
A Congruence Rule Format

for Name-Passing Process Calculi

Marcelo Fiore 1 and Sam Staton 2

Computer Laboratory, University of Cambridge

Abstract

We introduce a GSOS-like rule format for name-passing process calculi. Specifica-
tions in this format correspond to theories in nominal logic. The intended models
of such specifications arise by initiality from a general categorical model theory. For
operational semantics given in this rule format, a natural behavioural equivalence
— a form of open bisimilarity — is a congruence.

Introduction

A significant strand of research in semantics concerns defining and establishing
properties of formats for operational rules. By moving away from a particular
syntax and semantics one can simultaneously study a whole class of calculi,
becoming instead concerned with the intrinsic nature of the kinds of system
that the formats allow.

In this vein, the present work provides an analysis of the congruence properties
of bisimilarity for name-passing systems, with the π-calculus [16] being the
paradigmatic example. Specifically we ask: What is a name-passing process
calculus, and when is its behavioural equivalence a congruence?

A variety of rule formats have been proposed for conventional process cal-
culi [see e.g. 1]. The most relevant existing format to the present article is
a positive version of the GSOS rule format of Bloom et al. [4]. The positive

1 Research partially supported by an EPSRC Advanced Research Fellowship
2 Research partially supported by EPSRC grant GR/T22049/01

Preprint submitted to Elsevier 26 November 2007

GSOS format only permits operational semantics given by rules of the form

⋃l
i=1

{

Xi

aij
−→ Yij | 1 ≤ j ≤ mi

}

op(X1, . . . , Xl)
a
−→ C[~X, ~Y]

with all the variables distinct, l ≥ 0 the arity of op, with mi ≥ 0, and with
C[~X, ~Y] a context with free variables including at most the Xi’s and Yij ’s. In
this setting, Bloom et al. showed that various properties hold of the induced
system, and, in particular, that bisimilarity is a congruence.

The present article presents a rule format that is relevant for name-passing
process calculi. This format is interesting in itself, but may also be viewed as a
stepping stone towards a more thorough and rigorous understanding of some
important phenomena in modern semantics research.

Conventional rule formats are inappropriate in the context of name-passing

The GSOS format, like most existing formats, is inadequate for name-passing
calculi, for a variety of reasons. Firstly, the syntax of name-passing calculi typ-
ically involves binding, and the semantics is specified using capture-avoiding
substitution. To properly define capture-avoiding substitution on terms it is
necessary to work with terms up-to α-equivalence. This means that the se-
mantics, a transition system, must be defined over terms up-to α-equivalence.

A second complication is that rule-based definitions of name-passing calculi
typically have side-conditions on the rules. For instance, Milner, Parrow and
Walker [16] have proposed the following specification of scope opening.

P
x̄y
−→ P ′

νy. P
x̄(w)
−−→ P ′{w/y}

y 6= x

w 6∈ fn(νy. P ′)

Thus a crucial role is played by side-conditions that ensure the distinctness
and freshness of names.

A third complication of name-passing systems is that the appropriate notion
of bisimilarity is not the usual notion for labelled transition systems. Indeed,
there is considerable debate as to what the most appropriate notion of bisim-
ilarity is. But few would argue that the π-calculus processes

P1 = νa. c̄a. 0 and P2 = νa. c̄a. (νb. b̄d. 0)

should be distinguished, even though

P1 =α νd. c̄d. 0
c̄(d)
−−→ 0

2

— a transition that cannot be exactly matched by P2, as d is free in P2. The
point here is that in any definition of bisimulation for the π-calculus, any
bound data in the labels is required to be suitably fresh. Thus notions of
freshness are important at this basic level.

Even with such adjustments to the usual notions of bisimulation, bisimilarity
is in general not a congruence for the full π-calculus. For instance, in the
π-calculus with a matching operator, neither

Q1 = 0 nor Q2 = [a = b]. āb. 0

can perform any action; the context c(a). (−) | c̄b. 0 will distinguish the pro-
cesses, though, because

c(a). Q2 | c̄b. 0
τ
−→ [b = b]. b̄b. 0 | 0

b̄b
−→ 0 | 0 ,

a trace that cannot be matched by c(a). Q1 | c̄b. 0. In this article, we resolve
this difficulty by adopting an approach related to the ideas of open bisimi-
larity introduced by Sangiorgi [19]. We say that a (ground) bisimulation is a
wide-open bisimulation if it is closed under all substitutions, and wide-open
bisimilarity is defined to be the greatest such bisimulation. Wide-open bisim-
ilarity is a congruence for the π-calculus, and it is with this notion that we
are concerned. It is a notion that has been studied by various authors, under
different names [e.g. 17, 5, 9]. Furthermore, as will be seen, it arises naturally
from our mathematical model.

Transition system specifications as nominal logic theories

Specifications of name-passing systems refer explicitly to the freshness of name
parameters, and so it is helpful to see these specifications as theories in a logical
framework that has facilities for such assertions. In this article, we adopt
Pitts’s work on nominal logic [18]. A nominal logic theory is a conventional
first-order theory in which certain functions and relation symbols must be
present, and these must satisfy particular axioms. For instance, there must be
a sort of names, and a ‘freshness’ relation symbol permitting assertions of the
form “the name a is fresh for the expression x”.

Since a nominal logic theory is only a first-order theory, it is relatively easy
to understand what a specification is. For instance, the conventional presenta-
tions of the π-calculus are essentially first-order, given a fixed interpretation
for notions of freshness.

The fixed interpretation of certain parts of the language is important in nom-
inal logic. As any other first-order theory, it is straightforward to interpret a

3

nominal logic theory set-theoretically. But the notions of name, and of fresh-
ness, suggest a particular, canonical interpretation, and for these reasons it is
more natural to study models of nominal logic within the universe of nominal
sets.

Through the axioms of nominal logic, α-equivalence is built in to the equality
of the logic. On the other hand, it is important that, at the level of the syntax
of the logic, seemingly α-equivalent terms are distinguished. For example, in
the usual rule for late input semantics,

—

c(a). P
c(a)
−−→ P

(1)

one could naively presume that “a is binding in the metavariable P”, and
therefore that “c(a). P =α c(c). P”. But the rule

—

c(c). P
c(c)
−−→ P

(2)

is more restrictive than rule (1). Under a naive, first-order logic interpretation
of rule (2), the term c(a). [c = c]. 0 is inactive; notice that

c(a). [c = c]. 0 6=α c(c). [c = c]. 0 .

Thus it is important to be careful, and indeed formal, about these issues.

For such reasons it is necessary to restrict the class of permitted rules. With
the wrong input rule (2) above, the π-calculus context c(a). (−) is able to dis-
tinguish between two bisimilar processes, 0 and [c = c]. 0 (even in the context
of wide-open bisimilarity).

When working informally, authors often adopt (sometimes tacitly) a ‘Baren-
dregt variable convention’ [e.g. 20, Conv. 1.10] to eschew such counter-intuitive
and absurd behaviour. When rules are considered as formulas of nominal logic,
these problems can be understood formally, and without reference to informal
conventions. In this setting, through our rule format, we impose conditions
about the appearance of variables in rules, and by doing so, we are able to
make precise the way that these problems can be prevented.

We stress that there are other logical frameworks that deal with names, bind-
ing and freshness; consider, for example the FOλ∆∇ framework of Miller and
Tiu [15]. In fact, our transition system specifications are not nominal logic the-
ories per se, but rather syntactic structures that give rise to theories, and it
should also be possible to extract FOλ∆∇ theories from our transition system
specifications.

Ziegler et al. [24] have proposed a format for name-passing specifications in the

4

FOλ∆∇ framework, and have a congruence result. By working with schematic
metavariables, they are able to avoid some of the uglier aspects of name bind-
ing that we encounter here, but this is arguably at the cost of taking a higher
level of abstraction, a step removed from the day-to-day intuitions of the
working operational semanticist.

The best way to consider and develop rule formats for systems with binding
and freshness remains an important matter for debate and research.

A congruence result from a categorical model theory

The main result of this article is that for any name-passing system defined
by a specification in our format, wide-open bisimilarity is a congruence. One
way to prove this result would be to adapt a proof of a conventional result,
e.g. from [1, 4], to this setting. Here, we adopt a different, model-theoretic
approach.

The fundamental work of Turi and Plotkin [22] exposed the specification of a
system in the GSOS format as the specification of a coalgebra by initial alge-
bra recursion. The conditions about the structure and appearance of variables
in the GSOS format have been shown to amount to a naturality condition for
recursion data. By taking this category-theoretic approach, GSOS-like speci-
fications can be understood at an abstract level. The categorical notions are
relevant not just for conventional bisimilarity over syntax without binding,
but, by changing the base category and the (behaviour/syntax) endofunctors
involved, for wide-open bisimilarity and syntax with binding and substitu-
tion [see e.g. 9].

In this article, a connection is made between this abstract theory and the
concrete notions of transition system specification that we introduce. From
this perspective, the difficult part of the congruence result is the proof of
naturality for a certain family of functions. This is not a trivial exercise by
any means, but at least the general structure and nature of the result can be
guided by model-theoretic considerations.

Other related work

The rule format presented here, which first appeared in [8], is not the only
rule format for name-passing systems. The closest result to ours is that of
Ziegler et al. [24], mentioned above, although our result is obtained in quite a
different way.

5

In earlier work, Bernstein [2] demonstrated that her congruence format admits
a specification of the π-calculus. Bernstein’s format does not explictly cater for
variable binding and substitution — this has to be encoded. For this reason,
the π-calculus equivalence that she considers is a peculiar variant of open
bisimilarity, in which the terms 0 and [a = a]. 0 are considered distinct.

In other work, Weber and Bloom [23] have designed a framework for adding
GSOS-like operators to the π-calculus. There is a built-in restriction operator,
which distributes over certain operators. For the binding in this restriction
operator, syntax is considered up-to α-equivalence, while other operators in-
volving binding are considered in the style of higher-order abstract syntax. A
congruence result is established for a notion of equivalence that appears to be
open bisimilarity, although this is not made explicit.

More broadly, we recall that there have been substantial set-theoretic studies of
the model theory for specifications involving variable-binding [e.g. 3, 11, 14],
although none of these studies provide congruence results for name-passing
calculi.

Open bisimilarity

A potential criticism of wide-open bisimilarity is that it treats bound input
actions in the same way as bound output actions. While it is reasonable to close
under all substitutions for bound input data, it is perhaps less reasonable to
perform this closure for bound output data. To resolve this anomaly, Sangiorgi
[19, Sec. 7] has proposed the notion of open bisimilarity. For instance, the
processes

P1 = νa. c̄a. [a = c]. τ. 0 and P2 = νa. c̄a. 0 (3)

are open bisimilar, although not wide-open bisimilar.

The rule format that we present here does not guarantee the congruence of
genuine open bisimilarity. For instance, the following rule is legal in our format.

P
c̄(a)
−−→ Q P ′ c̄d

−→ Q′

P |P ′ τ
−→ {d/a}Q |Q′

(4)

This rule is a (perhaps perverse) modification of the usual rule for communi-
cation, that allows output actions to synchronise with bound output actions,
rather than with input actions. In the presence of this rule, for the processes
introduced in (3) we have a trace

P1 | (c̄c. 0)
τ
−→ ([c = c]. τ. 0) | 0

τ
−→ 0 | 0

6

that cannot be matched by (P2 | (c̄c. 0)). Thus, with this rule, the context
((−) | (c̄c. 0)) is able to distinguish the open bisimilar processes P1 and P2.

(In the format of Ziegler et al. [24], the rule (4) is forbidden by the type
system.)

In the future we intend to redevelop the present work in the context of gen-
uine open bisimilarity, as a first step towards more sophisticated calculi. We
remark that Ghani, Yemane, and Victor [13] have already proposed a categor-
ical model theory.

Remark. In [13], non-determinism is introduced by a free semilattice monad
on a category of states with substitutions, directly. This renders the model
inappropriate for the π-calculus because, intuitively, the next-state function
for the π-calculus does not entirely respect the substitution structure of their
model. It seems that this problem could be remedied by adopting the struc-
tured coalgebra approach that we take here, or alternatively by introducing
non-determinism via the powerobject functor of their presheaf topos. Details
have to be worked out.

Synopsis

This article comprises four sections. In the first, we introduce various im-
portant nominal logic theories, and introduce a notion of transition system
specification as a particular kind of nominal logic theory. In the second sec-
tion, we study the model theory of nominal logic, by considering models of
theories in the category of nominal sets, and related categories. The ‘intended
model’ of a transition system specification is seen to be the initial model of a
theory in the category of nominal sets.

We devote the third section to introducing and explaining our conditions on
transition system specifications. In the fourth section, we develop a correspon-
dence with the categorical model theory, and thus establish the congruence
result.

Acknowledgements

We enjoyed discussing this work with many people, and are grateful for vari-
ous suggestions, including those from anonymous referees. Part of this article
is based on S. Staton’s Ph.D. research [21], and he would like to thank his
examiners, A. M. Pitts and G. D. Plotkin.

7

Nominal logic
(Sec. 1.1)

wwooooooooooooooo

��

++VVVVVVVVVVVVVVVVVVVVVVVVVVVVVV

Σ-algebras
(Sec. 1.3)

��

&&LLLLLLLLLLLLL

Nominal
substitutions

(Sec. 1.4)

��
&&MMMMMMMMMM

Ground
transition
systems

(Sec. 1.5)

zzuuuuuuuuu

��

Congruences
(Sec. 1.3)

Σ-algebras with
substitution
(Sec. 1.4)

��

Wide-open
transition
systems

(Sec. 1.5)

��xx

Ground
(bi)simulations

(Sec. 1.5)

zzvvvvv
vvvv

Transition systems
satisfying R
(Sec. 1.7)

Wide-open
(bi)simulations

(Sec. 1.5)

Fig. 1. The nominal logic theories introduced in Section 1. (A solid arrow A→ B

indicates that the signature and axioms of A are included in the signature and
axioms of B. The arrow from wide-open transition systems to transition systems
satisfying R is dotted because the signature is included although the axioms are
not.)

1 Specifications of name-passing calculi

We begin this section by recalling Pitts’s nominal logic (Sec. 1.1). The concepts
that we introduce in the remainder of this section fall into three distinct classes.

• There are nominal logic theories of nominal substitution (Sec. 1.4), and of
transition system and bisimulation (Sec. 1.5).
• There are two formal, syntactic notions: signatures for abstract syntax with

variable binding (Sec. 1.2) and transition system specifications (Sec. 1.6).
• There are nominal logic theories that are extracted from these notions

(Sec. 1.3, Sec. 1.7 resp.).

In Figure 1 we summarise the nominal logic theories that are introduced in
this section, and the relationships between them.

1.1 Nominal logic

We recall some aspects of Pitts’s nominal logic [18].

8

For our purposes, a nominal logic signature is a signature for multi-sorted
first-order logic that satisfies the following additional requirements.

• There is a distinguished sort N of names.
• For every sort X there is a sort [N]X. (Informally: [N]X is the sort of (name,term)

pairs up-to α-equivalence.)
• For every sort X there is an function symbol bind : (N, X) → [N]X, written

infix: bind(a, t) is written 〈a〉t. (Informally: 〈a〉t is t with a bound in it.)
• For every sort X, there is an function symbol swap : (N, N, X)→ X, written

infix: swap(a, a′, t) is written (a a′) · t. (Informally: (a a′) · t is the term t
with a and a′ swapped.)
• For every sort X, there is a distinguished relation # with arity (N, X). (In-

formally: a#t means that a is fresh for t.)

The function symbols and relation symbols of a nominal logic signature will
be called non-logical if they are surplus to these requirements.

A nominal logic theory is a theory of first-order logic (with equality) whose
signature is a nominal logic signature, and whose axioms include those de-
scribed in Figure 2. The axioms that are not required by nominal logic will be
called non-logical axioms.

In Figure 2, axiom (F4), we have written a#~x as an abbreviation for the finite
conjunction of formulas a#xi, with xi ranging over ~x. We use this convention
throughout the article.

The reader is reminded that α-equivalence plays no role in the syntax of
terms for a nominal logic signature: despite the suggestive notation for the bind

symbol, we are working with conventional first-order logic. On the other hand,
α-equivalence is present in the equality of a nominal logic theory, for terms of
sort [N]X, as a result of axioms (A1) and (A2).

1.2 Signatures for abstract syntax with variable binding

The syntax of the π-calculus is built from various operators. For instance, the
input phrase c(a).t, which will be written inp(c, 〈a〉t), has one name param-
eter c and one term parameter t with the name a bound; the output phrase
c̄d.t will be written out(c, d, t), and has two name parameters c, d, and one
term parameter t with no names bound. We will also use the restriction phrase
νa.t, written res(〈a〉t), with one term parameter with a name bound in it; the
parallel phrase t | t′, written par(t, t′), which has two term parameters, neither
with any names bound; and the inactive process 0, written nil, which is a
constant, and has no parameters.

9

Properties of swapping (for every sort X):

∀a : N. ∀x : X. (a a) · x = x (S1)

∀a, a′ : N. ∀x : X. (a a′) · (a a′) · x = x (S2)

Name permutation:

∀a, a′ : N. (a a′) · a = a′ (S3)

Equivariance (for every n ∈ N, every function symbol f : (X1, . . . ,Xn) → X and
every relation symbol R of arity (X1, . . . ,Xn)):

∀a, a′ : N. ∀x1 : X1. . . . ∀xn : Xn.

(a a′) · f(x1, . . . , xn) = f((a a′) · x1, . . . , (a a′) · xn) (E3)

∀a, a′ : N. ∀x1 : X1. . . . ∀xn : Xn.

R(x1, . . . , xn) =⇒ R((a a′) · x1, . . . , (a a′) · xn) (E4)

Pitts [18] explicitly includes axioms for equivariance of swap (E1), of # (E2), and
of bind (E5).

Freshness (for every sort X, and every finite sequence of sorts ~X):

∀a, a′ : N. ∀x : X. a#x ∧ a′#x =⇒ (a a′) · x = x (F1)

∀a, a′ : N. a#a′ ⇐⇒ a 6= a′ (F2)

∀~x : ~X. ∃a : N. a#~x (F4)

Properties of abstraction (for every sort X):

∀a, a′ : N. ∀x, x′ : X.

〈a〉x = 〈a′〉x′ ⇐⇒ (a = a′ ∧ x = x′) ∨ (a′#x ∧ x′ = (a a′) · x) (A1)

∀y : [N]X. ∃a : N. ∃x : X. y = 〈a〉x (A2)

Fig. 2. Axioms of nominal logic [18, App. A].

Thus we are led to the following, essential standard, notion of signature.

Definition 1.1. An algebraic binding signature Σ consists of a finite set of
operators together with, for each operator op, a name-arity arN(op) ∈ N and
a term-arity arX(op) ∈ N. To each j ∈ [1, arX(op)] is associated a binding
depth bdepop(j) ∈ N.

(Here, and throughout this article, for natural numbers a, b ∈ N, we write [a, b]
for the interval {n ∈ N | a ≤ n ≤ b}.)

For the fragment of the π-calculus recalled above we have an algebraic bind-
ing signature Σπ with operators {inp, out, res, par, nil}. Arities are assigned as

10

follows.

op arN(op) arX(op) bdepop

inp 1 1 bdepinp(1) = 1

out 2 1 bdepout(1) = 0

res 0 1 bdepres(1) = 1

par 0 2 bdeppar(j) = 0 (j = 1, 2)

nil 0 0

The terms of an algebraic binding signature Σ are inductively defined as
follows. We fix a set N of name variables and a set X of term variables. (We
use a typewriter font for variables, throughout this article.) Then:

• every term variable x ∈ X is a term, and
• for any operator op, any name variables c1, . . . , carN(op), a

1
1, . . . , a

1
bdepop(1)

, . . . ,

a
arX(op)
1 , . . . , a

arX(op)
bdepop(arX(op)), and any terms t1, . . . , tarX(op), there is a term

op
(

c1, . . . , carN(op), 〈a
1
1, . . . , a

1
bdepop(1)

〉t1, . . . 〈a
arX(op)
1 , . . . , a

arX(op)
bdepop(arX(op))〉tarX(op)

)

which we will often abbreviate as

op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]tj

)

j∈[1,arX(op)]

)

.

For instance, the terms for the π-calculus signature Σπ are the π-calculus raw
terms.

Notice that there is no α-equivalence at this level of terms for algebraic binding
signatures, just as there is no α-equivalence among terms for nominal logic
signatures (Sec. 1.1). For instance, if a and a′ are different name variables,
then the terms of the π-calculus signature inp(c, 〈a〉nil) and inp(c, 〈a′〉nil) are
distinct. Some parameters are called ‘binders’, and the notation 〈. . . 〉 is used
to indicate this, but this is only notation: α-equivalence will be introduced
later, by adding axioms, and by working with particular notions of model. To
be clear, we will refer to terms that are not subject to α-equivalence as raw
terms.

For any signature Σ, we write TΣ(N, X) for the set of terms of the signature
with free name variables in N and free term variables in X. We write Σ(N, X)
for the set of terms that are basic expressions, i.e. that involve exactly one
operator.

11

1.3 Algebraic theories and congruence

Every algebraic binding signature gives rise to a nominal logic signature with
one non-logical sort X, and a non-logical function symbol for each operator
of the algebraic signature. The terms (in TΣ(N, X)) for an algebraic binding
signature Σ are exactly the terms for the corresponding nominal logic signature
that only involve variables (from N, X) of name and term sorts, and that do
not involve the swap symbol. For example, the nominal logic signature arising
from the π-calculus signature Σπ has five function symbols:

inp : (N, [N]X)→ X, out : (N, N, X)→ X, res : [N]X→ X,

par : (X, X)→ X and nil : ()→ X .

The nominal logic axioms ensure, for instance, that there is a theorem

∀a, a′, c : N. inp(c, 〈a〉nil) = inp(c, 〈a′〉nil)

in the theory associated to the signature Σπ.

Fixing an algebraic binding signature Σ, the nominal logic theory of congru-
ence contains the structure associated to Σ together with a relation symbol R

of arity (X, X).

The theory of congruence has the non-logical axioms that say that R is an
equivalence relation (reflexivity, symmetry, and transitivity). There is also a
non-logical axiom for each operator of the signature, stating that the relation R

must respect that operator. For instance, the theory of congruence for the
π-calculus includes the following axiom for the input operator.

∀a, c : N. ∀x, y : X. xR y =⇒ inp(c, 〈a〉x) R inp(c, 〈a〉y)

1.4 Theory of nominal substitution

Nominal logic provides facilities for describing name-permutation, and this is
essential for the axiomatisation of α-equivalence. Name-passing calculi, how-
ever, involve non-injective substitutions of names. Consider the crucial role
of substitution in the rule for communication for the π-calculus (taken from
Milner et al. [16]):

P
x̄y
−→ P ′ Q

x(z)
−−→ Q′

P |Q
τ
−→ P ′ |Q′{y/z}

.

12

We introduce the nominal logic signature of nominal substitution: it has
one non-logical sort, X, and one function symbol sub : (N, [N]X)→ X, written
infix: sub(a′, 〈a〉t) is written [a′/a]t. (Informally: [a′/a]t is a′ substituted for a
in t. We are perhaps breaking with convention by writing the substitution on
the left, rather than on the right.) Thus we have an algebraic binding signature
with an operator sub and arities arN(sub) = 1, arX(sub) = 1, bdepsub(1) = 1.

The theory of nominal substitution has four non-logical axioms:

(1) Identity:
∀a : N. ∀x : X. [a/a]x = x.

(2) Weakening:
∀a, b : N. ∀x : X. a#x =⇒ [b/a]x = x

(3) Contraction:
∀a, b, c : N. ∀x : X. [c/b][b/a]x = [c/b][c/a]x.

(4) Permutation:
∀a, b, c, d : N. ∀x : X. c 6= b 6= a 6= d =⇒ [d/b][c/a]x = [c/a][d/b]x.

These axioms for substitution are essentially standard [see e.g. 10, Defn. 3.1].
Notice that we have the theorem

∀x : X. ∀a, b : N. b#x =⇒ [b/a]x = (b a) · x .

For any algebraic binding signature Σ, we define the nominal logic theory of
Σ-algebras with substitution by combining the signature for Σ with the
theory of nominal substitution, and adding an axiom for every operator in
Σ, ensuring that substitution respects that operator, avoiding the capture of
bound names. For instance, the theory of Σπ-algebras with substitution in-
cludes the following axiom to ensure that substitution respects the restriction
structure in the π-calculus.

∀a, b, c : N. ∀x : X. a 6= b 6= c =⇒ [c/a]res(〈b〉x) = res(〈b〉([c/a]x))

1.5 Theory of transition systems and bisimulation

We now introduce nominal logic theories of behaviour for name-passing sys-
tems.

The nominal logic theory of ground transition systems has one non-logical
sort X, and four relation symbols:

(1) The input transition relation,
−?(−)
−→ , with arity (X, N, N, X);

(2) The output transition relation,
−!−
−→, with arity (X, N, N, X);

13

(3) The bound output transition relation,
−!(−)
−→ , with arity (X, N, N, X);

(4) The silent transition relation,
τ
−→, with arity (X, X).

The relation symbols will be written infix as indicated.

Notice that, although the input and bound output data is to be thought of
as binding, we do not use the binding sort [N]X. Instead, we equip the theory
with two non-logical axioms, ensuring that the data which is ‘binding’ is in
fact fresh, as follows.

(1) ∀x, y : X. ∀a, c : N. x
c?(a)
−→ y =⇒ a#c ∧ a#x.

(2) ∀x, y : X. ∀a, c : N. x
c!(a)
−→ y =⇒ a#c ∧ a#x.

Remark. We will not consider models of nominal logic theories until Section 2.
When we do, however, it will become clear (Prop. 4.1) that models of the
theory of ground transition systems correspond exactly with models of the
modified theory where input and output relations are of arity (X, N, [N]X) and
the axioms are omitted — i.e., where data really is binding. It is a matter
of taste as to which presentation is preferable; we adopt this more explicit
approach because it seems closer in spirit to the original work of Milner et al.
[16] and to much of the work that has followed from this.

The nominal logic theory of ground simulation is formed by extending the
theory of ground transition systems with a relation R of arity (X, X), and four
additional axioms.

(1) ∀x, x′, y : X. ∀a, c : N. a#y∧ xRy∧ x
c?(a)
−→ x′ =⇒ ∃y′ : X. x′Ry′ ∧ y

c?(a)
−→ y′

(2) ∀x, x′, y : X. ∀a, c : N. xRy ∧ x
c!a
−→ x′ =⇒ ∃y′ : X. x′Ry′ ∧ y

c!a
−→ y′

(3) ∀x, x′, y : X. ∀a, c : N. a#y∧ xRy∧ x
c!(a)
−→ x′ =⇒ ∃y′ : X. x′Ry′ ∧ y

c!(a)
−→ y′

(4) ∀x, x′, y : X. xRy ∧ x
τ
−→ x′ =⇒ ∃y′ : X. x′Ry′ ∧ y

τ
−→ y′

The nominal logic theory of ground bisimulation adds to the theory of
ground simulation the same four axioms again, but with the roles of x, x′

and y, y′ interchanged.

The nominal logic theory of wide-open transition systems has one non-
logical sort, and all the symbols and axioms of the theory of ground transition
systems and of the theory of nominal substitutions. We include no additional
axioms about the interplay between the transition relations and the substitu-
tion function.

The nominal logic theory of wide-open bisimulation combines the theory
of ground bisimulation with the theory of nominal substitution. We further

14

include the additional axiom:

∀a, b : N. ∀x, y : X. xRy =⇒ ([b/a]x)R([b/a]y) .

1.6 Transition system specifications

We now introduce our basic notion of transition system specification. For now,
we take a purely formal approach, treating a specificaton as syntactic data. In
Section 1.7 we explain how a specification gives rise to a nominal logic theory.

Consider a set N of name variables. A label term is an element of the
set Lab(N), given as the following disjoint union:

Lab(N) = N× N + N× N + N× N + 1 .

Label terms in the four summands of Lab(N) are respectively to be thought
of as input labels (written c?(a)), output labels (written c!d), bound output
labels (written c!(a)), and silent labels (written τ).

We define functions fn, bn : Lab(N) → P(N) that assign to each label the set
of its bound and free variables. Precisely:

l ∈ Lab(N) fn(l) bn(l)

c?(a) {c} {a}

c!d {c, d} ∅

c!(a) {c} {a}

τ ∅ ∅

Definition 1.2. Let Σ be an algebraic binding signature. A formal rule
structure over Σ is given by sets N and X of name and term variables together
with a finite set of premises over Σ, N and X, and a conclusion over Σ, N and X.

A premise over Σ, N and X is a triple in X× Lab(N)× X.

A conclusion over Σ, N and X is a triple in Σ(N, X) × Lab(N) × TΣ+sub(N, X).
Here, (Σ+ sub) is the algebraic binding signature obtained by adding to Σ the
function symbol sub for nominal substitution.

We refer to the three components of a premise or a conclusion as the source,
the label and the target.

A transition system specification over Σ is a set of formal rule structures
over Σ.

15

Remark. We will not give meaning to transition system specifications until
the next subsection, but the reader familiar with the GSOS format of Bloom
et al. [4] will already notice a schematic difference from that format. Whereas
Bloom et al. consider both positive and negative premises, we only allow one
kind of premise here (‘positive’) . It appears that the developments of this
article could be straightforwardly revised to accommodate the two kinds of
premise; we work in the less sophisticated setting primarily for simplicity. The
goals of Bloom et al. are, after all, different from ours.

As a first example, part of the transition system specification Rπ for the
π-calculus is given in Figure 3. Here, it is illustrative to add two operators,
match and mismch, to the signature Σπ, with arities

arN(match) = arN(mismch) = 2; arX(match) = arX(mismch) = 1;

bdepmatch(1) = bdepmismch(1) = 0.

Formal rule structures are written in the usual “premises over conclusion”
style, and with the triples comprising the premises, and the conclusion, written
with the transition arrow.

This suggestive notation should provide the reader with an inkling of how a
transition system specification can be understood as a set of rules in nominal
logic. We will make this precise in the following subsection. Here, though, we
note that side-conditions play an important role in defining name-passing cal-
culi, and yet they are entirely absent from our notion of formal rule structure.
For instance, the rule for bound output in parallel, Figure 3(e), is missing the
side condition “a 6∈ fn(x′)”, that would ensure that no free names of x′ are
captured; in the rule for mismatch, Figure 3(f), one might anticipate a side
condition c 6= d, for the mismatch operator to be of any use. In fact, all the
side-conditions that appear in the π-calculus are of these two forms, involving
freshness and distinctness of names.

It would be clumsy to establish general results about rules with arbitrary
side-conditions and so, in this article, we avoid this by adopting a convention
whereby every rule structure is equipped with two side-conditions:

• distinct name variables are interpreted by distinct names;
• bound names in the conclusion label must be fresh for the conclusion source.

(For now, these are only to be understood informally.) A drawback of this
approach is that some duplication in the rules may be necessary. For instance,
to attain the usual output behaviour it is necessary to split the usual rule
in two, as shown in Figure 3(a–b). One can envisage a notion of formal rule
structure with explicit side conditions from which a finite family of formal rule
structures in the form of Definition 1.2 can be derived, but we will not dwell

16

(a) Output of the channel name

X = {x}, N = {c}

—

out(c, c, x)
c!c
−→ x

(b) Output of a name distinct from

the channel name

X = {x}, N = {c, d}

—

out(c, d, x)
c!d
−→ x

(c) Input

X = {x}, N = {a, c}

—

inp(c, 〈a〉x)
c?(a)
−−−→ x

(d) Match for input transitions where

the channel is the match name

X = {x, y}, N = {a, c}

x
c?(a)
−−−→ y

match(c, c, x)
c?(a)
−−−→ y

(e) Parallel for bound output on the

right

X = {x, x′, y, y′}, N = {a, c}

x′
c!(a)
−−→ y′

par(x, x′)
c!(a)
−−→ par(x, y′)

(f) Mismatch for input transitions

over the second mismatch name

X = {x, y}, N = {c, d, e}

x
d?(e)
−−−→ y

mismch(c, d, x)
d?(e)
−−−→ y

(g) Communication with output on

the left, and distinct channel and data

X = {x, x′, y, y′}, N = {a, c, d}

x
c!d
−→ y x′

c?(a)
−−−→ y′

par(x, x′)
τ
−→ par(y, [d/a]y′)

(h) Scope closure for output on the

left

X = {x, x′, y, y′}, N = {a, c}

x
c!(a)
−−→ y x′

c?(a)
−−−→ y′

par(x, x′)
τ
−→ res (〈a〉par(y, y′))

(i) Restriction for bound output

X = {x, y}, N = {a, b, c}

x
c!(b)
−−→ y

res(〈a〉x)
c!(b)
−−→ res(〈a〉y)

(j) Scope opening

X = {x, y}, N = {a, c}

x
c!a
−→ y

res(〈a〉x)
c!(a)
−−→ y

Fig. 3. Examples of rule structures for the π-calculus. Note that the side conditions
are implicit.

17

on that here.

1.7 Theories from transition system specifications

Consider an algebraic binding signature Σ, and let R be a transition sys-
tem specification over Σ. The nominal logic theory of transition systems
satisfying R is given as follows.

The nominal logic signature is based on the signature arising from Σ; this
has one non-logical sort X and a function symbol for each operator in Σ. We
add to this signature the signature for nominal substitution, i.e. the function
symbol sub : (N, [N]X)→ X (see Sec. 1.4), and the four relation symbols of the
theory of ground transition systems (see Sec. 1.5).

The theory has two kinds of non-logical axioms. The axioms of the first kind
are the axioms for Σ-algebra with substitution, taken from Section 1.3, ensur-
ing that substitution respects the operators of Σ in an appropriate way. The
second kind of axiom comes from treating the formal rule structures as logical
rules, taking into account the implicit side conditions. For instance, the rule
for bound output in parallel, Figure 3(e), gives rise to the following axiom.

∀x, x′, y : X. ∀a, c : N.

a#c ∧ a#par(x, x′) ∧ x′
c!(a)
−−→ y′ =⇒ par(x, x′)

c!(a)
−−→ par(x, y′)

More generally, we consider an arbitrary formal rule structure R in R. The hy-
pothesis of the corresponding axiom is derived from the premises of R together
with the implicit side conditions; the conclusion is derived from the conclusion
of R, as follows. Suppose that R has name and term variables N and X, and
premises Prem and conclusion (src, l, tar); then the corresponding axiom is
as follows.

∀N : N. ∀X : X.

∧

a,b∈N
a6=b

a#b ∧
∧

a∈bn(l)

a#(src, fn(l)) ∧
∧

(x,l,y)∈Prem

x
l
−→ y

=⇒ src
l
−→ tar .

Here, we have used some notation that is standard in infinitary logic. Suppose
that N = {a1, . . . an}; then when we write “∀N : N. Ψ” we intend

∀a1 : N. . . .∀an : N. Ψ .

The reader might expect that the theory associated to R will include the two

18

axioms of the theory of ground transition systems (Sec. 1.5). Indeed, these
axioms are consistent with our theory, because of the side conditions on the
rules. However, we do not include these axioms in the theory, primarily because
they are not Horn clauses over the transition relations, and as such they would
make the reasons for the existence of an initial model more complicated (see
Section 2.5).

2 Models

This section is concerned with models of the theories introduced in the pre-
vious section, and most particularly with models of transition system speci-
fications. We introduce nominal sets in Sec. 2.1, and explain in Sec. 2.2 how
nominal logic is to be modelled in nominal sets. It is useful to consider models
for algebraic binding signatures (i.e., algebras) in categories other than nomi-
nal sets, and we begin the study of this in Sec. 2.3. The category of models of
nominal substitutions is an important universe in which algebras of binding
signatures can be studied (Sec. 2.4). With a proper understanding of models
of syntax, we are ready to consider models of rules (Sec. 2.5) and thus the
question of congruence of bisimilarity can be phrased (Sec. 2.6).

2.1 Nominal sets

We briefly review and set notation for nominal sets, as introduced by Gabbay
and Pitts [e.g. 12]. Later, in Section 2.2, we will explain that nominal sets
are the appropriate place in which to interpret nominal logic theories, and we
here recall how some of the core features of nominal logic — names, freshness,
binding — can be understood in the setting of nominal sets.

For the remainder of this article we fix an infinite set N of names. Recall that
the symmetric group Sym(N) on N comprises all permutations of N , under
the operation of composition. For names a, b ∈ N , as usual, we write (a b) for
the permutation on N that swaps a and b and fixes all other names.

A left action of Sym(N) is a set X equipped with a function

·X : Sym(N)×X → X

(written infix) which is such that for any element x ∈ X we have idN ·X x = x
and, for any σ, τ ∈ Sym(N), that (τσ) ·X x = τ ·X (σ ·X x).

A finite set of names N ⊆f N is said to support an element x of a Sym(N)-ac-
tion (X, ·X) if every permutation σ ∈ Sym(N) that fixes every element of N

19

also fixes x. A nominal set is a Sym(N)-action in which every element has
finite support. It follows that every element x of a nominal set has a least
support, which we denote supp(x).

We let Nom be the category of nominal sets and equivariant functions, i.e. func-
tions between the underlying sets that are compatible with the actions.

The set N of names has nominal-set structure; the permutation action is
given by evaluation, i.e. σ ·N a = σ(a). The category Nom has colimits and
finite limits, and the functor Nom→ Set, that forgets the permutation action
structure, preserves them. So, in particular, sums and products are inherited
from Set.

An equivariant relation is a relation between nominal sets that is compati-
ble with the permutation actions — i.e., it is a relation in the category of
nominal sets. For an example, we consider a nominal set X, and define a rela-
tion # ⊆ N ×X, by letting a#x iff a 6∈ supp(x). This relation is equivariant
because if a#x then also (σ(a))#(σ ·X x), for every permutation σ.

For any nominal set X we have the nominal set [N]X: intuitively, it is the set
of (name,element) pairs up-to α-equivalence. The carrier set is the quotient

[N]X = (N ×X)/∼[N]X

where (a, x) ∼[N]X (a′, x′) if for any b ∈ N such that b#x and b#x′ we have
(b a) ·X x = (b a′) ·X x′. We write 〈a〉x for the equivalence class (a, x)[N]X. The
Sym(N)-action of [N]X is inherited from that of the product.

2.2 Models of nominal logic theories

The category Nom is a topos, and so any first-order theory, indeed any nom-
inal logic theory, can be interpreted in Nom. It is reasonable, though, to
restrict attention to those models in which the features that are required by
nominal logic are interpreted in a particular way. This can be seen as an ex-
tension of the usual convention that equality in first-order logic should be
interpreted as equality in the model.

A structureM for a nominal logic signature is given as follows: to each sort X

is associated a nominal set JXKM; to each function symbol op : (X1, . . .Xn)→ X

is associated an equivariant function JopKM : JX1KM×· · ·×JXnKM → JXKM; to
each relation symbol R of arity (X1, . . .Xn) is associated an equivariant relation
JRKM ⊆ JX1KM × · · · × JXnKM. This is subject to the following requirements.

• The sort N of names must be interpreted as the nominal set N of names.

20

• If a sort X is interpreted as the nominal set X, then the sort [N]X must be in-
terpreted as the nominal set [N]X, and the bind symbol must be interpreted
as the evident quotient map N ×X ։ [N]X.
• If a sort X is interpreted as the nominal set X then the corresponding swap

symbol must be interpreted in terms of the permutation action of X.
• For each sort X the corresponding relation symbol # must be interpreted

as the # relation in Nom.

A morphism between two structures, f :M→M′, is specified by an equiv-
ariant function fX : JXKM → JXKM′ for every sort X, provided the functions
{fX} respect the interpretations of the function and relation symbols appropri-
ately. In fact, it is sufficient to specify equivariant functions fX : JXKM → JXKM′

for the non-logical sorts only, since the [N](−) operator extends to an endo-
functor on Nom.

Terms and formulas in the signature are interpreted according to the usual
set-theoretic interpretation of first-order logic. A model M for a nominal
logic theory is defined to be a structure for the signature in which all the
axioms of the theory hold. It is sufficient to verify the non-logical axioms,
because the nominal logic axioms have been designed to be sound for structures
in Nom [18, Theorem 1].

In this way we arrive at notions of model for the theories introduced in Sec-
tion 1. It will often be convenient to abbreviate “a model of the theory of
nominal substitutions” as “a nominal substitution”; “a model of the theory of
transition systems satisfying R” as “a transition system satisfying R”; and so
on.

2.3 Models for algebraic binding signatures

If one is concerned only with algebraic binding signatures (Defn. 1.1), then
the full structure of Nom is not needed. A binding model category C is a
category with finite products and coproducts, and a distinguished object ‘of
names’ NC ∈ C and a ‘binding’ endofunctor [N]C : C → C.

Consider an algebraic binding signature Σ, and let C be a binding model
category. A Σ-algebra in C is given by an object X ∈ C together with, for
each op in Σ, a morphism

opX : N arN(op)
C × [N]

bdepop(1)

C X × · · · × [N]
bdepop(arX(op))

C X → X .

(Here, we write N n
C for the n-fold product of NC, and write [N]nC for the n-fold

application of the endofunctor [N]C.)

21

A homomorphism between Σ-algebras is given by a morphism in C between
the underlying objects, that respects the interpretations of the operators. Σ-al-
gebras in C, and homomorphisms between them, form a category.

To give a Σ-algebra in C is to give an algebra for the endofunctor

ΣC(−) =
∐

op∈Σ

(

N arN(op)
C × [N]

bdepop(1)

C (−)× · · · × [N]
bdepop(arX(op))

C (−)
)

on C. Indeed, the category of Σ-algebras in C is isomorphic to the category of
algebras for the endofunctor ΣC .

The initial Σ-algebra over some X ∈ C, when it exists, will be denoted TΣ,C(X).
In all the examples that we will consider, the object TΣ,C(X) exists for all
X ∈ C, and so TΣ,C extends to a monad on C in the usual fashion.

A first example of a binding model category is the category Set of sets: there,
the distinguished set of names is a chosen set N of name variables, and the
binding endofunctor is given by the product functor N× (−). Henceforth, we
will write SetN to indicate the binding model category Set with the chosen
name variables N. For a set X of term variables, the set ΣSetN(X) is the set of
basic expressions of raw syntax, as considered in Section 1. The set TΣ,SetN(X)
contains all terms of raw syntax, previously written as TΣ(N, X).

A second example is the category Nom of nominal sets, using the nominal
set of names and the binding operator there. Algebras for an algebraic bind-
ing signature are exactly the structures for the corresponding nominal logic
signature. The set TΣ,Nom(∅) contains all Σ-terms up-to α-equivalence.

Consider a binding model category C that moreover has pullbacks, and let X
be a Σ-algebra. An equivalence relation X ← R → X is a Σ-congruence if
there is a Σ-algebra structure over R making the following diagram commute
in C.

ΣCX

��

ΣCR

��

oo // ΣCX

��

X Roo // X
It is straightforward to verify that a congruence between two Σ-algebras
in Nom is the same thing as a model of the corresponding nominal logic
theory of congruence (Sec. 1.3).

2.4 Syntax with substitutions

A third example of a binding model category is the category NSub of nominal
substitutions and model morphisms between them (see Sec. 1.4). The cate-

22

gory NSub inherits the structure of a binding model category from Nom,
as we now explain. The nominal substitution structure for products and co-
products is given componentwise, so that the forgetful functor NSub→ Nom
preserves them. The object N is the carrier of exactly one nominal substitu-
tion, given by

[c/a]a = c; [c/b]a = a, where a 6= b.

The endofunctor [N](−) on Nom lifts along the forgetful functor NSub→ Nom
as follows. For any nominal substitution X ∈ NSub, we define a substitution
action of [N]X by

[c/b]〈a〉x = 〈a〉[c/b]x where b 6= a 6= c.

The nominal substitution TΣ,NSub(∅) contains all Σ-terms up-to α-equivalence:
its nominal carrier set is TΣ,Nom(∅). Moreover, it is equipped with a substi-
tution action, which provides the usual notion of capture-avoiding name-for-
name substitution for terms. Indeed, TΣ,NSub(∅) is the initial model of the
nominal logic theory of Σ-algebras with substitutions (Sec. 1.4).

2.5 The intended model of a transition system specification

Consider an algebraic binding signature Σ (Defn. 1.1), and a transition system
specification R for it (Defn. 1.2). The corresponding nominal logic theory may
have many models, but the model of interest in operational semantics is that
which is initial in the category of (nominal) models. In this model, the only
transitions are those that are provable from the rules in R.

The initial model is constructed as follows. The interpretation of the non-
logical sort, X, is the set TΣ,Nom(∅) of Σ-terms up-to-α-equivalence. The inter-
pretation of the operators of Σ is given accordingly. The substitution structure
is that of TΣ,NSub(∅).

With these parts of the model fixed, the permitted interpretations of the four
transition relations form a complete lattice, because the only relevant axioms
here — those arising from the rule structures in R, and the four instances
of the equivariance axiom (Figure 2, E4) — are all Horn clauses. The initial
model uses the least permitted interpretation, in which the only transitions
are those that can be justified by a rule in R, or by axiom (E4).

For a first example, notice that the initial model of the transition system speci-
ficationRπ for the π-calculus has four equivariant relations over the π-calculus
terms up-to α-equivalence, which provide the usual transition relations for the

23

π-calculus. It is perhaps conventional to derive these transition relations with-
out the equivariance axiom (E4). Even without this axiom, though, we have,
by rule induction, that the least relation is equivariant.

Recall that the axioms of the theory of ground transition systems (Sec. 1.5)
are consistent with the theory associated to R. In fact, it is straightforward
to prove the following result by rule induction.

Proposition 2.1. The initial transition system satisfying a transition system
specification is a wide-open transition system.

As an aside, we remark that the notions of ground and wide-open transition
systems are perhaps too generous a model of name-passing. For example, we
could add to the π-calculus an operator broadcast with one name parame-
ter and no term parameters. The semantics of this operator is given by the
following two formal rule structures.

—

broadcast(d)
c!d
−→ broadcast(d)

—

broadcast(d)
d!d
−→ broadcast(d)

Informally, broadcast(d) will persistently output d on any channel. This may
be against the reader’s intuitions about the π-calculus, because the term
broadcast(d) is able to output on a channel which it does not ‘know’. Such
concerns can be eliminated by axiomatising a notion of reasonable model [see
e.g. 5, 7]. One can straightforwardly introduce restrictions on the appearance
of name variables in transition system specifications, so as to prevent such
phenomena.

2.6 Bisimilarity

Consider a ground transition system (Sec. 1.5). A ground bisimulation on
this system is a model of the theory of ground bisimulation in which this
system models the transition system component. The class of such bisimula-
tions on a system forms a complete lattice, as usual, and the greatest ground
bisimulation we call ground bisimilarity.

For the initial model of the π-calculus specification, ground bisimulation is
almost the notion proposed by Sangiorgi [19, Defn. 3.9]. The one difference is
that equivariance is not enforced in the definition there. Observe, though, that
for every bisimulation in the sense of [19], there is a least equivariant relation
containing it, and this relation is also a bisimulation. Thus ground bisimilarity
in the initial model is exactly the notion proposed in [19].

In the same way, a notion of wide-open bisimilarity is defined for wide-open
transition systems, and, due to Proposition 2.1, for the initial model of a tran-

24

sition system specification. We are thus able to investigate the question: For
which transition system specifications is wide-open bisimilarity a congruence
in the initial model?

3 Rule format

We introduce conditions on rule structures, designed to guarantee that wide-
open bisimilarity is a congruence in the initial model. In Section 3.2 we justify
each of the conditions.

Throughout this section we fix an algebraic binding signature, Σ (Defn. 1.2)
and a formal rule structure R over it (Defn. 1.2). We suppose that R has
variables from N and X, with premise set Prem and conclusion with source

src = op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]xj

)

j∈[1,arX(op)]

)

,

label l, and target tar. We distinguish entities appearing in the conclusion
by underlining them.

3.1 Conditions on rule structures

In Figure 4 we present conditions that we expect to hold for rule structures.
Conditions (1) and (2) are the conditions of the GSOS format [4] considered
in this context. Conditions (3–8) relate to the freshness of the names that
appear in binding position. To specify these conditions precisely it is necessary
to formalise the notions of bound and free names that are implicit in rule
structures.

Associating names to variables. From here on we assume that Condi-
tions (1) and (2) hold of R. We then assign to each term variable x ∈ X the
set BN(x) ⊆ N of name variables that are binding in x. For instance, in the
input rule, of Figure 3(c), BN(x) = {a}, and in the parallel rule, of Figure 3(e),
BN(x) = BN(x′) = ∅, while BN(y′) = {a}.

To define BN in general we use the fact that, since Conditions (1) and (2) are
satisfied, we have a bijection

X ∼= [1, arX(op)] +
∐

j∈[1,arX(op)]

{

(x, l, y) ∈ Prem
∣

∣

∣ x = xj

}

(5)

whose inverse maps j ∈ [1, arX(op)] to xj, and ιj(x, l, y) to y. Now:

25

GSOS-like conditions:
(1) Every term variable appears exactly once in the conclusion source and

the premise targets.
(2) The source of every premise appears in the conclusion source.

Conditions relating to name binding:
(3) For each term variable in the conclusion source, the binding names are

distinct.

∀j ∈ [1, arX(op)], k, k′ ∈ [1, bdepop(j)]. a
j
k = a

j
k′ =⇒ k = k′

(4) No free names bind in the conclusion source.

∀j ∈ [1, arX(op)], k ∈ [1, bdepop(j)]. a
j
k 6∈ FN(src,Prem)

(5) For each premise, binding names in the label are fresh for the source.

∀(x, l, y) ∈ Prem. bn(l) ∩ FN(x) = ∅

(6) Free names of the conclusion label are not bound in the source or
premises.

fn(l) ∩ BN(src,Prem) = ∅

(7) No names become unbound in the induced transition.

FN(tar) ∩ BN(src,Prem) = ∅

(8) Variable binding in the conclusion target is appropriate.

WF(tar)

Fig. 4. Conditions on rule structures.

• For j ∈ [1, arX(op)] we let BN(xj) =
{

a
j
k

∣

∣

∣ k ∈ [1, bdepop(j)]
}

.

• For (x, l, y) ∈ Prem we let BN(y) = BN(x) ∪ bn(l).

Finally, we write BN(src,Prem) ⊆ N for the set

BN(src,Prem) =
⋃

x∈X

BN(x)

of all name variables that appear in binding position in the conclusion source
or the premise labels.

We now associate to each variable x ∈ X a set FN(x) ⊆ N, which approxi-
mates (from the point of view of the rule) the names that appear free when the
variable x is instantiated. To do this we first define the set FN(src,Prem) ⊆ N

26

that approximates the names that will be free in the conclusion source when
it is instantiated.

FN(src,Prem) =
{

ci

∣

∣

∣ i ∈ [1, arN(op)]
}

∪
⋃

(x,l,y)∈Prem

fn(l) \ BN(x)

Finally, for any x ∈ X, we let

FN(x) = FN(src,Prem) ∪ BN(x) .

The function FN extends to compound terms with substitutions. For t ∈ T(Σ+sub),SetN
X

with

t = op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]tj

)

j∈[1,arX(op)]

)

we define FN(t) ⊆ N by

FN(t) = {ci | i ∈ [1, arN(op)]} ∪
⋃

{

FN(tj) \
{

a
j
k

∣

∣

∣ k ∈ [1, bdepop(j)]
} ∣

∣

∣ j ∈ [1, arX(op)]
}

As an example, consider the scope closure rule structure, Figure 3(h), where
we have FN(src,Prem) = {c}, while BN(y) = BN(y′) = {a}, and so we have
FN(y) = FN(y′) = {a, c}. However, FN(tar) = {c}.

For the communication rule structure, Figure 3(g), we have

FN(src,Prem) = FN(y) = {c, d}

while BN(y′) = {a} and so FN(y′) = {a, c, d}. However, FN(tar) = {c, d}.
(Recall that [d/a]y′ is an abbreviation for sub(d, 〈a〉y′).)

Well-formed conclusion targets. Condition (8) asserts that the predicate
WF holds of the conclusion target. Informally, this predicate requires that a
binding variable is not used to bind in one term variable in the conclusion
source and in a different term variable in the conclusion target. For instance,
consider a strange operator taking two term parameters, the first one with a
binder, and the following rule structure.

—

strange(〈a〉x, x′)
τ
−→ res(〈a〉par(x, x′))

Here the scope of the binder a in the conclusion target encompasses both x

and x′, but was previously only binding in x; thus the conclusion target is not
well-formed.

Formally, the predicate WF is defined by induction on the structure of the
set T(Σ+sub),SetN(X), as follows.

27

• For x ∈ X, we always let WF(x).

• For t = op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]tj

)

j∈[1,arX(op)]

)

, we let WF(t) if:

for all j ∈ [1, arX(op)] we haveWF(tj) and, furthermore, for all k ∈ [1, bdepop(j)],

if aj
k ∈ BN(src,Prem) then for all x appearing in tj we have a

j
k ∈ FN(x).

3.2 Necessity of conditions

If one of Conditions (1–8) is violated then wide-open bisimilarity need not
be a congruence for the induced transition system. The reasons suggested by
Bloom et al. [4, App. A] justify Conditions (1) and (2).

To justify Conditions (3–8), we give some examples of extensions of the π-cal-
culus.

For all these examples, it is helpful to consider two names a, b ∈ N , and define
two π-calculus terms

t1 = nil , t2 = match(a, b, nil) .

Crucially, t1 and t2 are bisimilar, since neither process can perform any actions,
but t2 has two free names, while t1 has none.

Now, to justify Condition (3), we consider an operator if-fresh, which takes
no name parameters but one term parameter with two binders, with semantics
given by the formal rule structure

—

if-fresh(〈a〉〈a〉x)
τ
−→ x

which violates Condition (3). If the if-fresh construct was allowed, the seman-
tics would be that if b#〈a〉t then if-fresh(〈b〉〈a〉t) performs a τ transition to t,
because in that case 〈b〉〈a〉t = 〈a〉〈a〉t. Thus the context if-fresh(〈b〉〈a〉(−))
would distinguish the bisimilar terms t1 and t2. Condition (4) is justified in
a similar manner, for instance by considering an operator if-fresh-2 with one
name parameter and one term parameter with a binder, and with behaviour
specified by the following rule structure.

—

if-fresh-2(c, 〈c〉x)
τ
−→ x

For Condition (5), we consider an operator tau-if-inp with one name parame-
ter and one term parameter, and no binders. The behaviour of this operator is

28

specified by the following formal rule structure, which violates Condition (5).

x
c?(a)
−→y

tau-if-inp(a, x)
τ
−→ y

Informally, if t can perform an input action specifically with data a, to be-
come t′, then tau-if-inp(a, t) will perform a silent action to t′.

The context tau-if-inp(a, inp(c, 〈b〉(−))) will distinguish the bisimilar terms t1
and t2. For inp(c, 〈b〉(t1)) can perform an input of a (on c), while inp(c, 〈b〉(t2))
cannot.

To justify Condition (6), we consider an operator in-to-out which has one
term parameter, and no binders. The behaviour of this operator is specified
by the following formal rule structure, which violates Condition (6).

x
c?(a)
−→y

in-to-out(x)
c!a
−→y

So, whenever t can perform an input action, then in-to-out(t) can perform an
output action with the same channel and data. The context in-to-out(inp(c, 〈a〉(−)))
will distinguish the bisimilar terms t1 and t2. For we have the transition

in-to-out(inp(c, 〈a〉t1)) = in-to-out(inp(c, 〈a〉nil))

=α in-to-out(inp(c, 〈b〉nil))
c?(b)
−→ in-to-out(inp(c, 〈b〉nil))

which cannot be matched by in-to-out(inp(c, 〈a〉t2)).

Condition (7) prohibits rule structures such as the following.

—

res(〈a〉x)
τ
−→x

Informally: restrictions can be silently forgotten. If this rule structure was
permitted, we would have a sequence of transitions

res(〈a〉(out(c, a, t1))) =α res(〈b〉(out(c, b, t1)))
τ
−→ out(c, b, t1)

c!b
−→ nil

which cannot be matched by res(〈a〉(out(c, a, t2))). Thus the context res(〈a〉(out(c, a, (−))))
is able to distinguish the bisimilar terms t1 and t2.

Finally, we consider Condition (8). Recall the strange operator, with seman-
tics given by the following axiom, that violates this condition.

—

strange(〈a〉x, x′)
τ
−→ res(〈a〉par(x, x′))

29

The context strange(〈a〉(−), out(c, b, nil)) can distinguish between the bisimilar
processes t1 and t2. For we have the sequence of transitions

strange(〈a〉t1, out(c, b, nil)) = strange(〈a〉nil, out(c, b, nil))

=α strange(〈b〉nil, out(c, b, nil))

τ
−→ res(〈b〉par(nil, out(c, b, nil)))
c!(b)
−→ par(nil, nil)

which cannot be matched by strange(〈a〉t2, out(c, b, nil)).

4 Congruence of bisimilarity

In this section we introduce a categorical model theory for our rule format,
and, by relating this with the model theory of our logic (Sec. 2), we arrive at
our congruence result.

From the categorical perspective, the formal transition system specifications
provide the definition of behavioural coalgebras by initial algebra recursion.
With this in mind, we redevelop our notions of behavioural model — ground/wide-
open transition systems and bisimulations — in the coalgebraic setting (Sec. 4.1),
and subsequently give a categorical model theory for the semantics of name-
passing systems (Sec. 4.2). We explain how every transition system specifica-
tion gives rise to an abstract rule (Sec. 4.3), and we conclude this section (in
Sec. 4.4) by explaining that the semantics induced from the categorical model
theory corresponds exactly with the intended model of a specification given
in Sec. 2.5. Thus the congruence result from the categorical model theory is
relevant in the logical setting.

4.1 Transition systems as coalgebras

We define an endofunctor Lg on Nom by

Lg(−) = N × [N](−) + N ×N × (−) + N × [N](−) + (−) .

For any nominal set X, an element of LgX defines either an input (bin) be-
haviour (i.e. a channel name and a resumption state with one name bound);
an output (out) behaviour, with the output data paired rather than bound;
or a bound output (bout), or silent (tau) behaviour.

To introduce non-determinism we consider the covariant powerset endofunc-
tor P on Nom. For any nominal set X, the (not-necessarily-equivariant) sub-

30

sets S of X are equipped with the pointwise permutation action:

σ ·PX S = {σ ·X x | x ∈ S } .

With this action, there may be subsets of X without finite support. We define
a nominal set

PX = {S ⊆ X |S has finite support}

with the above group action. (In fact, PX is the powerobject of X when the
category of nominal sets is considered as a topos.)

An equivariant function f : X → Y gives rise to an equivariant function
Pf : PX → PY , by direct image. Thus we have an endofunctor P on Nom.

We write Bg for the composite endofunctor PLg on Nom. A Bg-coalgebra
is a pair (X, h) of a nominal set X and an equivariant function h : X → BgX.
The set X should be thought of as a set of states, and the function h assigns
to each state a set of possible behaviours.

If (X, h) is a Bg-coalgebra, then we say that an equivariant relation R ⊆ X ×X
is a Bg-bisimulation if there is a Bg-coalgebra with carrier R making the fol-
lowing diagram commute in Nom.

R
� � //

��

X ×X

h×h
��

BgR // Bg(X ×X)
〈Bgπ1,Bgπ2〉

// BgX × BgX

(6)

These coalgebraic notions are related with models of nominal logic theories
(Sec. 1.5) as follows.

Proposition 4.1.

(1) To give a Bg-coalgebra is to give a ground transition system.
(2) To give a Bg-bisimulation on a Bg-coalgebra is to give a model of the

theory of ground bisimulation.

A proof of these statements is provided in Appendix A. For item (1), it is
convenient to establish the correspondence between ground transition systems
and equivariant relations of the form

−→ ⊆ X × LgX

which straightforwardly correspond to Bg-coalgebras.

To model wide-open transition systems, and wide-open bisimulation, we must
combine the coalgebraic notions of transition system and of bisimulation with

31

the theory of nominal substitution. To this end, let U : NSub→ Nom be the
functor that forgets the substitution structure (Sec. 2.4). A U-structured
Bg-coalgebra is given by a pair (X, h) of a nominal substitution X and a
Bg-coalgebra structure h : UX → Bg(UX). (This terminology should not be
confused with the different usage considered by Corradini et al. [e.g. 6].)

If (X, h) is a U -structured Bg-coalgebra, then we say that a relation R ⊆ X ×X
in NSub, i.e. a substitution-closed equivariant relation, is a U-structured
Bg-bisimulation if UR ⊆ UX × UX is a Bg-bisimulation on the underly-
ing Bg-coalgebra. (Here, we have used the fact that the forgetful functor
U : NSub→ Nom preserves products, as mentioned in Sec. 2.4.)

Structured coalgebras and bisimulation are compared with the notions of wide-
open transition system and wide-open bisimulation in the following corollary
of Proposition 4.1.

Proposition 4.2.

(1) To give a U-structured Bg-coalgebra is to give a wide-open transition sys-
tem.

(2) To give a U-structured Bg-bisimulation on a U-structured Bg-coalgebra is
to give a model of the theory of wide-open bisimulation.

4.2 Mathematical Operational Semantics for name-passing calculi

We begin this section with a standard parameterised-recursion theorem, and
explain why the recursion data can be thought of as an abstract kind of GSOS
rule. A congruence result is obtained by considering a naturality condition.

In this subsection, we fix an algebraic binding signature, Σ (see Defn. 1.2).

Proposition 4.3. For every equivariant function

̺ : ΣNom

(

(TΣ,Nom∅)× Bg(TΣ,Nom∅)
)

→ Bg(TΣ,Nom∅)

there is a unique Bg-coalgebra ̺♯ : TΣ,Nom∅ → Bg(TΣ,Nom∅) making the fol-
lowing diagram commute.

ΣNom(TΣ,Nom∅)

ΣNom〈id,̺♯〉

��

∼= // TΣ,Nom∅

̺♯

��

ΣNom

(

(TΣ,Nom∅)× Bg(TΣ,Nom∅)
)

̺
// Bg(TΣ,Nom∅)

(7)

32

(This result is a consequence of a general parameterised recursion theorem
about initial algebras in categories with products.)

The recursion data ̺ used in this proposition can be seen as a GSOS-like rule,
as follows. The hom-set

Nom
(

TΣ,Nom∅, Bg(TΣ,Nom∅)
)

of Bg-coalgebras with carrier TΣ,Nom∅ inherits a partial order structure from Bg:
we let h ≤ k : TΣ,Nom∅ → Bg(TΣ,Nom∅) if h(t) ⊆ k(t) for every term
t ∈ TΣ,Nom∅. We define an operator Φ̺ on this partial order, taking a coalgebra
h : TΣ,Nom∅ → Bg(TΣ,Nom∅) to the following composite, Φ̺(h):

TΣ,Nom∅

∼=
��

ΣNom(TΣ,Nom∅)

ΣNom〈id,h〉
��

ΣNom(TΣ,Nom∅ ×Bg(TΣ,Nom∅))

̺

��

Bg(TΣ,Nom∅) .

Intuitively, the operator Φ̺ first extracts the outermost operator of a term.
It then derives the behaviours, using the coalgebra h, for the subterms below
the outermost operator. At this point, we have a term in which each top-
level parameter is associated with a behaviour. We then apply the function
̺ to arrive at a behaviour for the term itself. We can think of the resulting
coalgebra as describing the behaviour of terms via ̺, based on the behaviour h.
A coalgebra h will be said to satisfy ̺ if Φ̺(h) ≤ h. Proposition 4.3 says
that Φ̺ has a unique fixed point, ̺♯, that satisfies ̺. When ̺ is thought of
as a transition system specification, this fixed point can be thought of as the
intended model of ̺.

The partial order is, in fact, a complete lattice, with the join of a family of
coalgebras given by pointwise union. If Φ̺ is a monotone operator, then ̺♯ is
the least pre-fixed point of Φ̺, i.e. it is the least coalgebra that satisfies ̺.

From another perspective, it is difficult to think of the recursion data ̺ as a
rule because it applies only to the specific case of terms in TΣ,Nom∅, whereas
a rule should apply to models in some generality. Thus an abstract rule is a
natural transformation of the form

ρ : ΣNom(U(−)×Bg(U(−)))→ Bg(U(TΣ,NSub−)) : NSub→ Nom .

33

An abstract rule gives rise to recursion data, as the following composite:

ΣNom((TΣ,Nom∅)×Bg(TΣ,Nom∅))

=
��

ΣNom(U(TΣ,NSub∅)×Bg(U(TΣ,NSub∅)))

ρ(TΣ,NSub∅)
��

Bg(U(TΣ,NSubTΣ,NSub∅))

BgUµ∅

��

Bg(U(TΣ,NSub∅))

=
��

Bg(TΣ,Nom∅)

using the multiplication µ of the monad TΣ,NSub that flattens a term made of
closed terms into a closed term.

Theorem 4.4. If a U-structured Bg-coalgebra with carrier TΣ,NSub(∅) is de-
fined by an abstract rule, then the greatest U-structured Bg-bisimulation is a
Σ-congruence.

This theorem does not follow immediately from the developments of Turi and
Plotkin [22] because we have used a novel notion of structured coalgebra. The
result can be reduced to their model, however, because the forgetful functor
NSub→ Nom has a right adjoint (see [9, Sec. 3], [8, Sec. 1]). Interestingly,
though, the right adjoint is not necessary for the result; we will explicate
the matter more thoroughly in future work, for it is beyond the scope of the
present article [though see 8, Sec 1].

4.3 From formal rule structures to abstract rules

Throughout this subsection we fix an algebraic binding signature, Σ (see
Defn. 1.2) and a formal rule structure R over it (Defn. 1.2) that satisfies all the
conditions of Figure 4. We suppose that R has variables from N and X, with
premise set Prem and conclusion with source

src = op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]xj

)

j∈[1,arX(op)]

)

,

label l, and target tar.

We will explain how R gives rise to an abstract rule

JRK : ΣNom(U(−)× Bg(U(−)))→ Bg(U(TΣ,NSub−)) : NSub→ Nom .

34

For a nominal substitution X, a valuation V of the rule structure R is a pair
of functions (VN : N→ N ,VX : X→ X) between sets.

To each valuation V we will assign an archetypal parameter

V(src,Prem) ∈ ΣNom((UX)×Bg(UX)) .

This is to be thought of as a simultaneous instantiation of both the conclusion
source and of the premises.

First, for each j ∈ [1, arX(op)], we instantiate the premises with source xj, by
defining V(Prem[j]) ∈ Bg(UX).

V(Prem[j]) =
{

bin(VN(c), 〈VN(a)〉VX(y))
∣

∣

∣ (xj, c?(a), y) ∈ Prem
}

∪
{

out(VN(c),VN(d),VX(y))
∣

∣

∣ (xj, c!d, y) ∈ Prem
}

∪
{

bout(VN(c), 〈VN(a)〉VX(y))
∣

∣

∣ (xj , c!(a), y) ∈ Prem
}

∪
{

tau(VX(y))
∣

∣

∣ (xj, τ, y) ∈ Prem
}

Now the archetypal parameter V(src,Prem) is given by

op

(VN(ci))i∈[1,arNop] ,
(

〈VN(aj
k)〉k∈[1,bdepop(j)]

(

VX(xj),V(Prem [j])
)

)

j∈[1,arX(op)]

.

Archetypal result. To each valuation V we assign an archetypal result
V(l, tar) ∈ Lg(U(TΣ,NSubX)). This is to be thought of as a simultaneous
instantiation of both the conclusion label and of the conclusion target.

First, we consider how to instantiate the conclusion target. The conclusion tar-
get is a term in the theory of Σ-algebras with substitutions, while TΣ,NSub(X)
is a model of this theory. Let ηX be the unit of the monad TΣ,NSub, exhibiting
every element of X as a term in TΣ,NSub(X). Then the pair

(VN : N→ N , X
VX−→ X

ηX−→ TΣ,NSub(X))

provides a valuation of the variables of tar into the model TΣ,NSub(X). Through
this valuation, the term tar has an interpretation as an element of the set
TΣ,NSub(X). The nominal set underlying TΣ,NSub(X) is TΣ,Nom(UX), and we
let V(tar), in TΣ,Nom(UX), be this element.

The archetypal result V(l, tar) is dependent on the kind of conclusion label,

35

as follows:

for l = c?(a), V(l, tar) = bin(VN(c), 〈VN(a)〉V(tar));

for l = c!d, V(l, tar) = out(VN(c),VN(d),V(tar));

for l = c!(a), V(l, tar) = bout(VN(c), 〈VN(a)〉V(tar));

for l = τ , V(l, tar) = tau(V(tar)).

Abstract rules. The archetypal parameter of a valuation represents the
smallest parameter that should be considered with that valuation. The same
valuation, however, is also adequate for overspecified parameters; i.e. those
that more than fulfill the premises. Formally, thus, we say that a valuation V
is adequate for a parameter s ∈ ΣNom((UX)× Bg(UX)) if VN is injective,
and VN(bn(l))#s, and if there are βj ⊆ Lg(UX), for j ∈ [1, arX(op)], such that

s = op

(VN(ci))i∈[1,arN(op)] ,
(

〈VN(aj
k)〉k∈[1,bdepop(j)]

(

VX(xj), βj

)

)

j∈[1,arX(op)]

and such that V(Prem[j]) ⊆ βj for all j ∈ [1, arX(op)].

For every parameter s ∈ ΣNom((UX) × Bg(UX)) we can thus derive a set
JRKX(s) ⊆ Lg(U(TΣ,NSubX)) of possible results:

JRKX(s) = {V(l, tar) | V is an adequate valuation for s}

Proposition 4.5. The mapping s 7→ JRKX(s) yields an equivariant function

JRKX : ΣNom((UX)× Bg(UX))→ Bg(U(TΣ,NSubX)) .

Proof. We will first show that, for any s ∈ ΣNom((UX)× Bg(UX)), and any
permutation σ ∈ Sym(N),

JRKX(σ ·ΣNom((UX)×Bg(UX)) s) =
{

σ ·Lg(U(TΣ,NSubX)) b
∣

∣

∣ b ∈ JRKX(s)
}

. (8)

In fact, because every permutation σ has an inverse, it is sufficient to prove
that

{σ · b | b ∈ JRKX(s)} ⊆ JRKX(σ · s) .

Suppose that b ∈ JRKX(s). So there is an adequate valuation V for s for which
b = V(l, tar).

We define a valuation (σ · V) into X by

(σ · V)N(a) = σ(VN(a))

(σ · V)X(x) = σ ·X (VX(x)) .

36

This valuation is adequate for σ · s, and moreover, it is routine to verify that
(σ · V)(l, tar) = σ · (V(l, tar)) — for we have permuted everything in sight.
Thus σ · b is in JRKX(σ · s), and so

{σ · b | b ∈ JRKX(s)} ⊆ JRKX(σ · s)

as required. Hence (8) is established.

Since every s ∈ ΣNom((UX)×Bg(UX)) has finite support, we know, then, that
the set JRKX(s) ⊆ Lg(U(TΣ,NSubX)) is finitely supported: it follows from (8)
that a permutation that fixes s also fixes JRKX(s). So JRKX(s) is in the nom-
inal set Bg(U(TΣ,NSubX)). Furthermore, we have already shown (8) that the
mapping s 7→ JRKX(s) is equivariant.

The following lemma is crucial.

Lemma 4.6. Consider a finite set N ⊆f N of names, and a nominal substitu-
tion X. For every adequate valuation for s ∈ ΣNom((UX)×Bg(UX)), there is
another adequate valuation for s with the same archetypal result, but that maps
the binding variables of the rule, BN(src,Prem) ∪ bn(l), outside of N .

A proof of this lemma is provided in Appendix B. It uses all the conditions of
Figure 4.

Theorem 4.7. The family of functions {JRKX}X∈NSub
is natural.

Proof. Consider a homomorphism f : X → Y of nominal substitutions, and a
parameter s ∈ ΣNom((UX)×Bg(UX)). We must show that

Bg(U(TΣ,NSubf))(JRKX(s)) = JRKY (ΣNom((Uf)× Bg(Uf))(s))

That is, we must show that

{Lg(U(TΣ,NSubf))(V(l, tar)) | V is an adequate valuation for s}

=

{

V(l, tar)

∣

∣

∣

∣

∣

V is an adequate valuation

for ΣNom((Uf)×Bg(Uf))(s)

}

. (9)

To see that the left-hand side of (9) is a subset of the right-hand side, we
consider a valuation V that is adequate for s, and we construct the new valu-
ation (f ◦ V) = (VN, f ◦ VX). It is routine to verify that this valuation (f ◦ V)
is adequate for ΣNom((Uf) × Bg(Uf))(s), and moreover that its archetypal
result is Lg(U(TΣ,NSubf))(V(l, tar)).

Showing that the right-hand side of (9) is a subset of the left-hand side is more
difficult. We consider a valuation V that is adequate for ΣNom((Uf)×Bg(Uf))(s),

37

and we exhibit a valuation V ′ that is adequate for s and for which

V(l, tar) = Bg(U(TΣ,NSubf))(V ′(l, tar)) .

To begin, we recap the properties of V as an adequate valuation for

ΣNom((Uf)× Bg(Uf))(s) .

We have that VN is injective, and that

ΣNom((Uf)×Bg(Uf))(s) = op

(VN(ci))i∈[1,arN(op)] ,
(

〈VN(aj
k)〉k∈[1,bdepop(j)]

(

VX(xj), βj

)

)

j∈[1,arX(op)]

(10)
where V(Prem[j]) ⊆ βj for all j ∈ [1, arX(op)].

We now investigate the structure of s. From the functorial action of ΣNom,
we deduce that the operator-type of s must be op. So we have we have ci ∈ N

(for all i ∈ [1, arN(op)]), and aj
k ∈ N (for all j ∈ [1, arX(op)], k ∈ [1, bdepj(op)]),

and xj ∈ X and β ′
j ∈ Bg(UX) (for all j ∈ [1, arX(op)]), such that

s = op

(ci)i∈[1,arN(op)] ,
(

〈aj
k〉k∈[1,bdepop(j)]

(

xj , β
′
j

)

)

j∈[1,arX(op)]

.

(11)

By Lemma 4.6, we can assume, without loss of generality, that

VN

(

BN(src,Prem) ∪ bn(l)
)

∩ supp(s) = ∅ .

Thus, by definition of [N](−), and using Condition (3) and injectivity of VN, we
can also assume that aj

k = VN(aj
k) for every j ∈ [1, arX(op)], k ∈ [1, bdepop(j)].

Analysing (10) and (11), from the action of ΣNom((Uf)×Bg(Uf)) we con-
clude that ci = VN(ci) for all i ∈ [1, arN(op)], and that

(a) f(xj) = VX(xj) and (b) Bg(Uf)(β ′
j) = βj (12)

for all j ∈ [1, arX(op)].

For each j ∈ [1, arX(op)] and l ∈ Lab(N), we define the sets Xj,l ⊆ X, Xj,l ⊆ X

38

as follows.

Xj,l =
{

x ∈ X
∣

∣

∣ (xj , l, x) ∈ Prem
}

Xj,c?(a) =
{

x ∈ X
∣

∣

∣ bin(VN(c), 〈VN(a)〉x) ∈ β ′
j

}

Xj,c!d =
{

x ∈ X
∣

∣

∣ out(VN(c),VN(d), x) ∈ β ′
j

}

Xj,c!(a) =
{

x ∈ X
∣

∣

∣ bout(VN(c), 〈VN(a)〉x) ∈ β ′
j

}

Xj,τ =
{

x ∈ X
∣

∣

∣ tau(x) ∈ β ′
j

}

We claim that, for each j ∈ [1, arX(op)] and l ∈ Lab(N), we have

VX(Xj,l) ⊆ f(Xj,l) . (13)

Consider, for instance, some (xj, c?(a), x) ∈ Prem. So x is in Xj,c?(a), and we
must show that VX(x) ∈ f(Xj,l), i.e. that

∃x ∈ Xj,l. VX(x) = f(x) . (14)

Because V is adequate, we have bin(VN(c), 〈VN(a)〉VX(x)) ∈ βj. It follows from (12)(b)
that there must exist b′ ∈ β ′

j such that bin(VN(c), 〈VN(a)〉VX(x)) = Lg(Uf)(b′).
Indeed, we must have x′ ∈ X and a ∈ N such that b′ = bin(VN(c), 〈a〉x′) and
〈a〉f(x′) = 〈VN(a)〉VX(x).

Consider a name b ∈ N that is fresh for β ′
j and for x′, a and VN(a). Since f is

equivariant, we have 〈a〉f(x′) = 〈b〉f((a b) · x′). We let

x = (VN(a) b)(a b) · x′

and we know that f(x) = VX(x). To conclude (14), it remains for us to show
that x is in Xj,c?(a).

We have made sure, using Lemma 4.6, that VN(a)#s, and, because of Condi-
tions (3) and (5), we know that VN(a)#β ′

j . So (VN(a) b) · β ′
j = β ′

j , and thus,
by Condition (5) again, bin(VN(c), 〈VN(a)〉(x)) ∈ β ′

j — so x is in Xj,l.

Other modes of action are treated in a similar manner, and thus (13) is estab-
lished.

For every j ∈ [1, arX(op)], and every l ∈ Lab(N), we have the following situation

39

of sets and functions between them:

Xj,l
� _

��

++WWWWWWWWWWWWWWWWWWWWWWWWWWW

&&
Xj,l

// //

� _

��

f(Xj,l)
� _

��

X
f

((QQQQQQQQQQQQQQQQ

X VX

// Y

where the dotted arrow Xj,l → Xj,l is the compsite

Xj,l
VX−→ f(Xj,l)

mj,l
−−→ Xj,l

for a chosen section mj,l : f(Xj,l) Xj,l of the image Xj,l ։ f(Xj,l).

We are now in a position to define a valuation V ′ into X. We let VN
′ = VN,

and define VX
′ using the bijection (5):

• For j ∈ [1, arX(op)], we set VX
′ (xj) = xj .

• For (xj, l, x) ∈ Prem, we set VX
′ (x) = mj,l(VX(x)).

By construction,

s = op

(

VN
′ (ci)

)

i∈[1,arN(op)]
,

(

〈VN
′ (aj

k)〉k∈[1,bdepop(j)]

(

VX
′ (xj), β

′
j

)

)

j∈[1,arX(op)]

(15)

and V ′(Prem[j]) ⊆ β ′
j for all j ∈ [1, arX(op)]. We have already ensured that

VN
′ (bn(l))#s, and so we can conclude that V ′ is adequate for s.

Moreover, by definition, we have that (f ◦ V ′) = V, and so

V(l, tar) = Bg(U(TΣ,NSubf))(V ′(l, tar)) .

Thus (9) is proved, concluding the proof of Theorem 4.7.

4.4 Congruence result

The class of abstract rules pointwise inherits a complete join semilattice struc-
ture from Bg. In particular, we have the following scenario. Let R be a
transition system specification (Defn. 1.2) over some algebraic binding sig-

40

nature Σ (Defn. 1.1). If all the formal rule structures in R satisfy Condi-
tions (1–8) of Figure 4, then R induces an abstract rule

JRK : ΣNom((U(−))×Bg(U(−)))→ Bg(U(TΣ,NSub−)) : NSub→ Nom

by
JRKX(s) =

⋃

R∈R

(

JRKX(s)
)

.

By Proposition 4.2, the induced U -structured Bg-coalgebra,

JRK♯ : TΣ,Nom∅ → Bg(TΣ,Nom∅)

corresponds to a wide-open transition system.

Theorem 4.8. For any transition system specification R in the format of
Figure 4, the wide-open transition system corresponding to JRK♯ is the initial
transition system satisfying R.

Proof notes. The abstract rule induced by a transition system specification R
gives rise to an operator ΦJRK on the complete lattice

Nom
(

TΣ,Nom∅, Bg(TΣ,Nom∅)
)

as described in Section 4.2 above.

Via Proposition 4.2, this lattice is isomorphic to the complete lattice of wide-
open transition systems with fixed carrier, TΣ,Nom∅, and with the correspond-
ing fixed substitution structure, ordered by inclusion.

We claim that, on the lattice of wide-open transition systems, the pre-fixed
points of this operator ΦJRK are precisely those transition systems that sat-
isfy R. This is verified by tracing through the constructions in Section 4.3.
Note that, for any rule R in R, a valuation in the sense of Section 4.3 is
nothing but a valuation of the universally quantified variables of the axiom
corresponding to R.

Next, we claim that the operator ΦJRK is monotone. From the logical point of
view, this is the case because we only consider positive rules.

Thus, by Tarski’s fixed-point theorem, the operator ΦJRK has a least pre-fixed
point, which is a fixed point. By Proposition 4.3, this fixed-point is the coal-
gebra

JRK♯ : TΣ,Nom∅ → Bg(TΣ,Nom∅) .

From the model theoretic perspective, this least pre-fixed point is the least
transition system satisfying R with carrier TΣ,NSub∅, that is also a wide-open
transition system. By Proposition 2.1, this fixed point is the initial transition
system satisfying R.

41

By combining the results of this section, we arrive at our main result.

Corollary 4.9. For the initial transition system satisfying a transition system
specification in the format of Figure 4, wide-open bisimilarity is a congruence.

Appendices

A Proof of Proposition 4.1

Proposition 4.1.

(1) To give a Bg-coalgebra is to give a ground transition system.
(2) To give a Bg-bisimulation between two Bg-coalgebras is to give a model

of the theory of ground bisimulation.

Proof. For item (1), we first define an intermediate notion. We say that a pro-
ground transition system is a nominal set X together with an equivariant
relation

−→ ⊆ X × LgX . (A.1)

Pro-ground transition systems are in bijective correspondence with ground
transition systems; we convert between the two notions using the following
correspondence.

x
c?(a)
−→ y ⇐⇒ x −→ bin(c, 〈a〉y) and a#(c, y)

x
c!d
−→ y ⇐⇒ x −→ out(c, d, y)

x
c!(a)
−→ y ⇐⇒ x −→ bout(c, 〈a〉y) and a#(c, y)

x
τ
−→ y ⇐⇒ x −→ tau(y)

By definition of abstraction, it is reasonable to only consider fresh variables for
binders. Conversely, since the pro-ground transition systems that we consider
are equivariant, all fresh input/output names are treated uniformly. That is,

if x
c?(a)
−→ y, and a′#(x, c), then we also have x

c?(a′)
−→ (a a′) · y, and similarly for

bound output transitions.

To conclude item (1), we remark that pro-ground transition systems are in
bijective correspondence with Bg-coalgebras: this follows from the universal
property of the powerobject construction P as a relation classifier. We convert
between pro-ground transition systems and coalgebras h : X → BgX using

42

the following correspondence.

x −→ b ⇐⇒ b ∈ h(x) .

We now turn to item (2), and establish a correspondence between the two
notions of bisimulation. The two step approach that we adopted for item (1)
is also useful here. We define a notion of pro-ground (bi)simulation for pro-
ground transition systems. Consider a pro-ground transition system (X,−→).
A pro-ground simulation on this system is an equivariant relation R ⊆ X ×X
such that

if xRx′ and x −→ b

then there is b′ ∈ LgX such that x′ −→ b′ and b (LgR) b′.

Here the object LgR is considered as a relation over LgX; we have

LgR ∼= {(bin(c, 〈a〉x), bin(c, 〈a〉x′)) | a, c ∈ N , xRx′}

∪ {(out(c, d, x), out(c, d, x′)) | c, d ∈ N , xRx′}

∪ {(bout(c, 〈a〉x), bout(c, 〈a〉x′)) | a, c ∈ N , xRx′}

∪ {(tau(x), tau(x′)) |xRx′} .

A notion of pro-ground bisimulation is defined accordingly.

Now, a pro-ground simulation is the same thing as a ground simulation on the
corresponding ground transition system.

Suppose that R is a pro-ground simulation, and we will show that it is a ground

simulation. Suppose that xRx′, and consider the case where x
c?(a)
−→ y in the

corresponding ground transition system, with a#x′. Note that a 6= c, since
we have a ground transition system. Converting, we have x −→ bin(c, 〈a〉y)
in the pro-ground transition system. Since R is a pro-ground simulation, we
have a′ ∈ N and y′ ∈ X such that x′ −→ bin(c, 〈a′〉y′) and 〈a〉y ([N]R) 〈a′〉y′.
By definition of abstraction, we can assume that a′#y, so that (a a′) · y R y′,
and we can also assume that a′ 6= c. Moreover, by assumption, a#x′, and,
as above, we have a 6= c. Thus, by the equivariance of the pro-ground rela-
tion −→⊆ X × LgX, we have x′ −→ bin (c, 〈a〉((a a′) · y′)). Converting back,

we have x′ c?(a)
−→ (a a′)y′, and, by equivariance of R, we have y R (a a′) · y′. Fol-

lowing a similar argument for the other modes of communication, we conclude
that R is indeed a ground simulation.

Conversely, suppose that R is a ground simulation. We will show that it is
a pro-ground simulation. Suppose that xRx′, and consider the case where
x −→ b in the corresponding pro-ground transition system, with b of input
type. So we have a, c ∈ N and y ∈ X such that b = bin(c, 〈a〉y). By defini-
tion of abstraction, we can assume that a#(x, x′, c). Thus we have a ground

43

transition x
c?(a)
−→ y, and, since R is a ground simulation, we have y′ ∈ Y such

that yRy′ and x′ c?(a)
−→ y′. Converting back, we deduce a pro-ground transi-

tion x′ −→ bin(c, 〈a〉y′). Following a similar argument for the other modes of
communication, we conclude that R is indeed a pro-ground simulation.

By a symmetric argument, one shows that a ground bisimulation on a ground
transition system is the same thing as a pro-ground bisimulation on the cor-
responding pro-ground transition system. To conclude item (2), we show that
pro-ground bisimulations on pro-ground transition systems correspond to coal-
gebraic Bg-bisimulations on the corresponding Bg-coalgebras.

To this end, we consider a coalgebra h : X → BgX, and the corresponding
pro-ground transition system, −→⊆ X × LgX.

Suppose that R ⊆ X ×X is a Bg-bisimulation, so that there is a coalgebra
structure over R making Diagram (6) commute,

R //

��

X ×X

h×h
��

BgR // Bg(X ×X) // BgX ×BgX .

We will show that R is also a pro-ground bisimulation. Indeed, suppose that xRx′,
and that x −→ b. The coalgebra structure for R defines a subset βx,x′ ⊆ LgR
for which Bgπ1(βx,x′) = h(x) and Bgπ2(βx,x′) = h(x′). We know that b ∈ h(x),
so we must have b′ ∈ βx,x′ such that b = π1(b

′). By definition, π2(b
′) ∈ h(x′),

so, converting, we have x′ −→ π2(b
′), and certainly b (LgR) π2(b

′). Thus R is a
pro-ground simulation; that it is a pro-ground bisimulation is established by
a symmetric argument.

On the other hand, suppose that R ⊆ X × X is a pro-ground bisimulation,
and we will show that it is also a Bg-bisimulation by exhibiting a coalgebra
structure for R making Diagram (6) commute. One such appropriate structure
maps a pair (x, x′) ∈ R to the set {b ∈ LgR |Lgπ1(b) ∈ h(x), Lgπ2(b) ∈ h(x′)}
in BgR. We claim that

(R→ BgR→ (BgX × BgX)) = (R→ (X ×X)
h×h
−−→ (BgX × BgX)) .

Under the componentwise, parameterwise order, the left-hand-side is trivially
included in the right-hand-side. The inclusion of the right-hand-side in the
left-hand-side follows from the definition of pro-ground bisimulation.

Thus we can conclude item (2): ground bisimulation is the same thing as
coalgebraic Bg-bisimulation.

44

B Proof of Lemma 4.6

Lemma 4.6 was stated in Section 4.3 in the context of an algebraic binding
signature Σ (see Defn. 1.2) and a formal rule structure over it (Defn. 1.2). It is
assumed that the rule structure has variables from N and X, and has premise
set Prem and conclusion with source

src = op

(

(ci)i∈[1,arN(op)],
(

〈aj
k〉k∈[1,bdepop(j)]xj

)

j∈[1,arX(op)]

)

,

label l, and target tar. It is also assumed that the rule structure satisfies all
the conditions of Figure 4.

Lemma 4.6. Consider a finite set N ⊆f N of names, and a nominal substitu-
tion X. For every adequate valuation for s ∈ ΣNom((UX)× Bg(UX)), there
is another adequate valuation for s with the same archetypal result, but that
maps the binding variables of the rule, BN(src,Prem) ∪ bn(l), outside of N .

Proof. Pick an injection

ξ : (BN(src,Prem)∪bn(l))

(

N\
(

N∪im(VN)∪supp(s)∪
⋃

x∈X

supp(VX(x))
))

.

This is possible because the domain is finite, while the codomain is infinite.

We define a new valuation V ′ into X with

VN
′ (a) =

ξ(a) if a ∈ (BN(src,Prem) ∪ bn(l))

VN(a) otherwise

VX
′ (x) = (VN(a) ξ(a))a∈(BN(x)∪bn(l)) · VX(x)

Note that the order of swaps in the definition of VX
′ does not matter be-

cause both V and ξ are injective, and their images are disjoint on the set
(BN(src,Prem) ∪ bn(l)).

We will now show that V ′ is adequate for s (Sec. B.1) and that V and V ′ have
the same archetypal results (Sec. B.2).

45

B.1 V ′ is adequate for s

We will explain why V ′ is an adequate instantiation into s. By assumption, V
is adequate for s. So V is injective, VN(bn(l))#s, and

s = op

(VN(ci))i∈[1,arN(op)] ,
(

〈VN(aj
k)〉k∈[1,bdepop(j)]

(

VX(xj), βj

)

)

j∈[1,arX(op)]

where V(Prem[j]) ⊆ βj for all j ∈ [1, arX(op)].

We know that VN
′ is injective, because V and ξ are, and because VN(BN(src,Prem) ∪ bn(l))

is disjoint from im(ξ). Moreover, VN
′ (bn(l))#s by definition of ξ.

We let
β ′

j = (VN(a) VN
′ (a))

a∈(BN(xj)∪bn(l)) · βj

for each j ∈ [1, arX(op)], and we will show that

s = op

(

VN
′ (ci)

)

i∈[1,arN(op)]
,

(

〈VN
′ (aj

k)〉k∈[1,bdepop(j)]

(

VX
′ (xj), β

′
j

)

)

j∈[1,arX(op)]

and V ′(Prem[j]) ⊆ β ′
j for each j ∈ [1, arX(op)].

By Conditions (4) and (5), ci 6∈ BN(src,Prem), for all i ∈ [1, arN(op)]. More-
over, since V is adequate for s, we know that VN(ci) ∈ supp(s), and that
VN(bn(l)) 6∈ supp(s), so we know that ci 6∈ bn(l). Thus we have

ci 6∈
(

BN(src,Prem) ∪ bn(l)
)

so that VN(ci) = VN
′ (ci).

We will now show that for each j ∈ [1, arX(op)], we have

〈VN(aj
k)〉k∈[1,bdepop(j)]

(

VX(xj), βj

)

= 〈VN
′ (aj

k)〉k∈[1,bdepop(j)]

(

VX
′ (xj), β

′
j

)

.

(B.1)

We first make the following observation. Consider a nominal set Y , and x ∈ Y ,
and a natural number n. Consider distinct names a1, b1, . . . , an, bn ∈ N such
that for all k ∈ [1, n] we have bk#x. Then, by definition of abstraction, we
have

〈ak〉k∈[1,n]x = 〈bk〉k∈[1,n]

(

(ak bk)k∈[1,n] · x
)

.

Equation (B.1) above is a particular case of this result, because of the restricted
codomain of ξ, and because of Condition (3).

46

To conclude that V ′ is adequate for s, we explain why V ′(Prem[j]) ⊆ β ′
j, for

each j ∈ [1, arX(op)]. Suppose, for instance, that there is a premise xj

c?(a)
−→ y

in Prem. We will show that bin(VN
′ (c), 〈VN

′ (a)〉VX
′ (y)) ∈ β ′

j.

Since V is adequate, we know that bin(VN(c), 〈VN(a)〉VX(y)) ∈ βj . By defini-
tion,

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · bin(VN(c), 〈VN(a)〉VX(y)) ∈ β ′

j

so it suffices for us to prove that

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · bin(VN(c), 〈VN(a)〉VX(y))

= bin(VN
′ (c), 〈VN

′ (a)〉VX
′ (y)) . (B.2)

Independently of whether or not c ∈
(

BN(xj) ∪ bn(l)
)

,

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · (VN(c)) = VN

′ (c) . (B.3)

Indeed, for the case where c ∈ (BN(xj) ∪ bn(l)), then this follows from the defi-
nition of VN

′ . If, on the other hand, c 6∈ (BN(xj) ∪ bn(l)), then c ∈ FN(src,Prem)
by definition, and so, by Condition (4), c is not bound anywhere, hence
VN(c) = VN

′ (c).

We will now show that

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · (〈VN(a)〉VX(y)) = 〈VN

′ (a)〉VX
′ (y) . (B.4)

If a ∈ bn(l), then (B.4) follows by definition of VX
′ (y). Otherwise, if a 6∈ bn(l),

then we proceed as follows. The codomain of ξ ensures that VN
′ (a)#VX(y), so

〈VN(a)〉VX(y) = 〈VN
′ (a)〉((VN(a) VN

′ (a)) · VX(y)) .

By Condition (5), a 6∈ FN(xj), and so we have (B.4):

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · (〈VN(a)〉VX(y))

= (VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · 〈VN

′ (a)〉((VN(a) VN
′ (a)) · VX(y))

= 〈VN
′ (a)〉

(

(VN(b) VN
′ (b))b∈(BN(xj)∪bn(l)) · (VN(a) VN

′ (a)) · VX(y)
)

= 〈VN
′ (a)〉((VN(b) VN

′ (b))b∈(BN(y)∪bn(l)) · VX(y))

= 〈VN
′ (a)〉VX

′ (y) .

Putting (B.3) and (B.4) together, we deduce (B.2), and thus V ′ is adequate
for s.

47

B.2 The archetypal result for V ′ is the same as for V

We now explain why V ′(l, tar) = V(l, tar). First, we prove the following
results for every t ∈ TΣ+sub(N, X).

(B.5) The fresh bound names are disjoint from the original valuation for t,
i.e. VN

′ (BN(src,Prem) ∪ bn(l)) ∩ supp(V(t)) = ∅.
(B.6) Suppose that WF(t). Consider a set C ⊆ N, such that

(BN(src,Prem) ∩ FN(t)) ∪ bn(l) ⊆ C

and suppose that for all x ∈ X appearing in t we have

(VN(a) VN
′ (a))a∈(BN(x)∪C) · VX(x) = VX

′ (x) .

Then (VN(a) VN
′ (a))a∈C · V(t) = V ′(t).

The base cases, where t is a term variable, are trivial. For the inductive
step, we consider an operator op in (Σ + sub), together with: name vari-
ables ci ∈ N, for i ∈ [1, arN(op)]; name variables a

j
k ∈ N, for j ∈ [1, arX(op)],

k ∈ [1, bdepop(j)]; and terms tj ∈ TΣ+sub(N, X), for j ∈ [1, arX(op)]. We let

t = op

(

(ci)i∈[1,arN(op)] ,
(

〈aj
k〉k∈[1,bdepop(j)]

tj

)

j∈[1,arX(op)]

)

and we will explain why properties (B.5) and (B.6) hold of t. For prop-
erty (B.5), notice that, because of the codomain of ξ, we have

VN
′ (BN(src,Prem) ∪ bn(l)) ∩ {VN(ci) | i ∈ [1, arN(op)]} = ∅ .

The induction hypotheses ensure that

VN
′ (BN(src,Prem) ∪ bn(l)) ∩ supp(V(tj)) = ∅

for each j ∈ [1, arX(op)], and property (B.5) follows.

For the inductive step of property (B.6), we further assume that WF(t), and
consider C ⊆ N which is such that

(BN(src,Prem) ∩ FN(t)) ∪ bn(l) ⊆ C

and
(VN(a) VN

′ (a))a∈(BN(x)∪C) · VX(x) = VX
′ (x)

for all x appearing in t. We must show that (VN(a) VN
′ (a))a∈C · V(t) = V ′(t),

i.e. that

• for all i ∈ [1, arN(op)], (VN(a) VN
′ (a))a∈C(VN(ci)) = VN

′ (ci); and

48

• for each j ∈ [1, arX(op)],

(VN(a) VN
′ (a))a∈C·(〈VN(aj

k)〉k∈[1,bdepop(j)]V(tj)) = 〈VN
′ (aj

k)〉k∈[1,bdepop(j)]V
′(tj)) .

For any i ∈ [1, arN(op)] we must show that (VN(a) VN
′ (a))a∈C(VN(ci)) = VN

′ (ci).
If ci ∈ C then this is trivial. Otherwise, if ci 6∈ C, then ci ∈ FN(tar) by defini-
tion, and yet (BN(src,Prem) ∩ FN(tar)) ⊆ C, so we know that ci 6∈ BN(src,Prem).
Since bn(l) ⊆ C, we also know that ci 6∈ bn(l). Thus, by definition of VN

′ , we
have VN(ci) = VN

′ (ci), and certainly (VN(a) VN
′ (a))a∈C(VN(ci)) = VN

′ (ci).

For j ∈ [1, arX(op)], we must show that

(VN(a) VN
′ (a))a∈C·(〈VN(aj

k)〉k∈[1,bdepop(j)]V(tj)) = 〈VN
′ (aj

k)〉k∈[1,bdepop(j)]V
′(tj) .

As a first step in this direction, we let

Cj = C ∪
(

BN(src,Prem) ∩
{

a
j
k

∣

∣

∣ k ∈ [1, bdepop(j)]
})

and we assert that

(VN(a) VN
′ (a))a∈C · (〈VN(aj

k)〉k∈[1,bdepop(j)]V(tj))

= 〈VN
′ (aj

k)〉k∈[1,bdepop(j)]((VN(a) VN
′ (a))a∈Cj

· V(tj)) .

This step is established using property (B.5) of tj , and the definition of ab-
straction.

Finally, we conclude this inductive step by explaining that

(VN(a) VN
′ (a))a∈Cj

· V(tj)) = V ′(tj) .

We explain this using the induction hypothesis. We have assumed thatWF(t),
and it follows that WF(tj). It is clear that

(BN(src,Prem) ∩ FN(tj)) ∪ bn(l) ⊆ Cj .

So it remains for us to consider x ∈ X appearing in tj , and to show that

(VN(a) VN
′ (a))a∈(BN(x)∪Cj) · VX(x) = VX

′ (x) .

By assumption, we already have

(VN(a) VN
′ (a))a∈(BN(x)∪C) · VX(x) = VX

′ (x)

and we are left to prove that, for all k ∈ [1, bdepop(j)], either aj
k ∈ (BN(x) ∪ C)

or (VN(aj
k) VN

′ (aj
k)) · VX

′ (x) = VX
′ (x). If VN(aj

k) = VN
′ (aj

k) then we are done, so
we consider the case where VN(aj

k) 6= VN
′ (aj

k). Then, by definition of VN
′ , we

must have aj
k ∈ bn(l) or aj

k ∈ BN(src,Prem). In the former case, we know that

49

bn(l) ⊆ C, so we are done. If aj
k ∈ BN(src,Prem), then, sinceWF(t), we have

a
j
k ∈ FN(x). By definition, then, aj

k ∈ BN(x), as required.

Thus properties (B.5) and (B.6) are established.

We are now ready to prove that V(l, tar) = V ′(l, tar). We first prove that

(VN(a) VN
′ (a))a∈bn(l) · V(tar) = V ′(tar) . (B.7)

We do this by using property (B.6). By Condition (8), we have WF(tar).
Condition (7) says that (BN(src,Prem) ∩ FN(tar)) = ∅. Moreover, for every
x ∈ X, we have

(VN(a) VN
′ (a))a∈(BN(x)∪bn(l)) · VX(x) = VX

′ (x)

by definition. Thus C = bn(l) is a reasonable choice. Applying property (B.6),
we conclude (B.7).

It is now straightforward to show that V(l, tar) = V ′(l, tar). For instance,
if l = c?(a), we have

V(l, tar) = bin (VN(c), 〈VN(a)〉V(t))

= bin (VN
′ (c), 〈VN(a)〉V(t))

= bin (VN
′ (c), 〈VN

′ (a)〉((VN(a) VN
′ (a)) · V(t)))

= bin (VN
′ (c), 〈VN

′ (a)〉V ′(t)) .

Here, the second line is due to Condition (6); the third line uses property (B.5)
for tar; and the fourth line follows from (B.7).

Thus Lemma 4.6 is proved.

References

[1] L. Aceto, W. Fokkink, and C. Verhoef. Structural operational semantics.
In Handbook of Process Algebra, chapter 1.3, pages 197–292. Elsevier,
1999.

[2] K. L. Bernstein. A congruence theorem for structural operational seman-
tics of higher-order languages. In Proc. LICS’98, pages 153–164, 1998.

[3] B. Bloom and F. Vaandrager. SOS rule formats for parameterized and
state-bearing processes. Draft, 1994.

[4] B. Bloom, S. Istrail, and A. R. Meyer. Bisimulation can’t be traced.
J. ACM, 42(1):232–268, 1995.

[5] G. L. Cattani and P. Sewell. Models for name-passing processes: inter-
leaving and causal. Inform. and Comput., 190(2):136–178, 2004.

50

[6] A. Corradini, R. Heckel, and U. Montanari. Compositional SOS and
beyond: a coalgebraic view of open systems. Theoretical Comput. Sci.,
280(1–2):163–192, 2002.

[7] M. P. Fiore and S. Staton. Comparing operational models of name-passing
process calculi. Inform. and Comput., 204(4):524–560, 2006.

[8] M. P. Fiore and S. Staton. A congruence rule format for name-passing
process calculi from mathematical structural operational semantics. In
Proc. LICS’06, pages 49–58, 2006.

[9] M. P. Fiore and D. Turi. Semantics of name and value passing. In Proc.
LICS’01, pages 93–104, 2001.

[10] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax and variable
binding. In Proc. LICS’99, pages 193–202, 1999.

[11] W. J. Fokkink and C. Verhoef. A conservative look at operational seman-
tics with variable binding. Inform. and Comput., 146(1):24–54, 1998.

[12] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax
involving binders. Formal Aspect. Comput., 13(3–5):341–363, 2002.

[13] N. Ghani, K. Yemane, and B. Victor. Relationally staged computations
in calculi of mobile processes. In Proc. CMCS’04, volume 106 of Electron.
Notes Theor. Comput. Sci., pages 105–120, 2004.

[14] C. A. Middelburg. Variable binding operators in transition system spec-
ifications. J. Log. Algebr. Program., 47:15–45, 2001.

[15] D. Miller and A. Tiu. A proof theory for generic judgments. ACM Trans.
Comput. Logic, 6(4):749–783, 2005.

[16] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (II).
Inform. and Comput., 100(1):41–77, 1992.

[17] J. Parrow and B. Victor. The Update calculus. In Proc. AMAST’97,
volume 1349 of LNCS, 1997.

[18] A. M. Pitts. Nominal logic, a first order theory of names and binding.
Inform. and Comput., 186(2):165–193, 2003.

[19] D. Sangiorgi. A theory of bisimulation for the pi-calculus. Acta Inform.,
33(1):69–97, 1996.

[20] D. Sangiorgi and D. Walker. The π-calculus: a theory of mobile processes.
CUP, 2001.

[21] S. Staton. Name-passing process calculi: operational models and struc-
tural operational semantics. Technical Report UCAM-CL-TR-688, Uni-
versity of Cambridge Computer Laboratory, 2007.

[22] D. Turi and G. Plotkin. Towards a mathematical operational semantics.
In Proc. LICS’97, pages 280–291, 1997.

[23] S. Weber and B. Bloom. Metatheory of the π-calculus. Technical Report
TR96-1564, Cornell University, 1996.

[24] A. Ziegler, D. Miller, and C. Palamidessi. A congruence format for name-
passing calculi. In Proc. SOS’05, volume 156 of Electron. Notes Theor.
Comput. Sci., pages 169–189, 2006.

51

