check process bisimilarity [17] have been developed.

Despite the fact that bisimulation has been thoroughly studied since it was
proposed by David Park [18] (see [19] for a recent historic presentation on the
subject), it is still the topic of quite a number of recent papers such as [20–22].

However, sometimes bisimulation equivalence is too strong, and many other in-
teresting semantics weaker than bisimilarity have been proposed, most of them
appearing in the linear time-branching time spectrum. Traces, for instance, is
the weakest reasonable semantics for processes, it just collects the sequences
of actions that can be executed by a process. However, non-deterministic be-
haviours are not properly described by means of traces, since deadlock infor-
mation is not accurately captured. Failure semantics was proposed in [3] to
solve this problem. An even finer semantics is that defined by readiness [23],
where we keep count of the sets of offerings at each state of a process. Failures
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and ready sets can be combined with traces, thus getting stronger semantics
as described in [6].

Most of the semantics in Figure 1 are extensional ([24]) and none of them
has a symmetric, coinductive definition as bisimulation does. It is true that
all of the simulation semantics (simulation, ready simulation and so on) are
intensional and quite close to bisimulation, but the induced equivalences are
just the kernel of the corresponding preorder and do not admit a direct single
symmetric definition. Could these semantics be somehow characterised by a
symmetric definition? And for the other extensional semantics? Could they be
expressed in a coinductive way? Could we also characterise the corresponding
preorders?

As we will see in this paper, we can indeed do that. In order to characterise
the equivalence relations, all of them coarser than bisimilarity, we weaken
the definition of bisimulation by using a preorder relation, to obtain what
we call bisimulation up-to that preorder. In this way we propose a family of
coinductively and symmetrically defined equivalences, parameterised by the
preorders. As main results we prove that, under quite sensible assumptions on
the considered preorder, bisimulation up-to such a preorder defines exactly the
same equivalence as the kernel of the preorder does. These results are quite
general and can be applied to all the semantics in Figure 1 (and beyond),
so that we get symmetric, coinductive, bisimulation-like definitions for nearly
any reasonable semantics.

One may think that the same could we done for the preorders arising from
simulations instead of bisimulations, but that is far from true: bisimilarity is
the strongest of the semantic equivalences and thus by relaxing the bisimula-
tion requirements we get weaker equivalences. However, there exists no proper
preorder whose kernel is the bisimulation equivalence; in fact, the simulation
preorder (the most natural coinductively defined preorder) is not finer than
many of the semantic preorders in the ltbt spectrum and the equivalence re-
lation it induces is much weaker than the bisimulation equivalence.

Fortunately, we can overcome this handicap by reinforcing simulations, that
is, by imposing some additional condition to be satisfied by the pairs of pro-
cesses being related. In particular, ready simulations [25,26] are simulations
constrained by the condition that the set of initial actions of the processes
should be the same; the ready simulation preorder is finer than any other
finitely axiomatizable preorder in the ltbt spectrum, and this is why it can be
used to characterise all of them by means of I-simulations up-to a preorder,
that weaken ready simulations in the adequate way.

Once we have got coinductive characterisations of both behaviour equiva-
lences and preorders we have been able to find several interesting connections
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between bisimulations up-to and simulations up-to which provide us with new
relations between behaviour equivalences and preorders. One of these results
was quite unexpected for us, but also extremely nice: we have found that for
any equivalence relation (under sensible assumptions) there exists a canoni-
cal preorder (non-trivial, that is, different from the equivalence itself) whose
kernel is the original equivalence relation.

Certainly, given an equivalence relation there are many different preorders,
including the equivalence itself, whose kernel is the given equivalence relation.
It is nice to get a natural characterisation of a canonical one among them,
particularly if, as we have proved for all of the equivalences in Van Glabbeek’s
spectrum that are coarser than the ready simulation, our canonical preorders
define the same order relations as the ones in the literature. This has been
the origin of many pleasant properties. In particular, we can obtain a com-
plete axiomatization for finite processes for any of these preorders from the
corresponding axiomatization for the equivalences in a systematic way, so that
the completeness and correctness of these axiomatizations can be proved once
and for all, thus avoiding the necessity of repeated proofs as those presented
in [6].

It has come as a nice surprise for us to know that in [27] it has been found
the way to establish the opposite relation between the axiomatizations of
the preorders that are weaker than the ready simulation and those of the
corresponding equivalences, for the semantics in the Van Glabbeek’s spectrum.
We agree with the authors of that paper on the fact that it is more natural
to look for the axiomatization of the induced equivalence starting from that
of a preorder, than the other way around. Nevertheless, it is also nice to
have a canonical way to obtain a non-trivial preorder whose kernel is a given
equivalence relation, as we have done. We comment more about this subject
in the conclusion of the paper.

Concerning the related work, we can find in [28,29] recursive definitions of
testing semantics which can be considered a first step in the direction we aim,
but in both cases the authors used the after construction in their character-
isations, which means a too global approach. Instead, we want a more local
characterisation where bisimulation steps mainly will solve, as usual, the ini-
tial choices of each pair of related processes. This idea also inspired some of
our former works on this subject [30,13], where we use our so called global
bisimulation, in order to get a symmetric bisimulation-like characterisation of
the ready similarity and other classical semantics. These global bisimulations
were previously used, in a different context, in [31].

There have been indeed some other previous approaches to the problem of
getting coinductive characterisations of extensional semantics. Most of them
study the question in a pure coalgebraic framework [32–35] and, in many cases,
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are based on relatively complex categorical concepts. These works aim gener-
ality and their results are indeed rather general. This is why the machinery
needed to apply them, even in some simple cases, can be rather complex. In-
stead, our results, at least as presented here, can only be applied to transition
systems, but they are quite simple to state and to apply.

In [37] Boreale and Gadducci have defined a fully abstract model for the
failures semantics based on the novel concept of behavioural differential equa-
tions, introduced by Rutten [36]. However, the extension of their results to
cover other semantics seems not easy.

A different approach is presented in [38] where the author uses predicate trans-
formers to get a variant of the bisimulation equivalence that gives rise to both
trace and failure preorders. However, for each of these preorders an ad-hoc
construction is needed and it is not clear how to extend it to cover other se-
mantics. Certainly there are further connections between our own work and
most of these quite recent papers that we plan to explore in the future

To conclude this introductory section we outline the contents that appear in
the rest of the paper. In Section 2 we collect the essential definitions and
notations on processes and semantic preorders and equivalences that we are
going to use along the paper.

Section 3 is devoted to the study of the coinductive characterisations for the
semantic equivalences. We define bisimulations up-to a preorder and present
the results that are illustrated with some examples in order to clarify the role
of the conditions in the theorems.

In Section 4, we change the focus from the equivalences to the semantic pre-
orders. We define simulations up-to and prove some results that characterise
behaviour preorders with simulations up-to a preorder. In Section 4.3 we com-
ment on some connections between the results developed in Sections 3 and
4.

In Section 5 we continue with the theory of simulations up-to but this time
we want to study the semantic equivalences. We show how we can charac-
terise equivalences as the kernel of simulations up-to. From that, we identify
a canonical coinductive preorder whose kernel is a given equivalence relation.

Section 6 is rather technical. It is devoted to show how the results obtained in
the previous sections can be extended to infinite finitary processes. For that,
we define a proper notion of approximation and then, we use the Approxima-
tion Induction Principle [39] and standard continuity techniques to prove the
desired results.

To illustrate the relevance of the theory of (bi)simulations up-to we show in
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Section 7 some examples of applications of the coinductive characterisations
that we have proposed for semantic preorders and equivalences. In particular,
we provide alternative axiomatic definitions of the preorders in the linear time-
branching time spectrum. The proof of their completeness is easy and simple,
and can be done once for all.

Finally, in Section 8 we present some conclusions and some lines for future
work.

We would like to express our gratitude to Miguel Palomino for his comments,
that helped us to improve the presentation of this paper.

2 Preliminaries

The usual way to describe the behaviour of processes is by means of an opera-
tional description. As usual, we provide it by using the well-established formal-
ism of labelled transition systems, or LTS for short, introduced by Plotkin [40]
(reprinted in [41]).

Definition 1 A labelled transition system is a structure T = (P,Act,→)
where

• P is a set of processes, agents or states,
• Act is a set of actions and
• →⊆ P × Act × P is a transition relation.

A rooted LTS is a pair (T , p0) with p0 ∈ P.

The set Act denotes the alphabet of actions that processes can perform and
the relation → describes the process transitions after the execution of actions.
Any triple 〈p, a, q〉 in the transition relation → is represented by p

a
−→ q,

indicating that process p performs action a and evolves into process q. A
rooted LTS describes the semantics of a concrete process: that corresponding
to its initial state p0.

Some usual notations on LTSs are used along the paper. We write p
a

−→ if
there exists a process q such that p

a
−→ q. The function I calculates the set

of initial actions of a process, I (p) = {a | a ∈ Act and p
a

−→}.
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LTSs for finite processes are just directed graphs which become finite trees 3

if expanded. These finite trees can be syntactically described by the basic
process algebra BCCSP, which was also used, for instance, in [6,1].

Definition 2 Given a set of actions Act, the set of BCCSP processes is de-
fined by the following BNF-grammar:

p ::= 0 | ap | p + q

where a ∈ Act. 0 represents the process that performs no action; for every
action in Act, there is a prefix operator; and + is a choice operator.

So we have that BCCSP is just the initial algebra for the signature (0, a ∈
Act, +). The set of rooted LTSs is another algebra for this signature, by defin-
ing prefix and choice operators in the natural way.

All the definitions we present in the paper are valid for arbitrary processes,
that is, for arbitrary rooted LTSs, either finite or infinite. However, the proofs
that we provide in Sections 3 to 5 make extensive use of inductive reason-
ings and therefore they are only valid for BCCSP processes, that is, for finite
processes. However, as we will show in Section 6, by using the Approxima-
tion Induction Principle [39], we can extend all our results first to infinite
depth finitely branching tree processes, and then to arbitrary finitely branch-
ing rooted transition systems, since by unfolding any of them we can get an
equivalent finitary tree process.

The operational semantics for the BCCSP terms is defined in Figure 2. The
depth of a BCCSP process is the depth of the tree it denotes.

ap
a

−→ p p
a

−→ p′

p + q
a

−→ p′
q

a
−→ q′

p + q
a

−→ q′

Fig. 2. Operational Semantics for BCCSP Terms

Trailing occurrences of the constant 0 are omitted: we write a instead of a0. As
usual (see for instance [6]), since the operational semantics of choice defines it
as a commutative and associative operator, and any other semantics in which
we are interested is based on that, we can use the n-ary choice operator

∑

to write any process as
∑

a

∑

i api
a. This corresponds to the transition tree of

each process, and the fact that we use sets as indexes makes that operator
commutative and associative by definition.

3 We obtain directly a tree if we generate the states on the fly introducing a new
state for each transition generated by the application of the rules defining the op-
erational semantics, see for instance [4].
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B RS PW RT FT R F CS CT S T

(x + y) + z = x + (y + z) + + + + + + + + + + +

x + y = y + x + + + + + + + + + + +

x + 0 = x + + + + + + + + + + +

x + x = x + + + + + + + + + + +

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ax ⊑ ax + ay + + + + + + v v v v

a(bx + by + z) = a(bx + z) + a(by + z) + v v v v v v

I(x) = I(y) ⇒ ax + ay = a(x + y) + v v v v v

ax + ay ⊒ a(x + y) + v v v

a(bx + u) + a(by + v) ⊒ a(bx + by + u) + v v v

ax + a(y + z) ⊒ a(x + y) + v v

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

ax ⊑ ax + y + + v v

a(bx + u) + a(cy + v) = a(bx + cy + u + v) + v

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

x ⊑ x + y + +

ax + ay = a(x + y) +

Table 1
Axiomatization for the Preorders in the Linear Time-Branching Time Spectrum

A process aq′ is an a-summand of the process q if and only if q
a

−→ q′. We
define p|a as the (sub)process we get by adding all the a-summands of p. That
is, if p =

∑

a

∑

i api
a, then p|a =

∑

i api
a.

Preorders are reflexive and transitive relations that we represent by ⊑. For the
sake of simplicity, we use the symbol ⊒ to represent the preorder relation ⊑−1.
Every preorder induces an equivalence relation that we denote by ≡, that is
p ≡ q if and only if p ⊑ q and q ⊑ p.

Table 1, borrowed from [6], shows a complete axiomatization for some of the
semantics in the ltbt spectrum, with the corresponding axioms for each pre-
order (column) marked with “+”. Axioms marked with “v” are satisfied but
not required. The shorthands on top of the columns refer to the different se-
mantics, B stands for bisimulation equivalence, and similarly for the rest of
the preorders that appear on the linear time-branching time spectrum.
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The first four axioms on the upper left of Table 1 characterise bisimilarity,
that is, the bisimulation equivalence, that we denote by =B. They also belong
to any other axiomatic characterisation and therefore are assumed and usually
omitted when talking about other semantics with less discriminatory power.
We can see, for instance, that the ready simulation preorder (see Definition 33)
is characterised by the four axioms of the bisimulation equivalence plus the
axiom (RS) ax ⊑ ax+ay. Analogously, axioms for bisimulation together with
axiom (S) x ⊑ x + y, characterise the simulation preorder.

The next quite simple definitions introduce a couple of common properties that
are fulfilled by most of the natural semantics preorders, and will be extensively
used along the rest of the paper.

Definition 3 A preorder relation ⊑ over processes is a behaviour preorder if

• it is weaker than bisimilarity, i.e. p =B q ⇒ p ⊑ q, and
• it is a precongruence with respect to the prefix and choice operators, i.e. if

p ⊑ q then ap ⊑ aq and p + r ⊑ q + r.

Definition 4 A behaviour preorder ⊑ is initials preserving when p ⊑ q im-
plies I(p) ⊆ I(q). It is action factorised (or just factorised) when p ⊑ q implies
p|a ⊑ q|a, for all a ∈ I(p).

To be exact, factorisation is satisfied by any of the behaviour preorders in
the ltbt spectrum, while any preorder finer than the trace preorder is initials
preserving.

3 Up-to Characterisation of Semantic Equivalences

In Section 2 the behaviour of processes is described in terms of the actions they
can perform, so it is natural to define the process equivalence in terms of these
action transitions. That is precisely what bisimulations do: they inductively
explore the intensional behaviour of processes. Bisimulation was introduced
in [18] and it has become one of the fundamental notions in the theory of
concurrent processes. It is defined as follows.

Definition 5 ([4]) A binary relation R is called a (strong) bisimulation if for
all p, q processes such that p R q, and for all a ∈ Act, the following properties
are satisfied:

• Whenever p
a

−→ p′, there exists some q′ such that q
a

−→ q′ and p′ R q′.
• Whenever q

a
−→ q′, there exists some p′ such that p

a
−→ p′ and p′ R q′.

Two processes p and q are bisimilar, notation p =B q, if there exists a bisim-
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ulation containing the pair 〈p, q〉.

Let us recall that the definition imposes simultaneous simulations by means
of a single symmetrical definition of bisimulations. If, instead, separated sim-
ulations are considered, the induced equivalence relation, that we call mutual
simulation, is weaker than bisimulation equivalence (see [6] for details).

In [4], in order to make bisimilarity easier to decide, Milner introduced the
notion of bisimulation up-to (strong) bisimilarity. This is a useful technique,
but care must be taken when generalising it. It is well known that the original
(simple and natural!) definition of weak bisimulation up-to weak bisimulation,
that appeared in [4], was wrong. Later, in [42] two new up-to (now correct,
but more involved!) techniques were proposed. Sangiorgi continued the study
of up-to techniques in [43], but focusing on reducing the size of the bisimu-
lation relations to prove that two given processes are bisimilar. Recent work
continuing with the study of the subject can be found in [44,45].

Hovewer, instead of capturing bisimilarity we want to use the idea of bisim-
ulations up-to to characterise coarser equivalences in a coinductive way. This
is done by using the adequate preorder in the up-to part of the definition.

3.1 Bisimulations Up-to a Preorder

Using the game view of bisimulation, bisimulations up-to are defined by al-
lowing the defending player to remove some of the future capabilities of the
process where he makes his move to mimic the movement of the other player.
This is formalised by a reduction with respect to the considered behaviour
preorder.

Definition 6 Let ⊑ be a behaviour preorder. Then a binary relation S over
processes is a bisimulation up-to ⊑, if pSq implies that:

• For every a, if p
a

−→ p′a, then there exist q′ and q′a, q ⊒ q′
a

−→ q′a and p′aSq′a.
• For every a, if q

a
−→ q′a, then there exist p′ and p′a, p ⊒ p′

a
−→ p′a and p′aSq′a.

Two processes are bisimilar up-to ⊑, written p h⊑ q, if there exists a bisimu-
lation up-to ⊑, S, such that pSq.

It is obvious that the introduction of the preorder generalises the original
definition of bisimulation, so that we have now more chances to prove the
equivalence between two processes by giving a bisimulation up-to that relates
them. When the behaviour preorder is just the identity relation, or even the
bisimilarity relation, we just get bisimilarity itself, but, as we are going to
prove below, considering other behaviour preorders leads to other interesting
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semantics (traces, failures, ready simulation and so on).

For the sake of simplicity, we often drop the subscript and use h instead of
h⊑ when the behaviour preorder is clear from the context.

Proposition 7 For every behaviour preorder ⊑, if p ≡ q then p h q.

Proof: If p ≡ q then p ⊑ q and q ⊑ p. For every transition p
a

−→ p′a,
then q ⊒ p

a
−→ p′a and, symmetrically, for every transition q

a
−→ q′a, then

p ⊒ q
a

−→ q′a. ⊓⊔

t

bc

a

bc

b

bc

c

bc

b

bc

d

u

bc

a

bc

b

bc

c

bc

b

bc

d

bc

a

bc

b

bc

c
bc

d

v

bc

a

bc

b

bc

c

bc

b

bc

d

bc

a

bc

b

bc

c

bc

b

a(bc + bd) a(bc + bd) + ab(c + d) a(bc + bd) + a(bc + b)

Fig. 3. Examples of Processes

Example 8 Let us consider the processes t and v in Figure 3 and let ⊑S be
the simulation preorder. Clearly, processes t and v are not bisimilar, t 6=B v,
but they are bisimilar up-to the simulation preorder, t h⊑S

v. The only difficult
point to get a bisimulation up-to between t and v corresponds to the case when
v starts executing a and evolves into v′ = bc + b. Then t can be reduced to
abc, since abc ⊑S t, and then performing the action a the process evolves into
t′ = bc. Now, by using the fact that b ⊑S bc one can check in a similar way
that v′ and t′ are bisimilar up-to the simulation preorder, and finish the proof.

Lemma 9 For every initials preserving behaviour preorder ⊑, if p h q then
I(p) = I(q).

Proof: It is enough to show that I (p) ⊆ I (q). For any a ∈ I (p), since q ⊒
q′

a
−→ q′a, a ∈ I (q′), and therefore a ∈ I (q), due to the initials preservation

property of ⊑. ⊓⊔

Theorem 10 For every behaviour preorder ⊑ that is initials preserving, ac-
tion factorised and satisfying the axiom (RS), we have that p h q if and only
if p ≡ q.
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Proof: If p ≡ q then p h q is proved in Proposition 7. We prove the reverse
implication, if p h q then p ≡ q. We proceed by induction on the depth of
process p and prove that if p h q then p ⊑ q.

By definition of p h q, if p
a

−→ p′a then q ⊒ q′
a

−→ q′a and p′a h q′a. By induction
hypothesis p′a ≡ q′a, in particular it is also true that p′a ⊑ q′a, and, since ⊑ is a
precongruence, ap′a ⊑ aq′a. On the other hand, q ⊒ q′ and, since the order ⊑
is action factorised we obtain q|a ⊒ q′|a.

We would like to establish the order relation between q′|a and aq′a. In fact,
q′|a = aq′a + r, and given that I (q′|a) = {a} we also have I (r) = {a}. Then
we can use the axiom (RS) ax + ay ⊒ ax, to conclude that q′|a ⊒ aq′a. All
together:

ap′a ⊑ aq′a ⊑ q′|a ⊑ q|a

Considering now the general definition of p =
∑

i

∑

j aipij, we can write for
every i and j the following sequence of relations

aipij ⊑ aiq
ij
ai
⊑ qij |ai

⊑ q|ai

and therefore

p =
∑

i

∑

j

aipij ⊑
∑

i

q|ai

. Finally, by Lemma 9, I (p) = I (q) and we conclude that
∑

i q|ai
= q and

therefore p ⊑ q. ⊓⊔

This result, if simple, is rather general: all the preorders for the semantics
weaker than the ready simulation in Figure 1 satisfy the axiom (RS) and
therefore the corresponding bisimulations up-to characterise each equivalence.
That is, this theorem provides a symmetric, bisimulation-like characterisation
for every equivalence in the linear time-branching time spectrum from trace
equivalence to ready simulation equivalence.

Example 11 Let us revisit our Example 8 and consider the processes t and
v in Figure 3. Since the simulation preorder satisfies the conditions of Theo-
rem 10, the fact that t h v is enough to conclude that t and v are simulation
equivalent. By applying Theorem 10 we have been able to prove it by exhibiting
a single bisimulation up-to instead of two simulations, one for each of t ⊑S v
and v ⊑S t.

The conditions imposed to the behaviour preorders in Theorem 10 suggest that
not every preorder is adequate to get the induced equivalence by means of a
bisimulation up-to. This is indeed the case. Let us first consider an example
that shows that the condition of being initials preserving is necessary.

Example 12 Let us consider the behaviour preorder defined by the follow-
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ing axiom: p + q ⊑ p. This preorder relation is the inverse of the simulation
preorder (⊑S) and therefore its kernel is also the simulation equivalence. How-
ever, bisimulation up-to ⊑ is far from being equal to the simulation equiva-
lence. In fact it relates any two processes: for every p and q whenever p

a
−→ p′,

q ⊒ q + p
a

−→ p′ and conversely, whenever q
a

−→ q′, p ⊒ p + q
a

−→ q′.

We have not contradicted Theorem 10 because the preorder ⊑ is not initials
preserving. Now we see that it is also necessary that the preorders satisfy the
axiom (RS).

Example 13 Let us consider the behaviour preorder induced by the axiom
a(p + q) ⊑ ap + aq. Obviously, by definition, this relation is action factorised
and initials preserving. Let us consider the processes t and u in Figure 3. Let
us take t′ = bc + bd and u′ = b(c + d). It is true that u ⊑ t (t = a(bc + bd) ⊑
a(bc + bd) + a(bc + bd) ⊑ a(bc + bd) + ab(c + d) = u), but t 6⊑ u, because the
application of the axiom only allows to take choices earlier, but never to delay
them as in the right subprocess of u. However, t and u are bisimilar up-to ⊑:

• Any action transition of t can be trivially simulated by u because t is a
subprocess of u;

• If u performs action a and evolves into t′, then t can trivially simulate that
movement;

• If u performs action a and evolves into u′, then t can delay its choice and
reduce to ab(c + d), then performing action a, evolving also into u′.

As announced above, we have neither contradicted Theorem 10 because in
this case the preorder ⊑ does not satisfy the axiom (RS).

The following example shows us that we can neither weaken the axiom (RS)
by considering particular cases like the axiom ap + aq ⊑ ap + aq + a(p + q).

Example 14 Let us consider the preorder ⊑ induced by the axiom ap + aq ⊑
ap + aq + a(p + q). If we consider the processes z = a(bc + bd + b(c + d)) and
w = a(bc + bd) + z and we take z′ = bc + bd + b(c + d) and w′ = bc + bd, we
have that z 6⊑ w but z and w are bisimilar up-to ⊑:

• Any action transition initiated in z can be trivially simulated by w because
z is a subprocess of w;

• If w performs action a and evolves into z′, then z can trivially simulate that
movement;

• If w performs action a and evolves into w′, then z transforms itself ac-
cording to the axiom that defines the preorder and becomes a(bc + bd), then
performing action a, evolves into z′.
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3.2 Bisimulation Up-to an Equivalence

As a straightforward corollary of our main result in Section 3.1, we get that
for any of the equivalence relations defined by the semantics in Figure 1, it is
also true that h≡ is equal to ≡.

Corollary 15 For every behaviour preorder ⊑ that is initials preserving, ac-
tion factorised and satisfies the axiom (RS), and the induced equivalence re-
lation ≡, we have ≡ = h⊑ = h≡.

Proof: For any processes p and q we have that p ≡ q ⇒ p h≡ q ⇒ p h⊑ q.
Finally, Theorem 10 proves that p h⊑ q ⇒ p ≡ q. ⊓⊔

One could ask why we introduced the characterisations of behaviour equiv-
alences by means of bisimulation up-to behaviour preorders instead of just
proving those up-to the equivalences themselves. There are two reasons for
that: the first and most important was that bisimulations up-to preorders are
more general, and therefore more powerful, when trying to establish the equiv-
alence between two processes by presenting a bisimulation up-to that relates
them. Besides, the fact that behaviour preorders satisfy the axiom (RS) is
used in the proof of Theorem 10, and a direct proof of Corollary 15 without
using that more general result seemed hard to find. However, encouraged by a
referee of a previous version of this paper we looked for such a direct proof and
finally got the result stated in Theorem 17. But first we are going to extend, in
a natural way, the definition of behaviour preorders to equivalence relations.

Definition 16 An equivalence relation ≡ over processes is a behaviour equiv-
alence when

• it is weaker than bisimulation equivalence, i.e. p =B q ⇒ p ≡ q,
• and it is a congruence with respect to the prefix and choice operators, i.e. if

p ≡ q then ap ≡ aq and p + r ≡ q + r.

Theorem 17 For every behaviour equivalence ≡, we have ≡ = h≡.

Proof: The fact that whenever we have p ≡ q we also have p h≡ q is a direct
application of Proposition 7 just using the fact that any behaviour equivalence
is a behaviour preorder whose kernel is again itself. Let us now take p =

∑

i aipi

and q =
∑

j bjqj . By definition of p h q, if p
ai−→ pi then q ≡ qi ai−→ qi and

pi h qi. This means that there exists some process ri such that qi = aiqi + ri.
Moreover, by induction hypothesis, we have pi ≡ qi. Reasoning in a symmetric

way starting from q
bj
−→ qj , we get p ⊒ pj bj

−→ pj and qj h pj , with some
process sj such that pj = bjpj + sj, and by induction hypothesis qj ≡ pj .
Then we have p ≡

∑

j pj =
∑

j bjpj + sj ≡
∑

j bjqj + sj and q ≡
∑

i q
i =
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∑

i aiqi + ri ≡
∑

i aipi + ri. Now replacing each one of these equivalences into
the other, and using the idempotence of ≡, we get p ≡

∑

j sj +
∑

i ri + p + q
and q ≡

∑

i ri +
∑

j sj + p + q, thus obtaining p ≡ q. ⊓⊔

3.3 Characterising Equivalences Finer Than Ready Simulation

The range from trace equivalence to ready simulation equivalence is quite
wide and most of the classic semantics fall into it. However, there are still
some interesting process semantics out of it. For instance, those constrained
simulations as the one in Example 22, where the defining constraint is finer
than condition I, or the nested simulation semantics.

We have studied whether the use of bisimulations up-to a preorder is also
possible fot these semantics. We have found that there is another family of
semantic preorders for which bisimulations up-to work properly. Any preorder
in this family is a simulation, so that we recall right now its definition. Simu-
lations will be also the main topic of the rest of the sections of the paper.

Definition 18 A binary relation S over processes is a simulation, if pSq
implies that:

• For every a, if p
a

−→ p′ there exists q′, q
a

−→ q′ and p′Sq′.

We say that process p is simulated by process q, or that q simulates p, written
p ⊑S q, whenever there exists a simulation S such that pSq.

Lemma 19 For every behaviour preorder ⊑ being a simulation, whenever p ⊒
p′

a
−→ p′a, there exists pa such that p

a
−→ pa ⊒ p′a.

Proof: By definition of simulation. ⊓⊔

Next, in order to obtain the results that follow, we introduce a property that
one could consider quite technical and a bit ad hoc , but in fact it is quite nat-
ural, and therefore satisfied by most of the semantics for concurrent processes
in the literature.

Definition 20 We say that a behaviour preorder ⊑ has the Hoare equivalence
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property 4 (HE for short) whenever it satisfies:

If for all p
a

−→ p′ there exists q′, q
a

−→ q′ and p′ ⊑ q′

and for all q
a

−→ q′ there exists p′, p
a

−→ p′ and q′ ⊑ p′











then p ≡ q

For behaviour preorders that are simulations and satisfy the Hoare Equivalence
property, we have the following result:

Theorem 21 For every behaviour preorder ⊑, being a simulation and satis-
fying the Hoare equivalence property, p h q if and only if p ≡ q.

Proof: If p ≡ q then p h q is proved by Proposition 7. The reverse implication,
if p h q then p ≡ q, is proved by induction on the depth of the first process.

Let us consider p h q. Then, whenever p
a

−→ p′a there exist q′ and q′a such
that q ⊒ q′

a
−→ q′a and p′a h q′a and, by induction hypothesis, p′a ≡ q′a. As

the behaviour preorder is a simulation, by Lemma 19 there exists qa such that
q

a
−→ qa ⊒ q′a. Therefore, for some process r it is true that q = aqa + r ⊒

aq′a +r ≡ ap′a +r. That is, for every p
a

−→ p′a there exists qa such that qa ⊒ p′a.

Symmetrically, we can prove that for every q
a

−→ q′a there exists pa such
that pa ⊒ q′a. These are the premises for the HE property that our behaviour
preorder satisfies, and so we conclude that p ≡ q. ⊓⊔

Both the simulation preorder and the ready simulation preorder are simula-
tions and satisfy the HE property, so for these preorders Theorem 21 provides
an alternative proof to that of Theorem 10. But there are other interesting
preorders that induce equivalences between strong bisimulation and ready sim-
ulation equivalence for which Theorem 21 provides a characterisation in terms
of bisimulation up-to.

Example 22 Let us consider the preorder ⊑FS defined as p ⊑FS q if there
exists a binary relation S over processes such that pSq implies

• For every a, p
a

−→ p′, there exists q′, q
a

−→ q′ and p′Sq′;
• F (p) = F (q).

where F (p) = {(a, X) | a ∈ I(p), X ⊂ Act p
a

−→ p′ and X ∩ I(p′) = ∅}.

That is, ⊑FS is much like the ready simulation preorder, but instead of checking
the equality of initial actions, we check the equality of the failures immediately
below the root of the processes.

4 The name comes from Hoare’s powerdomain construction.
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The preorder ⊑FS satisfies the conditions to apply Theorem 21: obviously it
is a simulation and it can be easily checked that it satisfies the HE property.
Therefore, bisimulation up-to ⊑FS defines the same equivalence relation as
⊑FS ∩ ⊑−1

FS.

The equivalence induced by the preorder ⊑FS is strictly finer than ready sim-
ulation equivalence. To see that, let us consider, for instance, the processes
p = a(bc + bd) and q = abc + a(bc + bd), that clearly are ready simula-
tion equivalent, but q 6⊑FS p, since we also have bc 6⊑FS bc + bd, because
(b, {c}) ∈ F (bc + bd) − F (bc).

Following the ideas in the previous example it is quite easy to find other con-
strained simulations in the conditions of Theorem 21 that define equivalences
between the ready simulation and strong bisimilarity. Some of them can be
defined axiomatically in an easy way, as in the following example:

Example 23 Let us consider the behaviour preorder defined by the axiom
a(p + q) ⊑ a(p + q) + ap. This axiom refines the axiom (RS) and therefore
defines a simulation. Besides it satisfies the HE property: Let p =

∑

i aipi and
q =

∑

j bjqj that verify the provisos in the definition of the property. Then for
each index i we have some summand of q, aiqi, with pi ⊑ qi; and symmetrically,
for each index j we have some summand of p, bjqj, with qj ⊑ pj.

By iterating this reasoning in a ping-pong way using the finiteness of the terms,
we finally get for each index i some maximal summands of p, a′

ip
′
i, and q, a′

iq
′
i,

with respect to the order ⊑, with ai = a′
i, p′i ≡ q′i and pi ⊑ p′i. Symmetrically,

for each index j we get some maximal summands of p b′jp
′
j and q b′jq

′
j, with

respect to the order ⊑, with bj = b′j, q′j ≡ p′j and qj ⊑ q′j.

If we take q′ =
∑

i aiq
′
i we obviously have p ⊑ q′. It is also easy to check that

taking q′′ =
∑

j bjq
′
j we have q′ = q′′. Let us finally check that q′′ ⊑ q. We

only need to see that for each index j we have bjq
′
j ⊑ bjq

′
j + bjqj. This is a

consequence of the following general result: whenever we have q ⊑ p we have
also ap ⊑ ap+aq. This is because ⊑ verifies that p ⊑ q ⇒ q ≡ p+ q, what can
be proved by proof induction, using the form of the axiom defining ⊑. Then
we have ap ⊑ a(p+ q) ⊑ a(p+ q)+ aq ≡ ap+ aq, and thus we conclude p ⊑ q,
and symmetrically we would also get q ⊑ p, and finally p ≡ q, proving that ⊑
verifies the property HE. This means that we can apply our Theorem 21, thus
getting p h q if and only if p ≡ q.

The next example points out the necessity of the HE property in the condi-
tions of Theorem 21. It is interesting to see that the considered order ⊑ is
also a simulation order, defined by an axiom quite similar to that defining Ex-
ample 23 above. However, in this case the order does not verify the property
HE, and the corresponding bisimulation up-to h is strictly coarser than the
induced equivalence ≡.
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Example 24 Let us consider the axiom ap ⊑ ap + a(p + q) and the induced
behaviour preorder. This preorder refines the axiom of the simulation preorder
but it does not satisfies the HE property. We will see that there exist some
pairs of processes which are not related by the induced equivalence relation,
but however are bisimilar up-to that preorder. For instance, let us consider
m = a(bc+b(c+d))+abc and n = a(bc+b(c+d)), we have that m ⊑ n because
bc ⊑ bc+ b(c+d) and therefore abc ⊑ n, so that we conclude abc+n ⊑ n, and
thus m ⊑ n. However, we have n 6⊑ m because the summand abc of m cannot
be generated by applying the axiom ap ⊑ ap + a(p + q), since it only allows to
introduce new summands that expand those in the original process, n in this
case. But m and n are bisimilar up-to ⊑:

• m can trivially simulate n;
• If m performs action a and evolves into bc + b(c + d) then n can trivially

simulate that move;
• If m performs action a and evolves into bc then n can be reduced by the

preorder to abc, and then performing a, it evolves into bc.

The processes m and n also illustrate that the preorder ⊑ does not satisfy the
property HE, since as seen before m can trivially simulate n, and if m performs
action a and evolves into bc then n can perform a evolving into a(bc+b(c+d)),
that satisfies abc ⊑ a(bc + b(c + d)).

4 Up-to Characterisations of Semantic Preorders

Section 3 provides quite general and interesting results about the coinductive
characterisation of a semantic equivalence, both in terms of the equivalence
itself, and in terms of the behaviour preorder that generates the equivalence.
But in order to complete the study of the subject, in the following sections
we will look for coinductive characterisations of these behaviour preorders. As
we mentioned in the introduction, preorders are even more important than
equivalences to provide semantics of process algebras, and therefore finding
coinductive characterisations for them we would have a new tool for the study
of these semantics.

When we first addressed the problem of finding a coinductive characterisation
for process equivalences we had a clear starting point: bisimulation equiva-
lence. Bisimulation is the strongest equivalence and therefore by weakening
its definition (Definition 6) we could obtain weaker semantics (Theorem 10).
To find out coinductive characterisations for the semantic preorders is not such
an easy task. Certainly the first idea is to start from the simulation preorder,
even if it is not finer than most of the semantic preorders in the spectrum,
and therefore we could never characterise these by weakening the definition of
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simulation in any way, as we made for the equivalences in Section 3. However,
it is reasonable to start from plain simulations to characterise the behaviour
preorders coarser than it, and then to look for the adequate way to charac-
terise the rest of finitely axiomatizable preorders in the linear time-branching
time spectrum.

4.1 Simulations Up-to

By modifying the definition of simulation (Definition 18) in the same way as
we did for bisimulations in Definition 6 we define simulations up-to a preorder.

Definition 25 For ⊑ a behaviour preorder, we say that a binary relation S
over processes is a simulation up-to ⊑, if pSq implies that:

• For every a, if p
a

−→ p′a there exist q′ and q′a such that q ⊒ q′
a

−→ q′a and
p′aSq′a.

We say that process p is simulated up-to ⊑ by process q, or that q simulates
p up-to ⊑, written p ⊏

∼⊑
q, if there exists a simulation up-to ⊑, S, such that

pSq.

For the sake of simplicity, we often just write ⊏
∼, instead of ⊏

∼⊑
, when the

behaviour preorder is clear from the context.
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a(b(d + e) + cd) abf + a(be + bd + cd)

Fig. 4. A pair of processes

Example 26 Let us consider the processes s = a(b(d + e) + cd) and t =
abf + a(be + bd + cd) in Figure 4. It is clear that for the simulation preorder
⊑S we have s 6⊑S t, because after executing ab in s we arrive to a state in
which the choice d + e is possible, but after executing ab in t it is not.

By contrast, for the trace preorder we clearly have s ⊑T t, since the set of traces
of s, {abd, abe, acd}, is included in the set of traces of t,{abf, abe, abd, acd}.
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Let us see how we could check that s ⊏
∼⊑T

t, by constructing the corresponding

simulation up-to ⊑T .

If process s performs action a and arrives to s′ = b(d + e) + cd, then process
t does not need to apply any preorder reduction, it just simulates the move by
performing action a evolving into t′ = be + bd + cd. Now we have to check
that s′ ⊏

∼⊑T
t′: if s′ performs action c then t′ can trivially emulate that move

arriving to the same state. The only non trivial case to check happens when s′

performs action b and evolves into d+e. In that case, t′ should take advantage
of the possibility of trace reduction (see Table 1), t′ ⊒T b(e+ d)+ cd, and then
action b is executed to arrive to d + e as well, thus completing the verification
of the simulation up-to obligations.

Certainly, if we know in advance that s ⊑T t, we could directly reduce t into
s when checking s ⊏

∼⊑T
t, but what we want to illustrate here is how we would

use in practice our coalgebraic characterisation: we do not want to use any
complicate information about the corresponding order, ⊑T in this case, but
only some easier to obtain pairs of the relation, as we have done when reducing
t′ above.

The next result shows that simulations up-to are correct with respect to the
corresponding base preorder.

Proposition 27 For every behaviour preorder ⊑, if p ⊑ q then p ⊏
∼⊑

q.

Proof: If p ⊑ q then for every p
a

−→ p′a we have q ⊒ p
a

−→ p′a. ⊓⊔

The next theorem states the completeness of the definition of simulations up-
to a preorder with respect to any preorder satisfying the axiom (S), i.e., for
any preorder that is weaker than the simulation preorder, ⊑S.

Theorem 28 For every behaviour preorder ⊑ that satisfies the axiom (S), we
have p ⊏

∼⊑
q if and only if p ⊑ q.

Proof: The right to left implication was proved in Proposition 27. To prove
the left to right implication we proceed by induction on the depth of process
p.

For p = 0 and any q we immediately have 0 ⊑ q, since ⊑ satisfies (S).

In the inductive case, by definition of ⊏
∼, if p

a
−→ p′a then q ⊒ q′

a
−→ q′a and

p′a ⊏
∼ q′a. By induction hypothesis p′a ⊑ q′a, and since ⊑ is a precongruence,

ap′a ⊑ aq′a.
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Now, as q′
a

−→ q′a then there exists some process r such that q′ = aq′a + r, and
applying the axiom (S) we obtain aq′a ⊑ q′, and therefore ap′a ⊑ q. Hence, for
every p

a
−→ p′a, it holds that ap′a ⊑ q and by adding all the summands of p we

conclude p ⊑ q. ⊓⊔

As said before, the given preorder must satisfy the axiom (S) since we have
the following simple proposition.

Proposition 29 Any behaviour preorder ⊑ that satisfies ⊑ = ⊏
∼⊑

is coarser

than the simulation preorder.

Proof: By applying Definition 25 we have that any simulation is also a sim-
ulation up-to any behaviour preorder ⊑, and therefore ⊑ ⊆ ⊏

∼⊑
. ⊓⊔

Theorem 28 characterises semantic preorders in the same way that semantic
equivalences were characterised in Theorem 10, though in both cases we use
preorders for the up-to relation. It would be nice to have a dual characterisa-
tion where the equivalences were used to characterise the semantic preorder.
That is indeed possible, as stated in the following results.

Proposition 30 For every behaviour preorder ⊑ that satisfies the axiom (S),
we have that p ⊑ q ⇒ p ⊏

∼≡
q.

Proof: Let us first prove that if p ⊑ q then q ≡ q + p. We have p ⊑ q ⇒
p + q ⊑ q, and since ⊑ satisfies (S) we also have q ⊑ q + p.

Now we can use this equivalence, and whenever we have p ⊑ q and p
a

−→ p′a,
we have q ≡ p + q

a
−→ p′a, and the simulation up-to condition is established.

⊓⊔

We can now state a result similar to that in Corollary 15, relating simulation
up-to a preorder and simulation up-to an equivalence.

Corollary 31 For every behaviour preorder ⊑ that satisfies the axiom (S),
and the induced equivalence relation ≡, we have that the relations ⊑, ⊏

∼⊑
and

⊏
∼≡

are the same.

Proof: Direct consequence of the application of Theorem 28, Proposition 30
and the fact that ⊏

∼≡
⊆ ⊏

∼⊑
. ⊓⊔

Considering both bisimulations and simulations up-to we can draw the dia-
gram of equivalences in the following corollary.
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Corollary 32 For every behaviour preorder ⊑ that satisfies the axiom (S),
and the induced equivalence relation ≡, the following correspondences hold:

p ≡ q ⇔ p ⊑ q ∧ p ⊒ q

⇔ ⇔

p h⊑ q ⇔ p ⊏
∼⊑

q ∧ p ⊐
∼⊑

q

⇔ ⇔

p h≡ q ⇔ p ⊏
∼≡

q ∧ p ⊐
∼≡

q

Proof: The equivalences in the second column are direct consequences of
Corollary 31. The remainder equivalences follow from these inclusions: ≡⊆
h⊑, ≡⊆h≡, h⊑ ⊆ (⊏∼⊑

∧ ⊐
∼⊑

) and h≡ ⊆ (⊏∼≡
∧ ⊐
∼≡

). ⊓⊔

Considering the semantics in the ltbt spectrum, (only) trace and simulation
preorders (see Table 1) satisfy the axiom (S) and thus fulfil the hypothesis of
Corollary 32. Therefore, in both cases mutual simulation up-to and bisimula-
tion up-to define the same equivalence relation as the kernel of the preorder.
Thus we provide two alternative characterisations of each of these preorders
and four alternative characterisations of the induced equivalences.

4.2 I-Simulations Up-to

The results in Section 4.1 for semantic preorders, are quite interesting, but
fall short of the generality that we achieved in Section 3 when dealing with
semantic equivalences.

This limitation comes from the fact that the definition of ⊏
∼ is based on the

simulation semantics, that has a rather weak discriminatory power. In order
to get more general results, similar to those in Theorem 28, for other stronger
semantics such as failures or readiness, we need to add more discriminating
power to the simulations we start from. The ready simulation semantics is
stronger than any other of the axiomatized semantics in [6]. It will serve as
the basis to define an stronger notion of simulation up-to.

From now on, we will consider the binary relation I defined over pairs of pro-
cesses by pIq ⇔ I (p) = I (q). Then we recall the definition of ready simulations
in [26].

Definition 33 ([26]) A binary relation R on processes is called a ready sim-
ulation if for all p, q such as p R q, and for all a ∈ Act, the following properties
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are satisfied:

• Whenever p
a

−→ p′ there exists some q′ such that q
a

−→ q′ and p′ R q′.
• pIq.

Two processes are ready similar, what we denote by p =RS q, if there exists a
ready simulation R with p R q (p ⊑RS q) and also a ready simulation S such
that q S p (q ⊑RS p).

Starting now from ready simulations instead of plain simulations we define
next our I-simulation up-to that we will study in the rest of this section.

Definition 34 For ⊑ a behaviour preorder, we say that a binary relation S
over processes is an I -simulation up-to ⊑, if S ⊆ I (that is, pSq ⇒ pIq), and
S is a simulation up-to ⊑. Or, equivalently, in a coinductive way, whenever
we have pSq, we also have:

• For every a, if p
a

−→ p′a there exist q′, q′a such that q ⊒ q′
a

−→ q′a and p′aSq′a;
• pIq.

We say that process p is I-simulated up-to ⊑ by process q, or that process q
I-simulates process p up-to ⊑, written p ⊏

∼
I

⊑
q, if there exists an I-simulation

up-to ⊑, S, such that pSq.

For the sake of simplicity, we sometimes just write ⊏
∼

I
instead of ⊏

∼
I

⊑
when the

behaviour preorder is clear from the context.

The following proposition relates a behaviour preorder with the corresponding
I-simulation up-to.

Proposition 35 For every preorder ⊑ such that ⊑ ⊆ I, if p ⊑ q then p ⊏
∼

I

⊑
q.

Proof: Let us see that ⊑ is an I-simulation. Since ⊑ ⊆ I we only have to
check the other I-simulation condition, but if p

a
−→ p′a we have q ⊒ p

a
−→ p′a.

⊓⊔

Now we can use I-simulations up-to to prove a similar result to that in The-
orem 28, for semantic preorders with more discriminating power than the
simulation. Note that all the pairs of processes related by any preorder rela-
tion ranging from failure preorder to ready simulation preorder (see Table 1)
in the linear time-branching time spectrum satisfy the I condition.

Theorem 36 For every behaviour preorder ⊑ that satisfies the axiom (RS)

and ⊑ ⊆ I, we have p ⊏
∼

I

⊑
q if and only if p ⊑ q.
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Proof: The idea behind the proof is that whenever p
a

−→ p′a then q ⊒ q′
a

−→ q′a
and by induction hypothesis p′a ⊑ q′a; therefore, roughly speaking, p =

∑

ap′a ⊑
∑

aq′a. The process
∑

aq′a is not q, as we would wish, but fortunately it has the
necessary form to apply the (RS) axiom and then we can add all the missing
subterms to conclude that p ⊑

∑

aq′a ⊑ q.

The right to left implication, if p ⊑ q then p ⊏
∼

I
q, is proved in Proposition 35.

For the left to right side we proceed by induction on the depth of process p.

If p = 0 then I(p) = ∅ = I(q) and thus q = 0. If p =
∑

a

∑

i api
a, by definition

of ⊏
∼

I
, if p

a
−→ pi

a then q ⊒ q′ia
a

−→ qi
a and pi

a
⊏
∼

I
qi
a. By applying the induction

hypothesis, pi
a ⊑ qi

a and, since ⊑ is a precongruence, api
a ⊑ aqi

a and therefore
p =

∑

a

∑

i api
a ⊑

∑

a

∑

i aqi
a. Moreover, q′ia = aqi

a + ri
a and since ⊑ ⊆ I we have

I(p) = I(q) = I(
∑

a

∑

i q
′i
a ) = I(

∑

a

∑

i aqi
a + ri

a) and therefore we can use (RS)
to add all the subterms ri

a:
∑

a

∑

i aqi
a ⊑

∑

a

∑

i aqi
a + ri

a =
∑

a

∑

i q
′i
a . We can

now conclude that p ⊑
∑

a

∑

i aqi
a ⊑

∑

a

∑

i q
′i
a ⊑ q. ⊓⊔

As happened for plain simulations up-to, I-simulations up-to can only charac-
terise behaviour preorders that are coarser than the ready simulation preorder.
Besides, by definition, we must also have ⊑ ⊆ I.

Proposition 37 Any behaviour preorder ⊑ that satisfies ⊑ = ⊏
∼

I

⊑
is coarser

than the ready simulation preorder and must be included in the relation I.

Proof: By applying Definition 34 we have that any ready simulation is also
an I-simulation up-to any behaviour preorder ⊑, and therefore ⊑RS ⊆ ⊏

∼
I

⊑
=

⊑. Besides, I-simulations only relate pairs of processes in I, so that we have
p ⊏
∼

I

⊑
q ⇒ pIq. ⊓⊔

As in the characterisations of behaviour equivalences in Section 3.2, we have
just characterised the behaviour preorders that satisfy the hypothesis of The-
orem 36 in terms of themselves, but this is just the same idea used in the
original works by Milner and Sangiorgi [4,43] on classical bisimulations up-to.
Therefore, our (bi)simulations up-to can be used exactly in the same way: by

using a known part of the relation ⊑ we could generate, via ⊏
∼

I

⊑
, other pairs

in the relation.

In particular, we can also characterise a preorder in terms of a simulation up-to
its kernel equivalence, which is indeed a way of avoiding the circularity in the
characterisation in Theorem 36. It is interesting to observe that the situation
is in some way dual to that we had for behaviour equivalences, which could
be characterised by using the behaviour preorders that generated them, which
obviously are coarser relations. Now we have the opposite situation, and the
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(finer) behaviour equivalences will be enough to generate the corresponding
behaviour preorders, by means of I-simulations up-to them.

We first present an auxiliary result relating a preorder with the induced equiv-
alence relation. In our opinion this result, even if rather simple, is quite inter-
esting by itself.

Lemma 38 For every behaviour preorder ⊑ that satisfies the axiom (RS) and
is initials preserving, we have that p ⊑ q ⇒ q ≡ q + p.

Proof: If p ⊑ q then, since ⊑ is a precongruence with respect to the choice
operator, p + q ⊑ q + q, and therefore p + q ⊑ q.

To prove q ⊑ p + q it is enough to show that q|a ⊑ q|a + p|a, since ⊑ is a
precongruence wrt the choice operator, and if p ⊑ q then I (p) ⊆ I (q). But for
all a ∈ I(q) we have q|a ⊑ q|a +p|a, because ⊑ satisfies the (RS) property. ⊓⊔

All the preorders defining the semantics in the ltbt spectrum that are coarser
than the ready simulation satisfy the hypothesis of this lemma, since all of
them are initials preserving.

It is also interesting to note that the converse of the previous result is not
true in general. In order to have it, we need to reinforce our hypothesis by
considering only preorders that are finer than the relation I.

Proposition 39 For every behaviour preorder ⊑ that satisfies the axiom (RS)
and ⊑ ⊆ I, we have that p ⊑ q ⇔ q ≡ q + p ∧ pIq.

Proof: The left to right implication is essentially proved in Lemma 38.

For the right to left implication we have that pIq ⇒ p ⊑RS p+q and therefore
p ⊑ p+q. By hypothesis we also have q ≡ q+p, so p ⊑ p+q ≡ q, and therefore
p ⊑ q. ⊓⊔

We will not use the previous result in this section, however it is a clear inspi-
ration for one of our main results in Section 5, namely Corollary 52.

By using Lemma 38 we can now easily prove the following result.

Proposition 40 For every behaviour preorder ⊑ that satisfies the axiom (RS)

and ⊑ ⊆ I, we have p ⊑ q ⇒ p ⊏
∼

I

≡
q.

Proof: Applying Lemma 38, whenever p
a

−→ p′a and given that p ⊑ q, we
have q ≡ p + q

a
−→ p′a, and then the condition imposed by simulations up-to
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is satisfied. ⊓⊔

The following corollaries summarise the previous results.

Corollary 41 For every behaviour preorder ⊑ that satisfies the axiom (RS)

and ⊑ ⊆ I, we have that the relations ⊑, ⊏
∼

I

⊑
and ⊏

∼
I

≡
are the same.

Proof: From Theorem 36, Proposition 40 and the fact that ⊏
∼

I

≡
⊆ ⊏

∼
I

⊑
. ⊓⊔

Corollary 42 For every behaviour preorder ⊑ that satisfies the axiom (RS)
and ⊑ ⊆ I, the following correspondences hold:

p ≡ q ⇔ p ⊑ q ∧ p ⊒ q

⇔ ⇔

p h⊑ q ⇔ p ⊏
∼

I

⊑
q ∧ p ⊐

∼
I

⊑
q

⇔ ⇔

p h≡ q ⇔ p ⊏
∼

I

≡
q ∧ p ⊐

∼
I

≡
q

Proof: The equivalences in the right column are direct consequences of Corol-
lary 41. The rest of the equivalences in the diagram follow from the next
inclusions: ≡ ⊆ h⊑, ≡ ⊆ h≡, h⊑ ⊆ (⊏∼

I

⊑
∧ ⊐

∼
I

⊑
) and h≡ ⊆ (⊏∼

I

≡
∧ ⊐

∼
I

≡
).

The first two inclusions are obvious. For the third one we have that p h⊑ q
means that there is a bisimulation up-to ⊑ containing the pair (p, q). Any such
bisimulation is contained in the binary relation I, and therefore it is also an
I-simulation up-to ⊑, thus proving that h⊑ ⊆ ⊏

∼
I

⊑
. The rest of the inclusions

are analogous. ⊓⊔

Corollaries 41 and 42 apply to a wide class of process preorders. Considering
the ltbt spectrum, any behaviour preorder between failure and ready sim-
ulation satisfies the conditions and therefore we can apply these results to
them. Therefore, Corollary 42 provides a characterisation both in terms of
bisimulation-like relations and in terms of mutual simulation-like relations,
for any of the preorders between failure and ready simulation and the corre-
sponding equivalences.
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4.3 Back to Bisimulations Up-to and CI-simulations Up-to

Our results about simulations up-to (Section 4.1) and I-simulations up-to (Sec-
tion 4.2) are quite similar to those for bisimulations up-to in Section 3, but
they were obtained in an independent way. In particular, once we got the
characterisations of behaviour preorders by means of simulations up-to we re-
alized that it was very easy to relate them with the characterisations of the
corresponding behaviour equivalences by means of bisimulations up-to.

However, to obtain these characterisations we had to consider two separate
cases: first we studied the semantics that are coarser than simulation but finer
than the trace semantics, which includes only these two semantics: simulation
and trace semantics. Then we considered the semantics coarser than ready
simulation whose defining behaviour preorders are finer than the relation I.
This includes all the semantics in the ltbt spectrum between failures and ready
simulation.

But there are still two semantics in Table 1 that are not included in the
cases considered above: completed trace and completed simulation semantics.
In fact, there are three simulation semantics in Table 1: plain simulations,
completed simulations and ready simulations, and each one of them defines a
slice in the ltbt spectrum. This justifies the use of dotted lines in that table to
separate the three slices. We have already studied two of these slices. In this
section we will see that we can adequate the techniques used before, to cover
also the third slice.

Once all the semantics in the spectrum can be characterised by means of
simulations up-to, the main result in Section 3, namely Theorem 10, can be
now obtained as an immediate corollary.

To study the semantics coarser than ready simulation we introduced the con-
dition I. In a similar way, we define the relation CI that relates those pairs of
processes (p, q) such that I (p) = ∅ ⇔ I (q) = ∅. This relation allows us to de-
fine CI-simulations up-to a preorder ⊑. The CI relation will be used together
with axiom (CS) ax ⊑ ax + y that characterises the complete simulation
preorder.

Definition 43 For ⊑ a behaviour preorder, we say that a binary relation S
over processes is a CI-simulation up-to ⊑, if S ⊆ CI (that is, pSq ⇒ p CI q),
and S is a simulation up-to ⊑. Or, equivalently, in a coinductive way, when-
ever we have pSq, we also have:

• For every a, if p
a

−→ p′a there exist q′, q′a such that q ⊒ q′
a

−→ q′a and p′aSq′a;
• p CI q.
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We say that process p is CI-simulated up-to ⊑ by process q, or that process q
CI-simulates process p up-to ⊑, written p ⊏

∼
CI

⊑
q, if there exists a CI-simulation

up-to ⊑, S, such that pSq.

Let us now state without proof, since they are quite similar to those for I-
simulations, the main results we can prove for CI-simulations.

Theorem 44 For every behaviour preorder ⊑ that satisfies the axiom (CS)

and ⊑ ⊆ CI, we have p ⊏
∼

CI

⊑
q if and only if p ⊑ q.

Corollary 45 For every behaviour preorder ⊑ that satisfies the axiom (CS)
and ⊑ ⊆ CI, the following correspondence holds:

p ≡ q ⇔ p ⊑ q ∧ p ⊒ q

⇔ ⇔

p h⊑ q ⇔ p ⊏
∼

CI

⊑
q ∧ p ⊐

∼
CI

⊑
q

⇔ ⇔

p h≡ q ⇔ p ⊏
∼

CI

≡
q ∧ p ⊐

∼
CI

≡
q

Then we restate our Theorem 10 as a simple corollary.

Corollary 46 For all the behaviour preorders ⊑ defining the semantics in the
linear time-branching time spectrum coarser than the ready simulation (see
Table 1), we have that p h q if and only if p ≡ q.

Proof: We obtain the proof of this result as an immediate corollary of our
results on the characterisation of behaviour preorders by means of (adequate)
simulations up-to, simply by combining the results in our corollaries 32, 42
and 45. ⊓⊔

Note that although the corollaries used in the proof of Corollary 46 were
proved once we already had our characterisation of behaviour equivalences by
means of bisimulations up-to, namely Theorem 10, we did not use this result
at all in their proofs: we only used our results on the characterisation of the
behaviour preorders by means of simulations up-to.

As a matter of fact, we could obtain this indirect proof of our main result of
Section 3 not only for the semantics in the ltbt spectrum, but for any semantics
that satisfies the semantic conditions in Corollaries 32, 42 and 45. It is also
interesting to observe that we needed to restrict ourselves to action factorised
preorders when investigating bisimulations up-to, but we did not need this
hypothesis when working with simulations up-to. Nevertheless, requiring a
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preorder to be action factorised is not a big constraint at all, since this property
is satisfied by almost every reasonable semantic preorder in which one could
be interested.

5 Simulations Up-to an Equivalence and Canonical Preorders

All the results we have presented in the previous sections are based on the ex-
istence of a semantic preorder which satisfies certain properties. In many cases
these results relate a given preorder and its induced equivalence. However, as
we will show in this section, the technique of simulations up-to produces some
interesting results even if we do not have such a preorder to start from.

As we have discussed at the end of the Section 4, the results for simulations
up-to come in slices determined by the base simulation we consider in each
case. In order to avoid repetitions, in this section we just state and prove the
most difficult case, that corresponding to the slice determined by the ready
simulation semantics.

Therefore, we will study behaviour equivalences (see Definition 16) coarser
than the ready simulation equivalence. They are those that satisfy the follow-
ing axiom:

(RS≡) I (x) = I (y) ⇒ a(x + y) ≡ a(x + y) + ay

We recalled in Table 2 a complete axiomatization for the semantic equivalences
in the linear time-branching time spectrum, as presented in [6].

The first result that we present relates I-simulations up-to an equivalence
relation, and the application of choice to the processes related by it.

Lemma 47 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆ I,

we have that p ⊏
∼

I

≡
q ⇒ q ≡ q + p.

Proof: We proceed by induction on the depth of process p. If p = 0 then
I(p) = ∅ = I(q) and thus q = 0.

If p =
∑

a

∑

i api
a, whenever p

a
−→ pi

a then q ≡ q′ia
a

−→ qi
a and pi

a
⊏
∼

I
qi
a. By

applying the induction hypothesis, qi
a ≡ qi

a + pi
a and then aqi

a ≡ a(qi
a + pi

a),
since ≡ is a congruence wrt the prefix operator.

On the other hand, given that I(qi
a) = I(pi

a) we can use (RS≡) to obtain
aqi

a ≡ a(qi
a +pi

a)+api
a; therefore aqi

a ≡ aqi
a +api

a, and, adding all the subterms,
∑

a

∑

i aqi
a ≡

∑

a

∑

i aqi
a +

∑

a

∑

i api
a, that is

∑

a

∑

i aqi
a ≡

∑

a

∑

i aqi
a + p.
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Certainly, the process
∑

a

∑

i aqi
a may be not completely equal to q, but we can

use similar arguments to those in the proof of Theorem 36 to add the missing
subterms. We have that q′ia = aqi

a +ri
a and, since ≡ is a congruence wrt choice,

∑

a

∑

i(aqi
a + ri

a) ≡
∑

a

∑

i(aqi
a + ri

a)+p and therefore
∑

a

∑

i q
′i
a ≡

∑

a

∑

i q
′i
a +p.

Hence, as for every index i we have q′ia ≡ q, we conclude that q ≡ q + p. ⊓⊔

Now we can state and prove the characterisation of a given equivalence relation
by means of the corresponding simulations up-to.

Theorem 48 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆ I,

we have p ≡ q ⇔ p ⊏
∼

I

≡
q ∧ p ⊐

∼
I

≡
q.

Proof: The left to right implication is obvious. To prove the converse we use
Lemma 47 twice, getting p ⊏

∼
I

≡
q ⇒ q ≡ q + p and q ⊏

∼
I

≡
p ⇒ p ≡ q + p, thus

concluding p ≡ q. ⊓⊔

As a consequence, we also get a characterisation of the equivalences in terms
of bisimulations up-to.

Corollary 49 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆

I, we have p ≡ q ⇔ p ⊏
∼

I

≡
q ∧ p ⊐

∼
I

≡
q ⇔ p h≡ q.

Proof: By using Theorem 48 and the set inclusions ≡ ⊆ h≡ ⊆ (⊏∼
I

≡
∧ ⊐
∼

I

≡
).
⊓⊔

The characterisation in Theorem 48 tells us that any behaviour equivalence
can be defined by means of simulations up-to. Besides, and this is even more
important, in this way we define a particular preorder whose kernel is the
original equivalence. This preorder satisfies some interesting properties.

Proposition 50 For every behaviour equivalence ≡ that satisfies (RS≡) and
≡ ⊆ I, we have that

• ⊏
∼

I

≡
is a behaviour preorder that satisfies (RS),

• ⊏
∼

I

≡
⊆ I,

• the kernel of ⊏
∼

I

≡
is ≡.

Proof: ⊏
∼

I

≡
is a precongruence with respect to the choice operator because ≡

is so. It is quite easy to check the other two properties. ⊓⊔

As a consequence, given an equivalence, we have a way to characterise a par-
ticular preorder whose kernel is that equivalence.
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Theorem 51 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆

I, the preorder ⊏
∼

I

≡
is the only behaviour preorder that satisfies (RS) and is

contained in I whose kernel is ≡.

Proof: If ⊑ is a preorder satisfying the conditions above then we know from
Corollary 41 that ⊑ , ⊏

∼
I

⊑
and ⊏

∼
I

≡
are equal. ⊓⊔

This means that ⊏
∼

I

≡
is the canonical preorder generated by ≡ fulfilling all

the conditions above. This canonical preorder can be characterised in a simple
way in terms of the corresponding equivalence and the condition I that all of
them satisfy.

Corollary 52 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆
I, the preorder defined as p ⊑ q ⇔ q ≡ q + p ∧ I(p) = I(q) is another
characterisation of the canonical preorder generated by ≡.

Proof: In order to apply Theorem 51, we need to check that ⊑ satisfies (RS), is
contained in I and its kernel is ≡. We have the second condition by definition.
To prove the first one it is enough to see that for all processes p and q we have
ap ⊑ ap + aq, that is, ap + aq ≡ ap + aq + ap, what is true because ≡ is a
behaviour equivalence. Finally, p ⊑ q ⇒ q ≡ q + p and q ⊑ p ⇒ p ≡ p + q and
therefore p ≡ q. Besides, p ≡ q ⇒ p + q ≡ q ⇒ p ⊑ q . ⊓⊔

It is nice to find out that the “classical” preorders that appear in the literature
for the different semantics in the linear time-branching time spectrum coincide
with our canonical preorders.

Corollary 53 For every semantic equivalence ≡ in the ltbt spectrum between
failure equivalence and the ready simulation equivalence, the corresponding
preorder ⊑ is the canonical preorder generated by the given equivalence ≡.

Proof: All the preorders for these semantics (that appear in Table 1) satisfy
the conditions in Theorem 51, that is, they satisfy (RS) and ⊑ ⊆ I, and of
course their kernels are the corresponding equivalences ≡. ⊓⊔

Quite a number of results follow from the previous propositions and point
to a rich underlying algebraic theory. Just to give a flavour, we present the
following ones:

Corollary 54 For every behaviour equivalence ≡ that satisfies the property
(RS≡) and ≡ ⊆ I, we have ≡ = h

⊏
∼

I

≡

and ⊏
∼

I

≡
= ⊏

∼
I

⊏
∼

I

≡

.

Proof: The proof of both equalities follows immediately from Proposition 50
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and Corollary 42. ⊓⊔

To conclude this section we would like to comment the results in our Corollar-
ies 52 and 53. There are several preorders whose kernels are a given behaviour
equivalence. Amongst them we have the canonical preorder, as defined above,
the equivalence itself, or the so called canonical preorder in terms of lattice
theory, that is defined as p ⊑′ q ⇔ q ≡ q + p.

It can be seen that ⊑′ is not the same as our canonical preorder, which here
we will just denote by ⊑, for all the behaviour equivalences satisfying the
hypothesis of Theorem 51. For instance, for the preorders induced by the
ready simulation equivalence, we have 0 ⊑′ p for any process p, but if p 6= 0
then 0 6⊑ p. Applying Corollary 52 we have that p ⊑ q ⇔ p ⊑′ q∧ I(p) = I(q).
As a matter of fact, the only difference between ⊑ and ⊑′ lies in the set of
initial actions of the processes, but this is crucial to get the characterisation
of the corresponding preorders in Corollary 53.

Instead, in Theorem 28 and Corollary 31, we needed no condition on the
simulations up-to that we used to characterise the behaviour preorders that
satisfy the axiom (S). As a consequence, in this case our canonical preorder
and the lattice canonical one are the same. In particular, for trace preorder,
⊑T , and the simulation preorder, ⊑S, we have both p ⊑T q ⇔ q ≡T q + p and
p ⊑S q ⇔ q ≡S q + p.

6 Bisimulations and Simulations Up-to for Infinite Processes

The results in the previous sections were proved for BCCSP processes. In this
section we extend these results, considering processes to be (possibly) infinite
finitary trees and using the Approximation Induction Principle [39]. We will
use the same notation as for finite trees (prefix, choice, multiple choice. . . )
extended in the natural way.

To reduce infinite trees to (collections of) finite trees, we define an adequate
notion of approximation, that we call level continuity, and prove how level
continuous behaviour preorders lead to level continuous (bi)simulations up-to.
Once this result is stated, all our characterisation results can also be proved
for level continuous behaviour preorders, using standard continuity reasonings.
The definition of level continuity is rather natural, so that in particular every
behaviour preorder for the semantics in Figure 1 is indeed level continuous.

Definition 55 A behaviour preorder is level continuous if p ⊑ q if and only
if p↓n⊑ q↓n for all n, where p↓n is the result of pruning process p below level
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n, that is:

• 0↓n= 0
• p↓0= 0
• (

∑

apa)↓n+1=
∑

a(pa ↓n)

Note that p ↓n is always a finite process having depth at most n. Next we
prove a technical lemma stating that the number of equivalence classes, with
respect to the bisimulation equivalence, of processes having bounded depth is
finite. We use |A| to denote the cardinality of a set A and [p]=

B
to denote the

equivalence class of p with respect to bisimulation equivalence, =B.

Lemma 56 If the alphabet of actions Act is finite, for every natural number
n we have

|{[p]=
B
| depth(p) ≤ n}| < ∞

Proof: By induction on n. For n = 0, p = 0. For n > 0, if p =
∑

i api
a and

q =
∑

j aqj
a, then p =B q iff

• for all a and i there exists j such that pi
a =B qj

a,
• for all a and j there exists i such that pi

a =B qj
a.

Thus, p =B q iff for any action a, {[pi
a]=B

} = {[qj
a]=B

}, therefore, the elements
of {[p]=

B
| depth(p) ≤ n + 1} are in one to one correspondence with functions

in Act −→ P({[p]=
B
| depth(p) ≤ n}). And thus we conclude the proof by

applying the induction hypothesis. ⊓⊔

Then, for every behaviour preorder stronger than the trace preorder we have
the following finiteness result:

Lemma 57 If a behaviour preorder ⊑ is finer than the trace preorder (⊑⊆⊑T ),
for any finite process q the set of bisimilarity classes {[p]=

B
| p ⊑ q} is finite.

Proof: Since ⊑⊆⊑T we have that p ⊑ q ⇒ depth(p) ≤ depth(q) and that any
action in the alphabet of process p is also in that of process q. We are then in
the hypothesis of Lemma 56. ⊓⊔

Proposition 58 For every level continuous behaviour preorder ⊑, the equiva-
lence defined by the corresponding bisimulation up-to ⊑, h, is level continuous
too.

Proof: According to the definition, we have to prove that p h q iff for all n,
p↓nh q↓n. First we prove the left to right implication.

Let S be a bisimulation up-to ⊑, we will see that the relation Sf = {(p↓n, q↓n
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) | pSq} is also a bisimulation up-to ⊑. Indeed, whenever p↓n
a

−→ p′a ↓n−1, we
have also q ↓n⊒ q′ ↓n

a
−→ q′a ↓n−1, because of level continuity of ⊑, and since

p′aSq′a, we finally obtain p′a ↓n−1 Sf q′a ↓n−1.

Now we prove the right to left implication. Let us define the relation R =
{(p, q) | for all n p↓nh q↓n}. We will see that it is a bisimulation up-to ⊑. We
have that p

a
−→ p′a iff p↓n

a
−→ p′a ↓n−1, and then there exists q↓n⊑ q′n

a
−→ q′n,a

with p′a ↓n−1h q′n,a.

It is easy to check that for all m > n, p′a ↓n−1h q′m,a ↓n−1. Then, we define

Qm
n = {q′m ↓n | q ↓m⊒ q′m

a
−→ q′m,a and p′a ↓n−1h q′m,a} and because ⊑ is

weaker than bisimulation equivalence, we have that Qm
n is closed under =B.

We can now check that for all m′ > m, Qm′

n ⊆ Qm
n since if q′m′ ↓n∈ Qm′

n

then (q′m′ ↓m) ↓n= q′m′ ↓n and (q′m′ ↓m) ↓n∈ Qm
n . Now, applying Lemma 57,

Qm′

n /=
B
⊆ Qm

n/=
B

and therefore 0 < |Qm
n/=

B
| < ∞

We conclude that there exists a natural number m such that for any other
natural number m′, Qm′

n = Qm
n . Defining Qn = Qm

n for such an m, we also
have Qn = Qn′ ↓n for all n′ ≥ n. Then it is clear that there exists some
process q′ such that for all n q′↓n∈ Qn and therefore for all n q↓n⊑ q′ ↓n and
q′ ↓n

a
−→ q′n,a with p′a ↓n−1h q′n,a, so that we have both q ⊒ q′ and q′

a
−→ q′a

with p′a ↓n−1h q′a ↓n−1, thus proving that the pair (p′a, q
′
a) ∈ R, so that R is

indeed a bisimulation up-to ⊑. ⊓⊔

Exactly in the same way we can prove that whenever ⊑ is level continuous
then ⊏

∼
I

⊑
is also level continuous, and the same is true for both ⊏

∼⊑
and ⊏

∼
CI

⊑
.

Proposition 59 For every behaviour preorder ⊑, and the corresponding I-
simulation up-to ⊑, ⊏

∼
I

⊑
, if ⊑ is level continuous then ⊏

∼
I

⊑
is level continuous

too.

Proof: According to the definition of level continuity, we have to prove that
p ⊏
∼

I

⊑
q iff for all n, p↓n⊏∼

I

⊑
q↓n. First we prove the left to right implication.

Let S be an I-simulation up-to ⊑, then Sf = {(p ↓n, q ↓n) | pSq} is also an
I-simulation up-to ⊑. We have that Sf ⊆ I because S ⊆ I, for n = 0 we have
p ↓0= 0 = q ↓0, and for n > 0 we have I(p) = I(p ↓n). Moreover, whenever
p↓n

a
−→ p′a ↓n−1, we have q ↓n⊒ q′ ↓n

a
−→ q′a ↓n−1, because of level continuity of

⊑, and, since p′aSq′a, then p′a ↓n−1 Sf q′a ↓n−1.

Now we prove the right to left implication. Let us define the relation R =
{(p, q) | for all n p↓n⊏∼

I

⊑
q↓n}. Obviously we have R ⊆ I, since I(p) = I(p↓1).

We will see that it is an I-simulation up-to ⊑. We have that p
a

−→ p′a iff

p↓n
a

−→ p′a ↓n−1, and then there exists q↓n⊑ q′n
a

−→ q′n,a with p′a↓n−1⊏∼
I

⊑
q′n,a.
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It is easy to check that for all m > n, p′a ↓n−1⊏∼
I

⊑
q′m,a ↓n−1. Then, we define

Qm
n = {q′m ↓n | q ↓m⊒ q′m

a
−→ q′m,a and p′a ↓n−1⊏∼

I

⊑
q′m,a} and because ⊑ is

weaker than bisimulation equivalence, we have that Qm
n is closed under =B.

We can now check that for all m′ > m, Qm′

n ⊆ Qm
n since if q′m′ ↓n∈ Qm′

n

then (q′m′ ↓m) ↓n= q′m′ ↓n and (q′m′ ↓m) ↓n∈ Qm
n . Now, applying Lemma 57,

Qm′

n /=
B
⊆ Qm

n/=
B

and therefore 0 < |Qm
n/=

B
| < ∞.

We conclude that there exists a natural number m such that for any other
natural number m′, Qm′

n = Qm
n . Defining Qn = Qm

n for such an m, we also
have Qn = Qn′ ↓n for all n′ ≥ n. Then it is clear that there exists some
process q′ such that for all n q′↓n∈ Qn and therefore for all n q↓n⊑ q′ ↓n and
q′ ↓n

a
−→ q′n,a with p′a ↓n−1⊏∼

I

⊑
q′n,a, so that we have both q ⊒ q′ and q′

a
−→ q′a

with p′a ↓n−1⊏∼
I

⊑
q′a ↓n−1, thus proving that the pair (p′a, q

′
a) ∈ R, so that R is

indeed an I-simulation up-to ⊑. ⊓⊔

Thus for any level continuous preorder verifying the hypothesis of any of the
theorems in this paper the results of these theorems are also valid for infinite
processes. In particular, all the preorders for the semantics in Figure 1 are level
continuous and therefore all the results that we have for BCCSP processes are
also valid for all the processes defined by a finitary LTS.

Proposition 60 All the behaviour preorders defining the semantics in Fig-
ure 1 are level continuous.

Proof: We give the proof for two (extreme) representative examples:

The trace preorder ⊑T is level continuous: is p ⊑T q iff whenever p
σ

−→ then
q

σ
−→ iff for all n, p↓n

σ
−→ then q↓n

σ
−→, iff for all n, p↓n⊑T q↓n.

The ready simulation preorder ⊑RS is level continuous: We have to check that
p ⊑R q iff for all n, p↓n⊑R q↓n. For the left to right implication we define the
relation R = {(p↓n, q↓n) | p ⊑R q} that is a ready simulation since I (p) = I (q)
implies that I (p↓n) = I (q↓n) and if p

a
−→ p′ then p↓n

a
−→ p′↓n−1.

For the other implication we define R = {(p, q) | for all n, p ↓n⊑R q ↓n}, and
show that it is a ready simulation. First, I (p) = I (p ↓1), so that, whenever
pRq we have I (p) = I (q). Then, whenever p

a
−→ p′, we know that p ↓n

a
−→

p′ ↓n−1, for all n ≥ 1, and therefore there exists q′′n such that q ↓n
a

−→ q′′n with
p′↓n−1⊑R q′′n. Obviously, there exists some succesor of q that extends q′′n, that
is there exists q′i(n) such that q

a
−→ q′i(n) and q′i(n) ↓n−1= q′′n.

Since q is finitely branching there exists some q′ such that q′ = q′i(n) for
infinitely many n and, therefore, we can take q′ as q′i(n) for any n. Then
p′ ↓n⊑R q′ ↓n, for all n and therefore p′Rq′, proving that R is a ready sim-
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ulation containing the pair (p, q). ⊓⊔

Let us just give an example of how the generalised characterisation results
are stated and how they are easily proved as immediate corollaries of the
corresponding results for (finite) BCCSP processes, using the fact that the
involved behaviour preorders are level continuous. We consider, for instance,
our main result in Section 4, namely Theorem 36.

Theorem 61 For every behaviour preorder ⊑ that satisfies the axiom (RS)
and ⊑ ⊆ I, and for any two processes p and q defined by a rooted finitary
LTS, we have p ⊏

∼
I

⊑
q if and only if p ⊑ q.

Proof: Since ⊑ is level continuous we have p ⊑ q iff for all n p ↓n⊑ q ↓n.
But for any n both p ↓n and q ↓n are finite processes so that we can apply
Theorem 36 to obtain p ↓n⊑ q ↓n iff p ↓n⊏∼

I

⊑
q ↓n, and since ⊏

∼
I

⊑
is also level

continuous we finally obtain p ⊏
∼

I

⊑
q. ⊓⊔

7 Applications of the Coinductive Characterisations

As we already mentioned, a first application of our coinductive characterisa-
tions of the behaviour preorders and equivalences would be their direct use to
infer that some pairs of processes are related by the corresponding relations.
This is done by constructing a (bi)simulation up-to that contains these pairs,
based on a part already known of, either the corresponding equivalence, or
the preorder that generates it. Our first application below uses these ideas to
prove a simple property of trace semantics.

But at the moment we are more interested in those applications that are
related with our main motivation when undertaking this work, that was to
study the general properties of the different semantics for concurrent processes
and the relationships between them.

If we consider the way classical bisimulations are defined we observe that there
is first a (symmetric) local condition that relates the sets of initial actions of
any two related processes, which is mainly our condition I, and then the
coinductive hypothesis imposing that the derived processes p′ and q′ must
be related. Our (bi)simulations up-to proceed in a similar way, and although
the reduction by means of the reversed order ⊒ could change the initial set
of the reduced process, the fact that we only consider (bi)simulations up-to
behaviour preorders guarantees that no new initial actions can appear when
reducing a process. This property, even if apparently trivial, becomes quite
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powerful when preserved by the coinductive definition of (bi)simulations.

Our second application is much more interesting than the first and shows how
a general property of semantics can be proved once for all, without need-
ing to repeat the reasonings for each particular semantics. We are sure that
some other interesting applications will be soon discovered, and in fact you
can find in the conclusions of the paper the announcement of a forthcoming
paper where some quite recent results presented in [27] will be proved in a
more general and simple way, using our coinductive characterisations of the
semantics.

7.1 Coinductive Proofs of Properties of the Semantics

Next we consider the same example used by Klin to illustrate his results
in [34]. We prove that any process has the same traces as its deterministic
form. This result can be easily proved, by induction, for finite processes. But
we need to be careful when copying with infinite processes. Like Klin, we will
use coinductive reasoning to do it, but certainly our proof is simpler than that
in [34], although it is also true that Klin develops his approach in a framework
quite broader than ours.

Definition 62 For any process p =
∑

a

∑

i apa,i the deterministic form of p is
defined as Det(p) =

∑

a aDet(
∑

i pa,i).

We wish to prove that p and Det(p) are trace equivalent. We will do it by
using our bisimulation up-to technique. First we prove the following lemma.

Lemma 63 For any processes p and q we have that Det(p) ⊑T Det(p + q).

Proof: We prove something stronger, in fact Det(p) is simulated by Det(p+q).
Since Det(p) =

∑

a aDet(
∑

i pa,i), whenever Det(p)
a

−→ Det(
∑

i pa,i) we also
have Det(p + q)

a
−→ Det(

∑

i pa,i +
∑

j qa,j). ⊓⊔

Proposition 64 For any process p, p h⊑T
Det(p).

Proof: We will prove that the relation R = {(p, Det(p)) | p is a process }
is a bisimulation up-to ⊑T . Whenever p

a
−→ pa,i, then, by using Lemma 63,

Det(p) =
∑

a aDet(
∑

i pa,i) ⊒T aDet(pa,i)
a

−→ Det(pa,i). Besides, if Det(p)
a

−→
Det(

∑

pa,i), applying the axioms that characterise the trace preorder (x ⊑T

x + y, a(x + y) =T ax + ay) we have that p ⊒T

∑

i apa,i ⊒T a
∑

i pi and,
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therefore p ⊒T a
∑

pa,i
a

−→
∑

pa,i. ⊓⊔

If we examine in detail the proof above we see how we have only used the new
information about the trace semantics provided by Lemma 63 when construct-
ing the bisimulation up-to that shows that p and Det(p) are trace equivalent.
It is also interesting to observe that although we are proving the trace equiva-
lence between these two processes, we need the full power of the preorder ⊑T ,
since in general Det(p) and Det(p+q) do not have the same traces. Besides, we
can see how we have used the general ideas discussed above, since in order to
prove the trace equivalence between these two processes, what we have mainly
done is to prove that their sets of initials actions are the same, and then we
apply coinduction to get the rest.

7.2 Some Results on Axiomatic Characterisations

As an example of the possibilities that the up-to technique offers, in this
section we prove some results on the axiomatic characterisation of behaviour
preorders.

B RS PW RT FT R F CS CT S T

(x + y) + z = x + (y + z) + + + + + + + + + + +

x + y = y + x + + + + + + + + + + +

x + 0 = x + + + + + + + + + + +

x + x = x + + + + + + + + + + +

I(x) = I(y) ⇒ a(x + y) = a(x + y) + ay + v v v v v v v v v

a(bx + by + z) = a(bx + z) + a(by + z) + v v v v v v

I(x) = I(y) ⇒ ax + ay = a(x + y) + + v v v v

ax + ay = ax + ay + a(x + y) + v v v

a(bx + u) + a(by + v) = a(bx + by + u) + a(by + v) + + v v

ax + a(y + z) = ax + a(x + y) + a(y + z) + v v

a(x + by + z) = a(x + by + z) + a(by + z) + v v v

a(bx + u) + a(cy + v) = a(bx + cy + u + v) + v

a(x + y) = a(x + y) + ay + v

ax + ay = a(x + y) +

Table 2
Axiomatization for the Equivalences in the Linear Time-Branching Time Spectrum
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Corollary 41 states that a behaviour preorder (under some adequate con-
ditions) can be characterised by the I-simulations up-to the kernel of that

preorder, ⊑ = ⊏
∼

I

≡
. This result suggested to us the possibility of finding an

axiomatization for this preorder from that of the equivalence. We have found
that, if AE is a set of axioms that characterises a given equivalence ≡, we can
easily define an axiomatization for the canonical preorder ⊏

∼
I

≡
. The new set of

axioms can be defined by just adding the (RS) axiom to the axioms of the
equivalence: AP = AE ∪ {ax ⊑ ax + ay}. We formalise this in the following
theorem.

Theorem 65 For every behaviour equivalence ≡ satisfying (RS≡) and ≡ ⊆ I,
for which we have an axiomatization AE, we have that AP = AE ∪ {ax ⊑

ax + ay} is an axiomatization of the relation ⊏
∼

I

≡
.

Proof: We write AP ⊢ p ⊑ q when the inequality p ⊑ q is provable from AP .
We prove that AP ⊢ p ⊑ q iff p ⊏

∼
I

≡
q.

Soundness is straightforward: we have ≡ ⊆ ⊏
∼

I

≡
and ⊏

∼
I

≡
satisfies (RS).

The proof of completeness is similar to that of Theorem 36. We proceed by
induction on the depth of process p.

The base case is trivial: if p = 0 then I(p) = ∅ = I(q) and thus q = 0.

The inductive case: If p =
∑

a

∑

i api
a, whenever p

a
−→ pi

a then q ≡ q′ia
a

−→ qi
a

and pi
a

⊏
∼

I
qi
a. By applying the induction hypothesis, AP ⊢ pi

a ⊑ qi
a and

also AP ⊢ api
a ⊑ aqi

a and therefore AP ⊢
∑

a

∑

i api
a ⊑

∑

a

∑

i aqi
a. That is,

AP ⊢ p ⊑
∑

a

∑

i aqi
a. We also have that q′ia = aqi

a + ri
a, and given that I(q) =

I(
∑

a

∑

i q
′i
a ) = I(

∑

a

∑

i aqi
a + ri

a) we can use the (RS) axiom in AP to add
all the missing subterms ri

a: AP ⊢
∑

a

∑

i aqi
a ⊑

∑

a

∑

i aqi
a + ri

a, and since
∑

a

∑

i aqi
a + ri

a =
∑

a

∑

i q
′i
a , we can now conclude that AP ⊢ p ⊑

∑

a

∑

i aqi
a ⊑

∑

a

∑

i q
′i
a ≡ q. ⊓⊔

We can directly apply Theorem 65 to those equivalences in the ltbt spectrum
that satisfy the right conditions. In Table 2 appears an axiomatization for the
(finitely) axiomatizable equivalences in the ltbt spectrum. From these axioms
we can get an alternative axiomatization of the preorders in Table 1.

Corollary 66 Let us consider O ∈ {F, R, FT, RT, PW, RS}, we have a finite
axiomatization for the preorders ⊑O just by adding the axiom (RS) to the
axioms for ≡O.

Proof: The equivalences ≡O satisfy in the conditions of Theorem 65, and the
preorders ⊑O are in fact the canonical preorders, as proved in Corollary 53.
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⊓⊔

It is interesting to note that to prove the completeness of the axiomatiza-
tions in Table 1 elaborated proofs were needed in [6], whereas here we get
all these completeness results, once for all, based on the completeness of the
axiomatization of the corresponding equivalence.

Theorem 65 can also be applied to extend some other recent results on axiom-
atizations of semantics.

In [6] the axiomatizations of failure trace equivalence (FT) and ready trace
equivalences (RT) are both of them conditional (see Table 2). The existence of
a non conditional axiomatization was an open question. In [46] non-conditional
axiomatizations for these equivalences were studied. In particular, it was proved
that if the alphabet of actions is finite then there exists a finite equational ax-
iomatization for the process algebra BCCSP modulo ready trace equivalence.
Nothing is said about the preorder for this semantics. In fact, the axiom that
makes conditional the axiomatization for the ready trace equivalence condi-
tional is also used when defining the axiomatization of the ready trace pre-
order, and therefore that one is also a conditional axiomatization (see Table 1).
Probably the authors were not interested in the ready trace preorder, because,
in the past no connections were established between the axiomatizations of the
equivalence relations and those of the corresponding preorders.

Fortunately, the study of the theory of simulations up-to reveals that preorders
and induced equivalences are closely related, and from now on we can take
advantage of the characterisations we provide in this paper. In particular,
given that the ready trace equivalence satisfies the hypothesis of Theorem 65,
we can apply it to any axiomatization of it, and thus we can state the following
extension of the commented result in [46].

Corollary 67 If the alphabet of actions is finite there exists a finite equational
axiomatization for BCCSP modulo the ready trace preorder.

Proof: If we add the non conditional axiom (RS), ax ⊑ ax+ay, to the axiom-
atization given in [46] for the ready trace equivalence we get a non conditional
axiomatization for the ready trace preorder, as an immediate consequence of
our Theorem 65. ⊓⊔
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8 Conclusions and Future Work

In this paper we have studied in detail the notions of bisimulation up-to and
simulation up-to a preorder, by means of which we have got coinductive char-
acterisations of semantics, both for equivalences and preorders (for instance,
Theorems 10 and 36). In particular, we have characterised all the equivalences
and preorders associated to the semantics in the linear time-branching time
spectrum.

We have obtained several new results connecting semantic preorders with the
corresponding equivalences, and also some others relating bisimulations up-
to with mutual simulations up-to (for instance, Corollary 42). In fact, for
large families of semantics, including those in the linear time-branching time
spectrum coarser than ready simulation, the results for bisimulations up-to
may be obtained as a corollary of the corresponding ones for simulations up-
to.

A rather unexpected result was that given an equivalence relation we can
obtain a canonical preorder whose kernel is precisely the equivalence relation,
by means of simulation up-to it (Theorem 51). It is clear that we can obtain
the same equivalence as the kernel of many different preorders, but now we
can distinguish among them a canonical preorder which can be defined in
a systematic way, and has some interesting properties that come from the
homogeneous way in which it is defined. It is nice to find that for all the
semantics in the ltbt spectrum the so obtained canonical preorders are the
same as the ones we already knew from the literature.

As a consequence of our characterisation we have discovered new properties
that open the door to new techniques to produce generic proofs valid for all
these canonical preorders. In particular, we have obtained an axiomatization
of the canonical preorder from the axiomatization of the corresponding equiv-
alence (Theorem 65).

Once we have canonical characterisations of the preorders defining each of the
semantics in the spectrum, and since these preorders can be also defined by the
testing and the logical characterisations of the corresponding semantics, one
could claim that those characterisations are also canonical. However, it would
be nice to get a more direct justification of this canonicity, so that we could
talk about characteristic tests or logical formulae for each semantics, defining
them by means of a predicate on the full universe of tests or formulae. We
plan to continue working on this subject.

Besides, we will continue our work relating bisimulations and simulations. In
particular we are interested in translating our results to the pure coalgebraic
world, comparing them to those presented by Hughes and Jacobs in [32] and
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Hasuo in [47,48]. In more detail, the categorical notion of simulation studied
in [32] uses functorial orders that are introduced in the definition of bisimula-
tion in a way that resembles a lot the way bisimulations up-to were defined.
However, since these preorders are used in an asymmetric way, it is possible
that preorders that are not equivalences will be characterised in this way. Re-
cently, we have presented in [49] a large collection of proposals for distributed
bisimulations that we want to study in a common framework, using this notion
of categorical simulation.

Certainly, a natural extension of our work concerns the characterisation of
weak semantics that consider the existence of internal transitions. We have
already obtained some quite promising results in this direction that show
that things in the weak case are quite similar to those for strong semantics.
Probably the greatest difficulty to present our results in a systematic way,
as we have done in this paper for the strong case, is that the number of
possibilities to define these weak semantics is enormous, as one can see in [50].
In particular, an elegant algebraic presentation of a representative large family
of them, as that for the strong semantics presented in [6], is still missing.

Another interesting subject is the structure of the classification of semantics
for processes. The three slices that we distinguish in Section 4 and that appear
as dotted lines in Table 1 suggest to us that every behaviour preorder will be
bounded by a finer, univocally defined, simulation-like preorder that has a
coinductive definition, and can be axiomatized by means of axioms that are
refinements of the axiom (S) that defines plain simulations. Any behaviour
preorder that is not a simulation-like preorder will have other non simulation
axioms that define what we call its “static” part. We have found no references
in the literature to this “decomposition” of semantic preorders into a “simula-
tion” part and a “static” part, and we think that its study would contribute to
the clarification of the above cited structure. Based on our results for semantics
that are coarser than the ready simulation we have found that this simula-
tion part, that is ready simulation in this case, and their defining axioms, just
(RS) in this case, play an important role in the study of the properties of these
preorders. Trying to generalise our results we have introduced arbitrary con-
strained simulations that are defined just as ready simulations, but changing
the condition I in Definition 33 by any other adequate constraint, as we made
with CI (Definition 43) when defining completed simulations. We have indeed
already obtained quite satisfactory results in this direction that we expect to
publish shortly (see [51]).

It was only when we were preparing the final version of this paper that we
became aware of the recent publication of [27], where it is also established a
relation between the axiomatizations of the preorders that are weaker than
the ready simulation and those of the corresponding equivalences, for the
semantics in Van Glabbeek’s spectrum. In this case, it is explained how to
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obtain the axiomatization of the induced equivalence starting from that of a
preorder. One can find in their paper an extensive discussion relating their
results and ours, that they knew after the publication of [2].

But even if the results in [27] are quite interesting, we have discovered that
using our coinductive characterisations of the semantics in the ltbt we could
prove the main technical lemma that is the basis of the proof of the main the-
orem in [27], by means of a unique general proof, that besides is rather simple.
In this way we avoid more than twenty lengthy pages of detailed proofs, since
in [27] each of the semantics in the spectrum had to be considered separately
using their extentional definitions. Instead, we have a single (and more gen-
eral!) proof, exactly as we did in Section 7.2. This will be the basis for a
forthcoming publication where we show more applications of our coinductive
characterisations of the semantics, specially when we have to prove general
properties of them.
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