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Abstract

In this notes we consider the model of Generative Probabilistic Transition Systems, and Baier and Her-
manns’ notion of weak bisimulation defined over them. We prove that, if we consider any process algebra
giving rise to a Probabilistic Transition System satisfying the condition of regularity and offering prefixing,
interleaving, and guarded recursion, then the coarsest congruence that is contained in weak bisimulation is
strong bisimulation.
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1 Introduction

Probabilistic process algebras have been introduced in the literature (see, among
the others, [1,2,3,7,10,11,12,16,18,21,31]) to develop techniques dealing with both
functional and non-functional aspects of system behavior, such as performance and
reliability. Models of probabilistic processes are classified in [18] into generative,
reactive, and stratified. In the generative model, a single probability distribution
is ascribed to all moves of a given process, independently of their action label. In
the reactive model, the kind of action performed by a given process in chosen in a
nondeterministic way, and a probability distribution is ascribed to all moves of that
process labeled with that action. In the stratified model a given process has either
probability moves, to which a single probability distribution is ascribed and that are
associated with no action label, or a single action move, having an action label, thus
implying a clear separation of action and probability. The model of Probabilistic
Automata [29] was introduced to capture both probability and the classical process
algebraic notion of nondeterminism. Here, a state of an automaton can have several
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transitions that are chosen in a nondeterministic way, and each transition leads to
a probabilistic distribution over action labeled moves. Usually, the model of [29] is
known as the non-alternating model, in contraposition with the alternating model
of [19], where there is a clear distinction between nondeterministic states, enabling
transitions leading to a unique state and that are chosen in a nondeterministic
way, and probabilistic states, enabling a unique transition leading to a probabilistic
distribution over states.

Probabilistic transition systems (PTSs, for short), which extend classic labeled
transition systems by some mechanism to represent probability, have been employed
as a basic semantic model of probabilistic processes. Of course, several definitions
of PTS have been introduced, taking into account of the probabilistic model consid-
ered. In order to abstract away from irrelevant information on the way that proba-
bilistic processes compute, several notions of probabilistic equivalence and preorder
have been defined over the PTS models [2,8,9,11,12,19,20,22,23,25,30,32]. In order
to fit a given equivalence into an axiomatic framework, it is required that it is a con-
gruence with respect to all process algebra operations. Probabilistic bisimulation,
which relates two processes iff their PTSs have the same probabilistic branching
structure, and that was originally defined in [25] for the reactive model, enjoys
the congruence property in the process algebras proposed in the papers mentioned
above, and is one of the equivalence definitions most frequently employed.

In the nonprobabilistic case, weak bisimulation has been successfully proposed
by Milner [26] as an equivalence relation that abstracts away from internal com-
putation steps. A notion of weak bisimulation for the non-alternating model has
been considered in [2,11,12,30]. Baier and Hermanns [5] formulated a notion of weak
bisimulation inspired by [26] for the generative model. We refer to [5] for interesting
motivations and results on probabilistic weak bisimulation.

In the nonprobabilistic setting, it is well known that weak bisimulation is not a
congruence with respect to the operation of nondeterministic choice, which is offered
by most of known process algebras. Due to the importance of having the congruence
property, the coarsest congruence with respect to nondeterministic choice that is
finer than weak bisimulation has been characterized, and called observational con-
gruence by Milner [26]. Such a congruence is known also with the names of rooted
τ -bisimulation [4] and rooted weak bisimulation [6]. Also in the non-alternating
model, the coarsest congruence with respect to nondeterministic choice that is finer
than weak bisimulation has been characterized [2,11,12].

Process algebras respecting the generative model do not offer any operation of
nondeterministic choice. More precisely, these process algebras do not offer any
operation introducing nondeterminism. However, in general, also in the generative
model weak bisimulation is not a congruence. In fact, many process algebras offer
a parametric version of interleaving operation, where the parameter determines the
probability to move of each of the two composed processes, and we show by means
of a simple example that weak bisimulation is not a congruence with respect to
this interleaving operation. Also the CCS-like parallel composition operation of
[10,7] and the CSP-like parallel composition operation of [10] do not preserve weak
bisimulation.

Our aim is then to study in the generative model the problem to give a char-
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acterization of the coarsest equivalence notion being finer than probabilistic weak
bisimulation and being a congruence with respect to any reasonable kernel of oper-
ations. To this purpose, we assume prefixing, interleaving, and guarded recursion
as such a kernel of operations, since they are widely employed. We prove that, if we
only consider process algebras giving rise to PTSs satisfying the regularity condition,
then the congruence we aim to characterize is probabilistic bisimulation. In some
sense, this result has negative consequences. In fact, in the nonprobabilistic case a
lot of work has been done on congruences weaker than bisimulation and stronger
than weak bisimulation [6,13,14,15,17], whereas in the generative case such a work
cannot be repeated, since our result implies that there is no congruence strictly
lying between bisimulation and weak bisimulation. Note that our result emphasizes
also a difference between the generative and the non-alternating model, where the
coarsest congruence contained in weak bisimulation is strictly coarsest than strong
bisimulation. This difference depends on the fact that the parallel composition op-
eration of the non-alternating model has no parameter, introduces nondeterminism,
and can be treated as the classical interleaving operation of [26].

2 Probabilistic Bisimulations

Given any set S, let M(S) denote the set of all multisets over S. Let us employ
“{|” and “|}” as brackets for multisets.

The following definition originates from [3,5,7].

Definition 2.1 A generative probabilistic transition system (GPTS, for short) is a
triple (S, Act, T ), where S is a set of states, Act is a countable set of actions, and
T ∈ M(S × Act × (0, 1] × S) is a multiset of transitions such that, for all states
s ∈ S: ∑

{| p | ∃α ∈ Act, s′ ∈ S : (s, α, p, s′) ∈ T |} ∈ {0, 1} 3

Def. 2.1 requires that each state s ∈ S is semistochastic, namely, the probabilities
of its outgoing transitions, if there are any, sum up to 1. Let us recall that GPTSs
considered in [18,31] have a weaker requirement, since they admit that, for each
state s, the sum of the probabilities of its outgoing transitions, if there are any, is
a value 0 ≤ q ≤ 1, the interpretation being that s deadlocks with probability 1− q.
Results proved in the present paper hold also for the model of GPTS of [18,31],
since they do not depend on any constraint on the probability of the transitions
leaving from s.

Let s
α,p−−→ s′ denote that (s, α, p, s′) ∈ T , s −→ denote that s

α,p−−→ s′ holds for
some α, p and s′, and s 6−→ denote that s

α,p−−→ s′ holds for no α, p and s′.
Let s =⇒ s′ denote that s′ is reachable from s, namely there exists a sequence

of transitions s0
α0,p0−−−→ s1 . . . sn−1

αn−1,pn−1−−−−−−−→ sn such that s0 = s and sn = s′.
In the following we assume the “regularity” condition, namely, for each state

s ∈ S there are only finitely many outgoing transitions s
α,p−−→ s′, and from s only

finitely many other states can be reached through any (possibly infinite) sequence
of transitions.

3 Note that multisets are needed to handle the case where from a state s several transitions with the same
label α and probability p lead to a state s′.
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Let us recall the cumulative probability distribution function µG [18], which com-
putes the total probability by which from a state s a state s′ can be reached through
transitions labeled with an action α. Adopting the convention that the empty sum
of probability is 0, µG is defined as follows.

Definition 2.2 µG : S×Act×S → [0, 1] is the function given by: ∀s ∈ S, ∀α ∈ Act,
∀s′ ∈ S:

µG(s, α, s′) =
∑

{|p | s α,p−−→ s′ ∈ T |}

Function µG can be extended to sets of target states. ∀s ∈ S, ∀α ∈ Act, ∀S ⊆ S:

µG(s, α, S) =
∑
s′∈S

µG(s, α, s′)

Following [5], function µG can be extended to sequences of actions in Act∗. Let
ε denote the empty sequence of actions. For each α ∈ Act and λ ∈ Act∗, let αλ

denote the sequence in Act∗ obtained by prefixing λ with α.
Then, ∀s ∈ S, ∀α ∈ Act, ∀λ ∈ Act∗, ∀S ⊆ S:

µG(s, ε, S) = 1 if s ∈ S

µG(s, ε, S) = 0 if s 6∈ S

µG(s, αλ, S) =
∑
s′∈S

µG(s, α, s′) · µG(s′, λ, S)

Finally, following [5] function µG can be extended to sets of sequences of actions
in Act∗. Let Λ denote any subset of Act∗, and Λ/α denote the set {λ ∈ Act∗ |αλ ∈
Λ}.

Then, ∀s ∈ S, ∀Λ ⊆ Act∗, ∀S ⊆ S:

µG(s,Λ, S) = 1 if ε ∈ Λ and s ∈ S

µG(s,Λ, S) =
∑

(α,s′)∈Act×S

µG(s, α, s′) · µG(s′,Λ/α, S) otherwise

We can recall now the notion of bisimulation for GPTSs [18]. For any equivalence
relation R over the set of states S, let S/R denote the set of equivalence classes
induced by R.

Definition 2.3 An equivalence relation R ⊆ S × S is a (strong) bisimulation if
(s1, s2) ∈ R implies: ∀C ∈ S/R, ∀α ∈ Act:

µG(s1, α, C) = µG(s2, α, C)

The union of all bisimulations is, in turn, a bisimulation, denoted by ∼. Relation
∼ equates states having the same probabilistic branching structure.

Let us assume that Act contains the special silent action τ . We can recall now
Baier and Hermanns’ notion of weak bisimulation for GPTSs [5]. Let us denote sets
of sequences of actions in Act∗ with regular expressions.

Definition 2.4 An equivalence relation R ⊆ S × S is a weak bisimulation if
(s1, s2) ∈ R implies: ∀C ∈ S/R, ∀a ∈ Act \ {τ}:

µG(s1, τ
∗aτ∗, C) = µG(s2, τ

∗aτ∗, C)
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α · x α,1−−→ x

x[recX. x/X]
α,p−−→ y

recX. x
α,p−−→ y

x1
α1,p1−−−→ y1 x2 6−→

x1 ‖p x2
α1,p1−−−→ y1 ‖p x2

x1 6−→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2−−−→ x1 ‖p y2

x1
α1,p1−−−→ y1 x2 −→

x1 ‖p x2
α1,p1·p−−−−→ y1 ‖p x2

x1 −→ x2
α2,p2−−−→ y2

x1 ‖p x2
α2,p2·(1−p)−−−−−−−→ x1 ‖p y2

Table 1
Some probabilistic operations; x, x1, x2, y1, y2 are process variables, α, α1, α2 range over Act, p, p1, p2 are

variables over the interval [0, 1], and X is a recursion variable.

µG(s1, τ
∗, C) = µG(s2, τ

∗, C)

The union of all weak bisimulations is, in turn, a weak bisimulation, denoted by
≈. Relation ≈ is coarser than ∼, since it abstracts from silent computation steps.

3 Weak Bisimulation is not a Congruence

As usual, let us assume a process description language whose abstract syntax is
given by a signature, consisting of a set of operation symbols Σ together with an
arity mapping that assigns a natural ar(f) to every f ∈ Σ.

For a set of variables Var ranged over by x, y, . . . , the set of (open) terms over
Σ and Var is the least set such that:

• each variable x ∈ Var is a term;
• f(t1, . . . , tar(f)) is a term whenever f ∈ Σ and t1, . . . , tar(f) are terms.

Terms that do not contain variables in Var are called closed terms, or processes.
The semantics of the language is given by a GPTS, whose states are processes,

and whose transitions are inferred by a set of SOS rules [27,28]. As usual, let
us assume that Σ contains the operation symbol 0 (sometimes denoted nil) with
ar(0) = 0, where 0 represents the idling process having no move.

Let us recall the notion of congruence.

Definition 3.1 An equivalence relation R over processes is called a congruence
iff, for each f ∈ Σ, if relation (ti, t′i) ∈ R holds for all 1 ≤ i ≤ ar(f), then
(f(t1, . . . , tar(f)), f(t′1, . . . , t

′
ar(f))) ∈ R.

Now, bisimulation ∼ is a congruence with respect to operations of well known
process algebras used in the literature [1,3,7,10,16,18,21,24,31].

Let us consider the operation of probabilistic interleaving ‖p of [3], whose se-
mantics in SOS style is presented in Table 1. Intuitively, if both processes t1 and t2
can move, then the process t1 ‖p t2 moves as t1 with probability p and as t2 with
probability 1− p. If only t1 (resp. t2) can move, then t1 ‖p t2 moves as t1 (resp. t2)
with probability 1.

By an example, we can show that weak bisimulation is not a congruence with
respect to operation ‖p.
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Example 3.2 Let a ∈ Act \ {τ}, and t1 and t2 be the processes t1 ≡ τ · a · 0 and
t2 ≡ τ ·τ ·a·0, where · is the prefixing operation described in Table 1. It is immediate
that t1 ≈ t2, but, for each 0 < p < 1 and b ∈ Act\{a, τ}, t1 ‖p b·0 6≈ t2 ‖p b·0. In fact,
µG(t1 ‖p b · 0, τ∗aτ∗, 0 ‖p b · 0) = p2, whereas µG(t2 ‖p b · 0, τ∗aτ∗, 0 ‖p b · 0) = p3,
and no other state weak bisimilar to 0 ‖p b · 0 is reachable from t1 ‖p b · 0 and
t2 ‖p b · 0. Intuitively, to perform the a move before the b move by b · 0, t1 has to
win two competitions versus b ·0, whereas t2 has to win three competitions, and the
probability to win each of these competitions is p.

Notice that the arguments of Example 3.2 hold also if we replace the interleaving
operation ‖p with the CCS-like parallel composition operation ‖p

q of [10,7], provided
that b 6= a, or with the CSP-like parallel composition operation ‖p

A of [10], provided
that the set of actions A contains neither a nor b.

4 Bisimulation is the Coarsest Congruence Contained
in Weak Bisimulation

Let rec be the recursion operation defined in Table 1. We assume that the recursion
variables always appear as guarded, according to the usual definition. In this section
we prove that, if we consider any process algebra offering the operations of prefixing,
recursion, and interleaving as in Table 1, then the coarsest congruence contained in
weak bisimulation is bisimulation.

Let us introduce the notion of p-bisimulation. It can be viewed as a relation
weaker than a bisimulation, in the sense that the probabilistic branching structure
of processes is considered modulo the probability value p.

Definition 4.1 Given any 0 ≤ p ≤ 1, an equivalence relation Rp ⊆ S × S is a
p-bisimulation if (s1, s2) ∈ Rp implies: ∀C ∈ S/Rp, ∀α ∈ Act:

|µG(s1, α, C)− µG(s2, α, C)| ≤ p

µG(s1, α, C) = 0 iff µG(s2, α, C) = 0

On one side, it is not guaranteed that the union of all p-bisimulations is a
p-bisimulation, and, therefore, p-bisimulations are less elegant than bisimulations
and weak bisimulations. On the other side, p-bisimulations permit to relate two
processes when they differ only for probabilities smaller than a given bound p.
However, we are not interested here in studying their theory, we simply use p-
bisimulations in our proofs.

The following result is immediate.

Proposition 4.2 A p-bisimulation is also a q-bisimulation, for each q > p. A
0-bisimulation is a bisimulation.

Given a process t, let actions(t) denote the set of the actions appearing in the
transition labels in the portion of GPTS rooted in t. The regularity condition over
the GPTS ensures that actions(t) is a finite set.

Let us assume two processes t and t′. Since actions(t) and actions(t′) are finite
sets, and since Act is a countable set, we can take two actions b, c ∈ Act\(actions(t)∪
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actions(t′) ∪ {τ}). We can prove that, given arbitrary values 0 < p, q < 1, then, if
relation (t ‖q recX . c · X) ‖p recX . b · X ≈ (t′ ‖q recX . c · X) ‖p recX . b · X
holds, then there exists some (p · q)-bisimulation relating t and t′.

Lemma 4.3 Given arbitrary processes t, t′, arbitrary values 0 < p, q < 1, and any
pair of actions b, c ∈ Act \ ({τ} ∪ actions(t) ∪ actions(t′)), it holds that:

(t ‖q recX. c ·X) ‖p recX. b ·X ≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X

implies

t ∼p·q t′ for some (p · q)-bisimulation ∼p·q

Proof.
First of all let us prove the following lemma.

Lemma 4.4 For each pair of processes s ≈ s′ such that s is reachable from (t ‖q

recX. c·X) ‖p recX. b·X and s′ is reachable from (t′ ‖q recX. c·X) ‖p recX. b·X,
for each action α ∈ Act, and for each equivalence class C ∈ S/ ≈, it holds that
|µG(s, α,C)− µG(s′, α, C)| ≤ p2 · q2.

Proof. Let us note that s has the form (t1 ‖q recX. c ·X) ‖p recX. b ·X and s′ has
the form (t2 ‖q recX. c ·X) ‖p recX. b ·X, for some t1 and t2. We can distinguish
four cases:

(i) α = a, with a ∈ Act \ {b, c, τ}.
Let p1 and p2 be the values such that p1 = µG(s, a, C) and p2 = µG(s′, a, C).

We have to prove that |p1 − p2| ≤ p2 · q2. The thesis is immediate if p1 = p2.
If p1 6= p2, then w.l.o.g. we can assume that p1 > p2. Now, p1 = µG(s, a, C)
implies µG(s, τ∗aτ∗, C) ≥ p1. Since s ≈ s′ we infer that µG(s′, τ∗aτ∗, C) ≥ p1.
Since p1 > p2 = µG(s′, a, C), we infer that µG(s′, τ+aτ∗, C) + µG(s′, aτ+, C)
≥ (p1 − p2), where τ+ denotes the set of all the sequences of n ≥ 1 τ -actions.
Since a 6= b and a 6= c, processes in C can be reached from s′ by sequences
τ+aτ∗ and aτ+ only through at least two moves by t2. This implies that
µG(s′, τ+aτ∗, C)+µG(s′, aτ+, C) ≤ p2 · q2. Summarizing, p2 · q2 ≥ p1−p2, and
the thesis is proved.

(ii) α = b.
Since b 6∈ actions(t)∪ actions(t′), the only b move by s is due to recX. b ·X

and leads to s itself, and, analogously, the only b move by s′ is due to recX. b·X
and leads to s′ itself. Hence, either C contains neither s nor s′, and the thesis
is immediate since µG(s, b, C) = 0 = µG(s′, b, C), or C contains both s and s′.
Let us concentrate on the second case. Since t1 ‖q recX. c ·X moves, it cannot
happen that the probability of the b-move by recX. b ·X is 1, we are sure that
this b move has probability 1− p, and, therefore, µG(s, b, C) = 1− p. For the
same reason we infer that µG(s′, b, C) = 1 − p. Summarizing, µG(s, b, C) =
µG(s′, b, C), and the thesis is proved.

(iii) α = c.
Let p1 and p2 be the values such that p1 = µG(s, c, C) and p2 = µG(s′, c, C).

Since c 6∈ actions(t)∪actions(t′), the only c move by s is due to recX. c·X and
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leads to s itself, and, analogously, the only c move by s′ is due to recX. c ·X
and leads to s′ itself. Hence, either C contains neither s nor s′, and the thesis
is immediate since µG(s, c, C) = 0 = µG(s′, c, C), or C contains both s and s′.
Let us concentrate on the second case. It holds that either p1 = p · (1− q), if t1
has some move, or p1 = p, if t1 has no move. Moreover, either p2 = p · (1− q),
if t2 has some move, or p2 = p, if t2 has no move. Therefore, it suffices to
prove that it cannot happen that t1 moves and t2 does not to infer that either
p1 = p · (1− q) = p2 or p1 = p = p2, which implies the thesis.

By contradiction, let us assume that t1 moves and t2 does not. Since t2 does
not move, s′ has only one b move with probability 1− p and only one c move
with probability p. Since s ≈ s′, we infer that s has only moves in {b, c, τ},
thus implying that t1 has τ moves. This implies that the overall probability
of sequences τ∗bτ∗ by s is strictly greater than 1 − p, which contradicts that
s ≈ s′.

(iv) α = τ .
First of all let us note that, since s ≈ s′, either C contains both s and s′, or

C contains neither s nor s′. If C contains neither s nor s′, we can reason as in
case (i).

Let us assume that C contains both s and s′. In this case, let p1 and p2 be the
values such that p1 = µG(s, τ, C) and p2 = µG(s′, τ, C). We have to prove that
|p1 − p2| ≤ p2 · q2. The thesis is immediate if p1 = p2. If p1 6= p2, then w.l.o.g.
we can assume that p1 > p2. First of all let us note that, since each state ŝ

reachable from s or s′ can perform the c move, it cannot happen that ŝ
b,1−→ ŝ,

and, therefore, we are sure that ŝ
b,1−p−−−→ ŝ. Since both s and the processes in C

reachable through one τ move from s (with total probability p1) can perform
b with probability 1− p while remaining in C, it holds that µG(s, τ∗bτ∗, C) ≥
(1 − p) + p1 · (1 − p). Since s ≈ s′, it holds that µG(s′, τ∗bτ∗, C) ≥ (1 −
p) + p1 · (1 − p). Since states in C cannot perform b with probability 1, we
know that µG(s′, b, C) = (1 − p) and

∑
m+n=1 µG(s′, τmbτn, C) = p2 · (1 − p).

Hence,
∑

m+n≥2 µG(s′, τmbτn, C) ≥ (p1 − p2)(1− p). Moreover, we know that∑
m+n≥2 µG(s′, τmbτn, C) ≤ p2 · q2 · (1 − p), since τmbτn with m + n ≥ 2

requires at least two moves by t2 and one move from recX. b·X. Summarizing,
p2 · q2 · (1 − p) ≥ (p1 − p2) · (1 − p), which implies p2 · q2 ≥ p1 − p2, and the
thesis is proved.

2

Lemma 4.4 implies that there is a (p2 · q2)-bisimulation relating processes reach-
able from (t ‖q recX. c ·X) ‖p recX. b ·X and (t′ ‖q recX. c ·X) ‖p recX. b ·X
and that contains the pair formed by (t ‖q recX. c · X) ‖p recX. b · X and
(t′ ‖q recX. c ·X) ‖p recX. b ·X. Let ∼p2·q2 denote such a (p2 · q2)-bisimulation.

Let us take any equivalence class C ∈ S/ ∼p2·q2 . We prove below that the
set of processes Ĉ = {s such that (s ‖q recX. c · X) ‖p recX. b · X ∈ C} are an
equivalence class of a (p · q)-bisimulation relating processes reachable from t and t′.
Let ∼p·q denote such a (p · q)-bisimulation. Relations ∼p·q equates t and t′, since
(t ‖q recX. c ·X) ‖p recX. b ·X and (t′ ‖q recX. c ·X) ‖p recX. b ·X are equated
by ∼p2·q2 . The thesis follows from t ∼p·q t′.
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Hence, it remains to prove that Ĉ ∈ S/∼p·q for some (p · q)-bisimulation ∼p·q.
Given arbitrary processes t1, t2 ∈ Ĉ, any equivalence class D̂, and any action α ∈
actions(t1) ∪ actions(t2), the semantics of ‖p and ‖q implies that:
µG(t1, α, D̂) = 1

p·q · µG((t1 ‖q recX. c ·X) ‖p recX. b ·X, α, D),

µG(t2, α, D̂) = 1
p·q · µG((t2 ‖q recX. c ·X) ‖q recX. b ·X, α, D).

Since (t1 ‖q recX. c ·X) ‖p recX. b ·X ∼p2·q2 (t2 ‖q recX. c ·X) ‖p recX. b ·X, we
are sure that |µG((t1 ‖q recX. c ·X) ‖p recX. b ·X, α, D)−µG((t2 ‖q recX. c ·X) ‖p

recX. b · X), α,D)| ≤ p2 · q2. Therefore, |µG(t1, α, D̂) − µG(t2, α, D̂)| ≤ p · q, as
required. 2

At first glance, our choice of using a context with two occurrences of the in-
terleaving operator in Lemma 4.3 could be surprising. One could expect that a
context with only one of these occurrences suffices. The point is that the proof of
Lemma 4.4 does not work if we consider the context ‖p recX . b · X instead of
( ‖q recX. c ·X) ‖p recX. b ·X. In fact, both in the proof of case α = b, and in the
proof of the case α = τ , we exploit the fact that the probability of the b move by
recX. b ·X cannot be 1. This is implied by the fact that recX. c ·X can perform
the c move. Without process recX. c ·X, the process on the left side of ‖p could be
a process without any move, and the b move by recX. b ·X could have probability
1.

Notice that Lemma 4.3 above holds also if we replace the interleaving operations
‖p and ‖q with the CCS-like parallel composition operations ‖p

p′ and ‖q
q′ of [7,10],

provided that t and t′, besides performing neither b nor c, perform neither b nor c.
Moreover, Lemma 4.3 holds also if we replace ‖p and ‖q with the CSP-like parallel
composition operations ‖p

A and ‖q
A of [10], with A = ∅.

Let us prove now that processes related by p-bisimulations for all 0 < p < 1 are
strong bisimilar.

Lemma 4.5 Given processes t and t′, if for each 0 < p < 1 there exists a p-
bisimulation ∼p such that t ∼p t′, then it holds that t ∼ t′.

Proof. Since the regularity condition ensures that the number of states reachable
from t and t′ is finite, there exists an equivalence relation R over the states reach-
able from t and t′ such that (t, t′) ∈ R and such that, given any δ > 0, R is
an ε-bisimulation for infinite many δ > ε > 0. We can prove that R is a strong
bisimulation. By contradiction, let us assume that R is not a strong bisimulation.
Then, there exists a pair of states (s, s′) ∈ R, an action α ∈ Act, and an equiv-
alence class C over R such that µG(s, α,C) 6= µG(s′, α, C). Let d be the value
|µG(s, α,C)−µG(s′, α, C)|. It follows that R is not an ε-bisimulation for any ε < d,
which contradicts that R is an ε-bisimulation for infinite many d > ε > 0. Now,
since R is a bisimulation and (t, t′) ∈ R, the thesis holds. 2

We can give now our main result.

Theorem 4.6 Given arbitrary processes t and t′, if for all 0 < p, q < 1 and actions
b, c ∈ Act\({τ}∪actions(t)∪actions(t′)) it holds that (t ‖q recX. c·X) ‖p recX. b·X
≈ (t′ ‖q recX. c ·X) ‖p recX. b ·X then it follows that t ∼ t′.

9



Tini

Proof. By Lemma 4.3, for each 0 < p, q < 1, it holds that t ∼p·q t′ for some (p · q)-
bisimulation ∼p·q. Given any 0 < d < 1, we can choose p = q =

√
d, to infer that

t ∼d t′. Since t ∼d t′ for all 0 < d < 1, we can apply Lemma 4.5 to infer t ∼ t′, and
the proof is complete. 2

Let us assume thatR is an equivalence relation over processes being a congruence
w.r.t interleaving, prefixing and recursion, and being finer than weak bisimulation
(i.e. R ⊂≈). Given processes t and t′ such that (t, t′) ∈ R, since R is a congruence,
we infer that, for all 0 < p, q < 1, ((t ‖q recX. c ·X) ‖p recX. b ·X, (t′ ‖q recX. c ·
X) ‖p recX. b ·X) ∈ R. Since R ⊂≈, we infer (t ‖q recX. c ·X) ‖p recX. b ·X ≈
(t′ ‖q recX. c ·X) ‖p recX. b ·X. Thm. 4.6 implies that t ∼ t′. Hence, R ⊆∼. Since
∼ is a congruence w.r.t. interleaving, prefixing and recursion, we infer that ∼ is the
coarsest congruence contained in ≈ that is a congruence w.r.t. these operations.

5 Conclusions

We have proved that, if one considers process algebras giving rise to GPTSs satisfy-
ing the regularity condition and offering recursion, interleaving and prefixing, then
strong bisimulation is the coarsest congruence contained in weak bisimulation. This
differentiates the generative probabilistic model not only with respect to the non-
probabilistic case, where interesting congruences strictly lying between strong and
weak bisimulation have been studied [6,13,14,15,17], but also with respect to the
non-alternating model, where the coarsest congruence being finer than weak bisim-
ulation has been characterized and proved to be coarser than strong bisimulation
[2,11,12].

Analogies between the nonprobabilistic and the non-alternating model arise since
in the non-alternating model process algebras offer parallel composition operations
and a nondeterministic choice operation having the same nature of those of non-
probabilistic process algebras. To support this observation the fact that the ax-
iomatization of the coarsest congruence being finer than weak bisimulation requires
rules similar to Milner’s “expansion law” to manage parallel composition [12] and
rules similar to Milner’s “τ -law” to manage τ prefixing [2,11,12].

In the generative model, no operation introducing nondeterminism is allowed.
Therefore one cannot hope to treat parallel composition operations as in the non-
probabilistic case. Asynchronous parallel composition operations require parame-
ters specifying the probability to move of each of the processes running in parallel.
These parametric operations do not preserve weak bisimulation, since they distin-
guish τm · t1 and τn · t1, when m 6= n. In fact, when we compose in parallel τm · t1
with another process t2, the τ actions of τm · t1 imply that actions of t1 can be
performed only after τm · t1 has won m competitions versus t2 to perform the m

occurrences of τ , and each of these competitions is not for free, meaning that the
probability of winning it is not 1 but depend on the parameter of the operation.
The ability of discriminating τm · t1 and τn · t1 has as a consequence that there is
no congruence strictly lying between strong and weak bisimulation.

Checking whether our result holds also for GPTSs that do not satisfy the reg-
ularity condition, and for transition systems respecting the reactive and stratified
models of probabilistic processes could be interesting developments of the present
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notes.
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