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Abstract

RCCS is a variant of Milner’s CCS where processes are allowed a controlled form of backtracking. It turns
out that the RCCS reinterpretation of a CCS process is equivalent, in the sense of weak bisimilarity, to its
causal transition system in CCS. This can be used to develop an efficient method for designing distributed
algorithms, which we illustrate here by deriving a distributed algorithm for assembling trees. Such a problem
requires solving a highly distributed consensus, and a comparison with a traditional CCS-based solution
shows that the code we obtain is shorter, easier to understand, and easier to prove correct by hand, or even
to verify.
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1 Introduction

We propose in this paper to illustrate a method for deriving distributed algorithms.

The broad idea is to solve a simpler problem, and then reinterpret the obtained so-

lution assuming a generic distributed backtracking mechanism. This is reminiscent

of the classic breakdown of solutions to NP problems into an exploration (guessing

the solution) and a verification phase (checking the guess is correct). It is also rem-

iniscent of simulated annealing methods where a locally-driven search is backed by

a random perturbation. Another analogy is with declarative programming where

terse solutions can be obtained because the ambient evaluation framework includes

a generic enumeration mechanism.
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It turns out that the notion of a solution to a simpler problem can be neatly

characterised in terms of the theory of concurrent systems, using the notion of

causal transition system, and so does the correctness of the generic backtracking

mechanism. A rather general result then ensures that the reinterpreted solution is

indeed a solution to the original problem [4].

This compares best with direct approaches when the problem of interest needs

reaching a consensus which is itself highly distributed. Thus, for the purpose of

illustrating the method, we choose a class of problems which is a simple idealisation

of the phenomenon of self-assembly, where simple parts assemble in some predefined

spatial arrangement by means of local and asynchronous interactions. Solutions of

such problems indeed involve arbitrarily complex distributed consensus.

Specifically, we derive a distributed algorithm for an ensemble of processes to

self-assemble in patterns described as trees. To formulate the algorithm, we use a

partially reversible derivative of CCS [12], called RCCS, which introduces a distinc-

tion between reversible and irreversible computation steps, together with a notion

of distributed memory which allows backtracking reversible steps [3].

The algorithm itself is obtained indirectly. One first defines a simple CCS al-

gorithm such that any allowed tree construction can be simulated, and conversely

all trees resulting from a series of local interactions are allowed. This is not yet

a solution since the induced assembly may deadlock, but it gets very close to be-

ing one. Indeed, by merely reinterpreting the same algorithm in RCCS, and thus

allowing backtrack on reversible actions, one obtains a real solution. For the sake

of evaluating the method we compare the first algorithm with a direct solution in

CCS which explicitly copes with deadlocks. One sees clearly that the latter is both

harder to understand, and to prove correct, and also assumes more computational

power from the basic processes.

There are limitations to this method. It is likely to provide significantly sim-

pler solutions only to problems in need of complex consensus. Another limitation

is that it is for the moment restricted to problems the solution of which can be

expressed in CCS. However, recent developements show that correct backtracking

mechanisms can be derived for a vastly more comprehensive SOS-based class of

agent-languages [15], and that the reinterpretation theorem can be made to bear in

the abstract framework of monoidal categories, and thus also covers more general

grounds, such as Petri Nets [5].

The paper is self-contained but for the more technical notion of causality which

is treated informally; a rigorous treatment is given in ref. [3,4]. Sec. 2 presents the

self assembly specification; Sec. 3 introduces the algorithm in CCS; Sec. 4 shows

that although it may deadlock, it is well designed in that its causal computations

are as in the specification, and that it is therefore correct in RCCS; Sec. 5 compares

with a direct solution in CCS. 4

4 A preliminary version of this work was presented as a poster at the 7th International Conference on
Artificial Evolution, Lille, France, Oct 26–28, 2005.
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2 Specification

The aim of this section is to define the specification for our distributed implemen-

tation as a labelled transition system (LTS).

2.1 Transition systems and Bisimulation

A labelled transition system consists of a triple: a state space S, a set of labels (or

actions) L, and for each l ∈ L, a binary relation over S, written →l and called the

transition relation. Sometimes one also adds an initial state s0 ∈ S to the preceding

data. We will write →w, with w = l1 · · · ln a word over L, for the composite relation

→l1 ; · · · ;→ln .

Given some specification of a distributed system (such as the one given below in

this section), and another LTS (possibly obtained from a CCS process as in Sec. 3)

believed to be an implementation, one needs some means of stating the correctness

of the implementation with respect to the specification. This is given by the notion

of bisimulation.

Specifically, suppose given two LTSs (S, s0, L,→), (S′, s′0, L
′,→′), and a relation

Φ over L × L′. Define the domain of Φ as {l ∈ L | ∃l′ ∈ L′ : (l, l′) ∈ Φ}, and the

codomain of Φ as the domain of the converse relation Φ−1.

Given words w, w′ over L, L′: define wΦ (w′
Φ) as the word w with all occurrences

of labels not in the domain (codomain) of Φ erased, and write (w,w′) ∈ Φ if wΦ =

l1 · · · ln and w′
Φ = l′1 · · · l

′
n have the same length, and for all 1 ≤ i ≤ n, (li, l

′
i) ∈ Φ.

Actions in the domain (codomain) of Φ will be called visible, and Φ itself will be

called a visibility relation, thus wΦ represents the actions in w which are visible

according to Φ.

One then says a relation ≃ over S × S′ is a Φ-bisimulation, if s0 ≃ s′0, and

whenever s ≃ s′:

– if s →w t, then s′ →′
w′ t′, with (w,w′) ∈ Φ and t ≃ t′,

– if s′ →′
w′ t′, then s →w t, with (w,w′) ∈ Φ and t ≃ t′.

The two conditions above are symmetric and state that whatever series of visible

actions one LTS may perform, the other may match. In other words the two LTSs,

different as they may be, are indistinguishable by synchronisation on visible actions;

one says they are Φ-bisimilar.

In the context of CCS (see Sec. 3), one has a distinguished silent action, written

τ , and setting L = L′, and Φ = {(l, l) | l 6= τ} obtains what is known as weak

bisimulation. Only non-silent actions, as the name suggests, are observed. An even

more stringent case is when Φ is the identity relation, i.e., all actions are visible,

and one speaks of strong bisimulation. Our slight generalisation where the two LTSs

use different sets of actions, and some flexibility is allowed regarding which actions

are visible and how they match, will be convenient.

2.2 The specification

Let V be a set of nodes given together with a degree map δ : V → N stipulating

how many nodes a given node may connect to. The trees considered here will be
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represented as:

t ::= (a, {t1, . . . , tn})

where a ∈ V and n ≥ 0. Hence the simplest tree is (a, ∅) which will be simply

denoted a. Other examples are (a, {b, c}) where a has two children, b and c, and

(a, {(b, {c})}) where a and b each have one child, b and c. A childless node will be

called a leaf as usual. Trees will be considered to be commutative, that is to say

for instance (a, {b, c}) and (a, {c, b}) stand for the same tree, as the set notation

suggests.

A tree t will be said to be coherent if all nodes in t have their degree as prescribed

by the degree map δ, which means in particular that leaves in t will have arity smaller

than 1 (and exactly 1 if they are not also the root of t). Imagine for instance that

δ(a) = 2, and δ(b) = δ(c) = 1, then (a, {b, c}) is coherent, while (a, {(b, {c})}) is

not. Also one has that a is coherent if and only if δ(a) = 0. Finally, we will write

n(t) to denote the nodes of t.

A state of our specification LTS is defined as a pair (N,
∑

i ti) where N ⊆ V

represent the free nodes, and each ti is a coherent tree representing the trees already

built. We write + both for the addition of multisets and the disjoint union of sets.

Labels are coherent trees over V , and transitions are given as follows:

N + n(t),
∑

i ti →t N, t +
∑

i ti

Note that coherence is the only constraint on trees grown out of our starting set

of nodes V . Instead, one could choose a different rule for growing trees, by specifying

from the outset which trees are allowed. We opt here for the local growth rule, since

it allows for simpler notations, and the method given here can anyway be readily

adapted to the global growth case.

3 Implementation

To define agents showing a collective behaviour in accordance with the specification

given above, we use CCS [12], where the only means of communication between

agents are binary synchronisations through complementary actions. This restriction

translates effectively the intuitive constraint on self-assembly, namely that the global

behaviour should be obtained only by means of local interaction.

3.1 CCS

CCS processes have the form:

p ::= 0 |
∑

αi.pi | (p | p) | (a)p | D(x̃)

where α ::= a | ā | τ can be a reception, an emission, or a silent action, and D(x̃)

stands for parametric recursive definitions. Sums are taken finite, and the empty

sum is denoted by 0 and called the zero process. Structural congruence, written

≡, is the least equivalence relation over processes closed under sum, product and

restriction, and such that sum and product are associative and commutative and
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act
∑

αi.pi →αi
pi

p →α p′
par

p | q →α p′ | q

p →α p′ α 6= a, ā
res

(a)p →α (a)p′

p →a p′ q →ā q′
syn

p | q →τ p′ | q′

Fig. 1. CCS labelled transition system.

nodei=def τ.(build
δ(i)
i | wait

δ(i)
i⋆ ) +

∑

j∈V

rij .(build
δ(i)−1
i | wait

δ(i)−1
ij ) (1)

buildn+1
i =def

∑

j∈V

r̄ij .buildn
i , build0

i =def 0 (2)

waitn+1
iα =def wi.waitn

iα, wait0
ij=def w̄j. ↑

i
j , wait0

i⋆=def oki. ↑
i
⋆ (3)

Fig. 2. Self-assembly.

have 0 as neutral element. One also assumes α-conversion (renaming), and the

following rule to unfold recursive definitions: D(x̃) ≡ p if D(x̃)=def p . Thereafter

processes are all considered up to ≡.

The CCS labelled transition system given in Fig. 1 explains how a process be-

haves in terms of the actions it can perform. Thus any CCS process generates an

LTS, where states are processes, and labels are CCS actions.

We fix a countable subset K of CCS actions, shown as underlined in the various

examples below; these are to be later interpreted as irreversible actions in RCCS,

and play no specific role in the CCS semantics.

3.2 The implementation

With both our specification and agent language in place, we turn to the definition

of the CCS process describing how agents interact in order to self-assemble. The

definition is given in Fig. 2, with n an integer, i, j ∈ V , α ∈ V + {⋆}, and δ the

degree function described earlier.

Each node is translated as a specific agent nodei, with i ∈ V . An agent can

either decide to be the root of a new tree (left hand side of the choice in (1)),

or be recruited by another agent (right hand side of the choice in (1)). In both

cases, two subprocesses are spawned, buildn
i , and waitn

iα, where n is the number

of nodes the agent needs to recruit, as determined by its degree δ(i); α stands for

the agent parent, if any, or for ⋆ if the agent is a root. The process buildn
i (2) uses

rij to recruit n free agents, while waitn
iα (3) uses wj to get confirmations of these

recruitments, and then uses w̄j to send a confirmation to its parent. In the special

case the agent is the root of the tree, and has no parent, it performs instead the

final underlined action oki to indicate the end of the construction.

There is no intrinsic reason why wait should gather confirmations in sequence;

this is due to the restrictive syntax of CCS which does not allow prefixing by a set

of actions (see for instance ref. [2, Sec. 3]). Likewise, using a richer language such

as π-calculus [13] would make a more elegant code, replacing the rijs with a public
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name (see ref. [6, Sec. 8]). That would also need a π-calculus analog of RCCS (see

ref. [10, Chap. 9]), and this simple CCS version, perfectible as it is, shall be enough

for our illustrative purposes.

One could set the final state of an agent to be simply a zero process, but our

convention to take it to be a loop process ↑i
α =def τ. ↑

i
α, indicating that agent i was

successfully recruited by agent α, makes it slightly easier to extract the tree a given

process has actually finished to build.

The complete system is represented as the product of all agents where all actions

but the final okis are restricted.

3.3 Examples

Here is a computation example with δ(a) = 2, δ(b) = δ(c) = 1:

nodea | nodeb | nodec → build2
a | wait2

a⋆ | nodeb | nodec

→⋆ wait2
a⋆ | wait0

ba | wait0
ca

≡ wa.wa.oka. ↑
a
⋆| w̄a. ↑

b
a| w̄a. ↑

c
a

→⋆ oka. ↑
a
⋆|↑

b
a|↑

c
a

→oka
↑a

⋆| ↑
b
a |↑

c
a

This corresponds to a single transition {a, b, c}, ∅ →(a,{b,c}) ∅, {(a, {b, c})} at the

specification level. In general, the construction of a tree t will decompose in 2∗n(t)

steps. As expected, the obtained code is not correct yet, and may well deadlock, as

in the following where δ(a) = δ(b) = 1, and δ(c) = 3:

nodea | nodeb | nodec → build1
a | wait1

a⋆ | nodeb | nodec

→ wait1
a⋆ | nodeb | build2

c | wait2
ca

→ wait1
a⋆ | wait0

bc | build1
c | wait2

ca

≡ wait1
a⋆ | wc. ↑

b
c| build1

c | wc.wc.wa. ↑
c
a u

→ wait1
a⋆ |↑b

c| build1
c | wc.wa. ↑

c
a

At this stage, the incoherent tree (a, {(c, {b})}) is built, but there is no node left

for build1
c to recruit. Yet there is a successful trace, where a recruits b instead of

c, corresponding at the specification level to the single transition {a, b, c}, ∅ →(a,{b})

{c}, {(a, {b})}.

Therefore, it is clearly impossible to exhibit a bisimulation relation between the

specification and the code induced LTS. However, the code is correct in the weaker

sense that its causal computations (defined below) indeed match the specification.

As we will see in the next section this is enough to ensure correctness, provided the

process is re-interpreted in RCCS. The idea is that, for instance, the deadlocked

trace above may backtrack in RCCS up until the wrong decision of recruiting c was

made, and eventually recruit b. Note that this is not saying that the process will find
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m ::= 〈〉 | 〈i〉.m | 〈θ, α, p〉.m | 〈|θ|〉.m

r, s ::= m � p | (r | s) | (x)r

m � (p | q) ≡ 〈1〉.m � p | 〈2〉.m � q

m � (a)p ≡ (a)(m � p) if a 6∈ m

Fig. 3. RCCS memories, terms and additional congruence rules.

a solution, it may well loop infinitely. There are known theoretical results showing

that one cannot do better in a purely non-deterministic interpretation [14]. This is

of little practical importance, since such backtracking schemes will be implemented

with probabilities, and such futile infinite loops will have probability zero.

To prevent backtracking from a successful state, where a coherent tree has

been constructed, the corresponding underlined final actions oki will be chosen

irreversible.

4 Correctness

This section reviews a variant of the implementation of distributed backtracking

in RCCS, and the reinterpretation theorem used to derive correctness of the pre-

vious section code. The operational semantics of RCCS we present here differs

from the original one [4] in that it requires abstract identifiers for uniquely tagging

communications. This makes the presentation notably simpler than in the original

presentation which was more adapted to the theoretical study of RCCS properties.

In the present work, we adopt Phillips and Ulidowski’s approach [15] in which com-

munication keys are used to identify partners of communication. A reader familiar

with the previous semantics of RCCS may wonder whether the above calculus, using

communication identifiers, is equivalent to the original one. It is indeed the case [10]

and we give basic hints to prove this affirmation in the appendices. Since it is not

necessary for the understanding of the rest of this paper, the reader may readily

proceed with the next section.

4.1 RCCS

RCCS is an extension of CCS where processes are equipped with memories used

to undo computations. Memories and terms are given in Fig. 3 where: i = 1, 2;

θ is an abstract name, drawn from a countable set I, used to uniquely identify

a communication; and p is a CCS process (as in Sec. 3) with some distinguished

underlined actions declared as irreversible.

In addition to the congruence rules (see Fig. 3) for distributing memories among

forking processes, and commuting restrictions with memories (assuming a was never

used in the past –which is always possible using α-conversion), product and sum

are considered commutative and associative, and having 0 as neutral element, as in

CCS.

Define I(m) (resp. I(r)) to be the set of identifiers occurring in the memory
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θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ, α, q〉.m � p

θ 6∈ I(m)
act-

〈θ, α, q〉.m � p →θ:α− m � α.p + q

θ 6∈ I(m)
act

m � α.p + q →θ:α 〈θ〉.m � p

r →θ:a r′ s →θ:ā s′
com

r | s →θ:τ r′ | s′
r →θ:a− r′ s →θ:ā− s′

com-

r | s →θ:τ− r′ | s′

r →θ:α r′ s →θ:α s′
com

r | s →θ:τ r′ | s′

r →θ:ζ r′ θ 6∈ I(s)
par

r | s →θ:ζ r′ | s

r →θ:ζ r′ a 6∈ ζ
res

(a)r →θ:ζ (a)r′
r1 ≡ r →θ:ζ r′ ≡ r2

cgr

r1 →θ:ζ r2

Fig. 4. RCCS labelled transition system.

m (resp. memories of subprocesses of r). The RCCS labelled transition system

is given Fig. 4. Its labels are of the form θ : ζ, with ζ ::= α | α− | α, and θ

an identifier. Side conditions of the form θ 6∈ I(s) ensure θ is indeed unique (or

a nounce in the cryptographic protocols terminology). One should note that this

property corresponds to the freshness condition on communication keys in Phillips

and Ulidowski’s approach [15].

Forward action and communication rules each have their opposite, allowing to

backtrack actions, unless the action is underlined, and thus explicitely made un-

backtrackable.

4.2 Reinterpretation theorem

As said, the weaker notion of correction we need, uses the notion of causal trace.

Intuitively, such traces do not involve contention among agents, since all actions

therein contribute to the last one, and in addition represent atomic successful com-

putations, since one asks the last action to be the trace only irreversible one.

More precisely, a trace σ is said to be causal if it contains a single irreversible

transition t and for all σ′ ∼ σ, σ′ ends by t, where ∼ is the equivalence relation over

CCS traces obtained by permuting concurrent transitions [1].

Here are some examples:

a.b.0 | c.0 →a b.0 | c.0 →c b.0 →b 0

a.b.0 | c.0 →a b.0 | c.0 →b c.0

a.b.0 | ā.0 →τ b.0 →b 0

The first trace is not causal since its last action b commutes to the earlier action

c, as in the second one which is causal; likewise, the last trace is causal, since the
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marked action b does not commute to τ .

Definition 4.1 Let P be the set of CCS processes, K be the set of underlined

CCS actions, and define p1 →c
k p2, if there is a causal trace from p1 to p2 ending

with k. The causal transition system induced by p, written CTS(p), is defined as

(P, p,K,→c
k).

In the examples above, one has a.b.0 | c.0 →c
b c.0, a.b.0 | ā.0 →c

b 0, and not

a.b.0 | c.0 →c
b 0.

The theorem below asserts that the LTS induced by the interpretation of p

in RCCS is equivalent to CTS(p), when observations are restricted to irreversible

actions.

Theorem 4.2 ([4]) Let p be a CCS process, and Φ be the relation {(k, θ : k); k ∈
K, θ ∈ I}, then CTS(p) ≈Φ LTS(〈〉 � p).

4.3 Back to self assembling trees

To apply this definition to the case of interest, we need to map macro-states (states

of the specification) to micro-states (states of the corresponding process). Define

first the family of maps [[ ]]α, with α ∈ V + {⋆}:

[[(a, {t1, . . . , tn})]]α =def ↑a
α | [[t1]]a | . . . | [[tn]]a

This obtains a map from macro-states to what one might call their standard repre-

sentation as micro-states (restrictions are not shown):

[[N,
∑

i ti]] =def

∏

i∈N nodei |
∏

j [[tj]]⋆

Defining Φ′ = {(t, oki) | i ∈ V }, one has:

Proposition 4.3 The relation {(N,
∑

i ti), [[N,
∑

i ti]]} is a Φ′-bisimulation between

the specification LTS and CTS([[V ]]).

The proof is routine. Concretely, this is saying two things. Firstly, whenever

some tree may be constructed from the remaining free nodes of the specification,

there exists a causal sequence of interactions among the agents that implements it

(see first example in Sec. 3). Secondly, whenever a tree is built after a successful

series of agent interactions, this tree is indeed coherent, and therefore corresponds

to a transition in the specification (this is even easier to prove, since the number of

neighbours of any given process representing a node is always kept smaller or equal

to its arity as specified by δ).

Putting that proposition together with the theorem above one obtains:

Corollary 4.4 The specification LTS and LTS(〈〉 � [[V ]]), are Φ′; Φ-bisimilar.

One may object that the visibility relation Φ′; Φ used here is highly non-injective,

since it relates a tree t to some oki, which contains no other information than the

name of the process being the root of t. Using a value-passing version of CCS, one

can decorate the implementation and construct during the assembly an expression

9



Danos, Krivine & Tarissan

nodei =def τ.build
δ(i),∅
i⋆ +

∑

j∈I

rij .build
δ(i),∅
ij

build
n+1,S
ij =def

∑

k∈I

r̄ik.build
n,S∪{k}
ij + killi.abortS

i

build
n+1,S
i⋆ =def

∑

k∈I

r̄ik.build
n,S∪{k}
ij + τ.abortS

i

build
0,S
iα =def wait

|S|,S
iα

wait
n+1,S
ij =def wi.wait

n,S
ij + killi.abortS

i

wait
n+1,S
i⋆ =def wi.wait

n,S
i⋆ + τ.abortS

i

wait
0,S
ij =def wj . ↑

S
ij + killi.abortS

i

wait
0,S
i⋆ =def oki. ↑

S
i⋆

freeS∪{i}(end) =def killi.freeS(end)

free∅(end) =def end.0

↑S
ij =def τ. ↑S

ij + killi.abortS
ij

↑S
i⋆ =def τ. ↑S

i⋆

abortS
i =def (end)(freeS(end) | end.ni)

Fig. 5. Self-assembly directly in CCS.

describing the tree being constructed, which could then be used to encode injec-

tively t in the final irreversible action concluding the construction. However, the

bisimulation relation we exhibit clearly contains all the needed information since

the macro-to-micro map itself is injective.

5 Discussion

It remains to appreciate whether a direct solution in CCS could compare well with

the indirect solution we have obtained. We base our discussion on a comparison

with one particular reasonable direct implementation, given Fig. 5, and obtained

by patching the indirect code to recover from deadlocks. The recruitment phase

is quite similar to the one in the previous code, except build and wait processes

are now run in sequence. A more important difference is that the root may abort

the construction by running at any time the process abortS
i which waits for the

freeS(end) process to free recruited agents, and then re-spawns the initial state.

Any already recruited agent i enters the abort state upon reception of a request by

its parent using action killi. Accordingly, the final state ↑S
iα indicating that the ith

agent has finished its part of the recruitment, in the case α 6= ⋆ still waits for a

possible such abort request initiated by the root agent and forwarded by its parent.

Thus, the direct code may escape deadlocks. To keep things simple, we give

up part of the distributed structure of the system: a node does not wait for the

confirmations of its children until it has completed its recruiting task. This results

10



Danos, Krivine & Tarissan

in a better control of the construction process at the price of a loss of efficiency,

since no agent can validate its recruitment until its parent is ready to receive the

validation. Yet the main difference is in the backtracking mechanism: the RCCS

code finds its way to a final shape by using partial backtracking, whereas the CCS

one uses a top-down cancellation procedure to abort altogether the construction (as

in ref. [9]).

One sees the RCCS code is more intuitive; this is because, in essence, it is easier

to describe what has to be done, than what has to be undone. Furthermore, it is

necessary to prove that the complete code conforms to its specification, and exhibit

a bisimulation relation between the code and the specification (given Sec. 2). It is

not clear at all how to do this by hand, and to get a sense of how difficult that may

be, we have tested our code with the Mobility Workbench [16], a toolkit able to

verify certain properties on π-calculus [13] processes. We succeeded in building the

bisimulation relation for a system composed of 3 agents. For such a simple system,

the Mobility Workbench already returns 600 states. Running the tool for 24 hours

was not enough to obtain an answer in the case of a system of 4 agents. 5 The reason

for this explosion in the size of the bisimulation is that the backtracking mechanism

induces a lot of transitory states that try to undo their local constructions. More

details about how the indirect method helps in automated verification can be found

in ref. [11].

6 Conclusion and future work

We have presented a distributed algorithm for self assembling trees using CCS. Part

of the appeal of the solution is that both the language used and the solution itself

stay simple. First one formulates a solution which is only required to be correct

in weak sense. One then uses the reversible infrastructure provided by RCCS to

obtain correctness. Not only the proof is greatly simplified in so doing, but the

actual code obtained is also simpler in that backtracking stays implicit.

Our model leaves aside more subtle forms of self-assembly based on graph-

rewriting. These would likely need a more powerful language [7,6], but there seems

to be no reason why the decomposition of the self-assembly question advocated in

this paper, would not extend to these richer languages. Our model also ignores the

question of how one represents real space, in that connections are represented ab-

stractly as synchronisations. Another important aspect of self-assembly which our

model does not take into account is its quantitative nature, as our model only knows

of non-deterministic evolutions, and doesn’t assign to them any measure of their

likelihood. More work is needed to understand how both spatial and probabilistic

features could be added to the picture. One could think of a distributed language

where agents would use timeouts to decide to backtrack. Substituting the RCCS

operational semantics to the ordinary CCS one, or whichever richer language one is

using, would obtain agents that would behave correctly with respect to the global

specification. This requires first a thorough study of the impact of timeouts on the

operational semantics of RCCS, a question which we plan to address in future work.

5 Tests were made with a 1.4 GHz Pentium M with 256 MB of RAM.
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Decoupling in a given system the forward and backward components of its be-

haviour, is even more natural in the modelling and analysis of biomolecular interac-

tions. Indeed, one may regard molecules as blind agents trying to bind haphazardly.

Each time their spatial configurations match, proteins have a chance to bind, and

these bounds are also frequently broken down. These exploration mechanisms have

been argued to be of central importance in the evolvability of biological systems [8].

Here the implicit backtracking mechanism of RCCS comes in handy as a transpar-

ent way to model this instability [2], but, if anything, the addition of probabilities

to backward moves, so as to generate a quantitative behaviour and be able to tune

the backtracking mechanism, seems even more important in this specific context,

and it remains to be seen how the method we have illustrated here can cope with

these.
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7 Appendix

Instead of abstract names, one can use memories as concrete identifiers [3]. We

recall in this appendix how this is done, and argue that both the abstract and

concrete identifying schemes are in fact intertranslatable. This is useful in so far

as the reinterpretation theorem we used earlier was actually proven only for the

concrete scheme. A complete proof is in ref. [10, Chap. 3].

Concrete memories are given as:

m ::= 〈〉 | 〈i〉 · m | 〈⋆, α, p〉 · m | 〈m′, α, p〉 · m | 〈|◦|〉 · m

where ⋆ stands for an unknown communication partner, the equivalent of which, in

the semantics above, is a θ that is unique to the whole process. The corresponding

transition system, shown below, has now labels of the form µ : ζ where µ is a

set of one or two memories; rm′@m denotes the substitution of ⋆ with the concrete

identifier m′ in 〈⋆, α, p〉 · m; irreversible rules are not shown.

m � α.p + q →m:α 〈⋆, α, q〉 · m � p 〈⋆, α, q〉 · m � p →m:α− m � α.p + q

r →m:ā r′ s →m′:a s′

r | s →m,m′:τ r′
m′@m

| s′
m@m′

r →m:ā− r′ s →m′:a− s′

rm′@m | sm@m′ →m,m′:τ− r′ | s′

r →µ:ζ r′

r | s →µ:ζ r′ | s

r →µ:ζ r′ ζ 6= a, ā, a−, ā−

(a)r →µ:ζ (a)r′
r ≡ r1 →µ:ζ r2 ≡ r′

r →µ:ζ r′

Given an abstract process r, and assuming any identifier occurs at most twice in

r, the following defines inductively a map Mr from an abstract process to a concrete

one (all other clauses being trivial):

Mr(〈|θ|〉 · m) = 〈|◦|〉 · Mr(m)

Mr(〈θ, α, p〉 · m) =







〈Mr(m′), α, p〉 · Mr(m) if 〈θ, ᾱ, q〉 · m′ ∈ r

〈⋆, α, p〉 · Mr(m) else

Conversely, given a µ indexed family of identifiers θµ such that θµ 6= θµ′ if µ∩µ′ 6= µ,

one can map concrete processes to abstract ones (again all other clauses are trivial):

Θ(〈|◦|〉 · m) = 〈|θ{m}|〉 · Θ(m)

Θ(〈m, α, p〉 · m′) = 〈θ{m,m′}, α, p〉 · Θ(m′)

Θ(〈⋆, α, p〉 · m) = 〈θ{m}, α, p〉 · Θ(m)

We suppose now all concrete processes have unique memories, and all abstract pro-

cesses have identifiers occurring at most twice. This is easily shown to be preserved

under computations.

Proposition 7.1 If r →θ:ζ s then ∃µ : Mr(r) →µ:ζ Ms(s) and if r →µ:ζ s then

∃θ : Θ(r) →θ:ζ Θ(s).

13
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For the first implication: if r →θ:τ s, take µ = {Ms(m1),Ms(m2)} where 〈θ, a, p〉 ·
m1, 〈θ, ā, q〉 · m2 ∈ s; if r →θ:τ− s, take µ = {Mr(m1),Mr(m2)} where 〈θ, a, p〉 ·
m1, 〈θ, ā, q〉 · m2 ∈ r. For the second implication, it suffices to take θ = θµ. The side

condition in the par rule (see Fig. 4) holds thanks to the unicity of memories and

the assumption that θµ 6= θµ′ whenever µ ∩ µ′ 6= µ.
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