
SOS 2006

Preliminary Proceedings of the 3rd Workshop on

Structural Operational Semantics

Bonn, Germany, 26th August 2006

Editors:

Rob van Glabbeek and Peter D. Mosses



ii



Contents

Preface v

Bartek Klin (Invited Speaker)
Bialgebraic methods in structural operational semantics . . . . . . . . . . . . . . 1

MohammadReza Mousavi, Michel A. Reniers

On well-foundedness and expressiveness of promoted tyft . . . . . . . . . . . . . 13

Christiano Braga, Alberto Verdejo

Modular SOS with strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Adrian Pop, Peter Fritzson (Tool Demonstration)
An Eclipse-based integrated environment for developing executable

structural operational semantics specifications . . . . . . . . . . . . . . . . . . . . . . . . 41

Robin Milner (Joint Express-Infinity-SOS Invited Speaker)
Local bigraphs and confluence: two conjectures . . . . . . . . . . . . . . . . . . . . . . . 46

Henrik Pilegaard, Flemming Nielson, Hanne Riis Nielson

Active evaluation contexts for reaction semantics . . . . . . . . . . . . . . . . . . . . . 55

Simone Tini

Notes on generative probabilistic bisimulation . . . . . . . . . . . . . . . . . . . . . . . . 70

Vincent Danos, Jean Krivine, Fabien Tarissan

Self-assembling trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

iii



Author Index

Braga, Christiano, 25

Danos, Vincent, 84

Fritzson, Peter, 41

Klin, Bartek, 1

Krivine, Jean, 84

Milner, Robin, 46

Mousavi, MohammadReza, 13

Nielson, Flemming, 55

Nielson, Hanne Riis, 55

Pilegaard, Henrik, 55

Pop, Adrian, 41

Reniers, Michel A., 13

Tarissan, Fabien, 84

Tini, Simone, 70

Verdejo, Alberto, 25

iv



Preface

This volume contains the preliminary proceedings of SOS 2006, the Third
Workshop on Structural Operational Semantics, held on 26th August 2006 in
Bonn, Germany, as a satellite event of CONCUR 2006, the 17th International
Conference on Concurrency Theory.

Structural operational semantics (SOS) provides a framework for giving
operational semantics to programming and specification languages. A grow-
ing number of programming languages from commercial and academic spheres
have been given usable semantic descriptions by means of structural opera-
tional semantics. Because of its intuitive appeal and flexibility, structural
operational semantics has found considerable application in the study of the
semantics of concurrent processes. Moreover, it is becoming a viable alter-
native to denotational semantics in the static analysis of programs, and in
proving compiler correctness.

Recently, structural operational semantics has been successfully applied as
a formal tool to establish results that hold for classes of process description
languages. This has allowed for the generalization of well-known results in the
field of process algebra, and for the development of a meta-theory for process
calculi based on the realization that many of the results in this field only
depend upon general semantic properties of language constructs.

This workshop aims at being a forum for researchers, students and practi-
tioners interested in new developments, and directions for future investigation,
in the field of structural operational semantics. One of the specific goals of the
workshop is to establish synergies between the concurrency and programming
language communities working on the theory and practice of SOS. Moreover,
it aims at widening the knowledge of SOS among postgraduate students and
young researchers worldwide.

The First SOS Workshop took place on 30th August 2004 in London (UK)
as a satellite event of CONCUR 2004, the Fifteenth International Conference
on Concurrency Theory, and marked the publication of two special volumes
(60-61) of the Journal of Logic and Algebraic Programming devoted to SOS.
The second SOS Workshop took place on 10th July 2005 in Lisbon (Portugal)
as a satellite event of ICALP 2005, the The 32nd International Colloquium on
Automata, Languages and Programming.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Programme committee:

• Rocco De Nicola (Florence, IT)

• Wan Fokkink (Amsterdam, NL)

• Rob van Glabbeek (NICTA, AU, co-chair)

• Reiko Heckel (Leicester, UK)

• Matthew Hennessy (Sussex, UK)

• Ugo Montanari (Pisa, IT)

• Peter Mosses (Swansea, UK, co-chair)

• MohammadReza Mousavi (Eindhoven, NL)

• David Sands (Chalmers, SE)

• Irek Ulidowski (Leicester, UK)

• Shoji Yuen (Nagoya, JP)

The submitted papers were refereed by the programme committee and by
several outside referees, whose help is gratefully acknowledged.

Invited speakers:

• Bartek Klin (Warsaw, PL)

• Robin Milner (Cambridge, UK), joint Express-Infinity-SOS invited speaker

We are especially grateful to them for accepting the invitation to speak at the
workshop, and for the papers that they have written for this occasion.

Publication:

The final versions of the papers in these preliminary proceedings will be
published in ENTCS, Electronic Notes in Theoretical Computer Science. The
proceedings of SOS 2004 appeared as ENTCS volume 128, issue 1. The pro-
ceedings of SOS 2005 appeared as ENTCS volume 156, issue 1; a special issue
of Theoretical Computer Science based on selected papers is in preparation.
ENTCS is published electronically through the facilities of Elsevier Science
B.V. and under its auspices. We are grateful to ENTCS for their continuing
support, and in particular to Mike Mislove, Managing Editor of the series.

Organization:

We are grateful to the CONCUR 2006 organizers for taking care of the local
organization, and for managing the printing of these preliminary proceedings.
Support from National ICT Australia and Swansea University is also gratefully
acknowledged.

Rob van Glabbeek (National ICT Australia) 27th July 2006
Peter D. Mosses (Swansea University)

vi



SOS 2006 Preliminary Version

Bialgebraic Methods in
Structural Operational Semantics

(Invited Talk)

Bartek Klin 1,2

Warsaw University, Edinburgh University

Abstract

Bialgebraic semantics, invented a decade ago by Turi and Plotkin, is an approach
to formal reasoning about well-behaved structural operational specifications. An
extension of algebraic and coalgebraic methods, it abstracts from concrete notions of
syntax and system behaviour, thus treating various kinds of operational descriptions
in a uniform fashion.

In this talk, the current state of the art in the area of bialgebraic semantics is
presented, and its prospects for the future are sketched. In particular, a combi-
nation of basic bialgebraic techniques with a categorical approach to modal logic
is described, as an abstract approach to proving compositionality by decomposing
modal logics over structural operational specifications.

Key words: Structural operational semantics, category theory,
algebra, coalgebra, bialgebra

1 Introduction

Since its invention in the early 1980’s, Structural Operational Semantics
(SOS) [36,35,1] has been one of the most popular and successful frameworks
for the formal description of programming languages and process calculi. Not
only it has become the formalism of choice for a clear and concise presentation
of innumerable ideas and formalisms (see [5] for many examples), it has also
been proved a viable option for the description of fully grown programming
languages [31]. In the structural operational approach, the semantics of pro-
grams (or processes) is described by means of transition systems, induced by
inference rules following their syntactic structure. The intuitive appeal of this

1 Supported by EPSRC grant EP/D039045/1.
2 Email: bklin@inf.ed.ac.uk

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Klin

approach and, importantly, its inherent support for modelling nondetermin-
istic behaviour, makes it a natural framework for describing computational
languages.

There are many types of standard reasoning applied to structural opera-
tional descriptions to check whether they “behave well”. For example, one
often wants to prove that a certain equivalence relation on processes, defined
by the transition system induced from a specification, is compositional and
thus allows for inductive reasoning. Further, one might be interested in gener-
ating a set of equations characterising a chosen process equivalence. In other
cases, a language with an operationally defined semantics is extended with
new operators, and one would like to ensure that the extension is conser-
vative, i.e., that the behaviour of the old operators is left unchanged. More
generally, one would like to compare two languages and check whether one can
be translated to the other such that its operational semantics, or a process
equivalence, is preserved. One could also try to combine two languages, or a
set of separately defined operators, and reason about the resulting language
in a modular fashion, based on features of its components.

Proofs of properties such as listed above can be quite demanding, and it
would be unfortunate if they had to be done from scratch for each language
considered. Indeed, the multitude of existing examples of structural opera-
tional descriptions, and the continuous appearance of new ones, calls for a
mathematical framework — a theory of SOS — that would facilitate standard
types of reasoning performed on language specifications.

In the simplest and most widely studied form of SOS, operational specifi-
cations induce labelled transition systems (LTSs) where processes are closed
terms over some algebraic signature, and labels have no specific structure.
In that case, a reasonably general theory based on the notion of Transition
System Specification (TSS) has been developed, and much progress towards
overcoming the above difficulties has been made (see [1,14] for a survey). For
most classical process equivalences congruence formats have been provided,
i.e., syntactic restrictions on inference rules that guarantee the equivalences
compositional. Much work on equational definability and conservative exten-
sions has also been done. Least progress has been made in the area of language
translation and modularity, with the notable exception of Modular Structural
Operational Semantics by Mosses [32], which enjoys better modularity than
its classical version when applied to standard cases.

However, the issue becomes more complex with the continuing appearance
of new syntactic and computational paradigms dictated by the everchang-
ing world of computing. Examples include probabilistic, timed and hybrid
systems, ones with global or local state, name passing, process passing, and
stochastic systems. All these features can be described in some forms of struc-
tural operational semantics. Arguably though, the treatment of these forms
in the classical TSS framework is rather superficial, as it does not take into
account the semantic structure of transition systems involved. As a result,

2



Klin

the existing approaches to checking whether semantic descriptions are well
behaved, are hard to adapt to these new paradigms; instead one usually needs
to rework the old solutions from scratch in each case.

It is therefore desirable to have a theory of SOS that would abstract from
the syntactic and computational paradigms involved, and allows one to define
and prove useful properties of semantic descriptions on an abstract level. With
such a theory, SOS will hopefully be better prepared for future changes in the
world of computing.

The basics of such a theory were proposed by Turi and Plotkin in [40].
Its beginnings lie in the coalgebraic account of transition systems (see [17] for
a gentle introduction and [38] is a good reference), where the notion used to
classify various kinds of processes is that of behaviour, modelled as a functor
on a category and formally representing the vague concept of computational
paradigm. Combined with the classical algebraic approach to syntax, these
techniques lead to the development of bialgebraic semantics of processes, which
turned out to generalise and explain many aspects of well-behaved operational
semantics.

Since then, the bialgebraic approach has developed considerably, and it
has lead to several results interesting to a wider community. The purpose
of this extended abstract is to give a gentle introduction to basic bialgebraic
techniques, aimed at researchers familiar with SOS; to sketch their current
stage of development; and to present the author’s personal views on their fu-
ture prospects. Note that much of interesting work on bialgebras in semantics,
some of it less directly related to SOS, has been omitted in this introductory
paper, and the bibliography included is far from complete.

Acknowledgements. The author is grateful to Gordon Plotkin for con-
tinuing cooperation, and to Alexander Kurz for useful discussions.

2 Bialgebraic semantics

In this section, the framework of bialgebraic semantics is presented together
with some results that have been obtained through its use. To appreciate
the following development, the reader is expected to be familiar with the ba-
sics definitions and techniques of structural operational semantics (see [1] for a
reference). Bialgebras are defined in the language of category theory, so famil-
iarity with basic notions such as category, functor and natural transformation
is also recommended (the first chapters of [2,30] are good references).

2.1 Processes as coalgebras

In the standard framework of SOS as used e.g. in process algebra [1], structural
operational descriptions specify labelled transition systems (LTSs), i.e., triples
〈X,A,→〉, where X is a set of processes, A a set of labels, and →⊆ X×A×X

3



Klin

is a labelled transition relation. It is easy to see LTSs as functions

h : X → P(A×X)

where P is the powerset construction and × is cartesian product. Indeed, an
LTS maps a process x ∈ X to the set of all tuples 〈a, y〉 such that x

a
−→ y.

In the language of category theory, a map as above is called a coalgebra for
the functor P(A×−). In general, for any functor B, a B-coalgebra is a map
(function) h : X → BX for some object (set) X.

As it happens, coalgebras for some other functors on the category Set of
sets and functions correspond to other well-known types of transition systems.
For example:

• Coalgebras for Pf(A×−), where Pf is the finite powerset functor, are finitely

branching LTSs. Coalgebras for (Pf(−))A are image finite LTSs.

• Coalgebras for D(A×−)+1, where D is the probability distribution functor,
are generative probabilistic transition systems.

• Coalgebras for (S×(1+−))S are deterministic transition systems with state
and termination.

Many other examples of systems modelled as coalgebras for functors on Set

can be found in [38]. Coalgebras for functors on other categories have also
been used; for example, in [8], coalgebras for a certain functor on the category
NSet of nominal sets and equivariant functions [13] are shown to correspond
to a kind of labelled transition systems with name binding. The coalgebraic
abstraction allows one to treat many different kinds of systems in a uniform
manner. At the same time, many important notions used in reasoning about
transition systems can be explained at the abstract, coalgebraic level; exam-
ples include canonical process equivalences such as bisimilarity, or modal logics
such as the Hennessy-Milner logic.

2.2 Terms as algebras

In simple types of structural operational semantics, processes are closed terms
over some algebraic signature. It is standard to consider sets of such terms as
algebras for certain functors on Set. For example, a language syntax described
by the grammar

t ::= nil | a.t | t+ t | t||t ,

where a ranges over a fixed set A, corresponds to the functor

ΣX = 1 + A×X +X ×X +X ×X

where 1 is a singleton set, × is cartesian product and + is disjoint union.
Note that an element of the set ΣX can be seen as a simple term of the
above grammar, build of exactly one syntactic construct with variables from
X. It turns out that algebras for the signature (in the usual sense of universal

4



Klin

algebra) are maps
g : ΣX → X

with X the algebra carrier. This way, a simple syntax corresponds to a functor
on Set. To model more advances syntactic features such as variable binding,
one needs to move to more complex categories, such as NSet.

If a functor Σ corresponds to an algebraic signature, then the set of terms
over the signature and over a set X of variables is denoted TΣX, or TX if Σ is
clear from context. In particular, T0 is the set of closed terms over Σ. This set
admits an obvious and canonical algebra structure, denoted ψ : ΣT0 → T0.
This Σ-algebra is initial: for any other algebra g : ΣX → X there is a unique
homomorphism from ψ to g, i.e., a map g♯ : T0 → X such that g♯◦ψ = g◦Σψ.
Intuitively, g♯ is defined by structural induction, where g defines the inductive
step. The construction T is also a functor, and it is called the monad freely
generated by Σ. The notions of initial algebra and freely generated monad
does not depend on Σ corresponding to an algebraic signature, and can be
defined for many other functors. For more intuitions about this categorical
approach to induction, see e.g. [17].

2.3 Abstract GSOS

Simple structural operational descriptions induce LTSs with closed terms as
processes. In other words, the set of processes is equipped with both a coal-
gebraic structure, which maps a process to a structure of its successors, and
an algebraic structure, which describes how to obtain a process by combining
other processes. Formally, induced LTSs are coalgebras h : T0 → BT0 for a
suitable behaviour B, and for T the monad freely generated by syntax Σ.

To model the process of inducing LTSs with syntax abstractly, a suffi-
ciently abstract notion of structural operational description is needed. For a
first attempt, consider a standard set of operational inference rules for a toy
language with synchronous product:

x
a

−→ x′ y
a

−→ y′

x⊗ y
a
−→ x′ ⊗ y′ a

a
−→ nil

(1)

where a ranges over a fixed set A of labels. The syntax of this language
corresponds, as in §2.2, to the functor

ΣX = 1 + A+X ×X .

Rules (1) induce a standard LTS labelled with A, i.e., a coalgebra for the
functor

BX = P(A×X) .

But how to model the rules on the abstract level? Informally, they define
the behaviour (i.e., the set of successors) of a term built of a single syntactic
construct and variables, based on some information about the behaviour of

5



Klin

subterms represented by the variables. For example, given processes x, y from
any set X, and sets of successors for x and for y, the leftmost rule defines the
set of successors for the process x⊗ y. Note that while successors of x and y
are variables and therefore can be thought of as arbitrary elements of X, the
derived successors of are simple terms from ΣX. Formally, the left rule in (1)
can be modelled as a function

λ⊗ : BX × BX → BΣX

defined by

λ⊗(β, γ) = { 〈a, x⊗ y〉 ∈ A× ΣX | 〈a, x〉 ∈ β ∧ 〈a, y〉 ∈ γ } .

Similarly, the right rule represents a function λA : A→ BΣX defined by

λA(a) = {〈a, nil〉} ,

and even the lack of any rules for the construct nil defines its behaviour: the
process nil has no successors. This can be viewed as a function λnil : 1 →
BΣX:

λnil(∗) = ∅ .

The three functions can be combined into a function

λ : ΣBX → BΣX

defined by cases and corresponding to (1). Note that the structure of X
and the nature of its elements are completely ignored in the definition of λ.
Formally, λ is natural over X:

λ : ΣB =⇒ BΣ . (2)

A natural transformation like this is called a distributive law of Σ over B,
and a first attempt to model structural operational rules would be to consider
distributive laws of the syntax functor over the behaviour functor. We have
just seen a reasonable example covered by this notion. Moreover, it turns out
that the process of inferring LTSs from SOS rules can be explained abstractly
at the level of distributive laws. Indeed, the unique algebra morphism hλ from
the initial Σ-algebra as below:

T0

hλ

��

ΣT0
ψ

oo

Σhλ

��

BT0 BΣT0Bψ
oo ΣBT0λT0

oo

is an LTS of the required type. 3 The reader is encouraged to check that for

3 The pair 〈ψ, hλ〉 is a λ-bialgebra [40], the central notion of bialgebraic semantics.

6



Klin

the transformation λ defined as above, the inductively defined hλ is exactly
the expected LTS induced by (1).

The above encourages one to model sets of SOS rules as distributive laws.
However, there are many examples which do not fit into the simple framework
described so far. Consider, for example, rules like

x
a

−→ x′

x + y
a

−→ x′

x
a
−→ x′

x|y
a
−→ x′|y

x
a

−→ x′

!x
a
−→ x′|!x

. (3)

According to the first rule, an inferred successor of a process x + y does not
need to be a term built of a single syntactic construct; indeed, it is merely
a variable. In the second rule, the inferred successor is not built solely of
successors of the subprocesses x and y; instead, the variable y is used itself.
In the third rule, both problems occur, although here the inferred successor is
not a variable, but a complex term with more than one syntactic construct.
All these rules cannot be represented as a natural transformation (2) for the
obvious choices of B and Σ.

A more general framework was proposed already in the original paper [40],
where distributive laws

λ : Σ(Id×B) =⇒ BT (4)

were considered. B-coalgebras can be induced from such laws much the same
as shown above for the simple laws. It turns out that for B = P(A × −),
and for Σ and T corresponding to an algebraic signature, laws of this kind
correspond exactly to specifications in the well-known format GSOS [6]; hence
the name abstract GSOS. In particular, the three problematic rules (3) can be
modelled as distributive laws.

In [40], distributive laws dual to (4) were also considered, i.e., natural
transformations

ν : ΣD =⇒ B(Id + Σ) (5)

where D is the comonad cofreely generated by B, just as T in (4) is the
monad freely generated by Σ. For B = Pf(A×−), DX is the set of finite or
infinite trees edge-labelled by A and node-labelled by X, quotiented by strong
bisimilarity, and distributive laws (5) correspond to sets of SOS rules in the
safe ntree format [11,40].

Both GSOS and safe ntree formats guarantee bisimilarity to be a congru-
ence on the induced LTS. An important contribution of [40] was to show that
these congruence properties can be proved on the abstract level of distributive
laws, and thus they are immediately translated to SOS frameworks based on
different notions of syntax and behaviour. Several applications of this result,
together with some other work on bialgebraic semantics published so far, are
mentioned in the remainder of this section.

7



Klin

2.4 Categorical foundations

In [40], natural transformations of the type (4) and (5) are considered as spe-
cial cases of the more general notion of a distributive law of a monad over
a comonad. In [28,29,37], various types of distributive laws are studied on
the abstract, categorical level. In [4], different kinds of distributive laws are
studied and related on the concrete example of LTSs; also a complete proof of
one-to-one correspondence between abstract GSOS and concrete GSOS spec-
ifications is included there.

2.5 Abstract GSOS for probabilistic and timed systems

In [3,4], the abstract GSOS framework is applied to reactive probabilistic
systems and probabilistic automata, represented as coalgebras for suitable
functors. A congruence format for probabilistic bisimilarity is derived.

In [18,19], the same framework is applied to processes with timed tran-
sitions. Congruence results regarding time bisimilarity are proved, and a
congruence format for the case of discrete time is derived. In [20,21], the
combination of timing with action is studied more carefully, with insights on
combining different behaviours to obtain a modular account of semantics.

2.6 Recursion

In [23], abstract GSOS is studied in a CPO-enriched setting, where recursion
is possible to express via straightforward fixpoint constructions. There, it
is shown how to combine standard GSOS distributive laws with recursive
equations to obtain other well-behaved distributive laws. Another bialgebraic
approach to recursive equations is [16].

2.7 Name binding

In [9,10], syntax with variable binding was modelled algebraically in a presheaf
category, and the standard SOS description of the π-calculus was shown to fit
in the abstract GSOS format there, although no actual format was proposed.
Recently [8], such a format, a special case of abstract GSOS, has been proposed
in the closely related setting of nominal sets [13], with congruence properties
related to a version of open bisimilarity. Interestingly, in nominal settings
the syntax and behaviour functors reside in different categories. The basic
bialgebraic setting is suitably generalised to accommodate this.

2.8 Van Glabbeek spectrum

In [25,22,24], abstract GSOS is interpreted in certain fibered categories. This
allows one to derive congruence formats for process equivalences other than
the canonical coalgebraic notion of bisimilarity. In particular, novel formats
for completed trace and failures equivalences on LTSs were obtained.

8



Klin

3 Future directions

Bialgebraic techniques are still in the initial stage of development and much
remains to be done if a general and practical theory of structural operational
semantics is to be achieved. This section briefly presents the author’s personal
view on the most promising directions of development, and the most important
challenges to be taken.

3.1 Relations to reactive systems

In modern process algebra, much attention is paid to a semantic framework
alternative to SOS, i.e., to reactive systems [27]. Many languages, such as
the π-calculus or ambient calculus, are naturally described in the language
of reactive systems, where dynamic behaviour is described by an unlabelled
reaction relation together with a suitable structural congruence. The reactive
approach is quite intuitive and easy to use; however, it imposes less structure
on the described language and in particular it does not easily facilitate com-
positionality. It would be very desirable to build a bridge between SOS and
reactive systems, and be able to translate or compare operational descriptions
between the two formalisms. It seems that sufficiently abstract theories of
both approaches is indispensable to that end. The bialgebraic approach will
hopefully become such a theory for SOS, and [27,39] can be seen as attempts
to develop such a theory for reactive systems.

3.2 Modal logic decomposition

In a coalgebraic approach to modal logics and system testing [15,26,34], one
considers a contravariant adjunction between a category C of processes, where
coalgebras for a functor B are systems, and a category D of tests, with a func-
tor L representing the syntax of a logic. The functors B and L are connected
along the adjunction, and the connection provides an interpretation of the
logic over B-coalgebras.

In the bialgebraic setting, processes are equipped with syntax represented
by a functor Σ on C, with a distributive law λ of Σ over B representing oper-
ational semantics. It is then natural to consider a functor Γ on D, connected
to Σ along the adjunction and representing the “behaviour of the logic”. In-
tuitively, Γ-coalgebras describe ways of decomposing modal logics over the
syntax Σ. One can try to come up with a distributive law of L over Γ, con-
nected to λ along the adjunction. If this succeeds, then logic decomposition is
compatible with the operational semantics and the process equivalence defined
by the logic L is compositional with respect to the language defined by λ. This
provides a general framework for proving congruence results, of which [22,24]
is a special case. On the concrete level, the resulting congruence principle is
related to work on decomposing modal logics such as [12].

9



Klin

3.3 Equations and weak equivalences

An important tool in practical operational semantics are equations between
process terms, allowing language designers to prepare shorter and more in-
tuitive descriptions. While in principle, equations are easily to express on
the abstract bialgebraic level by considering syntactic monads other than the
freely generated ones, the development of concrete formats based on this ob-
servation is a difficult challenge. One would like to match the more concrete
development of [33].

Dually, it is also important to treat weak equivalences such as weak bisim-
ilarity in the bialgebraic setting, providing congruence results for them. This
would require a general coalgebraic approach to weak equivalences, a major
challenge with no satisfactory solution so far.

3.4 Modularity

The ultimate practical goal of a theory of SOS must be a general, easy-to-use
and expressive framework for the modular development of operational seman-
tics. The ambition of the bialgebraic approach is to make the framework
parametrised by notions of syntax and behaviour. However, many problems
need to be solved before such a framework appears. A theory of well-behaved
translations between operational descriptions needs to be developed, and no-
tions of morphisms between distributive laws such as those in [41] seem good
steps to this end. Modular construction of SOS descriptions will also require
techniques for combining rules based on different types of behaviour. Initial
attempts to that end were made in [20,21]. In the coalgebraic world, much
work on composing behaviours has been done in relation with modal logics [7].

References

[1] L. Aceto, W. J. Fokkink, and C. Verhoef. Structural operational semantics. In
J. A. Bergstra, A. Ponse, and S. Smolka, editors, Handbook of Process Algebra.
Elsevier, 2002.

[2] J. Adámek, H. Herrlich, and G. E. Strecker. Abstract and Concrete Categories.
2004. Available from http://katmat.math.uni-bremen.de/acc.

[3] F. Bartels. GSOS for probabilistic transition systems. In Proc. CMCS’02,
volume 65 of ENTCS, 2002.

[4] F. Bartels. On Generalised Coinduction and Probabilistic Specification Formats.
PhD dissertation, CWI, Amsterdam, 2004.

[5] J. A. Bergstra, A. Ponse, and S. Smolka. Handbook of Process Algebra. Elsevier,
2002.

[6] B. Bloom, S. Istrail, and A. Meyer. Bisimulation can’t be traced. Journal of

the ACM, 42:232–268, 1995.

10



Klin

[7] C. Cirstea and D. Pattinson. Modular construction of modal logic. In Proc.

CONCUR’04, volume 3170 of Lecture Notes in Computer Science, 2004.

[8] M. Fiore and S. Staton. A congruence rule format for name-passing process
calculi from mathematical structural operational semantics. In Proc. LICS’06.
IEEE Computer Society Press, 2006.

[9] M. P. Fiore, G. D. Plotkin, and D. Turi. Abstract syntax with variable binding.
In Proc. LICS’99, pages 193–202. IEEE Computer Society Press, 1999.

[10] M. P. Fiore and D. Turi. Semantics of name and value passing. In Proc.

LICS’01, pages 93–104. IEEE Computer Society Press, 2001.

[11] W. Fokkink and R. van Glabbeek. Ntyft/ntyxt rules reduce to ntree rules.
Information and Computation, 126, 1996.

[12] W. J. Fokkink, R. J. van Glabbeek, and P. de Wind. Compositionality
of Hennessy-Milner logic through structural operational semantics. In Proc.

FCT’03, volume 2751 of LNCS, 2003.

[13] M. J. Gabbay and A. M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13:341–363, 2001.

[14] J. F. Groote, M. Mousavi, and M. A. Reniers. A hierarchy of sos rule formats.
In Proc. SOS’05.

[15] B. Jacobs. Towards a duality result in the modal logic for coalgebras. In Proc.

CMCS 2000, volume 33 of ENTCS, 2000.

[16] B. Jacobs. Distributive laws for the coinductive solution of recursive equations.
Information and Computation, 204, 2006.

[17] B. Jacobs and J. J. M. M. Rutten. A tutorial on (co)algebras and (co)induction.
Bulletin of the EATCS, 62, 1996.

[18] M. Kick. Bialgebraic modelling of timed processes. In Proc. ICALP’02, volume
2380 of LNCS, 2002.

[19] M. Kick. Rule formats for timed processes. In Proc. CMCIM’02, volume 68 of
Electronic Notes in Theoretical Computer Science. Elsevier, 2002.

[20] M. Kick and J. Power. Modularity of behaviours for mathematical operational
semantics. In Procs. CMCS’04, volume 106 of ENTCS, 2004.

[21] M. Kick, J. Power, and A. Simpson. Coalgebraic semantics for timed processes.
Information and Computation. To appear.

[22] B. Klin. Abstract Coalgebraic Approach to Process Equivalence for Well-

Behaved Operational Semantics. PhD thesis, BRICS, Aarhus University, 2004.

[23] B. Klin. Adding recursive constructs to bialgebraic semantics. Journal of Logic

and Algebraic Programming, 60-61, 2004.

11



Klin

[24] B. Klin. From bialgebraic semantics to congruence formats. In Proc. SOS 2004,
volume 128 of ENTCS, 2005.

[25] B. Klin and P. Sobocinski. Syntactic formats for free: An abstract approach to
process equivalence. In Proc. CONCUR 2003, volume 2671 of LNCS, 2003.

[26] A. Kurz. Coalgebras and their logics. ACM SIGACT News, 37, 2006.

[27] J. Leifer and R. Milner. Deriving bisimulation congruences for reactive systems.
In Proc. CONCUR 2000, volume 1877 of LNCS, 2000.

[28] M. Lenisa, J. Power, and H. Watanabe. Distributivity for endofunctors, pointed
and co-pointed endofunctors, monads and comonads. In Proc. CMCS’00,
volume 33 of Electronic Notes for Theoretical Computer Science. Elsevier, 2000.

[29] M. Lenisa, J. Power, and H. Watanabe. Category theory for operational
semantics. Theor. Comput. Sci., 327(1-2), 2004.

[30] S. Mac Lane. Categories for the Working Matematician. Springer-Verlag,
second edition, 1998.

[31] R. Milner and M. Tofte. The definition of Standard ML. MIT Press, revised
edition, 1997.

[32] P. D. Mosses. Modular structural operational semantics. Journal of Logic and

Algebraic Programming, 60-61, 2004.

[33] M. R. Mousavi and M. A. Reniers. Congruence for structural congruences. In
Proc. FOSSACS’05, volume 3441 of LNCS, 2005.

[34] D. Pavlovic, M. Mislove, and J. B. Worrell. Testing semantics: connecting
processes and process logics. In Proc. AMAST’05, volume 4019 of LNCS, 2005.

[35] G. D. Plotkin. The origins of structural operational semantics. Journal of Logic

and Algebraic Programming, 60-61, 2004.

[36] G. D. Plotkin. A structural approach to operational semantics. Journal of

Logic and Algebraic Programming, 60-61:17–139, 2004.

[37] J. Power and H. Watanabe. Distributivity for a monad and a comonad.
In Procs. CMCS’99, volume 19 of Electronic Notes on Theoretical Computer

Science. Elsevier Science Publishers, 1999.

[38] J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theoretical

Computer Science, 249:3–80, 2000.

[39] V. Sassone and P. Sobocinski. Locating reaction with 2-categories. Theoretical

Computer Science, 333, 2003.

[40] D. Turi and G. D. Plotkin. Towards a mathematical operational semantics. In
Proc. LICS’97, pages 280–291. IEEE Computer Society Press, 1997.

[41] H. Watanabe. Well-behaved translations between structural operational
semantics. Electronic Notes in Theoretical Computer Science, 65, 2002.

12



SOS 2006 Preliminary Version

On Well-Foundedness and Expressiveness of
Promoted Tyft

(Being Promoted Makes a Difference)

MohammadReza Mousavi 1, Michel Reniers

Department of Computer Science, Eindhoven University of Technology,
P.O. Box 513, NL-5600 MB Eindhoven, The Netherlands

Abstract

In this paper, we solve two open problems posed by Karen L. Bernstein regarding her
promoted tyft format for structured operational semantics. We show that, unlike
formats with closed terms as labels, such as the tyft format, the well-foundedness
assumption cannot be dropped for the promoted tyft format while preserving the
congruence result. We also show that the well-founded promoted tyft format is
incomparable to the tyft format with closed terms as labels, i.e., there are transition
relations that can be specified by the promoted tyft format but not by the tyft
format, and vice versa.

Key words: Structural Operational Semantics (SOS), SOS Rule
Formats, Promoted Tyft, Tyft.

1 Introduction

In [1], Bernstein proposed the promoted tyft format which is an elegant frame-
work for specifying the operational semantics of higher-order processes. She
proved that the well-founded promoted tyft format guarantees strong bisimi-
larity to be a congruence. The conclusions of [1] reads as follows.

“In this paper, we have described a rule format that is a simple but ex-
pressive generalization of Groote and Vaandrager’s tyft/tyxt rule format. ...
There are several open questions related to the work in this paper. It is
not clear that the well-foundedness property is necessary for the congru-
ence result. We are not sure how the extensions to tyft/tyxt format that
allow negative premises are compatible with our extensions. It is not clear
whether promoted tyft/tyxt format is strictly more expressive than tyft/tyxt
format.”

1 Corresponding author: MohammadReza Mousavi, m.r.mousavi@tue.nl
This is a preliminary version. The final version will be published in

Electronic Notes in Theoretical Computer Science



Mousavi, Reniers

We touched upon the second open question in another publication [2]. In
this paper, we answer the first and the third questions as follows.

• We show that the promoted tyft format does not necessarily induce congru-
ence of strong bisimilarity if the well-foundedness assumption is omitted;

• We show that the well-founded subset of the promoted tyft format is incom-
parable, in its expressiveness, with the tyft format. In other words, we give
two counter-examples witnessing that there exist transition relations that
can be specified by one rule format but not by the other.

The rest of this paper is organized as follows. In Section 2, we give some
basic definitions. Section 3 addresses the well-foundedness concept, shows
that it cannot be dropped for the promoted tyft format while preserving the
congruence result. Section 4 addresses the expressiveness of the promoted tyft
format and proves it incomparable to the tyft format. The paper is concluded
in Section 5.

2 Preliminaries

Definition 2.1 (Signature, Term and Substitution) Assume a countable
set of variables V (with typical members x, y, x′, y′, xi, yi . . .). A signature
Σ is a set of function symbols (operators, with typical members f , g, . . .) with
fixed arities ar : Σ → IN. Functions with zero arity are called constants.
Terms s, t, ti, . . . ∈ T are constructed inductively using variables and function
symbols. A list of terms is denoted by

−→
t . When we write f(

−→
t ), we assume

that
−→
t has the right size, i.e., ar(f). All terms are considered open terms.

Closed terms p, q, . . . ∈ C are terms that do not mention a variable and are
typically denoted by p, q, p′, q′, pi, . . .. A substitution σ replaces variables in
a term with terms. The set of variables appearing in term t is denoted by
vars(t).

Definition 2.2 (Transition System Specification (TSS)) A transition sys-
tem specification is a tuple (Σ, D) where Σ is a signature and D is a set of
deduction rules. A deduction rule dr ∈ D, is defined as a tuple (H, c) where
H is a set of formulae and c is a formula. For all t, t′, t′′ ∈ T we define

that t
t′→ t′′ is a formula. The formula c is called the conclusion of dr and the

formulae from H are called its premises. A deduction rule (H, c) is mostly

denoted by
H

c
.

The concept of substitution is lifted to formulae and sets of formulae in
the natural way (i.e., a substitution applied to a formula, applies to all three
terms). We refer to t as the source, t′ as the label and t′′ as the target of
the transition. We may also write vars(φ) and vars(H) to denote variables
appearing in a formula and in a set of formulae, respectively.

Definition 2.3 (Tyft [3] and Promoted Tyft [1]) A deduction rule is in

14



Mousavi, Reniers

tyft format if and only if it has the following form

{ti
t′i→ yi|i ∈ I}

f(−→x )
t′→ t′′

,

where variables in −→x and yi’s are all distinct variables, all labels, i.e., t′ and
t′i’s, are closed terms, I is a (possibly infinite) set of indices.

A rule of the above form is in the promoted tyft format if the source and
targets of all formulae in it conform to the constraints of the tyft format and
further t′i’s contain at least one function symbol (i.e., are not variable), t′ is
of the form g(−→z ) where variables in −→z are all distinct and different from
variables in −→x and yi’s.

A transition system specification is in tyft (promoted tyft) format if and
only if all its deduction rules are.

A subset of the tyft format is the one using constants (instead of closed
terms) as labels which is also considered in this paper and compared to the
promoted tyft format in Section 4. Arguably, this subset can be considered
the original definition of the tyft format as defined by [3]. The generaliza-
tion to closed terms as labels (if at all considered a generalization) is entirely
safe and orthogonal to all existing results (e.g., congruence, conservativity,
commutativity meta-theorems).

The transition relation induced by a TSS (in the above two formats) is the
set of all provable formulae as defined below.

Definition 2.4 A proof of a closed formula φ is a well-founded upwardly
branching tree whose nodes are labelled by closed formulae such that

• the root node is labelled by φ, and

• if ψ is the label of a node and {ψi | i ∈ I} is the set of labels of the nodes

directly above this node, then there are a deduction rule
{χi | i ∈ I}

χ
and a

substitution σ such that σ(χ) = ψ, and for all i ∈ I, σ(χi) = ψi.

Definition 2.5 (Strong (Bi)similarity) A relation R ⊆ C × C is a strong

simulation relation when ∀p,q∈C pRq ⇒ ∀p′,p′′∈C p
p′
→ p′′ ⇒ ∃q′′∈C q

p′
→ q′′ ∧ (p′′, q′′) ∈

R. A symmetric strong simulation relation is a strong bisimulation relation.
Closed terms p and q are (bi)similar, denoted by p . q (p ↔ q) if there is a
strong (bi)simulation relation R such that p R q.

For a relation R ⊆ C × C, we write −→p R −→q and by that we mean −→p and
−→q have the same size (possibly zero) and for all pi and qi at the same position
in the two lists pi R qi.

Lemma 2.6 (Substituting Bisimilar Labels Under Context [1]) For a

TSS in the promoted tyft format, ∀
p,q,

−→
p′ ,
−→
q′ ,p′′∈C∀f∈Σ p

f(
−→
p′ )→ p′′ ∧ p ↔ q∧

−→
p′ ↔

−→
q′

15



Mousavi, Reniers

⇒ ∃q′′∈Cq
f(
−→
q′ )→ q′′ ∧ p′′ ↔ q′′.

Definition 2.7 ((Pre-)Congruence) An equivalence (a pre-order) R ⊆ C×
C is a (pre-)congruence when ∀f∈Σ ∀−→p ,−→q ∈C

−→p R −→q ⇒ f(−→p ) R f(−→q ).

3 Well-Foundedness

In [1], Bernstein proposes a definition of well-foundedness which coincides with
the following and proves that for the well-founded subset of the promoted tyft
format, bisimilarity is a congruence.

Definition 3.1 The variable dependency graph of a deduction rule is a graph
of which the nodes are variables and there is an edge from x to y when y
appears in the target of a premise and x in its source or label. A deduction
rule is well-founded when there is no backward chain of infinite length in the
variable dependency graph. A TSS is well-founded when all its deduction rules
are.

Note that this definition coincides with that of [3] in case of TSS’s with
closed terms as labels. An alternative definition of well-foundedness is the one
that treats the labels in the same way as the targets of formulae (while in
the above definition labels are treated like sources). This alternative defini-
tion, called p-well-foundedness in [2], is not useful for proving congruence of
strong bisimilarity (while it is useful for proving congruence of higher-order
bisimilarity) and in fact, as shown below, there are s-well-founded TSS’s in
the promoted tyft format for which bisimilarity is not a congruence.

Theorem 3.2 (Congruence for Well-founded (Promoted [1]) Tyft [3])
For a well-founded TSS in the (promoted) tyft format, strong bisimilarity is a
congruence.

Theorem 3.3 (Tyft Reduces to Well-founded Tyft [4]) For an arbitrary
TSS in the tyft format, there exists a well-founded TSS in the tyft format which
induces the same transition relation.

In the following three examples, we show that the congruence result for
bisimilarity can be ruined if the transition system specifications in the pro-
moted tyft format do not satisfy the well-foundedness assumption. The first
example violates the well-foundedness assumption by having a self-loop on a
variable which appears both in the label and the target of a premise.

Example 3.4 Consider the following set of deduction rules defined on a sig-
nature with 0 and 1 and f as a unary function symbol. 2 The following TSS
is in the promoted tyft format. Note that the last deduction rule is not well-
founded due to the occurrence of y both in the target and the label of the

2 In the coming examples we omit stating the precise signature as it is clear from the
symbols used in the deduction rules.

16



Mousavi, Reniers

premise. (This deduction rule is indeed s-well-founded.)

0
0→ 1 1

0→ 0

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1
0→ 0, 1

f(0)→ 0, 1
f(1)→ 1, 0

f(0)→ 1, 0
f(1)→ 0, f(1)

1→ 0, f(1)
1→ 1}

Note that for the above transition relation it holds that 0 ↔ 1, but it does not
hold that f(0) ↔ f(1). Therefore, bisimilarity is not a congruence.

In the following two examples, the same exercise is repeated, i.e., it is
shown that although the TSS is in the promoted tyft format and 0 ↔ 1, it
does not hold that f(0) ↔ f(1). In the next example, the TSS is not well-
founded since a variable in the target of a premise also appears in the source
of the same premise and thus has a self-loop in the variable dependency graph.

Example 3.5 Consider the following TSS in the promoted tyft format. The
last deduction rule is not well-founded.

0
0→ 0 1

0→ 0

x
0→ y

0
f(x)→ x

x
0→ y

1
f(x)→ y

y
f(x)→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 0, 1
0→ 0, 0

f(0)→ 0, 0
f(1)→ 1, 1

f(0)→ 0, 1
f(1)→ 0, f(0)

1→ 0}

The last example violates well-foundedness (and congruence of bisimilar-
ity) by having a non-trivial cycle concerning target, label and source of two
premises.

Example 3.6 Consider the following TSS in the promoted tyft format. The
last deduction rule is not well-founded.

0
0→ 1 1

0→ 0 0
1→ 0 1

1→ 1

x
0→ y

1
f(x)→ x

x
0→ y

0
f(x)→ y

x
f(y)→ y′ y′

1→ y

f(x)
1→ y

The following is the transition relation induced by the above TSS.

{0 0→ 1, 1
0→ 0, 0

1→ 0, 1
1→ 1,

0
f(0)→ 1, 0

f(1)→ 0, 1
f(0)→ 0, 1

f(1)→ 1, f(1)
1→ 0, f(1)

1→ 1}

The essence of all counter-examples given before is the presence of a cycle in
the variable dependency graph. Such cycles may allow for checking syntactic

17



Mousavi, Reniers

equivalence of terms (e.g., comparing the argument in the target of a premise
against a constant) and hence ruin the congruence result. An interesting
question is whether there exists a subset of non-well-founded promoted tyft
which indeed guarantees congruence, we conjecture that the safe subset of the
promoted tyft format, as defined below, is the desired subset which guarantees
congruence.

Definition 3.7 (Safe Cycles) Consider a cycle u0 → . . .→ un → u0 in the
variable dependency graph of a deduction rule of the following form:

{ti
t′i→ yi|i ∈ I}

f(−→x )
g(−→z )→ t′′

,

Such a cycle is called safe if in the variable dependency graph, there is no path
u → . . . → ui for all i, 0 ≤ i ≤ n such that u is among −→x or among −→z . A
deduction rule (TSS) is safe when all cycles in its variable dependency graph
(all its deduction rules) are safe.

The following deduction rule contains a safe cycle in its premise.

c
f(y)→ y

f(x)
g(x)→ y

4 Expressiveness

4.1 Well-Founded Promoted Tyft does not reduce to Tyft

Consider the following TSS in the promoted tyft format.

0
0→ 0 1

0→ 0 0
0→ 1 1

0→ 1

0
1→ 0 1

1→ 0 0
1→ 1 1

1→ 1

x
0→ y

0
f(x)→ 1

x
0→ y

1
f(x)→ 0

x
f(x)→ y

0
f(x)→ y

x
f(x)→ y

1
f(x)→ y

x
f(x)→ y

f(x)
1→ y

The transition relation induced by the above TSS is as follows.

{0 0→ 0; 1 , 1
0→ 0; 1 , 0

1→ 0; 1 , 1
1→ 0; 1 ,

0
f(0)→ 1 , 0

f(1)→ 0; 1 , 1
f(0)→ 0; 1 , 1

f(1)→ 0 , f(0)
1→ 1 , f(1)

1→ 0}

18



Mousavi, Reniers

where p
p′
→ p′′; q′′ means p

p′
→ p′′ and p

p′
→ q′′. We claim that the above transition

relation cannot be specified by any TSS in the tyft format.

If there is such a TSS, then there is a TSS in the pure well-founded tyft
format which induces the same transition relation as above [4].

Consider the pure well-founded TSS in the tyft format that (purportedly)
induces the same transition relation as above. Assume, without loss of gener-

ality that the proof of f(0)
1→ 1 from such a TSS does not depend on the proof

for f(1)
1→ 0 (otherwise, a similar assumption should hold for the transition

of f(1)
1→ 0 and one can swap 0’s and 1’s in the sources, labels and targets of

the transitions in the remainder of the proof and the argument remain valid).

The last deduction rule applied to derive the proof for f(0)
1→ 1 should be of

the following form.

(dr)
{ti

p′
i→ yi|i ∈ I}

f(x)
1→ t′′

,

and there is a substitution σ such that σ(x) = 0, σ(t′′) = 1 and all σ(ti
p′

i→ yi)
have a proof tree.

Definition 4.1 (Distance of a Variable) Given the above deduction rule,
define the distance of variable x as 0 and a variable yi to be the maximum of
distances of variables appearing in ti plus 1. The distance of a premise is the
distance of the variable of its target.

Term t′′ can either be a variable or the constant 1 (otherwise, if it contains
a function symbol other than 1, t′′ cannot be unified with 1). Since (dr) is
pure, it can only contain variables x or yi’s (i ∈ I) and thus t′′ can be either
1, or x or yi (for some i ∈ I).
(i) If t′′ is 1, i.e., if the deduction rule is of the following form

{ti
p′

i→ yi|i ∈ I}

f(x)
1→ 1

,

then we define substitutions σ′k inductively (on the rank of the premises)
maintaining σ(x) ↔ σ′k(x) for all variables x in the domain of σ′k. First,
define σ′0 with σ′0(x) = 1 and note that indeed σ(x) = 0 ↔ 1 = σ′0(x).

Substitution σ′k+1 is obtained from σ′k as follows: select a premise ti
p′

i→ yi

(or all such premises) for which the variables of the source are in the
domain of σ′k. Then, as σ(ti) ↔ σ′k(ti) (this follows from the fact that
σ(x) ↔ σ′k(x) for all variables x from the domain of σ′k and the fact
that for a TSS in the tyft format, bisimilarity is a congruence) and

σ(ti)
p′

i→σ(yi) we obtain the existence of q′i such that σ′k(ti)
p′

i→ q′i and
σ(yi) ↔ q′i. Then define σ′k+1(yi)

.
= q′i.

19



Mousavi, Reniers

Define σ′ to be the supremum of the chain of premises σ′0, σ
′
1, . . . (which

is increasing with respect to the subset ordering on their domains). Then,
all premises of the deduction rule are derivable with respect to substi-

tution σ′. Thus providing us with a proof for f(1)
1→ 1 (which is not

supposed to be provable according to the above transition relation).

(ii) If t′′ is x, then σ(x) = σ(t′′) = 0 which is contradictory to the target of

the transition f(0)
1→ 1.

(iii) Thus, it only remains to consider the case where t′′ is a variable yc, for
some c ∈ I, i.e., the deduction rule is of the following form

{ti
p′

i→ yi|i ∈ I}

f(x)
1→ yc

.

Take an arbitrary variable yj such that σ(yj) = 1 and define σ′0 and σ′′0
to be the following partial substitutions:

σ′0(x) = σ′0(yj) = 0 and σ′′0(x) = σ′′0(yj) = 1.

Then, using an induction on the distance of yj, we show that we can
complete either σ′0 or σ′′0 to a substitution σ′ such that the range of σ′ is

{0, 1} and for all k ∈ I, σ′(t′k
p′

k→ yk) is provable.
Then, it follows that for the particular case of yc, since σ(yc) = 1, that

we can prove either f(0)
1→ 0 or f(1)

1→ 1 which is contradictory to the
transition relation that should be induced by the TSS.
• (Base case) If the distance of yj is 1, i.e., yj is the target of a premise

of which the source only contains x as variable or is a closed term, then

the premise tj
p′

j→ yj can be of one of the following eleven shapes (for
all other transitions in the above transition relation, the target of the
transition is 0 and thus cannot match with 1).

0;x
0;1;f(0);f(1)→ yj or 1

0;1;f(0)→ yj,

where we have abused the ; notation to avoid writing all eleven cases
explicitly.

For each of these eleven cases both substitutions σ′0 and σ′′0 are com-
plete. Furthermore, for each of the cases, at least one of these substitu-
tions gives a transition that actually belongs to the transition relation
induced by the TSS.

Assuming that σ′0 is the substitution that proves the premise tj
p′

j→ yj,
as before, one can complete the definition to a substitution σ′ induc-
tively on the distance of the premises.

• (Induction step) Consider a rule in which yj has distance n + 1 for
n ≥ 1. As the distance of yj is n + 1, it cannot be the case that

20



Mousavi, Reniers

tj is a closed term or the variable x, since then the distance of yj

would have been 1. Hence, tj is a term containing at least a variable.

Our previous assumption that the proof of f(0)
1→ 1 does not depend

on a proof for f(1)
1→ 0 and the fact that all other transitions in the

transition relation have a left-hand side 0 or 1 indicates that tj has
to be a variable, say yk. Now, suppose that p′j is 0, 1, or f(1). Then,
define the substitution σ′ to be σ′(yj) = 0 and σ′(v) = σ(v) for all other
variables v and this way we have a proof for all the premises using σ′

which is an extension of σ′0. Thus it only remains to check the case

where p′j = f(0). Therefore, the premise tj
p′

j→ yj is of the form yk
f(0)→ yj

for some k ∈ I where yk has distance n. Note that necessarily σ(yk) = 0
since otherwise the substitution σ′ with σ′(v) = σ(v) for all variables
v with distance smaller than the distance of yj and σ′(yj) = 0 can be
completed inductively on the rank of the premises to a substitution that
extends σ′0 and proves all the premises.

Based on a similar reasoning we must conclude that the premise

tk
p′

k→ yk should be of the form yl
f(1)→ yk for some l ∈ I where yl has

distance n− 1 and σ(yl) = 1.
Thus we have a deduction rule of the following form:

yl
f(1)→ yk yk

f(0)→ yj {ti
p′

i→ yi|i ∈ I − {j, k}}

f(x)
1→ yc

.

By the induction step, we can complete the definition of one of the
two following substitutions:

σ′0(x) = σ′0(yl) = 0 and σ′′0(x) = σ′′0(yl) = 1

to a substitution σ′ or σ′′ such that all the premises with a distance
of n − 1 or less find a proof. If σ′0 can be completed, then we define
σ′(yk) = 1 and σ′(yj) = 0 and complete the definition of σ′ for all
premises with distance n or more, as before. If σ′′0 can be completed,
we define σ′′(yk) = 0 and σ′′(yj) = 1 and complete the definition of σ′′.

This concludes the proof as in all of the above cases, we can construct a

proof for either f(0)
1→ 0 or f(1)

1→ 1 (or both) none of which are supposed
to be in the induced transition relation.

4.2 Tyft does not reduce to Promoted Tyft

Example 4.2 Consider the following TSS in the tyft format. The signature
of the TSS consists of 0, 1 and 2 as constants and f as a unary function

21



Mousavi, Reniers

symbol.

2
f(0)→ 2

The transition relation induced by it is {2 f(0)→ 2}. We claim that there is no
TSS in the promoted tyft format which can induce the same transition relation.

It trivially holds that 0 ↔ 1 and from 2
f(0)→ 2 and Lemma 2.6 that (for a TSS

in the promoted tyft format) 2
f(1)→ 2 is also in the induced transition relation.

If one restricts the tyft format to the subset with only constants as labels,
then it trivially conforms to all requirements of the promoted tyft format and
thus, the promoted tyft format (taking the first example in Section 4.1) is
strictly more expressive than the tyft format with constants as labels.

4.3 (Promoted) Tyft reduces to Promoted PANTH

In [2], we introduced the promoted PANTH format which generalizes promoted
tyft with negative premises. But even restricted to positive TSS’s, the pro-
moted PANTH format generalizes both the promoted tyft and the tyft format.
To define the promoted PANTH format, we need the following notion of volatile
operators.

Definition 4.3 (Volatile Operators) Given a TSS (Σ, D) an operator f ∈ Σ
is called volatile when there exists a rule d ∈ D of the following form:

{ti
t′i→ t′′i | i ∈ I}

t
t′→ t′′

and f(
−→
tk ) is a subterm of t′i for some i ∈ I such that vars(

−→
tk ) ∩ vars(t) 6= ∅

or ∃i∈Ivars(
−→
tk ) ∩ vars(t′i) 6= ∅.

Note that for a TSS in the tyft format, no operator is volatile as the set
vars(

−→
tk ) is always empty.

The following is a simplified definition of the promoted PANTH format
(restricted to positive TSS’s and without predicates and lists of terms as labels)
that suffices for our purposes.

Definition 4.4 (Positive Promoted PANTH) A deduction rule is in the posi-
tive promoted PANTH format when it is of the following form

{ti
t′i→ yi | i ∈ I}

f(−→x )
t′→ t′′

and first, all xi and yj variables (0 ≤ i < ar(f) and j ∈ I) and variables in
t′ are pairwise distinct, second, if a component of ti (i ∈ I) is a variable (i.e.,
does not have any function symbol) then it is not among xi’s and yj’s and
third,

22



Mousavi, Reniers

Tyft with constants as labels

Tyft with closed terms as labels Promoted Tyft

Positive Promoted Panth

Fig. 1. Comparison of the expressiveness of rule formats.

(i) if t′ contains a volatile g ∈ Σ then t′ is of the form g(−→z ) where all zi’s
are distinct variables and for all j ∈ I, all ti containing a variable among
−→z are of the form gi(

−→
t′i ) where gi is volatile,

(ii) if there is a volatile operator in the signature and if t′ is a variable z then

for all i ∈ I, ti containing z are either z itself or are of the form gi(
−→
t′i )

where g′ is volatile.

It follows immediately from the above definition that any TSS in the tyft
format is in the positive promoted PANTH format since a TSS in the tyft format
contains no volatile operator. On the other extreme resides the promoted tyft
format which is a subset of positive promoted PANTH in which all operators are
considered volatile (regardless of whether or not they actually are volatile).
Thus, we conclude that positive promoted PANTH is strictly more expressive
than both tyft and promoted tyft since it includes TSS’s of examples of Section
4.1 and has both formats as its (proper) subsets.

Figure 1 summarizes the result of our comparison. Each arrow shows strict
inclusion of the sets of definable transition relations.

5 Conclusions

In this paper we studied issues related to the well-foundedness of premises
and expressiveness for (the set of transition relation that can be specified
by) TSS’s in the promoted tyft format. We showed that well-foundedness
cannot be dropped while preserving the congruence property for bisimilarity.
Furthermore, we compared the expressiveness of the tyft, the promoted tyft,
and the positive subset of the promoted PANTH formats and showed that while
the tyft format with closed terms is incomparable to the promoted tyft format,
the positive subset of the promoted PANTH format is strictly more expressive

23



Mousavi, Reniers

than both.

Regarding well-foundedness, we are currently studying the congruence
meta-theorem for the safe subset of the promoted tyft format. The techniques
used in [4] are not directly applicable to this setting as the open terms on the
labels (containing at least one function symbol) cannot be trivially resolved
to variables. Regarding expressiveness, it is interesting to compare the safe
promoted tyft format with the promoted tyft format. We do not yet know the
answer but expect the two formats to be equally expressive.

References

[1] K. L. Bernstein, A congruence theorem for structured operational semantics of
higher-order languages, in: Proceedings of the 13th IEEE Symposium on Logic In
Computer Science (LICS’98), IEEE Computer Society, Los Alamitos, CA, USA,
1998, pp. 153–164.

[2] M.R. Mousavi, M. J. Gabbay, M. A. Reniers, SOS for higher order processes,
in: Proceedings of the 16th International Conference on Concurrency Theory
(CONCUR’05), Lecture Notes in Computer Science, Springer-Verlag, Berlin,
Germany, 2005, pp. 308–322.

[3] J. F. Groote, F. W. Vaandrager, Structured operational semantics and
bisimulation as a congruence, Information and Computation (I&C) 100 (2)
(1992) 202–260.

[4] W. J. Fokkink, R. J. van Glabbeek, Ntyft/ntyxt rules reduce to ntree rules,
Information and Computation (I&C) 126 (1) (1996) 1–10.

[5] D. J. Howe, Proving congruence of bisimulation in functional programming
languages, Information and Computation (I&C) 124 (1996) 103–112.

24



SOS 2006 Preliminary Version

Modular Structural Operational Semantics
with Strategies ⋆

Christiano Braga 1 Alberto Verdejo 2

Facultad de Informática
Universidad Complutense de Madrid

Abstract

Strategies are a powerful mechanism to control rule application in rule-based sys-
tems. For instance, different transition relations can be defined and then combined
by means of strategies, giving rise to an effective tool to define the semantics of
programming languages. We have endowed the Maude MSOS Tool (MMT), an ex-
ecutable environment for modular structural operational semantics, with the pos-
sibility of defining strategies over its transition rules, by combining MMT with the
Maude strategy language interpreter prototype. The combination was possible due
to Maude’s reflective capabilities. One possible use of MMT with strategies is to
execute Ordered SOS specifications. We show how a particular form of strategy
can be defined to represent an OSOS order and therefore execute, for instance,
SOS specifications with negative premises. In this context, we also discuss how
two known techniques for the representation of negative premises in OSOS become
simplified in our setting.

Key words: Modular SOS, Strategies, Ordered SOS, Negative
Premises

1 Introduction

Strategies are a powerful mechanism for the specification of programming
languages and systems. A strategy language describes how rules should be
applied in a given rule-based specification by means of a combination of basic
strategies. In Maude’s strategy language [7], our language of choice, a basic
strategy specifies that a rule, denoted by its label, can be applied possibly with
a given substitution and using given strategies to solve its premises, if any.

⋆ Research supported by MCyT Spanish project MIDAS (TIC2003-0100) and Ramón y Cajal

program.
1 Email: ‘cbraga@fdi.ucm.es’ (On leave from Universidade Federal Fluminense, Brasil.)
2 Email: ‘alberto@sip.ucm.es’

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Braga and Verdejo

Strategy combinators are tests, conditionals, decomposition (i.e. a strategy
applied to subterms), and search. Recursive strategies can also be defined.
Non-trivial examples where the Maude’s strategy language has been used to
implement structural operational semantics are the Eden language, that has
several transition relations which can be specified and combined by means
of strategies [5], and the ambient calculus, where strategies [14] are used to
control communication, replication and termination.

We have endowed Modular SOS (MSOS) [10] specifications with strate-
gies, by putting together the Maude MSOS Tool (MMT) [2], an executable
environment for MSOS, with Maude’s strategy language (MSL) [7]. The com-
bined tool, named MMT+MSL, is implemented as a conservative extension of
Maude’s extensible module algebra implemented in Full Maude [4]. To illus-
trate the usefulness of our proposal, we show how Ordered SOS (OSOS) [15]
specifications can be directly represented in MMT+MSL, where the transition
rules are the same and the order is represented as a strategy. Then, using this
representation, negative premises become executable in MMT+MSL by the
application of the techniques given in [15], and yet, simplified. As a concrete
example, we extend the modular SOS specification of CCS with priorities.

This paper is organized as follows. Section 2 overviews Maude’s strategy
language, exemplifies the syntax for specifications accepted by MMT+MSL,
using CCS as example, and the implementation MMT+MSL in Full Maude.
Section 3 explains how Ordered SOS specifications can be represented as spec-
ifications in MMT+MSL. Section 4 briefly recalls how negative premises can
be represented in OSOS. Section 5 extends the CCS specification in Section 2
with a priority operator. Section 6 concludes the paper with our final remarks.

2 MMT+MSL

2.1 Maude’s Strategy Language

Rewrite rules in rewriting logic need be neither confluent nor terminating.
This theoretical generality requires some control when the specifications be-
come executable, because it must be ensured that the rewriting process does
not go in undesired directions. Maude’s strategy language can be used to con-
trol how rules are applied to rewrite a term [7]. The simplest strategies are the
constants ‘idle’, which always succeeds by doing nothing, and ‘fail’, which
always fails. The basic strategies consist of the application of a rule (identified
by the corresponding rule label) to a given term, and with the possibility of
providing a substitution for the variables in the rule. In this case a rule is
applied anywhere in the term where it matches satisfying its condition. When
the rule being applied is a conditional rule with rewrites in the conditions, the
strategy language allows to control how the rewrite conditions are solved by
means of search expressions. An operation ‘top’ to restrict the application of
a rule just to the top of the term is also provided. Basic strategies are then

26



Braga and Verdejo

combined so that strategies are applied to execution paths. Some strategy
combinators are the typical regular expression constructions: concatenation
(‘;’), union (‘|’), and iteration (‘*’ for 0 or more iterations, ‘+’ for 1 or more,
and ‘!’ for a ‘repeat until the end’ iteration). Another strategy combinator
is a typical ‘if-then-else’, but generalized so that the first argument is also a
strategy. By using this combinator, we can define many other useful strategy
combinators as derived operations: for example a binary ‘orelse’ combinator
that applies the second argument strategy only if the first fails, and a unary
‘not’ combinator that fails when its argument is successful and vice versa.
The language also provides a ‘matchrew’ combinator that allows a term to be
split in subterms, and specifies how these subterms have to be rewritten. An
extended ‘matchrew’, ‘xmatchrew’, is also provided where rewriting modulo
axioms associativity, commutativity, identity and idempotency is considered,
when declared. Recursion is also possible by giving a name to a strategy
expression and using this name in the strategy expression itself or in other
related strategies.

Using the Maude metalevel, we have implemented a prototype of the strat-
egy language as an extension of Full Maude [7]. Currently the language is
being integrated in the Maude system.

2.2 CCS in MMT+MSL

Modular SOS is a variant of SOS that allows for specifications to be made
modular by structuring the labels in the transition rules as extensible records.
Semantic rules for a given constructor use certain indices from the record
structure, so that newly added rules could range over (existing or) new indices,
thus allowing that existing rules are not changed when new semantic entities
are required. Therefore, semantic rules may be declared once and for all. For
instance, rules for a functional fragment may access an environment from the
label structure while rules for an imperative fragment may access the memory
component.

MMT [1] is an executable environment for MSOS and was implemented as
a formal tool in the precise sense presented in [3], that is, as a realization of a
semantics preserving mapping between Modular SOS and rewriting logic. The
modular SOS definition formalism is the specification supported by MMT. It
allows MSOS specifications to be written in a quite succinct syntax that in-
cludes: support for grammar specification in BNF like syntax, implicit module
inclusion, “type declaration” as alias for instantiated parameterized built-in
types, automatic derived set and list declarations for each explicitly declared
set in the BNF or aliasing sections, automatic variable declarations by ap-
pending “primes” and numbers on the set names, and explicit label structure
declaration.

Let us discuss now how CCS can be specified and executed in MSDF.
We also present a strategy that solves the rules premises in depth-first search.

27



Braga and Verdejo

Concrete labels and process identifiers are declared to test the execution of our
specification. No runs are shown in the paper but the tool and this example
can be downloaded from http://maude-msos-tool.sf.net/mmt+msl/.

We follow the constructive approach for semantic descriptions proposed by
Mosses in [11] and thus present each construct as a separate module in MSDF.

The module ‘LABEL’ declares a set for action labels. The module ‘ACTION’
declares the set ‘Action’ that includes labels and the (unobservable) ‘tau’
action.

(msos LABEL is (msos ACTION is

Label . Action .

Label ::= ~ Label | a | b | c . Action ::= Label | tau .

sosm) sosm)

The module ‘PROCESS’ declares the set of processes (‘Process’) and the
idle process (‘0’).

(msos PROCESS is

Process .

Process ::= 0 .

sosm)

The MSOS label structure used in the modules below has an index ‘trace’’
representing the process trace. The quote in ‘trace’’ has a meaning: in MSOS
terminology it is a write-only index, that is, it can only be updated.

Transition rules in MSDF represent quite directly standard mathematical
notation for transition rules. A few explanations may clarify, however, the
notation for label patterns. Labels may have ellipsis (...) or a dash (-) to
represent all the indices in a label not explicitly mentioned. When ellipsis
are used it means that the part of the label it refers to may be changed in
a transition. The dash is used otherwise. When they occur more than once
in the same rule, they refer to the same subset of the indices. Metavariables,
such as X1 and X2, may also be used to refer to a subset of the indices of a
label and are used to distinguish between two sets of indices in the same rule.

The module ‘PREFIX’ declares an action prefix (‘;’) that adds an action to
the trace. Note that the set ‘Action*’, for a possibly empty set of actions, has
not been declared explicitly. It was automatically derived by the declaration
of the set ‘Action’ in module ‘ACTION’, which was automatically imported by
‘PREFIX’.

(msos PREFIX is

Process ::= Action ; Process [prec 20] .

Label = {trace’ : Action*, ...} .

[prefix] (Action ; Process) : Process -{trace’ = Action,-}-> Process .

sosm)

Summation (‘+’) means simply to choose one of the processes to evolve.
Note that only one rule is needed since the operator is declared as commuta-
tive, with keyword ‘comm’ in the BNF declaration.

28



Braga and Verdejo

(msos SUMMATION is

Process ::= Process + Process [assoc comm prec 30] .

Label = {trace’ : Action*, ...} .

Process1 -{...}-> Process1’

[sum] -- --------------------------------------------------

(Process1 + Process2) : Process -{...}-> Process1’ .

sosm)

Parallelism (‘||’) allows one process to evolve or both if they synchronize,
that is, one performs ‘Action’ and the other ‘~Action’. The CCS semantics
does not specify how synchronization behaves in the presence of side-effects.
In our semantics no side-effects may be produced while synchronizing. (This
is the semantics for synchronization in Reppy’s λcv, for instance, whose MSOS
semantics is given in [9].)

(msos PARALLELISM is see ACTION .

Process ::= Process || Process [assoc comm prec 25] .

Label = {trace’ : Action*, ...} .

Process1 -{...}-> Process1’

[par1] -- --------------------------------------------------------------

(Process1 || Process2) : Process -{...}-> Process1’ || Process2 .

Process1 -{trace’ = Action, -}-> Process1’ ,

Process2 -{trace’ = ~ Action, -}-> Process2’

[par2] -- --------------------------------------------------------------

(Process1 || Process2) : Process -{trace’ = tau, -}->

Process1’ || Process2’ .

sosm)

Relabeling (‘rel’) substitutes a performed action label by another one.

(msos RELABELLING is see ACTION .

Process ::= rel (Process, Label, Label) [prec 20] .

Label = {trace’ : Action*, ...} .

Process1 -{trace’ = Action1, ...}-> Process1’

[rel1] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = Action2, ...}-> Process1’ .

Process1 -{trace’ = ~ Action1, ...}-> Process1’

[rel2] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = ~ Action2, ...}-> Process1’ .

Process1 -{trace’ = Action3, ...}-> Process1’ ,

Action3 =/= Action1,

Action3 =/= ~ Action1

[rel3] -- -------------------------------------------------------------

(rel (Process1, Action2, Action1)) : Process

-{trace’ = Action3, ...}-> Process1’ .

sosm)

29



Braga and Verdejo

Finally, restriction (‘\’) of an action means that a process is allowed to
evolve if it does not signal the given action or its negation.

(msos RESTRICTION is see ACTION .

Process ::= Process \ Label [prec 25] .

Label = {trace’ : Action*, ...} .

Process1 -{trace’ = Label2, ...}-> Process1’ ,

Label2 =/= Label1,

Label2 =/= ~ Label1

[res] -- --------------------------------------------------------------

(Process1 \ Label1) : Process

-{trace’ = Label2, ...}-> Process1’ \ Label1 .

sosm)

MSDF is implemented in MMT as a conservative extension of Full Maude.
Therefore functional modules (for equational specifications) and system mod-
ules (for equational and rule-based specifications) in Maude may be used to-
gether with MSDF specifications. Double-negation of labels are specified as
an equation in the functional module ‘LABEL-CONGRUENCE’ which is then com-
bined with the above MSDF modules in the ‘CCS’ system module.

(fmod LABEL-CONGRUENCE is (mod CCS is

inc LABEL . inc PROCESS . inc PREFIX . inc SUMMATION .

eq ~ ~ Label:Label = Label:Label . inc PARALLELISM . inc RELABELLING .

endfm) inc RESTRICTION . inc LABEL-CONGRUENCE .

endm)

Before we explain the details of the strategy module, a word is needed on
how to represent Modular SOS computations in Maude. Maude implements
the rewriting logic calculus which has four inference rules given by reflexivity
(a term can be rewritten to itself), transitivity (if t rewrites to t′ and t′ to t′′,
then t rewrites to t′′), congruence (a rule can be applied to the subterms of
t), and substitution (a rule can be applied to a kind preserving substitution).
SOS does not have such a calculus. The present authors, with others, have
proposed several techniques (e.g. [16,8]) to represent both modular and plain
SOS computations in rewriting logic and have implemented them in Maude.
Using a strategy, however, these techniques are not necessary since one has
full control of the rule application. Reflexivity and transitivity are controlled
by basic strategies, that is, if a basic strategy is applied, it represents one
(rewriting) step. Congruence, however, needs to be controlled, that is, the
application of a basic strategy should be done at the top operator and not
on its subterms. That is why the ‘top’ strategy is applied. The substitution
inference rule is desired and therefore needs not to be controlled.

Instead of using the ‘top’ strategy, we could have also used the technique
implemented in MMT [8] to control Maude’s default rewriting strategy, which
is essentially a rewrite rule (labeled ‘step’) with extra configuration construc-
tors that impose a one-step rewrite for each rule application. It simplifies the
strategy but adds extra declarations related to the ‘step’ rule to the gener-

30



Braga and Verdejo

ated Maude module. Thus, the choice for the ‘top’ operator produces cleaner
Maude modules.

When applying a rule with premisses, the strategy should specify which
is the strategy applied to solve each premise. In order to make the strategy
extensible, we use a “abstract” strategy that will be instantiated later on. 3

(stratdef PREM-STRAT is

sop prem-strat .

endsd)

Another implementation detail is that here we make explicit that the strat-
egy ‘prem-strat’ is applied in depth-first search to the premises of the transi-
tion rules. Another alternative could be to use breadth-first search if infinite
recursive processes were allowed by using contexts.

Thus, the complete strategy is given by the union strategy ‘|’ of the basic
strategies for each operator together with the remarks for the ‘top’ strategy
and the evaluation of premises described above.

(stratdef CCS-STRAT is

including CCS . including PREM-STRAT .

sop ccs-strat .

seq ccs-strat = top(prefix)

| top(sum{dfs(prem-strat)})

| top(par1{dfs(prem-strat)})

| top(par2{dfs(prem-strat) dfs(prem-strat)})

| top(rel1{dfs(prem-strat)})

| top(rel2{dfs(prem-strat)})

| top(rel3{dfs(prem-strat) dfs(prem-strat)})

| top(res{dfs(prem-strat)}) .

endsd)

Note that this strategy can be automatically generated by inspecting the
semantics rules. It reflects the MSOS derivation mechanism, but it is not
CCS dependent. Moreover, the strategy ccs-strat can only be used after
concretizing the strategy prem-strat as the following module does.

(stratdef CCS-STRAT+ is

including CCS-STRAT .

seq prem-strat = ccs-strat .

endsd)

This mechanism, that allows the modular definition of the strategies, will
be further exemplified below when CCS will be extended with a priority op-
erator in Section 5.

2.3 The Implementation of MMT+MSL

The current version of MMT+MSL relies on the prototypes for MMT and MSL
implemented in Full Maude. As we mentioned before, Full Maude implements

3 What we really need is a parameterized strategy module, but the extension of the Maude strategy

language with parametric modules is currently under study.

31



Braga and Verdejo

an extensible module algebra for Maude. It provides a basic infrastructure,
that is, a set of meta-functions, to extend Maude, that relies on Maude’s meta-
programming interface. (For instance, ‘metaParse’ produces a term out of a
given list of identifiers and a grammar.)

The Maude predefined ‘LOOP-MODE’ module defines a read-eval-print loop
that should be extended in order to define a command-line interface for a
Maude extension. It defines a triple containing the input (of sort ‘QidList’),
the current state of the system (of sort ‘State’), and the output (of sort
‘QidList’), given by the infix operator ‘[ , , ] : QidList State QidList

-> System’. The descent functions above should then manipulate these values.
This is what Full Maude does, as described below.

In the reminder, we first comment on the general technique to extend
Maude, and then move to Full Maude. The following steps should be done: to
define a module M representing the syntax of the language that one wants to
represent in Maude; to define a meta-function that given a meta-term in the
meta-representation of M , produces a meta-term in the meta-representation
of a Maude module; to define an interface that encapsulates how commands
in the language captured by M are translated into commands over the Maude
representation of M ; and how the “answer” given by the Maude system is
translated back into the language of M .

Full Maude provides an infrastructure to implement all these steps. There
is a parsing infrastructure to handle Maude-based modules; a transformation
infrastructure that given a structured Maude module, that is, a Maude mod-
ule with inclusions, flattens it into a single Maude module; a database, that is,
a term that holds all the modules loaded in Full Maude, together with infor-
mation necessary to execute Full Maude’s commands (the database structure
may be extended to “cache” information that may be necessary for comput-
ing with (the representation of) terms in M); and finally a pretty-printing
infrastructure. This infrastructure is already used by Full Maude to specify
parameterized modules, and object-oriented modules for instance.

MMT and MSL were implemented as Full Maude extensions individually.
(Concrete details on how both tools have been implemented at the metalevel
can be found in [2,7].) The combination was straightforward: we wrote a
few modules that joined each of these parts, that is, parsing, transformation,
database handling, and pretty printing. The module ‘MMT+MSL-SIGN’ extends
the module ‘STRAT-GRAMMAR’ (that itself extends Full Maude’s grammar with
the one for strategies) with the grammar for MSDF syntax defined in module
‘MSDF-SIGNATURE’.

fmod MMT+MSL-SIGN is

including META-STRAT-SIGN .

op MMT+MSL-GRAMMAR : -> FModule .

eq MMT+MSL-GRAMMAR = addImports((including ’MSDF-SIGNATURE .), STRAT-GRAMMAR) .

endfm

The module ‘MMT+MSL’ puts the Maude modules from both tools together.

32



Braga and Verdejo

It replaces Full Maude’s module for handling input and output since there can
not be non-determinism between Full Maude’s rules and MMT+MSL. First it
includes the extended grammar, then the database handling modules for MSL
and MMT, the predefined units for MMT and finally the loop mode module.

mod MMT+MSL is

pr MMT+MSL-SIGN . pr STRAT-DATABASE-HANDLING .

pr MMT-DATABASE-HANDLING . pr PREDEF-UNITS .

inc LOOP-MODE .

Three rules handle the read-eval-print loop for MMT+MSL. The rule la-
beled ‘init’ below simply initializes Full Maude’s database with its default
values and adds a “banner” to the MMT+MSL. Full Maude’s database is
the state of the system declared by the ‘LOOP-MODE’ module. It uses Maude
object-oriented notation. The database structure was extended both by MSL
and the MMT. The attributes ‘state’, ‘stratDefs’, ‘results’, and ‘repeat’
are used by MSL to, respectively, represent the search tree (either a stack,
representing backtrack points, for depth-first search or a queue, with unsolved
terms, for breadth-first search), a meta-module representing the strategy def-
initions, a set of terms representing the solutions found so far, and a flag for
the option of showing or not repeated results. The attribute ‘step-flag’ is
declared by MMT and holds the option to use MMT’s built in technique to
handle MSOS computations (the ‘step’ rule) or not.

rl [init] : init

=> [nil, < o : STRATDB | db : initial-db, input : nilTermList, output : nil,

default : ’CONVERSION, state : emptyP, step-flag : false,

stratDefs : none, results : emptyTermSet, repeat : false >,

(’\n ’\t ’\s ’\s ’\s ’\s ’\s ’\s ’\s

’MMT ’and ’Strategy ’Full ’Maude ’2.1.1 ’Combined ’\s ’\n)] .

Rule ‘in’ allows for both modules to be entered in MMT+MSL by invok-
ing ‘metaParse’ with the combined grammar in module ‘MMT+MSL-GRAMMAR’.
There is another ‘in’ rule that handles syntax errors in the input.

crl [in] :

[QIL, < O : X@Database | input : nilTermList, output : nil, Atts >, QIL’]

=> [nil, < O : X@Database |

input : getTerm(metaParse(MMT+MSL-GRAMMAR, QIL, ’Input)),

output : nil, Atts >, QIL’]

if QIL =/= nil /\ metaParse(MMT+MSL-GRAMMAR, QIL, ’Input) : ResultPair .

Rule ‘out’ simply prints to the screen what was produced as output by
Full Maude.

crl [out] :

[QIL, < O : X@Database | output : QIL’, Atts >, QIL’’]

=> [QIL, < O : X@Database | output : nil, Atts >, (QIL’’ QIL’)]

if QIL’ =/= nil .

endm

Finally, the MMT+MSL tool can be used after loading into Maude the
modules implementing MMT and MSL and the two modules described above.

33



Braga and Verdejo

3 Representing Ordered SOS with Strategies

In this section we show how a Maude strategy can be defined to execute an
ordered SOS specification as defined in [15].

A set of rules with an ordering (any binary relation) is called ordered SOS

(OSOS) if it contains positive GSOS rules only (that is, no rule has negative
premises). In [15] it is shown that GSOS and OSOS have the same expressive
power. A GSOS rule is an inference rule in the following form

{

Xi

αij

→ Yij

}

i∈I,j∈Ji

{

Xk
βkl
9

}

k∈K,l∈Lk

f(X1, . . . , Xn)
γ
→ C[X,Y]

where I and K are subsets of {1, . . . , n} and all Ji and Lk are finite subsets
of IN; X is the sequence X1, . . . , Xn and Y is the sequence of all Yij; and C is
a context.

For example, the following rules define the behavior of an hypothetical
operator f , for constants a and b:

X
a
→ Y

f(X)
a
→ f(Y )

r1

X
b
→ Y

f(X)
b
→ g(Y )

r2 {r1 < r2}

where the relation r1 < r2 between the rules specifies that the first rule (r1)
is only applied when the second rule (r2) cannot be applied. That is, the
binary relation on rules defines the order of their application when deriving
transitions. So, a rule r can be used to derive a transition if all its premises
are valid and no rule higher than r is applicable (it contains a premise which
is not valid).

A Maude strategy can be used to take into account this order on rules.
First, inference rules are represented as SOS rules in MMT but their appli-
cation will be controlled by a strategy. The strategy makes use of the ‘top’
combinator to restrict the application of the given strategy to the outermost
term. The ‘not’ combinator checks if the higher rules cannot be applied.

For the previous example with r1 < r2, the part of the strategy that tries
to apply r2 is simply top(r2{s}), where s is the abstract strategy to be used
to solve the premise. The part of the strategy regarding the application of
r1 is a bit more complex since it has rules higher in the rule ordering. It is
‘not(top(r2{s})) ; top(r1{s})’, which means that before applying r1 we
have to know that r2 cannot be applied. The strategy ‘not(top(r2{s}))’
succeeds if top(r2{s}) fails.

For an OSOS specification (Σ, A, R, <) the following algorithm builds the
strategy identified by s that controls the way rules in R should be applied. It
uses a function rules(f) to obtain the rules in R that define the behavior of
the operator f and a function higher(r) that returns all the rules r′ ∈ R such
that r < r′.

34



Braga and Verdejo

strategy := ‘idle’

for each operator f ∈ Σ do

for each rule rf ∈ rules(f) do

if higher(rf) = ∅ then

append ‘| top(rf{s})’ to the strategy

else

append ‘| not(union(higher(rf ))) ; top(rf{s})’ to the strategy

where union(r1, . . . , rn) = top(r1{s}) | ... | top(rn{s}).

The strategy ‘not(top(r1{s}) | ... | top(rn{s}))’ succeeds when none
of the rules r1, . . . , rn can be applied. Note that if a given rule r has m > 1
premises then the strategy s should be repeated m times within the curly
brackets. If m = 0 then r is not parameterized.

In [15] a transition relation →, that takes into account the ordering on
rules, is associated to a process language (Σ, A, R, <). Formally,→=

⋃

l<ω →
l,

where the transitions in →l are defined as follows

p
α
→ p′ ∈→l if d(p) = l and ∃r ∈ R, ρ.

(

ρ(con(r)) = p
α
→ p′ and

ρ(pre(r)) ⊂
⋃

k<l →
k and ∀r′ ∈ higher(r).ρ(pre(r′)) 6⊂

⋃

k<l →
k

)

.

Theorem 3.1 The transition relation induced by an OSOS specification is

preserved by the associated SOS specification with the strategy built by the

above algorithm.

Proof sketch. By induction on the depth of the process term. The base
case is when the process is a constant, and therefore the rule r does not
have any premise and higher(r) = ∅. The strategy produced by the algo-
rithm has r as one of its alternatives. For the inductive case, since ∀r′ ∈
higher(r).ρ(pre(r′)) 6⊂

⋃

k<l →
k holds, then by inductive hypothesis the strat-

egy not(union(higher(r))) succeeds since the application of each rule r′ fails;
and also, ρ(pre(r)) ⊂

⋃

k<l →
k holds, thus by inductive hypothesis the strat-

egy that is applied to the premisses of r succeeds, which makes the application
of strategy r{s} successful. 2

4 Representing Negative Premises

In this section we first recall how a GSOS specification with negative premises
can be represented in OSOS and then how a strategy can be used for that
matter. We adapt material from [15] while recalling how negative premises
are represented in OSOS.

For OSOS specifications with no constraints whatsoever regarding the rule
ordering (besides being simply a binary relation among rules), given a rule
with a negative premise, a new rule is generated above the given rule in the

35



Braga and Verdejo

rule order. Its single premise is a positive version of the negative premise
in the given rule. As for its conclusion, it has the same left-hand side of
the conclusion of the given rule, but with process 0 on the right-hand side.
Moreover, the generated rule should never be enabled for a configuration where
its premise holds, hence, it should be above itself in the rule order.

Let us consider the specification for an hypothetical operator f given by
the following rule:

X
b
→ Y X

a
9

f(X)
b
→ t′

r1

This specification can be written in OSOS simply by removing the negative
premise from rule r1, declaring the rule r2 below, and an order where r2 is
above r1. The specification then becomes as follows, where Y is a new variable
in r2.

X
b
→ Y

f(X)
b
→ t′

r1

X
a
→ Y

f(X)
a
→ t′

r2 {r1 < r2, r2 < r2}

Our SOS specification with a strategy is then given by rules r1 and r2, as above,
together with the strategy ‘s = not(r2{s}) ; r1{s} | not(r2{s}) ; r2{s}’.
(The abstract strategy technique is not used here for simplicity.)

Clearly, the strategy ‘not(r2{s}) ; r2{s}’ is not necessary (since it always
fails) and the strategy could be simplified. Also, note that rule r2 is really
never applied. In the strategy ‘not(r2{s}) ; r1{s}’ the strategy ‘not’ only
checks if the premises hold. Another remark is that a rule for the operator f

with the premise of r2 could already exist in the original GSOS specification.
In this case the specification is called natural in [15]. Thus, from natural
specifications is not necessary to generate a new rule and the strategy could
simply take the existing rule into account.

OSOS specifications can be partial, meaning that its order is irreflexive and
transitive. (Partial OSOS specifications are also equivalent to GSOS specifi-
cations according to [15].) Since the order has to be partial, the technique
of having a rule above itself can not be used. The technique to represent the
negative premise in partial OSOS relies on an extended action set with an
error action and a rule that restricts process evolution to processes that do
not signal error. A rule is also generated in the form of the one produced
by the technique for non-partial OSOS, which is also above the given rule in
the rule order, but with the error action in the conclusion. Also, the initial
configuration should be augmented with the restriction to error.

The specification for r1 in partial OSOS is given by the following three
rules:

X
b
→ Y

f(X)
b
→ t′

r3

X
a
→ Y

f(X)
error

→ 0
r4 {r3 < r4}

36



Braga and Verdejo

X
α
→ Y

X\error
α
→ Y \error

r5 α 6= error

where the initial configuration with process f(p) should be augmented with
the restriction to action error, as in f(p)\error .

In this case the strategy would be ‘s = not(r4{s}) ; r3{s} | r5{s}’.
Again, a simplification is possible, due to the same reason as for the non-
partial case. Since the strategy ‘not’ does not apply a rule, only checks for its
premises, the conclusion of r4 is irrelevant. Therefore there is neither a need
to extend the action set with the error action nor to add r5 to the rule set.
With this simplification the resulting strategy is ‘s = not(r4{s}) ; r3{s}’.

Both translations (including the generation of new rules and the corre-
sponding order) can be done automatically by inspecting the GSOS rules.
Then the strategy can be generated as explained in Section 3. (The imple-
mentation of this transformation, however, is part of future work.)

5 CCS with Priority

5.1 A Priority Operator with Strategies

An example of the usage of negative premises is a priority operator θ [12],
which given a process P builds a new process that performs action α of P if
P cannot perform any action with a priority higher than α. This operator is
specified by the following rule scheme rθ.

X
α
→ X ′ ∀β>α X

β
9

θ(X)
α
→ θ(X ′)

rθ

Given a finite set of actions, the above scheme can be represented by many
rules like rθ but without the negative premise and with an ordering among
them. An example strategy for rθ is ‘s = not(rθc

{s} | rθb
{s}) ; rθa

{s} |

not(rθc
{s}) ; rθb

{s} | rθc
{s}’, given a set of action labels {a, b, c} with the

ordering {a < b, a < c, b < c}, and the rules for the priority operator labeled
rθa

, rθb
, and rθc

. (Again the abstract strategy technique is not applied for
simplicity.)

However, this specification can be further simplified. Strategies may be
applied with a particular substitution. Thus, instead of having three rules,
in this example, we may specify a single rule rθ with an action variable
that may become bound to the three different label actions, thus giving
rise to the strategy ‘s = not(rθ[A ← c]{s} | rθ[A ← b]{s}) ; rθ[A ←
a]{s} | not(rθ[A ← c]{s}) ; rθ[A ← b]{s} | rθ[A ← c]{s}’, where
‘A’ is an action variable.

For arbitrary large (but finite) set of actions, the strategy could be pa-
rameterized by a list of action labels representing the action labels above a

37



Braga and Verdejo

given one. If we consider the following function forall below that produces a
strategy out of a list of action labels, the strategy for an action label a with
the function application higher(a) returning a list of action labels, would be
given by the expression ‘not(forall(higher(a))) ; rθ’.

forallrθ
(l, ls)= rθ[A← l] | forallrθ

(ls)

forall rθ
(nil)= idle

5.2 CCS with the Priority Operator in MMT+MSL

The specification of CCS in Section 2.2 can be very easily extended, given
the representation of priorities as strategies in Section 5.1. First the syn-
tax of processes must be extended with the priority operator and the tran-
sition rule set must be extended with a new transition rule for priorities
as rθ in Section 5.1 but without the negative premises as we explained be-
fore. The Maude module ‘CCS-PRI’, that includes the ‘CCS’ module above and
‘PROCESS-WITH-PRIORITY’ is also defined.

(msos PROCESS-WITH-PRIORITY is

Process ::= theta (Process) [prec 20] .

Label = {trace’ : Action*, ...} .

Process -{trace’ = Action, ...}-> Process’

[theta] -- --------------------------------------------------------------------

theta (Process) : Process -{trace’ = Action, ...}-> theta (Process’) .

sosm)

The strategy has to be extended with the new strategies to represent the
negative premises as explained in Section 5.1.

(stratdef PRI-STRAT is

including PREM-STRAT .

sop pri-strat .

seq pri-strat = not(top(theta[Action <- c]{dfs(prem-strat)}) |

top(theta[Action <- b]{dfs(prem-strat)}))

; top(theta[Action <- a]{dfs(prem-strat)})

| not(top(theta[Action <- c]{dfs(prem-strat)}))

; top(theta[Action <- b]{dfs(prem-strat)})

| top(theta[Action <- c]{dfs(prem-strat)})) .

endsd)

The module ‘CCS-PRI-STRAT’, that replaces ‘CCS-STRAT+’, combines the
strategy for basic CCS with the strategy for the priority operator, and estab-
lishes that the premises should be rewritten using the new whole strategy is
the following one:

(stratdef CCS-PRI-STRAT is

including CCS-STRAT . including PRI-STRAT .

sop ccs-pri .

seq ccs-pri = ccs-strat | pri-strat .

seq prem-strat = ccs-pri .

endsd)

38



Braga and Verdejo

6 Final Remarks

In [13] the authors present a prototype for GSOS specifications in Maude us-
ing the meta-level. Our approach represents OSOS, which is equivalent to
GSOS [15], using the object level. Of course, it is still necessary to automate
the translation from negative premises to orders and then to strategies. More-
over, to represent OSOS (and therefore GSOS) is one possible application of
strategies. Maude (with strategies) could be used directly to represent any
application with strategies, including OSOS. However, if one wants to make
its specifications modular, the rewrite theories would have to be extended to
cope with the modularity requirements.

The current version of the prototype does not support strategy module
inclusion, even though there is notation (and semantics) for them in [7]. All
the strategy definitions have to be declared in a single module. Part of our
future work is to fully support the strategy language. Besides the automation
of the translation of negative premises to strategies, a case study that we
would like to approach in a near future is the implementation of E-LOTOS
semantics [6], where negative premises are used in order to guarantee that
urgent actions occur before time elapses.

Acknowledgments

We would like to thank Fabricio Chalub for his support on the implemen-
tation of MMT+MSL, the anonymous referees for their insightful comments
and Peter Mosses for his careful review.

References

[1] Chalub, F., “An Implementation of Modular Structural Operational Semantics
in Maude,” Master’s thesis, Universidade Federal Fluminense (2005),
http://www.ic.uff.br/∼frosario/dissertation.pdf.

[2] Chalub, F. and C. Braga, Maude MSOS tool, in: G. Denker and C. Talcott,
editors, Proceedings Sixth International Workshop on Rewriting Logic and its
Applications, WRLA 2006, Electronic Notes in Theoretical Computer Science
(2006), to appear.

[3] Clavel, M., F. Durán, S. Eker, J. Meseguer and M.-O. Stehr, Maude as a formal
meta-tool, in: J. Wing, J. Woodcock and J. Davies, editors, FM’99 — Formal
Methods, Proc. World Congress on Formal Methods in the Development of
Computing Systems, Toulouse, France, September 1999, Volume II, Lecture
Notes in Computer Science 1709 (1999), pp. 1684–1703.

[4] Durán, F., “A Reflective Module Algebra with Applications to the Maude
Language,” Ph.D. thesis, Universidad de Málaga (1999).

39



Braga and Verdejo

[5] Hidalgo-Herrero, M., A. Verdejo and Y. Ortega-Mallén, Looking for Eden
through Maude and its strategies, in: F. López-Fraguas, editor, V Jornadas sobre
Programación y Lenguajes, PROLE 2005 (2005), pp. 13–23.

[6] ISO/IEC, Information technology — Enhancements to LOTOS (E-LOTOS),
International Standard ISO/IEC FDIS 15437 (2001).

[7] Mart́ı-Oliet, N., J. Meseguer and A. Verdejo, Towards a strategy language for
Maude, in: N. Mart́ı-Oliet, editor, Proceedings Fifth International Workshop on
Rewriting Logic and its Applications, WRLA 2004, Barcelona, Spain, March 27
– April 4, 2004, Electronic Notes in Theoretical Computer Science 117 (2005),
pp. 417–441.

[8] Meseguer, J. and C. Braga, Modular rewriting semantics of programming
languages, in: C. Rattray, S. Maharaj and C. Shankland, editors, Algebraic
Methodology and Software Technology: 10th International Conference, AMAST
2004, Stirling, Scotland, UK, July 2004, Proceedings, Lecture Notes in
Computer Science 3116 (2004), pp. 364–378.

[9] Mosses, P. D., A modular SOS for ML concurrency primitives, Technical Report
BRICS-RS-99-57, Department of Computer Science, University of Aarhus
(1999).

[10] Mosses, P. D., Modular structural operational semantics, Journal of Logic and
Algebraic Programming 60-61 (2004), pp. 195–228.

[11] Mosses, P. D., A constructive approach to language definition, Journal of
Universal Computer Science 11(7) (2005), pp. 1117–1134.

[12] Mousavi, M., “Structuring Structural Operational Semantics,” Ph.D. thesis,
Technische Universiteit Eindhoven (2005).

[13] Mousavi, M. and M. A. Reniers, Prototyping SOS meta-theory in Maude, in:
P. D. Mosses and I. Ulidowski, editors, Proceedings of the Second Workshop on
Structural Operational Semantics (SOS 2005), Electronic Notes in Theoretical
Computer Science 156(1) (2006), pp. 135–150.

[14] Rosa-Velardo, F., C. Segura and A. Verdejo, Typed mobile ambients in Maude,
in: H. Cirstea and N. Mart́ı-Oliet, editors, Proceedings of the 6th International
Workshop on Rule-Based Programming (RULE 2005), Electronic Notes in
Theoretical Computer Science 147 (2006), pp. 135–161.

[15] Ulidowski, I. and I. Phillips, Ordered SOS process languages for branching and
eager bisimulations, Information and Computation 178 (2002), pp. 180–213.

[16] Verdejo, A. and N. Mart́ı-Oliet, Executable structural operational semantics in
Maude, Journal of Logic and Algebraic Programming 67 (2006), pp. 226–293.

40



SOS 2006 Preliminary Version

An Eclipse-based Integrated Environment for
Developing Executable Structural Operational

Semantics Specifications

Adrian Pop 1,2 Peter Fritzson 3

Programming Environments Laboratory
Department of Computer and Information Science

Linköping University
Linköping, Sweden

Abstract

The Structural Operational Semantics Development Tooling (SOSDT) Eclipse Plu-
gin integrates the Relational Meta-Language (RML) compiler and debugger with
the Eclipse Integrated Development Environment Framework. SOSDT, together
with the RML compiler and debugger, provides an environment for developing and
maintaining executable Structural Operational Semantics specifications, including
the Natural Semantics big step variant of SOS specifications. The RML language
is successfully used at our department for writing large specifications for a range
of languages like Java, Modelica, Pascal, MiniML etc. The SOSDT environment
includes support for browsing, code completion through menus or popups, code
checking, automatic indentation, and debugging of specifications.

Key words: SOS, Natural Semantics, executable specification,
Eclipse, RML, debugging.

1 Introduction

No programming language environment can be considered mature if is not
supported by a strong set of tools which include execution, debugging, and
profiling.

In this paper we present an integrated development environment called
Structural Operational Semantics Development Tooling (SOSDT) [4] for

1 This research was partially supported by the National Graduate School in Computer
Science (CUGS) and the SSF RISE project.
2 Email: adrpo@ida.liu.se
3 Email: petfr@ida.liu.se

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Pop and Fritzson

browsing, checking, and debugging semantic specifications. The SOSDT en-
vironment is based on the existing Relational Meta-Language (RML) system
and its debugger and provides an easy to use graphical interface for these
systems.

2 SOS/Natural Semantics and the Relational Meta-

Language (RML)

Natural Semantics [2] is formalism for specifying many aspects of program-
ming languages, e.g. type systems, dynamic semantics, translational seman-
tics, static semantics, etc. Natural Semantics is an operational semantics
derived from the Plotkin [6] structural operational semantics combined with
the sequent calculus for natural deduction.

The Relational Meta-Language (RML) [5], is a practical language for writ-
ing executable SOS/Natural Semantics Specifications. The RML language is
extensively used at out department for teaching and writing large specifica-
tions for different languages like Java, Modelica, MiniML, Pascal, etc. The
RML language is compiled to highly efficient C code by the rml2c compiler. In
this way, large parts of a compiler can be automatically generated from their
Natural Semantics specifications. From the features of the RML language
we can mention: strong static typing, simple module system, type inference,
pattern matching and recursion are used for control flow, types can be poly-
morphic.

As pointed out in [3], the computer science community is constantly ig-
noring the debugging problem even though the debugging phase of software
development takes more than the overall development time. Even if the RML
language has a very short learning curve, the absence of debugging facilities
previously created problems of understanding, debugging and verification of
large specifications. We have addressed the debugging issue by providing a
debugging framework for RML [7]. The debugger is based on abstract syn-
tax tree instrumentation (program transformation) in the RML compiler and
some runtime support. Type reconstruction is performed at runtime in order
to present values of the user defined types.

3 The RML Integrated Environment (SOSDT) as an

Eclipse Plugin

The SOSDT (previously named RML Development Tooling (RDT)) environ-
ment provides an integrated environment for our tools. The integrated envi-
ronment with debugging and the various interactions between the components
is presented in Figure 1 and 2.

The SOSDT environment has three major components, the RML Editor,
the RML Browser and the RML Debugging components. All the components

42



Pop and Fritzson

Fig. 1. Architecture of the RML system and SOSDT environment.

are active when the SOSDT perspective is selected within the Eclipse envi-
ronment. Perspectives within Eclipse are used for configuration of views in
connection with specific projects. Within the SOSDT environment the user
creates and manages RML projects and RML files via wizards.

Fig. 2. SOSDT Eclipse Plugin for RML Development.

43



Pop and Fritzson

The RML Editor component provides syntax highlighting, auto indenta-
tion, code completion, type information and error highlighting. This com-
ponent obtains the needed information from the RML parser and the RML
Compiler. From the RML Compiler the errors and the type inference infor-
mation is gathered. The type information is displayed when hoveding over
a variable, relation or pattern. Code completion is provided when the user
writes relation calls or patterns.

The RML Browser component provides easy navigation within an file. The
RML parser is used to gather the information needed for browsing. The types,
values, relations and rules are displayed within a tree for each RML file.

The RML Debugging component communicates via sockets with the RML
Debugging Framework to provide debugging facilities like breakpoints, running
and stepping, variable value inspection, etc.

All the SOSDT components are using the components of the Eclipse frame-
work which are populated with information from the RML Parser and the
RML Compiler. When a file is saved the RML Parser reads the file and up-
dates the internal RML model information which triggers the update of the
RML Browser. Also, on save the RML file is sent to the RML Compiler which
dumps error information to be displayed in the Problems View and type in-
formation used to update the internal RML model.

4 Performance Evaluation

The test case used for the table below is based on an executable
specification (SOS/Natural Semantics in RML) of the MiniFreja lan-
guage [5] running a test program based on the sieve of Eratosthenes.
All the needed information for reproducing the tests are available at
http://www.ida.liu.se/∼adrpo/sosdt/tests.

Mini-Freja is a call-by-name pure functional language. The test program
calculates prime numbers. The Prolog translation (mf.pl) was originally im-
plemented by Mikael Pettersson. The comparison was performed on a Fedora
Core4 Linux machine with two AMD Athlon(TM) XP 1800+ processors at
1500 MHz and 1.5GB of memory. The measurements were done during April
2006.

Prime# RML SICStus SWI Maude-MSOS-Tool

8 0.00 0.05 0.00 2.92

30 0.02 1.42 1.79 226.77

40 0.06 3.48 3.879 -

50 0.13 - 11.339 -

100 1.25 - - -

200 16.32 - - -

Execution time is in seconds. The sign represents out of memory. The
memory consumption was at peak 9Mb for RML. The other systems consumed

44



Pop and Fritzson

the entire 1.5Gb of memory and aborted at around 40 prime numbers. The
largest executable specification developed so far using RML is the Modelica
Language specification (an equation-based language), which is approximately
80 000 lines. We have improved compilation speed more than a factor of 10
since a year ago compiling 80 000 lines of RML now takes less than minute on
a 1.5 GHz laptop.

5 Conclusions and Future Work

Our experience of writing large executable specifications in SOS/Natural Se-
mantics style using RML for several different programming languages shows
that a supportive development environment is essential also for developing
specifications.

Therefore we have designed and implemented a prototype of an integrated
environment for supporting such development, first as a version partly based
on Emacs, and currently integrated in Eclipse [1], as an SOSDT Eclipse plu-
gin. Some of our RML users who have debugged their specifications using a
prototype of this environment have given us positive feedback and also various
suggestions for improvement. While this is a good start, many improvements
can be made to this environment. In the future we plan to improve the
debugger execution speed, and implement additional features. Our goal is to
provide a very well integrated and supportive development environment (IDE)
for RML based on the Eclipse platform.

References

[1] Eclipse Foundation, Eclipse Development Platform, http://www.eclipse.org.

[2] Gilles Kahn, Natural Semantics, Programming of Future Generation Computers.
ed Niva M., p. 237.258, 1998.

[3] Henry Libermann, The debugging scandal and what to do about it,
Communication of the ACM. vol:40(4), p:27-29, 1997.

[4] PELAB, Structural Operational Semantics Development Tooling (SOSDT)
Eclipse Plugin, http://www.ida.liu.se/∼adrpo/sosdt.

[5] Mikael Petterson, Compiling Natural Semantics, Ph.D. thesis, Linköping
University, 1995, Dissertation No. 413,
also as Lecture Notes in Computer Science (LNCS) 1549, Springer-Verlag, 1999,
RML Site: http://www.ida.liu.se/labs/pelab/rml.

[6] Gordon D. Plotkin, A Structural Approach to Operational Semantics, The
Journal of Logic and Algebraic Programming 60-61 , 17-139., 2004.

[7] Adrian Pop and Peter Fritzson, Debugging Natural Semantics Specifications,
Sixth International Symposium on Automated and Analysis-Driven Debugging
(AADEBUG2005), September 19-21 2005, Monterey, California.

45



SOS 2006 Preliminary Version

Local bigraphs and confluence: two conjectures

(extended abstract) ⋆

Robin Milner 1

University of Cambridge

Bigraphs have been used to present a variety of models of concurrency within a
single framework, which also provides a theory applicable to all the models. As
we seek informatic understanding of extensive real-life systems that reconfigure
themselves, we cannot expect that our present repertoire of abstract process
calculi (including Petri nets, mobile ambients, CSP and π-calculus) will suffice.
So, as we enlarge our repertoire of calculi —perhaps specific to a certain
application (e.g. in biology or in pervasive computing)— there is a need for
unifying theory.

The bigraphical model is an experiment in this direction. It is not a specific
calculus, but rather a framework for defining and combining such calculi. To
define a specific bigraphical reactive system (BRS) two ingredients are needed:
its signature defines its controls (the kinds of nodes allowed), and its reaction
rules define how bigraphs can reconfigure themselves.

Already the model has yielded some elements of a theory, especially of
labelled transitions and behavioural congruences [6,4,5,7], which is applicable
to a variety of BRSs. The present exercise addresses a different topic. First, in
local bigraphs [8] we introduce a new treatment of names that allows them to
have multiple locality (an example follows shortly). Similar work in bigraphs is
by Bundgaard and Hildebrandt [3]. Second, we study the notion of confluence
—i.e. independence among actions— in this setting, in the belief that it will
arise frequently in applications. One need only think of modelling behaviour
within a building: activity at one end of the building is largely independent
of activity at the other end.

This summary omits some details, but should be accessible to those un-
familiar with bigraphs. It summarises work whose aims are as follows: to
understand how activities in local bigraphs can conflict with one another,
leading to non-confluence; to represent the λ-calculus —the classic setting for
confluence studies— within local bigraphs; and thereby to learn conditions
under which confluence can be assured within this wider setting. The work is
in progress; the summary ends with two conjectures.

⋆ Appears also in the preliminary proceedings of the Express and Infinity workshops.
1 Joint Express-Infinity-SOS Invited Speaker

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Milner

yx x z

z

x′

z′

Fig. 1. A local bigraph G : 〈{xy}, {xz}, {z}〉→〈{x′}, {x′z′}〉

Mathematical framework: We work in s-categories. They differ from categories
in that each arrow f has a support |f |, a finite set; composition g ◦f is defined
only if |g|∩|f | = ∅, and then |g ◦f | = |g|∪|f |. Two arrows f and g are support
equivalent, f ≏ g, if they differ only by a bijection between their supports.
Support is important for the notion of occurrence of one bigraph in another.
For example, our Conjecture 1 rests upon analysis of when and how two redex
occurrences can overlap each other.

1 Local bigraphs

Local bigraphs are arrows in an s-category whose objects are interfaces. An
interface I = X = 〈X0, . . . , Xm−1〉 has width m, a finite ordinal, and assigns
to each location i ∈ m a finite set Xi of names. The Xi need not be disjoint;
thus, for example, any x ∈ X0 ∩X1 has dual locality.

If J = Y is another interface with width n, then a local bigraph G : I → J
has m sites and n roots (or regions). Each region contains an unordered tree,
whose root is the region and whose other members are either nodes or sites;
the latter must be leaves. The interfaces dictate an assignment of names to
each site and each region; the inner and outer names of G are those of I and
J respectively. The support |G| of G is its set of nodes; we say that F and G
overlap if their supports are not disjoint.

Figure 1 shows a local bigraph with three sites (shaded) and two roots;
the trees are represented by nesting. Each node may have ports, the number
depending on the node’s kind or control (not shown). The set of ports and
inner names is partitioned into links ; a link is either free (an outer name) or
bound by a binding port. The example has two free links, x′ and z′, and one
link bound by a port on the largest node. Binding ports are shown as circles,
free ports as bullets.

There is a scoping discipline: if a link is bound, then its inner names and
ports must lie within the node that binds it; if a link is free, with outer name
x, then x must be located in every region that contains any inner name or
port of the link.

47



Milner

0 1

x0

0 1

zx0

renew resource
R

x1

z

x0

x0

1

resource
R′

0

x1
0 := 1

1 := 1

Fig. 2. A parametric reaction rule

The composition of G : I → J with F : H → I, written G ◦F , is easy to
define graphically: insert the roots of F in the sites of G, joining links at
like names and eliding the names. Observe that, via composition, nodes in
different regions can become separated by arbitrarily many node boundaries
—while still sharing links.

An agent a : ǫ→ I has no sites; ǫ is the trivial interface with width 0. We
use lower-case letters for agents.

2 Reaction rules and λ-calculus

We are interested in parametric (reaction) rules that reconfigure agents. Such
a rule has a redex R : H →K and a reactum R′ : H ′→K, which may have
different numbers m and m′ of sites. A parameter for the rule is then an agent
a : H ⊕ I, with width m. The interface H ⊕ I has width m; it combines two
interfaces H and I, each with width m, by taking the union of names at each
location. H represents names of a to be bound by R; I represents names of a
to be exported by extra free links through R.

Figure 2 shows a parametric rule where R and R′ both have two sites. So
it takes a parameter a = a0 ‖ a1 of width 2, with factors a0 and a1 each of unit
width. The the parallel composition ‖ is derivable from the tensor product
in s-categories; if a and b have widths m and n and disjoint supports, then in
a ‖ b –with width m+n– they are placed side-by-side, sharing free links. Sites
in R and R′ are numbered; an assignment j := i written in the jth site of R′

means that the reaction should place here a copy of the ith factor of a. Thus
the rule shown will discard a0 and duplicate a1, putting one copy at each site
of R′. (We omit details of how each copy’s names are determined.)

We can think of the rule as the renew node fetching from the resource node
(via the shared link z) a new copy of its resource a1. Since R has two regions,
the renew and resource nodes may be arbitrarily far apart in a large bigraph
containing an occurrence of the redex R; so the rule offers the possibility of
action at a distance.

Let us now define a certain λ-calculus, Λsub, in the usual way. It is a
version with explicit substitutions, but with coarser steps than that of Abadi
et al [1]. The terms are

M ::= x | λxM | MN | M [x:=N ]

48



Milner

x

x

applam(x) varx

sub(x) defx

sub def

lam app
var

x

x

Fig. 3. Ions for the Λ̂big, with their algebraic representation

The final term construction should be read ‘M where x means N ’; it should
not to be confused with {N/x}M , the result of replacing all free occurrences
of x in M by N .

Definition 2.1 (reduction) The reduction rules in Λsub are as follows:

(λxM)N ⊲ M [x:=N ]

({x/y}M) [x:=N ] ⊲ ({N/y}M) [x:=N ] where M has a unique

free occurrence of y

M [x:=N ] ⊲ M where M has no free occurrence of x .

Reductions may be applied to any subterm of a term.

Thus reductions are allowed even inside an explicit substitution. In the second
rule, {x/y}M distinguishes a particular free occurrence of x to be replaced by
N . The three rules together achieve β-reduction. The explicit substitution
[x:=N ] acts ‘at a distance’ on each free occurrence of x in turn, rather than
migrating a copy of itself towards each such occurrence as in [1].

We now turn to Λ̂big, the BRS corresponding to Λsub. Figure 3 shows its
signature both graphically and algebraically. There are five controls (kinds of
node), shown as ions (elementary bigraphs); a var-node has no sites, an app-
node has two, and the rest have one. lam- and sub-nodes bind a link; var- and
def-nodes have one port. The shapes of a node is unimportant, except that
the shape of the app-node signifies that its sites are in left-to-right order. 2

Note that binding names are parenthesized.

2 Multiple-site Controls are definable from single-site ones, site, with the help of a sorting
discipline.

49



Milner

To export free names from their occupants, the ions with sites are gener-
alised to

lam(x) ⊕ idZ app⊕ (idY | idZ)

sub(x) ⊕ idZ defx ⊕ idZ .

The app-ion exports names Y from its first site, Z from its second.

Two new operators appear here. In this abstract we do not define operators
formally, but illustrate their meaning by examples. A prime composition F |G
is like F ‖G (and derivable from it), but it merges the outer regions of F and G
into one. The operator ⊕ is called extension. The extension I⊕I ′ of interfaces
(with same width) was defined earlier. Given G : I → J and ω : I ′→ J ′ (a
wiring, i.e. a node-free bigraph) one can form G⊕ω : I⊕ I ′→ J ⊕J ′ provided
the interface extensions are defined; it has the same tree structure as G, but
the linkage of G is extended by adding the linkage of ω. Thus idY | idZ , with
inner width 2 and outer width 1, is a suitable extension for app; it exports the
union of the inner name-sets Y and Z as outer names. The operators ◦ , ‖ , |
and ⊕, though partial, have a rich algebraic theory.

The free names in a bigraph built from the above ions correspond exactly
to the free variables in a λ-term. Thus λxx(xy) will translate into the bigraph

(lam(x) ⊕ idy) ◦ (app⊕ (idx | idxy)) ◦ (varx ‖ ((app⊕ (idx | idy)) ◦ (varx ‖ vary))) .

(Here a set such as {xy} has been written without curly brackets.) Of course,
this notation is not recommended for developing λ-calculus theory! – but it
has the advantage that the free names exported with each term constructor
are made explicit.

We now translate Λsub into Λ̂big. The translation function [[M ]]X is in-
dexed by the set X, which must include all the free variables of M . Thus
each term M has many bigraph images. This technique was used to model
the asynchronous π-calculus [4].

Definition 2.2 (λ-terms into bigraphs)

[[x]]X⊎x
def
= varx ⊕X

[[λxM ]]X
def
= (lam(x) ⊕ idX) ◦ [[M ]]X⊎x

[[MN ]]X
def
= (app⊕ (idX | idX)) ◦ ([[M ]]X ‖ [[N ]]X)

[[M [x:=N ]]]X
def
= (sub(x) ⊕ idX) ◦ ([[M ]]X⊎x | ((defx ⊕ idX) ◦ [[N ]]X)) .

We shall not discuss this translation fully. But it is worth noting that
alpha-convertible λ-terms have equal images; this is because bound names are
elided by composition. We are now ready to present the reaction rules for the
BRS Λ̂big.

50



Milner

xx

0

0:=0
lam

app

sub
def

A

1
1:=1

sub

0 1
0:=0

def

D

def

0 0:=0
1 :=0

var def

C

x

x

R R′

A app ◦ (lam(x) ‖ id) sub(x) ◦ (idx | defx)

C varx ‖ defx id ‖ defx

D sub(x) ◦ (id | defx) id

Fig. 4. Parametric reaction rules for Λ̂big

Definition 2.3 (dynamics) Λ̂big has three reaction rules: A (apply), C

(copy) and D (discard). They are shown both graphically and algebraically
in Figure 4.

Note that rule C has width 2. Thus, in C, an occurrence of the ‘variable’
x may be distant from the defining equation that will replace it with a ‘term’.
This rule exploits the multiple locality of names in local bigraphs; it is similar
to the rule of Figure 2.

We now assert that reaction in Λ̂big exactly matches reduction in Λsub:

Proposition 2.4 (reaction matches reduction) [[M ]]X ⊲ g if and only
if M ⊲ M ′ for some M ′ such that [[M ′]]X ≏ g .

In fact, for each reduction by a rule for Λsub there is a matching reaction by the
corresponding rule for Λ̂big, and conversely. In a recent draft O’Conchuir [9]
has proved (strong) confluence directly for Λsub, so this translates immediately
into a confluence proof for Λ̂big. Our purpose here is different; we use the
bigraphical representation to illustrate the confluence properties that we seek
for bigraphs in general.

51



Milner

one−step strong weak

*
***

* *
g

g1

g0

g
′

g

g1

g0

g
′

g

g1

g0

g
′

Fig. 5. Three notions of confluence

3 Confluence in bigraphs

Recall that for any given reduction or reaction relation ‘ ⊲ ’ there are three
familiar notions of confluence, shown in Figure 5. They all say that if g can
react to become either g0 or g1, then these two reacta can in turn react to reach
a common result. Clearly one-step ⇒ strong ⇒ weak, and it is well-known
that these implications are strict in general. The most positive result for a
BRS would be that strong confluence holds outright. This is indeed true (the
Church-Rosser theorem) for the classical λ-calculus, and (by O’Conchuir) for
Λsub also. However, in bigraphs we cannot expect this in general. Instead, we
shall look for conditions that ensure non-interference between two competing
reactions g ⊲ g0 and g ⊲ g1; such conditions may depend on the reaction
rules that underlie the two translations, and on the extent to which the two
redices overlap (if at all) in g. Moreover, it is in general easier to establish
weak confluence in such cases.

If we succeed in showing that weak confluence always holds for a certain
class of agents under certain reaction rules, and if this class is itself preserved
by reaction, then we may look to well-known methods from the theory of
the λ-calculus that allow us to deduce strong from weak confluence. One
such method is based upon developments [2]. A development is a reduction
sequence M ⊲ M1 ⊲ M2 ⊲ · · · in which the only redices reduced are the
residuals of an arbitrary set of redices present initially in M . The method
is based upon the theorem that if all developments are of finite length, then
weak confluence implies strong confluence.

Before going further, we note that BRSs can be wilder than the λ-calculus!
One property, used again and again in case analyses for the λ-calculus, is that
when a term contains two redices then they are either disjoint or else nested
(one inside the other). This fails for ground redices in BRSs; worse, it even
fails for the parametric redices underlying them. Indeed, Figure 6 shows two
possible parametric redices which are intimately entwined, each partly inside
the other.

A A

A
′A

′
B

′

B
′

BB

gredexes SR yy
xx

Fig. 6. An agent g containing two intertwined redices R and S

52



Milner

We do not know whether this property —redices nested or disjoint— is
essential for weak confluence, or for finiteness of developments, in a BRS.
However, recent investigation has explored a classification of ways in which
two competing redices can overlap. If a parametric redex R supports a reaction
g ⊲ g0, then r = (R⊕ ω) ◦a occurs in g, for some parameter a and wiring ω.
Similarly, if redex S supports a reaction g ⊲ g1, then s = (S ⊕ ζ) ◦ b occurs
in g. The ground redices r and s can overlap in different ways; for example
s may not overlap with R, but may partly overlap with a. The investigation
identifies four principal cases for such overlap, and claims that under certain
further conditions the weak confluence diagram can be completed by g0 ⊲ ∗g′

and g0 ⊲ ∗g′. As this work is not complete we confine ourselves at present to
two indeterminate conjectures about reactions in BRSs:

Conjecture 1 (weak confluence in Λ̂big) Weak confluence holds for
certain sets of agents in certain BRSs, including the set of all images of Λsub-
terms in Λ̂big.

Conjecture 2 (finite developments in Λ̂big) Developments are finite
for certain sets of agents in certain BRSs.

Together, these two results will lead to strong confluence for the agents men-
tioned.

Conjecture 1 is reasonably firm, since (as indicated) much of the analysis
has been done. Conjecture 2 is left vague at present. It is possible that,
in Λ̂big, developments are finite only under some constraint. O’Conchuir’s
detailed study [9] may help to identify such a constraint.

Conclusion

The aim of this work is not to find yet another proof of the Church–Rosser
theorem for a variant of the λ-calculus, but rather to learn from such proof
techniques in order to analyse confluence for a wider class of agents and re-
action rules than that for which it has hitherto been studied. This will lead
to a better understanding not only of practically useful BRSs, but also of
confluence itself.

References

[1] Abadi, M., Cardelli, L., Curien, P-L. and Levy, J-J. (1991), Explicit
substitutions. Journal of Functional Programming 1, pp375–416.

[2] Barendregt, H. (1984), The Lambda Calculus: its Syntax and Semantics. North
Holland.

[3] Bundgaard, M. and Hildebrandt, T. (2006), Bigraphical semantics of higher-
order mobile embedded resources with local names. Proc. GT-VC 2005,

53



Milner

Electronic Notes in Theoretical Computer Science 154(2), pp7–29.

[4] Jensen, O-H. and Milner, R. (2003), Bigraphs and transitions. Proc 30th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL), 2003, 16pp.

[5] Jensen, O.H. and Milner, R. (2004), Bigraphs and mobile processes (revised).
Technical Report 580, University of Cambridge Computer Laboratory. Available
from http://www.cl.cam.ac.uk/users/rm135.

[6] Leifer, J. and Milner, R. (2000), Bisimulation congruences for reactive systems.
Proc. CONCUR2000, LNCS, Vol 1877, pp243–258.

[7] Leifer, J. and Milner, R. (2006), Link graphs, transitions and Petri nets. To
appear in Mathematical Structures in Computer Science.

[8] Milner, R. (2004), Bigraphs whose names have multiple locality. Technical
Report UCAM-CL-TR-603, University of Cambridge, Computer Laboratory.
Available from
http://www.cl.cam.ac.uk/TechReports/UCAM-CL-TR-603.pdf .

[9] O’Conchuir, S. (2006), Λsub as an explicit substitution calculus (draft).

54



SOS 2006 Preliminary Version

Active Evaluation Contexts for Reaction

Semantics

Henrik Pilegaard Flemming Nielson Hanne Riis Nielson
{hepi,nielson,riis}@imm.dtu.dk

Informatics and Mathematical Modelling
The Technical University of Denmark

Abstract

In the context of process algebras it is customary to define semantics in the form of
a reaction relation supported by a structural congruence relation. Recently process
algebras have grown more expressive in order to meet the modelling demands of
fields as diverse as business modelling and systems biology. This leads to combining
various features, such as general choice and parallelism that were previously studied
separately, and it often becomes difficult to define the reaction semantics. We
present a general approach based on active evaluation contexts that allows the
reaction semantics to be easily constructed.

Key words: Structural Operational Semantics, Reaction
Semantics, Process Algebra, General Choice, Calculus of
Communicating Systems, BioAmbients.

1 Introduction

Since their proposal [7,11,1] process calculi have become the primary tool for
researching paradigms of concurrent computation. In the three decades that
have passed two types of semantics have emerged:

Structural operational semantics [15] describes how processes may inter-
act with their immediate environment. As usual for structural operational
semantics the immediate behaviour of a composite process is defined struc-
turally in terms of the immediate behaviours of its component processes.

Behaviours are often expressed using labelled transition systems. The
label languages have considerable potential, which ensures that the struc-
tural operational semantics approach is viable for more expressive calculi
also. As calculi do become more expressive, however, the required label
languages tend to grow complicated and somewhat obscure the intuition of
concurrency.

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Pilegaard, Nielson, and Riis Nielson

Reaction semantics in the style of the chemical abstract machine (CHAM)
[2] clearly expresses an intuitive (chemical) understanding of concurrency.
Every process term is perceived as the description of a solution of (syntac-
tic) reactive entities. The usual structural congruence is a magical stirring
mechanism that allows syntactic entities to float and mix as required. The
reaction relation then simply states how reactions happen when ‘matching’
reactive entities come sufficiently close to each other.

While very intuitive this type of semantics has the drawback that the
structural congruence is subject to conflicting requirements. On the one
hand, we demand that the congruence sharply distinguishes between seman-
tically different process expressions. On the other hand, we require it to be
able to move potential redex constituents, which are syntactically located
arbitrarily far apart, close enough together for a reaction rule to identify
them. The usual decidability problems aside, these two requirements seem
to clash as calculi grow in expressiveness.

Due to their different strengths it is usual for calculi to have both types of
semantics. However, for the more elaborate calculi this is often difficult unless
syntactic restrictions are imposed.

Milner’s Calculus of Communicating Systems (CCS) is a prime example.
The more recent version [13], which we briefly describe in Section 2, restricts
choice to guarded sum. This facilitates both types of semantics because a
normal form ∑

j
αj .Pj (1)

can always be assumed for the constituents of redexes.

This may be contrasted to the original calculus [11] that has unrestricted
choice. For this reason the substantially more complex normal form

(. . . (((α.P + P ′)|P ′′) + P ′′′)|P ′′′′ . . .) (2)

needs to be assumed for the constituents of redexes. This normal form is
hard to match syntactically and the structural congruence is of little help as
it is semantically meaningless to allow choice and parallel to distribute freely
over one another. Thus, traditionally, only structural operational semantics
is defined for derivatives of this calculus.

In this paper we show how reaction semantics can be defined even for very
expressive calculi. One may ask why it is of interest to be able to deal with a
binary unrestricted choice as opposed to an indexed guarded sum (over some
arbitrary finite index set). In doing so we follow one of the design princi-
ples used by Gordon Plotkin when devising Structural Operational Semantics
[15]: that one should always strive to use unary or binary syntactic construc-
tors rather than general n-ary constructors because the former choice assists
machine readable formal semantics and also gives a deeper semantic under-
standing of the programming construct at hand [16].

56



Pilegaard, Nielson, and Riis Nielson

P ::= 0 | α . P |
∑

i∈I

αi . Pi | P P | (νa) P α ::= τ | a | a

Fig. 1. Syntax of finite core CCS with guarded sums (CCSgs).

The proposed approach is based on a novel notion of active evaluation
contexts. These contexts arise naturally when one allows standard evaluation
contexts, originally proposed by Felleisen [5], to evolve when reactions occur.
In Section 3 we develop the active evaluation contexts and use them to define
a reaction semantics for the recursion-free fragment of CCS with unrestricted
choice. The main theoretical result of this paper is that the resulting reaction
semantics agrees with Milner’s original structural operational semantics for
closed expressions.

In the case of more complicated calculi the notions of active evaluation
contexts and structural congruence combine nicely to give the desired seman-
tics. We illustrate this in Section 4 where we define a reaction semantics for
the full BioAmbients calculus extended with unrestricted choice.

2 CCS with Guarded Sums

In order to set the scene we start by considering CCS with guarded sums as
defined by Milner [13]. In order to expose our contribution in Section 3 more
clearly we shall focus on the finite fragment of the language; thus omitting
recursion. This does not indicate a limitation in our framework - as we shall
demonstrate later, in Section 4, recursion can easily be incorporated using a
structural congruence.

Now, letN , ranged over by a, b, · · · , be a denumerable set of channel names
and let the special symbol τ denote internal actions. The syntactical class of
action prefixes, α ∈ Act, then contains all names a ∈ N , all corresponding
co-names a ∈ N , and the special symbol τ . In this context the class of finite
core CCS processes with guarded sums, to be denoted CCSgs, is described by
the grammar in Figure 1, where we assume the I in

∑
i∈I αi . Pi to be finite

and write 0 when |I| = 0 and α.P when |I| = 1.

Because the choice construct
∑

i∈I
αi . Pi is guarded it is possible to define

a traditional (CHAM style) reaction semantics. As always, due to the syn-
tactical nature of the reaction semantics, the definition relies on a structural
congruence relation. If we let ≡α denote ordinary α-equivalence, the struc-
tural congruence, ≡gs, is the least relation that satisfies the axioms and rules
in Figure 2. Using the congruence the reaction relation, −→gs, defined by the
axioms and rules of Figure 3 specifies the full reaction semantics of CCSgs.
Note how this definition relies on the existence of the previously described
normal forms of type (1).

Next we define a structural operational semantics specifying the process
behaviour in terms of labelled transition systems. We assume the same class

57



Pilegaard, Nielson, and Riis Nielson

Reordering of parallel processes: Scope rules for name restrictions:

P 0 ≡gs P (νa) 0 ≡gs 0

P Q ≡gs Q P (νa) (νb)P ≡gs (νb) (νa)P

P (Q R) ≡gs (P Q) R (νa) (P Q) ≡gs P (νa)Q if a /∈ fn(P )

Alpha equivalence: Reordering of term in a summation:

P ≡α Q ⇒ P ≡gs Q Summands can be freely reordered.

Equivalence: Congruence:

P ≡gs P P ≡gs Q ⇒ α.P + M ≡gs α.Q + M

P ≡gs Q ⇒ Q ≡gs P P ≡gs Q ⇒ (νa)P ≡gs (νa)Q

P ≡gs Q ∧Q ≡gs R ⇒ P ≡gs R P ≡gs Q ⇒ P R ≡gs Q R

P ≡gs Q ⇒ R P ≡gs R Q

Fig. 2. Structural congruence of CCSgs.

TAU: τ . P + M −→gs P RES:

P −→gs P ′

(νa)P −→gs (νa)P ′ PAR:

P −→gs P ′

P Q −→gs P ′ Q

REACT: (a . P + M) (a . Q + N) −→gs P Q STRUCT:

P ≡ Q Q −→gs Q′ Q′ ≡ P ′

P −→gs P ′

Fig. 3. Reaction relation of CCSgs.

sumt : M + α . P + N
α
−→gs P reactt :

P
λ
−→gs P ′ Q

λ
−→gs Q′

P P
τ
−→gs P ′ Q′

l-part :

P
α
−→gs P ′

P Q
α
−→gs P ′ Q r-part :

Q
α
−→gs Q′

P Q
α
−→gs P Q′

rest :

P
α
−→gs P ′

(νa)P
α
−→gs (νa)P ′ if n(α) 6= a

Fig. 4. Structural operational semantics of CCSgs.

α of action prefixes as before but use the abbreviation λ to denote action
prefixes that are not internal (i.e. λ ∈ Act\{τ}); we shall write n(α) to denote
the base name of any action prefix. The transition relation

α
−→uc defining

the structural operational semantics is then the least relation satisfying the
axioms and rules of Figure 4.

While these two formulations of the CCSgs semantics are often used for
different purposes they are intended to express the same behaviour for closed
process expressions. Thus the following result [13] is crucial:

Theorem 2.1 (For CCSgs reaction agrees with τ-transition) For any
CCSgs process P we have that P

τ
−→gs≡ P ′ if and only if P −→gs P ′.

Proof. See Milner [13] Theorem 5.6 �

58



Pilegaard, Nielson, and Riis Nielson

P ::= 0 | α . P | P + P | P P | (νa)P

Fig. 5. Syntax of finite core CCS with unrestricted choice (CCSuc).

PREt : α . P
α
−→uc P L-PARt :

P
α
−→uc P ′

P Q
α
−→uc P ′ Q L-SUMt :

P
a
−→uc P ′

P + Q
α
−→uc P ′

R-PARt :

Q
α
−→uc Q′

P Q
α
−→uc P Q′ R-SUMt :

Q
a
−→uc Q′

P + Q
α
−→uc Q′

RESt :

P
α
−→uc P ′

(νa)P
α
−→uc (νa)P ′

if n(α) 6= a
REACTt :

P
λ
−→uc P ′ Q

λ
−→uc Q′

P Q
τ
−→uc P ′ Q′

Fig. 6. Structural operational semantics of FcCSSuc.

C ::= [ ] | (νa) C | C P | P C | C + P | P + C

Fig. 7. The active evaluation contexts of CCSuc.

3 Active Evaluation Contexts for CCS

When the calculus is generalised to finite core CCS with unrestricted choice
(CCSuc), as shown in Figure 5, the picture changes. Neither Milner nor other
contributors have ever defined a classic (CHAM style) reaction semantics for
a derivative of this language - and for good technical reasons. We believe that
the technical means to deal with normal forms of type (2) have simply been
lacking, and for this reason calculi descending from CCSuc are traditionally
given only a structural operational semantics similar to the one shown in
Figure 6 [12].

We shall now propose a semantics for CCSuc that retains the intuition of
reaction semantics, but avoids the difficulties of previous approaches. For this
purpose we shall introduce a notion of active evaluation contexts as defined in
Figure 7. As usual for process/evaluation contexts, active evaluation contexts
are process expressions with exactly one hole [5,13,8]. Contrary to ordinary
contexts, however, we shall allow active contexts to evolve when reactive sub-
processes occupying their hole engage in reactions.

To facilitate this we define the context reduction relation described in
Figure 8. It specifies exactly what happens to contexts when reactive sub-
processes engage in reaction. The reduction ability of contexts enables the
compact and elegant definition of the reaction relation, −→, shown in Figure
9. Here we use the auxiliary function masked(C) to determine the names and
co-names that are restricted by a context C. The function is given by:

masked(C) = {λ | some (νλ) C′ occurs in C}

In particular, masked((νa) C) = {a} ∪masked(C).

59



Pilegaard, Nielson, and Riis Nielson

EMPc : [ ] −→ [ ] NEWc :

C −→ C′

(νa) C −→ (νa) C′ L-PARc :

C −→ C′

C P −→ C′ P

R-PARc :

C −→ C′

P C −→ P C′ L-SUMc :

C −→ C
′

C + P −→ C′ R-SUMc :

C −→ C
′

P + C −→ C′

Fig. 8. Context reduction for active evaluation contexts in CCSuc.

TAU: τ . P −→uc P

REACT:

C1 −→ C′

1
C2 −→ C′

2

C1[ λ . P ] C2[ λ . Q ] −→uc C′

1
[ P ] C′

2
[ Q ]

if n(λ) 6∈ (masked(C1) ∪masked(C2))

CONT:

C −→ C′ P −→uc P ′

C[ P ] −→uc C′[ P ′ ]

Fig. 9. Reaction relation of CCSuc.

3.1 Correspondence of Semantics

It is evident that that the context reduction relation strongly resembles those
rules of the structural operational semantics that encode the recursive de-
scent into process terms. Consequently, structural congruence turns out to be
unnecessary as was the case for the structural operational semantics.

In this favourable context the equivalence of the reaction semantics and
the structural operational semantics for closed process expressions can be ex-
pressed simply as:

Theorem 3.1 (Reaction corresponds to τ transition) P −→uc P ′ if and
only if P

τ
−→uc P ′.

The proof has two parts, but first we establish the following useful re-
sult, which shows how the notion of active contexts relates to the structural
operational semantics:

Lemma 3.2 (Contexts respect behaviour) If P
α
−→uc P ′, C −→ C′,

and n(α) /∈ masked(C) then C[ P ]
α
−→uc C′[ P ′ ].

Proof. The proof proceeds by structural induction on C:

Base case [ ]: trivial.

Case C R:

From the premises we have P
α
−→uc P ′, C R −→ (C R)′, and n(α) /∈

masked(C).
By the shape of the inference of −→ we have (C R)′ = C′ R and
C −→ C′ as a necessary premise. From the induction hypothesis it is
now clear that C[ P ]

α
−→uc C′[ P ′ ].

A single application of the L-PARt rule now establishes the desired
result: C[ P ] R

α
−→uc C

′[ P ′ ] R

60



Pilegaard, Nielson, and Riis Nielson

Cases R C, R + C, and C + R:

All similar.

Case (νa) C:

From the premises we have P
α
−→uc P ′, (νa) C −→ ((νa) C)′, and

n(α) /∈ masked((νa) C).
By the shape of the inference of −→ we have ((νa) C)′ = (νa) C

′ and
C −→ C′ as a necessary premise and we know that n(α) /∈ masked(C).
From the induction hypothesis it is now clear that C[ P ]

α
−→uc C′[ P ′ ].

Given that n(α) /∈ masked((νa) C) we have n(α) 6= a and a sin-
gle application of the RESt rule now establishes the desired result:
(νa) C[ P ]

α
−→uc (νa) C′[ P ′ ]. �

Given this lemma it is now easy to establish the ’if’ part of Theorem 3.1:

Lemma 3.3 If P −→uc P ′ then P
τ
−→uc P ′.

Proof. We proceed by induction on the inference of −→uc:
Case TAU:

Given the process term τ.P rule PREt trivially instantiates to give us
τ.P

τ
−→uc P , just as desired.

Case REACT:

Rule PREt gives us a . P1

a
−→uc P1 and a . P2

a
−→uc P2, and from

the rule premises we have that C1 −→ C′

1, C2 −→ C′

2, n(a) /∈
(masked(C1) ∪masked(C2)).
Using Lemma 3.2 we can establish that C1[ a . P1 ]

a
−→uc C

′

1[ P1 ] and

C2[ a . P2 ]
a
−→uc C′

2[ P2 ]. By a single application of rule REACTt

we can now conclude C1[ a . P1 ] C2[ a . P2 ]
τ
−→uc C′

1
[ P1 ] C′

2
[ P2 ], as

required.

Case CONT:

From the premises we have C −→ C′ and P −→uc P ′. Using the induc-
tion hypothesis on the latter we obtain P

τ
−→uc P ′, where obviously

n(τ) /∈ masked(C).
Lemma 3.2 now tells us that C[ P ]

τ
−→uc C′[ P ′ ], as required. �

We now turn to the ’only if’ part of Theorem 3.1, which is a straightforward
corollary of the following lemma:

Lemma 3.4 If P
τ
−→uc Q then P −→uc Q and

if P
λ
−→uc Q then, for all contexts C, C′ such that C −→ C′ and n(λ) /∈

masked(C), we have C[ P ] λ . R −→uc C′[ Q ] R and λ . R C[ P ] −→uc

R C′[ Q ].

Proof. The proof proceeds by induction on the inference of
α
−→uc:

Base case PREt :

61



Pilegaard, Nielson, and Riis Nielson

If α is τ then P is τ.P ′ and Q is P ′ and the transition P −→uc Q
follows from TAU.
Otherwise P is λ.P ′ and Q is P ′ and the required transitions both
follow from REACT (taking one of C1 and C2 to be C and the other
to be [ ]).

Case L-PARt :

If α is τ then P is P ′ Q′ and Q is P ′′ Q′ and the transition P −→uc Q
follows from the induction hypothesis and CONT where C is taken
to be [ ] Q′.
Otherwise, P and Q are of a similar form, but the transi-
tions have to follow from REACT. From premises we know that

P ′
λ
−→uc P ′′, and the induction hypothesis then tells us that

C[ P ′ ] λ . R −→uc C′[ P ′′ ] R for all suitable C, C′ (i.e. C −→ C′

with n(λ) /∈ masked(C)). Given that C, C′ are suitable clearly
C[ [ ] Q′ ], C′[ [ ] Q′ ] are also suitable, and then the required tran-
sitions both follow from REACT.

Case R-PARt,LSUMt, and R-SUMt :

All similar.

Case RESt :

If α is τ then P is (νa) P ′ and Q is (νa) P ′′ and the transition
P −→uc Q follows from the induction hypothesis and CONT where
C is taken to be (νa) [ ].
Otherwise, P and Q are of a similar form, but the transitions
have to follow from REACT. From the premise we know that

P ′ λ
−→uc P ′′, and the induction hypothesis then tells us that

C[ P ′ ] λ . R −→uc C′[ P ′′ ] R for all suitable C, C′ (i.e. C −→ C′

with n(λ) /∈ masked(C)). Given that C, C′ are suitable clearly
C[ (νa) [ ] ], C′[ (νa) [ ] ] are also suitable because we know from the side-
condition that n(λ) 6= a, which means that n(λ) /∈ masked(C) ∪ {a}.
The required transitions then both follow from REACT.

Case REACTt :

Here α is τ and P is P ′ Q′ and Q is P ′′ Q′′. By the premises and

the induction hypothesis we have both C[ P ′ ] λ . R −→uc C′[ P ′′ ] R

and λ . R C[ P ′ ] −→uc R C′[ P ′′ ]. As these reactions can only arise
by the use of REACT we may assume that C[ P ′ ] is of the form
C[ Cdeep[ λ . Pdeep ] ], where Cdeep −→ C′

deep and n(λ) /∈ masked(Cdeep).
Similar arguments for Q′ allows us to assume that C[ Q′ ] is of the form
C[ Cdeep[ λ . Qdeep ] ], where Cdeep −→ C′

deep and n(λ) /∈ masked(Cdeep).
From this we obtain the desired reaction by a single application of
REACT. �

62



Pilegaard, Nielson, and Riis Nielson

4 Active Evaluation Contexts for BioAmbients

The use of process calculi as modelling languages for real-world domains, such
as business modelling and systems biology, seems to be a current trend in
language based technology. The trend combines many language features that
were previously unstudied or only studied in isolation. This invariably leads
to evermore expressive calculi that share the difficulties of CCSuc with respect
to the definition of appropriate reaction semantics.

The BioAmbients calculus of Regev et al. [18,17,3] is a prime example. The
language is a sibling of Mobile Ambients (Cardelli and Gordon [4]) designed
to model biological systems. It preserves the notion of ambients as bounded
mobile sites of activity; contrary to Mobile Ambients, however, bio-ambients
are cast as nameless entities. The ambients are used to model chemically
active sub-systems (compartments) bound by biological barriers (membranes)
in an intuitive manner.

The calculus is quite extensive in terms of modelling primitives. Appropri-
ate sets of capabilities and co-capabilities are devised for modelling a variety of
biological reactions, such as movement and communication, that may happen
between the sub-systems. Both communication and movement are facilitated
by having capability/co-capability pairs react with each other as in [10,14]. As
a consequence all reactions are synchronous in the sense that the process ex-
posing the capability and the process exposing the corresponding co-capability
must simultaneously agree on a reaction for it to happen. Such an agreement
can be reached only if the two entities share the same (channel) name.

The set of control structures for processes is slightly larger than what
is traditionally studied for Mobile Ambients. Besides the ambient construct
it includes non-deterministic (external) choice as well as a general recursion
construct in the manner of CCS [12] in order to facilitate the description of
more faithful models of biological systems.

Following the tradition of ambient calculi BioAmbients is endowed by
Regev with a (CHAM style) reaction semantics [18,17]. Arguably, this is
a natural choice because it ensures a high degree of coherence between the
inherently bio-chemical modelling domain and the operational model of the
language. As for CCSgs, however, external choice is limited to guarded sums
and, again, we believe that this is so because the technical means to combine
parallelism and unrestricted choice was lacking at the time of definition.

In the following we present a BioAmbients variant where choice is unre-
stricted. We trust this to be a conservative extension of the original calculus,
but a formal proof is besides the point of the present paper. Rather, we shall
focus on defining a reaction semantics using our active evaluation contexts.

4.1 Syntax

The full syntax of BioAmbients is defined in Figure 10. Note that we use the
heavy brackets [ and ] to represent ambient boundaries; the ordinary brackets [

63



Pilegaard, Nielson, and Riis Nielson

P ::= 0 a terminal (stuck) process

| (νa)P restricting the scope of a to the process expression P

| [ P ] process P enclosed by ambient boundary

| P P ′ process P in parallel with process P ′

| P + P ′ non-deterministic external choice between P and P ′

| M . P capability prefixed process

| rec X. P recursive process definition (X = P )

| X process identifier

M ::= enter a | accept a enter movement

| exit a | expel a exit movement

| merge– a | merge+ a merge movement

| a!{b} | a?{c} local communication binding the variable c

| a !{b} | â ?{c} parent to child communication binding the variable c

| â !{b} | a ?{c} child to parent communication binding the variable c

| a#!{b} | a#?{c} sibling communication binding the variable c

Fig. 10. Syntax of BioAmbients.

C ::= [ ] | C P | P C | C + P | P + C

Fig. 11. The active evaluation contexts of BioAmbients.

and ] are reserved for substitutions and holes of contexts. We use a, b, · · · ∈ N
to denote channel names and M ∈ Cap for the notion of (co-) capabilities,
which are based on names and generalise the notion of actions. As customary
for BioAmbients we omit the notion of internal τ -actions. Also, since reactions
are based on (co-)capabilities, we have no need for co-names.

In the following we shall write P [a/b] to denote the process that is as P
except that all free occurrences of the name b are replaced by a. Similarly,
we shall use P [Q/X] to identify the process that is as P except that all free
occurrences of the process identifier X are replaced by the process expression
Q. In both cases we take care to perform the necessary α-renamings to avoid
capturing free names and process identifiers. Finally, we shall use fn(P ) to
pick out the free names of a process P and write P ≡α Q to state that two
processes P and Q are identical up to α-renaming of names.

4.2 Semantics

The active evaluation contexts of BioAmbients, shown in Figure 11 and Figure
12, are simpler than those of CCSuc. Their definition embodies three crucial
choices, which we shall further substantiate below:

(i) The active contexts are name restriction free.

(ii) The active contexts are ambient boundary free.

64



Pilegaard, Nielson, and Riis Nielson

EMPc : [ ] −→ [ ] L-PARc :

C −→ C′

C P −→ C′ P R-PARc :

C −→ C′

P C −→ P C′

L-SUMc :

C −→ C′

C + P −→ C′ R-SUMc :

C −→ C′

P + C −→ C′

Fig. 12. Reduction of BioAmbients active evaluation contexts.

(iii) The active contexts are recursion free.

The choice (i) is necessary because both π-style name passing and ambient
style movement may cause extrusion of scope. This happens when restricted
names are communicated to recipients or moved to positions outside of their
original bounding box. Defining the active contexts to be name restriction
free allows us to deal explicitly with all scope related issues in the usual way,
i.e. using the structural congruence, shown in Figure 13, to migrate name
restrictions in and out of redexes as required.

Contrary to the usual practice we allow constant introductions (νa) to
migrate in and out of non-deterministic external choice constructs in much
the same way as is customary for parallel composition. This is necessary
because the rules of our reaction semantics are implicitly going to assume the
normal form

(. . . ((([ (. . . (((M . Pi + P ′

i ) P ′′

i ) + P ′′′

i ) P ′′′′

i . . .) ]+ P ′

o) P ′′

o ) + P ′′′

o ) P ′′′′

o . . .) (3)

for the constituents of redexes of movement actions, and

(. . . ((([(. . . (((M . Pi + P ′

i ) P ′′

i ) + P ′′′

i ) P ′′′′

i . . .)]+ P ′

o) P ′′

o ) + P ′′′

o ) P ′′′′

o . . .) (4)

(where the grey symbols denote syntax that may, or may not, be present)
for the constituents of redexes of communication actions. In each of these
cases the congruence must be strong enough to migrate an obstructing name
restriction out of the way, if appropriate.

The choice (ii) is required to ensure that rules of the reaction semantics,
shown in Figure 14, recognise and alter redexes correctly. All redexes have two
constituents, one exposing a capability prefix and another exposing the cor-
responding co-capability prefix. As mentioned, these constituents can always
be assumed to be of one of the forms (3) or (4), which implies that there are
some cases where exactly one boundary is demanded to enclose the exposed
prefix, and other cases where no boundaries are allowed. Defining the active
evaluation contexts to be ambient boundary free allows us to easily match
each of these cases in the following manner:

(I) If no ambient boundary is allowed, the constituent is simply a capability
prefixed process expression enclosed in an active evaluation context, which
we match by C[M . P ].

(II) If exactly one ambient boundary is demanded, the constituent is an ex-
pression of the form (I) enclosed in an ambient boundary construct and a

65



Pilegaard, Nielson, and Riis Nielson

Scope rules for namebindings:

(νa)0 ≡ 0 (νa) (P P ′) ≡ ((νa)P ) | P ′ if a /∈ fn(P ′)

(νa1) (νa2)P ≡ (νa2) (νa1)P (νa) (P + P ′) ≡ ((νa)P ) + P ′ if a /∈ fn(P ′)

(νa) ([ P ]) ≡ [ (νa)P ]

Unfolding of recursion:

rec X.P ≡ P [rec X.P/X]

α-renaming: Congruence requirements:

P ≡α Q

P ≡ Q P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

C[P ] ≡ C[Q ]

P ≡ Q

[ P ]≡ [ Q ]

P ≡ Q

(νa)P ≡ (νa)Q

Fig. 13. Structural congruence P ≡ Q for BioAmbients.

further active evaluation context, which we match by C1[ C2[M . P ] ].

As illustrated by Figure 14, where the active contexts are toned down, system-
atic application of these patterns allows us to focus entirely on the high level
structure of redexes and contractums while the contexts conveniently hide the
details of redex constituents as well as reactions.

Finally, the choice (iii) completely separates the notion of recursion from
that of the active evaluation contexts. As a result recursion is easily handled
in the usual manner, i.e. using the structural congruence to unfold recursive
processes as required.

5 Related Work

Employing evaluation contexts to express semantics of process calculi is not a
new idea.

Berry and Boudol [2] use program contexts to denote the arbitrary testing
environments that form the basis of semantic equivalence in CHAM. Later
authors, such as Milner [13], use a similar (derived) notion of process contexts,
primarily in order to extend equivalences to congruences. A few authors,
such as Godskesen, Hildebrandt, and Sasone [6] for the Calculus of Mobile
Resources, also use similar derived notions (path contexts, evaluation contexts,
resource contexts etc.) to define the actual reaction relation of their calculi. In
all cases, however, the involved notions of context are (standard) static ones
and none of the authors address the issue of combining general choice with
parallelism.

Sewell [20] makes a radically different use of contexts. He shows how
to automatically derive labelled transition systems from a variety of rewrite
semantics by simply using suitable contexts as transition labels whenever reac-
tion occurs. This allows operational equivalences, as provided by the reaction

66



Pilegaard, Nielson, and Riis Nielson

Movement of ambients:

C1 −→ C′

1 C2 −→ C′

2 C3 −→ C′

3 C4 −→ C′

4

C1[ C2[ enter a . P ] ] C3[ C4[ accept a . Q ] ]−→C′

1
[0 ] C′

3
[ [ C′

2
[ P ] ] C′

4
[ Q ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3

[ C1[ C2[ exit a .P ] ] C3[ expel a . Q ] ]−→ [ C′

2
[ P ] ] [ C′

1
[0 ] C′

3
[ Q ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3
C4 −→ C′

4

C1[ C2[ merge– a . P ] ] C3[ C4[ merge+ a . Q ] ]−→C′

1[0 ] C′

3[ C′

2[ P ] C′

4[ Q ] ]

Communication between ambients:

C1 −→ C′

1
C2 −→ C′

2

C1[ a!{b} . P ] C2[ a?{c} .Q ]−→C′

1[ P ] C′

2[ Q[m/p] ]

C1 −→ C′

1 C2 −→ C′

2 C3 −→ C′

3

C1[ a !{b} . P ] C2[ C3[ â ?{c} .Q ] ]−→C′

1
[ P ] C′

2
[ C′

3
[ Q[m/p] ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3

C1[ C2[ â !{b} . P ] ] C3[ a ?{c} .Q ]−→C′

1
[ C′

2
[ P ] ] C′

3
[ Q[m/p] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3
C4 −→ C′

4

C1[ C2[ a#!{b} . P ] ] C3[ C4[ a#?{c} .Q ] ]−→C′

1[ C′

2[ P ] ] C′

3[ C′

4[ Q[m/p] ] ]

Execution in context: Structural congruence:

C −→ C′ P −→ Q

C[ P ] −→ C
′[ Q ]

P −→ Q

(νa)P −→ (νa)Q

P −→ Q

[ P ]−→ [ Q ]

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Fig. 14. Reaction relation of BioAmbients.

semantics, to be investigated in a (presumably) nicer labelled setting. The
involved notion of context is not related to ours and calculi with choice are
not considered at all.

Larsen [8] uses contexts equipped with structural operational semantics
to define a notion of context dependent equivalence. Larsen and Xinxin [9]
extends this into a notion of compositionality that allows Hennesy-Milner
properties of composite systems to be decomposed into joint properties of the
sub-components. This use of active contexts has subsequently been adopted
back into the realm of functional languages by Sands [19]. In all cases the
contexts are, in some sense, active, but the associated semantics is defined
using exactly the complicated label languages that reaction semantics strive
to avoid and, in purpose, the approach is unrelated to ours.

6 Conclusion

We have developed the notion of active evaluation contexts that allows reaction
semantics in the style of the Chemical Abstract Machine [2] to be defined for
a larger class of process algebras than has previously been considered.

In line with previous work on reaction semantics for CCS [13] we have
compared our approach to the more classical approach of structural oper-

67



Pilegaard, Nielson, and Riis Nielson

ational semantics [11] and proved that the two types of semantics coincide
when closed process expressions are considered. This result indicates that the
notion of active evaluation contexts constitutes a sound approach to reaction
semantics.

In order to illustrate our approach on more expressive calculi, such as those
that arise to meet the demands of domain specific modelling for complex do-
mains, we have presented a full reaction semantics for an extension of Regev
and Cardelli’s comprehensive BioAmbients calculus [18] that includes unre-
stricted choice. The resulting semantics has two properties that we find very
encouraging. Firstly the process of actually defining it was highly systematic
and, thus, easy. Secondly we find that it is comparable in elegance to Regev’s
original semantics. This indicates that the notion of active evaluation contexts
also constitutes a sensible approach to reaction semantics.

Thus, we believe that active evaluation contexts constitute a sound and
sensible approach to defining reaction semantics in general. We can only fully
substantiate this claim, however, by subjecting other advanced calculi, which
combine various features in new ways, to the approach.

References

[1] Bergstra, J. A. and J. W. Klop, Algebra of communicating processes, in: Proc.
of CWI Symposium, Mathematics and Computer Science (1986), pp. 89–138.

[2] Berry, G. and G. Boudol, The chemical abstract machine, in: POPL ’90:
Proceedings of the 17th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages (1990), pp. 81–94.

[3] Cardelli, L., Bioware languages, in: A. Herbert and K. S. Jones, editors,
Computer Systems: Theory, Technology, and Applications - A Tribute to Roger
Needham, Monographs in Computer Science, Springer, 2004 pp. 59–65.

[4] Cardelli, L. and A. D. Gordon, Mobile Ambients, Theoretical Computer Science
240 (2000), pp. 177–213.

[5] Felleisen, M. and D. P. Friedman, Control operators, the SECD-machine, and
the λ-calculus, in: M. Wirsing, editor, Formal Descriptions of Programming
Concepts III, North-Holland, 1986 pp. 193–219.

[6] Godskesen, J. C., T. Hildebrandt and V. Sassone, A calculus of mobile resources,
in: L. Brim, P. Jancar, M. ir Kretinsky and A. in Kucera, editors, CONCUR
13 – Concurrency Theory, LNCS 2421 (2002), pp. 272–287.
URL citeseer.ist.psu.edu/article/godskesen02calculus.html

[7] Hoare, C. A. R., Communicating sequential processes, Commun. ACM 21

(1978), pp. 666–677.

[8] Larsen, K. G., A context dependent equivalence between processes, Theor.
Comput. Sci. 49 (1987), pp. 185–215.

68



Pilegaard, Nielson, and Riis Nielson

[9] Larsen, K. G. and L. Xinxin, Compositionality through an operational semantics
of contexts, Journal of Logic and Computation 1 (1991), pp. 761–795.

[10] Levi, F. and D. Sangiorgi, Controlling interference in ambients, in: Proc. of
POPL’2000 (2000), pp. 352–364.

[11] Milner, R., “A Calculus of Communicating Systems,” Lecture Notes in
Computer Science Vol. 92, Springer-Verlag, 1980.

[12] Milner, R., “Communication and Concurrency,” Prentice-Hall, Inc., Upper
Saddle River, NJ, USA, 1989.

[13] Milner, R., “Communicating and Mobile Systems: The π-Calculus,” Cambridge
University Press, 1999.

[14] Nielson, H. R., F. Nielson and M. Buchholtz, Security for mobility, in: FOSAD
2001/2002 Tutorial Lecture Notes, LNCS 2946, Springer, 2004 pp. 207–265.

[15] Plotkin, G. D., A Structural Approach to Operational Semantics, Technical
Report DAIMI FN-19, University of Aarhus (1981).
URL citeseer.csail.mit.edu/plotkin81structural.html

[16] Plotkin, G. D., Personal communication to flemming nielson, Aarhus (1981).

[17] Regev, A., “Computational Systems Biology: A Calculus for Biomolecular
Knowledge,” Ph.D. thesis, Tel Aviv University (2003).

[18] Regev, A., E. M, Pamina, W. Silverman, L. Cardelli and E. Shapiro,
BioAmbients: An abstraction for biological compartments, Theoretical
Computer Science 325 (2004), pp. 141–167.

[19] Sands, D., Towards operational semantics of contexts in functional languages,
in: Proceedings of the 6th Nordic Workshop on Programming Theory, 1994, pp.
378–385.
URL citeseer.ist.psu.edu/68354.html

[20] Sewell, P., From rewrite rules to bisimulation congruences, Theoretical
Computer Science 274 (2002), pp. 183–230.
URL citeseer.ist.psu.edu/sewell98from.html

69



SOS 2006 Preliminary Version

Notes on Generative Probabilistic Bisimulation

Simone Tini 1,2

Dipartimento di Scienze della Cultura, Politiche e dell’Informazione

Università dell’Insubria

Via Carloni 78, 22100, Como, Italy

Abstract

In this notes we consider the model of Generative Probabilistic Transition Systems,
and Baier and Hermanns’ notion of weak bisimulation defined over them. We prove
that, if we consider any process algebra giving rise to a Probabilistic Transition
System satisfying the condition of regularity and offering prefixing, interleaving,
and guarded recursion, then the coarsest congruence that is contained in weak
bisimulation is strong bisimulation.

Key words: Process Algebras, Generative Probability, Behavioral
Equivalences, Bisimulation, Weak Bisimulation, Congruence

1 Introduction

Probabilistic process algebras have been introduced in the literature (see,
among the others, [1,2,7,3,10,11,12,16,18,21,31]) to develop techniques deal-
ing with both functional and non-functional aspects of system behavior, such
as performance and reliability. Models of probabilistic processes are classi-
fied in [18] into generative, reactive, and stratified. In the generative model,
a single probability distribution is ascribed to all moves of a given process,
independently of their action label. In the reactive model, the kind of action
performed by a given process in chosen in a nondeterministic way, and a prob-
ability distribution is ascribed to all moves of that process labeled with that
action. In the stratified model a given process has either probability moves,
to which a single probability distribution is ascribed and that are associated
with no action label, or a single action move, having an action label, thus im-
plying a clear separation of action and probability. The model of Probabilistic
Automata [29] was introduced to capture both probability and the classical

1 Author partially supported by PRIN Project “Analisi di sistemi di Riduzione mediante
sistemi di Transizione” (ART)
2 Email: simone.tini@uninsubria.it

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Tini

process algebraic notion of nondeterminism. Here, a state of an automaton can
have several transitions that are chosen in a nondeterministic way, and each
transition leads to a probabilistic distribution over action labeled moves. Usu-
ally, the model of [29] is known as the non-alternating model, in contraposition
with the alternating model of [19], where there is a clear distinction between
nondeterministic states, enabling transitions leading to a unique state and
that are chosen in a nondeterministic way, and probabilistic states, enabling a
unique transition leading to a probabilistic distribution over states.

Probabilistic transition systems (PTSs, for short), which extend classic
labeled transition systems by some mechanism to represent probability, have
been employed as a basic semantic model of probabilistic processes. Of course,
several definitions of PTS have been introduced, taking into account of the
probabilistic model considered. In order to abstract away from irrelevant
information on the way that probabilistic processes compute, several notions of
probabilistic equivalence and preorder have been defined over the PTS models
[2,8,9,11,12,19,20,22,23,25,30,32]. In order to fit a given equivalence into an
axiomatic framework, it is required that it is a congruence with respect to
all process algebra operations. Probabilistic bisimulation, which relates two
processes iff their PTSs have the same probabilistic branching structure, and
that was originally defined in [25] for the reactive model, enjoys the congruence
property in the process algebras proposed in the papers mentioned above, and
is one of the equivalence definitions most frequently employed.

In the nonprobabilistic case, weak bisimulation has been successfully pro-
posed by Milner [26] as an equivalence relation that abstracts away from inter-
nal computation steps. A notion of weak bisimulation for the non-alternating
model has been considered in [2,11,12,30]. Baier and Hermanns [5] formu-
lated a notion of weak bisimulation inspired by [26] for the generative model.
We refer to [5] for interesting motivations and results on probabilistic weak
bisimulation.

In the nonprobabilistic setting, it is well known that weak bisimulation
is not a congruence with respect to the operation of nondeterministic choice,
which is offered by most of known process algebras. Due to the importance
of having the congruence property, the coarsest congruence with respect to
nondeterministic choice that is finer than weak bisimulation has been charac-
terized, and called observational congruence by Milner [26]. Such a congru-
ence is known also with the names of rooted τ -bisimulation [4] and rooted weak
bisimulation [6]. Also in the non-alternating model, the coarsest congruence
with respect to nondeterministic choice that is finer than weak bisimulation
has been characterized [2,11,12].

Process algebras respecting the generative model do not offer any opera-
tion of nondeterministic choice. More precisely, these process algebras do not
offer any operation introducing nondeterminism. However, in general, also in
the generative model weak bisimulation is not a congruence. In fact, many
process algebras offer a parametric version of interleaving operation, where the

71



Tini

parameter determines the probability to move of each of the two composed
processes, and we show by means of a very simple counterexample that weak
bisimulation is not a congruence with respect to this interleaving operation.
Also the CCS-like parallel composition operation of [10,7] and the CSP-like
parallel composition operation of [10] do not preserve weak bisimulation.

Our aim is then to study in the generative model the problem to give a
characterization of the coarsest equivalence notion being finer than probabilis-
tic weak bisimulation and being a congruence with respect to any reasonable
kernel of operations. To this purpose, we assume prefixing, interleaving, and
guarded recursion as such a kernel of operations, since they are widely em-
ployed. We prove that, if we only consider process algebras giving rise to
PTSs satisfying the regularity condition, then the congruence we aim to char-
acterize is probabilistic bisimulation. In some sense, this result has negative
consequences. In fact, in the nonprobabilistic case a lot of work has been done
on congruences weaker than bisimulation and stronger than weak bisimulation,
and in the generative case such a work cannot be repeated, since our result
implies that there is no congruence strictly lying between bisimulation and
weak bisimulation. Note that our result emphasizes also a difference between
the generative and the non-alternating model, where the coarsest congruence
contained in weak bisimulation [6,13,14,15,17] is strictly coarsest than strong
bisimulation. This difference depends on the fact that the parallel compo-
sition operation of the non-alternating model has no parameter, introduces
nondeterminism, and can be treated as the classical interleaving operation of
[26].

2 Probabilistic Bisimulations

Given any set S, let M(S) denote the set of all multisets over S. Let us
employ “{|” and “|}” as brackets for multisets.

The following definition originates from [7,3,5].

Definition 2.1 A generative probabilistic transition system (GPTS, for short)
is a triple (S, Act, T ), where S is a set of states, Act is a countable set of
actions, and T ∈ M(S × Act × (0, 1] × S) is a multiset of transitions such
that, for all states s ∈ S:

∑
{| p | ∃α ∈ Act, s′ ∈ S : (s, α, p, s′) ∈ T |} ∈ {0, 1} 3

Def. 2.1 requires that each state s ∈ S is semistochastic, namely, the sum
of the probabilities of its outgoing transitions, if there are any, sums up to
1. Let us recall that GPTSs considered in [18,31] have a weaker requirement,
since they admit that, for each state s, the sum of the probabilities of its

3 Note that multisets are needed to handle the case where from a state s several transitions
with the same label α and probability p lead to a state s′.

72



Tini

outgoing transitions, if there are any, is a value 0 ≤ q ≤ 1, the interpretation
being that s deadlocks with probability 1− q. Results proved in the present
paper hold also for the model of GPTS of [18,31], since they do not depend
on any constraint on the probability of the transitions leaving from s.

Let s
α,p−−→ s′ denote that (s, α, p, s′) ∈ T , s −→ denote that s

α,p−−→ s′ holds

for some α, p and s′, and s 6−→ denote that s
α,p−−→ s′ holds for no α, p and s′.

Let s =⇒ s′ denote that s′ is reachable from s, namely there exists a

sequence of transitions s0
α0,p0−−−→ s1 . . . sn−1

αn−1,pn−1−−−−−−→ sn such that s0 = s and
sn = s′.

In the following we assume the “regularity” condition, namely, for each
state s ∈ S there are only finitely many outgoing transitions s

α,p−−→ s′, and
from s only finitely many other states can be reached through any (possibly
infinite) sequence of transitions.

Let us recall the cumulative probability distribution function µG [18], which
computes the total probability by which from a state s a state s′ can be reached
through transitions labeled with an action α. Adopting the convention that
the empty sum of probability is 0, µG is defined as follows.

Definition 2.2 µG : S × Act × S → [0, 1] is the function given by: ∀s ∈ S,
∀α ∈ Act, ∀s′ ∈ S:

µG(s, α, s′) =
∑

{|p | s α,p−−→ s′ ∈ T |}

Function µG can be extended to sets of target states. ∀s ∈ S, ∀α ∈ Act,
∀S ⊆ S:

µG(s, α, S) =
∑

s′∈S

µG(s, α, s′)

Following [5], function µG can be extended to sequences of actions in Act∗.
Let ǫ denote the empty sequence of actions. For each α ∈ Act and λ ∈ Act∗,
let αλ denote the sequence in Act∗ obtained by prefixing λ with α.

Then, ∀s ∈ S, ∀α ∈ Act, ∀λ ∈ Act∗, ∀S ⊆ S:

µG(s, ǫ, S)= 1 if s ∈ S

µG(s, ǫ, S)= 0 if s 6∈ S

µG(s, αλ, S)=
∑

s′∈S

µG(s, α, s′) · µG(s′, λ, S)

Finally, following [5] function µG can be extended to sets of sequences of
actions in Act∗. Let Λ denote any subset of Act∗, and Λ/α denote the set
{λ ∈ Act∗ |αλ ∈ Λ}.

Then, ∀s ∈ S, ∀Λ ⊆ Act∗, ∀S ⊆ S:

µG(s, Λ, S)= 1 if ǫ ∈ Λ and s ∈ S

µG(s, Λ, S)=
∑

(α,s′)∈Act×S

µG(s, α, s′) · µG(s′, Λ/α, S) otherwise

We can recall now the notion of bisimulation [18] for GPTSs. For any

73



Tini

equivalence relation R over the set of states S, let S/R denote the set of
equivalence classes induced by R.

Definition 2.3 An equivalence relation R ⊆ S ×S is a (strong) bisimulation
if (s1, s2) ∈ R implies: ∀C ∈ S/R, ∀α ∈ Act:

µG(s1, α, C) = µG(s2, α, C)

The union of all bisimulations is, in turn, a bisimulation, denoted by ∼.
Relation ∼ equates states having the same probabilistic branching structure.

Let us assume that Act contains the special silent action τ . We can recall
now Baier and Hermanns’ notion of weak bisimulation [5] for GPTSs. Let us
denote sets of sequences of actions in Act∗ with regular expressions.

Definition 2.4 An equivalence relation R ⊆ S × S is a weak bisimulation if
(s1, s2) ∈ R implies: ∀C ∈ S/R, ∀a ∈ Act \ {τ}:

µG(s1, τ
∗aτ ∗, C) = µG(s2, τ

∗aτ ∗, C)

µG(s1, τ
∗, C) = µG(s2, τ

∗, C)

The union of all weak bisimulations is, in turn, a weak bisimulation, de-
noted by ≈. Relation ≈ is coarser than ∼, since it abstracts from silent
computation steps.

3 Weak Bisimulation is not a Congruence

As usual, let us assume a process description language whose abstract syntax
is given by a signature Σ, consisting of a set of operation symbols together
with an arity mapping that assigns a natural ar(f) to every f ∈ Σ.

In this setting, a process is a closed term over Σ, where, for a set of variables
Var ranged over by x, y, . . . , the set of (open) terms over Σ and Var is the
least set such that:

• each variable x ∈ Var is a term;

• f(t1, . . . , tar(f)) is a term whenever f ∈ Σ and t1, . . . , tar(f) are terms,

and the terms that do not contain variables in Var are called closed terms.

The semantics of the language is given by a GPTS, whose states are pro-
cesses, and whose transitions are inferred by a set of SOS rules [27,28]. As
usual, let us assume that Σ contains the operation symbol 0 (sometimes de-
noted nil) with ar(0) = 0, where 0 represents the idling process having no
move.

Let us recall the notion of congruence.

Definition 3.1 An equivalence relation R over processes is called a congru-
ence iff, for each f ∈ Σ, if relation (ti, t

′
i) ∈ R holds for all 1 ≤ i ≤ ar(f), then

(f(t1, . . . , tar(f)), f(t′1, . . . , t
′
ar(f))) ∈ R.

74



Tini

α · x α,1−−→ x

x[recX. x/X]
α,p−−→ y

recX. x
α,p−−→ y

x1
α1,p1−−−→ y1 x2 6−→

x1 ‖p x2
α1,p1−−−→ y1 ‖p x2

x1 6−→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2−−−→ x1 ‖p y2

x1
α1,p1−−−→ y1 x2 −→

x1 ‖p x2
α1,p1·p−−−−→ y1 ‖p x2

x1 −→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2·(1−p)−−−−−−→ x1 ‖p y2

Table 1
Some probabilistic operations; x, x1, x2, y1, y2 are process variables, α,α1, α2 range

over Act, p, p1, p2 are variables over the interval [0, 1], and X is a recursion

variable.

Now, bisimulation ∼ is a congruence with respect to operations of well
known process algebras used in the literature [1,7,3,10,16,18,21,24,31].

Let us consider the operation of probabilistic interleaving ‖p of [3], whose
semantics in SOS style is presented in Table 1. Intuitively, if both processes
t1 and t2 can move, then the process t1 ‖p t2 moves as t1 with probability p
and as t2 with probability 1− p. If only t1 (resp. t2) can move, then t1 ‖p t2
moves as t1 (resp. t2) with probability 1.

By an example, we can show that weak bisimulation is not a congruence
with respect to operation ‖p.

Example 3.2 Let a ∈ Act \ {τ}, and t1 and t2 be the processes t1 ≡ τ · a · 0
and t2 ≡ τ · τ · a · 0, where · is the prefixing operation described in Table 1.
It is immediate that t1 ≈ t2, but, for each 0 < p < 1 and b ∈ Act \ {a, τ},
t1 ‖p b · 0 6≈ t2 ‖p b · 0. In fact, µG(t1 ‖p b · 0, τ ∗aτ ∗, 0 ‖p b · 0) = p2, whereas
µG(t2 ‖p b · 0, τ ∗aτ ∗, 0 ‖p b · 0) = p3, and no other state weak bisimilar to
0 ‖p b · 0 is reachable from t1 ‖p b · 0 and t2 ‖p b · 0. Intuitively, to perform the
a move before the b move by b · 0, t1 has to win two competitions versus b · 0,
whereas t2 has to win three competitions.

Note that Example 3.2 holds also if we replace the interleaving operation
‖p with the CCS-like parallel composition operation ‖p

q of [10,7], provided that
b 6= a, or with the CSP-like parallel composition operation ‖p

A of [10], provided
that the set of actions A contains neither a nor b.

4 Bisimulation is the Coarsest Congruence Contained

in Weak Bisimulation

Let rec be the recursion operation defined in Table 1. We assume that the
recursion variables always appear as guarded, according to the usual definition.
In this section we prove that, if we consider any process algebra offering the
operations of prefixing, recursion, and interleaving as in Table 1, then the

75



Tini

coarsest congruence contained in weak bisimulation is bisimulation.

Let us introduce the notion of p-bisimulation. It can be viewed as a rela-
tion weaker than a bisimulation, in the sense that the probabilistic branching
structure of processes is considered modulo the probability value p.

Definition 4.1 Given any 0 ≤ p ≤ 1, an equivalence relation Rp ⊆ S × S is
a p-bisimulation if (s1, s2) ∈ Rp implies: ∀C ∈ S/Rp, ∀α ∈ Act:

|µG(s1, α, C)− µG(s2, α, C)| ≤ p

In general, it is not guaranteed that the union of two p-bisimulations is
a p-bisimulation. Hence, p-bisimulations are less elegant than bisimulations
and weak bisimulations. However, we are not interested here in studying their
theory, we simply use p-bisimulations in our proofs.

The following result is immediate.

Proposition 4.2 A p-bisimulation is also a q-bisimulation, for each q > p.
A 0-bisimulation is a bisimulation.

Given a process t, let actions(t) denote the set of the actions appearing
in the transition labels in the portion of GPTS rooted in t. The regularity
condition over the GPTS ensures that actions(t) is a finite set.

Let us assume two arbitrary processes t and t′. Since actions(t) and
actions(t′) are finite sets, and since Act is a countable set, we can assume also
two actions b, c ∈ Act\(actions(t)∪actions(t′)∪{τ}). We can prove that, given
arbitrary values 0 < p, q < 1, then, if relation (t ‖q recX . c ·X) ‖p recX . b ·X
≈ (t′ ‖q recX . c · X) ‖p recX . b · X holds, then there exists some (p · q)-
bisimulation relating t and t′.

Lemma 4.3 Given arbitrary processes t, t′, arbitrary values 0 < p, q < 1, and
any pair of actions b, c ∈ Act \ ({τ} ∪ actions(t) ∪ actions(t′)), it holds that:

(t ‖q recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X

implies

t ∼p·q t′ for some (p · q)-bisimulation ∼p·q

Proof.

First of all let us prove the following lemma.

Lemma 4.4 For each pair of processes s ≈ s′ such that s is reachable from
(t ‖q recX. c ·X) ‖p recX. b ·X and s′ is reachable from (t′ ‖q recX. c ·X) ‖p

recX. b ·X, for each action α ∈ Act, and for each equivalence class C ∈ S/≈,
it holds that |µG(s, α, C)− µG(s′, α, C)| ≤ p2 · q2.

Proof. Let us note that s has the form (t1 ‖q recX. c ·X) ‖p recX. b ·X and
s′ has the form (t2 ‖q recX. c ·X) ‖p recX. b ·X, for some t1 and t2. We can
distinguish four cases:

76



Tini

(i) α = a, with a ∈ Act \ {b, c, τ}.
Let p1 and p2 be the values such that p1 = µG(s, a, C) and p2 =

µG(s′, a, C). We have to prove that |p1 − p2| ≤ p2 · q2. The thesis is
immediate if p1 = p2. If p1 6= p2, then w.l.o.g. we can assume that
p1 > p2. Now, p1 = µG(s, a, C) implies µG(s, τ ∗aτ ∗, C) ≥ p1. Since
s ≈ s′ we infer that µG(s′, τ ∗aτ ∗, C) ≥ p1. Since p1 > p2 = µG(s′, a, C),
we infer that µG(s′, τ+aτ ∗, C) + µG(s′, aτ+, C) ≥ (p1 − p2), where τ+

denotes the set of all the sequences of n ≥ 1 τ -actions. Since a 6= b
and a 6= c, processes in C can be reached from s′ by sequences τ+aτ ∗

and aτ+ only through at least two moves by t2. This implies that
µG(s′, τ+aτ ∗, C)+µG(s′, aτ+, C) ≤ p2 ·q2. Summarizing, p2 ·q2 ≥ p1−p2,
and the thesis is proved.

(ii) α = b.
Since b 6∈ actions(t) ∪ actions(t′), the only b move by s is due to

recX. b ·X and leads to s itself, and, analogously, the only b move by s′

is due to recX. b·X and leads to s′ itself. Hence, either C contains neither
s nor s′, and the thesis is immediate since µG(s, b, C) = 0 = µG(s′, b, C),
or C contains both s and s′. Let us concentrate on the second case. Since
t1 ‖q recX. c ·X moves, it cannot happen that the probability of the b-
move by recX. b ·X is 1, and we are sure that this b move has probability
1− p, and, therefore, µG(s, b, C) = 1 − p. For the same reason we infer
that µG(s′, b, C) = 1 − p. Summarizing, µG(s, b, C) = µG(s′, b, C), and
the thesis is proved.

(iii) α = c.
Let p1 and p2 be the values such that p1 = µG(s, c, C) and p2 =

µG(s′, c, C). Since c 6∈ actions(t)∪actions(t′), the only c move by s is due
to recX. c·X and leads to s itself, and, analogously, the only c move by s′

is due to recX. c·X and leads to s′ itself. Hence, either C contains neither
s nor s′, and the thesis is immediate since µG(s, c, C) = 0 = µG(s′, c, C),
or C contains both s and s′. Let us concentrate on the second case. It
holds that either p1 = p · (1− q), if t1 has some move, or p1 = p, if t1 has
no move. Moreover, either p2 = p · (1−q), if t2 has some move, or p2 = p,
if t2 has no move. Therefore, it suffices to prove that it cannot happen
that t1 moves and t2 does not to infer that either p1 = p · (1− q) = p2 or
p1 = p = p2, which implies the thesis.

By contradiction, let us assume that t1 moves and t2 does not. Since t2
does not move, s′ has only one b move with probability 1−p and only one
c move with probability p. Since s ≈ s′, we infer that s has only moves in
{b, c, τ}, thus implying that t1 has τ moves. This implies that the overall
probability of sequences τ ∗bτ ∗ by s is strictly greater than 1 − p, which
contradicts that s ≈ s′.

(iv) α = τ .
First of all let us note that, since s ≈ s′, either C contains both s and

77



Tini

s′, or C contains neither s nor s′. If C contains neither s nor s′, we can
reason as in case (i).

Let us assume that C contains both s and s′. In this case, let p1 and p2

be the values such that p1 = µG(s, τ, C) and p2 = µG(s′, τ, C). We have
to prove that |p1 − p2| ≤ p2 · q2. The thesis is immediate if p1 = p2. If
p1 6= p2, then w.l.o.g. we can assume that p1 > p2. First of all let us note
that, since each state ŝ reachable from s or s′ can perform the c move, it

cannot happen that ŝ
b,1−→ ŝ, and, therefore, we are sure that ŝ

b,1−p−−−→ ŝ.
Since both s and the processes in C reachable through one τ move from
s (with total probability p1) can perform b with probability 1 − p while
remaining in C, it holds that µG(s, τ ∗bτ ∗, C) ≥ (1 − p) + p1 · (1 − p).
Since s ≈ s′, it holds that µG(s′, τ ∗bτ ∗, C) ≥ (1 − p) + p1 · (1 − p).
Since states in C cannot perform b with probability 1, we know that
µG(s′, b, C) = (1− p) and

∑
m+n=1 µG(s′, τmbτn, C) = p2 · (1− p). Hence,∑

m+n≥2 µG(s′, τmbτn, C) ≥ (p1 − p2)(1 − p). Moreover, we know that∑
m+n≥2 µG(s′, τmbτn, C) ≤ p2 · q2 · (1 − p), since τmbτn with m + n ≥

2 requires at least two moves by t2 and one move from recX. b · X.
Summarizing, p2 · q2 · (1− p) ≥ (p1 − p2) · (1− p), which implies p2 · q2 ≥
p1 − p2, and the thesis is proved.

2

Lemma 4.4 implies that there is a (p2 · q2)-bisimulation relating processes
reachable from (t ‖q recX. c · X) ‖p recX. b · X and (t′ ‖q recX. c · X) ‖p

recX. b·X and that contains the pair formed by (t ‖q recX. c·X) ‖p recX. b·
X and (t′ ‖q recX. c · X) ‖p recX. b · X. Let ∼p2·q2 denote such a (p2 · q2)-
bisimulation.

Let us take any equivalence class C ∈ S/∼p2·q2. We prove below that the

set of processes Ĉ = {s such that (s ‖q recX. c ·X) ‖p recX. b ·X ∈ C} are
an equivalence class of a (p ·q)-bisimulation relating processes reachable from t
and t′. Let ∼p·q denote such a (p·q)-bisimulation. Relations ∼p·q equates t and
t′, since (t ‖q recX. c ·X) ‖p recX. b ·X and (t′ ‖q recX. c ·X) ‖p recX. b ·X
are equated by ∼p2·q2. The thesis follows from t ∼p·q t′.

Hence, it remains to prove that Ĉ ∈ S/∼p·q for some (p · q)-bisimulation

∼p·q. Given arbitrary processes t1, t2 ∈ Ĉ, any equivalence class D̂, and any
action α ∈ actions(t1) ∪ actions(t2), the semantics of ‖p and ‖q implies that:
µG(t1, α, D̂) = 1

p·q
· µG((t1 ‖q recX. c ·X) ‖p recX. b ·X, α, D),

µG(t2, α, D̂) = 1
p·q
· µG((t2 ‖q recX. c ·X) ‖q recX. b ·X, α, D).

Since (t1 ‖q recX. c·X) ‖p recX. b·X ∼p2·q2 (t2 ‖q recX. c·X) ‖p recX. b·X,
we are sure that |µG((t1 ‖q recX. c · X) ‖p recX. b · X, α, D) − µG((t2 ‖q

recX. c · X) ‖p recX. b · X), α, D)| ≤ p2 · q2. Therefore, |µG(t1, α, D̂) −
µG(t2, α, D̂)| ≤ p · q, as required. 2

At first glance, our choice of using a context with two occurrences of the
interleaving operator in Lemma 4.3 could be surprising. One could expect that

78



Tini

a context with only one of these occurrence suffices. The point is that the proof
of Lemma 4.4 does not work if we consider the context ‖p recX . b·X instead
of ( ‖q recX. c ·X) ‖p recX. b ·X. In fact, both in the proof of case α = b,
and in the proof of the case α = τ , we exploit the fact that the probability
of the b move by recX. b · X cannot be 1. This is implied by the fact that
recX. c ·X can perform the c move. Without process recX. c ·X, the process
on the left side of ‖p could be a process without any move, and the b move by
recX. b ·X could have probability 1.

Notice that Lemma 4.3 above holds also if we replace the interleaving
operations ‖p and ‖q with the CCS-like parallel composition operations ‖p

p′

and ‖q
q′ of [10,7], provided that t and t′, besides performing neither b nor c,

performs neither b nor c. Moreover, Lemma 4.3 holds also if we replace ‖p

and ‖q with the CSP-like parallel composition operations ‖p
A and ‖q

A of [10],
with A = ∅.

Let us prove now that processes related by p-bisimulations for all 0 < p < 1
are strong bisimilar.

Lemma 4.5 Given processes t and t′, if for each 0 < p < 1 there exists a
p-bisimulation ∼p such that t ∼p t′, then it holds that t ∼ t′.

Proof. Since the regularity condition ensures that the number of states reach-
able from t and t′ is finite, there exists an equivalence relationR over the states
reachable from t and t′ such that (t, t′) ∈ R and such that, given any δ > 0,
R is an ǫ-bisimulation for infinite many δ > ǫ > 0. We can prove that R is
a strong bisimulation. By contradiction, let us assume that R is not a strong
bisimulation. Then, there exists a pair of states (s, s′) ∈ R, an action α ∈ Act,
and an equivalence class C over R such that µG(s, α, C) 6= µG(s′, α, C). Let
d be the value |µG(s, α, C) − µG(s′, α, C)|. It follows that R is not an ǫ-
bisimulation for any ǫ < d, which contradicts that R is an ǫ-bisimulation for
infinite many d > ǫ > 0. Now, since R is a bisimulation and (t, t′) ∈ R, the
thesis holds. 2

We can give now our main result.

Theorem 4.6 Given arbitrary processes t and t′, if for all 0 < p, q < 1
and actions b, c ∈ Act \ ({τ} ∪ actions(t) ∪ actions(t′)) it holds that (t ‖q

recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X then it follows
that t ∼ t′.

Proof. By Lemma 4.3, for each 0 < p, q < 1, it holds that t ∼p·q t′ for some

(p · q)-bisimulation ∼p·q. Given any 0 < d < 1, we can choose p = q =
√

d, to
infer that t ∼d t′. Since t ∼d t′ for all 0 < d < 1, we can apply Lemma 4.5 to
infer t ∼ t′, and the proof is complete. 2

Let us assume that R is an equivalence relation over processes being a
congruence w.r.t interleaving, prefixing and recursion, and being finer than

79



Tini

weak bisimulation (i.e. R ⊂≈). Given processes t and t′ such that (t, t′) ∈ R,
sinceR is a congruence, we infer that, for all 0 < p, q < 1, ((t ‖q recX. c·X) ‖p

recX. b · X, (t′ ‖q recX. c · X) ‖p recX. b · X) ∈ R. Since R ⊂≈, we infer
t ≈ t′ and (t ‖q recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X.
Thm. 4.6 implies that t ∼ t′. Hence, R ⊆∼. Since ∼ is a congruence w.r.t.
interleaving, prefixing and recursion, we infer that∼ is the coarsest congruence
contained in ≈ that is a congruence w.r.t. these operations.

5 Conclusions

We have proved that, if one considers process algebras giving rise to GPTSs
satisfying the regularity condition and offering recursion, interleaving and
prefixing, then strong bisimulation is the coarsest congruence contained in
weak bisimulation. This differentiates the generative probabilistic model
not only with respect to the nonprobabilistic case, where interesting congru-
ences strictly lying between strong and weak bisimulation have been studied
[6,13,14,15,17], but also with respect to the non-alternating model, where the
coarsest congruence being finer than weak bisimulation has been characterized
and proved to be coarser than strong bisimulation [2,11,12].

Analogies between the nonprobabilistic and the non-alternating model
arise since in the non-alternating model process algebras offer parallel com-
position operations and a nondeterministic choice operation having the same
nature of those of nonprobabilistic process algebras. To support this obser-
vation the fact that the axiomatization of the coarsest congruence being finer
than weak bisimulation requires rules similar to Milner’s “expansion law” to
manage parallel composition [12] and rules similar to Milner’s “τ -law” to man-
age τ prefixing [2,11,12].

In the generative model, no operation introducing nondeterminism is al-
lowed. Therefore one cannot hope to treat parallel composition operations as
in the nonprobabilistic case. Asynchronous parallel composition operations
require parameters specifying the probability to move of each of the processes
running in parallel. These parametric operations do not preserve weak bisim-
ulation, since they distinguish τm ·t1 and τn ·t1, when m 6= n. In fact, when we
compose in parallel τm ·t1 with another process t2, the τ actions of τm ·t1 imply
that actions of t1 can be performed only after τm · t1 has won m competitions
versus t2 to perform the m occurrences of τ , and each of these competitions
is not for free, meaning that the probability of winning it is not 1 but depend
on the parameter of the operation. The ability of discriminating τm · t1 and
τn · t1 has as a consequence that there is no congruence strictly lying between
strong and weak bisimulation.

Checking whether our result holds also for GPTSs that do not satisfy the
regularity condition, and for transition systems respecting the reactive and
stratified models of probabilistic processes could be interesting developments
of the present notes.

80



Tini

References

[1] A. Aldini, M. Bravetti, and R. Gorrieri: A Process-algebraic Approach for the
Analysis of Probabilistic Non-interference. J. Comput. Secur. 12(2), 2004, 191–
245.

[2] E. Bandini and R. Segala: Axiomatizations for Probabilistic Bisimulation.
Proc. Int. Coll. on Automata, Languages and Programming, Lecture Notes
in Computer Science 2076, Springer, Berlin, 2001, 370–381.

[3] J. C. M. Baeten, J. A. Bergstra, and S. A. Smolka: Axiomatizing Probabilistic
Processes: ACP with Generative Probabilities. Inf. Comput. 121(2), 1995, 234–
255.

[4] J. C. M. Baeten and W. P. Weijland: Process Algebra. Cambridge Tracts in
Theoretical Computer Science 18, Cambridge University Press, 1990.

[5] C. Baier and H. Hermanns: Weak Bisimulation for Fully Probabilistic Processes.
Proc. Int. Conf. on Computer Aided Verification, Lecture Notes in Computer
Science 1254, Springer, Berlin, 1997, 119–130.

[6] B. Bloom: Structural Operational Semantics for Weak Bisimulation. Theor.
Comput. Sci. 146(1–2), 1995, 25–68.

[7] M. Bravetti and A. Aldini: Discrete Time Generative-reactive Probabilistic
Processes with Different Advancing Speeds. Theor. Comput. Sci. 290(1), 2003,
355–406.

[8] I. Christoff: Testing Equivalences and Fully Abstract Models for Probabilistic
Processes. Proc. Int. Conf. on Concurrency Theory, Lecture Notes in Computer
Science 458, Springer, Berlin, 1990, 126–140.

[9] R. Cleaveland, S. A. Smolka, and A. Zwarico: Testing Preorders for Probabilistic
Processes. Proc. Int. Colloquium on Automata, Languages and Programming,
Lecture Notes in Computer Science 623, Springer, Berlin, 1992, 708–719.

[10] P. R. D’Argenio, H. Hermanns, and J. P. Katoen: On Generative Parallel
Composition. Proc. Int. Work. on Probabilistic Methods in Verification, Electr.
Notes Theor. Comput. Sci. 22, Elsevier, Amsterdam, 1999.

[11] Y. Deng and C. Palamidessi: Axiomatizations for Probabilistic Finite-
State Behaviors. Proc. Int. Conf. on Foundations of Software Science and
Computational Structures, Lecture Notes in Computer Science 3441, Springer,
Berlin, 2005, 110–124.

[12] Y. Deng, C. Palamidessi, and J. Pang: Compositional Reasoning for
Probabilistic Finite-State Behaviors. In Processes, Terms and Cycles: Steps on
the Road to Infinity, Essays Dedicated to Jan Willem Klop, on the Occasion of
His 60th Birthday, Lecture Notes in Computer Science 3838, Springer, Berlin,
2005, 309–337.

81



Tini

[13] W. J. Fokkink: Rooted Branching Bisimulation as a Congruence. J. Comput.
Syst. Sci. 60(1), 2000, 13–37.

[14] W. J. Fokkink, R. J. van Glabbeek, and P. de Wind: Divide and Congruence
Applied to Eta-bisimulation. Proc. Workshop on Structural Operational
Semantics, Electr. Notes Theor. Comput. Sci. 156(1), Elsevier, Amsterdam,
2005, 97–113.

[15] W. J. Fokkink, R. J. van Glabbeek, and P. de Wind: Divide and Congruence:
From Decomposition of Modalities to Preservation of Branching Bisimulation.
Proc. Int. Symp. on Formal Methods for Components and Objects, Lecture
Notes in Computer Science 4111, Springer, Berlin, 2005.

[16] A. Giacalone, C. C. Jou, and S. A. Smolka: Algebraic Reasoning for Probabilistic
Concurrent Systems. Proc. IFIP Work. Conf. on Programming, Concepts and
Methods, 1990, 443–458.

[17] R. J. van Glabbeek: On Cool Congruence Formats for Weak Bisimulations.
Proc. Int. Colloquium on Theoretical Aspects of Computing, Lecture Notes in
Computer Science 3722, Springer, Berlin, 2005, 331–346.

[18] R. J. van Glabbeek, S. A. Smolka, and B. Steffen: Reactive, Generative and
Stratified Models of Probabilistic Processes. Inf. Comput. 121(1), 1995, 59–80.

[19] H. Hansson and B. Jonsson: A Framework for Reasoning about Time and
Reliability. Proc. IEEE Real-Time Systems Symposium, IEEE Press, 1989, 102-
111.

[20] B. Jonsson and K. G. Larsen: Specification and Refinement of Probabilistic
Processes. Proc. IEEE Symp. on Logic in Computer Science, IEEE Press, 1991,
266–277.

[21] B. Jonsson, K. G. Larsen, and W. Yi: Probabilistic Extensions of Process
Algebras. Handbook of Process Algebra, Elsevier, Amsterdam, 2001.

[22] B. Jonsson and W. Yi: Compositional Testing Preorders for Probabilistic
Processes. Proc. IEEE Symp. on Logic in Computer Science, IEEE Press, 1995,
431–443.

[23] C. C. Jou and S. A. Smolka: Equivalences, Congruences and Complete
Axiomatizations for Probabilistic Processes. Proc. Int. Conf. on Concurrency
Theory, Lecture Notes in Computer Science 458, Springer, Berlin, 1990, 367–
383.

[24] R. Lanotte and S. Tini: Probabilistic Congruence for Semistochastic Generative
Processes. Proc. Int. Conf. on Foundations of Software Science and
Computational Structures, Lecture Notes in Computer Science 3441, Springer,
Berlin, 2005, 63–78.

[25] K. G. Larsen and A. Skou: Bisimulation Trough Probabilistic Testing. Inf.
Comput. 94(1), 1991, 1–28.

82



Tini

[26] R. Milner: Communication and Concurrency. Prentice Hall, London, 1989.

[27] G. Plotkin: A Structural Approach to Operational Semantics. Tech. Rep.
DAIMI FN-19, University of Aarhus, 1981.

[28] G. Plotkin: A Structural Approach to Operational Semantics. J. Log. Algebr.
Program. 60–61, 2004, 17–139.

[29] R. Segala: Modeling and Verification of Randomized Distributed Real-Time
Systems. PhD Thesis, MIT, Technical Report MIT/LCS/TR-676, 1995.

[30] R. Segala and N. Lynch: Probabilistic Simulations for Probabilistic Processes.
Proc. Int. Conf. on Concurrency Theory, Lecture Notes in Computer Science
836, Springer, Berlin, 1994, 481–496.

[31] E. W. Stark and S. A. Smolka: A Complete Axiom System for Finite-State
Probabilistic Processes. In Proof, Language and Interaction: Essays in Honor
of Robin Milner, G. Plotkin, C.P. Stirling, and M. Tofte, Eds., MIT Press, 1999.

[32] S. Yuen, R. Cleaveland, Z. Dayar, and S. A. Smolka: Fully Abstract
Characterizations of Testing Preorders for Probabilistic Processes. Proc. Int.
Conf. on Concurrency Theory, Lecture Notes in Computer Science 863,
Springer, Berlin, 1994, 497–512.

83



SOS 2006 Preliminary Version

Self-assembling Trees

Vincent Danos a, Jean Krivine b, Fabien Tarissan c

a Équipe PPS, CNRS & Université Paris VII
b INRIA Rocquencourt & Université Paris VI
c Équipe PPS, CNRS & Université Paris VII

Abstract

RCCS is a variant of Milner’s CCS where processes are allowed a controlled form
of backtracking. It turns out that the RCCS reinterpretation of a CCS process is
equivalent, in the sense of weak bisimilarity, to its causal transition system in CCS.
This can be used to develop an efficient method for designing distributed algorithms,
which we illustrate here by deriving a distributed algorithm for assembling trees.
Such a problem requires solving a highly distributed consensus, and a comparison
with a traditional CCS-based solution shows that the code we obtain is shorter,
easier to understand, and easier to prove correct by hand, or even to verify.

1 Introduction

We propose in this paper to illustrate a method for deriving distributed al-
gorithms. The broad idea is to solve a simpler problem, and then reinterpret
the obtained solution assuming a generic distributed backtracking mechanism.
This is reminiscent of the classic breakdown of solutions to NP problems into
an exploration (guessing the solution) and a verification phase (checking the
guess is correct). It is also reminiscent of simulated annealing methods where a
locally-driven search is backed by a random perturbation. Another analogy is
with declarative programming where terse solutions can be obtained because
the ambient evaluation framework includes a generic enumeration mechanism.

It turns out that the notion of a solution to a simpler problem can be neatly
characterised in terms of the theory of concurrent systems, using the notion of
causal transition system, and so does the correctness of the generic backtrack-
ing mechanism. A rather general result then ensures that the reinterpreted
solution is indeed a solution to the original problem [4].

This compares best with direct approaches when the problem of interest
needs reaching a consensus which is itself highly distributed. Thus, for the
purpose of illustrating the method, we choose a class of problems which is
a simple idealisation of the phenomenon of self-assembly, where simple parts

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science



Danos, Krivine & Tarissan

assemble in some predefined spatial arrangement by means of local and asyn-
chronous interactions. Solutions of such problems indeed involve arbitrarily
complex distributed consensus.

Specifically, we derive a distributed algorithm for an ensemble of processes
to self-assemble in patterns described as trees. To formulate the algorithm,
we use a partially reversible derivative of CCS [12], called RCCS, which in-
troduces a distinction between reversible and irreversible computation steps,
together with a notion of distributed memory which allows backtracking re-
versible steps [3].

The algorithm itself is obtained indirectly. One first defines a simple CCS
algorithm such that any allowed tree construction can be simulated, and con-
versely all trees resulting from a series of local interactions are allowed. This
is not yet a solution since the induced assembly may deadlock, but it gets very
close to being one. Indeed, by merely reinterpreting the same algorithm in
RCCS, and thus allowing backtrack on reversible actions, one obtains a real
solution. For the sake of evaluating the method we compare the first algorithm
with a direct solution in CCS which explicitly copes with deadlocks. One sees
clearly that the latter is both harder to understand, and to prove correct, and
also assumes more computational power from the basic processes.

There are limitations to this method. It is likely to provide significantly
simpler solutions only to problems in need of complex consensus. Another
limitation is that it is for the moment restricted to problems the solution of
which can be expressed in CCS. However, recent developements show that cor-
rect backtracking mechanisms can be derived for a vastly more comprehensive
SOS-based class of agent-languages [15], and that the reinterpretation theo-
rem can be made to bear in the abstract framework of monoidal categories,
and thus also covers more general grounds, such as Petri Nets [5].

The paper is self-contained but for the more technical notion of causality
which is treated informally; a rigorous treatment is given in ref. [3,4]. Sec. 2
presents the self assembly specification; Sec. 3 introduces the algorithm in
CCS; Sec. 4 shows that although it may deadlock, it is well designed in that
its causal computations are as in the specification, and that it is therefore
correct in RCCS; Sec. 5 compares with a direct solution in CCS. 1

2 Specification

The aim of this section is to define the specification for our distributed imple-
mentation as a labelled transition system (LTS).

1 A preliminary version of this work was presented as a poster at the 7th International
Conference on Artificial Evolution, Lille, France, Oct 26–28, 2005.

85



Danos, Krivine & Tarissan

2.1 Transition systems and Bisimulation

A labelled transition system consists of a triple: a state space S, a set of labels
(or actions) L, and for each l ∈ L, a binary relation over S, written →l and
called the transition relation. Sometimes one also adds an initial state s0 ∈ S

to the preceding data. We will write →w, with w = l1 · · · ln a word over L, for
the composite relation →l1; · · · ;→ln.

Given some specification of a distributed system (such as the one given
below in this section), and another LTS (possibly obtained from a CCS process
as in Sec. 3) believed to be an implementation, one needs some means of stating
the correctness of the implementation with respect to the specification. This
is given by the notion of bisimulation.

Specifically, suppose given two LTSs (S, s0, L,→), (S ′, s′0, L
′,→′), and a

relation Φ over L×L′. Define the domain of Φ as {l ∈ L | ∃l′ ∈ L′ : (l, l′) ∈ Φ},
and the codomain of Φ as the domain of the converse relation Φ−1.

Given words w, w′ over L, L′: define wΦ (w′
Φ) as the word w with all

occurrences of labels not in the domain (codomain) of Φ erased, and write
(w, w′) ∈ Φ if wΦ = l1 · · · ln and w′

Φ = l′1 · · · l
′
n have the same length, and for

all 1 ≤ i ≤ n, (li, l
′
i) ∈ Φ. Actions in the domain (codomain) of Φ will be

called visible, and Φ itself will be called a visibility relation, thus wΦ represents
the actions in w which are visible according to Φ.

One then says a relation ≃ over S ×S ′ is a Φ-bisimulation, if s0 ≃ s′0, and
whenever s ≃ s′:
– if s →w t, then s′ →′

w′ t′, with (w, w′) ∈ Φ and t ≃ t′,
– if s′ →′

w′ t′, then s →w t, with (w, w′) ∈ Φ and t ≃ t′.

The two conditions above are symmetric and state that whatever series of
visible actions one LTS may perform, the other may match. In other words the
two LTSs, different as they may be, are indistinguishable by synchronisation
on visible actions; one says they are Φ-bisimilar.

In the context of CCS (see Sec. 3), one has a distinguished silent action,
written τ , and setting L = L′, and Φ = {(l, l) | l 6= τ} obtains what is
known as weak bisimulation. Only non-silent actions, as the name suggests,
are observed. An even more stringent case is when Φ is the identity relation,
i.e., all actions are visible, and one speaks of strong bisimulation. Our slight
generalisation where the two LTSs use different sets of actions, and some
flexibility is allowed regarding which actions are visible and how they match,
will be convenient.

2.2 The specification

Let V be a set of nodes given together with a degree map δ : V → N stipulating
how many nodes a given node may connect to. The trees considered here will
be represented as:

t ::= (a, {t1, . . . , tn})

86



Danos, Krivine & Tarissan

where a ∈ V and n ≥ 0. Hence the simplest tree is (a, ∅) which will be simply
denoted a. Other examples are (a, {b, c}) where a has two children, b and c,
and (a, {(b, {c})}) where a and b each have one child, b and c. A childless node
will be called a leaf as usual. Trees will be considered to be commutative, that
is to say for instance (a, {b, c}) and (a, {c, b}) stand for the same tree, as the
set notation suggests.

A tree t will be said to be coherent if all nodes in t have their degree as
prescribed by the degree map δ, which means in particular that leaves in t

will have arity smaller than 1 (and exactly 1 if they are not also the root of
t). Imagine for instance that δ(a) = 2, and δ(b) = δ(c) = 1, then (a, {b, c})
is coherent, while (a, {(b, {c})}) is not. Also one has that a is coherent if and
only if δ(a) = 0. Finally, we will write n(t) to denote the nodes of t.

A state of our specification LTS is defined as a pair (N,
∑

i ti) where N ⊆ V

represent the free nodes, and each ti is a coherent tree representing the trees
already built. We write + both for the addition of multisets and the disjoint
union of sets. Labels are coherent trees over V , and transitions are given as
follows:

N + n(t),
∑

i ti →t N, t +
∑

i ti

Note that coherence is the only constraint on trees grown out of our starting
set of nodes V . Instead, one could choose a different rule for growing trees, by
specifying from the outset which trees are allowed. We opt here for the local
growth rule, since it allows for simpler notations, and the method given here
can anyway be readily adapted to the global growth case.

3 Implementation

To define agents showing a collective behaviour in accordance with the specifi-
cation given above, we use CCS [12], where the only means of communication
between agents are binary synchronisations through complementary actions.
This restriction translates effectively the intuitive constraint on self-assembly,
namely that the global behaviour should be obtained only by means of local
interaction.

3.1 CCS

CCS processes have the form:

p ::= 0 |
∑

αi.pi | (p | p) | (a)p | D(x̃)

where α ::= a | ā | τ can be a reception, an emission, or a silent action,
and D(x̃) stands for parametric recursive definitions. Sums are taken finite,
and the empty sum is denoted by 0 and called the zero process. Structural
congruence, written ≡, is the least equivalence relation over processes closed

87



Danos, Krivine & Tarissan

act
∑

αi.pi →αi
pi

p →α p′
par

p | q →α p′ | q

p →α p′ α 6= a, ā
res

(a)p →α (a)p′

p →α p′ q →ᾱ q′
syn

p | q →τ p′ | q′

Fig. 1. CCS labelled transition system.

nodei=def τ.(build
δ(i)
i | wait

δ(i)
i⋆ ) +

∑

j∈V

rij.(build
δ(i)−1
i | wait

δ(i)−1
ij ) (1)

buildn+1
i =def

∑

j∈V

r̄ij .buildn
i , build0

i := 0 (2)

waitn+1
iα =def wi.waitn

iα, wait0
ij=def w̄j . ↑

i
j , wait0

i⋆=def oki. ↑
i
⋆ (3)

Fig. 2. Self-assembly.

under sum, product and restriction, and such that sum and product are as-
sociative and commutative and have 0 as neutral element. One also assumes
α-conversion (renaming), and the following rule to unfold recursive definitions:
D(x̃) ≡ p if D(x̃)=def p . Thereafter processes are all considered up to ≡.

The CCS labelled transition system given in Fig. 1 explains how a pro-
cess behaves in terms of the actions it can perform. Thus any CCS process
generates an LTS, where states are processes, and labels are CCS actions.

We fix a countable subset K of CCS actions, shown as underlined in the
various examples below; these are to be later interpreted as irreversible actions
in RCCS, and play no specific role in the CCS semantics.

3.2 The implementation

With both our specification and agent language in place, we turn to the def-
inition of the CCS process describing how agents interact in order to self-
assemble. The definition is given in Fig. 2, with n an integer, i, j ∈ V ,
α ∈ V + {⋆}, and δ the degree function described earlier. Each node is trans-
lated as a specific agent nodei, with i ∈ V . An agent can either decide to be
the root of a new tree (left hand side of the choice in (1)), or be recruited by
another agent (right hand side of the choice in (1)). In both cases, two subpro-
cesses are spawned, buildn

i , and waitn
iα, where n is the number of nodes the

agent needs to recruit, as determined by its degree δ(i); α stands for the agent
parent, if any, or for ⋆ if the agent is a root. The process buildn

i (2) uses rij

to recruit n free agents, while waitn
iα (3) uses wj to get confirmations of these

recruitments, and then uses w̄j to send a confirmation to its parent. In the
special case the agent is the root of the tree, and has no parent, it performs
instead the final underlined action oki to indicate the end of the construction.

88



Danos, Krivine & Tarissan

There is no intrinsic reason why wait should gather confirmations in se-
quence; this is due to the restrictive syntax of CCS which does not allow
prefixing by a set of actions (see for instance ref. [2, Sec. 3]). Likewise, using
a richer language such as π-calculus [13] would make a more elegant code,
replacing the rijs with a public name (see ref. [6, Sec. 8]). That would also
need a π-calculus analog of RCCS (see ref. [10, Chap. 9]), and this simple CCS
version, perfectible as it is, shall be enough for our illustrative purposes.

One could set the final state of an agent to be simply a zero process, but
our convention to take it to be a loop process ↑i

α =def τ. ↑
i
α, indicating that

agent i was successfully recruited by agent α, makes it slightly easier to extract
the tree a given process has actually finished to build.

The complete system is represented as the product of all agents where all
actions but the final okis are restricted.

3.3 Examples

Here is a computation example with δ(a) = 2, δ(b) = δ(c) = 1:

nodea | nodeb | nodec → build2
a | wait2

a⋆ | nodeb | nodec

→⋆ wait2
a⋆ | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑
a
⋆| w̄a. ↑

b
a| w̄a. ↑

c
a

→⋆ oka. ↑
a
⋆|↑

b
a|↑

c
a

→oka
↑a

⋆| ↑
b
a |↑

c
a

This corresponds to a single transition {a, b, c}, ∅ →(a,{b,c}) ∅, {(a, {b, c})} at
the specification level. In general, the construction of a tree t will decompose
in 2 ∗ n(t) steps. As expected, the obtained code is not correct yet, and may
well deadlock, as in the following where δ(a) = δ(b) = 1, and δ(c) = 3:

nodea | nodeb | nodec → build1
a | wait1

a⋆ | nodeb | nodec

→ wait1
a⋆ | nodeb | build2

c | wait2
ca

→ wait1
a⋆ | wait0

bc | build1
c | wait2

ca

≡ wait1
a⋆ | wc. ↑

b
c| build1

c | wc.wc.wa. ↑
c
a u

→ wait1
a⋆ |↑

b
c| build1

c | wc.wa. ↑
c
a

At this stage, the incoherent tree (a, {(c, {b})}) is built, but there is no node
left for build1

c to recruit. Yet there is a successful trace, where a recruits b

instead of c, corresponding at the specification level to the single transition
{a, b, c}, ∅ →(a,{b}) {c}, {(a, {b})}.

Therefore, it is clearly impossible to exhibit a bisimulation relation between
the specification and the code induced LTS. However, the code is correct in

89



Danos, Krivine & Tarissan

m ::= 〈〉 | 〈i〉.m | 〈θ, α, p〉.m | 〈|θ|〉.m

r, s ::= m � p | (r | s) | (x)r

m � (p | q) ≡ 〈1〉.m � p | 〈2〉.m � q

m � (a)p ≡ (a)(m � p) if a 6∈ m

Fig. 3. RCCS memories, terms and additional congruence rules.

the weaker sense that its causal computations (defined below) indeed match
the specification. As we will see in the next section this is enough to ensure
correctness, provided the process is re-interpreted in RCCS. The idea is that,
for instance, the deadlocked trace above may backtrack in RCCS up until
the wrong decision of recruiting c was made, and eventually recruit b. Note
that this is not saying that the process will find a solution, it may well loop
infinitely. There are known theoretical results showing that one cannot do
better in a purely non-deterministic interpretation [14]. This is of little prac-
tical importance, since such backtracking schemes will be implemented with
probabilities, and such futile infinite loops will have probability zero.

To prevent backtracking from a successful state, where a coherent tree has
been constructed, the corresponding underlined final actions oki will be chosen
irreversible.

4 Correctness

This section reviews the implementation of distributed backtracking in RCCS,
and the reinterpretation theorem used to derive correctness of the previous
section code.

4.1 RCCS

RCCS is an extension of CCS where processes are equipped with memories
used to undo computations. Memories and terms are given in Fig. 3 where:
i = 1, 2; θ is an abstract name, drawn from a countable set I, used to uniquely
identify a communication; and p is a CCS process (as in Sec. 3) with some
distinguished underlined actions declared as irreversible.

In addition to the congruence rules (see Fig. 3) for distributing memories
among forking processes, and commuting restrictions with memories (assum-
ing a was never used in the past –which is always possible using α-conversion),
product and sum are considered commutative and associative, and having 0
as neutral element, as in CCS.

Define I(m) (resp. I(r)) to be the set of identifiers occurring in the memory
m (resp. memories of subprocesses of r). The RCCS labelled transition system

90



Danos, Krivine & Tarissan

θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ, α, q〉.m � p

θ 6∈ I(m)
act-

〈θ, α, q〉.m � p →θ:α− m � α.p + q

θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ〉.m � p

r →θ:α r′ s →θ:α s′
com

r | s →θ:τ r′ | s′
r →θ:α− r′ s →θ:α− s′

com-

r | s →θ:τ− r′ | s′

r →θ:α r′ s →θ:α s′
com

r | s →θ:τ r′ | s′

r →θ:ζ r′ θ 6∈ I(s)
par

r | s →θ:ζ r′ | s

r →θ:ζ r′ a 6∈ ζ
res

(a)r →θ:ζ (a)r′
r1 ≡ r →θ:ζ r′ ≡ r2

cgr

r1 →θ:ζ r2

Fig. 4. RCCS labelled transition system.

is given Fig. 4. Its labels are of the form θ : ζ , with ζ ::= α | α− | α, and θ an
identifier. Side conditions of the form θ 6∈ I(s) ensure θ is indeed unique (or
a nounce in the cryptographic protocols terminology).

Forward action and communication rules each have their opposite, allowing
to backtrack actions, unless the action is underlined, and thus explicitely made
unbacktrackable.

Using abstract identifiers for uniquely tagging communication makes the
presentation notably simpler, than in the original presentation [4], where a
different scheme, more adapted to the theoretical study of RCCS was used.
The abstract scheme is close the communication keys used in ref. [15]. Both
schemes are shown equivalent in the appendix.

4.2 Reinterpretation theorem

As said, the weaker notion of correction we need, uses the notion of causal
trace. Intuitively, such traces do not involve contention among agents, since
all actions therein contribute to the last one, and in addition represent atomic
successful computations, since one asks the last action to be the trace only
irreversible one.

More precisely, a trace σ is said to be causal if it contains a single irre-
versible transition t and for all σ′ ∼ σ, σ′ ends by t, where ∼ is the equivalence
relation over CCS traces obtained by permuting concurrent transitions [1].

91



Danos, Krivine & Tarissan

Here are some examples:

a.b.0 | c.0 →a b.0 | c.0 →c b.0 →b 0

a.b.0 | c.0 →a b.0 | c.0 →b c.0

a.b.0 | ā.0 →τ b.0 →b 0

The first trace is not causal since its last action b commutes to the earlier
action c, as in the second one which is causal; likewise, the last trace is causal,
since the marked action b does not commute to τ .

Definition 4.1 Let P be the set of CCS processes, K be the set of underlined
CCS actions, and define p1 →

c
k p2, if there is a causal trace from p1 to p2 ending

with k.

The causal transition system induced by p, written CTS(p), is defined as
(P, p, K,→c

k).

In the examples above, one has a.b.0 | c.0 →c
b c.0, a.b.0 | ā.0 →c

b 0, and not

a.b.0 | c.0 →c
b 0.

The theorem below asserts that the LTS induced by the interpretation
of p in RCCS is equivalent to CTS(p), when observations are restricted to
irreversible actions.

Theorem 4.2 ([4]) Let p be a CCS process, and Φ be the relation {(k, θ :
k); k ∈ K, θ ∈ I}, then CTS(p) ≈Φ LTS(〈〉 � p).

4.3 Back to self assembling trees

To apply this definition to the case of interest, we need to map macro-states
(states of the specification) to micro-states (states of the corresponding pro-
cess). Define first the family of maps [[ ]]α, with α ∈ V + {⋆}:

[[(a, {t1, . . . , tn})]]α = ↑a
α | [[t1]]a | . . . | [[tn]]a

This obtains a map from macro-states to what one might call their standard
representation as micro-states (restrictions are not shown):

[[N,
∑

i ti]] =
∏

i∈N nodei |
∏

j [[tj ]]⋆

Defining Φ′ = {(t, oki) | i ∈ V }, one has:

Proposition 4.3 The relation {(N,
∑

i ti), [[N,
∑

i ti]]} is a Φ′-bisimulation

between the specification LTS and CTS([[V ]]).

The proof is routine. Concretely, this is saying two things. Firstly, when-
ever some tree may be constructed from the remaining free nodes of the spec-
ification, there exists a causal sequence of interactions among the agents that

92



Danos, Krivine & Tarissan

implements it (see first example in Sec. 3). Secondly, whenever a tree is built
after a successful series of agent interactions, this tree is indeed coherent, and
therefore corresponds to a transition in the specification (this is even easier
to prove, since the number of neighbours of any given process representing a
node is always kept smaller or equal to its arity as specified by δ).

Putting that proposition together with the theorem above one obtains:

Corollary 4.4 The specification LTS and LTS(〈〉� [[V ]]), are Φ′; Φ-bisimilar.

One may object that the visibility relation Φ′; Φ used here is highly non-
injective, since it relates a tree t to some oki, which contains no other informa-
tion than the name of the process being the root of t. Using a value-passing
version of CCS, one can decorate the implementation and construct during
the assembly an expression describing the tree being constructed, which could
then be used to encode injectively t in the final irreversible action conclud-
ing the construction. However, the bisimulation relation we exhibit clearly
contains all the needed information since the macro-to-micro map itself is
injective.

5 Discussion

It remains to appreciate whether a direct solution in CCS could compare
well with the indirect solution we have obtained. We base our discussion on a
comparison with one particular reasonable direct implementation, given Fig. 5,
and obtained by patching the indirect code to recover from deadlocks. The
recruitment phase is quite similar to the one in the previous code, except build

and wait processes are now run in sequence. A more important difference is
that the root may abort the construction by running at any time the process
abortS

i which waits for the freeS(end) process to free recruited agents, and
then re-spawns the initial state. Any already recruited agent i enters the abort
state upon reception of a request by its parent using action killi. Accordingly,
the final state ↑S

iα indicating that the ith agent has finished its part of the
recruitment, in the case α 6= ⋆ still waits for a possible such abort request
initiated by the root agent and forwarded by its parent.

Thus, the direct code may escape deadlocks. To keep things simple, we
give up part of the distributed structure of the system: a node does not wait
for the confirmations of its children until it has completed its recruiting task.
This results in a better control of the construction process at the price of a
loss of efficiency, since no agent can validate its recruitment until its parent is
ready to receive the validation. Yet the main difference is in the backtracking
mechanism: the RCCS code finds its way to a final shape by using partial
backtracking, whereas the CCS one uses a top-down cancellation procedure
to abort altogether the construction (as in ref. [9]).

One sees the RCCS code is more intuitive; this is because, in essence,
it is easier to describe what has to be done, than what has to be undone.

93



Danos, Krivine & Tarissan

nodei =def τ.build
δ(i),∅
i⋆ +

∑

j∈I

rij .build
δ(i),∅
ij

build
n+1,S
ij =def

∑

k∈I

r̄ik.build
n,S∪{k}
ij + killi.abortS

i

build
n+1,S
i⋆ =def

∑

k∈I

r̄ik.build
n,S∪{k}
ij + τ.abortS

i

build
0,S
iα =def wait

|S|,S
iα

wait
n+1,S
ij =def wi.wait

n,S
ij + killi.abortS

i

wait
n+1,S
i⋆ =def wi.wait

n,S
i⋆ + τ.abortS

i

wait
0,S
ij =def wj . ↑

S
ij + killi.abortS

i

wait
0,S
i⋆ =def oki. ↑

S
i⋆

freeS∪{i}(end) =def killi.freeS(end)

free∅(end) =def end.0

↑S
ij =def τ. ↑S

ij + killi.abortS
ij

↑S
i⋆ =def τ. ↑S

i⋆

abortS
i =def (end)(freeS(end) | end.ni)

Fig. 5. Self-assembly directly in CCS.

Furthermore, it is necessary to prove that the complete code conforms to its
specification, and exhibit a bisimulation relation between the code and the
specification (given Sec. 2). It is not clear at all how to do this by hand,
and to get a sense of how difficult that may be, we have tested our code with
the Mobility Workbench [16], a toolkit able to verify certain properties on
π-calculus [13] processes. We succeeded in building the bisimulation relation
for a system composed of 3 agents. For such a simple system, the Mobility
Workbench already returns 600 states. Running the tool for 24 hours was not
enough to obtain an answer in the case of a system of 4 agents. 2 The rea-
son for this explosion in the size of the bisimulation is that the backtracking
mechanism induces a lot of transitory states that try to undo their local con-
structions. More details about how the indirect method helps in automated
verification can be found in ref. [11].

6 Conclusion and future work

We have presented a distributed algorithm for self assembling trees using CCS.
Part of the appeal of the solution is that both the language used and the solu-

2 Tests were made with a 1.4 GHz Pentium M with 256 MB of RAM.

94



Danos, Krivine & Tarissan

tion itself stay simple. First one formulates a solution which is only required
to be correct in weak sense. One then uses the reversible infrastructure pro-
vided by RCCS to obtain correctness. Not only the proof is greatly simplified
in so doing, but the actual code obtained is also simpler in that backtracking
stays implicit.

Our model leaves aside more subtle forms of self-assembly based on graph-
rewriting. These would likely need a more powerful language [7,6], but there
seems to be no reason why the decomposition of the self-assembly question
advocated in this paper, would not extend to these richer languages. Our
model also ignores the question of how one represents real space, in that con-
nections are represented abstractly as synchronisations. Another important
aspect of self-assembly which our model does not take into account is its quan-
titative nature, as our model only knows of non-deterministic evolutions, and
doesn’t assign to them any measure of their likelihood. More work is needed
to understand how both spatial and probabilistic features could be added to
the picture. One could think of a distributed language where agents would
use timeouts to decide to backtrack. Substituting the RCCS operational se-
mantics to the ordinary CCS one, or whichever richer language one is using,
would obtain agents that would behave correctly with respect to the global
specification. This requires first a thorough study of the impact of timeouts
on the operational semantics of RCCS, a question which we plan to address
in future work.

Decoupling in a given system the forward and backward components of its
behaviour, is even more natural in the modelling and analysis of biomolec-
ular interactions. Indeed, one may regard molecules as blind agents trying
to bind haphazardly. Each time their spatial configurations match, proteins
have a chance to bind, and these bounds are also frequently broken down.
These exploration mechanisms have been argued to be of central importance
in the evolvability of biological systems [8]. Here the implicit backtracking
mechanism of RCCS comes in handy as a transparent way to model this in-
stability [2], but, if anything, the addition of probabilities to backward moves,
so as to generate a quantitative behaviour and be able to tune the backtrack-
ing mechanism, seems even more important in this specific context, and it
remains to be seen how the method we have illustrated here can cope with
these.

References

[1] Boudol, G. and I. Castellani, Permutation of transitions: An event structure
semantics for CCS and SCCS, in: Linear Time, Branching Time and Partial
Order in Logics and Models for Concurrency, LNCS 354, 1989, pp. 411–427.

[2] Danos, V. and J. Krivine, Formal molecular biology done in CCS, in: Proceedings
of BIO-CONCUR’03, Marseilles, France, ENTCS (2003).

95



Danos, Krivine & Tarissan

[3] Danos, V. and J. Krivine, Reversible communicating systems, in: CONCUR’04,
LNCS 3170 (2004), pp. 292–307.

[4] Danos, V. and J. Krivine, Transactions in RCCS, in: CONCUR’05, LNCS 3653

(2005).

[5] Danos, V., J. Krivine and P. Sobocinski, General reversibility, in: EXPRESS’06,
ENTCS (2006), to appear.

[6] Danos, V. and C. Laneve, Formal molecular biology., TCS 325 (2004), pp. 69–
110.

[7] Danos, V. and F. Tarissan, Self-assembling graphs, in: J. Mira and J. Alvarez,
editors, IWINAC’05, LNCS 3561 (2005), pp. 501–510.

[8] Kirschner, M. and J. Gerhart, Evolvability, PNAS 95 (1998), pp. 8420–8427.

[9] Klavins, E., Automatic synthesis of controllers for assembly and formation
forming, in: ICRA’02, 2002.

[10] Krivine, J., “Algèbres de Processus Réversibles,” Ph.D. thesis, Université Paris
6 & INRIA-Rocquencourt (2006), moscova.inria.fr/∼krivine.

[11] Krivine, J., A verification algorithm for declarative concurrent programming,
Technical report, INRIA-Rocquencourt (2006), moscova.inria.fr/∼krivine.

[12] Milner, R., “Communication and Concurrency,” International Series on
Computer Science, Prentice Hall, 1989.

[13] Milner, R., J. Parrow and D. Walker, A calculus of mobile process (i and ii),
Information and Computation 100 (1992), pp. 1–77.

[14] Palamidessi, C., Comparing the expressive power of the synchronous and
asynchronous pi-calculi, MSCS 13 (2003), pp. 685–719.

[15] Phillips, I. and I. Ulidowski, Reversing algebraic process calculi, in:
FOSSACS’06, LNCS 3921 (2006), pp. 246–260.

[16] Victor, B. and F. Moller, The Mobility Workbench — a tool for the π-calculus,
in: D. Dill, editor, CAV’94, LNCS 818 (1994), pp. 428–440.

Appendix

Instead of abstract names, one can use memories as concrete identifiers [3].
We recall in this appendix how this is done, and argue that both the abstract
and concrete identifying schemes are in fact intertranslatable. This is useful
in so far as the reinterpretation theorem we used earlier was actually proven
only for the concrete scheme. A complete proof is in ref. [10, Chap. 3].

Concrete memories are given as:

m ::= 〈〉 | 〈i〉 ·m | 〈⋆, α, p〉 ·m | 〈m′, α, p〉 ·m | 〈|◦|〉 ·m

96



Danos, Krivine & Tarissan

where ⋆ stands for an unknown communication partner, the equivalent of
which, in the semantics above, is a θ that is unique to the whole process. The
corresponding transition system, shown below, has now labels of the form µ : ζ

where µ is a set of one or two memories; rm′@m denotes the substitution of ⋆

with the concrete identifier m′ in 〈⋆, α, p〉 ·m; irreversible rules are not shown.

m � α.p + q →m:α 〈⋆, α, q〉 ·m � p 〈⋆, α, q〉 ·m � p →m:α− m � α.p + q

r →m:ā r′ s →m′:a s′

r | s →m,m′:τ r′m′@m | s′m@m′

r →m:ā− r′ s →m′:a− s′

rm′@m | sm@m′ →m,m′:τ− r′ | s′

r →µ:ζ r′

r | s →µ:ζ r′ | s

r →µ:ζ r′ ζ 6= a, ā, a−, ā−

(a)r →µ:ζ (a)r′
r ≡ r1 →µ:ζ r2 ≡ r′

r →µ:ζ r′

Given an abstract process r, and assuming any identifier occurs at most twice
in r, the following defines inductively a map Mr from an abstract process to
a concrete one (all other clauses being trivial):

Mr(〈|θ|〉 ·m) = 〈|◦|〉 ·Mr(m)

Mr(〈θ, α, p〉 ·m) =







〈Mr(m′), α, p〉 ·Mr(m) if 〈θ, ᾱ, q〉 ·m′ ∈ r

〈⋆, α, p〉 ·Mr(m) else

Conversely, given a µ indexed family of identifiers θµ such that θµ 6= θµ′ if
µ ∩ µ′ 6= µ, one can map concrete processes to abstract ones (again all other
clauses are trivial):

Θ(〈|◦|〉 ·m) = 〈|θ{m}|〉 ·Θ(m)

Θ(〈m, α, p〉 ·m′) = 〈θ{m,m′}, α, p〉 ·Θ(m′)

Θ(〈⋆, α, p〉 ·m) = 〈θ{m}, α, p〉 ·Θ(m)

We suppose now all concrete processes have unique memories, and all abstract
processes have identifiers occurring at most twice. This is easily shown to be
preserved under computations.

Proposition 6.1 If r →θ:ζ s then ∃µ : Mr(r) →µ:ζ Ms(s) and if r →µ:ζ s

then ∃θ : Θ(r) →θ:ζ Θ(s).

For the first implication: if r →θ:τ s, take µ = {Ms(m1), Ms(m2)} where
〈θ, α, p〉 · m1, 〈θ, ᾱ, q〉 · m2 ∈ s; if r →θ:τ− s, take µ = {Mr(m1), Mr(m2)} where
〈θ, α, p〉·m1, 〈θ, ᾱ, q〉·m2 ∈ r. For the second implication, it suffices to take θ = θµ.
The side condition in the par rule (see Fig. 4) holds thanks to the unicity of
memories and the assumption that θµ 6= θµ′ whenever µ ∩ µ′ 6= µ.

97




