SOS 2006 Preliminary Version

An Eclipse-based Integrated Environment for
Developing Executable Structural Operational
Semantics Specifications

Adrian Pop'? Peter Fritzson?

Programming Environments Laboratory
Department of Computer and Information Science
Linkoping University
Linkdoping, Sweden

Abstract

The Structural Operational Semantics Development Tooling (SOSDT) Eclipse Plu-
gin integrates the Relational Meta-Language (RML) compiler and debugger with
the Eclipse Integrated Development Environment Framework. SOSDT, together
with the RML compiler and debugger, provides an environment for developing and
maintaining executable Structural Operational Semantics specifications, including
the Natural Semantics big step variant of SOS specifications. The RML language
is successfully used at our department for writing large specifications for a range
of languages like Java, Modelica, Pascal, MiniML etc. The SOSDT environment
includes support for browsing, code completion through menus or popups, code
checking, automatic indentation, and debugging of specifications.

Key words: SOS, Natural Semantics, executable specification,
Eclipse, RML, debugging.

1 Introduction

No programming language environment can be considered mature if is not
supported by a strong set of tools which include execution, debugging, and
profiling.

In this paper we present an integrated development environment called
Structural Operational Semantics Development Tooling (SOSDT) [4] for

I This research was partially supported by the National Graduate School in Computer
Science (CUGS) and the SSF RISE project.

2 Email: adrpo@ida.liu.se

3 Email: petfr@ida.liu.se

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

Por AND FRITZSON

browsing, checking, and debugging semantic specifications. The SOSDT en-
vironment is based on the existing Relational Meta-Language (RML) system
and its debugger and provides an easy to use graphical interface for these
systems.

2 SOS/Natural Semantics and the Relational Meta-
Language (RML)

Natural Semantics [2] is formalism for specifying many aspects of program-
ming languages, e.g. type systems, dynamic semantics, translational seman-
tics, static semantics, etc. Natural Semantics is an operational semantics
derived from the Plotkin [6] structural operational semantics combined with
the sequent calculus for natural deduction.

The Relational Meta-Language (RML) [5], is a practical language for writ-
ing executable SOS/Natural Semantics Specifications. The RML language is
extensively used at out department for teaching and writing large specifica-
tions for different languages like Java, Modelica, MiniML, Pascal, etc. The
RML language is compiled to highly efficient C code by the rml2c compiler. In
this way, large parts of a compiler can be automatically generated from their
Natural Semantics specifications. From the features of the RML language
we can mention: strong static typing, simple module system, type inference,
pattern matching and recursion are used for control flow, types can be poly-
morphic.

As pointed out in [3], the computer science community is constantly ig-
noring the debugging problem even though the debugging phase of software
development takes more than the overall development time. Even if the RML
language has a very short learning curve, the absence of debugging facilities
previously created problems of understanding, debugging and verification of
large specifications. We have addressed the debugging issue by providing a
debugging framework for RML [7]. The debugger is based on abstract syn-
tax tree instrumentation (program transformation) in the RML compiler and
some runtime support. Type reconstruction is performed at runtime in order
to present values of the user defined types.

3 The RML Integrated Environment (SOSDT) as an
Eclipse Plugin

The SOSDT (previously named RML Development Tooling (RDT)) environ-
ment provides an integrated environment for our tools. The integrated envi-
ronment with debugging and the various interactions between the components
is presented in Figure 1 and 2.

The SOSDT environment has three major components, the RML Editor,
the RML Browser and the RML Debugging components. All the components

2

Por AND FRITZSON

| RML Parser ‘ ‘:I RIVIL Compiler
| RML Code Assistant ‘

RML Debugging
RML Editor Framework

| RIML Browsing ‘ / RML System

RML Browser

| RML Debug Interface ‘

RML Debugging

S0SDT Perspective

S0SDT Environment

Fig. 1. Architecture of the RML system and SOSDT environment.

are active when the SOSDT perspective is selected within the Eclipse envi-
ronment. Perspectives within Eclipse are used for configuration of views in
connection with specific projects. Within the SOSDT environment the user

creates and manages RML projects and RML files via wizards.

& Java - SimCodegen.rml - Eclipse SDK o) x|
File Edit Refactor Mavigate Search Project Bun Window Help
|-Eelm s 00 iBae- B @y | J08 e -l & | 85w &
.33 Packag... s T & Algorithm.rml R Expurml D), SimCadegen. [compileshe current RML fle] =il
: relation generate makefile: (string, (*filename¥) _AJ
string, (* classname *) Comp“aﬂon &

string list (* libs *)

) ==) =

ng delimit list(libs, " "} => libs' &
Util.string append st(["$Makefile generated by OpenModelican\n",

.
cname, ";cpp_file, ™\n",

Exp.srz
IR} Graphwiz.rml
- [] Inst.rml

I} => str &
System.write_file(filename,str)

- -:': Interactive,rmi o Bug List

"\t §(CXX) -o ",cpame,".exe ", (% ".exe™ is needed for a class that igfin

Left Side

Click goes to
Error Location

a pac

Lookup.rml = = Double Click
Main, £ problems 52 goes to Error Location

]
S o

Mod.rml Oerrors, Qe Titos

Mol tarl | Bescription [Resource [in Folder—=_ [Location |

Parser.rml = =

Brafiil 1 | Error: unbound type constructor stri Algorithm.rml z line 85

Print.rml i Error: syntax error: deleting IDENT IDENT COLO Exp.rml Frd line. 67
SimCodegen,rml zz line 145

RTOpts.rml i__Error: while processing while elaborating expression
SCode.rml

[¢ simCodegen.c

[€ simCodegen.h Javadoc DedaraﬂanlErmr Log | = R Consoleiiew %.\\

- R, SimCodegen.rml
SimCodegen.sig =l
SimCodegen. sig.rmot SimCodegen.rml: 145.32-145.49 Error; while processing while elaborating expression RM LCD n sol e

type siring differs from type real
IR} Static.rml i
) it ccnl
4 | _>JJ

the RML compiler

reason: different type names Shows the output of
‘ g \ Writzble Insert | 148 1 |

Fig. 2. SOSDT Eclipse Plugin for RML Development.

3

Por AND FRITZSON

The RML Editor component provides syntax highlighting, auto indenta-
tion, code completion, type information and error highlighting. This com-
ponent obtains the needed information from the RML parser and the RML
Compiler. From the RML Compiler the errors and the type inference infor-
mation is gathered. The type information is displayed when hoveding over
a variable, relation or pattern. Code completion is provided when the user
writes relation calls or patterns.

The RML Browser component provides easy navigation within an file. The
RML parser is used to gather the information needed for browsing. The types,
values, relations and rules are displayed within a tree for each RML file.

The RML Debugging component communicates via sockets with the RML
Debugging Framework to provide debugging facilities like breakpoints, running
and stepping, variable value inspection, etc.

All the SOSDT components are using the components of the Eclipse frame-
work which are populated with information from the RML Parser and the
RML Compiler. When a file is saved the RML Parser reads the file and up-
dates the internal RML model information which triggers the update of the
RML Browser. Also, on save the RML file is sent to the RML Compiler which
dumps error information to be displayed in the Problems View and type in-
formation used to update the internal RML model.

4 Performance Evaluation

The test case used for the table below is based on an executable
specification (SOS/Natural Semantics in RML) of the MiniFreja lan-
guage [5] running a test program based on the sieve of Eratosthenes.
All the needed information for reproducing the tests are available at
http://www.ida.liu.se/"adrpo/sosdt/tests.

Mini-Freja is a call-by-name pure functional language. The test program
calculates prime numbers. The Prolog translation (mf.pl) was originally im-
plemented by Mikael Pettersson. The comparison was performed on a Fedora
Core4 Linux machine with two AMD Athlon(TM) XP 1800+ processors at
1500 MHz and 1.5GB of memory. The measurements were done during April
2006.

Prime# RML SICStus SWI Maude-MS0S-Tool
8 0.00 0.05 0.00 2.92

30 0.02 1.42 1.79 226.77

40 0.06 3.48 3.879 -

50 0.13 - 11.339 -

100 1.25 - - -

200 16.32 - - -

Execution time is in seconds. The sign represents out of memory. The
memory consumption was at peak 9Mb for RML. The other systems consumed

4

http://www.ida.liu.se/~adrpo/sosdt/tests
http://www.ida.liu.se/~adrpo/sosdt/tests

Por AND FRITZSON

the entire 1.5Gb of memory and aborted at around 40 prime numbers. The
largest executable specification developed so far using RML is the Modelica
Language specification (an equation-based language), which is approximately
80 000 lines. We have improved compilation speed more than a factor of 10

since a year ago compiling 80 000 lines of RML now takes less than minute on
a 1.5 GHz laptop.

5 Conclusions and Future Work

Our experience of writing large executable specifications in SOS/Natural Se-
mantics style using RML for several different programming languages shows
that a supportive development environment is essential also for developing
specifications.

Therefore we have designed and implemented a prototype of an integrated
environment for supporting such development, first as a version partly based
on Emacs, and currently integrated in Eclipse [1], as an SOSDT Eclipse plu-
gin. Some of our RML users who have debugged their specifications using a
prototype of this environment have given us positive feedback and also various
suggestions for improvement. While this is a good start, many improvements
can be made to this environment. In the future we plan to improve the
debugger execution speed, and implement additional features. Our goal is to
provide a very well integrated and supportive development environment (IDE)
for RML based on the Eclipse platform.

References

[1] Eclipse Foundation, Eclipse Development Platform, http://www.eclipse.org.

[2] Gilles Kahn, Natural Semantics, Programming of Future Generation Computers.
ed Niva M., p. 237.258, 1998.

[3] Henry Libermann, The debugging scandal and what to do about it,
Communication of the ACM. vol:40(4), p:27-29, 1997.

[4] PELAB, Structural Operational Semantics Development Tooling (SOSDT)
Eclipse Plugin, http://www.ida.liu.se/ adrpo/sosdt.

[5] Mikael Petterson, Compiling Natural Semantics, Ph.D. thesis, Linkoping
University, 1995, Dissertation No. 413,
also as Lecture Notes in Computer Science (LNCS) 1549, Springer-Verlag, 1999,
RML Site: http://www.ida.liu.se/labs/pelab/rml.

[6] Gordon D. Plotkin, A Structural Approach to Operational Semantics, The
Journal of Logic and Algebraic Programming 60-61 , 17-139., 2004.

[7] Adrian Pop and Peter Fritzson, Debugging Natural Semantics Specifications,
Sixth International Symposium on Automated and Analysis-Driven Debugging
(AADEBUG2005), September 19-21 2005, Monterey, California.

b}

http://www.eclipse.org
http://www.ida.liu.se/~adrpo/sosdt
http://www.ida.liu.se/~adrpo/sosdt
http://www.ida.liu.se/labs/pelab/rml

	Introduction
	SOS/Natural Semantics and the Relational Meta-Language (RML)
	The RML Integrated Environment (SOSDT) as an Eclipse Plugin
	Performance Evaluation
	Conclusions and Future Work
	References

