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Abstract

In the context of process algebras it is customary to define semantics in the form of a reaction relation
supported by a structural congruence relation. Recently process algebras have grown more expressive in
order to meet the modelling demands of fields as diverse as business modelling and systems biology. This
leads to combining various features, such as general choice and parallelism that were previously studied
separately, and it often becomes difficult to define the reaction semantics. We present a general approach
based on active evaluation contexts that allows the reaction semantics to be easily constructed.
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1 Introduction

Since their proposal [7,11,1] process calculi have become the primary tool for re-

searching paradigms of concurrent computation. In the three decades that have

passed two types of semantics have emerged:

Structural operational semantics [15] describes how processes may interact with

their immediate environment. As usual for structural operational semantics the

immediate behaviour of a composite process is defined structurally in terms of

the immediate behaviours of its component processes.

Behaviours are often expressed using labelled transition systems. The label

languages have considerable potential, which ensures that the structural opera-

tional semantics approach is viable for more expressive calculi also. As calculi

do become more expressive, however, the required label languages tend to grow

complicated and somewhat obscure the intuition of concurrency.

Reaction semantics in the style of the chemical abstract machine (CHAM) [2]

clearly expresses an intuitive (chemical) understanding of concurrency. Every

process term is perceived as the description of a solution of (syntactic) reactive

entities. The usual structural congruence is a magical stirring mechanism that
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allows syntactic entities to float and mix as required. The reaction relation then

simply states how reactions happen when ‘matching’ reactive entities come suffi-

ciently close to each other.

While very intuitive this type of semantics has the drawback that the structural

congruence is subject to conflicting requirements. On the one hand, we demand

that the congruence sharply distinguishes between semantically different process

expressions. On the other hand, we require it to be able to move potential redex

constituents, which are syntactically located arbitrarily far apart, close enough

together for a reaction rule to identify them. The usual decidability problems

aside, these two requirements seem to clash as calculi grow in expressiveness.

Due to their different strengths it is usual for calculi to have both types of seman-

tics. However, for the more elaborate calculi this is often difficult unless syntactic

restrictions are imposed.

Milner’s Calculus of Communicating Systems (CCS) is a prime example. The

more recent version [13], which we briefly describe in Section 2, restricts choice to

guarded sum. This facilitates both types of semantics because a normal form

∑
j
αj.Pj (1)

can always be assumed for the constituents of redexes.

This may be contrasted to the original calculus [11] that has unrestricted choice.

For this reason the substantially more complex normal form

(. . . (((α.P + P ′)|P ′′) + P ′′′)|P ′′′′ . . .) (2)

needs to be assumed for the constituents of redexes. This normal form is hard to

match syntactically and the structural congruence is of little help as it is semanti-

cally meaningless to allow choice and parallel to distribute freely over one another.

Thus, traditionally, only structural operational semantics is defined for derivatives

of this calculus.

In this paper we show how reaction semantics can be defined even for very

expressive calculi. One may ask why it is of interest to be able to deal with a binary

unrestricted choice as opposed to an indexed guarded sum (over some arbitrary finite

index set). In doing so we follow one of the design principles used by Gordon Plotkin

when devising Structural Operational Semantics [15]: that one should always strive

to use unary or binary syntactic constructors rather than general n-ary constructors

because the former choice assists machine readable formal semantics and also gives

a deeper semantic understanding of the programming construct at hand [16].

The proposed approach is based on a novel notion of active evaluation contexts.

These contexts arise naturally when one allows standard evaluation contexts, orig-

inally proposed by Felleisen [5], to evolve when reactions occur. In Section 3 we

develop the active evaluation contexts and use them to define a reaction semantics

for the recursion-free fragment of CCS with unrestricted choice. The main theoret-

ical result of this paper is that the resulting reaction semantics agrees with Milner’s

original structural operational semantics for closed expressions.
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P ::= 0 | α . P |
∑

i∈I

αi . Pi | P P | (νa)P α ::= τ | a | a

Fig. 1. Syntax of finite core CCS with guarded sums (CCSgs).

Reordering of parallel processes: Scope rules for name restrictions:

P 0 ≡gs P (νa) 0 ≡gs 0

P Q ≡gs Q P (νa) (νb)P ≡gs (νb) (νa)P

P (Q R) ≡gs (P Q) R (νa) (P Q) ≡gs P (νa)Q if a /∈ fn(P )

Alpha equivalence: Reordering of term in a summation:

P ≡α Q ⇒ P ≡gs Q Summands can be freely reordered.

Equivalence: Congruence:

P ≡gs P P ≡gs Q ⇒ α.P + M ≡gs α.Q + M

P ≡gs Q ⇒ Q ≡gs P P ≡gs Q ⇒ (νa)P ≡gs (νa)Q

P ≡gs Q ∧ Q ≡gs R ⇒ P ≡gs R P ≡gs Q ⇒ P R ≡gs Q R

P ≡gs Q ⇒ R P ≡gs R Q

Fig. 2. Structural congruence of CCSgs.

In the case of more complicated calculi the notions of active evaluation contexts

and structural congruence combine nicely to give the desired semantics. We illus-

trate this in Section 4 where we define a reaction semantics for the full BioAmbients

calculus extended with unrestricted choice.

2 CCS with Guarded Sums

In order to set the scene we start by considering CCS with guarded sums as defined

by Milner [13]. In order to expose our contribution in Section 3 more clearly we

shall focus on the finite fragment of the language; thus omitting recursion. This

does not indicate a limitation in our framework - as we shall demonstrate later, in

Section 4, recursion can easily be incorporated using a structural congruence.

Now, let N , ranged over by a, b, · · · , be a denumerable set of channel names

and let the special symbol τ denote internal actions. The syntactical class of action

prefixes, α ∈ Act, then contains all names a ∈ N , all corresponding co-names

a ∈ N , and the special symbol τ . In this context the class of finite core CCS

processes with guarded sums, to be denoted CCSgs, is described by the grammar

in Figure 1, where we assume the I in
∑

i∈I αi . Pi to be finite and write 0 when

|I| = 0 and α.P when |I| = 1.

Because the choice construct
∑

i∈I αi . Pi is guarded it is possible to define a

traditional (CHAM style) reaction semantics. As always, due to the syntactical

nature of the reaction semantics, the definition relies on a structural congruence

relation. If we let ≡α denote ordinary α-equivalence, the structural congruence,

≡gs, is the least relation that satisfies the axioms and rules in Figure 2. Using the
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TAU: τ . P + M −→gs P RES:

P −→gs P ′

(νa) P −→gs (νa) P ′ PAR:

P −→gs P ′

P Q −→gs P ′ Q

REACT: (a . P + M) (a . Q + N) −→gs P Q STRUCT:

P ≡ Q Q −→gs Q′ Q′ ≡ P ′

P −→gs P ′

Fig. 3. Reaction relation of CCSgs.

sumt : M + α . P + N
α

−→gs P reactt :

P
λ

−→gs P ′ Q
λ

−→gs Q′

P P
τ

−→gs P ′ Q′

l-part :

P
α

−→gs P ′

P Q
α

−→gs P ′ Q r-part :

Q
α

−→gs Q′

P Q
α

−→gs P Q′

rest :

P
α

−→gs P ′

(νa)P
α

−→gs (νa)P ′ if n(α) 6= a

Fig. 4. Structural operational semantics of CCSgs.

P ::= 0 | α . P | P + P | P P | (νa)P

Fig. 5. Syntax of finite core CCS with unrestricted choice (CCSuc).

congruence the reaction relation, −→gs, defined by the axioms and rules of Figure

3 specifies the full reaction semantics of CCSgs. Note how this definition relies on

the existence of the previously described normal forms of type (1).

Next we define a structural operational semantics specifying the process be-

haviour in terms of labelled transition systems. We assume the same class α of

action prefixes as before but use the abbreviation λ to denote action prefixes that

are not internal (i.e. λ ∈ Act\{τ}); we shall write n(α) to denote the base name of

any action prefix. The transition relation
α

−→uc defining the structural operational

semantics is then the least relation satisfying the axioms and rules of Figure 4.

While these two formulations of the CCSgs semantics are often used for differ-

ent purposes they are intended to express the same behaviour for closed process

expressions. Thus the following result [13] is crucial:

Theorem 2.1 (For CCSgs reaction agrees with τ-transition) For any CC-

Sgs process P we have that P
τ

−→gs≡ P ′ if and only if P −→gs P ′.

Proof. See Milner [13] Theorem 5.6 �

3 Active Evaluation Contexts for CCS

When the calculus is generalised to finite core CCS with unrestricted choice (CCSuc),

as shown in Figure 5, the picture changes. Neither Milner nor other contributors

have ever defined a classic (CHAM style) reaction semantics for a derivative of this

language - and for good technical reasons. We believe that the technical means to

deal with normal forms of type (2) have simply been lacking, and for this reason

calculi descending from CCSuc are traditionally given only a structural operational

semantics similar to the one shown in Figure 6 [12].
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PREt : α . P
α

−→uc P L-PARt :

P
α

−→uc P ′

P Q
α

−→uc P ′ Q L-SUMt :

P
a

−→uc P ′

P + Q
α

−→uc P ′

R-PARt :

Q
α

−→uc Q′

P Q
α

−→uc P Q′ R-SUMt :

Q
a

−→uc Q′

P + Q
α

−→uc Q′

RESt :

P
α

−→uc P ′

(νa)P
α

−→uc (νa)P ′
if n(α) 6= a

REACTt :

P
λ

−→uc P ′ Q
λ

−→uc Q′

P Q
τ

−→uc P ′ Q′

Fig. 6. Structural operational semantics of FcCSSuc.

C ::= [ ] | (νa) C | C P | P C | C + P | P + C

Fig. 7. The active evaluation contexts of CCSuc.

EMPc : [ ] −→ [ ] NEWc :

C −→ C′

(νa) C −→ (νa) C′ L-PARc :

C −→ C′

C P −→ C′ P

R-PARc :

C −→ C′

P C −→ P C′ L-SUMc :

C −→ C′

C + P −→ C′ R-SUMc :

C −→ C′

P + C −→ C′

Fig. 8. Context reduction for active evaluation contexts in CCSuc.

TAU: τ . P −→uc P

REACT:

C1 −→ C′

1
C2 −→ C′

2

C1[ λ . P ] C2[ λ . Q ] −→uc C
′

1
[ P ] C

′

2
[ Q ]

if n(λ) 6∈ (masked(C1) ∪ masked(C2))

CONT:

C −→ C′ P −→uc P ′

C[ P ] −→uc C′[ P ′ ]

Fig. 9. Reaction relation of CCSuc.

We shall now propose a semantics for CCSuc that retains the intuition of reaction

semantics, but avoids the difficulties of previous approaches. For this purpose we

shall introduce a notion of active evaluation contexts as defined in Figure 7. As usual

for process/evaluation contexts, active evaluation contexts are process expressions

with exactly one hole [5,13,8]. Contrary to ordinary contexts, however, we shall

allow active contexts to evolve when reactive sub-processes occupying their hole

engage in reactions.

To facilitate this we define the context reduction relation described in Figure 8.

It specifies exactly what happens to contexts when reactive sub-processes engage

in reaction. The reduction ability of contexts enables the compact and elegant

definition of the reaction relation, −→, shown in Figure 9. Here we use the auxiliary

function masked(C) to determine the names and co-names that are restricted by a

context C. The function is given by:

masked(C) = {λ | some (νλ) C
′ occurs in C}

In particular, masked((νa) C) = {a} ∪ masked(C).
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3.1 Correspondence of Semantics

It is evident that that the context reduction relation strongly resembles those rules of

the structural operational semantics that encode the recursive descent into process

terms. Consequently, structural congruence turns out to be unnecessary as was the

case for the structural operational semantics.

In this favourable context the equivalence of the reaction semantics and the

structural operational semantics for closed process expressions can be expressed

simply as:

Theorem 3.1 (Reaction corresponds to τ transition) P −→uc P ′ if and only

if P
τ

−→uc P ′.

The proof has two parts, but first we establish the following useful result, which

shows how the notion of active contexts relates to the structural operational seman-

tics:

Lemma 3.2 (Contexts respect behaviour) If P
α

−→uc P ′, C −→ C
′, and

n(α) /∈ masked(C) then C[P ]
α

−→uc C
′[P ′ ].

Proof. The proof proceeds by structural induction on C:

Base case [ ]: trivial.

Case C R:

From the premises we have P
α

−→uc P ′, C R −→ (C R)′, and n(α) /∈
masked(C).

By the shape of the inference of −→ we have (C R)′ = C′ R and C −→ C′

as a necessary premise. From the induction hypothesis it is now clear that

C[P ]
α

−→uc C
′[P ′ ].

A single application of the L-PARt rule now establishes the desired result:

C[P ] R
α

−→uc C
′[P ′ ] R

Cases R C, R + C, and C + R:

All similar.

Case (νa) C:

From the premises we have P
α

−→uc P ′, (νa) C −→ ((νa) C)′, and n(α) /∈
masked((νa) C).

By the shape of the inference of −→ we have ((νa) C)′ = (νa) C
′ and

C −→ C′ as a necessary premise and we know that n(α) /∈ masked(C).

From the induction hypothesis it is now clear that C[P ]
α

−→uc C
′[P ′ ].

Given that n(α) /∈ masked((νa) C) we have n(α) 6= a and a single applica-

tion of the RESt rule now establishes the desired result: (νa) C[P ]
α

−→uc

(νa) C
′[P ′ ]. �

Given this lemma it is now easy to establish the ’if’ part of Theorem 3.1:

Lemma 3.3 If P −→uc P ′ then P
τ

−→uc P ′.

Proof. We proceed by induction on the inference of −→uc:

Case TAU:
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Given the process term τ.P rule PREt trivially instantiates to give us

τ.P
τ

−→uc P , just as desired.

Case REACT:

Rule PREt gives us a . P1
a

−→uc P1 and a . P2
a

−→uc P2, and from the

rule premises we have that C1 −→ C
′
1, C2 −→ C

′
2, n(a) /∈ (masked(C1) ∪

masked(C2)).

Using Lemma 3.2 we can establish that C1[ a . P1 ]
a

−→uc C
′
1[P1 ] and

C2[ a . P2 ]
a

−→uc C′
2[P2 ]. By a single application of rule REACTt we can

now conclude C1[ a . P1 ] C2[ a . P2 ]
τ

−→uc C
′
1[P1 ] C

′
2[P2 ], as required.

Case CONT:

From the premises we have C −→ C
′ and P −→uc P ′. Using the induction

hypothesis on the latter we obtain P
τ

−→uc P ′, where obviously n(τ) /∈
masked(C).

Lemma 3.2 now tells us that C[P ]
τ

−→uc C
′[P ′ ], as required. �

We now turn to the ’only if’ part of Theorem 3.1, which is a straightforward corollary

of the following lemma:

Lemma 3.4 If P
τ

−→uc Q then P −→uc Q and

if P
λ

−→uc Q then, for all contexts C, C′ such that C −→ C
′ and n(λ) /∈ masked(C),

we have C[P ] λ .R −→uc C
′[Q ] R and λ . R C[P ] −→uc R C

′[Q ].

Proof. The proof proceeds by induction on the inference of
α

−→uc:

Base case PREt :

If α is τ then P is τ.P ′ and Q is P ′ and the transition P −→uc Q follows

from TAU.

Otherwise P is λ.P ′ and Q is P ′ and the required transitions both follow

from REACT (taking one of C1 and C2 to be C and the other to be [ ]).

Case L-PARt :

If α is τ then P is P ′ Q′ and Q is P ′′ Q′ and the transition P −→uc Q

follows from the induction hypothesis and CONT where C is taken to be

[ ] Q′.

Otherwise, P and Q are of a similar form, but the transitions have to

follow from REACT. From premises we know that P ′ λ
−→uc P ′′, and the

induction hypothesis then tells us that C[P ′ ] λ .R −→uc C
′[P ′′ ] R for

all suitable C, C′ (i.e. C −→ C
′ with n(λ) /∈ masked(C)). Given that C, C′

are suitable clearly C[ [ ] Q′ ], C′[ [ ] Q′ ] are also suitable, and then the

required transitions both follow from REACT.

Case R-PARt,LSUMt, and R-SUMt :

All similar.

Case RESt :

If α is τ then P is (νa)P ′ and Q is (νa)P ′′ and the transition P −→uc Q

follows from the induction hypothesis and CONT where C is taken to be

(νa) [ ].
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Otherwise, P and Q are of a similar form, but the transitions have to

follow from REACT. From the premise we know that P ′ λ
−→uc P ′′, and

the induction hypothesis then tells us that C[P ′ ] λ . R −→uc C
′[P ′′ ] R

for all suitable C, C′ (i.e. C −→ C
′ with n(λ) /∈ masked(C)). Given that

C, C′ are suitable clearly C[ (νa) [ ] ], C′[ (νa) [ ] ] are also suitable because

we know from the side-condition that n(λ) 6= a, which means that n(λ) /∈
masked(C)∪{a}. The required transitions then both follow from REACT.

Case REACTt :

Here α is τ and P is P ′ Q′ and Q is P ′′ Q′′. By the premises and

the induction hypothesis we have both C[P ′ ] λ . R −→uc C
′[P ′′ ] R and

λ .R C[P ′ ] −→uc R C
′[P ′′ ]. As these reactions can only arise by the use

of REACT we may assume that C[P ′ ] is of the form C[ Cdeep[λ . Pdeep ] ],

where Cdeep −→ C
′
deep and n(λ) /∈ masked(Cdeep).

Similar arguments for Q′ allows us to assume that C[Q′ ] is of the form

C[ Cdeep[λ . Qdeep ] ], where Cdeep −→ C
′
deep and n(λ) /∈ masked(Cdeep).

From this we obtain the desired reaction by a single application of REACT.

�

4 Active Evaluation Contexts for BioAmbients

The use of process calculi as modelling languages for real-world domains, such as

business modelling and systems biology, seems to be a current trend in language

based technology. The trend combines many language features that were previously

unstudied or only studied in isolation. This invariably leads to evermore expres-

sive calculi that share the difficulties of CCSuc with respect to the definition of

appropriate reaction semantics.

The BioAmbients calculus of Regev et al. [18,17,3] is a prime example. The

language is a sibling of Mobile Ambients (Cardelli and Gordon [4]) designed to

model biological systems. It preserves the notion of ambients as bounded mobile

sites of activity; contrary to Mobile Ambients, however, bio-ambients are cast as

nameless entities. The ambients are used to model chemically active sub-systems

(compartments) bound by biological barriers (membranes) in an intuitive manner.

The calculus is quite extensive in terms of modelling primitives. Appropriate

sets of capabilities and co-capabilities are devised for modelling a variety of biolog-

ical reactions, such as movement and communication, that may happen between

the sub-systems. Both communication and movement are facilitated by having

capability/co-capability pairs react with each other as in [10,14]. As a consequence

all reactions are synchronous in the sense that the process exposing the capability

and the process exposing the corresponding co-capability must simultaneously agree

on a reaction for it to happen. Such an agreement can be reached only if the two

entities share the same (channel) name.

The set of control structures for processes is slightly larger than what is tra-

ditionally studied for Mobile Ambients. Besides the ambient construct it includes

non-deterministic (external) choice as well as a general recursion construct in the

manner of CCS [12] in order to facilitate the description of more faithful models of

biological systems.
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P ::= 0 a terminal (stuck) process
| (νa)P restricting the scope of a to the process expression P
| [ P ] process P enclosed by ambient boundary
| P P ′ process P in parallel with process P ′

| P + P ′ non-deterministic external choice between P and P ′

| M . P capability prefixed process
| rec X. P recursive process definition (X = P )
| X process identifier

M ::= enter a | accept a enter movement
| exit a | expel a exit movement
| merge– a | merge+ a merge movement
| a!{b} | a?{c} local communication binding the variable c
| a !{b} | â ?{c} parent to child communication binding the variable c
| â !{b} | a ?{c} child to parent communication binding the variable c
| a#!{b} | a#?{c} sibling communication binding the variable c

Fig. 10. Syntax of BioAmbients.

Following the tradition of ambient calculi BioAmbients is endowed by Regev

with a (CHAM style) reaction semantics [18,17]. Arguably, this is a natural choice

because it ensures a high degree of coherence between the inherently bio-chemical

modelling domain and the operational model of the language. As for CCSgs, how-

ever, external choice is limited to guarded sums and, again, we believe that this is

so because the technical means to combine parallelism and unrestricted choice was

lacking at the time of definition.

In the following we present a BioAmbients variant where choice is unrestricted.

We trust this to be a conservative extension of the original calculus, but a formal

proof is besides the point of the present paper. Rather, we shall focus on defining

a reaction semantics using our active evaluation contexts.

4.1 Syntax

The full syntax of BioAmbients is defined in Figure 10. Note that we use the heavy

brackets [ and ] to represent ambient boundaries; the ordinary brackets [ and ]

are reserved for substitutions and holes of contexts. We use a, b, · · · ∈ N to denote

channel names and M ∈ Cap for the notion of (co-) capabilities, which are based on

names and generalise the notion of actions. As customary for BioAmbients we omit

the notion of internal τ -actions. Also, since reactions are based on (co-)capabilities,

we have no need for co-names.

In the following we shall write P [a/b] to denote the process that is as P except

that all free occurrences of the name b are replaced by a. Similarly, we shall use

P [Q/X] to identify the process that is as P except that all free occurrences of

the process identifier X are replaced by the process expression Q. In both cases

we take care to perform the necessary α-renamings to avoid capturing free names

and process identifiers. Finally, we shall use fn(P ) to pick out the free names of a

process P and write P ≡α Q to state that two processes P and Q are identical up

to α-renaming of names.
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C ::= [ ] | C P | P C | C + P | P + C

Fig. 11. The active evaluation contexts of BioAmbients.

EMPc : [ ] −→ [ ] L-PARc :

C −→ C′

C P −→ C′ P R-PARc :

C −→ C′

P C −→ P C′

L-SUMc :

C −→ C′

C + P −→ C′ R-SUMc :

C −→ C′

P + C −→ C′

Fig. 12. Reduction of BioAmbients active evaluation contexts.

4.2 Semantics

The active evaluation contexts of BioAmbients, shown in Figure 11 and Figure 12,

are simpler than those of CCSuc. Their definition embodies three crucial choices,

which we shall further substantiate below:

(i) The active contexts are name restriction free.

(ii) The active contexts are ambient boundary free.

(iii) The active contexts are recursion free.

The choice (i) is necessary because both π-style name passing and ambient style

movement may cause extrusion of scope. This happens when restricted names are

communicated to recipients or moved to positions outside of their original bounding

box. Defining the active contexts to be name restriction free allows us to deal

explicitly with all scope related issues in the usual way, i.e. using the structural

congruence, shown in Figure 13, to migrate name restrictions in and out of redexes

as required.
Contrary to the usual practice we allow constant introductions (νa) to migrate

in and out of non-deterministic external choice constructs in much the same way
as is customary for parallel composition. This is necessary because the rules of our
reaction semantics are implicitly going to assume the normal form

(. . . ((([ (. . . (((M . Pi + P ′

i
) P ′′

i
) + P ′′′

i
) P ′′′′

i
. . .) ]+ P ′

o
) P ′′

o
) + P ′′′

o
) P ′′′′

o
. . .) (3)

for the constituents of redexes of movement actions, and

(. . . ((([(. . . (((M . Pi + P ′

i ) P ′′

i ) + P ′′′

i ) P ′′′′

i . . .)]+ P ′

o) P ′′

o ) + P ′′′

o ) P ′′′′

o . . .) (4)

(where the grey symbols denote syntax that may, or may not, be present) for the

constituents of redexes of communication actions. In each of these cases the con-

gruence must be strong enough to migrate an obstructing name restriction out of

the way, if appropriate.

The choice (ii) is required to ensure that rules of the reaction semantics, shown

in Figure 14, recognise and alter redexes correctly. All redexes have two con-

stituents, one exposing a capability prefix and another exposing the corresponding

co-capability prefix. As mentioned, these constituents can always be assumed to be

of one of the forms (3) or (4), which implies that there are some cases where exactly

10
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Scope rules for namebindings:

(νa)0 ≡ 0 (νa) (P P ′) ≡ ((νa)P ) | P ′ if a /∈ fn(P ′)

(νa1) (νa2)P ≡ (νa2) (νa1)P (νa) (P + P ′) ≡ ((νa)P ) + P ′ if a /∈ fn(P ′)

(νa) ([ P ]) ≡ [ (νa)P ]

Unfolding of recursion:
rec X. P ≡ P [rec X. P/X ]

α-renaming: Congruence requirements:
P ≡α Q

P ≡ Q
P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R
P ≡ Q

C[ P ] ≡ C[ Q ]

P ≡ Q

[ P ]≡ [ Q ]

P ≡ Q

(νa)P ≡ (νa)Q

Fig. 13. Structural congruence P ≡ Q for BioAmbients.

one boundary is demanded to enclose the exposed prefix, and other cases where

no boundaries are allowed. Defining the active evaluation contexts to be ambient

boundary free allows us to easily match each of these cases in the following manner:

(I) If no ambient boundary is allowed, the constituent is simply a capability prefixed

process expression enclosed in an active evaluation context, which we match by

C[M . P ].

(II) If exactly one ambient boundary is demanded, the constituent is an expression

of the form (I) enclosed in an ambient boundary construct and a further active

evaluation context, which we match by C1[ C2[M . P ] ].

As illustrated by Figure 14, where the active contexts are toned down, systematic

application of these patterns allows us to focus entirely on the high level structure

of redexes and contractums while the contexts conveniently hide the details of redex

constituents as well as reactions.

Finally, the choice (iii) completely separates the notion of recursion from that

of the active evaluation contexts. As a result recursion is easily handled in the

usual manner, i.e. using the structural congruence to unfold recursive processes as

required.

5 Related Work

Employing evaluation contexts to express semantics of process calculi is not a new

idea.

Berry and Boudol [2] use program contexts to denote the arbitrary testing en-

vironments that form the basis of semantic equivalence in CHAM. Later authors,

such as Milner [13], use a similar (derived) notion of process contexts, primarily in

order to extend equivalences to congruences. A few authors, such as Godskesen,

Hildebrandt, and Sasone [6] for the Calculus of Mobile Resources, also use similar

derived notions (path contexts, evaluation contexts, resource contexts etc.) to de-

fine the actual reaction relation of their calculi. In all cases, however, the involved

notions of context are (standard) static ones and none of the authors address the

issue of combining general choice with parallelism.

Sewell [20] makes a radically different use of contexts. He shows how to auto-

11
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Movement of ambients:

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3
C4 −→ C′

4

C1[ C2[ enter a . P ] ] C3[ C4[ accept a . Q ] ]−→C′

1
[0 ] C′

3
[ [ C′

2
[ P ] ] C′

4
[Q ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3

[ C1[ C2[ exit a . P ] ] C3[ expel a . Q ] ]−→ [ C′

2
[ P ] ] [ C′

1
[0 ] C′

3
[ Q ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3
C4 −→ C′

4

C1[ C2[merge– a . P ] ] C3[ C4[merge+ a . Q ] ]−→C′

1
[ 0 ] C′

3
[ C′

2
[ P ] C′

4
[ Q ] ]

Communication between ambients:

C1 −→ C′

1
C2 −→ C′

2

C1[ a!{b} . P ] C2[ a?{c} . Q ]−→C′

1
[ P ] C′

2
[ Q[m/p] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3

C1[ a !{b} . P ] C2[ C3[ â ?{c} . Q ] ]−→C′

1
[P ] C′

2
[ C′

3
[Q[m/p] ] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3

C1[ C2[ â !{b} . P ] ] C3[ a ?{c} . Q ]−→C′

1
[ C′

2
[ P ] ] C′

3
[Q[m/p] ]

C1 −→ C′

1
C2 −→ C′

2
C3 −→ C′

3
C4 −→ C′

4

C1[ C2[ a#!{b} . P ] ] C3[ C4[ a#?{c} . Q ] ]−→C′

1
[ C′

2
[ P ] ] C′

3
[ C′

4
[ Q[m/p] ] ]

Execution in context: Structural congruence:

C −→ C′ P −→ Q

C[P ] −→ C′[Q ]

P −→ Q

(νa) P −→ (νa) Q

P −→ Q

[ P ] −→ [ Q ]

P ≡ Q Q −→ Q′ Q′ ≡ P ′

P −→ P ′

Fig. 14. Reaction relation of BioAmbients.

matically derive labelled transition systems from a variety of rewrite semantics by

simply using suitable contexts as transition labels whenever reaction occurs. This

allows operational equivalences, as provided by the reaction semantics, to be inves-

tigated in a (presumably) nicer labelled setting. The involved notion of context is

not related to ours and calculi with choice are not considered at all.

Larsen [8] uses contexts equipped with structural operational semantics to define

a notion of context dependent equivalence. Larsen and Xinxin [9] extends this into

a notion of compositionality that allows Hennesy-Milner properties of composite

systems to be decomposed into joint properties of the sub-components. This use

of active contexts has subsequently been adopted back into the realm of functional

languages by Sands [19]. In all cases the contexts are, in some sense, active, but

the associated semantics is defined using exactly the complicated label languages

that reaction semantics strive to avoid and, in purpose, the approach is unrelated

to ours.

6 Conclusion

We have developed the notion of active evaluation contexts that allows reaction

semantics in the style of the Chemical Abstract Machine [2] to be defined for a

larger class of process algebras than has previously been considered.

In line with previous work on reaction semantics for CCS [13] we have compared

our approach to the more classical approach of structural operational semantics [11]

and proved that the two types of semantics coincide when closed process expressions

12
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are considered. This result indicates that the notion of active evaluation contexts

constitutes a sound approach to reaction semantics.

In order to illustrate our approach on more expressive calculi, such as those that

arise to meet the demands of domain specific modelling for complex domains, we

have presented a full reaction semantics for an extension of Regev and Cardelli’s

comprehensive BioAmbients calculus [18] that includes unrestricted choice. The

resulting semantics has two properties that we find very encouraging. Firstly the

process of actually defining it was highly systematic and, thus, easy. Secondly we

find that it is comparable in elegance to Regev’s original semantics. This indicates

that the notion of active evaluation contexts also constitutes a sensible approach to

reaction semantics.

Thus, we believe that active evaluation contexts constitute a sound and sensible

approach to defining reaction semantics in general. We can only fully substantiate

this claim, however, by subjecting other advanced calculi, which combine various

features in new ways, to the approach.
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