Generating Priority Rewrite Systems for OSOS
Process Language$

Irek Ulidowski2 and Shoji Yue®
aDepartment of Computer Science, University of Leicesteiyéisity Road, Leicester,
LE1 7RH, United Kingdom

bInformation Engineering Department, Nagoya Universityrd=cho, Chikuka-ku,
Nagoya 464-8601, Japan

Abstract

We propose an algorithm for generating a Priority Rewritet&y (PRS) for an arbitrary
process language in the OSOS format such that rewriting afgss terms is sound for
bisimulation and head normalising. The algorithm is inspiby a procedure which was
developed by Aceto, Bloom and Vaandrager and presentéarimng SOS rules into equa-
tions[2].

For a subclass of OSOS process languages representingofhidgeiours the PRSs that
are generated by our algorithm are strongly normalisingn(ieating) and confluent, where
termination is proved using the dependency pair and depegdgaph techniques. Addi-
tionally, such PRSs are complete for bisimulation on clqgeedess terms modulo associa-
tivity and commutativity of the choice operator of CCS. Wastrate the usefulness of our
results, and the benefits of rewriting with priorities in gead, with several examples.

1 Introduction

Structural Operational Semanti¢SOS) [31,3] is a method for assigning opera-
tional meaning to operators of process languages. The noamp@nents of SOS
are transition rules, or simply SOS rules, which describe tiee behaviour of a
composite process depends on the behaviour of its comppraggsses. A general
syntactic form of transition rules is called@mat A process operator is in a for-
mat if all its SOS rules are in the format, and a process lagguaten abbreviated
by PL, is in a format if all its operators are in the format. M@eneral formats have
been proposed and a wealth of important results and speicificand verification
methods for PLs in these formats have been developed [3].

* An extended abstract of this work appeared at CONCUR 20039js [

Preprint submitted to Information and Computation

The motivation and rationale for working with general PLig{heir formats) rather
than with specific PLs such as, for example, CCS [27], CSP §2d] ACP [10],
is that one can define and use new application-specific apsrahd features on
top of the standard PLs [11,12]. In order to realise the pgateof general PLs
software tools need to be developed. Such tools would agegpral PLs as input
languages and perform tasks such as simulation, model iclgeakd equivalence
checking, refinement and testing. Several such tools aireddt. For example, we
can useProcess Algebra CompilgB6] to change the input PL to tHéoncurrency
Workbench of New Centufit6]. The Process Algebra Compiler can accept any
general PL in theositive GSOSormat [13] and it produces a “front-end” to the
Concurrency Workbench for that PL.

Alternatively, we can utilise the existing term rewritingcatheorem prover soft-
ware tools to analyse properties of processes of generalTeLthis end several
procedures for automatic derivation of axiom systems amd tewriting systems
for PLs in several formats were proposed [2,1,14,38,8]. plesent paper con-
tinues this research, particularly on the generation ohtewriting systems for
bisimulation originated by Aceto, Bloom and Vaandragerd@f Bosscher [14],
and extends and generalises it further. We propose a neveguoe for deriving
Priority Rewrite Systemior bisimulation. Having considered many examples of
operators we believe that our work delivers the followingpiovements: (a) pri-
ority rewrite rules are no more complicated and are someatisr@pler than the
rewrite rules produced from the axioms as in [2,1,14], (l@ytemploy no more
than and sometimes fewer auxiliary operators (see Remaykand (c) the prior-
ity order that we use increases the effectiveness of termitnegvby reducing the
number of critical pairs and thus reducing the nondetesminherent in rewrit-
ing (see Section 7). We work wit@rderedSOS PLs [40], or OSOS PLs for short,
instead of the GSOS PLs [13] which have the same expressis¢#@]. The pro-
posed procedure generates term rewriting systems withoatgrorder on rewrite
rules instead of axiom systems or ordinary term rewritingfems as in [2,14]. We
illustrate this with an example. Consider the priority aer “6” [6]. For a given
irreflexive partial orders> on actions proces3(p) is a restriction ofp such that,
in any state op, actiona can happen only if no actidmwith b > ais possible in
that state. 1By = {b| b>> a}, then@ is defined in a natural fashion by the follow-

ing GSOS rules, one for each actianwhere expressions of the forrn-> in the
premises are callegegative premises

X &X' (X 2} pes,
B(X) 2 6(X)

The second procedure in [2], also described in [1], prodtieesollowing axioms
for @ where the basic operators of CCS, namely “+”, prefixing abil &re used.
Since atypical rule fob may have several copies of the argumeémt the premises

an auxiliary binary operator”, defined below, is used [2].

X2X Y 2lpes,
XAY 2 9(X)

The following axioms foB consist of the axiom that makes copies<caind uses the
auxiliary operator\, and the axioms for\ consisting of the distributivity axiom,
peeling axioms and inaction axioms:

B(X) = XAX
(X+Y)AZ = XAZ+YAZ
aXAbY+2Z) =aXAZ if =(b> a)
axXA(bY+2Z)=0 if b>a
aXA0 = a.0(X)
0AX =0

The priority operator can be defined equivalently, and pgestmaore intuitively, by
positive GSOS rules equipped with arderingto represent the priority order on
actions: the ordering has the corresponding effect to hegatemises in rules. This
is the idea behind th@rderedSOS format [40]. The rules for the OSOS version of
0 are, one for each,

X2 X

and the ordering> is such that, > r, wheneverb > a. The ordering prescribes
that ruler, can be applied to derive transitions@gf) if no higher priority rule, e.g.
rp, can be applied t@(p). This suggests an axiomatisation procedure: derive the
axioms from the SOS rules similarly to [2,1], and then “ofdbem appropriately
according to the ordering on the SOS rules. More precisalygrentate the axioms
from left to right to obtain the rewrite rules, then definpréority ordering which
is an irreflexive partial order (irreflexive and transitiva) the rewrite rules, and
then introduce a new type of rewrite rule to deal with the piyoordering. What
we obtain is an example ofRriority Rewrite Systenor PRS for short, originated
by Baeten, Bergstra, Klop and Weijland [7]. Our procedunesgates the following
PRS for the operatd. We have one rewrite rulekg,r for each pair ofa andb such

thatb >> a, and oned3 rule for each actiom:

68 : 6(aX+hbY+Z) - 8(bY+2)
Oan : 8(X+0) - 6(X)

Bgs: B(X+Y) - 6(X)+6(Y)
act 6(a.X) - ab(X)

Onit 8(X) -0

The priority ordering on the rewrite rules is defined as fwhtoegr > Bgn for all

rewrite rulesﬁpr, Bdn - Bgsand{Bys, } U{B5 | all a} > 6y;. We can represent this
ordering more pictorially. Below, - r’ if and only if there is an arrow fromtor’:

Opr: 0(aX+bY+2Z) - 0(bY+2)

v

Ban: B(X+0) - 6(X)

}

Bas: B(X+Y) = B(X) +8(Y) Bact: B(aX) - a.8(X)

\

Bnil : B(X) -0

Note, that we have fewer rewrite rules (schemas) than tlmrex{schemas) above,
and no need for the auxiliarx.

Our PRSs are sound for bisimulation, meaning that closeastean only be rewrit-
ten to bisimilar closed terms, and they are head normaliging main technical re-
sult here is Lemma 5.4 which describes how to construct thiéiay term and the
auxiliary rewrite rule. For OSOS PLs generating finite bebianss, in our case lin-
ear and syntactically well-founded OSOS PLs, the geneRiRSk are also strongly
normalising (terminating) and confluent. The proof of teration (Theorem 6.4)
uses novel dependency pairs and dependency graphs teetbnaqd generalises
the proof of termination by Bosscher in [14]. Finally, foetmentioned subclass of
OSOS PLs, the generated PRSs are complete for bisimul#tiar closed terms
are bisimilar, then they are reducible to the unique, moddoassociativity and
commutativity of+, normal form.

The paper is organised as follows. In Section 2 we recall #fmitions of OSOS
PLs and bisimulation, and Section 3 presents the basicsmofravriting, rewriting
modulo associativity and commutativity ef, and rewriting with priority order.
In Section 4 we introduce our basic PL and construct a PRSt.fdihe PRS is
strongly normalising, confluent, and sound and completéiimulation. Section

5 presents a procedure for generating PRSs for arbitrarySQ8@cess languages.
Termination of PRSs is discussed and a termination resulyfotactically well-
founded and linear OSOS PLs is given in Section 6. Sectiomfaats confluence
and completeness results for bisimulation. The last seaantains conclusions
and ideas for possible extensions.

2 Preliminaries

This section recalls some results concerning procesdesldd transition systems,
bisimulation, and the GSOS and OSOS formats. We assume ddagsvof basic
definitions and results for PLs as in [15,27,10] and for SGSga §.3,18].

2.1 Transition System and Bisimulation

Definition 2.1 A labelled transition system, LTS for short, is a struct{weA, —),
where? is the set of processed, is the set of actions anebC 2 x Ax P is a
transition relation

We model concurrent systems by process terms (processas) arke the states in
an LTS. Transitions between the states, defined by a trangiiation, model the
behaviour of systems.

P, the set of processes, is ranged overnbg,r,s,t,.... The setAct is a finite set
of actions and it is ranged over layb, c and their subscripted versions. The action
T is the silent action but we do not treat it any differentlynfrother actions. We
permitAct to have a structure: for exampdet may consist of action labels and co-
labels as in CCS [27]. We will use the following abbreviagowe writep 2 q for
(p,a,q) €— and read it as procegsperformsa and in doing so becomes process
g. Expressions of the forrp N g will be calledtransitions We write p 2 when
there is some such thatp -2 g, andp -3 otherwise.

We recall the definition of bisimulation [30,27]:

Definition 2.2 Given(?,Act,—), arelationRC 2 x 2 is abisimulationif, for all
p, g such thatpRqgand alla € Act, the following properties hold.

p-> p implies 3¢.(q> o andp'Rq)
q-> g implies 3p.(p-> p’ andp'Rd)

We write p ~ q if there exists a bisimulatioR such thatpRq

2.2 GSOS and OSOS Formats

The OSOS format [40] is an alternative to the GSOS format.[IBE reader can
find the motivation for the OSOS format and many examplessodjiplication in
[40]. It is important to state that the OSOS format is as exqve as the GSOS
format [40,41]. Before we recall the definitions of the fotswae introduce several
notions and notations.

Var is a countable set of variables ranged oveXbh, V.Y, Z, is a set of oper-
ators with arityn. A signature> is a union of al, and it is ranged over b¥, g,
The members 0Eg are calledconstantsO € 2 is the deadlocked process opera-
tor. The set obbpen termsver = with variables invV C Var, denoted byl'(Z,V),

is ranged over by,t’,.... Var(t) C Var is the set of variables in a terin The
set ofclosed termswritten as TZ), is ranged over by, q,u,v,.... In the setting
of process languages these terms will often be called psdeess. AZ context
C[Xy,...,Xn] is @ member ofl'(Z,{Xy,...,Xn}), i.e. an open term that contain at
most variables for 1 <i <n. If ty,...,t, areX terms, therClty, .. ., ty] is the term
obtained by substituting for X; for 1 <i <n.

We will use bold italic font to abbreviate the notation fogaences. For example, a
sequence of process terms . . ., pn, for anyn € N, will often be written agp when
the length is understood from the context. Given any binalgtionR on closed
terms andp andq of lengthn, we will write pRq to meanp;Rq for all 1 <i <n.
Moreover, instead of (Xy, ..., Xy) we will often write f (X) when the arity off is
understood. An equivalence relatienover a PL oveix is acongruencef p ~ g
impliesC[p| ~ C[q] for all p andq of lengthn and allZ contextsC[X] with n holes.

A closed substitutioms a mappingvar — T(Z). Closed substitutions are ranged
over byp, p’ ando; they extend tdl'(Z, Var) — T(Z) mappings in a standard way.
Fort with Var(t) C {Xy,...,Xn} we writet[p1/X, ..., Pn/Xn] Or t[p/X] to meant
with eachX; replaced byp;, where 1<i <n.

Definition 2.3 [13] A GSOS rule is an expression of the form

aij b
{X 2Yi denjes { X% tkekel,

: (1)
f(X) = C[X,Y],

whereX is the sequencky, ..., X, andY is the sequence of aflj, and all process
variables inX andY are distinct. Variables iiX are theargumentf f. Moreover,
| andK are subsets ofl,...,n} and allJ; andLy, fori € | andk € K, are finite
subsets oN, andC[X, Y] is a context.

Letr be the rule of the form (1). Operatdris theoperatorof r andruleq f) is the
set of all rules with the operatdr Expressions->t’ andt -, wheret,t’ € T(Z,V),

are calledransitionsandnegative transitionsespectively. Transitions are ranged
over by T andT’. If transitionT is X 2 X', we will sometime use the notation
—T to stand forX . A (negative) transition which involves only closed terrss i
called aclosed(negative) transition. The set of transitions and negdtaesitions
above the horizontal bar inis called thepremiseof r, and is written apre(r).
The transition below the bar inis theconclusion written ascon(r). Action a in
the conclusion of is theactionof r, written asact(r), and f (X) andC[X, Y] are the

sourceandtarget of r, respectively. Thé-th argumeni; is activein r if X; al i
or X by is a premise of. The set of ali such thatX; is active inr is denoted by

active(r). Moreover, tha-th argument off is activeif i € activgr’) for some rule
r’ for f.

Definition 2.4 A positiveGSOS rule (transition rule, or OSOS rule, or simply a
rule) is a GSOS rule witlK = 0. With the notation as in Definition 2.3, it has the
following form:

(% 2 ¥ Vil jes

a (2)
£(X) & CIX,YI.

Next, we recall the notion obrdering on rules [40]. It is a new feature which
allows the user to control the order of application of OSOBsfpositive GSOS
rules) when deriving transitions of process terms.

An ordering on OSOS rules for operatior>, is a binary relation over the rules for
f. For the purpose of this paper we assume without loss of gityehat orderings
areirreflexive(i.e.r > r never holds) antransitive In general there are situations,
which are described and motivated in [40], where non-ttavgsor not irreflexive
relations are useful orderings on rules. Expression r’ is interpreted as having
higher priority thanr’ when deriving transitions of terms withas the outermost
operator. Giverk, the relation>y, or simply> if X is known from the context, is
defined a4 J;cs >t. We will denote{r’ | r’ > r} ashigher(r), and generalise it to
higher(R) for sets of OSOS ruleR.

Definition 2.5 A GSOS PL is a tupl¢Z, A,R), whereX is a finite set of operators,
A C Act, Ris a finite set of GSOS rules for operatorszirsuch that all actions
mentioned in the rules belong fa An operator of a GSOS PL is called a GSOS
operator.

An Ordered SO%or OSOS, for short) PL is a tupl&, A, R, >), whereX is a finite
set of operatorsh C Act, Ris a finite set of OSOS rules for operatorsipwritten
asrules(%), such that all actions mentioned in the rules belong,tand> is an
ordering orrulesX). An operator of an OSOS PL is called an OSOS operator.

Given an OSOS process langudge- (X, AR, >), we associate a unique transition

relation— with G. The details are given in [40]. Having the transition relatfor
G we easily construdfT(X), A, —), the LTS forG. Bisimulation is defined over this
LTS as in Definition 2.2. Since GSOS and OSOS are equally egjwe hamely
every GSOS process language can be equivalently given aS@$@rocess lan-
guage and vice versa [40], bisimulation is a congruencelf@%0S PLs.

An OSOS PLH is adisjoint extensiomf an OSOS PIG, written asG < H, if the
signature, the rules and the ordering$ioinclude those o5, andH introduces no
new rules and orderings for the operator&in

Finally, we give two examples of process operators that nateral and intuitive
definitions in terms of OSOS rules.

Definition 2.6 Letr be a rule for an OSOS operatbrsuch thatpre(r) = {X; al
Yij |iel,jeJdi}. We say that rule appliesto f(u) if and only if the premises of

r are valid foru, namelyvu 3 for all relevant andj. Ruler is enabledat f (u) if
and only ifr applies tof (u) and no rules ihigher(r) apply tof (u).

Example 2.7 Consider the OSOS and GSOS definitions of the sequential@omp
sition operator “;”:

X2 X - YEY/ i {X ‘;a“)}aeActhY/ ;
—X'YiX/'Y Iax b, xb b, nb
’ ’ X’Y—)Y X,Y_)Y

Rulesr,, andr,y, for all actionsa andb, together with> defined byrg, > r,p, for
all aandb, comprise the OSOS formulation. Rulgs andrp, for all a andb, form
the GSOS definition.

Consider processgsandq with q LN Using the OSOS definition, procegg) can
perform an initial actiorb of g, inferred byr,y, if all rulesr,, are not applicable.
This occurs when the premises of these rules are not vadigh i% for all a € Act.
So, the ordering on the OSOS rules for ; has the same effecs@SGules , with
the negative premisesX 3} acact.

Example 2.8 Consider Hennessy and Regaiésmporal Process Languag€PL)
[19]. It has a delay operatot “|()" defined by the following GSOS rules, whese

is any action exceptand the actiow denotes the passage of one time unit. So, the
first rule below is really a rule schema for alt~ 1.

The OSOS formulation of |() is straightforward. The OSOS rules are
X2 X X 5 X!

oo a w —— IX](Y)>Y oo
IX](Y) 2 X IX](Y) 5 X

and the ordering is! > gp. The parallel composition operatd ‘of TPL a timed
extension of the CCS parallel with the following non-GSOru

XX Y3Y X|Y-»
XY S XY

The rule requires thap || g can pass time if botlp andq can pass time and are
stable and cannot communicate. The operator has the fogp@E50S formulation.

Its rules are precisely the CCS rules (we only display conination rule schema

Iaa) together with the following timed rule;,

X&X v3&Y XZX Y3Y
laa lo
XY S XY X|YSZX|Y

which is placed below all the rules fdrwith the actiont, namely the twa-rules
and all the communications ruleg;. The GSOS formulation of the operator is less
natural: see [41].

Most of the process operators that are definable by GSOS witesnegative
premises have OSOS formulations which are as natural argieeffias those of
the sequential composition and the priority operatorsusised above. The exam-
ples are priority choice from Section 4, action refinemerdrafor [40], the hiding
operator of ET-LOTOS [24], several delay operators [2®]L%nd several timed
extensions of traditional operators: for example paralehposition ofTPL, and
hiding and sequential composition of CSP [33,35].

2.3 Classes of GSOS and OSOS Operators

The axiomatisation algorithms in [2] produce several typkkaws (axioms) for
GSOS operators depending on the form of their SOS definitibhsee types of
SOS definitions, and hence three classes of operators, fareadismooth distinc-
tive anddiscarding Our PRS algorithm relies also on partitioning OSOS opesato
into similar classes. We identify two classé&®e of implicit copieperators and
simply distinctiveoperators. In order to compare the algorithms for the GSGS PL
and the presented algorithm for the OSOS PLs we state andagertiye definitions

of the mentioned classes of operators.

A GSOS rule is smooth [2] if it has the form

{xi in }iel {XkE)'I’('I> }keK,IeLk
f(X1,...,%) = CIX,Y],

wherel andK are distinct sets andJK = {1,...,n}, and noX; appears iiC[X, Y]
wheni € 1. A GSOS operator is smooth if all its rules are smooth.

Multiple occurrences of process variables in the (posifiwemises and in the target
of SOS rules are callecopies They are eitheexplicit or implicit copies [37,40].
Given a ruler as in Definition 2.4, explicit copies are the multiple ocemtes of
variablesy;j in the targeC[X, Y] and the multiple occurrences ¥f in C[X, Y] for

i ¢ 1. The implicit copies are the multiple occurrencesXpin the premises of
and the occurrences, not necessarily multiple, of vargai§len C[X,Y] fori e I.
Consider the following ruley:

a a a
X121 X2V Xo 2 Yo

h(X1, X, X3, Xa) = g(Xo, X3, X3, X4, Y11, Y11)

The multiple occurrences of; in the premises of}, are implicit copies, and the
occurrence oK; in the target is also an implicit copy (&%). The occurrences of
X3 andYi; in the target are explicit copies. There are no implicit anderplicit
copies ofXy in ry sinceXy does not appear in the premises.

Definition 2.9 A rule with no implicit copies idree of implicit copiesAn OSOS
operator idree of implicit copiesf its rules are free of implicit copies.

We notice that smooth GSOS rules can be defined using thennotiamplicit
copies: A GSOS rule of the form (1) is smooth if it has no imipkopies,| andK
are distinct sets andJK = {1,...,n}. Consequently, the following results hold.

e If a GSOS operator is smooth, then there is an OSOS formulafithe operator
which is free of implicit copies [40].

e The converse is not valid: There are non-smooth GSOS opsnatwse OSOS
formulations are free of implicit copies.

The second result holds for non-smooth GSOS operators wiaih rules with ar-
guments that appear in both positive and negative prenlisespriority operatof
and the timed version of the parallel operator of TPL (Exan$hB) are examples
of GSOS operators which are not smooth and which have OS@%ufations that
are free of implicit copies. Further examples are the hidipgrators of the dis-
crete time versions of CSP [35] and ET-LOTOS [24] given in][ddd recalled in
Example 5.11.

10

The next class of GSOS operators used by the axiomatisataoegures in [2]

are the distinctive operators: a smooth GSOS operatsrdistinctive if, for each

argument, the argument either appears in positive premises of aikitian rules

for f or in none of them, and also, for each pair of different rulasff, there is

an argument for which both rules have the same positive geebut with a differ-

ent action. The prefixing, renaming and restriction opesatd CCS are distinctive
operators, whereas the choice operator and the parallehdtopef CCS, and se-
guential composition operators are not distinctive. Wel sfs& a similar notion:

Definition 2.10 An OSOS operatof which is free of implicit copies isimply dis-
tinctiveif the ordering on its rules is empty and, for each argunngiiie argument
either appears in premises in all transition rulesffar in none of them, and also,
for each pair of different rules fof, there is an argument for which both rules have
the same premise but with a different action.

3 Term Rewriting Systems

We recall the basic notions of term rewriting [22,5]. A TernevRRiting System
(TRS)R is a pair(Z,R) whereX is a signature and R is a setrefluction rulesor
rewrite rules. We associate a countably infinite set of variadble Var with each
TRS. A reduction rule is a pair of ternfs s) overT(Z,V) and it is written a$ — s.
Two conditions are imposed on the terms of reduction paissnot a variable, and
the variables of are also variables af namelyvar(s) C var(t). Often a reduction
rule has a name, for examplgand we writer it - s.

A reduction ruler :t — scan be seen as a prescription for deriviegritesot — os
for all substitutionso, where a rewrite is a closed instance of a reduction rule. The
left-hand sideot is called aredex more precisely-redex. The right-hand sidesis
called acontractumA ot redex may be replaced by its contractasin an arbitrary
contextC[X] giving rise to areduction stefone-step rewriting)C|ot| -, C[oS].
We call -, theone-step reduction relatiogenerated by. The one-step reduction
relation of a TRSR , denoted by-, or simply by -, is defined as the union of;
for all r € R. LetR be a set of rewrites. The closure Rfunder closed contexts is
denoted by-g. The reflexive and transitive closure of (-R) is calledreduction
(R-reduction and is written as+» (—R). If t - s (t »r 9), thensis called areduct
(anR-reducj of t. A reduction of termf (t1,...,t,) is internalif it occurs solely in
the subtermsy, . .. ,t, leaving the head operatdrunaffected.

When no reduction step is possible from a tdfmwe say that is anormal from
This happens whetrhas no redex occurrences. A term is callaghkly normalising
if is can be reduced to a normal formjs strongly normalising(terminating if
it has no infinite reductions; andis calledconfluentif any two reducts ot are
convergent(or joinable), namely have a common reduct. Recall, thaindt are

11

joinable, written a$ | s, if they have a common reduaf namelys - u andt — u.
A TRS is weakly normalising, strongly normalising and coefitif all its terms
have these relevant properties.

The notions that are very useful in proving confluenceoaexlapandcritical pair.
Two reduction rulesg : | —r andry :1” - r’ overlap if and only if there is a non-
variable subterm of that can be matched with an-redex (or vice versa). More
precisely, there is some conté3{X] and a non-variable termsuch thal = D|[s|
andos = pl’ for some substitutions andp. Next, consider a pair of overlapping
reduction rulesg: | —randry:1” - r’. We shall assume thatandp are such that
os= pl’ is a most general common instancesaindl’, and thato is minimal. The
pair of one-step reducts of the outer redéx= oD|pl’] that arises from this overlap,
(oD[pr'],or), is called a critical pair. In order to prove confluence we wie the
result due Knuth and Bendix [22] that states that if a TRSrisngfly normalising,
then it is confluent if and only if all its critical pairs arerogergent.

3.1 Rewriting modulo AC

We assume a knowledge of basic notions of term rewritingaagXample, in [22].

The application of term rewriting in concurrency is sometwt@mplicated by the
need to preserve the commutativity and associativity ohtireeterministic choice
operator+. These properties of are represented by the equatieasande:

e X+Y =Y+X
e: X+(Y+2Z)=(X+Y)+Z

The equations cannot be oriented without losing the nosimgliproperty. For ex-
ample, if we turng; intoX+Y - Y+ X, thent+s - s+t -t+s - ---. Therefore,
we shall use term rewriting modulo the commutativity and dlssociativity of+

in this paper. We denote the axiomsande, by AC and the equivalence class of
termst underAC by [t]ac. For termg,t’ andssuch that € [t'|acif t' - s, then we
shall writet -ac sand[t|ac —ac [Sac - We defing —ac sand[t|ac ~ac [Sac as the
appropriate transitive reflexive closures-efc. The internal reductions af-ac s
and|t]ac ~ac [ac are defined in the corresponding way to the internal redostio
of —. Henceforth, we drop all subscripA€.

Example 3.1 Consider a fragment of CCS with the signatbire {(0,0), (+,2)} U
{(a.,1) | a€ Act}, whereOQ is the deadlocked process operatomare the prefixing
with actionsa operators, for alh € Act, and+ the CCS choice operator. The closed
terms overz represent finite trees. L€E, R) be a TRS with the following set R of

12

reduction rules:

ri: X+0 - X
rh: X+X - X

Terma. X + (a.X+0) reduces t@. X as follows:a. X+ (a.X+0) -y, aX+aX -,
a.X. There is another reduction modd@toa. X: a. X+ (a.X+0) = (a.X+aX)+
0 -1, aX+0 -, aX. Hence[a X+ (aX+0)] - [aX].

(Z,R) is strongly normalising. Interpred, a.X and X +Y as polynomials 2, 2
andX +Y to obtain polynomial termination modul&C. Our TRS is also confluent
moduloAC. Reduction rules; andr; have a simple overlap which replacésvith

0. Now, we havéd+0 -, 0and0+0 -, 0. Hence, there is only one critical pair
([0],[0]), and it is joinable.

3.2 Priority Rewriting

As transition rules for process operators can be equippt#dosilerings that indi-
cate which transition rules to apply first, reduction rulaa also have an ordering
associated with them. This ordering, callpdority order, specifies the order in
which rewrite rules are to be used to rewrite a term. Thidusstitated by the fol-
lowing simple example.

Example 3.2 The TRS from Example 3.1 is now equipped with a priority order
> defined byry > ro. As before,a. X + (a.X +0) — [a.X] because. X + (a.X +

0) -, aX+aX, and sincea.X cannot be reduced @ a.X +a.X then reduces
to a.X by ruler,. However, the second reduction from Example 3.1 is not corre
(intended) in this new setting. AftecX + (a.X +0) = (a.X +a.X) 4+ 0 we see that
bothry andr, can be applied; but sinag has priority overr, we must applyrq:
(a.X+aX)+0 -, a.X+aX. Now, onlyr, can be applied.

Next, consider ternt = (a.X 4+ 0) + (a.X + 0). The term is arr,-redex, it is not
anrj-redex although it containg-redexes. We may wish to reduce the term with
ro ahead ofr;. This is not intended in the new setting: we must either ugbdri
priority ry to reduce subtermas X +0to a.X first, or useAC to convert to r1-redex
((a.X+0)+a.X) + 0that can be reduced as follows:

[(aX+0)+aX)+0] -, [(aX+aX)+0] -, [aX+aX] -, [aX].

In general, a rewrite rule, with a lower priority tharr, can be applied to term
in favour ofr4, if no internal reduction (reduction sequence leaving head operator

13

unaffected) modul@C of t can produce a contractum that israrredex. We recall
the basic notions of term rewriting with priority [7,34,32]

Definition 3.3 A Priority Rewrite System, or PRS for short, is a tuple T,),
where(Z,T) is a TRS and- is a partial order on T callepriority order. Let » =
(%, T,>) be a PRS, and I&® be a set of rewrites fap, namely closed substitutions
of reduction rules ofr. The rewriter :t — sis correctwith respect tdR (modulo
AC) if there is no internal reductioft] g [t'] and no rule’ : t’ - ' € Rsuch that
r’ = r. Ris soundif all its rewrites are correct w.r.R. Ris completéf it contains all
rewrites of? which are correct w.r.R. ¢ is well-definedf it has a unique sound
and complete rewrite set; this set is called $kenanticeof ¢.

A PRS is well-defined if the underlying TRS is strongly norisialg [7]. Hence,
the PRS from Example 3.2 is well-defined. It is also strongiynmalising by the
result below which follows by a simple proof by contradictio

Proposition 3.4 If the underlying TRS of a PRS is strongly normalising modulo
AC, then the PRS is well-defined and strongly normalisinguicodC.

The PRS in Example 3.2 is confluent because, althoygimdr, overlap, the pri-
ority order disables,, thusO+0 -, O is the only reduction fron® + 0. Hence,
there are no critical pairs.

4 Basic Process Language

In this section we define a simple process language which extension of the

process language for finite trees from Example 3.1. It costai new operator,
calledpriority choice which is denoted byrs”. We introduce a PRS for this lan-
guage and show that it is sound and complete for bisimulalibrs language and
its PRS are the foundations on which we shall build PRSs fatrary OSOS PLs;

the language plays the role corresponding to tha&eTREE in [2].

Definition 4.1 Basic Process Language is an OSOS PL(3g,A R, >), where
Sp=20UZ1UZWith2g= {(0, 0)}, 21= {(a., 1) ‘ ac A} andX,; = {(—l—,Z), (D, 2)},

A Ciin Act, andR and> are the set of transition rules and the ordering on tramsitio
rules, respectively. The rule schemas for the prefixingatpes and the two choice
operators are

aX—=X
ax Y2y & X Y5y
fae ———— I,
X+Y 32X X+Y3Y XY 3X ¥ xpy Sy ¢

14

+ice: X+ X - X

Ddn: (X4+0)>Z - X>Z
Daa : X+Y)>Z - X>Z+4Y>Z

Dact: aX>Y S aX

+dn > +Fice and g1 > >gg and {>ds, act} > il

Fig. 1. Rewrite rules and the priority order fBr

and the ordering isy. > r.¢ for all actionsa, c. The prefixing operators bind stronger
thant>, which in turn binds stronger than.

B generates the LTB= (T(Xg),A, —). Bisimulation oveB is defined accordingly.
Let 8 be the PRS foB defined in Figure 1. Notice that reduction rulegn, +ice
(idempotene) andr> 4 are sound for bisimulation on their own by (distribu-
tivity over 1st argument) is not sound on its own. Fordt = 0, oY = a.0 and
0Z =Db.0. Thena((X+Y)r>Z) ~a0, oX>2Z+Y>Z) ~a0+b.0and, clearly,
a.0 £ a.0+b.0. However, putting>4q belowr>gn1 solves this problem asgyg can
only be applied when neitheX noraY reduces td.

Definition 4.2 Let G = (£,A,S >) be an OSOS PL. Let = (X, T,) be a well-
defined PRS with its unique sound and complete rewritdRsét rewritet — s of
R, wheret ands are closed terms, issound for bisimulationf t ~ s. A rewrite
rule T rg: | - rissound for bisimulation if evemg-rewrite, which is correct with
respect to the semantics®f is sound for bisimulatione is sound for bisimulation
if all its rewrite rules are. The s&is complete for bisimulatioif whenevert ~ s,
thent | s. 2 is complete for strong bisimulation if its rewrite dets.

Theorem 4.3 3 is strongly normalising and confluent modulo AC.

PROOF. To show strong normalisation af it is enough to prove that the under-
lying TRS of 8 is strongly normalising modulAC. We select polynomial interpre-
tations as follows: interprél, a.X, X +Y andX>Y as 2 2X, X+Y + 1 andXY.

It can be checked that for each rewrite rule in Figure 1 thigmpamial interpre-
tation makes the right-hand side strictly smaller than #feHand side for natural
numbers greater than one. Since equati®@sire also satisfied by this polynomial
interpretation the considered TRS is strongly normalisnagluloAC.

Since the PR is strongly normalising it is sufficient to show that all wél
pairs are joinable in order to obtain confluence. There algtbree critical pairs:
{(0>2,02), (X>Z,X>2Z), (X>Z,X>Z+X1>Z)}. We easily see that they
are joinable. There are other overlaps between the rulgs foir example the over-

15

lap betweentg, and 4. This overlap would seem to lead to the critical pair
(X>2Z, X>Z+0rZ), which clearly is not convergent and not sound for bisim-
ulation. However, since-gn1 > >qq the term(X + 0) > Z can only be rewritten
with gy to X > Z, and not with>44 . Such overlaps do not produce critical pairs:
they show how priority order decreases the nondetermirtisitris inherent in term
rewriting. O

Normal formsandhead normal formgabbreviated to nf and hnf, respectively, to
distinguish them from the normal forms in term rewritingeowa PL that extends
B are defined as followd) is in nf; if t is in nf, thena.t is in nf for all relevanta;
and ift ands are in nf, thert +sis in nf unlesg ands are syntactically equal or
eithersort is 0. For head normal form§ anda.t are in hnf for any term, and ift
andsare in hnf, thert 4 sis in hnf unlesg andsare syntactically equal or either
ortisO.

Theorem 4.4 8 is sound and complete for bisimulation.

PROOF. Sinces is strongly normalising it is well-defined [7]. L&be the rewrite
set of 8. The soundness for bisimulation of the rewrite rules in Fegl is clear
except possibly for-qq andr>p;. Without the priority order these rewrite rules
are clearly unsound. In general, the orderiagy > >gg ensures that-gg can
be applied only when neither the term substitutedXanor the term substituted
for Y can be reduced t0. It clear that for such substitutionsyg is sound for
bisimulation. Finally>n; can be applied to reduce atepw-qif pis not reducible
to either a sum of subterms or an action prefixed term. Hemoayst be0.

For completeness assurpe- q for closed terms andq over 3. By Theorem 4.3
we know that, for every closed tertrover B, there exists a unique normal forsn
such that —g s. Also, we easily show that a closed term otels a normal form
w.r.t. rewriting if and only if it is in nf. Hence, there aretes p’ andd’ such thatp
B-reduces tq/, q B-reduces taf, andp’ andd are in nf. Since rewriting is sound
for bisimulation we gep’ ~ ¢. Now, we can show that’ andq/, which are in nf,
are equal modulédC. Hence,p’ | d and thusp | g as required. O

In the next section we show how to generate PRSs for arbitvaltyfounded OSOS
PLs that extend disjointly our languaBe The proof of completeness of such PRSs
uses the above completeness resul8for

16

5 Rewrite Rules for OSOS Operators

Operators of an arbitrary OSOS PL can be partitioned, acogtd their OSOS def-
initions, into three disjoint sets: (1) operators that arefree of implicit copies, (2)
operators that are free of implicit copies and not simplyidicsive, and (3) simply
distinctive operators. We describe the type of rewritegw@ad priority orderings
for each of these types of operators (and auxiliary opesatorthe following three
subsections. Finally, we introduce our algorithm for gatieg PRS for arbitrary
PL in the OSOS format.

5.1 Operators with implicit copies

If an OSOS operatoff,n) is not free of implicit copies, then we can construct a
free of implicit copies OSOS operatff®, m), with m > n, that does the job of.

Lemma 5.1 Let G be an OSOS PL with signatuifelLet? = (%, R,>) be a well-
defined PRS for G that is sound for bisimulation. Supgdse) € Z is an operator
not free of implicit copies. Then, there is

¢ adisjoint extension of Gf G with a free of implicit copies operatéf ¢, m) such
that m> n,

e a PRSP’ = (ZU{f°},RU{fcopy}, =) with the newcopying rewrite rule below,
whereX is some vector of n distinct variables aids a vector of m variables
fromX,

feopy: F(X) - FE(Y),

and the PR®’ is sound for bisimulation.

PROOF. Correspondingly as for GSOS operators which are not smoa¢htal
having implicit copies: see proofs of Lemmas 5.1 and 5.2 n [0

As an example consider operattx 4) from Section 2.4. The operator has implicit
copies of its first two arguments and the operdtgrthe free of implicit copies
version ofh produced by Lemma 5.1, uses extra two arguments as follows:

a: a: a
XEBY XEEYe X3 B Yy

hS(XE, X2, X3, X2, X3, X4) 2 (X2, X3, X3, X4, Y11, Y11)

The copying rewrite rule foh is h(Xy, Xo, X3, X4) — h®(Xg, X1, X2, X2, X3, Xa).

17

Remark 5.2 The axiomatisation algorithm from [2] requires the use Baxi copy-
ing operators for non-smooth operators that have no immlapies and test some
of their arguments both positively and negatively (LemntaiB.[2]). The exam-
ples of such operators abdrom the Introduction and the timed version of parallel
operator of TPL in Example 2.8. Since we use orderings orsrinstead of nega-
tive premises, our algorithm does not need to use auxiliapying operators and
rewrite rules for the mentioned type of operators: for exieynwe do not need the
auxiliary operator/A to deal with®. So for these types of operators our method
produces fewer auxiliary operators and rewrite rules thamtethod in [2].

5.2 Operators with no implicit copies and not simply distine

If an operator(f,n) is free of implicit copies and not simply distinctive, then
ruleg f) and the ordering can be partitioned into a number of setsrgdlgidistinc-
tive rules that are unordered among themselves. The rdesdifferent sets may
be ordered. Such sets define auxiliary (simply distinctofg@rators and we shall
have a rewrite rule corresponding to the distinctifying lawW2]. Firstly, we need
the following notation.

Definition 5.3 Let G be an OSOS PL with signatubethat contains operators
andr>. Auxiliary formof terms ovelG is defined using the notion gum termsas
follows:

(1) f(X)isasumtermforeache Z\ {+,>}; if sandt are sum terms, thents
is a sum term.

(2) If sandt are sum terms, thest>t is in the auxiliary form; ifsis a sum term
andt is a term in the auxiliary form, thesH-t,t +sandsr>t are terms in the
auxiliary form.

Note that ifsis a sum term antlis an auxiliary term, thehr> sis not necessarily
in auxiliary form, as is witnessed kyf > f' + f”) > g. Terms in the auxiliary form
will be called auxiliary terms.

Lemma5.4 Let G be an OSOS PL with signatu¥esuch thatB < G. Let? =
(Z,R,>) be a well-defined PRS for G that is sound for bisimulation.p®sp
(f,n) € Zis an operator with no implicit copies which is also not signgistinctive.
Then, there is

¢ a disjoint extension Gof G with | simply distinctive operatorf;,n), thus cre-
ating a new signaturg’,

e an auxiliary term AuxiliaryTerify(X), ..., f|(X)] built from all operatorq fi, n),
+ and > and involving only those operators, and

e a PRSr' = (¥, RU{faux}, =) with the newauxiliary rewrite rule below which

18

is “unordered” with respect to the rewrite rules in R
faux: F(X) - AuxiliaryTermfi(X),..., fi(X)],

and the PR®’ is sound for bisimulation.

PROOF. We describe procedures to find the required distinctive aipes and
the auxiliary term, respectively, and then we show the soass of the auxiliary
rewrite rule. The details are given in Appendix ACQ

It is clear from the proof that when the ordering on rules fas empty, then the
form of the auxiliary term is simply a sum:

Corollary 5.5 LetG, # and(f,n) be as in Lemma 5.4. If the ordering on rules for
f is empty, therAuxiliaryTermif;(X), ..., fi(X)] = T1_; fi(X).

The rest of this subsection is devoted to examples thatriditesthe application of
the procedures for the derivation of the auxiliary term anxilgary rewrite rule.

Example 5.6 Let B be extended with || the parallel composition operator of
CCS. The operator is not simply distinctive but free of imjplcopies. Assume
that, for eacha € Act, we havea € Act anda = a. Following the Auxiliary Term
Generation Procedure we partition the rules|fanto three sets: rules for the first
argument, rules for the second argument and the commuoricaties. The result-
ing auxiliary operators are the left-merge, written g% the right-merge, written
as ‘", and the communication merge, written d%§ as in [10,2]. The defining rule
schemas for these operators, foraadt Act, are as follows:

X2 X Y &Y X&X Y3Y
XY 23X |Y XY 2 XY XY S X Y

We assume that prefixing binds stronger than the above tipe®iors, and they
in turn bind stronger thas andr>. Since there is no ordering on the original rules
for || there is no ordering between the rules for the three auyibierators. The
initial and the final seBis {(0,{||}), (0,{]}), (0,{|})} (i.e. the iteration routine
does not aItelS):Asee /A\ppegc\jix A. There is a single equation of the form (A.1)
namelyAT = {|[}+ {||} + {|}. Moreover, there are three equations of the form
AI3):A{ =X Y, {} =X]Y,and{|} = X | Y. Replacing the constants with
their definitions, we obtain the auxiliary ter| Y + X |Y + X |Y and the
auxiliary rewrite rule:

XY = XY + XY + X]|Y

19

Since there is no ordering on the rules the auxiliary ternsdua# involver, and
the auxiliary rewrite rule is an instance of the distindgtity law and rewrite rule in
[2,14].

Example 5.7 The sequential composition operator form Example 2.7 ismoply
distinctive. It is, however, free of implicit copies. Itsles can be partitioned into
the rule for the first argument,., and the rules for the second argumeny, We
notice that the rules,, are above the rulasy, for all a andb. The resulting simply
distinctive auxiliary operators 17 and “;2”, required by Lemma 5.4, are defined by
these two sets of rule schemas:

X 2 X Y2y

X;lYgX/;Y X;ZYgY/

The initial and the final s&dis {(0,{;1}), ({;1},{;2})}- There is a single equation
of the form (A.1), namehAT = (X;1Y)>{;2} and there is one equation of the

form (A.3): {;2} = X;2Y. Replacing the constants with their definitions, we obtain
the auxiliary term(X;1Y) > (X;2Y) and the auxiliary rewrite rule:

X;Y - (X;1Y) > (X;2Y)

Example 5.8 Consider a version of the CCS parallel that gives prioritydon-
munication over concurrency. The operator is defined sirbplputting each and
every communication rule fdr above all the concurrency rules for both arguments
of ||. As noted in Example 2.8 the GSOS definition of this operatavwkward.

As in Example 5.6 we need the three auxiliary operators and |. The setS

is {(0,{1}), ({I}.{1}), (I}.{1})} Following our procedureS gets partitioned
into two sets and the resulting two equations of the form JAare AT = {|} and

{ﬁ =X|Y)> ({/u\} + @). Also, as in Example 5.6, there are equations{for

—

and{||}. The resulting auxiliary rewrite rule is as follows:

XY - XY (XY + X]Y)
5.3 Simply distinctive operators

So far we have given rewrite rules for operators which arefres of implicit
copies (Lemma 5.1) and rewrite rules for operators (andianxoperators) which
are free of implicit copies but not simply distinctive (Lerars.4). Now we consider
simply distinctive operators. We shall define several tygfegwrite rules, namely
distributivity, action and deadlock rewrite rules. Firgte introduce some useful
notation. Wherr has no implicit copies in the premises, tinigiger of r is then-
tuple (A1,...,An), whereA; = g if i € |, andA; = x otherwise. We often writ@

20

for (A1,...,An), andA;.X denotes the vectdr;. Xy, ..., An. X, where ifAj = %, then
Ai.X is simply X;.

Lemmab5.9 Let G be an OSOS PL with such thatB < G and all operators in
>\ g are free of implicit copies and simply distinctive. Suppoke) € 2\ 2g
has the defining rules of the following form, where=YX/ if i € I, and ¥ = X
otherwise:

{Xi i>Xi/ }iel

a 3)

(1) For each active argument i of f the following are tHistributivity rewrite
rules for f and i:

fdn(i): f(,X.+O,) - f(,X.,)
faaiy t £ XY) = Pl X)+ (oY)

The priority order is §ini) - fqgi) for eachiel.
(2) For each rule of the form (3) with# 0 and triggera,.X the action rewrite
rule has the form:

fa.: f(a.X) - aC[X]

If f has no active arguments, theffis f(X) - a.C[X].
(3) Thedeadlockrewrite rule is as follows:

fail : f(X) -0
The priority order satisfie$ g, f3} = fnil for all fugi) and £

Let? = (Z,R,>') be 3, the PRS foB as in Figure 1, extended with all the dis-
tributivity, action and deadlock rewrite rules for each ogi®r f as above, and let
=" be = as in Figure 1 extended with the orderings required for thdedirewrite
rules. Theng is sound for bisimulation and head normalising for all cldgerms
over2.

PROOF. See Appendix B.

Note, that soundness dfy;) rewrite rules does not depend on them being below
the correspondindyp) rewrite rules. Similarly, soundness of the deadlock rewrit
rules does not depend on them being belowfthg) rewrite rules. This can be seen
in the above proof. The distributivity rewrite rulég, are included purely for the
purpose of resolving some of the inherent nondeterministnistpresent in rewrit-
ing. More specifically, the inclusion of the rulég, ;) resolves a large proportion of

21

this nondeterminism and, as a result, makes the task ofryaanfluence easier:
see a proof of Theorem 7.1.

Also, note that iff is simply distinctive and it has at least two rules, then the
premises of all rules fof are not empty. And, iff is simply distinctive and it
has a defining rule with no premises, then this rule is its defning rule andf

will have only the action rewrite rule and the deadlock résvrule.

5.4 Operators with one argument

There are free of implicit copies and not simply distinctofgerators which have
simpler rewrite rules than the auxiliary rewrite rules aatuced in the previous
subsection. These rules are calpgtbrity resolvingrewrite rules. In this subsection
we define a class of such operators: they must have a singimarg and be simply
distinctive when the ordering on their rules is removed.sTélass contains for
instance the mentioned priority operator and the the hidpgyator of ET-LOTOS
[24]: see Example 5.11.

Lemma 5.10 Let G be an OSOS PL with signatu¥esuch thatB < G. Let? =
(Z,R,>) be a well-defined PRS for G that is sound for bisimulation.f®sp
(f,1) € X is a free of implicit copies operator which is not simply tfistive, and
the ordering on rules for f is not empty. Moreover, let f bebstiat it is simply
distinctive when we remove the ordering on its rules. Suppios rules for f have
the following form:

Py ()

For each pair of distinct rules r and’ rof the form (4) such that = r’, and for
triggers aY and bZ of r and ¥, respectively, theriority resolving rewrite rule
for the rule r is as follows:

fro: f(X+aY+bz) » f(X+ayY)

Also, let the new version of f be without the ordering on itesuso the new f is
simply distinctive. Then, there is a PRS= (£,R,~'), whereR’ is R extended
with all priority resolving rewrite rules for the original fs required above, and
all rewrite rules for the new f as required by Lemma 5.9. Theeang -’ is >~
extended by putting every priority rewrite rulgr Above the rule 1) asinLemma
5.9, and by adding the orderings introduced by Lemma 5.9nThe PRSp’ is
sound for bisimulation.

22

PROOF. In the last section we showed the soundness of the rewris rabjuired
by Lemma 5.9. Hence, it remains to prove the soundness ofribety resolving
rewrite rules for operatorkas in the lemma. Since the rules fowith the ordering
removed define a simply distinctive operator there is at noost rule with the
premiseX 2 X/ for every actiora. Also, by the definition of the orderings on SOS
rules, ifr > r’ thenr’ > r is false for any two rules andr’ for any f.

Let r andr’ be of the form (4) with the triggera.X andb.X, respectively, and
letr > r’. It is enough to showf (p+a.q+ b.r) 2t iff f(p+aq) 2 t. Assume
f(p+aq+hbr) 9, t. This transition implied two cases: either the rulis enabled
with the triggera.q or there is a rule” not belowr and enabled with the trigger
c.p/, andp > p'. In the first case, sinceis enabled it means no rule higher(r)

is enabled with the argumept+ a.q+ b.r. Sincer fires witha.q it also fires with
p+a.q, so,f(p+a.q) %tas required. In the second case no ruliigher(r’) is
enabled with the argumemt+ a.q+ b.r. Hence, no rule irhigher(r’) is enabled
with simplerp+ a.q and, consequently,(p+a.q) 2, t. The converse also follows
by a similar argument. O

The priority operato8 is the only operator discussed so far that can be dealt with by
Lemma 5.10. It has one argument, non-empty ordering on the and it becomes
simply distinctive when the ordering on the rules is remoydidthe priority rewrite
rules for8 required by Lemma 5.10 have been given in the Introduction.

Another operator that can be dealt with by Lemma 5.10 is tdenfioperator of
ET-LOTOS [24]:

Example 5.11 Our definition of the hiding operatdride employs an ordering on
the defining rules instead of negative premises alodkaheadas in [24]. The two
traditional rules for the operator, where the second ruliemted 5 for eacha € A,
are:

X2 X X2 x

ag¢A acA
hide Ain X -3 hide Ain X’ ¢ hide Ain X -5 hide Ain X’

The required timed rule;, whereo denotes the passage of one time unit, is simply

X2 x
. . (e) . . / ro
hide Ain X = hide Ain X

and the ordering is; < r4 for all a € A. Clearly, the operator satisfies the require-
ments of Lemma 5.10. The priority resolving rewrite rules given below, one for

23

everyain A:

hide?, : hide Ain (aX+0.Y+Z) - hide Ain (aX+2)

Moreover, there are other rewrite rules required by Lemma.8/Ne obtain them
by removing the ordering on the rules foide and then applying Lemma 5.9:

hidegn : hide Ain (X+0) - hide Ain (X)
hideys: hide Ain (X+Y) - hide Ain X + hide AinY
hidef,: hide Ain (a.X) - a.(hide Ain X)

hidels: hideAin (a.X) - t1.(hide Ain X)

hide;: hide Ain (0.X) - o.(hide Ain X)

hidey; : hideAin X - 0

Here, we have onhided rule for everya ¢ AU {c}, and onehide; for every
ac< A. The priority order- satisfieshide%r > hidegyn, for all priority resolving rules
hide‘;},r as required by Lemma 5.10. Moreover, Lemma 5.9 reqigesy, - hideys,
and{hideys, hided, hidel, hide3} = hiden;.

5.5 The PRS algorithm, head normalisation and soundness

In the previous subsections we defined priority rewritesudte several classes of
OSOS operators and proved that they are sound for bisiraolafiresently, we
show that PRSs generated by our approach for PLs that eBemil contain no
operators with implicit copies are head normalising. Thia tonsequence of Lem-
mas 5.4, 5.10 and 5.9: see Appendix C.

Lemma 5.12 Let G be an OSOS PL with signatiesuch thatB < G, and let all
operators inX \ Zg be free of implicit copies. Then, there is disjoint extenggoof
G with a finite collection ok \ Z simply distinctive operators, and a PRSthat
contains the PRS fd8 and is sound for bisimulation and head normalising.

The rest of the subsection presents the algorithm in Figtoegenerating PRSs for
arbitrary OSOS PLs. We also prove head normalisation anddsass for bisimu-
lation for the generated PRSs.

Theorem 5.13 Let G be an OSOS process language, and letr@# be the OSOS

process language and the PRS respectively that are produgéae algorithm in
Figure 2. Theng is head normalising and sound for bisimulation.

24

Input: OSOS process langua@e= (2g,A,R,>) and PRSr = (2, 0,0).

(1)

(2)

@)

(4)

(5)

Output: OSOS PLG such thatG < G/, and a sound for bisimulation and head
normalising PR&.

If Gis not a disjoint extension d8 then add tdG a disjoint copy ofB.
Call the resulting languag@”’. » becomegZg»,R”, "), where R and
>~ are rewrite rules and priority order f@ras in Figure 1.

For each operatdir € G” which is not free of implicit copies apply the
construction of Lemma 5.1 to obtain a free of implicit copiggratorf ©.
G" extended disjointly with alf ¢, for all not free of implicit copies oper-
atorsf of G”, is denoted byz". » becomeg>gr, R,y '), Where R,
is R’ extended with all the copying rewrite rules required by Learbril.
For each free of implicit copies operatbe g \ Zg which is not simply
distinctive, and whichsatisfiesthe conditions of Lemma 5.10, extend
RY v With all the priority resolving rewrite rules and as in Lem&a0

copy
to obtain the new PR® = (Xg,RY},,>’). The PLG' is the result of

I
extendingG” disjointly with the (sirrF;pIy distinctive) versions of all e
operators.
For each free of implicit copies operatbe g/ \ Zg which is not sim-
ply distinctive, and whichdoes not satisfythe conditions of Lemma
5.10, apply the construction of Lemma 5.4 to produce simjsyiret-
tive auxiliary operatords,. .., fi. The PLG' is the result of extendinG”
disjointly with all auxiliary operators for all such opeoas. » becomes
(2e,R',~"), where Ris Ry, extended with all the auxiliary rewrite rule
required by Lemma 5.4.
For each simply distinctive operatbiin X \ Zg extend Rand >’ with
all the distributivity, action and deadlock rewrite rulexiahe associated
priority orders as in Lemma 5.9 and, if necessary, in Lemma.5The
resulting PR is (Zg/, R, >).

\"2J

Fig. 2. The PRS algorithm for OSOS process languages.

PROOF. Given a PLG, the algorithm firstly extendS disjointly with B producing
G"”, and the PRS in Figure 1 becomes the basis for the reqair@then, it consid-

ers each of the operators@f” in turn and generates rewrite rules with priorities as

described in the previous subsections, and accumulatesitite the requirecr.

If f is an operator o&” with implicit copies, then by Lemma 5.1 we can extend

G" disjointly with a free of implicit copies operatdf. We add the copying rewrite
rule to the current PRS. We carry out this procedure, stepf(2)e algorithm, for

all operators ofG”’ with implicit copies. It produces a PG”, and the constructed
so far PRS has all the required copying rewrite rules.

25

Next, we consider operators &’ which are free of implicit copies but which are
not simply distinctive and apply the strategy described eat®n 5.2. There are
two routes that the algorithm can take at this point, namidgs(3) and (4). For
all such operators that fail the conditions of Lemma 5.10 pjglyaLemma 5.4 and
add auxiliary rewrite rules: step (4) of the algorithm. But dperators which satisfy
the conditions of Lemma 5.10, such as the priority operdtdrdduction) and the
hiding operator (Example 5.11), we apply the strategy otiSed&.4 and add the
priority resolving rewrite rules as in Lemma 5.10: step &}er steps (3) and (4)
have been applied to all appropriate operators, we obtaib &PThe enlarged
PRS contains at this point all the auxiliary rewrite rules &éme priority resolving
rewrite rules.

Finally, we perform step (5): for each simply distinctiveepgtor inG’ we add

to the current PRS all the distributivity, action and dealllcewrite rules and the
associated priority orders as in Lemma 5.9 and, if necesaarin Lemma 5.10.
Thus we obtain the required PRS which is sound for bisimulation. It is also head
normalising for closed terms ov&’ which are built from free of implicit copies
operators and the operators®fonly: see Lemma 5.12. The remaining operators
of G/, namely operators with implicit copies, give rise to comynewrite rules as

in Lemma 5.1. Since terms on the right hand side of such raes fiee of implicit
copies operators as the outermost operators, we see that temstructed with
operators with implicit copies rewrite to hnf.O

6 Termination

Any practically useful PL must contain a mechanism for reprging processes
with infinite behaviour. Most often this is done by means afgass constants (or
variables) that are defined lmyutual recursionFor example, a unary semaphore

can be represented by a process with two st@sand Sem defined bySem%f

Sem and Sem“%"SenrespectivelySemandSemare simply distinctive, free of
implicit copies OSOS operators. By Lemma 5.9, the only jityiaewrite rules for
these operators are the following action and the deadldek:ru

Sem- up.Sem >~ Sem- 0 and Sem - downSem> Sem -0

It is not surprising that processes suctsSasnhave non-terminating reductions:

Sem- up.Sem - up.downSem- up.downup.Sem - - -

The properties of PRSs with operators suchSasnare the subject oinfinitary
rewriting [21]. However, there is an interesting subclass of OSOS Réiscontain

26

only those operators that lead to finite behaviours. The RiR8srated by algo-
rithm in Figure 2 for PLs in this subclass will be strongly malising (terminating)
for closed terms modul&C of +.

We define PLs and processes with finite behaviour. FollonZhgve have:

Definition 6.1 Let G be an OSOS process language. A tepra T(Zg) is well-

foundedif there exists no infinite sequengg, ag, p1,as, ... With p= po and p; LN
pi+1 foralli > 1. Gis well-founded if all its terms are well-founded.

Well-foundedness of OSOS PLs is not decidable, but syctatiell-foundedness
is decidable by the corresponding argument as in [2]. Maeaf/a PL is linear
as well as syntactically well-founded, then it is well-fal@d [2]. These two new
notions are defined again following [2]:

Definition 6.2 An OSOS transition rule of the form (2) Imear if each variable
occurs at most once in the target and, for each active argLingrdoes not occur
in the target and at most one of the variabfggloes. An OSOS operator is linear if
all its transition rules are linear. An OSOS PL is linear [fidl operators are linear.

Definition 6.3 An OSOS PLG is syntactically well-founded there exists a func-
tion w: 2 — N such that, for each rule of G with the operatorf and tar-
get C[X,Y], the following conditions hold: Ifr has no premises, them(f) >

W(C[X,Y]); andw(f) > W(C[X,Y]) otherwise, wher&V : T(Xg) — N is given

by W(X) &' 0 andW(f(ty, ...,tn)) T W(F) - W(t1) +--- +W(tn).

It can be easily shown by solving a linear system of Diopmengquations that
syntactical well-foundedness of OSOS PLs is decidable,ibad OSOS PL is
linear as well as syntactically well-founded, then it isoalgell-founded [2]. Most
of the commonly used process operators, and all operatarsoned in this paper,

are linear. As for syntactical well-foundedness, any Plhwibnstants defined by

mutual recursion does not satisfy it: siBem— Sem andSenﬁdﬂvnSemthere is

now such thaw(Sem > W(Sem) = w(Sen) andw(Sem) > W(Sem = w(Sen).
Apart from recursively defined process constants, the IRisiE extended with any
operators described in the paper, and with many more opstaton standard PLs,
is syntactically well-founded. Typically, we assign weidhto the action prefixing
operators and weight O to other operators. Further disonsslated to this topic is
in Appendix D.

Theorem 6.4 Let G be a syntactically well-founded and linear OSOS pretas-
guage, and let Gand# be the OSOS process language and the PRS respectively
that are produced by the algorithm in Figure 2. Thenjs strongly normalising
modulo AC on closed terms ovet.G

27

PROOF. The details are given in Appendix D. There, we employ novaimeques
of dependency pairs and dependency graphs adapted tamgvmibduloAC of the
choice operato#-. O

7 Confluence and Completeness for Bisimulation

The algorithm in Figure 2 produces, for any OSOS procesaulages, a disjoint
extensionG’ and a PRS fof5'. If G is syntactically well-founded and linear, then
the PRS foiG' is strongly normalising. We show that if the PRS €@ris strongly
normalising, then it is also confluent. We shall use the @dassesult due to Knuth
and Bendix [22] that states that if a TRS is strongly norniadjsthen it is confluent
if and only if all its critical pairs are convergent. The maarpose of priority
orders is to resolve the ambiguity concerning the choiceveflapping rules when
rewriting terms. The priority order produced by the aldamtin Figure 2 resolves
a large proportion of this ambiguity by reducing the numbfecrdgical pairs, and
thus making the task of proving confluence a lot easier. Welese completeness
result for bisimulation:

Theorem 7.1 Let G be a syntactically well-founded and linear OSOS pretas-
guage, and let Gand# be the OSOS process language and the PRS respectively
that are produced by the algorithm in Figure 2. Thenis confluent and complete

for bisimulation on closed terms over.G

PROOF. There are several critical pairs for tllecomponent ofr and we dealt
with them in Theorem 4.3. We list the remaining overlappiegnite rules and
if the priority order permits ambiguous reductions, we tis¢ resulting critical
pairs and show that they are joinable. Due to the form of oarite rules and the
priority order on the rules there are only a few simple typesribical pairs. Case
(2) explains the reason for having distributivity rewritees fqn(i).

(1) The rewrite ruleX +0 — X overlaps with the distributivity rulegyn(i) for all
simply distinctive operator$ and all their active argumenisThe resulting
critical pairs(f(...,X,...), f(...,X%,...)) are joinable.

(2) The rewrite ruleX + 0 - X overlaps with the distributivity ruledyg;, for
all simply distinctive operator$ and all their active arguments However,
becausefqni) = fygi) and sincefyy) is applicable tof (..., X +0,...), there
are no critical pairs for such overlaps.

(3) The ruleX +X — X overlaps with all the relevant distributivity rulefgn(i)
and fqs(i) for all simply distinctive operator$ and all their active arguments
i. The resulting critical pairs are joinable.

(4) The ruleX+0 - X can overlap with the priority resolving ruig X +a.Y +
b.Z) - f(X+aY). The resulting critical pair isf (X+a.Y +b.Z), f(X+0+

28

a.Y). Then, the first element of the pair reducesflfyto f(X +aY), and the
second element of the pair reducesHy to the samef (X 4-a.Y).

Finally, we consider completeness for bisimulation. Sindg strongly normalising
itis well-defined. Since is confluent each closeéd term can be reduced to unique
normal form. As? is head normalising, an@’ is well-founded, we can show by
structural induction that each clos€lterm can be reduced to a unigBéerm in
nf. Since® is sound for bisimulation, it is now sufficient to prove thia¢ PRS for
B is complete for bisimulation. Indeed, this is Theorem 4.4.,

8 Conclusion and Possible Extensions

We have described how to produce, for an arbitrary OSOS PR&thRat is head
normalising and sound for bisimulation. When a PL in quesi®syntactically
well-founded and linear, then its PRS is strongly normagisatnd confluent, and
two processes are bisimilar if and only if they can be reduodtie same normal
form moduloAC. We believe that our procedure can be adapted to other slagse
PLs and other process equivalences such as, for example¢lassiof De Simone
PLs and testing equivalence [28,38].

In the concurrency literature there are well developedregles for equational rea-
soning for non-well-founded processes. For example, dengegular processes
[26] and reasoning about such processes with respect tmudaetion. One can
prove equalities between such processes by using the stkeedams to “unwind”
guarded recursive processes to head normal form, an®Rdéecersive Specifica-
tion Principle (RSP) [10]. It would be worth investigating how a class of nifi
tary OSOS PLs corresponding to Aceto’s classegular infinitary GSOS PLs [1]
can be given a rewrite system that is sound and complete $ambiation. Such
rewrite system would contain rewrite versions of the RagarSpecification Prin-
ciple rules.

It would be interesting to investigate further the benefftpriority orderings on

rewrite rules. Apart from reducing nondeterminism inhénemewriting, could they

be also used to internalise rewrite strategies thus impgowieak normalisation to
strong normalisation?

Acknowledgements

We would like to thank the referees for their comments andjsstijons. The first
author would like to thank the University of Leicester folagting study leave,
and acknowledge gratefully support from EPSRC, grant EB1307/1, and from

29

Nagoya University during a research visit. The second awtloald like to thank
the Kayamori Foundation for Information Science Advancetrier supporting a
visit to the University of Leicester. Thanks are also duedalHaylor for his Proof
Trees and Commutative Diagrams macros.

Appendix
A Proof of Lemma5.4

We find the auxiliary operator§ by partitioningruleg f) into sets such that the
operators defined by the rules in each of the sets are simglinclive, and the
resulting sets satisfy therdering conditionthat we define below. We shall need
new binary relationss> and>>> on sets of rulesR >> R if forall I’ € R andr € R
we haver > r’, andR>> R if for all ' € R there isr € Rsuch that > r’. Clearly,
>>C>> but not>C>>. The relationsss-, > are irreflexive and transitive. We shall
write R § R; if the ordering between the rules R andR; is empty.

The initial partition is achieved as follows. LeAX be the set of all axioms in
ruleq f), namely rules with no premises. KX is non-empty, then partitioAX
into singleton sets. Then, partitionleg f) \ AX into sets as large as possible in
such way that each set consists of rules with premises faaire arguments, and
no two different sets have rules with the same argumentsiprdmises.

The following condition shall be useful:

Definition A.1 The set{Ry,...,R,} satisfies theordering conditionif for every
two member setR andR; eitherR, > R, Rj >> R orR i R;.

If the partition obtained so far does not satisfy the ordgdandition, for example
because a rule iRy is not above all rules iRy, then split further the offending
partition sets into as large as possible subsets until ttherimg condition holds in
the resulting partition. This gives us tfiral partition Ry, ..., R of ruleg(f). Note,
that someR;s may have rules that are ordered among themselves (as fotiohiéy
operator® which is simply distinctive). In eacR; we change the operator in the
source of each rule frorfito f; thus obtainindX. So, we have constructégimply
distinctive n-ary auxiliary operatord, ..., fi and their defining rule&, ..., R,
respectively.

Next, we presenfuxiliary Term Generation Procedufer deriving the auxiliary
term given the simply distinctive operatofs . . ., f| and their ruleR},...,R. The
procedure consists of four steps. We shall require moreinataVe write fi >> f;

if R > R;, andfi > fj if R > R|. The orderings> and>> are extended to sets of

30

repeat
S:=8
for each(F/,F) € Sdo
F:=0
if £/ =0
thenS :=SU{(F,R)}
else foreach(F{,Fj) € Sdo

if Fi C Fi/
thenF :=F U Fj’
od
S:=SuU{(F,F)}
od
until S =S

Fig. A.1. “Upwards closure” iteration routine

operators in the standard way. We say that operisr‘fully above” fj if fi > f;
and there is no other operatéy such thatf; > fy > f;. Given fj, fabov€ f;)

is the set of all operators fully abovig. The functionfabovegeneralises to sets
of operators in the standard way. Additionally, we shall tise set of operators
“above” F, whereF is itself a set of operators, written aboveéF). We define
aboveF) as| ¢ fabové f). As a result we havaboveéF) > F but not necessar-
ily abovéF) >>F.

Auxiliary Term Generation Procedure

Input : Simply distinctive operatorf, ..., f and their rule®,, ..., R/, respectively.

Step 1 We calculate for each auxiliary operator the sets of aamxiloperators fully
above it. This is done by constructing the (initial value s} theS:

S={(fabové f1),{f1}),...,(fabovéf),{f})}

Note thatfabové fi) >> {fj} forall 1 <i <I.

Step 2 We produce an “upward closure” 8with respect to the ordering-. We
aim to enlarge&sso that for each paifF, G) € Swith F = aboveG) there is a unique
pair (H,F) € Ssuch thatH = abovéF). This closure is achieved by performing
the following procedure, wher, F;, F, Fj andF| are sets of auxiliary operators.
First, we assigrSto S (S ::= 9). Then, we perform the iteration in Figure A.1.
Since the initial seS s finite and the iteration enlargé&sby adding pairs whose
first and second components are subsets of the finitéfset ., f;}, the iteration
eventually terminates. Let the resulting Sdde as follows, whera > |:

{(FL F1>7 ERE (Fr/h Fn)}

31

We suspend the description of the procedure in order todigtral important prop-
erties of the resulting séd They will be used in the proof of soundness of the
auxiliary rewrite rule:

(1) K =abovéFR) forall1<i<n.

(2) Forall 1<i < the setScontains the paifG;, { fi}) for some possibly empty
Gi.

(3) Forall(F',F) € Swe havel # 0. Also, there exist& C {1,...,1} such that
F;=0forallkeK.

(4) f F'#£0and(F',F) € S then(F” ,F’) € Sfor some possibly empty”.

(5) If (F,F) € S then either (a) there existB, G) € Sfor someG or (b) (F,G) ¢
Sfor all G, and ther = {fi} for somek € {1,...,1},

(6) S may contain two pairgF’,F) and (F’,Fj) such that/ # Fj and not(see
Example 5.8) (different sets may have upper bounds), bugrrmntains two
pairs(F”,F) and(F’,F) such thaF’ # F"” (different sets may not have lower
bounds).

The above properties imply that the pairs of the fa@nF,) indicate that the se
is maximal in the ordering generated Jsy, and that the pairs of the for(&;, { fi})
indicate that the setgf;} are minimal in the ordering generated byy. Also, they
imply the existence of upward chains of s€&sordered by> with the bottom
element{ f;} and the top elemer@ for 1 < j <|I. In short, the se& defines an
upside-down treed is the root, the set§f;} are the leaves, and for eaEhin such
a structure, the set s such thaF;j > F; is a chain.

Now we return to our procedure. The last two steps (Step 3 aep & below)
describe how to construct the auxiliary term. Firstly, gsihe setS, we create a
number of process constants and derive their defining epg&atihere will be two
types of such defining equations. The right-hand sides oéthuations contain at
most (other) process constants, auxiliary operafpesd the operators- andr>.
Hence, we get a number of equations that define constantsns t# each other but
not recursively. Once we have the set of such equations, plaae the constants
on the right-hand sides of the equations by their definitiand thus obtain the
required auxiliary term.

Step 3 We partitionS into setsS,, ..., &, for 1 < k < n, such that all pairs 0§
with the same first element belong to precisely one partitt@th of the partitions
gives rise to one constant and its defining equation.AA typeatition has the
form {(F/,F1),...,(F',Fm)} and it produces the constdft which is named after
the first element of the pairs in the partition. Here, the tmgs “ " is used to
make process constants out of symiglsThis partition gives rise to the following
defining equation:

= def < E
TS 0> R

32

SinceX>Y + X>Z = X (Y +2Z) holds for bisimulation we simplify the above
equation accordingly, and obtain the first type of equatfonthe constants:

= def < =
P = (> k(X)) > (I;Fn) (A1)

fke Fi/

WhenF/ = 0, then an equation of the type (A.1) beconi?e/s: 0> (z[‘lll/:,T). As

0> X = X we obtain simplyﬁ/ = z,”llﬁ. SinceS contains always one or more
pairs (0, Fy), for some non-emptyy, this equation plays a special role and we
shall use a fresh constaAT instead ofd and write the equation as:

m —~
AT & ZF” (A.2)
1=

So far, we have created a const&nfor every (F,G) € S. Additionally, we shall
also need constants and defining equations for some of th&s€&hese constants
arise from setss that are not above any other sets (although for s@hthe set
GUG' may be above another set). More precisely, for e@€lG) € S such that
(G,H) ¢ Sfor all H, the seG is a singleton set, sayfy}, and we have the equation
of the second type:

G = fg(X) (A.3)

Hence, there is a constaRtfor | = {f;} for all 1/leqi/leql. And, if F appears
on the right-hand side of one of the equations above, thee tkalso a defining
equation for that constant. This is a consequence of the veagonstructed and
its resulting properties.

Step 4 We replace each constant that appears on the right-hamdfdide equation
for AT, (A.2), by the right-hand side of its defining equation. Weeat this until
the term on the right-hand side has no constants. It can Ineesesdly that this pro-
cess terminates successfully using the observations terprievious paragraphs.
The obtained term (on the right-hand side) is in the auxilfarm. We denote this
term byAuxiliaryTernjf1(X), ..., fi(X)] as required in Lemma 5.4.

Output: AuxiliaryTermf1(X), ..., fi(X)].

Finally, we require a proof that the auxiliary rewrite rusesiound for bisimulation.
It is sufficient to prove thaff (p) > t iff AuxiliaryTernif1(p), ..., fi(p)] 2 t for
some vector of termg and termt overG, and some actioa.

Only if part . Let f(p) 2 t be derived by rule with a ground substitutioo. As-
sume that € Ry whereRy, ..., R is the final partition of the rules foir. Also letry

33

be the rule but with f in the source replaced biy. So,ry € R, is the rule for the
auxiliary fy that corresponds to the ruidor f. Clearly, the targets of both rules are
identical and, undew, are equal td. Hence, f(p) > t is derivable by the ruley.

It remains to be shown how(p) > t implies AuxiliaryTernify(p), ..., fi(p)] = t.

The transitionf (p) 2t implies that no rule imigher(r) is enabled under substitu-
tion 0. We construct the corresponding set of rules higher thamong the rules in
R, ...,R as follows. We denote bigher(f) the set of rules higher thaf in the
ordering> as given by the s& Clearly, the set of rules higher thasis a subset of
Higher(fy). By the construction oSthere is a sequencey, ..., Gy, of sets of aux-
iliary operators abové fx}; assume thaGo = { fx}. We haveG; = abové{ fx}),
G, = abovéG;) and so on, withGy, = 0. Hence,Higher(fy) = UJL; rules(G;).

—~

The construction of sets tf@ gives us the constant§ f} =)Go andGs, ..., Gm,
and the following equations (best read from bottom up):

AuxiliaryTernify(p),..., fi(p)] = -+ + Gm + ---

— —

Gm = (ZfieGm fi(p)> > Gm-1

({f} =)Go = fu(p)

Since all rules irHigher(fy) are not applicable underwe deduce thay ;. ¢, fi(p)
has no transitions (is deadlocked) for akklk < m. Moreover, sincg > g behaves
like gwhenp is deadlocked, the above equations imply thép) 2 tis one of the
transitions 01’(/3;1, and thus of the auxiliary term, hence:

a

AuxiliaryTernifi(p),..., fi(p)] —t.

If part . AssumeAuxiliaryTermify(p), ..., fi(p)] <> t. There is a constart among
those that we have constructed such thép) > t by ruler for either one of the
auxiliary f, € F whereF has equation of type (A.1), 6t is just{fx} and has the
equation of type (A.3). The second case is proved by justsevgthe argument in
the “only if” part. In the first cas& may contain other auxiliary functiorfs apart
from fx. We deduce that no rule [0 ¢ Higher(f;) is applicable. Hence, no rule in
a smaller seligher(fy) is applicable. So, we takeigher(fy) and use the argument
from the “only if” part of the proof to construct the setloifgher(r), wherer is ry
but with f replacingfy in the source of the rule. Since no ruleshigher(r) are
applicable we derivé (p) > tbyr. O

In Section 5.2 we have seen the derivation of the auxiliamp t®r several useful

34

operators. Here we present an artificial operator whichirega non-trivial appli-
cation of the above procedure to derive the auxiliary terchtae auxiliary rewrite
rule. Consider operatdr defined as follows:

X2 x Y Sy
F(X,Y,V,Z) & £(X,Y,V,2) fa F(X,Y,V,Z) S Y 2
v 2V z57
F(X,Y,V,Z) & £(X,Y,V,2) 2 F(X,Y,V,2) & 7' e

Let Ry, R2,R3 and R4 be the sets of all rulesig, roc, r3a andrgac, for all actionsa
andc in Act, respectively. The ordering on the rules fors Ry 7 Ry, R3 1 R4 and
R; O R4. There are four auxiliary operators arising from the fous s rulesR;;
we name these operators s fo, f3 and f4, respectively. The initial value of the
setSis as follows:

{(07 { fl})? ({ fl}? { f2})7 (07 { f3})7 ({ fl, f3}7 { f4})}

The iteration routine in Figure A.1 terminates after twoge@nd it adds the pair
(0,{fq, f3}) to Sresulting in:

S= {(07{f1})7 ({fl}a{f2}>a (07{f3}>7 ({fl; f3}7{f4})7 (0’{fl; f3})}

The set of equations that arise fragis as follows, where we writX for the
sequenc,Y,V, Z:

AT = {fo} +{fs} +{fs. T3}
{f} = fuX)>{f}

{fa} = faAX)

{fa} = fa(X)

{To. fa} = (F2(X) + fa(X)) &> {4}

—

{fa} = fa(X)

Replacing the constants in the equations by the definingsteggults in an auxiliary
term and the following auxiliary rewrite rule

F(X) ~ f(X) B f2(X) + fa(X) + (f1(X) + fa(X)) &> fa(X).

35

There are several further commonly used process oper&atrste naturally de-
fined by SOS rules with orderings: action refinement opefai#0], the two oper-
ators that internalise testing [40], the unless operatQf; Eeveral “delay” operators
from timed process languages [19,29,41] including theatpefrom Example 2.8,
and the timed versions of standard process operators whktegntimedproperties,
such agnaximal time synchronyold. The auxiliary terms for all these operators
are relatively straightforward.

B Proof of Lemma5.9

Suppose thaf is as in the lemma anidis one of its active arguments. Lptbe a
vector ofn closed terms. We prove both soundness and head normaiisaticur-
rently by induction on the size of ternfgp).

We begin with soundness of the rewrite rules introduced byd¢mma.

(1) The distributivity rewrite rulesfyy) are clearly sound. Consider the other
distributivity rules fygj). Let p be such thaty; is q+d. In order to prove
soundness ofy;) it suffices to showf (p) ~ f(p)[a/pi] + f(p)[d'/pi] for ev-
ery rewrite of the formf (p) - f(p)[a/pi] + f(p)[d/pi] which is correct inp.
Assume that the following is a correct rewrite:

f(p) - f(p)[a/pi]+ f(p)[d/pi]

Let f(p) 2 t. By (3) for f we deducep; 3, p; for somep. Hence,q+
q > p and eithery > pl or ¢ > pl. So, we have eithef (p)[q/pi] =t or
f(p)[of/pi] = t; hence,f(p)[a/pi] + f(p)[df/pi] = t. The other direction fol-
lows correspondingly.

(2) Let p be a vector ofn closed terms and ledy be the trigger of a specific
rule of type (3) forf. Assumef (a.p) — a.C[p| is a valid rewrite ine. Then,
f(a.p) N C[p] by the mentioned rule. Sinckis simply distinctive, there is
no other rule forf by which we can derivef (a;.p) = C[p]: see Definition
2.10. Hencef (g .p) ~ a.Clp|.

(3) Letp be a vector oh closed terms, andl(p) — 0 be a valid rewrite inp. The
ordering>’ tells us that there is no internal reduction ffp) such that the
resulting term can be rewritten by any of the distributivatyaction rewrite
rules for f. Assume for contradiction thaft(p) > t for somea andt. This
has to be by one of the rules of type (3). The induction hypsthgives that
all pi can be rewritten to termp] in head normal form. If one ofs is a
sum of terms, then one of the distributivity rulég,;) can be used to rewrite
f(p'), contradicting the correctness bfp) — 0. If none of theps is a sum,
then they are action prefixed termg:= a.p{" for somep{’s. Hence,f(p')

36

can be rewritten with the action rewrite rule contradictithg correctness of
f(p) - 0. Hence,f(p) - for all actionsa, andf (p) ~ O.

Next, we consider head normalisation. We shall prove thexetlexists a ternp in
hnf such thatf (p) - p in 2. By the inductive hypothesis the componentpaire
in hnf. There are three cases:

(1) One of the termg; is 0. Then, none of the distributivity and action rewrite
rules can be applied to rewritep). Hence,f(p) — 0 by fy;.

(2) One of the termg; is g+ q whereq andd’ are distinct syntactically and not
equal to0 closed terms. Therf,(p) - f(p)[a/pi] + f(p)[d/pi] by distributiv-
ity. By the induction hypothesis, there exist head normahfop’ andp” such
that f(p)[g/pi] = p’ and f(p)[q'/pi] — p”, respectively. Clearlyp’ + p” is in
hnf, or can be rewritten to hnf.

(3) All pi have the fornmb;. pi. If the actiondbs constitute a trigger fof (p), then
the appropriate action rewrite rule is used giving a rewwiith the target in
hnf. If the actiondys do not make up a trigger, then the deadlock rewrite rule
is used, giving the result.

C Proof of Lemma5.12

For each operator @ that is not simply distinctive we apply the strategy presdnt
in either Lemma 5.4 or in Lemma 5.10. This gives the required=P The PRSp

is obtained by adding to the PRS fBrall the instances of the distributivity, action
and deadlock rewrite rules for all simply distinctive ogera in G’ as required
by Lemma 5.9, and all the instances of the auxiliary rewttes and the priority
resolving rewrite rules as required by Lemma 5.4 and Lemi@. 5t follows from
these lemmas that is sound for bisimulation, and it remains to prove that it is
head normalising.

We use induction on the structure of terms o@érin view of the result in Lemma
5.9 it is sufficient to consider only operatdrsvhich are not simply distinctive and
which are free of implicit copies. Considé(p) with all termsp; in hnf. There are

two cases.

(1) The operatof satisfies the conditions of Lemma 5.10pifis O, thenf (p1) —
0 by the deadlock rewrite rule. Otherwise, without loss ofeyality letp; be
Y je3dj.p1j. The priority resolving rules allow us to remove summaadpy
if there is a summanak. pyk such that,, > ry, wherer,, andry are rules for
f with actionsax anda in the premises, respectively. So(p;) is rewritten
eventually tof (¥ jck @;.p1j) where no further summand can be removed, with
at least one remaining. Then, apply the action rewrite ulgtain hnf.

(2) The operatof satisfies the conditions of Lemma 5.4 but not the conditidns o

37

Lemma 5.10. Hencdf,(p) — AuxiliaryTernmifi(p),..., fi(p)] where operators
f; are the auxiliary simply distinctive operators generated oy Lemma 5.4.
By inspection of the auxiliary term we know that it can be egsed as>
t’ wheret is a sum form: see Definition 5.3. More specifically, withoogd
of generalityt is f1(p) + ...+ fk(p) where the operator§ are some of the
operatorsfj above. Since each is simply distinctivefi(p) can be rewritten to
hnf by Lemma 5.9. Hence, tertrtan be rewritten to hnf. if can be rewritten
to 0, thenf(p) - t’ andt’ can be expressed &s-t’ for some newt,t’ with t
that can be rewritten to hnf. tfrewrites tot; +tp, thenf(p) — (t1 +t2) >t" -
t; >t’ +t, > t’ by the distributivity rule for> in Figure 1. Ift - a.u, for some
termu, thenf(p) — (a.u) >t’ - a.u by the action rule for- in Figure 1. As
the size of the auxiliary term is finité,(p) rewrites eventually to hnf.

D Proof of Theorem 6.4

We argue that, for a decidable subclass of OSOS PLs, nametadically well-
founded and linear OSOS PLs, the PRSs generated by algantfingure 2 are
strongly normalising, for closed terms modulo associgtishd commutativity of
+ operator.

Proposition D.1 Let G be a syntactically well-founded and linear OSOS preces
language. Then, the OSOS process langudga@luced for G by the algorithm in
Figure 2 is also syntactically well-founded and linear.

Apart fromw andW defined in Section 6, we shall also use other weight functions
In our termination proof we shall use the notion aarkedterms and operator
symbols: f# is a marked operator if is an operator. Hence, we extend the defi-
nitions of w andW to cover not only>g operators but als@%, operators, where
5%, = {f"| f € Zg'}. Henceforth, the weight functions that we define are over
g U Z’é,. But first we extend the functions andW so that they apply to the ex-
tended PLG": We setw(f¢) to w(f) for each not free of implicit copies operator

f € 2. Also, for each free of implicit copies but not simply distiive operatorf,

we setw(f;) to w(f) for all simply distinctive operator§s that are created fdrin
Lemma 5.4.

Definition D.2 Let G be a syntactically well-founded and linear OSOS process
language, and l&&’ be the OSOS process language producefoy the algorithm
in Figure 2. FunctionsV’, e, p, pref: T(Za UZE,) — N are as follows:

@) e W(x) %o,

o W/(t1+12) =W/ (tr +¥t2) = maxW'(tz),W'(tz)) ,
o Wi(ti>ty) =W'(t1 D#t2> dZEf maxW'(t1),W'(t2)),

38

o W/(f(ty,..)) = 1+W’(t1)-|- -+W/'(t,) if fisany prefixing or marked

prefixing operator

o W/(f(tg,...,tn)) def w(f)+W'(t1) +--- +W'(ty) otherwise.

(2) For any ternt e(t) is 1 if t contains+, +%, marked or unmarked non-simply
distinctive operators, or marked or unmarked simply detitwe operators that
have no active arguments, excluding the deadlocked opeédatmd O other-
wise. Note, that constants and prefixing are among simptyndis/e opera-
tors that have no active arguments.

(3) Functionpref is defined by

e pref(X) defO

o pref(f(ty,..)) = p(t1)+ .+ p(ty) if fis+ or +#,

o pref(f(ty,..)) = 1+ p(t1) + ...+ p(tn), if f is a prefixing or marked

prefixing operator
def

o pref(f(ty,...,tn)) = w(f)+p(t1)+...+ p(tn) otherwise,
wherep(X) d:efo, andp(f(ty,...,tn)) is 1+ p(ty) +---+ p(tn) if f is prefixing
or marked prefixing operator, anty) + - - - + p(tn) otherwise.

We simply calculate that/(t) >W/'(t) for allt € T(Zg). MoreoverW(t) > pref(t)
sinceW(t) > W/'(t) andW'(t) > p(t).

Definition D.3 LetG be a syntactically well-founded and linear OSOS process lan
guage., and le&’ be the OSOS process language produce@fby the algorithm
in Figure 2. Functionswo?, two, one: T(Sg U Zé,) — N are as follows:

(1) e two'(X) £'0
. two#(f(tl, .,)) OI:e‘ctwo(f(tl,.. tn)) if f € 2%, and O otherwise.
(2) o two(X)def
o two(f(ty,...,tn)) d_ef3+ Si,ongt) if fisamarked non-simply distinctive
operator, o

o two(f(ty,...,tn)) = 1+, ongty) if fis+ or+%,

o two(f(ts,...,tn)) = def S ,onglt;) otherwise.

def

(3) e onegX) =
o ong f(ty,..)) defl if fis+ or+%,
e ongf(ty,..)) 70 otherwise.

Definition D.4 An ordering_ overZg U Z’é, terms is defined as follows$: 1 s if
and only if

(1) e(t) > e(s), or
(2) e(t) = e(s) andW'(t) >W'(s), or

39

(3) e(t)
(4) e(t)

An orderingZ is a union ofJand{(t,s) | W/(t) =W'(s) ande(t) = e(s) andpref(t) =
pref(s) andtwo®(t) = two*(s)}.

e(s) andW'(t) =W'(s) andpref(t) > pref(s), or
e(s) andW’(t) = W'(s) andpref(t) = pref(s) andtwo®(t) > twd*(s).

We easily check that is transitive and irreflexive, well-founded, and closedemd
substitution. Clearlyd is reflexive and transitive and closed under substitution.
Moreover,ZJ is strictly monotonic andd is weakly monotonic. Hence, according
to the definitions and notation in [23]] is aweak reduction order

Proof of Theorem 6.4 Assume an OSOS PG = (2, A R, >) which is both linear
and syntactically well-founded. L&' = (¥',A',R,>) be the OSOS PL generated
by the algorithm in Figure 2. Moreover, let = (¥R, >) be the PRS produced
for G by the algorithm in Figure 2. Sind®' is both linear and syntactically well-
founded (Proposition D.1) it is sufficient to show that thelerlying TRS(Z',R),
denoted byr, is strongly normalising by Proposition 3.4.

We shall employ thelependency paiand dependency graptechniques due to
Arts and Giesl [4]. Since we deal here with rewriting modAld of + we use the
extension of dependency pair and dependency graph tedstigtake into account
AC due to Kusakari and Toyama [23]. Alternatively, we could énamployed the
AC extension due to Marché and Urbain [25]. The basic notiorts gefinitions
taken from [23] are as follows. An operatbe X is adefined symbotf it appears as
the head operator of the left-hand side of some rewrite ruR. iAn operatorf € Z
is aconstructorif it is not a defined symbol. Next, we define marking of tern3]{2
X# =X, (t1+t)* = (t)* +# 57, and(f(ty,---,t2))* = f¥#(ta,--,tp) otherwise.
MoreoverX# =X, (t1 +t2)* = (t))* +# t5 7, and(g(ts, -, t2))* =g(t1, -, t2)
otherwise. For example

(0+(f(0+9)+h))* = (0+" (f(0+g)+" h)

The AC-dependency pairs are defined as followst (4, ...,s) — C[g(t1,...,tm)]
is a rewrite rule ofr with g a defined symbol, then

(f(s1,...,s)%,0(ts, ..., tm))

is adependency paiof 7. If 1+, — r is a rewrite rule ofr , then

(s1+%2) +2)%, (r +2)%)

is anextended dependency paif 7, whereZ is a fresh variable. Clearly((s; +
) +2)% (r +2)% = (1 +* 82) +* 2), (r +% Z)), and we shall use this explicit

40

form from now on. An expression is aC-dependency paof 7 if it is a depen-
dency pair ofr or an extended dependency pairzof

A sequence of dependency pais,t1), ($,t2),... is an AC-chainif there exists
_ # .
a substitutiono such thatotj(a)*otj >nhd 0sj+1 holds for every two consecutive

#
pairs(sj,tj) and(sj,1,tj;+1) in the sequence. The notionsand>pq are defined as
follows. Let TRSR* be {(X +Y)+#2Z) - (X+* Y)+* 2)}, and lett | 4 denote the

normal form oft in -z moduloAC of 4. We defines it ass -t andt =t’ |4 for
somet’. Informally, the relatiors™ngt means that' € [s] ands = CJt] for some
contextC[X] such that appears as an argument ofderm inC[X] and this term is
not guarded by any other operator except possiblyfddote, thatp+ (q+t)) >pgt
but not f (t + p) >nqt. For precise definitions and illustrating examples the eead
is referred to [23].

An AC-dependency grapbf 7 is the directed graph whose nodes are the AC-
dependency pairs af and there is an arc frors,t) to (v,w) if (s,t)(v,w) is an
AC-chain.

A weak reduction order is aweak AC-reduction ordef (a) 2 is AC-compatible
namely ifs € [t], thens Jt, and (b)2 has theAC-deletion property(X +Y)+Z J
X +Y. Moreover, a quasi ordering satisfies theAC-marked conditiorif (X +
Y)+* Z2) 3 (X+# Y)+# Z) and(X +7 Y) +# Z2) O (X+Y) +* 2).

We are ready to state the result we will use to prove ternonati

Result D.5 [23] ATRS 2 is strongly normalising if there exists a wea&-reduction
orderZ satisfying theAC-marked condition such that

(1) | I r for all rewrite ruled —r of 7;

(2) st for all dependency pairs,t) on a cycle of thédC-dependency graph for
7 ; and

(3) st foratleast one dependency pgirt) on each cycle of thAC-dependency
graph for7 .

The required orderin@ will be defined in terms of the weight functions from
Definitions D.2 and D.3, which are in turn basedwandW functions from Defi-
nition 6.

Remark. Unlike in [14], our proof does not rely on the assumptiort thef) > 1

for all f. In fact, for most of the existing PLs, the weight functians such that
w(f) = 0 for most of the operatork. Our proof works withw(f) > 0.

We return to our proof. The only constructorsinare the prefixing operatoes,
for all a € A, the operatof and possibly other constantsan(no defining rules).

41

Next, we work out theAC-dependency pairs far. We begin with the dependency
pairs for . Firstly, there are two extended dependency pairs forA@ioperator
+:

((X+F 0)+" 2), (X +% 2)) (D.1)
((X+* X)+* 2),(X+* 2)) (D.2)

There are threAC-dependency pairs fas”:

(X+0) %2, X*2) (D.3)
(X+Y)>#Z, X2 +# Y1>2) (D.4)
(X+Y)p#Z, X#2) (D.5)

A typical operator(f,n) € Xz \ B may have several types of rewrite rules and thus
dependency pairs. Iff is not free of implicit copies, thefeopy € R gives rise to

(F*(X), (V) (D-6)
wheref€ is free of implicit copies operator.

If f is free of implicit copies but not simply distinctive, themete will be a large
number ofAC-dependency pairs arising from the auxiliary rewrite ruéevd Lemma
5.4. If the auxiliary rewrite rule i$ - r, then it produces aAC-dependency pair
(I r#). Explicitly, this AC-dependency pair is

(t#(X), (AuxiliaryTerm fy(X),---, fi(X)D™) (D.7)

There will beAC-dependency pairé”, s*), wheres a proper subterm afwhich is
not a variable. Clearly, by Lemma 5.4, the head operatai®iot a constructor.
If an AC-dependency paifl#,s*) occurs in a cycle, it will occur with otheAC-
dependency pairs that we give numbers to. Hence, we will mather then, except
for the following type ofAC-dependency pairs

(F5(X), fp(X)) (D.8)

wherep € {1,...,1}. They may be on cycles involvingC-dependency pairs that
arise from the action rewrite rules. We shall list them below

If fis free of implicit copies and simply distinctive, then taevill be several types
of AC-dependency pairs arising from the rewrite rules from Lenn®a TheAC-
dependency pair

42

(PRGN, X)+ (Y, (D.9)

can occur in cycles. Th&C-dependency pairs we are particularly interested in are

(fF(X+aY+b.z), ff(X+aY)) (D.10)
(FF % +0,..), F9..,%,...) (D.11)
(RGO +Y.), B9 00%,.00) (D.12)

The action rewrite rule gives rise to t&€-dependency pair

(#(.X), C*[X]) (D.13)

as well as to the following types #¥C-dependency pairs, whe@X] = D[g(Y)]
for some contexD| | andg a defined operator:

(*(ai.X), g*(Y)) (D.14)

Notice that there arBC-dependency pairs of the types described above for the head
operator ofC[X| and forg depending on the type the operators. Finally, there is the
AC-dependency pair arising from the deadlock rew(itg X), 0%); it clearly cannot
occur in any cycle.

With the above listed types &iC-dependency pairs we construct &ie-dependency
graph for7 . Here, we shall only identify all possible cycles as it istait we need
by Result D.5.

e There are cycles created by self-embeddh@dependency pairs (D.1)—(D.2),
(D.3) and (D.5). Iff is simply distinctive andf € %, and if f occurs in the
contextC[X] of its action rewrite rule, namel@[X] = D[f(t)] by the linearity of
f for some contexD| |, then there is a cycle generated {{/(a.X), f#(t)): an
instance of (D.14).

e There may be cycles that are created by sev&Zallependency pairs. For exam-
ple, the shortest cycles are of the fotii(X), f5(X)), (fi(aX), ¥(t)), where
the last pair arises from the action rewrite rule. A bit longgcles are of the
form (£#(X), f#(Y)), (f(X), f5*(X)), (f§(aX), f*(1)), the last pair arises
from the action rewrite rule. There may be longer cycles ithailve more than
two operators, but they are made up solely from instancegpénidency pairs
(D.6)—(D.8), (D.10)—(D.12) and (D.14). The common propeitall such cycles
is that they contain an instance of (D.14).

Now, we need a weakC-reduction order that satisfies the conditions of Result D.5
We argue thatl is the required wealC-reduction order. The order is a weak
reduction order. It iAC-compatible as it equated #C-equivalent terms. It satisfy

43

the AC-deletion property asvo*((X +Y) +Z) = 2 andtwo?(X +Y) = 1. Finally,
it satisfies theAC-marked condition since, W/, pref andtwo” equate the sides of
the required pairs.

Next, we show that the ordering satisfies the three conditions of Result D.5.

(1) We show that J r for every rewrite rule ofr . Since functiortwo” returns
0 for all variables and terms whose head operator is not rdatke’ (1) =
0 = twd”(r) for all our rewrite rules — r. Hence, we shall not considavd®
further for this case. We begin with rewrite rules for
(@) +dn: X+03 X sincee(X+0) > 1> 0=¢e(X);

(b) +ice: X+X T X sincee(X+X) =1> 0= e(X);

(©) Ddis: (X+Y)>ZIX>Z+Y>Zsincee((X+Y)>Z)=1=¢eX>
Z+Yr>2Z), andW ((X+Y)>Z) = maxmax0,0),0) = 0 andW' (X >
Z+Y>Z)=maxmax0,0)max0,0)) = 0, andpref(lhs) =w(>) > 0=
pref(rhs).

(d) >act:aX>Y JaXsincee(aXr>Y)=¢e@xX),andW (aXp>Y)=1=
W (a.X). Also, pref(lhs) = w(>) +1 > 1 = pref(rhs).

(€) >qil : XY JY sincee(X>Y) =0=¢e(X) andW/'(X>Y) =0=W'(Y)
andpref(X>Y) =w(>) > 0= pref(Y).

Now we consider rewrite rules for operatdrg ¥’ \ Zg. Letmis the number

of active arguments of. The above comment regarditgd” applies also for

the remaining rewrite rules.

() feopy: F(X) - FE(Y). We havef is simply distinctive if and only iff ¢ is
simply distinctive. We easily check th&tX) = f¢(Y).

(@) faux: f(X) - AuxiliaryTermfi(X),..., fi(X)]. We havdhs = rhs. Since
f is not simply distinctive we have(lhs) = 1 ande(rhs) is at most 1.
Recall thaw(f) =w(f;) forall 1 <i <I. Thus, clearly’(lhs) =w(f) =
W/ (rhs). Finally, pref(lhs) = w(f) = pref(rhs).

(h) f5 : f(X+aY+bZz) - f(X+aY). Sincem= 1 we verify thate(lhs) =
1 = e(rhs) andW'(lhs) = w(f) + 1 = W/(rhs). We havepref(lhs) =
w(f)+2>w(f)+1=pref(rhs).

(i) fan(i):f(...,%40,...) - f(...,X,...). We havdhs Jrhssincee(lhs) =
1, as it contains-, ande(rhs) = 0, soe(lhs) > e(rhs).

(G) fas():f(.. X+Y,...) > (... %,...)+ f(...,Y,...). We haverhs O
Ihssincee(lhs) = 1= ¢e(rhs), W’(lhs) = w(f) =W’(rhs) andpref(lhs) =
w(f) > 0= pref(rhs).

(k) fact: f(a@.X) — aC[X]. Clearly,e(lhs) = 1 = e(rhs) since either prefix-
ing occurs orf is simply distinctive with no active arguments. We have
two cases forf. Assume thaff has active arguments, nameify> 1. We
haveW’(f(a.X)) = w(f)+m>W(C[X]) +msincew(f) >W/(C[X]) by
syntactical well-foundedness. Nom+ W/(C[X]) > m+W/'(C[X]) and
> W/ (a.C[X]). Moreover,pref(f(a.X)) =w(f)+mandw(f)+m>
W(C[X]) + m>W/'(C[X]) +m> p(C[X]) + m > pref(a.C[X]).

Whenf has no active arguments, tha(f (X)) =w(f) > 14+W(C[X])

44

sincew(f) >W(C[X]). Then, L+W(C[X]) > 1+W'(C[X]) =W'(a.C[X]).
Also, pref(f (X)) = w(f) >W(C[X]) > 1+ p(C[X]) = pref(a.C[X]).

(¢) fnii : f(X) - 0. Due to the ordering on transition rules, the rewrite rules
is effectively of two forms. Firstlyf (a.X) - O, wherea.X is not a trigger
for f andf is not a constant, and secondl{X) — O whenf is a constant
with no defining rules. Note, that if is a constant with some defining
rules, then the action rewrite rules will always apply angstthe deadlock
rewrite rule will never apply.

In both cases abow&lhs) = 1 > 0 = e(rhs), sincelhs either involves
prefixing or a simply distinctive operator with no active amngents.

(2) We need to showhs J rhsfor all the AC-dependency pair§hs,rhl). In part
3 below we provehs 7 rhsfor the AC-dependency pairs (D.1)—(D.3), (D.5),
(D.10)—(D.13). Since (D.13) is more general than (D.14y éD.7) is more
general than othexC-dependency pairs arising from the auxiliary rewrite rule,
we shall only consider (D.7). Also, we shdWs 1 rhs for (D.4), (D.6) and
(D.9).

(D.4): e(lhs) = 1 = e(rhs), W'(Ihs) = 0 = W/(rhs), pref(lhs) = w(>#) > 0=
pref(rhs), andtwd?(lhs) = 1 = twa*(rhs).

(D.6): Operatorf is simply distinctive iff f¢ is simply distinctive. Hence, we
deducetwo?(lhs) = twd(rhs) and they are equal to either 3 or 0. The
functionse, W' andpref have been calculated in (f) of part 1, so we are
done.

(D.7): The function®, W’ andpref have been calculated in (g) of part 1, so we
only checktwd®. Sincef is not simply distinctivewad?(Ihs) = 3. Note,
that since all the operatork of the rhs are simply distinctive we ob-
tain two(fj(X)) = 0. If the outermost operator of this is >*, then
twd?(rhs) < 2. Else, namely the outermost operator of the is +¥,
twd(rhs) < 3.

(D.9): The functionse, W' and pref have been calculated in (j) of part 1, so
we only checkwao”. We havetwd”(Ihs) = 1 = two?(rhs) as f is simply
distinctive.

(3) Each cycle in théAC-dependency graph contains at least A@edependency
pair of the type (D.1)—(D.3), (D.5), (D.10)—(D.12) aid.14). Since the longer
than 1 cycles contain (D.14), and since (D.13) is more gétieaa (D.14), we
showlhs O rhsfor (D.1)—(D.3), (D.5), (D.10)—(D.13).

(D.1) ((X+* 0)+* Z),(X+* 2)): The functionse, W andpref evaluate to
equal values for thias andrhs of this AC-dependency pair, btwvo?(Ihs) =
2> 1= two#(rhs).

(D.2) ((X+* X)+* 2),(X+* Z)): As for (D.1).

(D.3) ((X+0)>*Z, X>#2Z): clearlye(lhs) = 1> 0= e(rhs), hencdhs T rhs.

(D.5) ((X+Y) >#z X>#Z): As for (D.3).

(D.10) (f#(X+aY +b.2), f*(X+aY)): Insarhs. Here,m= 1 as there is just
one active argument, and althoug(ths) = e(rhs) andW’(lhs) =W/'(rhs)
we havepref(lhs) = w(f#) +2w(a®.) > w(f#) +-w(a”.) = pref(rhs) since
w(a®) =w(a) > 1.

45

(D.11) (f*(...,. % +0,...), f#(...,X,...)) : sincee(lhs) = 1, asf is simply dis-

tinctive and has active arguments, afrhs) = 0 we havee(lhs) > e(rhs).

(D.12) (f#(... X +Y,...), f#(...,X,...)) : As for (D.11) above.
(D.13) (f#(a.X), (C[X])*): We havee(lhs) > e(rhs). Moreover, ifm > 1, then

we havew’(f#(g.X)) = w(f#) +m>W((C[X])#) +m>W'((C[X])¥) +
m. Clearly, the last term is greater tha{((C[X])*). If m= 0, namelyf
has no active arguments and its action rewrite rule has tie fé(X) -
a*.C[X], thenW'(f#(X)) = w(f#) > W((C[X])¥) by the syntactical well-
foundedness. Sind& ((C[X])#) > W'((C[X])¥) we havehs T rhs.

This completes the proof of termination.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

L. Aceto. Deriving complete inference systems for a sla§ GSOS languages
generating regular behaviours. In B. Jonsson and J. Pagditars,Proceedings of
the 5th International Conference on Concurrency Theory COR'94, volume 836
of LNCS pages 449-464. Springer, 1994. Also, an unpublished éudlion.

L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS sulato equations.
Information and Computatiqrill:1-52, 1994.

L. Aceto, W. Fokkink, and C. Verhoef. Structured opesatill semantics. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editdgiandbook of Process Algehrpages
197-292. Elsevier Science, 2001.

T. Arts and J. Giesl. Termination of term rewriting usidgpendency pair3.heoretical
Computer Scien¢&36:133-178, 2000.

F. Baader and T. NipkowTerm Rewriting and All ThatCambridge University Press,
1998.

J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax aefinihg equations for an
interrupt mechanism in process algebfundamenta Informaticaex|(2):127-168,
1986.

J.C.M. Baeten, J.A. Bergstra, J.W. Klop, and W.P. Waijla Term-rewriting systems
with rule priorities. Theoretical Computer Sciencgé7:283-301, 1989.

J.C.M. Baeten and E.P. de Vink. Axiomatizing GSOS withrtmation. Journal of
Logic and Algebraic Programming0-61:323-351, 2004.

J.C.M. Baeten and C.A. Middelburg. Process algebra wiitling: Real time and
discrete time. In J.A. Bergstra, A. Ponse, and S.A. Smolkipes, Handbook of
Process Algebrapages 627-684. Elsevier Science, 2001.

[10] J.C.M. Baeten and W.P. WeijlandProcess Algebravolume 18 ofCambridge Tracts

in Theoretical Computer Scienc€ambridge University Press, 1990.

46

[11] B. Bloom. Structured operational semantics as a spatifin language. I€onference
Record of the 22nd ACM Symposium on Principles of Programicgmguagespages
107-117. ACM Press, 1995.

[12] B. Bloom, A. Cheng, and A. Dsouza. Using a protean laggu#o enhance
expressiveness in specificatidEEE Transactions on Software Engineerii2@:224—
234, 1997.

[13] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation caiie traced. Journal of the
ACM, 42(1):232-268, 1995.

[14] D.J.B. Bosscher. Term rewriting properties of SOS matisations. IrProceedings
of International Conference on Theoretical Aspects of QaempSoftware TACS'94
volume 789 ofLNCS pages 425-439. Springer, 1994.

[15] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory ohgwnicating sequential
processesJournal of the ACM31:560-599, 1984.

[16] R. Cleaveland and S. Sims. The Concurrency WorkbenchiNedv Century.
http://www.cs.sunysb.edu/~cwb/.

[17] R.J. van GlabbeekComparative Concurrency Semantics and Refinement of Action
PhD thesis, CWI, 1990.

[18] J.F. Groote and F. Vaandrager. Structured operatgralantics and bisimulation as a
congruencelnformation and Computatiqri00:202—-260, 1992.

[19] M. Hennessy and T. Regan. A process algebra for timetdsys Information and
Computation117:221-239, 1995.

[20] C.A.R. Hoare.Communicating Sequential ProcessPsentice Hall, 1985.

[21] J.R. Kennaway and F.J. de Vries. Infinitary rewriting.Terese, editoferm Rewriting
Systemspages 668—711. Cambridge University Press, 2003.

[22] J.W. Klop. Term rewriting systems. In S. Abramsky, D.biBay, and T. Maibaum,
editors, Handbook of Logic in Computer Sciengeages 1-116. Oxford University
Press, 1992.

[23] K. Kusakari and Y. Toyama. On proving AC-terminationdrgument filtering method.
IPSJ Transactions on Programmingyl(SIG 4 (PRO 7)):65—-78, 2000.

[24] L. Léonard and G. Leduc. A formal definition of time in TOS. Formal Aspects of
Computing 10:248-266, 1998.

[25] C. Marché and X. Urbain. Termination of associatie@rtnutative rewriting by
dependency pairs. In T. Nipkow, editoRroceedings of the 9th International
Conference on Rewriting Techniques and Applications RFA®@ume 1379 o NCS
pages 241-255. Springer, 1998.

[26] R. Milner. A complete inference system for a class ofutag behavioursJournal of
Computer System Scienc@8:439-466, 1984.

[27] R. Milner. Communication and Concurrencfrentice Hall, 1989.

a7

[28] R. De Nicola and M. Hennessy. Testing equivalences focgsses. Theoretical
Computer Scien¢e84:83-133, 1984.

[29] X. Nicollin and J. Sifakis. The algebra of timed process ATP: theory and
application.Information and Computatiqril4:131-178, 1994.

[30] D.M. Park. Concurrency on automata and infinite segeendn P. Deussen, editor,
Conference on Theoretical Computer Scienadume 104 ofLNCS pages 167-183.
Springer, 1981.

[31] G. Plotkin. A structural approach to operational setitan Journal of Logic and
Algebraic Programming60-61:17-141, 2004.

[32] J.C. van de Pol. Operational semantics of rewritinghwgtiorities. Theoretical
Computer Scien¢e00:289-312, 1998.

[33] A.W. Roscoe.The Theory and Practice of Concurrendyrentice Hall, 1998.

[34] M. Sakai and Y. Toyama. Semantics and strong sequiytidlipriority term rewriting
systems.Theoretical Computer Sciencg08:87-110, 1998.

[35] S. A. SchneiderConcurrent and Real-time Systenwiley, 2000.
[36] S. Sims. The Process Algebra Compiler. http://wwvetiga-systems.com/pac/.

[37] I. Ulidowski. Local Testing and Implementable Concurrent Process$eisD thesis,
Imperial College, University of London, 1994.

[38] I. Ulidowski. Finite axiom systems for testing preordend De Simone process
languagesTheoretical Computer Scienc239(1):97-139, 2000.

[39] I. Ulidowski. Priority rewrite systems for OSOS prosdanguages. In R. Amadio and
D. Lugiez, editorsProceedings of the 14th International Conference on Comiay
Theory CONCUR 20Q3/0lume 2761 of.NCS pages 87-102. Springer, 2003.

[40] I. Ulidowski and I.C.C. Phillips. Ordered SOS rules apacess languages for
branching and eager bisimulationthformation and Computatiqn.78(1):180-213,
2002.

[41] I. Ulidowski and S. Yuen. Process languages with disctime based on the
Ordered SOS format and rooted eager bisimulatidournal of Logic and Algebraic
Programming 60-61:401-461, 2004.

48

