
Generating Priority Rewrite Systems for OSOS
Process Languages⋆

Irek Ulidowskia and Shoji Yuenb

aDepartment of Computer Science, University of Leicester, University Road, Leicester,
LE1 7RH, United Kingdom

bInformation Engineering Department, Nagoya University, Furo-cho, Chikuka-ku,
Nagoya 464-8601, Japan

Abstract

We propose an algorithm for generating a Priority Rewrite System (PRS) for an arbitrary
process language in the OSOS format such that rewriting of process terms is sound for
bisimulation and head normalising. The algorithm is inspired by a procedure which was
developed by Aceto, Bloom and Vaandrager and presented inTurning SOS rules into equa-
tions [2].

For a subclass of OSOS process languages representing finitebehaviours the PRSs that
are generated by our algorithm are strongly normalising (terminating) and confluent, where
termination is proved using the dependency pair and dependency graph techniques. Addi-
tionally, such PRSs are complete for bisimulation on closedprocess terms modulo associa-
tivity and commutativity of the choice operator of CCS. We illustrate the usefulness of our
results, and the benefits of rewriting with priorities in general, with several examples.

1 Introduction

Structural Operational Semantics(SOS) [31,3] is a method for assigning opera-
tional meaning to operators of process languages. The main components of SOS
are transition rules, or simply SOS rules, which describe how the behaviour of a
composite process depends on the behaviour of its componentprocesses. A general
syntactic form of transition rules is called aformat. A process operator is in a for-
mat if all its SOS rules are in the format, and a process language, often abbreviated
by PL, is in a format if all its operators are in the format. Many general formats have
been proposed and a wealth of important results and specification and verification
methods for PLs in these formats have been developed [3].

⋆ An extended abstract of this work appeared at CONCUR 2003 as [39].

Preprint submitted to Information and Computation

The motivation and rationale for working with general PLs (via their formats) rather
than with specific PLs such as, for example, CCS [27], CSP [20]and ACP [10],
is that one can define and use new application-specific operators and features on
top of the standard PLs [11,12]. In order to realise the potential of general PLs
software tools need to be developed. Such tools would acceptgeneral PLs as input
languages and perform tasks such as simulation, model checking and equivalence
checking, refinement and testing. Several such tools already exist. For example, we
can useProcess Algebra Compiler[36] to change the input PL to theConcurrency
Workbench of New Century[16]. The Process Algebra Compiler can accept any
general PL in thepositive GSOSformat [13] and it produces a “front-end” to the
Concurrency Workbench for that PL.

Alternatively, we can utilise the existing term rewriting and theorem prover soft-
ware tools to analyse properties of processes of general PLs. To this end several
procedures for automatic derivation of axiom systems and term rewriting systems
for PLs in several formats were proposed [2,1,14,38,8]. Thepresent paper con-
tinues this research, particularly on the generation of term rewriting systems for
bisimulation originated by Aceto, Bloom and Vaandrager [2]and Bosscher [14],
and extends and generalises it further. We propose a new procedure for deriving
Priority Rewrite Systemsfor bisimulation. Having considered many examples of
operators we believe that our work delivers the following improvements: (a) pri-
ority rewrite rules are no more complicated and are sometimes simpler than the
rewrite rules produced from the axioms as in [2,1,14], (b) they employ no more
than and sometimes fewer auxiliary operators (see Remark 5.2), and (c) the prior-
ity order that we use increases the effectiveness of term rewriting by reducing the
number of critical pairs and thus reducing the nondeterminism inherent in rewrit-
ing (see Section 7). We work withOrderedSOS PLs [40], or OSOS PLs for short,
instead of the GSOS PLs [13] which have the same expressiveness [40]. The pro-
posed procedure generates term rewriting systems with a priority order on rewrite
rules instead of axiom systems or ordinary term rewriting systems as in [2,14]. We
illustrate this with an example. Consider the priority operator “θ” [6]. For a given
irreflexive partial order≫ on actions processθ(p) is a restriction ofp such that,
in any state ofp, actiona can happen only if no actionb with b≫ a is possible in
that state. IfBa = {b | b≫ a}, thenθ is defined in a natural fashion by the follow-

ing GSOS rules, one for each actiona, where expressions of the formX
b

9 in the
premises are callednegative premises:

X
a
→ X′ {X

b
9}b∈Ba

θ(X)
a
→ θ(X′)

The second procedure in [2], also described in [1], producesthe following axioms
for θ where the basic operators of CCS, namely “+”, prefixing and “0”, are used.
Since a typical rule forθ may have several copies of the argumentX in the premises

2

an auxiliary binary operator “△”, defined below, is used [2].

X
a
→ X′ {Y

b
9}b∈Ba

X△Y
a
→ θ(X′)

The following axioms forθ consist of the axiom that makes copies ofX and uses the
auxiliary operator△, and the axioms for△ consisting of the distributivity axiom,
peeling axioms and inaction axioms:

θ(X) = X△X

(X +Y)△Z = X△Z+Y△Z

a.X△(b.Y+Z) = a.X△Z if ¬(b > a)

a.X△(b.Y+Z) = 0 if b > a

a.X△0 = a.θ(X)

0△X = 0

The priority operator can be defined equivalently, and perhaps more intuitively, by
positiveGSOS rules equipped with anordering to represent the priority order on
actions: the ordering has the corresponding effect to negative premises in rules. This
is the idea behind theOrderedSOS format [40]. The rules for the OSOS version of
θ are, one for eacha,

X
a
→ X′

ra
θ(X)

a
→ θ(X′)

and the ordering> is such thatrb > ra wheneverb ≫ a. The ordering prescribes
that rulera can be applied to derive transitions ofθ(p) if no higher priority rule, e.g.
rb, can be applied toθ(p). This suggests an axiomatisation procedure: derive the
axioms from the SOS rules similarly to [2,1], and then “order” them appropriately
according to the ordering on the SOS rules. More precisely, we orientate the axioms
from left to right to obtain the rewrite rules, then define apriority ordering which
is an irreflexive partial order (irreflexive and transitive)on the rewrite rules, and
then introduce a new type of rewrite rule to deal with the priority ordering. What
we obtain is an example of aPriority Rewrite System, or PRS for short, originated
by Baeten, Bergstra, Klop and Weijland [7]. Our procedure generates the following
PRS for the operatorθ. We have one rewrite ruleθb

pr for each pair ofa andb such

3

thatb≫ a, and oneθa
act rule for each actiona:

θb
pr : θ(a.X +b.Y +Z) → θ(b.Y+Z)

θdn : θ(X +0) → θ(X)

θds : θ(X +Y) → θ(X)+θ(Y)

θa
act : θ(a.X) → a.θ(X)

θnil : θ(X) → 0

The priority ordering on the rewrite rules is defined as follows: θb
pr ≻ θdn for all

rewrite rulesθb
pr, θdn≻ θds and{θds,}∪{θa

act | all a} ≻ θnil . We can represent this
ordering more pictorially. Below,r ≻ r ′ if and only if there is an arrow fromr to r ′:

θpr : θ(a.X +b.Y +Z) → θ(b.Y+Z)

θdn : θ(X +0) → θ(X)
g

θds : θ(X +Y) → θ(X)+θ(Y)
g

θact : θ(a.X) → a.θ(X)

θnil : θ(X) → 0
≺≻

Note, that we have fewer rewrite rules (schemas) than the axioms (schemas) above,
and no need for the auxiliary△.

Our PRSs are sound for bisimulation, meaning that closed terms can only be rewrit-
ten to bisimilar closed terms, and they are head normalising. The main technical re-
sult here is Lemma 5.4 which describes how to construct the auxiliary term and the
auxiliary rewrite rule. For OSOS PLs generating finite behaviours, in our case lin-
ear and syntactically well-founded OSOS PLs, the generatedPRSs are also strongly
normalising (terminating) and confluent. The proof of termination (Theorem 6.4)
uses novel dependency pairs and dependency graphs techniques, and generalises
the proof of termination by Bosscher in [14]. Finally, for the mentioned subclass of
OSOS PLs, the generated PRSs are complete for bisimulation:if two closed terms
are bisimilar, then they are reducible to the unique, modulothe associativity and
commutativity of+, normal form.

The paper is organised as follows. In Section 2 we recall the definitions of OSOS
PLs and bisimulation, and Section 3 presents the basics of term rewriting, rewriting
modulo associativity and commutativity of+, and rewriting with priority order.
In Section 4 we introduce our basic PL and construct a PRS for it. The PRS is
strongly normalising, confluent, and sound and complete forbisimulation. Section

4

5 presents a procedure for generating PRSs for arbitrary OSOS process languages.
Termination of PRSs is discussed and a termination result for syntactically well-
founded and linear OSOS PLs is given in Section 6. Section 7 contains confluence
and completeness results for bisimulation. The last section contains conclusions
and ideas for possible extensions.

2 Preliminaries

This section recalls some results concerning processes, labelled transition systems,
bisimulation, and the GSOS and OSOS formats. We assume a knowledge of basic
definitions and results for PLs as in [15,27,10] and for SOSs as in [13,18].

2.1 Transition System and Bisimulation

Definition 2.1 A labelled transition system, LTS for short, is a structure(P ,A,→),
whereP is the set of processes,A is the set of actions and→⊆ P ×A× P is a
transition relation.

We model concurrent systems by process terms (processes) which are the states in
an LTS. Transitions between the states, defined by a transition relation, model the
behaviour of systems.

P , the set of processes, is ranged over byp,q, r,s, t, The setAct is a finite set
of actions and it is ranged over bya,b,c and their subscripted versions. The action
τ is the silent action but we do not treat it any differently from other actions. We
permitAct to have a structure: for exampleAct may consist of action labels and co-
labels as in CCS [27]. We will use the following abbreviations. We writep

a
→ q for

(p,a,q) ∈→ and read it as processp performsa and in doing so becomes process
q. Expressions of the formp

a
→ q will be called transitions. We write p

a
→ when

there is someq such thatp
a
→ q, andp

a
9 otherwise.

We recall the definition of bisimulation [30,27]:

Definition 2.2 Given(P ,Act,→), a relationR⊆ P ×P is abisimulationif, for all
p,q such thatpRqand alla∈ Act, the following properties hold.

p
a
→ p′ implies ∃q′.(q

a
→ q′ andp′Rq′)

q
a
→ q′ implies ∃p′.(p

a
→ p′ andp′Rq′)

We write p∼ q if there exists a bisimulationR such thatpRq.

5

2.2 GSOS and OSOS Formats

The OSOS format [40] is an alternative to the GSOS format [13]. The reader can
find the motivation for the OSOS format and many examples of its application in
[40]. It is important to state that the OSOS format is as expressive as the GSOS
format [40,41]. Before we recall the definitions of the formats we introduce several
notions and notations.

Var is a countable set of variables ranged over byX,Xi,Y,Yi , Σn is a set of oper-
ators with arityn. A signatureΣ is a union of allΣn and it is ranged over byf ,g,
The members ofΣ0 are calledconstants; 0 ∈ Σ0 is the deadlocked process opera-
tor. The set ofopen termsoverΣ with variables inV ⊆ Var, denoted byT(Σ,V),
is ranged over byt, t ′, Var(t) ⊆ Var is the set of variables in a termt. The
set ofclosed terms, written as T(Σ), is ranged over byp,q,u,v, In the setting
of process languages these terms will often be called process terms. AΣ context
C[X1, . . . ,Xn] is a member ofT(Σ,{X1, . . . ,Xn}), i.e. an open term that contain at
most variablesXi for 1≤ i ≤ n. If t1, . . . , tn areΣ terms, thenC[t1, . . . , tn] is the term
obtained by substitutingti for Xi for 1≤ i ≤ n.

We will use bold italic font to abbreviate the notation for sequences. For example, a
sequence of process termsp1, . . . , pn, for anyn∈N, will often be written asp when
the length is understood from the context. Given any binary relationR on closed
terms andp andq of lengthn, we will write pRq to meanpiRqi for all 1≤ i ≤ n.
Moreover, instead off (X1, . . . ,Xn) we will often write f (X) when the arity off is
understood. An equivalence relation≈ over a PL overΣ is acongruenceif p ≈ q
impliesC[p] ≈C[q] for all p andq of lengthn and allΣ contextsC[X] with n holes.

A closed substitutionis a mappingVar → T(Σ). Closed substitutions are ranged
over byρ, ρ′ andσ; they extend toT(Σ,Var) → T(Σ) mappings in a standard way.
For t with Var(t) ⊆ {X1, . . . ,Xn} we write t[p1/X1, . . . , pn/Xn] or t[p/X] to meant
with eachXi replaced bypi , where 1≤ i ≤ n.

Definition 2.3 [13] A GSOS rule is an expression of the form

{ Xi
ai j
→Yi j }i∈I , j∈Ji { Xk

bkl
9 }k∈K,l∈Lk

f (X)
a
→C[X,Y],

(1)

whereX is the sequenceX1, . . . ,Xn andY is the sequence of allYi j , and all process
variables inX andY are distinct. Variables inX are theargumentsof f . Moreover,
I andK are subsets of{1, . . . ,n} and allJi andLk, for i ∈ I andk ∈ K, are finite
subsets ofN, andC[X,Y] is a context.

Let r be the rule of the form (1). Operatorf is theoperatorof r andrules(f) is the
set of all rules with the operatorf . Expressionst

a
→ t ′ andt

a
9, wheret, t ′∈T(Σ,V),

6

are calledtransitionsandnegative transitionsrespectively. Transitions are ranged
over byT andT ′. If transitionT is X

a
→ X′, we will sometime use the notation

¬T to stand forX
a

9. A (negative) transition which involves only closed terms is
called aclosed(negative) transition. The set of transitions and negativetransitions
above the horizontal bar inr is called thepremisesof r, and is written aspre(r).
The transition below the bar inr is theconclusion, written ascon(r). Action a in
the conclusion ofr is theactionof r, written asact(r), and f (X) andC[X,Y] are the

sourceandtargetof r, respectively. Thei-th argumentXi is activein r if Xi
ai j
→Yi j

or Xi
bil
9 is a premise ofr. The set of alli such thatXi is active inr is denoted by

active(r). Moreover, thei-th argument off is activeif i ∈ active(r ′) for some rule
r ′ for f .

Definition 2.4 A positiveGSOS rule (transition rule, or OSOS rule, or simply a
rule) is a GSOS rule withK = /0. With the notation as in Definition 2.3, it has the
following form:

{ Xi
ai j
→Yi j }i∈I , j∈Ji

f (X)
a
→C[X,Y].

(2)

Next, we recall the notion ofordering on rules [40]. It is a new feature which
allows the user to control the order of application of OSOS rules (positive GSOS
rules) when deriving transitions of process terms.

An ordering on OSOS rules for operatorf , > f , is a binary relation over the rules for
f . For the purpose of this paper we assume without loss of generality that orderings
areirreflexive(i.e. r > r never holds) andtransitive. In general there are situations,
which are described and motivated in [40], where non-transitive or not irreflexive
relations are useful orderings on rules. Expressionr > f r ′ is interpreted asr having
higher priority thanr ′ when deriving transitions of terms withf as the outermost
operator. GivenΣ, the relation>Σ, or simply> if Σ is known from the context, is
defined as

S

f∈Σ > f . We will denote{r ′ | r ′ > r} ashigher(r), and generalise it to
higher(R) for sets of OSOS rulesR.

Definition 2.5 A GSOS PL is a tuple(Σ,A,R), whereΣ is a finite set of operators,
A ⊆ Act, R is a finite set of GSOS rules for operators inΣ such that all actions
mentioned in the rules belong toA. An operator of a GSOS PL is called a GSOS
operator.

An Ordered SOS(or OSOS, for short) PL is a tuple(Σ,A,R,>), whereΣ is a finite
set of operators,A⊆ Act, R is a finite set of OSOS rules for operators inΣ, written
asrules(Σ), such that all actions mentioned in the rules belong toA, and> is an
ordering onrules(Σ). An operator of an OSOS PL is called an OSOS operator.

Given an OSOS process languageG= (Σ,A,R,>), we associate a unique transition

7

relation→ with G. The details are given in [40]. Having the transition relation for
G we easily construct(T(Σ),A,→), the LTS forG. Bisimulation is defined over this
LTS as in Definition 2.2. Since GSOS and OSOS are equally expressive, namely
every GSOS process language can be equivalently given as an OSOS process lan-
guage and vice versa [40], bisimulation is a congruence for all OSOS PLs.

An OSOS PLH is adisjoint extensionof an OSOS PLG, written asG≤ H, if the
signature, the rules and the orderings ofH include those ofG, andH introduces no
new rules and orderings for the operators inG.

Finally, we give two examples of process operators that havenatural and intuitive
definitions in terms of OSOS rules.

Definition 2.6 Let r be a rule for an OSOS operatorf such thatpre(r) = {Xi
ai j
→

Yi j | i ∈ I , j ∈ Ji}. We say that ruler appliesto f (u) if and only if the premises of

r are valid foru, namelyui
ai j
→ for all relevanti and j. Ruler is enabledat f (u) if

and only ifr applies tof (u) and no rules inhigher(r) apply to f (u).

Example 2.7 Consider the OSOS and GSOS definitions of the sequential compo-
sition operator “;”:

X
a
→ X′

ra∗
X;Y

a
→ X′;Y

>
Y

b
→Y′

r∗b

X;Y
b
→Y′

{X
a

9}a∈Act Y
b
→Y′

rnb

X;Y
b
→Y′

Rulesra∗ andr∗b, for all actionsa andb, together with> defined byra∗ > r∗b, for
all a andb, comprise the OSOS formulation. Rulesra∗ andrnb, for all a andb, form
the GSOS definition.

Consider processesp andq with q
b
→. Using the OSOS definition, processp;q can

perform an initial actionb of q, inferred byr∗b, if all rules ra∗ are not applicable.
This occurs when the premises of these rules are not valid: i.e. p

a
9 for all a∈ Act.

So, the ordering on the OSOS rules for ; has the same effect as GSOS rulesrnb with
the negative premises{X

a
9}a∈Act.

Example 2.8 Consider Hennessy and Regan’sTemporal Process Language(TPL)
[19]. It has a delay operator “⌊ ⌋()” defined by the following GSOS rules, wherea
is any action exceptτ and the actionσ denotes the passage of one time unit. So, the
first rule below is really a rule schema for alla 6= τ.

X
a
→ X′

⌊X⌋(Y)
a
→ X′

X
τ
→ X′

⌊X⌋(Y)
τ
→ X′

X
τ

9

⌊X⌋(Y)
σ
→Y

8

The OSOS formulation of⌊ ⌋() is straightforward. The OSOS rules are

X
a
→ X′

⌊X⌋(Y)
a
→ X′

X
τ
→ X′

τ1

⌊X⌋(Y)
τ
→ X′

⌊X⌋(Y)
σ
→Y σ /0

and the ordering isτ1 > σ /0. The parallel composition operator ‘‖’ of TPL a timed
extension of the CCS parallel with the following non-GSOS rule:

X
σ
→ X′ Y

σ
→Y′ X ‖Y

τ
9

X ‖Y
σ
→ X′ ‖Y′

The rule requires thatp ‖ q can pass time if bothp andq can pass time and are
stable and cannot communicate. The operator has the following OSOS formulation.
Its rules are precisely the CCS rules (we only display communication rule schema
raa) together with the following timed rulerσ,

X
a
→ X′ Y

a
→Y′

raa
X ‖Y

τ
→ X′ ‖Y′

X
σ
→ X′ Y

σ
→Y′

rσ
X ‖Y

σ
→ X′ ‖Y′

which is placed below all the rules for‖ with the actionτ, namely the twoτ-rules
and all the communications rulesraa. The GSOS formulation of the operator is less
natural: see [41].

Most of the process operators that are definable by GSOS ruleswith negative
premises have OSOS formulations which are as natural and efficient as those of
the sequential composition and the priority operators discussed above. The exam-
ples are priority choice from Section 4, action refinement operator [40], the hiding
operator of ET-LOTOS [24], several delay operators [29,19,9], and several timed
extensions of traditional operators: for example parallelcomposition ofTPL, and
hiding and sequential composition of CSP [33,35].

2.3 Classes of GSOS and OSOS Operators

The axiomatisation algorithms in [2] produce several typesof laws (axioms) for
GSOS operators depending on the form of their SOS definitions. Three types of
SOS definitions, and hence three classes of operators, are defined:smooth, distinc-
tiveanddiscarding. Our PRS algorithm relies also on partitioning OSOS operators
into similar classes. We identify two classes:free of implicit copiesoperators and
simply distinctiveoperators. In order to compare the algorithms for the GSOS PLs
and the presented algorithm for the OSOS PLs we state and compare the definitions
of the mentioned classes of operators.

9

A GSOS rule is smooth [2] if it has the form

{ Xi
ai→Yi }i∈I { Xk

bkl
9 }k∈K,l∈Lk

f (X1, . . . ,Xn)
a
→C[X,Y],

whereI andK are distinct sets andI ∪K = {1, . . . ,n}, and noXi appears inC[X,Y]
wheni ∈ I . A GSOS operator is smooth if all its rules are smooth.

Multiple occurrences of process variables in the (positive) premises and in the target
of SOS rules are calledcopies. They are eitherexplicit or implicit copies [37,40].
Given a ruler as in Definition 2.4, explicit copies are the multiple occurrences of
variablesYi j in the targetC[X,Y] and the multiple occurrences ofXi in C[X,Y] for
i /∈ I . The implicit copies are the multiple occurrences ofXi in the premises ofr
and the occurrences, not necessarily multiple, of variables Xi in C[X,Y] for i ∈ I .
Consider the following rulerh:

X1
a11→Y11 X1

a12→Y12 X2
a21→Y21

h(X1,X2,X3,X4)
a
→ g(X2,X3,X3,X4,Y11,Y11)

The multiple occurrences ofX1 in the premises ofrh are implicit copies, and the
occurrence ofX2 in the target is also an implicit copy (ofX2). The occurrences of
X3 andY11 in the target are explicit copies. There are no implicit and no explicit
copies ofX4 in rh sinceX4 does not appear in the premises.

Definition 2.9 A rule with no implicit copies isfree of implicit copies. An OSOS
operator isfree of implicit copiesif its rules are free of implicit copies.

We notice that smooth GSOS rules can be defined using the notion of implicit
copies: A GSOS rule of the form (1) is smooth if it has no implicit copies,I andK
are distinct sets andI ∪K = {1, . . . ,n}. Consequently, the following results hold.

• If a GSOS operator is smooth, then there is an OSOS formulation of the operator
which is free of implicit copies [40].

• The converse is not valid: There are non-smooth GSOS operators whose OSOS
formulations are free of implicit copies.

The second result holds for non-smooth GSOS operators whichhave rules with ar-
guments that appear in both positive and negative premises.The priority operatorθ
and the timed version of the parallel operator of TPL (Example 2.8) are examples
of GSOS operators which are not smooth and which have OSOS formulations that
are free of implicit copies. Further examples are the hidingoperators of the dis-
crete time versions of CSP [35] and ET-LOTOS [24] given in [41] and recalled in
Example 5.11.

10

The next class of GSOS operators used by the axiomatisation procedures in [2]
are the distinctive operators: a smooth GSOS operatorf is distinctive if, for each
argumenti, the argument either appears in positive premises of all transition rules
for f or in none of them, and also, for each pair of different rules for f , there is
an argument for which both rules have the same positive premise but with a differ-
ent action. The prefixing, renaming and restriction operators of CCS are distinctive
operators, whereas the choice operator and the parallel operator of CCS, and se-
quential composition operators are not distinctive. We shall use a similar notion:

Definition 2.10 An OSOS operatorf which is free of implicit copies issimply dis-
tinctive if the ordering on its rules is empty and, for each argumenti, the argument
either appears in premises in all transition rules forf or in none of them, and also,
for each pair of different rules forf , there is an argument for which both rules have
the same premise but with a different action.

3 Term Rewriting Systems

We recall the basic notions of term rewriting [22,5]. A Term Rewriting System
(TRS)R is a pair(Σ,R) whereΣ is a signature and R is a set ofreduction rulesor
rewrite rules. We associate a countably infinite set of variableV ⊆ Var with each
TRS. A reduction rule is a pair of terms(t,s) overT(Σ,V) and it is written ast → s.
Two conditions are imposed on the terms of reduction pairs:t is not a variable, and
the variables ofs are also variables oft, namelyvar(s) ⊆ var(t). Often a reduction
rule has a name, for exampler, and we writer : t → s.

A reduction ruler : t → scan be seen as a prescription for derivingrewritesσt → σs
for all substitutionsσ, where a rewrite is a closed instance of a reduction rule. The
left-hand sideσt is called aredex, more preciselyr-redex. The right-hand sideσs is
called acontractum. A σt redex may be replaced by its contractumσs in an arbitrary
contextC[X] giving rise to areduction step(one-step rewriting):C[σt] →r C[σs].
We call→r theone-step reduction relationgenerated byr. The one-step reduction
relation of a TRSR , denoted by→R or simply by→, is defined as the union of→r

for all r ∈ R. Let R be a set of rewrites. The closure ofR under closed contexts is
denoted by→R. The reflexive and transitive closure of→ (→R) is calledreduction
(R-reduction) and is written as։ (։R). If t ։ s (t ։R s), thens is called areduct
(anR-reduct) of t. A reduction of termf (t1, . . . , tn) is internal if it occurs solely in
the subtermst1, . . . , tn leaving the head operatorf unaffected.

When no reduction step is possible from a termt, we say thatt is anormal from.
This happens whent has no redex occurrences. A term is calledweakly normalising
if is can be reduced to a normal form;t is strongly normalising(terminating) if
it has no infinite reductions; andt is calledconfluentif any two reducts oft are
convergent(or joinable), namely have a common reduct. Recall, thats and t are

11

joinable, written ast ↓ s, if they have a common reductu, namelys։ u andt ։ u.
A TRS is weakly normalising, strongly normalising and confluent if all its terms
have these relevant properties.

The notions that are very useful in proving confluence areoverlapandcritical pair.
Two reduction rulesr0 : l → r andr1 : l ′ → r ′ overlap if and only if there is a non-
variable subterm ofl that can be matched with anr1-redex (or vice versa). More
precisely, there is some contextD[X] and a non-variable terms such thatl ≡ D[s]
andσs≡ ρl ′ for some substitutionsσ andρ. Next, consider a pair of overlapping
reduction rulesr0 : l → r andr1 : l ′ → r ′. We shall assume thatσ andρ are such that
σs≡ ρl ′ is a most general common instance ofs andl ′, and thatσ is minimal. The
pair of one-step reducts of the outer redexσl ≡σD[ρl ′] that arises from this overlap,
(σD[ρr ′],σr), is called a critical pair. In order to prove confluence we will use the
result due Knuth and Bendix [22] that states that if a TRS is strongly normalising,
then it is confluent if and only if all its critical pairs are convergent.

3.1 Rewriting modulo AC

We assume a knowledge of basic notions of term rewriting as, for example, in [22].
The application of term rewriting in concurrency is somewhat complicated by the
need to preserve the commutativity and associativity of thenondeterministic choice
operator+. These properties of+ are represented by the equationse1 ande2:

e1 : X +Y = Y+X

e2 : X +(Y+Z) = (X +Y)+Z

The equations cannot be oriented without losing the normalising property. For ex-
ample, if we turne1 into X +Y → Y+X, thent +s→ s+ t → t +s→ · · ·. Therefore,
we shall use term rewriting modulo the commutativity and theassociativity of+
in this paper. We denote the axiomse1 ande2 by AC and the equivalence class of
termst underAC by [t]AC. For termst, t ′ ands such thatt ∈ [t ′]AC if t ′ → s, then we
shall writet →AC sand[t]AC →AC [s]AC . We definet ։AC sand[t]AC ։AC [s]AC as the
appropriate transitive reflexive closures of→AC. The internal reductions oft ։AC s
and[t]AC ։AC [s]AC are defined in the corresponding way to the internal reductions
of ։. Henceforth, we drop all subscriptsAC.

Example 3.1 Consider a fragment of CCS with the signatureΣ = {(0,0),(+,2)}∪
{(a.,1) | a∈ Act}, where0 is the deadlocked process operator,a. are the prefixing
with actionsa operators, for alla∈Act, and+ the CCS choice operator. The closed
terms overΣ represent finite trees. Let(Σ,R) be a TRS with the following set R of

12

reduction rules:

r1 : X +0 → X

r2 : X +X → X

Terma.X+(a.X+0) reduces toa.X as follows:a.X+(a.X+0) →r1 a.X+a.X →r2

a.X. There is another reduction moduloAC to a.X: a.X+(a.X+0) = (a.X+a.X)+
0 →r2 a.X +0 →r1 a.X. Hence,[a.X +(a.X +0)] ։ [a.X].

(Σ,R) is strongly normalising. Interpret0, a.X andX +Y as polynomials 2, 2X
andX +Y to obtain polynomial termination moduloAC. Our TRS is also confluent
moduloAC. Reduction rulesr1 andr2 have a simple overlap which replacesX with
0. Now, we have0+0 →r1 0 and0+0 →r2 0. Hence, there is only one critical pair
([0], [0]), and it is joinable.

3.2 Priority Rewriting

As transition rules for process operators can be equipped with orderings that indi-
cate which transition rules to apply first, reduction rules can also have an ordering
associated with them. This ordering, calledpriority order, specifies the order in
which rewrite rules are to be used to rewrite a term. This is illustrated by the fol-
lowing simple example.

Example 3.2 The TRS from Example 3.1 is now equipped with a priority order
≻ defined byr1 ≻ r2. As before,a.X + (a.X + 0) ։ [a.X] becausea.X + (a.X +
0) →r1 a.X + a.X, and sincea.X cannot be reduced to0, a.X + a.X then reduces
to a.X by rule r2. However, the second reduction from Example 3.1 is not correct
(intended) in this new setting. Aftera.X +(a.X +0) = (a.X +a.X)+0 we see that
both r1 andr2 can be applied; but sincer1 has priority overr2 we must applyr1:
(a.X +a.X)+0 →r1 a.X +a.X. Now, onlyr2 can be applied.

Next, consider termt ≡ (a.X + 0) + (a.X + 0). The term is anr2-redex, it is not
an r1-redex although it containsr1-redexes. We may wish to reduce the term with
r2 ahead ofr1. This is not intended in the new setting: we must either use higher
priority r1 to reduce subtermsa.X+0 to a.X first, or useAC to convertt to r1-redex
((a.X +0)+a.X)+0 that can be reduced as follows:

[((a.X +0)+a.X)+0] →r1 [(a.X +a.X)+0] →r1 [a.X +a.X] →r2 [a.X].

In general, a rewrite ruler2 with a lower priority thanr1 can be applied to termt
in favour ofr1, if no internal reduction (reduction sequence leaving head operator

13

unaffected) moduloAC of t can produce a contractum that is anr1-redex. We recall
the basic notions of term rewriting with priority [7,34,32].

Definition 3.3 A Priority Rewrite System, or PRS for short, is a tuple(Σ,T,≻),
where(Σ,T) is a TRS and≻ is a partial order on T calledpriority order. Let P =
(Σ,T,≻) be a PRS, and letRbe a set of rewrites forP , namely closed substitutions
of reduction rules ofP . The rewriter : t → s is correct with respect toR (modulo
AC) if there is no internal reduction[t] ։R [t ′] and no ruler ′ : t ′ → s′ ∈ R such that
r ′ ≻ r. R is soundif all its rewrites are correct w.r.t.R. R is completeif it contains all
rewrites ofP which are correct w.r.t.R. P is well-definedif it has a unique sound
and complete rewrite set; this set is called thesemanticsof P .

A PRS is well-defined if the underlying TRS is strongly normalising [7]. Hence,
the PRS from Example 3.2 is well-defined. It is also strongly normalising by the
result below which follows by a simple proof by contradiction.

Proposition 3.4 If the underlying TRS of a PRS is strongly normalising modulo
AC, then the PRS is well-defined and strongly normalising modulo AC.

The PRS in Example 3.2 is confluent because, althoughr1 andr2 overlap, the pri-
ority order disablesr2, thus0+ 0 →r1 0 is the only reduction from0+ 0. Hence,
there are no critical pairs.

4 Basic Process Language

In this section we define a simple process language which is anextension of the
process language for finite trees from Example 3.1. It contains a new operator,
calledpriority choice, which is denoted by “�”. We introduce a PRS for this lan-
guage and show that it is sound and complete for bisimulation. This language and
its PRS are the foundations on which we shall build PRSs for arbitrary OSOS PLs;
the language plays the rôle corresponding to that ofFINTREE in [2].

Definition 4.1 Basic Process LanguageB is an OSOS PL(ΣB,A,R,>), where
ΣB = Σ0∪Σ1∪Σ2 with Σ0 = {(0,0)}, Σ1 = {(a.,1) | a∈A}andΣ2 = {(+,2),(�,2)},
A⊂fin Act, andRand> are the set of transition rules and the ordering on transition
rules, respectively. The rule schemas for the prefixing operators and the two choice
operators are

a.X
a
→ X

X
a
→ X′

X +Y
a
→ X′

Y
a
→Y′

X +Y
a
→Y′

X
a
→ X′

ra∗
X �Y

a
→ X′

Y
c
→Y′

r∗c
X �Y

c
→Y′

14

+dn : X +0 → X
+ice : X +X → X

�dn1 : (X +0)�Z → X �Z
�ds1 : (X +Y)�Z → X �Z+Y �Z

�act : a.X �Y → a.X
�nil : X �Y → Y

+dn ≻ +ice and �dn1 ≻ �ds1 and {�ds1,�act} ≻ �nil

Fig. 1. Rewrite rules and the priority order forB.

and the ordering isra∗ > r∗c for all actionsa,c. The prefixing operators bind stronger
than�, which in turn binds stronger than+.

B generates the LTSB= (T(ΣB),A,→). Bisimulation overB is defined accordingly.
Let B be the PRS forB defined in Figure 1. Notice that reduction rules+dn,+ice

(idempotence) and�act are sound for bisimulation on their own but�ds1 (distribu-
tivity over 1st argument) is not sound on its own. For letσX = 0, σY = a.0 and
σZ = b.0. Thenσ((X +Y)�Z) ∼ a.0, σ(X �Z+Y �Z) ∼ a.0+b.0 and, clearly,
a.0 6∼ a.0+b.0. However, putting�ds1 below�dn1 solves this problem as�ds1 can
only be applied when neitherσX norσY reduces to0.

Definition 4.2 Let G = (Σ,A,S,>) be an OSOS PL. LetP = (Σ,T,≻) be a well-
defined PRS with its unique sound and complete rewrite setR. A rewrite t → s of
R, wheret ands are closedΣ terms, issound for bisimulationif t ∼ s. A rewrite
rule T∋ r0 : l → r is sound for bisimulation if everyr0-rewrite, which is correct with
respect to the semantics ofP , is sound for bisimulation.P is sound for bisimulation
if all its rewrite rules are. The setR is complete for bisimulationif whenevert ∼ s,
thent ↓ s. P is complete for strong bisimulation if its rewrite setR is.

Theorem 4.3 B is strongly normalising and confluent modulo AC.

PROOF. To show strong normalisation ofB it is enough to prove that the under-
lying TRS ofB is strongly normalising moduloAC. We select polynomial interpre-
tations as follows: interpret0, α.X, X +Y andX �Y as 2, 2X, X +Y +1 andXY.
It can be checked that for each rewrite rule in Figure 1 this polynomial interpre-
tation makes the right-hand side strictly smaller than the left-hand side for natural
numbers greater than one. Since equationsAC are also satisfied by this polynomial
interpretation the considered TRS is strongly normalisingmoduloAC.

Since the PRSB is strongly normalising it is sufficient to show that all critical
pairs are joinable in order to obtain confluence. There are only three critical pairs:
{(0�Z,0�Z), (X �Z,X �Z), (X �Z,X �Z+X �Z)}. We easily see that they
are joinable. There are other overlaps between the rules ofB , for example the over-

15

lap between+dn and�ds1. This overlap would seem to lead to the critical pair
(X �Z, X �Z+0�Z), which clearly is not convergent and not sound for bisim-
ulation. However, since�dn1 ≻ �ds1 the term(X + 0)� Z can only be rewritten
with �dn1 to X �Z, and not with�ds1. Such overlaps do not produce critical pairs:
they show how priority order decreases the nondeterminism that is inherent in term
rewriting. 2

Normal formsandhead normal forms(abbreviated to nf and hnf, respectively, to
distinguish them from the normal forms in term rewriting) over a PL that extends
B are defined as follows:0 is in nf; if t is in nf, thena.t is in nf for all relevanta;
and if t ands are in nf, thent + s is in nf unlesst ands are syntactically equal or
eithersor t is 0. For head normal forms:0 anda.t are in hnf for any termt, and ift
andsare in hnf, thent +s is in hnf unlesst andsare syntactically equal or eithers
or t is 0.

Theorem 4.4 B is sound and complete for bisimulation.

PROOF. SinceB is strongly normalising it is well-defined [7]. LetB be the rewrite
set ofB . The soundness for bisimulation of the rewrite rules in Figure 1 is clear
except possibly for�ds1 and�nil . Without the priority order these rewrite rules
are clearly unsound. In general, the ordering�dn1 ≻ �ds1 ensures that�ds1 can
be applied only when neither the term substituted forX nor the term substituted
for Y can be reduced to0. It clear that for such substitutions�ds1 is sound for
bisimulation. Finally,�nil can be applied to reduce a termp�q if p is not reducible
to either a sum of subterms or an action prefixed term. Hence,p must be0.

For completeness assumep∼ q for closed termsp andq overB . By Theorem 4.3
we know that, for every closed termt overB, there exists a unique normal forms
such thatt ։B s. Also, we easily show that a closed term overB is a normal form
w.r.t. rewriting if and only if it is in nf. Hence, there are terms p′ andq′ such thatp
B-reduces top′, q B-reduces toq′, andp′ andq′ are in nf. Since rewriting is sound
for bisimulation we getp′ ∼ q′. Now, we can show thatp′ andq′, which are in nf,
are equal moduloAC. Hence,p′ ↓ q′ and thusp ↓ q as required. 2

In the next section we show how to generate PRSs for arbitrarywell-founded OSOS
PLs that extend disjointly our languageB. The proof of completeness of such PRSs
uses the above completeness result forB.

16

5 Rewrite Rules for OSOS Operators

Operators of an arbitrary OSOS PL can be partitioned, according to their OSOS def-
initions, into three disjoint sets: (1) operators that are not free of implicit copies, (2)
operators that are free of implicit copies and not simply distinctive, and (3) simply
distinctive operators. We describe the type of rewrite rules and priority orderings
for each of these types of operators (and auxiliary operators) in the following three
subsections. Finally, we introduce our algorithm for generating PRS for arbitrary
PL in the OSOS format.

5.1 Operators with implicit copies

If an OSOS operator(f ,n) is not free of implicit copies, then we can construct a
free of implicit copies OSOS operator(f c,m), with m> n, that does the job off .

Lemma 5.1 Let G be an OSOS PL with signatureΣ. LetP = (Σ,R,≻) be a well-
defined PRS for G that is sound for bisimulation. Suppose(f ,n) ∈ Σ is an operator
not free of implicit copies. Then, there is

• a disjoint extension of G′ of G with a free of implicit copies operator(f c,m) such
that m> n,

• a PRSP ′ = (Σ∪{ f c},R∪{ fcopy},≻) with the newcopying rewrite rule below,
whereX is some vector of n distinct variables andY is a vector of m variables
fromX,

fcopy : f (X) → f c(Y),

and the PRSP ′ is sound for bisimulation.

PROOF. Correspondingly as for GSOS operators which are not smooth due to
having implicit copies: see proofs of Lemmas 5.1 and 5.2 in [2]. 2

As an example consider operator(h,4) from Section 2.4. The operator has implicit
copies of its first two arguments and the operatorhc, the free of implicit copies
version ofh produced by Lemma 5.1, uses extra two arguments as follows:

X1
1

a11→Y11 X2
1

a12→Y12 X1
2

a21→Y21

hc(X1
1 ,X2

1 ,X1
2 ,X2

2 ,X3,X4)
a
→ g(X2

2 ,X3,X3,X4,Y11,Y11)

The copying rewrite rule forh is h(X1,X2,X3,X4) → hc(X1,X1,X2,X2,X3,X4).

17

Remark 5.2 The axiomatisation algorithm from [2] requires the use auxiliary copy-
ing operators for non-smooth operators that have no implicit copies and test some
of their arguments both positively and negatively (Lemma 5.2 in [2]). The exam-
ples of such operators areθ from the Introduction and the timed version of parallel
operator of TPL in Example 2.8. Since we use orderings on rules instead of nega-
tive premises, our algorithm does not need to use auxiliary copying operators and
rewrite rules for the mentioned type of operators: for example, we do not need the
auxiliary operator△ to deal withθ. So for these types of operators our method
produces fewer auxiliary operators and rewrite rules than the method in [2].

5.2 Operators with no implicit copies and not simply distinctive

If an operator(f ,n) is free of implicit copies and not simply distinctive, then
rules(f) and the ordering can be partitioned into a number of sets of simply distinc-
tive rules that are unordered among themselves. The rules from different sets may
be ordered. Such sets define auxiliary (simply distinctive)operators and we shall
have a rewrite rule corresponding to the distinctifying lawin [2]. Firstly, we need
the following notation.

Definition 5.3 Let G be an OSOS PL with signatureΣ that contains operators+
and�. Auxiliary formof terms overG is defined using the notion ofsum termsas
follows:

(1) f (X) is a sum term for eachf ∈ Σ\{+,�}; if sandt are sum terms, thent +s
is a sum term.

(2) If s andt are sum terms, thens� t is in the auxiliary form; ifs is a sum term
andt is a term in the auxiliary form, thens+ t, t +s ands� t are terms in the
auxiliary form.

Note that ifs is a sum term andt is an auxiliary term, thent �s is not necessarily
in auxiliary form, as is witnessed by(f � f ′ + f ′′)�g. Terms in the auxiliary form
will be called auxiliary terms.

Lemma 5.4 Let G be an OSOS PL with signatureΣ such thatB ≤ G. Let P =
(Σ,R,≻) be a well-defined PRS for G that is sound for bisimulation. Suppose
(f ,n)∈ Σ is an operator with no implicit copies which is also not simply distinctive.
Then, there is

• a disjoint extension G′ of G with l simply distinctive operators(fi ,n), thus cre-
ating a new signatureΣ′,

• an auxiliary term AuxiliaryTerm[f1(X), . . . , fl(X)] built from all operators(fi ,n),
+ and � and involving only those operators, and

• a PRSP ′ = (Σ′,R∪{ faux},≻) with the newauxiliary rewrite rule below which

18

is “unordered” with respect to the rewrite rules in R

faux : f (X) → AuxiliaryTerm[f1(X), . . . , fl (X)],

and the PRSP ′ is sound for bisimulation.

PROOF. We describe procedures to find the required distinctive operators and
the auxiliary term, respectively, and then we show the soundness of the auxiliary
rewrite rule. The details are given in Appendix A.2

It is clear from the proof that when the ordering on rules forf is empty, then the
form of the auxiliary term is simply a sum:

Corollary 5.5 Let G, P and(f ,n) be as in Lemma 5.4. If the ordering on rules for
f is empty, thenAuxiliaryTerm[f1(X), . . . , fl(X)] ≡ ∑l

i=1 fl (X).

The rest of this subsection is devoted to examples that illustrate the application of
the procedures for the derivation of the auxiliary term and auxiliary rewrite rule.

Example 5.6 Let B be extended with “‖” the parallel composition operator of
CCS. The operator is not simply distinctive but free of implicit copies. Assume
that, for eacha ∈ Act, we have ¯a ∈ Act anda = a. Following the Auxiliary Term
Generation Procedure we partition the rules for‖ into three sets: rules for the first
argument, rules for the second argument and the communication rules. The result-
ing auxiliary operators are the left-merge, written as “”, the right-merge, written
as “ ”, and the communication merge, written as “|”, as in [10,2]. The defining rule
schemas for these operators, for alla∈ Act, are as follows:

X
a
→ X′

X Y
a
→ X′ ‖Y

Y
a
→Y′

X Y
a
→ X ‖Y′

X
a
→ X′ Y

ā
→Y′

X |Y
τ
→ X′ ‖Y′

We assume that prefixing binds stronger than the above three operators, and they
in turn bind stronger than+ and�. Since there is no ordering on the original rules
for ‖ there is no ordering between the rules for the three auxiliary operators. The
initial and the final setS is {(/0,{ }), (/0,{ }), (/0,{|})} (i.e. the iteration routine
does not alterS): see Appendix A. There is a single equation of the form (A.1),
namelyAT = {̂ }+ {̂ }+ {̂|}. Moreover, there are three equations of the form

(A.3): {̂ } = X Y, {̂ } = X Y, and {̂|} = X | Y. Replacing the constants with
their definitions, we obtain the auxiliary termX Y + X Y + X | Y and the
auxiliary rewrite rule:

X ‖Y → X Y + X Y + X |Y

19

Since there is no ordering on the rules the auxiliary term does not involve�, and
the auxiliary rewrite rule is an instance of the distinctifying law and rewrite rule in
[2,14].

Example 5.7 The sequential composition operator form Example 2.7 is notsimply
distinctive. It is, however, free of implicit copies. Its rules can be partitioned into
the rule for the first argument,ra∗, and the rules for the second argument,r∗b. We
notice that the rulesra∗ are above the rulesr∗b for all a andb. The resulting simply
distinctive auxiliary operators “;1” and “;2”, required by Lemma 5.4, are defined by
these two sets of rule schemas:

X
a
→ X′

X;1Y
a
→ X′;Y

Y
b
→Y′

X;2Y
b
→Y′

The initial and the final setS is {(/0,{;1}), ({;1},{;2})}. There is a single equation

of the form (A.1), namelyAT = (X;1Y)� {̂;2} and there is one equation of the

form (A.3): {̂;2} = X;2Y. Replacing the constants with their definitions, we obtain
the auxiliary term(X;1Y)� (X;2Y) and the auxiliary rewrite rule:

X;Y → (X;1Y) � (X;2Y)

Example 5.8 Consider a version of the CCS parallel that gives priority tocom-
munication over concurrency. The operator is defined simplyby putting each and
every communication rule for‖ above all the concurrency rules for both arguments
of ‖. As noted in Example 2.8 the GSOS definition of this operator is awkward.
As in Example 5.6 we need the three auxiliary operators, and |. The setS
is {(/0,{|}), ({|},{ }), ({|},{ })}. Following our procedure,S gets partitioned

into two sets and the resulting two equations of the form (A.1) areAT = {̂|} and

{̂|} = (X | Y)� ({̂ }+ {̂ }). Also, as in Example 5.6, there are equations for{̂ }

and{̂ }. The resulting auxiliary rewrite rule is as follows:

X ‖Y → X |Y � (X Y + X Y)

5.3 Simply distinctive operators

So far we have given rewrite rules for operators which are notfree of implicit
copies (Lemma 5.1) and rewrite rules for operators (and auxiliary operators) which
are free of implicit copies but not simply distinctive (Lemma 5.4). Now we consider
simply distinctive operators. We shall define several typesof rewrite rules, namely
distributivity, action and deadlock rewrite rules. First,we introduce some useful
notation. Whenr has no implicit copies in the premises, thetrigger of r is then-
tuple (λ1, . . . ,λn), whereλi = ai if i ∈ I , andλi = ∗ otherwise. We often writeλ

20

for (λ1, . . . ,λn), andλI .X denotes the vectorλ1.X1, . . . ,λn.Xn where ifλi = ∗, then
λi .Xi is simplyXi.

Lemma 5.9 Let G be an OSOS PL withΣ such thatB ≤ G and all operators in
Σ \ΣB are free of implicit copies and simply distinctive. Suppose(f ,n) ∈ Σ \ΣB

has the defining rules of the following form, where Yi = X′
i if i ∈ I, and Yi = Xi

otherwise:

{ Xi
ai→ X′

i }i∈I

f (X1, . . . ,Xn)
a
→C[Y]

(3)

(1) For each active argument i of f the following are thedistributivity rewrite
rules for f and i:

fdn(i) : f (. . . ,Xi +0, . . .) → f (. . . ,Xi, . . .)

fds(i) : f (. . . ,Xi +Yi , . . .) → f (. . . ,Xi, . . .)+ f (. . . ,Yi , . . .)

The priority order is fdn(i) ≻ fds(i) for each i∈ I.
(2) For each rule of the form (3) with I6= /0 and triggeraI .X the action rewrite

rule has the form:

f a
act : f (aI .X) → a.C[X]

If f has no active arguments, then fa
act is f(X) → a.C[X].

(3) Thedeadlockrewrite rule is as follows:

fnil : f (X) → 0

The priority order satisfies{ fds(i), f a
act} ≻ fnil for all fds(i) and faact.

Let P = (Σ,R,≻′) beB , the PRS forB as in Figure 1, extended with all the dis-
tributivity, action and deadlock rewrite rules for each operator f as above, and let
≻′ be≻ as in Figure 1 extended with the orderings required for the added rewrite
rules. Then,P is sound for bisimulation and head normalising for all closed terms
overΣ.

PROOF. See Appendix B.

Note, that soundness offds(i) rewrite rules does not depend on them being below
the correspondingfdn(i) rewrite rules. Similarly, soundness of the deadlock rewrite
rules does not depend on them being below thefdn(i) rewrite rules. This can be seen
in the above proof. The distributivity rewrite rulesfdn(i) are included purely for the
purpose of resolving some of the inherent nondeterminism that is present in rewrit-
ing. More specifically, the inclusion of the rulesfdn(i) resolves a large proportion of

21

this nondeterminism and, as a result, makes the task of proving confluence easier:
see a proof of Theorem 7.1.

Also, note that if f is simply distinctive and it has at least two rules, then the
premises of all rules forf are not empty. And, iff is simply distinctive and it
has a defining rule with no premises, then this rule is its soledefining rule andf
will have only the action rewrite rule and the deadlock rewrite rule.

5.4 Operators with one argument

There are free of implicit copies and not simply distinctiveoperators which have
simpler rewrite rules than the auxiliary rewrite rules introduced in the previous
subsection. These rules are calledpriority resolvingrewrite rules. In this subsection
we define a class of such operators: they must have a single argument and be simply
distinctive when the ordering on their rules is removed. This class contains for
instance the mentioned priority operator and the the hidingoperator of ET-LOTOS
[24]: see Example 5.11.

Lemma 5.10 Let G be an OSOS PL with signatureΣ such thatB ≤ G. LetP =
(Σ,R,≻) be a well-defined PRS for G that is sound for bisimulation. Suppose
(f ,1) ∈ Σ is a free of implicit copies operator which is not simply distinctive, and
the ordering on rules for f is not empty. Moreover, let f be such that it is simply
distinctive when we remove the ordering on its rules. Suppose the rules for f have
the following form:

X
a
→ X′

f (X)
α
→C[X′]

(4)

For each pair of distinct rules r and r′ of the form (4) such that r> r ′, and for
triggers a.Y and b.Z of r and r′, respectively, thepriority resolving rewrite rule
for the rule r is as follows:

f r
pr : f (X +a.Y+b.Z) → f (X +a.Y)

Also, let the new version of f be without the ordering on its rules, so the new f is
simply distinctive. Then, there is a PRSP ′ = (Σ,R′,≻′), whereR′ is R extended
with all priority resolving rewrite rules for the original fas required above, and
all rewrite rules for the new f as required by Lemma 5.9. The ordering≻′ is ≻
extended by putting every priority rewrite rule fr

pr above the rule fdn(1) as in Lemma
5.9, and by adding the orderings introduced by Lemma 5.9. Then the PRSP ′ is
sound for bisimulation.

22

PROOF. In the last section we showed the soundness of the rewrite rules required
by Lemma 5.9. Hence, it remains to prove the soundness of the priority resolving
rewrite rules for operatorsf as in the lemma. Since the rules forf with the ordering
removed define a simply distinctive operator there is at mostone rule with the
premiseX

a
→ X′ for every actiona. Also, by the definition of the orderings on SOS

rules, ifr > r ′ thenr ′ > r is false for any two rulesr andr ′ for any f .

Let r and r ′ be of the form (4) with the triggersa.X and b.X, respectively, and
let r > r ′. It is enough to showf (p+ a.q+ b.r)

α
→ t iff f (p+ a.q)

α
→ t. Assume

f (p+a.q+b.r)
α
→ t. This transition implied two cases: either the ruler is enabled

with the triggera.q or there is a ruler ′′ not belowr and enabled with the trigger
c.p′, andp

c
→ p′. In the first case, sincer is enabled it means no rule inhigher(r)

is enabled with the argumentp+a.q+b.r. Sincer fires witha.q it also fires with
p+a.q, so, f (p+a.q)

α
→ t as required. In the second case no rule inhigher(r ′) is

enabled with the argumentp+ a.q+ b.r. Hence, no rule inhigher(r ′) is enabled
with simplerp+a.q and, consequently,f (p+a.q)

α
→ t. The converse also follows

by a similar argument. 2

The priority operatorθ is the only operator discussed so far that can be dealt with by
Lemma 5.10. It has one argument, non-empty ordering on the rules and it becomes
simply distinctive when the ordering on the rules is removed. All the priority rewrite
rules forθ required by Lemma 5.10 have been given in the Introduction.

Another operator that can be dealt with by Lemma 5.10 is the hiding operator of
ET-LOTOS [24]:

Example 5.11 Our definition of the hiding operatorhide employs an ordering on
the defining rules instead of negative premises and alookaheadas in [24]. The two
traditional rules for the operator, where the second rule isdenotedra for eacha∈A,
are:

X
a
→ X′

a /∈ A
hide A in X

a
→ hide A in X′

X
a
→ X′

a∈ A
hide A in X

τ
→ hide A in X′

The required timed rulerσ, whereσ denotes the passage of one time unit, is simply

X
σ
→ X′

rσ
hide A in X

σ
→ hide A in X′

and the ordering isrσ < ra for all a∈ A. Clearly, the operator satisfies the require-
ments of Lemma 5.10. The priority resolving rewrite rules are given below, one for

23

everya in A:

hidea
pr : hide A in (a.X +σ.Y +Z) → hide A in (a.X +Z)

Moreover, there are other rewrite rules required by Lemma 5.10. We obtain them
by removing the ordering on the rules forhide and then applying Lemma 5.9:

hidedn : hide A in (X +0) → hide A in (X)

hideds : hide A in (X +Y) → hide A in X + hide A in Y

hidea
act : hide A in (a.X) → a.(hide A in X)

hideτ
act : hide A in (a.X) → τ.(hide A in X)

hideσ
act : hide A in (σ.X) → σ.(hide A in X)

hidenil : hide A in X → 0

Here, we have onehidea
act rule for everya /∈ A∪ {σ}, and onehideτ

act for every
a∈ A. The priority order≻ satisfieshidea

pr ≻ hidedn for all priority resolving rules
hidea

pr as required by Lemma 5.10. Moreover, Lemma 5.9 requireshidedn≻hideds,
and{hideds,hidea

act,hideτ
act,hideσ

act} ≻ hidenil .

5.5 The PRS algorithm, head normalisation and soundness

In the previous subsections we defined priority rewrite rules for several classes of
OSOS operators and proved that they are sound for bisimulation. Presently, we
show that PRSs generated by our approach for PLs that extendB and contain no
operators with implicit copies are head normalising. This is a consequence of Lem-
mas 5.4, 5.10 and 5.9: see Appendix C.

Lemma 5.12 Let G be an OSOS PL with signatureΣ such thatB ≤ G, and let all
operators inΣ\ΣB be free of implicit copies. Then, there is disjoint extension G′ of
G with a finite collection ofΣG′ \Σ simply distinctive operators, and a PRSP that
contains the PRS forB and is sound for bisimulation and head normalising.

The rest of the subsection presents the algorithm in Figure 2for generating PRSs for
arbitrary OSOS PLs. We also prove head normalisation and soundness for bisimu-
lation for the generated PRSs.

Theorem 5.13 Let G be an OSOS process language, and let G′ andP be the OSOS
process language and the PRS respectively that are producedby the algorithm in
Figure 2. Then,P is head normalising and sound for bisimulation.

24

Input : OSOS process languageG = (ΣG,A,R,>) and PRSP = (ΣG, /0, /0).

(1) If G is not a disjoint extension ofB then add toG a disjoint copy ofB.
Call the resulting languageG′′′. P becomes(ΣG′′′,R′′,≻′), where R′′ and
≻′ are rewrite rules and priority order forB as in Figure 1.

(2) For each operatorf ∈ G′′′ which is not free of implicit copies apply the
construction of Lemma 5.1 to obtain a free of implicit copiesoperatorf c.
G′′′ extended disjointly with allf c, for all not free of implicit copies oper-
atorsf of G′′′, is denoted byG′′. P becomes(ΣG′′,R′′

copy,≻
′), where R′′copy

is R′′ extended with all the copying rewrite rules required by Lemma 5.1.
(3) For each free of implicit copies operatorf ∈ΣG′′ \ΣB which is not simply

distinctive, and whichsatisfiesthe conditions of Lemma 5.10, extend
R′′

copy with all the priority resolving rewrite rules and as in Lemma5.10
to obtain the new PRSP = (ΣG′,R′′

pr,≻
′). The PL G′ is the result of

extendingG′′ disjointly with the (simply distinctive) versions of all such
operators.

(4) For each free of implicit copies operatorf ∈ ΣG′′ \ΣB which is not sim-
ply distinctive, and whichdoes not satisfythe conditions of Lemma
5.10, apply the construction of Lemma 5.4 to produce simply distinc-
tive auxiliary operatorsf1, . . . , fl . The PLG′ is the result of extendingG′′

disjointly with all auxiliary operators for all such operators.P becomes
(ΣG′,R′,≻′), where R′ is R′′

pr extended with all the auxiliary rewrite rules
required by Lemma 5.4.

(5) For each simply distinctive operatorf in ΣG′ \ΣB extend R′ and≻′ with
all the distributivity, action and deadlock rewrite rules and the associated
priority orders as in Lemma 5.9 and, if necessary, in Lemma 5.10. The
resulting PRSP is (ΣG′,R,≻).

Output : OSOS PLG′ such thatG≤G′, and a sound for bisimulation and head
normalising PRSP .

Fig. 2. The PRS algorithm for OSOS process languages.

PROOF. Given a PLG, the algorithm firstly extendsG disjointly withB producing
G′′′, and the PRS in Figure 1 becomes the basis for the requiredP . Then, it consid-
ers each of the operators ofG′′′ in turn and generates rewrite rules with priorities as
described in the previous subsections, and accumulates them into the requiredP .

If f is an operator ofG′′′ with implicit copies, then by Lemma 5.1 we can extend
G′′′ disjointly with a free of implicit copies operatorf c. We add the copying rewrite
rule to the current PRS. We carry out this procedure, step (2)of the algorithm, for
all operators ofG′′′ with implicit copies. It produces a PLG′′, and the constructed
so far PRS has all the required copying rewrite rules.

25

Next, we consider operators ofG′′ which are free of implicit copies but which are
not simply distinctive and apply the strategy described in Section 5.2. There are
two routes that the algorithm can take at this point, namely steps (3) and (4). For
all such operators that fail the conditions of Lemma 5.10 we apply Lemma 5.4 and
add auxiliary rewrite rules: step (4) of the algorithm. But for operators which satisfy
the conditions of Lemma 5.10, such as the priority operator (Introduction) and the
hiding operator (Example 5.11), we apply the strategy of Section 5.4 and add the
priority resolving rewrite rules as in Lemma 5.10: step (3).After steps (3) and (4)
have been applied to all appropriate operators, we obtain a PL G′. The enlarged
PRS contains at this point all the auxiliary rewrite rules and the priority resolving
rewrite rules.

Finally, we perform step (5): for each simply distinctive operator inG′ we add
to the current PRS all the distributivity, action and deadlock rewrite rules and the
associated priority orders as in Lemma 5.9 and, if necessary, as in Lemma 5.10.
Thus we obtain the required PRSP , which is sound for bisimulation. It is also head
normalising for closed terms overG′ which are built from free of implicit copies
operators and the operators ofB only: see Lemma 5.12. The remaining operators
of G′, namely operators with implicit copies, give rise to copying rewrite rules as
in Lemma 5.1. Since terms on the right hand side of such rules have free of implicit
copies operators as the outermost operators, we see that terms constructed with
operators with implicit copies rewrite to hnf.2

6 Termination

Any practically useful PL must contain a mechanism for representing processes
with infinite behaviour. Most often this is done by means of process constants (or
variables) that are defined bymutual recursion. For example, a unary semaphore
can be represented by a process with two statesSemandSem′ defined bySem

up
→

Sem′ and Sem′
down
→ Semrespectively.SemandSem′ are simply distinctive, free of

implicit copies OSOS operators. By Lemma 5.9, the only priority rewrite rules for
these operators are the following action and the deadlock rules:

Sem→ up.Sem′ ≻ Sem→ 0 and Sem′ → down.Sem≻ Sem′ → 0

It is not surprising that processes such asSemhave non-terminating reductions:

Sem→ up.Sem′ → up.down.Sem→ up.down.up.Sem′ → · · ·

The properties of PRSs with operators such asSemare the subject ofinfinitary
rewriting [21]. However, there is an interesting subclass of OSOS PLs that contain

26

only those operators that lead to finite behaviours. The PRSsgenerated by algo-
rithm in Figure 2 for PLs in this subclass will be strongly normalising (terminating)
for closed terms moduloAC of +.

We define PLs and processes with finite behaviour. Following [2] we have:

Definition 6.1 Let G be an OSOS process language. A termp ∈ T(ΣG) is well-
foundedif there exists no infinite sequencep0,a0, p1,a1, . . . with p≡ p0 andpi

ai→
pi+1 for all i ≥ 1. G is well-founded if all its terms are well-founded.

Well-foundedness of OSOS PLs is not decidable, but syntactical well-foundedness
is decidable by the corresponding argument as in [2]. Moreover, if a PL is linear
as well as syntactically well-founded, then it is well-founded [2]. These two new
notions are defined again following [2]:

Definition 6.2 An OSOS transition rule of the form (2) islinear if each variable
occurs at most once in the target and, for each active argument i, Xi does not occur
in the target and at most one of the variablesYi j does. An OSOS operator is linear if
all its transition rules are linear. An OSOS PL is linear if all its operators are linear.

Definition 6.3 An OSOS PLG is syntactically well-foundedif there exists a func-
tion w : ΣG → N such that, for each ruler of G with the operatorf and tar-
get C[X,Y], the following conditions hold: Ifr has no premises, thenw(f) >
W(C[X,Y]); and w(f) ≥ W(C[X,Y]) otherwise, whereW : T(ΣG) → N is given

by W(X)
def
= 0 andW(f (t1, . . . , tn))

def
= w(f)+W(t1)+ · · ·+W(tn).

It can be easily shown by solving a linear system of Diophantine equations that
syntactical well-foundedness of OSOS PLs is decidable, andif an OSOS PL is
linear as well as syntactically well-founded, then it is also well-founded [2]. Most
of the commonly used process operators, and all operators mentioned in this paper,
are linear. As for syntactical well-foundedness, any PL with constants defined by

mutual recursion does not satisfy it: sinceSem
up
→ Sem′ andSem′

down
→ Sem, there is

no w such thatw(Sem) > W(Sem′) = w(Sem′) andw(Sem′) > W(Sem) = w(Sem).
Apart from recursively defined process constants, the basicPL B extended with any
operators described in the paper, and with many more operators from standard PLs,
is syntactically well-founded. Typically, we assign weight 1 to the action prefixing
operators and weight 0 to other operators. Further discussion related to this topic is
in Appendix D.

Theorem 6.4 Let G be a syntactically well-founded and linear OSOS process lan-
guage, and let G′ andP be the OSOS process language and the PRS respectively
that are produced by the algorithm in Figure 2. Then,P is strongly normalising
modulo AC on closed terms over G′.

27

PROOF. The details are given in Appendix D. There, we employ novel techniques
of dependency pairs and dependency graphs adapted to rewriting moduloACof the
choice operator+. 2

7 Confluence and Completeness for Bisimulation

The algorithm in Figure 2 produces, for any OSOS process languageG, a disjoint
extensionG′ and a PRS forG′. If G is syntactically well-founded and linear, then
the PRS forG′ is strongly normalising. We show that if the PRS forG′ is strongly
normalising, then it is also confluent. We shall use the classical result due to Knuth
and Bendix [22] that states that if a TRS is strongly normalising, then it is confluent
if and only if all its critical pairs are convergent. The mainpurpose of priority
orders is to resolve the ambiguity concerning the choice of overlapping rules when
rewriting terms. The priority order produced by the algorithm in Figure 2 resolves
a large proportion of this ambiguity by reducing the number of critical pairs, and
thus making the task of proving confluence a lot easier. We also have completeness
result for bisimulation:

Theorem 7.1 Let G be a syntactically well-founded and linear OSOS process lan-
guage, and let G′ andP be the OSOS process language and the PRS respectively
that are produced by the algorithm in Figure 2. Then,P is confluent and complete
for bisimulation on closed terms over G′.

PROOF. There are several critical pairs for theB component ofP and we dealt
with them in Theorem 4.3. We list the remaining overlapping rewrite rules and
if the priority order permits ambiguous reductions, we listthe resulting critical
pairs and show that they are joinable. Due to the form of our rewrite rules and the
priority order on the rules there are only a few simple types of critical pairs. Case
(2) explains the reason for having distributivity rewrite rules fdn(i).

(1) The rewrite ruleX +0 → X overlaps with the distributivity rulesfdn(i) for all
simply distinctive operatorsf and all their active argumentsi. The resulting
critical pairs(f (. . . ,Xi, . . .), f (. . . ,Xi, . . .)) are joinable.

(2) The rewrite ruleX + 0 → X overlaps with the distributivity rulesfds(i) for
all simply distinctive operatorsf and all their active argumentsi. However,
becausefdn(i) ≻ fds(i) and sincefdn(i) is applicable tof (. . . ,X +0, . . .), there
are no critical pairs for such overlaps.

(3) The ruleX + X → X overlaps with all the relevant distributivity rulesfdn(i)
and fds(i) for all simply distinctive operatorsf and all their active arguments
i. The resulting critical pairs are joinable.

(4) The ruleX +0 → X can overlap with the priority resolving rulef (X +a.Y +
b.Z) → f (X+a.Y). The resulting critical pair is(f (X+a.Y+b.Z), f (X +0+

28

a.Y). Then, the first element of the pair reduces byf a
pr to f (X +a.Y), and the

second element of the pair reduces by+dn to the samef (X +a.Y).

Finally, we consider completeness for bisimulation. SinceP is strongly normalising
it is well-defined. SinceP is confluent each closedG′ term can be reduced to unique
normal form. AsP is head normalising, andG′ is well-founded, we can show by
structural induction that each closedG′ term can be reduced to a uniqueB term in
nf. SinceP is sound for bisimulation, it is now sufficient to prove that the PRS for
B is complete for bisimulation. Indeed, this is Theorem 4.4.2

8 Conclusion and Possible Extensions

We have described how to produce, for an arbitrary OSOS PL, a PRS that is head
normalising and sound for bisimulation. When a PL in question is syntactically
well-founded and linear, then its PRS is strongly normalising and confluent, and
two processes are bisimilar if and only if they can be reducedto the same normal
form moduloAC. We believe that our procedure can be adapted to other classes of
PLs and other process equivalences such as, for example, a subclass of De Simone
PLs and testing equivalence [28,38].

In the concurrency literature there are well developed techniques for equational rea-
soning for non-well-founded processes. For example, consider regular processes
[26] and reasoning about such processes with respect to bisimulation. One can
prove equalities between such processes by using the standard axioms to “unwind”
guarded recursive processes to head normal form, and theRecursive Specifica-
tion Principle (RSP) [10]. It would be worth investigating how a class of infini-
tary OSOS PLs corresponding to Aceto’s class ofregular infinitaryGSOS PLs [1]
can be given a rewrite system that is sound and complete for bisimulation. Such
rewrite system would contain rewrite versions of the Recursive Specification Prin-
ciple rules.

It would be interesting to investigate further the benefits of priority orderings on
rewrite rules. Apart from reducing nondeterminism inherent in rewriting, could they
be also used to internalise rewrite strategies thus improving weak normalisation to
strong normalisation?

Acknowledgements

We would like to thank the referees for their comments and suggestions. The first
author would like to thank the University of Leicester for granting study leave,
and acknowledge gratefully support from EPSRC, grant EP/D001307/1, and from

29

Nagoya University during a research visit. The second author would like to thank
the Kayamori Foundation for Information Science Advancement for supporting a
visit to the University of Leicester. Thanks are also due to Paul Taylor for his Proof
Trees and Commutative Diagrams macros.

Appendix

A Proof of Lemma 5.4

We find the auxiliary operatorsfi by partitioningrules(f) into sets such that the
operators defined by the rules in each of the sets are simply distinctive, and the
resulting sets satisfy theordering conditionthat we define below. We shall need
new binary relations≫ and≫ on sets of rules:R≫ R′ if for all r ′ ∈ R′ andr ∈ R
we haver > r ′, andR≫ R′ if for all r ′ ∈ R′ there isr ∈ R such thatr > r ′. Clearly,
≫⊆≫ but not≫⊆≫. The relations≫,≫ are irreflexive and transitive. We shall
write Ri ♮ Rj if the ordering between the rules inRi andRj is empty.

The initial partition is achieved as follows. LetAX be the set of all axioms in
rules(f), namely rules with no premises. IfAX is non-empty, then partitionAX
into singleton sets. Then, partitionrules(f) \AX into sets as large as possible in
such way that each set consists of rules with premises for thesame arguments, and
no two different sets have rules with the same arguments in the premises.

The following condition shall be useful:

Definition A.1 The set{R1, . . . ,Rn} satisfies theordering conditionif for every
two member setsRi andRj eitherRi ≫ Rj , Rj ≫ Ri or Ri ♮ Rj .

If the partition obtained so far does not satisfy the ordering condition, for example
because a rule inR1 is not above all rules inR2, then split further the offending
partition sets into as large as possible subsets until the ordering condition holds in
the resulting partition. This gives us thefinal partition R1, . . . ,Rl of rules(f). Note,
that someRis may have rules that are ordered among themselves (as for thepriority
operatorθ which is simply distinctive). In eachRi we change the operator in the
source of each rule fromf to fi thus obtainingR′

i . So, we have constructedl simply
distinctiven-ary auxiliary operatorsf1, . . . , fl and their defining rulesR′

1, . . . ,R
′
l ,

respectively.

Next, we presentAuxiliary Term Generation Procedurefor deriving the auxiliary
term given the simply distinctive operatorsf1, . . . , fl and their rulesR′

1, . . . ,R
′
l . The

procedure consists of four steps. We shall require more notation: We write fi ≫ f j

if R′
i ≫ R′

j , and fi ≫ f j if R′
i ≫R′

j . The ordering≫ and≫ are extended to sets of

30

repeat
S:= S′

for each(F ′
i ,Fi) ∈ Sdo

F := /0
if F ′

i = /0
then S′ := S′∪{(F,Fi)}
else foreach(F ′

j ,Fj) ∈ Sdo
if Fj ⊆ F ′

i
then F := F ∪F ′

j
od
S′ := S′∪{(F,F ′

i)}
od

until S′ = S

Fig. A.1. “Upwards closure” iteration routine

operators in the standard way. We say that operatorfi is “fully above” f j if fi ≫ f j

and there is no other operatorfk such thatfi ≫ fk ≫ f j . Given f j , fabove(f j)
is the set of all operators fully abovef j . The functionfabovegeneralises to sets
of operators in the standard way. Additionally, we shall usethe set of operators
“above” F, whereF is itself a set of operators, written asabove(F). We define
above(F) as

S

f∈F fabove(f). As a result we haveabove(F) ≫ F but not necessar-
ily above(F) ≫ F.

Auxiliary Term Generation Procedure

Input : Simply distinctive operatorsf1, . . . , fl and their rulesR′
1, . . . ,R

′
l , respectively.

Step 1. We calculate for each auxiliary operator the sets of auxiliary operators fully
above it. This is done by constructing the (initial value of)set theS:

S= {(fabove(f1),{ f1}), . . . ,(fabove(fl),{ fl})}

Note thatfabove(fi) ≫ { fi} for all 1≤ i ≤ l .

Step 2. We produce an “upward closure” ofSwith respect to the ordering≫. We
aim to enlargeSso that for each pair(F,G)∈Swith F = above(G) there is a unique
pair (H,F) ∈ S such thatH = above(F). This closure is achieved by performing
the following procedure, whereF, Fi, F ′

i , Fj andF ′
j are sets of auxiliary operators.

First, we assignS to S′ (S′ ::= S). Then, we perform the iteration in Figure A.1.
Since the initial setS is finite and the iteration enlargesS by adding pairs whose
first and second components are subsets of the finite set{ f1, . . . , fl}, the iteration
eventually terminates. Let the resulting setSbe as follows, wheren≥ l :

{(F ′
1,F1), . . . ,(F

′
n,Fn)}

31

We suspend the description of the procedure in order to list several important prop-
erties of the resulting setS. They will be used in the proof of soundness of the
auxiliary rewrite rule:

(1) F ′
i = above(Fi) for all 1≤ i ≤ n.

(2) For all 1≤ i ≤ l the setScontains the pair(Gi ,{ fi}) for some possibly empty
Gi .

(3) For all(F ′
i ,Fi) ∈ Swe haveFi 6= /0. Also, there existsK ⊆ {1, . . . , l} such that

F ′
k = /0 for all k∈ K.

(4) If F ′ 6= /0 and(F ′,F) ∈ S, then(F ′′,F ′) ∈ S for some possibly emptyF ′′.
(5) If (F ′,F) ∈ S, then either (a) there exists(F,G)∈ Sfor someG or (b) (F,G) /∈

S for all G, and thenF = { fk} for somek∈ {1, . . . , l},
(6) S may contain two pairs(F ′,Fi) and (F ′,Fj) such thatFi 6= Fj and not(see

Example 5.8) (different sets may have upper bounds), but never contains two
pairs(F ′′,F) and(F ′,F) such thatF ′ 6= F ′′ (different sets may not have lower
bounds).

The above properties imply that the pairs of the form(/0,Fk) indicate that the set/0
is maximal in the ordering generated by≫, and that the pairs of the form(Gi ,{ fi})
indicate that the sets{ fi} are minimal in the ordering generated by≫. Also, they
imply the existence of upward chains of setsFi ordered by≫ with the bottom
element{ f j} and the top element/0 for 1 ≤ j ≤ l . In short, the setS defines an
upside-down tree:/0 is the root, the sets{ fi} are the leaves, and for eachFi in such
a structure, the set ofFjs such thatFj ≫ Fi is a chain.

Now we return to our procedure. The last two steps (Step 3 and Step 4 below)
describe how to construct the auxiliary term. Firstly, using the setS, we create a
number of process constants and derive their defining equations. There will be two
types of such defining equations. The right-hand sides of theequations contain at
most (other) process constants, auxiliary operatorsfi and the operators+ and�.
Hence, we get a number of equations that define constants in terms of each other but
not recursively. Once we have the set of such equations, we replace the constants
on the right-hand sides of the equations by their definitionsand thus obtain the
required auxiliary term.

Step 3. We partitionS into setsS1, . . . ,Sk, for 1≤ k ≤ n, such that all pairs ofS
with the same first element belong to precisely one partition. Each of the partitions
gives rise to one constant and its defining equation. A typical partition has the
form{(F ′

i ,Fi1), . . . ,(F ′
i ,Fimi)} and it produces the constantF̂ ′

i , which is named after
the first element of the pairs in the partition. Here, the construct “ ̂ ” is used to
make process constants out of symbolsFi . This partition gives rise to the following
defining equation:

F̂ ′
i

def
=

mi

∑
l=1

(∑
fk∈F ′

i

fk(X)) � F̂il

32

SinceX �Y + X �Z = X �(Y+Z) holds for bisimulation we simplify the above
equation accordingly, and obtain the first type of equationsfor the constants:

F̂ ′
i

def
= (∑

fk∈F ′
i

fk(X)) � (
mi

∑
l=1

F̂il) (A.1)

WhenF ′
i = /0, then an equation of the type (A.1) becomesF̂i

′
= 0 � (∑mi

l=1 F̂il). As

0� X = X we obtain simplyF̂i
′
= ∑mi

l=1 F̂il . SinceS contains always one or more
pairs (/0,Fm), for some non-emptyFm, this equation plays a special role and we
shall use a fresh constantAT instead of̂/0 and write the equation as:

AT
def
=

mi

∑
l=1

F̂il (A.2)

So far, we have created a constantF̂ for every(F,G) ∈ S. Additionally, we shall
also need constants and defining equations for some of the setsG. These constants
arise from setsG that are not above any other sets (although for someG′ the set
G∪G′ may be above another set). More precisely, for each(F,G) ∈ S such that
(G,H) /∈ Sfor all H, the setG is a singleton set, say{ fg}, and we have the equation
of the second type:

Ĝ = fg(X) (A.3)

Hence, there is a constantF̂i for Fi = { fi} for all 1/leqi/leql. And, if F̂ appears
on the right-hand side of one of the equations above, then there is also a defining
equation for that constant. This is a consequence of the way we constructedSand
its resulting properties.

Step 4. We replace each constant that appears on the right-hand side of the equation
for AT, (A.2), by the right-hand side of its defining equation. We repeat this until
the term on the right-hand side has no constants. It can be seen easily that this pro-
cess terminates successfully using the observations from the previous paragraphs.
The obtained term (on the right-hand side) is in the auxiliary form. We denote this
term byAuxiliaryTerm[f1(X), . . . , fl (X)] as required in Lemma 5.4.

Output : AuxiliaryTerm[f1(X), . . . , fl (X)].

Finally, we require a proof that the auxiliary rewrite rule is sound for bisimulation.
It is sufficient to prove thatf (p)

a
→ t iff AuxiliaryTerm[f1(p), . . . , fl (p)]

a
→ t for

some vector of termsp and termt overG, and some actiona.

Only if part . Let f (p)
a
→ t be derived by ruler with a ground substitutionσ. As-

sume thatr ∈ Rk whereR1, . . . ,Rl is the final partition of the rules forf . Also letrk

33

be the ruler but with f in the source replaced byfk. So,rk ∈ R′
k is the rule for the

auxiliary fk that corresponds to the ruler for f . Clearly, the targets of both rules are
identical and, underσ, are equal tot. Hence,fk(p)

a
→ t is derivable by the rulerk.

It remains to be shown howfk(p)
a
→ t impliesAuxiliaryTerm[f1(p), . . . , fl(p)]

a
→ t.

The transitionf (p)
a
→ t implies that no rule inhigher(r) is enabled under substitu-

tion σ. We construct the corresponding set of rules higher thanrk among the rules in
R′

1, . . . ,R
′
l as follows. We denote byHigher(fk) the set of rules higher thanfk in the

ordering≫ as given by the setS. Clearly, the set of rules higher thanrk is a subset of
Higher(fk). By the construction ofS there is a sequenceG1, . . . ,Gm of sets of aux-
iliary operators above{ fk}; assume thatG0 = { fk}. We haveG1 = above({ fk}),
G2 = above(G1) and so on, withGm = /0. Hence,Higher(fk) =

Sm
j=1 rules(G j).

The construction of sets theGi gives us the constants({̂ fk} =)Ĝ0 andĜ1, . . . ,Ĝm,
and the following equations (best read from bottom up):

AuxiliaryTerm[f1(p), . . . , fl(p)] = · · · + Ĝm + · · ·

...

Ĝm = (∑ fi∈Gm
fi(p)) � Ĝm−1

...

({̂ fk} =)Ĝ0 = fk(p)

Since all rules inHigher(fk) are not applicable underσ we deduce that∑ fi∈Gk
fi(p)

has no transitions (is deadlocked) for all 1≤ k≤ m. Moreover, sincep�q behaves
like q whenp is deadlocked, the above equations imply thatfk(p)

a
→ t is one of the

transitions ofĜm, and thus of the auxiliary term, hence:

AuxiliaryTerm[f1(p), . . . , fl (p)]
a
→ t.

If part . AssumeAuxiliaryTerm[f1(p), . . . , fl (p)]
a
→ t. There is a constant̂F among

those that we have constructed such thatfk(p)
a
→ t by rule rk for either one of the

auxiliary fk ∈ F whereF̂ has equation of type (A.1), orF is just{ fk} and has the
equation of type (A.3). The second case is proved by just reversing the argument in
the “only if” part. In the first caseF may contain other auxiliary functionsfi apart
from fk. We deduce that no rule in

S

fi∈F Higher(fi) is applicable. Hence, no rule in
a smaller setHigher(fk) is applicable. So, we takeHigher(fk) and use the argument
from the “only if” part of the proof to construct the set ofhigher(r), wherer is rk

but with f replacing fk in the source of the rule. Since no rules inhigher(r) are
applicable we derivef (p)

a
→ t by r. 2

In Section 5.2 we have seen the derivation of the auxiliary term for several useful

34

operators. Here we present an artificial operator which requires a non-trivial appli-
cation of the above procedure to derive the auxiliary term and the auxiliary rewrite
rule. Consider operatorf defined as follows:

X
a
→ X′

r1a
f (X,Y,V,Z)

a
→ f (X′,Y,V,Z)

Y
c
→Y′

r2c
f (X,Y,V,Z)

c
→Y′

V
a
→V ′

r3a
f (X,Y,V,Z)

a
→ f (X,Y,V ′,Z)

Z
c
→ Z′

r4c
f (X,Y,V,Z)

c
→ Z′

Let R1,R2,R3 andR4 be the sets of all rulesr1a, r2c, r3a and r4c, for all actionsa
andc in Act, respectively. The ordering on the rules forf is R1 ⊐ R2, R3 ⊐ R4 and
R1 ⊐ R4. There are four auxiliary operators arising from the four sets of rulesRi ;
we name these operators asf1, f2, f3 and f4, respectively. The initial value of the
setS is as follows:

{(/0,{ f1}),({ f1},{ f2}),(/0,{ f3}),({ f1, f3},{ f4})}

The iteration routine in Figure A.1 terminates after two loops and it adds the pair
(/0,{ f1, f3}) to Sresulting in:

S= {(/0,{ f1}), ({ f1},{ f2}), (/0,{ f3}), ({ f1, f3},{ f4}), (/0,{ f1, f3})}.

The set of equations that arise fromS is as follows, where we writeX for the
sequenceX,Y,V,Z:

AT = {̂ f1}+ {̂ f3}+ {̂ f1, f3}

{̂ f1} = f1(X)� {̂ f2}

{̂ f2} = f2(X)

{̂ f3} = f3(X)

{̂ f1, f3} = (f1(X)+ f3(X))� {̂ f4}

{̂ f4} = f4(X)

Replacing the constants in the equations by the defining terms results in an auxiliary
term and the following auxiliary rewrite rule

f (X) → f1(X)� f2(X) + f3(X) + (f1(X)+ f3(X))� f4(X).

35

There are several further commonly used process operators that are naturally de-
fined by SOS rules with orderings: action refinement operator[17,40], the two oper-
ators that internalise testing [40], the unless operator [10], several “delay” operators
from timed process languages [19,29,41] including the operator from Example 2.8,
and the timed versions of standard process operators where certaintimedproperties,
such asmaximal time synchrony, hold. The auxiliary terms for all these operators
are relatively straightforward.

B Proof of Lemma 5.9

Suppose thatf is as in the lemma andi is one of its active arguments. Letp be a
vector ofn closed terms. We prove both soundness and head normalisation concur-
rently by induction on the size of termsf (p).

We begin with soundness of the rewrite rules introduced by the lemma.

(1) The distributivity rewrite rulesfdn(i) are clearly sound. Consider the other
distributivity rules fds(i). Let p be such thatpi is q+ q′. In order to prove
soundness offds(i) it suffices to showf (p) ∼ f (p)[q/pi]+ f (p)[q′/pi] for ev-
ery rewrite of the formf (p) → f (p)[q/pi]+ f (p)[q′/pi] which is correct inP .
Assume that the following is a correct rewrite:

f (p) → f (p)[q/pi]+ f (p)[q′/pi]

Let f (p)
a
→ t. By (3) for f we deducepi

ai→ p′i for some p′i . Hence,q+

q′
a
→ p′i and eitherq

a
→ p′i or q′

a
→ p′i . So, we have eitherf (p)[q/pi]

a
→ t or

f (p)[q′/pi]
a
→ t; hence,f (p)[q/pi]+ f (p)[q′/pi]

a
→ t. The other direction fol-

lows correspondingly.
(2) Let p be a vector ofn closed terms and letaI be the trigger of a specific

rule of type (3) forf . Assumef (aI .p) → a.C[p] is a valid rewrite inP . Then,
f (aI .p)

a
→ C[p] by the mentioned rule. Sincef is simply distinctive, there is

no other rule forf by which we can derivef (aI .p)
a
→ C[p]: see Definition

2.10. Hence,f (aI .p) ∼ a.C[p].
(3) Let p be a vector ofn closed terms, andf (p) → 0 be a valid rewrite inP . The

ordering≻′ tells us that there is no internal reduction off (p) such that the
resulting term can be rewritten by any of the distributivityor action rewrite
rules for f . Assume for contradiction thatf (p)

a
→ t for somea and t. This

has to be by one of the rules of type (3). The induction hypothesis gives that
all pi can be rewritten to termsp′i in head normal form. If one ofp′is is a
sum of terms, then one of the distributivity rulesfds(i) can be used to rewrite
f (p′), contradicting the correctness off (p) → 0. If none of thep′is is a sum,
then they are action prefixed terms:p′i = ai.p′′i for somep′′i s. Hence,f (p′)

36

can be rewritten with the action rewrite rule contradictingthe correctness of
f (p) → 0. Hence,f (p)

a
9 for all actionsa, and f (p) ∼ 0.

Next, we consider head normalisation. We shall prove that there exists a termp in
hnf such thatf (p) ։ p in P . By the inductive hypothesis the components ofp are
in hnf. There are three cases:

(1) One of the termspi is 0. Then, none of the distributivity and action rewrite
rules can be applied to rewritef (p). Hence,f (p) → 0 by fnil .

(2) One of the termspi is q+q′ whereq andq′ are distinct syntactically and not
equal to0 closed terms. Then,f (p) → f (p)[q/pi]+ f (p)[q′/pi] by distributiv-
ity. By the induction hypothesis, there exist head normal formsp′ andp′′ such
that f (p)[q/pi] ։ p′ and f (p)[q′/pi] ։ p′′, respectively. Clearly,p′ + p′′ is in
hnf, or can be rewritten to hnf.

(3) All pi have the formbi .p′i. If the actionsbis constitute a trigger forf (p), then
the appropriate action rewrite rule is used giving a rewritewith the target in
hnf. If the actionsbis do not make up a trigger, then the deadlock rewrite rule
is used, giving the result.

C Proof of Lemma 5.12

For each operator ofG that is not simply distinctive we apply the strategy presented
in either Lemma 5.4 or in Lemma 5.10. This gives the required PL G′. The PRSP
is obtained by adding to the PRS forB all the instances of the distributivity, action
and deadlock rewrite rules for all simply distinctive operators in G′ as required
by Lemma 5.9, and all the instances of the auxiliary rewrite rules and the priority
resolving rewrite rules as required by Lemma 5.4 and Lemma 5.10. It follows from
these lemmas thatP is sound for bisimulation, and it remains to prove that it is
head normalising.

We use induction on the structure of terms overG′. In view of the result in Lemma
5.9 it is sufficient to consider only operatorsf which are not simply distinctive and
which are free of implicit copies. Considerf (p) with all termspi in hnf. There are
two cases.

(1) The operatorf satisfies the conditions of Lemma 5.10. Ifp1 is 0, then f (p1) →

0 by the deadlock rewrite rule. Otherwise, without loss of generality let p1 be
∑ j∈J a j .p1 j . The priority resolving rules allow us to remove summandsal .p1l

if there is a summandak.p1k such thatrak > ral , whererak andral are rules for
f with actionsak andal in the premises, respectively. So,f (p1) is rewritten
eventually tof (∑ j∈K a j .p1 j) where no further summand can be removed, with
at least one remaining. Then, apply the action rewrite rule to obtain hnf.

(2) The operatorf satisfies the conditions of Lemma 5.4 but not the conditions of

37

Lemma 5.10. Hence,f (p) → AuxiliaryTerm[f1(p), . . . , fl(p)] where operators
f j are the auxiliary simply distinctive operators generated for f by Lemma 5.4.
By inspection of the auxiliary term we know that it can be expressed ast �

t ′ wheret is a sum form: see Definition 5.3. More specifically, without loss
of generality,t is f1(p) + . . .+ fk(p) where the operatorsfi are some of the
operatorsf j above. Since eachfi is simply distinctivefi(p) can be rewritten to
hnf by Lemma 5.9. Hence, termt can be rewritten to hnf. Ift can be rewritten
to 0, then f (p) ։ t ′ andt ′ can be expressed ast � t ′ for some newt, t ′ with t
that can be rewritten to hnf. Ift rewrites tot1+ t2, then f (p) ։ (t1+ t2)� t ′ →

t1� t ′+ t2� t ′ by the distributivity rule for� in Figure 1. Ift ։ a.u, for some
termu, then f (p) ։ (a.u)� t ′ → a.u by the action rule for� in Figure 1. As
the size of the auxiliary term is finite,f (p) rewrites eventually to hnf.

D Proof of Theorem 6.4

We argue that, for a decidable subclass of OSOS PLs, namely syntactically well-
founded and linear OSOS PLs, the PRSs generated by algorithmin Figure 2 are
strongly normalising, for closed terms modulo associativity and commutativity of
+ operator.

Proposition D.1 Let G be a syntactically well-founded and linear OSOS process
language. Then, the OSOS process language G′ produced for G by the algorithm in
Figure 2 is also syntactically well-founded and linear.

Apart fromw andW defined in Section 6, we shall also use other weight functions.
In our termination proof we shall use the notion ofmarkedterms and operator
symbols: f # is a marked operator iff is an operator. Hence, we extend the defi-
nitions of w andW to cover not onlyΣG′ operators but alsoΣ#

G′ operators, where
Σ#

G′ = { f # | f ∈ ΣG′}. Henceforth, the weight functions that we define are over
ΣG′ ∪Σ#

G′ . But first we extend the functionsw andW so that they apply to the ex-
tended PLG′: We setw(f c) to w(f) for each not free of implicit copies operator
f ∈ Σ. Also, for each free of implicit copies but not simply distinctive operatorf ,
we setw(fi) to w(f) for all simply distinctive operatorsfis that are created forf in
Lemma 5.4.

Definition D.2 Let G be a syntactically well-founded and linear OSOS process
language, and letG′ be the OSOS process language produced forGby the algorithm
in Figure 2. FunctionsW′, e, p, pref : T(ΣG′ ∪Σ#

G′) → N are as follows:

(1) • W′(X)
def
= 0,

• W′(t1+ t2) = W′(t1+# t2)
def
= max(W′(t1),W′(t2)) ,

• W′(t1� t2) = W′(t1�# t2)
def
= max(W′(t1),W′(t2)),

38

• W′(f (t1, . . . , tn))
def
= 1+W′(t1)+ · · ·+W′(tn) if f is any prefixing or marked

prefixing operator,

• W′(f (t1, . . . , tn))
def
= w(f)+W′(t1)+ · · ·+W′(tn) otherwise.

(2) For any termt e(t) is 1 if t contains+, +#, marked or unmarked non-simply
distinctive operators, or marked or unmarked simply distinctive operators that
have no active arguments, excluding the deadlocked operator 0, and 0 other-
wise. Note, that constants and prefixing are among simply distinctive opera-
tors that have no active arguments.

(3) Functionpref is defined by

• pref(X)
def
= 0,

• pref(f (t1, . . . , tn))
def
= p(t1)+ . . .+ p(tn) if f is + or +#,

• pref(f (t1, . . . , tn))
def
= 1+ p(t1) + . . .+ p(tn), if f is a prefixing or marked

prefixing operator,

• pref(f (t1, . . . , tn))
def
= w(f)+ p(t1)+ . . .+ p(tn) otherwise,

wherep(X)
def
= 0, andp(f (t1, . . . , tn)) is 1+ p(t1)+ · · ·+ p(tn) if f is prefixing

or marked prefixing operator, andp(t1)+ · · ·+ p(tn) otherwise.

We simply calculate thatW(t)≥W′(t) for all t ∈T(ΣG). Moreover,W(t)≥ pref(t)
sinceW(t)≥W′(t) andW′(t)≥ p(t).

Definition D.3 LetGbe a syntactically well-founded and linear OSOS process lan-
guage., and letG′ be the OSOS process language produced forG by the algorithm
in Figure 2. Functionstwo#, two, one: T(ΣG′ ∪Σ#

G′) → N are as follows:

(1) • two#(X)
def
= 0,

• two#(f (t1, . . . , tn))
def
= two(f (t1, . . . , tn)) if f ∈ Σ#

G′, and 0 otherwise.

(2) • two(X)
def
= 0,

• two(f (t1, . . . , tn))
def
= 3+∑n

i=1one(ti) if f is a marked non-simply distinctive
operator,

• two(f (t1, . . . , tn))
def
= 1+∑n

i=1one(ti) if f is + or +#,

• two(f (t1, . . . , tn))
def
= ∑n

i=1one(ti) otherwise.

(3) • one(X)
def
= 0,

• one(f (t1, . . . , tn))
def
= 1 if f is + or +#,

• one(f (t1, . . . , tn))
def
= 0 otherwise.

Definition D.4 An ordering⊐ overΣG′ ∪Σ#
G′ terms is defined as follows:t ⊐ s if

and only if

(1) e(t) > e(s), or
(2) e(t) = e(s) andW′(t) > W′(s), or

39

(3) e(t) = e(s) andW′(t) = W′(s) andpref(t) > pref(s), or
(4) e(t) = e(s) andW′(t) = W′(s) andpref(t) = pref(s) andtwo#(t) > two#(s).

An ordering⊒ is a union of⊐ and{(t,s) |W′(t) =W′(s) ande(t) = e(s) andpref(t) =
pref(s) andtwo#(t) = two#(s)}.

We easily check that⊐ is transitive and irreflexive, well-founded, and closed under
substitution. Clearly,⊒ is reflexive and transitive and closed under substitution.
Moreover,⊐ is strictly monotonic and⊒ is weakly monotonic. Hence, according
to the definitions and notation in [23],⊒ is aweak reduction order.

Proof of Theorem 6.4. Assume an OSOS PLG = (Σ,A,R,>) which is both linear
and syntactically well-founded. LetG′ = (Σ′,A′,R′,>′) be the OSOS PL generated
by the algorithm in Figure 2. Moreover, letP = (Σ′,R,≻) be the PRS produced
for G by the algorithm in Figure 2. SinceG′ is both linear and syntactically well-
founded (Proposition D.1) it is sufficient to show that the underlying TRS(Σ′,R),
denoted byT , is strongly normalising by Proposition 3.4.

We shall employ thedependency pairand dependency graphtechniques due to
Arts and Giesl [4]. Since we deal here with rewriting moduloAC of + we use the
extension of dependency pair and dependency graph techniques to take into account
AC due to Kusakari and Toyama [23]. Alternatively, we could have employed the
AC extension due to Marché and Urbain [25]. The basic notions and definitions
taken from [23] are as follows. An operatorf ∈Σ is adefined symbolif it appears as
the head operator of the left-hand side of some rewrite rule in R. An operatorf ∈ Σ
is aconstructorif it is not a defined symbol. Next, we define marking of terms [23]:
X# = X, (t1 + t2)# = (t1)#+ +# t#+

2 , and(f (t1, · · · , t2))# = f #(t1, · · · , t2) otherwise.
Moreover,X#+ = X, (t1+t2)#+ = (t1)#++# t#+

2 , and(g(t1, · · · , t2))#+ = g(t1, · · · , t2)
otherwise. For example

(0+(f (0+g)+h))# = (0+# (f (0+g)+# h)

TheAC-dependency pairs are defined as follows. Iff (s1, . . . ,sn) → C[g(t1, . . . , tm)]
is a rewrite rule ofT with g a defined symbol, then

〈 f (s1, . . . ,sn)
#,g(t1, . . . , tm)#〉

is adependency pairof T . If s1+s2 → r is a rewrite rule ofT , then

〈((s1+s2)+Z)#,(r +Z)#〉

is anextended dependency pairof T , whereZ is a fresh variable. Clearly,〈((s1+
s2)+Z)#,(r +Z)#〉 = 〈((s1+# s2)+# Z),(r +# Z)〉, and we shall use this explicit

40

form from now on. An expression is anAC-dependency pairof T if it is a depen-
dency pair ofT or an extended dependency pair ofT .

A sequence of dependency pairs〈s1, t1〉,〈s2, t2〉, . . . is anAC-chainif there exists

a substitutionσ such thatσt j(
#
→)∗σt ′j �hd σsj+1 holds for every two consecutive

pairs〈sj , t j〉 and〈sj+1, t j+1〉 in the sequence. The notions
#
→ and�hd are defined as

follows. Let TRSR# be{(X+Y)+# Z) → (X +# Y)+# Z)}, and lett ↓# denote the

normal form oft in →R# moduloAC of +. We defines
#
→ t ass→ t ′ andt = t ′↓# for

somet ′. Informally, the relations�hd t means thats′ ∈ [s] ands′ = C[t] for some
contextC[X] such thatt appears as an argument of a+ term inC[X] and this term is
not guarded by any other operator except possibly for+. Note, thatp+(q+t))�hdt
but not f (t + p)�hd t. For precise definitions and illustrating examples the reader
is referred to [23].

An AC-dependency graphof T is the directed graph whose nodes are the AC-
dependency pairs ofT and there is an arc from〈s, t〉 to 〈v,w〉 if 〈s, t〉〈v,w〉 is an
AC-chain.

A weak reduction order⊒ is aweak AC-reduction orderif (a) ⊒ is AC-compatible,
namely ifs∈ [t], thens⊒ t, and (b)⊒ has theAC-deletion property: (X +Y)+Z ⊒
X +Y. Moreover, a quasi ordering⊒ satisfies theAC-marked conditionif (X +
Y)+# Z) ⊒ (X +# Y)+# Z) and(X +# Y)+# Z) ⊒ (X +Y)+# Z).

We are ready to state the result we will use to prove termination.

Result D.5 [23] A TRSP is strongly normalising if there exists a weakAC-reduction
order⊒ satisfying theAC-marked condition such that

(1) l ⊒ r for all rewrite rulesl → r of T ;
(2) s⊒ t for all dependency pairs〈s, t〉 on a cycle of theAC-dependency graph for
T ; and

(3) s⊐ t for at least one dependency pair〈s, t〉 on each cycle of theAC-dependency
graph forT .

The required ordering⊒ will be defined in terms of the weight functions from
Definitions D.2 and D.3, which are in turn based onw andW functions from Defi-
nition 6.

Remark. Unlike in [14], our proof does not rely on the assumption that w(f) ≥ 1
for all f . In fact, for most of the existing PLs, the weight functionw is such that
w(f) = 0 for most of the operatorsf . Our proof works withw(f) ≥ 0.

We return to our proof. The only constructors inT are the prefixing operatorsa.,
for all a∈ A, the operator0 and possibly other constants inΣ (no defining rules).

41

Next, we work out theAC-dependency pairs forT . We begin with the dependency
pairs forB . Firstly, there are two extended dependency pairs for ourAC operator
+:

〈((X +# 0)+# Z),(X +# Z)〉 (D.1)

〈((X +# X)+# Z),(X +# Z)〉 (D.2)

There are threeAC-dependency pairs for�#:

〈(X +0)�
Z, X �

Z〉 (D.3)

〈(X +Y)�
Z, X �Z +# Y �Z〉 (D.4)

〈(X +Y)�
Z, X �

Z〉 (D.5)

A typical operator(f ,n) ∈ ΣG′ \B may have several types of rewrite rules and thus
dependency pairs. Iff is not free of implicit copies, thenfcopy∈ R gives rise to

〈 f #(X), f c#(Y)〉 (D.6)

where f c is free of implicit copies operator.

If f is free of implicit copies but not simply distinctive, then there will be a large
number ofAC-dependency pairs arising from the auxiliary rewrite rule from Lemma
5.4. If the auxiliary rewrite rule isl → r, then it produces anAC-dependency pair
〈l#, r#〉. Explicitly, thisAC-dependency pair is

〈 f #(X), (AuxiliaryTerm[f1(X), · · · , fl (X)])#〉 (D.7)

There will beAC-dependency pairs〈l#,s#〉, wheres a proper subterm ofr which is
not a variable. Clearly, by Lemma 5.4, the head operator ofs is not a constructor.
If an AC-dependency pair〈l#,s#〉 occurs in a cycle, it will occur with otherAC-
dependency pairs that we give numbers to. Hence, we will not number then, except
for the following type ofAC-dependency pairs

〈 f #(X), f #
p(X)〉 (D.8)

wherep ∈ {1, . . . , l}. They may be on cycles involvingAC-dependency pairs that
arise from the action rewrite rules. We shall list them below.

If f is free of implicit copies and simply distinctive, then there will be several types
of AC-dependency pairs arising from the rewrite rules from Lemma5.9. TheAC-
dependency pair

42

〈 f #(. . . ,Xi +Yi , . . .), f (. . . ,Xi, . . .)+# f (. . . ,Yi , . . .)〉 (D.9)

can occur in cycles. TheAC-dependency pairs we are particularly interested in are

〈 f #(X +a.Y +b.Z), f #(X +a.Y)〉 (D.10)

〈 f #(. . . ,Xi +0, . . .), f #(. . . ,Xi, . . .)〉 (D.11)

〈 f #(. . . ,Xi +Yi , . . .), f #(. . . ,Xi, . . .)〉 (D.12)

The action rewrite rule gives rise to theAC-dependency pair

〈 f #(ai.X), C#[X]〉 (D.13)

as well as to the following types ofAC-dependency pairs, whereC[X] ≡ D[g(Y)]
for some contextD[] andg a defined operator:

〈 f #(ai.X), g#(Y)〉 (D.14)

Notice that there areAC-dependency pairs of the types described above for the head
operator ofC[X] and forg depending on the type the operators. Finally, there is the
AC-dependency pair arising from the deadlock rewrite〈 f #(X),0#〉; it clearly cannot
occur in any cycle.

With the above listed types ofAC-dependency pairs we construct theAC-dependency
graph forT . Here, we shall only identify all possible cycles as it is allthat we need
by Result D.5.

• There are cycles created by self-embeddingAC-dependency pairs (D.1)–(D.2),
(D.3) and (D.5). If f is simply distinctive andf ∈ Σ, and if f occurs in the
contextC[X] of its action rewrite rule, namelyC[X] ≡ D[f (t)] by the linearity of
f for some contextD[], then there is a cycle generated by〈 f #(ai.X), f #(t)〉: an
instance of (D.14).

• There may be cycles that are created by severalAC-dependency pairs. For exam-
ple, the shortest cycles are of the form〈 f #(X), f #

p(X)〉, 〈 f #
p(a.X), f #(t)〉, where

the last pair arises from the action rewrite rule. A bit longer cycles are of the
form 〈 f #(X), f c#(Y)〉, 〈 f c#(X), f c#

p (X)〉, 〈 f c#
p (a.X), f #(t)〉, the last pair arises

from the action rewrite rule. There may be longer cycles thatinvolve more than
two operators, but they are made up solely from instances of dependency pairs
(D.6)–(D.8), (D.10)–(D.12) and (D.14). The common property of all such cycles
is that they contain an instance of (D.14).

Now, we need a weakAC-reduction order that satisfies the conditions of Result D.5.
We argue that⊒ is the required weakAC-reduction order. The order⊒ is a weak
reduction order. It isAC-compatible as it equated allAC-equivalent terms. It satisfy

43

theAC-deletion property astwo#((X +Y)+Z) = 2 andtwo#(X +Y) = 1. Finally,
it satisfies theAC-marked condition sincee, W′, pref andtwo# equate the sides of
the required pairs.

Next, we show that the ordering⊒ satisfies the three conditions of Result D.5.

(1) We show thatl ⊒ r for every rewrite rule ofT . Since functiontwo# returns
0 for all variables and terms whose head operator is not marked, two#(l) =
0 = two#(r) for all our rewrite rulesl → r. Hence, we shall not considertwo#

further for this case. We begin with rewrite rules forB :
(a) +dn : X +0⊒ X sincee(X +0) ≥ 1 > 0 = e(X);
(b) +ice : X +X ⊒ X sincee(X +X) = 1 > 0 = e(X);
(c) �dis : (X +Y)� Z ⊒ X � Z +Y � Z sincee((X +Y)� Z) = 1 = e(X �

Z+Y � Z), andW′((X +Y)� Z) = max(max(0,0),0) = 0 andW′(X �

Z+Y�Z) = max(max(0,0)max(0,0)) = 0, andpref(lhs) = w(�)≥ 0=
pref(rhs).

(d) �act : a.X �Y ⊒ a.X sincee(a.X �Y) = e(a.X), andW′(a.X �Y) = 1 =
W′(a.X). Also,pref(lhs) = w(�)+1≥ 1 = pref(rhs).

(e) �nil : X �Y ⊒Y sincee(X �Y) = 0= e(X) andW′(X �Y) = 0 = W′(Y)
andpref(X �Y) = w(�) ≥ 0 = pref(Y).

Now we consider rewrite rules for operatorsf ∈ Σ′ \ΣB. Let m is the number
of active arguments off . The above comment regardingtwo# applies also for
the remaining rewrite rules.
(f) fcopy : f (X) → f c(Y). We havef is simply distinctive if and only iff c is

simply distinctive. We easily check thatf (X) = f c(Y).
(g) faux : f (X) → AuxiliaryTerm[f1(X), . . . , fl (X)]. We havelhs= rhs. Since

f is not simply distinctive we havee(lhs) = 1 ande(rhs) is at most 1.
Recall thatw(f) = w(fi) for all 1≤ i ≤ l . Thus, clearlyW′(lhs) = w(f) =
W′(rhs). Finally,pref(lhs) = w(f) = pref(rhs).

(h) f a
pr : f (X +a.Y+b.Z) → f (X +a.Y). Sincem= 1 we verify thate(lhs) =

1 = e(rhs) and W′(lhs) = w(f) + 1 = W′(rhs). We havepref(lhs) =
w(f)+2 > w(f)+1 = pref(rhs).

(i) fdn(i) : f (. . .,Xi +0, . . .) → f (. . . ,Xi, . . .). We havelhs⊐ rhssincee(lhs) =
1, as it contains+, ande(rhs) = 0, soe(lhs) > e(rhs).

(j) fds(i) : f (. . . ,Xi +Yi , . . .) → f (. . . ,Xi, . . .)+ f (. . . ,Yi , . . .). We haverhs⊒
lhssincee(lhs) = 1= e(rhs),W′(lhs) = w(f) =W′(rhs) andpref(lhs) =
w(f) ≥ 0 = pref(rhs).

(k) fact : f (ai.X) → a.C[X]. Clearly,e(lhs) = 1 = e(rhs) since either prefix-
ing occurs orf is simply distinctive with no active arguments. We have
two cases forf . Assume thatf has active arguments, namelym≥ 1. We
haveW′(f (ai.X)) = w(f)+m≥W(C[X])+msincew(f) ≥W(C[X]) by
syntactical well-foundedness. Now,m+W(C[X]) ≥ m+W′(C[X]) and
≥ W′(a.C[X]). Moreover,pref(f (ai.X)) = w(f) + m and w(f) + m ≥
W(C[X])+m≥W′(C[X])+m≥ p(C[X])+m≥ pref(a.C[X]).

When f has no active arguments, thenW′(f (X)) = w(f)≥1+W(C[X])

44

sincew(f) >W(C[X]). Then, 1+W(C[X])≥1+W′(C[X]) =W′(a.C[X]).
Also, pref(f (X)) = w(f) > W(C[X]) ≥ 1+ p(C[X]) = pref(a.C[X]).

(ℓ) fnil : f (X) → 0. Due to the ordering on transition rules, the rewrite rules
is effectively of two forms. Firstly,f (a.X) → 0, wherea.X is not a trigger
for f and f is not a constant, and secondlyf (X) → 0 when f is a constant
with no defining rules. Note, that iff is a constant with some defining
rules, then the action rewrite rules will always apply and thus the deadlock
rewrite rule will never apply.

In both cases abovee(lhs) = 1 > 0 = e(rhs), sincelhs either involves
prefixing or a simply distinctive operator with no active arguments.

(2) We need to showlhs⊒ rhs for all theAC-dependency pairs〈lhs, rhl〉. In part
3 below we provelhs⊐ rhs for theAC-dependency pairs (D.1)–(D.3), (D.5),
(D.10)–(D.13). Since (D.13) is more general than (D.14), and (D.7) is more
general than otherAC-dependency pairs arising from the auxiliary rewrite rule,
we shall only consider (D.7). Also, we showlhs⊒ rhs for (D.4), (D.6) and
(D.9).

(D.4): e(lhs) = 1 = e(rhs), W′(lhs) = 0 = W′(rhs), pref(lhs) = w(�#) ≥ 0 =
pref(rhs), andtwo#(lhs) = 1 = two#(rhs).

(D.6): Operatorf is simply distinctive iff f c is simply distinctive. Hence, we
deducetwo#(lhs) = two#(rhs) and they are equal to either 3 or 0. The
functionse, W′ andpref have been calculated in (f) of part 1, so we are
done.

(D.7): The functionse, W′ andpref have been calculated in (g) of part 1, so we
only checktwo#. Since f is not simply distinctivetwo#(lhs) = 3. Note,
that since all the operatorsfi of the rhs are simply distinctive we ob-
tain two#(fi(X)) = 0. If the outermost operator of therhs is �#, then
two#(rhs) ≤ 2. Else, namely the outermost operator of therhs is +#,
two#(rhs) ≤ 3.

(D.9): The functionse, W′ and pref have been calculated in (j) of part 1, so
we only checktwo#. We havetwo#(lhs) = 1 = two#(rhs) as f is simply
distinctive.

(3) Each cycle in theAC-dependency graph contains at least oneAC-dependency
pair of the type (D.1)–(D.3), (D.5), (D.10)–(D.12) and(D.14). Since the longer
than 1 cycles contain (D.14), and since (D.13) is more general than (D.14), we
showlhs⊐ rhs for (D.1)–(D.3), (D.5), (D.10)–(D.13).

(D.1) 〈((X +# 0)+# Z),(X +# Z)〉: The functionse, W′ andpref evaluate to
equal values for thelhsandrhsof thisAC-dependency pair, buttwo#(lhs) =
2 > 1 = two#(rhs).

(D.2) 〈((X +# X)+# Z),(X +# Z)〉: As for (D.1).
(D.3) 〈(X +0)�# Z, X �# Z〉: clearlye(lhs) = 1> 0= e(rhs), hencelhs⊐ rhs.
(D.5) 〈(X +Y)�# Z, X �# Z〉: As for (D.3).

(D.10) 〈 f #(X +a.Y+b.Z), f #(X +a.Y)〉: lhs⊐ rhs. Here,m= 1 as there is just
one active argument, and althoughe(lhs)= e(rhs) andW′(lhs)=W′(rhs)
we havepref(lhs)= w(f #)+2w(a#.)> w(f #)+w(a#.) = pref(rhs) since
w(a#.) = w(a.) ≥ 1.

45

(D.11) 〈 f #(. . . ,Xi +0, . . .), f #(. . . ,Xi, . . .)〉 : sincee(lhs) = 1, as f is simply dis-
tinctive and has active arguments, ande(rhs)= 0 we havee(lhs)> e(rhs).

(D.12) 〈 f #(. . . ,Xi +Yi , . . .), f #(. . . ,Xi, . . .)〉 : As for (D.11) above.
(D.13) 〈 f #(ai .X), (C[X])#〉: We havee(lhs) ≥ e(rhs). Moreover, ifm≥ 1, then

we haveW′(f #(ai .X)) = w(f #)+m≥W((C[X])#)+m≥W′((C[X])#)+
m. Clearly, the last term is greater thanW′((C[X])#). If m= 0, namelyf
has no active arguments and its action rewrite rule has the form f #(X) →

a#.C[X], thenW′(f #(X)) = w(f #) > W((C[X])#) by the syntactical well-
foundedness. SinceW((C[X])#) ≥W′((C[X])#) we havelhs⊐ rhs.

This completes the proof of termination.

References

[1] L. Aceto. Deriving complete inference systems for a class of GSOS languages
generating regular behaviours. In B. Jonsson and J. Parrow,editors,Proceedings of
the 5th International Conference on Concurrency Theory CONCUR’94, volume 836
of LNCS, pages 449–464. Springer, 1994. Also, an unpublished full version.

[2] L. Aceto, B. Bloom, and F.W. Vaandrager. Turning SOS rules into equations.
Information and Computation, 111:1–52, 1994.

[3] L. Aceto, W. Fokkink, and C. Verhoef. Structured operational semantics. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors,Handbook of Process Algebra, pages
197–292. Elsevier Science, 2001.

[4] T. Arts and J. Giesl. Termination of term rewriting usingdependency pairs.Theoretical
Computer Science, 236:133–178, 2000.

[5] F. Baader and T. Nipkow.Term Rewriting and All That. Cambridge University Press,
1998.

[6] J.C.M. Baeten, J.A. Bergstra, and J.W. Klop. Syntax and defining equations for an
interrupt mechanism in process algebra.Fundamenta Informaticae, XI(2):127–168,
1986.

[7] J.C.M. Baeten, J.A. Bergstra, J.W. Klop, and W.P. Weijland. Term-rewriting systems
with rule priorities.Theoretical Computer Science, 67:283–301, 1989.

[8] J.C.M. Baeten and E.P. de Vink. Axiomatizing GSOS with termination. Journal of
Logic and Algebraic Programming, 60-61:323–351, 2004.

[9] J.C.M. Baeten and C.A. Middelburg. Process algebra withtiming: Real time and
discrete time. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of
Process Algebra, pages 627–684. Elsevier Science, 2001.

[10] J.C.M. Baeten and W.P. Weijland.Process Algebra, volume 18 ofCambridge Tracts
in Theoretical Computer Science. Cambridge University Press, 1990.

46

[11] B. Bloom. Structured operational semantics as a specification language. InConference
Record of the 22nd ACM Symposium on Principles of Programming Languages, pages
107–117. ACM Press, 1995.

[12] B. Bloom, A. Cheng, and A. Dsouza. Using a protean language to enhance
expressiveness in specification.IEEE Transactions on Software Engineering, 23:224–
234, 1997.

[13] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced.Journal of the
ACM, 42(1):232–268, 1995.

[14] D.J.B. Bosscher. Term rewriting properties of SOS axiomatisations. InProceedings
of International Conference on Theoretical Aspects of Computer Software TACS’94,
volume 789 ofLNCS, pages 425–439. Springer, 1994.

[15] S.D. Brookes, C.A.R. Hoare, and W. Roscoe. A theory of communicating sequential
processes.Journal of the ACM, 31:560–599, 1984.

[16] R. Cleaveland and S. Sims. The Concurrency Workbench ofNew Century.
http://www.cs.sunysb.edu/∼cwb/.

[17] R.J. van Glabbeek.Comparative Concurrency Semantics and Refinement of Actions.
PhD thesis, CWI, 1990.

[18] J.F. Groote and F. Vaandrager. Structured operationalsemantics and bisimulation as a
congruence.Information and Computation, 100:202–260, 1992.

[19] M. Hennessy and T. Regan. A process algebra for timed systems. Information and
Computation, 117:221–239, 1995.

[20] C.A.R. Hoare.Communicating Sequential Processes. Prentice Hall, 1985.

[21] J.R. Kennaway and F.J. de Vries. Infinitary rewriting. In Terese, editor,Term Rewriting
Systems, pages 668–711. Cambridge University Press, 2003.

[22] J.W. Klop. Term rewriting systems. In S. Abramsky, D. Gabbay, and T. Maibaum,
editors,Handbook of Logic in Computer Science, pages 1–116. Oxford University
Press, 1992.

[23] K. Kusakari and Y. Toyama. On proving AC-termination byargument filtering method.
IPSJ Transactions on Programming, 41(SIG 4 (PRO 7)):65–78, 2000.

[24] L. Léonard and G. Leduc. A formal definition of time in LOTOS. Formal Aspects of
Computing, 10:248–266, 1998.

[25] C. Marché and X. Urbain. Termination of associative-commutative rewriting by
dependency pairs. In T. Nipkow, editor,Proceedings of the 9th International
Conference on Rewriting Techniques and Applications RTA’98, volume 1379 ofLNCS,
pages 241–255. Springer, 1998.

[26] R. Milner. A complete inference system for a class of regular behaviours.Journal of
Computer System Sciences, 28:439–466, 1984.

[27] R. Milner. Communication and Concurrency. Prentice Hall, 1989.

47

[28] R. De Nicola and M. Hennessy. Testing equivalences for processes. Theoretical
Computer Science, 34:83–133, 1984.

[29] X. Nicollin and J. Sifakis. The algebra of timed processes, ATP: theory and
application.Information and Computation, 114:131–178, 1994.

[30] D.M. Park. Concurrency on automata and infinite sequences. In P. Deussen, editor,
Conference on Theoretical Computer Science, volume 104 ofLNCS, pages 167–183.
Springer, 1981.

[31] G. Plotkin. A structural approach to operational semantics. Journal of Logic and
Algebraic Programming, 60-61:17–141, 2004.

[32] J.C. van de Pol. Operational semantics of rewriting with priorities. Theoretical
Computer Science, 200:289–312, 1998.

[33] A.W. Roscoe.The Theory and Practice of Concurrency. Prentice Hall, 1998.

[34] M. Sakai and Y. Toyama. Semantics and strong sequentiality of priority term rewriting
systems.Theoretical Computer Science, 208:87–110, 1998.

[35] S. A. Schneider.Concurrent and Real-time Systems. Wiley, 2000.

[36] S. Sims. The Process Algebra Compiler. http://www.reactive-systems.com/pac/.

[37] I. Ulidowski. Local Testing and Implementable Concurrent Processes. PhD thesis,
Imperial College, University of London, 1994.

[38] I. Ulidowski. Finite axiom systems for testing preorder and De Simone process
languages.Theoretical Computer Science, 239(1):97–139, 2000.

[39] I. Ulidowski. Priority rewrite systems for OSOS process languages. In R. Amadio and
D. Lugiez, editors,Proceedings of the 14th International Conference on Concurrency
Theory CONCUR 2003, volume 2761 ofLNCS, pages 87–102. Springer, 2003.

[40] I. Ulidowski and I.C.C. Phillips. Ordered SOS rules andprocess languages for
branching and eager bisimulations.Information and Computation, 178(1):180–213,
2002.

[41] I. Ulidowski and S. Yuen. Process languages with discrete time based on the
Ordered SOS format and rooted eager bisimulation.Journal of Logic and Algebraic
Programming, 60-61:401–461, 2004.

48

