Module Title: MCS Exam Diet (Dec/April/Aug): April/May 2024

- 1. (a) $(M|F) \setminus m$ where $M \stackrel{\text{def}}{=} d.\mathbf{0} + \bar{m}.M$ and $F \stackrel{\text{def}}{=} d.\mathbf{0} + m.(F|M) + m.(F|F)$. This is a CCS expression where actions d and m stand for die and mate, resp.
 - (b) $(M^k|F^\ell)\setminus m$ with $k, \ell \in \mathbb{N}$. Here M^k stands for k parallel copies $M|\ldots|M$ of the process M. This expression is simplified modulo the laws P|Q = Q|P, P|(Q|R) = (P|Q)|R and $P|\mathbf{0} = P$.

(d)

(e) A finite safe Petri net has only finitely many different states. This system has infinitely many different states, for if there are n fruit flies, it is possible to perform n die actions without any mates.

2.
$$(b||c) + b$$
.

3. (a)
$$\frac{P \xrightarrow{c} \to Q}{f(P) \xrightarrow{c} f(P)} \qquad \frac{P \xrightarrow{\alpha} Q}{f(P) \xrightarrow{\alpha} f(Q)}$$
 (for $\alpha := a, b, c$)

- (b) No, for $ab + ac =_{PT} a(b + c)$, yet only f(ab + ac) has a partial trace *accb*.
- (c) No, for $ab + ac =_{CT} a(b + c)$, yet only f(ab + ac) has a partial trace *accb*. Here we use that completed trace equivalent processes also have the same partial traces.
- (d) Yes, for the structural operational rules above are in GSOS format.

- 4. (a) $Q_{\varepsilon} = (B_{\varepsilon}[c/s] | B_{\varepsilon}[c/r]) \backslash c.$ Here [c/s] is the CCS relabelling operator that renames s into c.
 - (b) Write $P_{\sigma,\rho}$ for $(B_{\sigma}[c/s] | B_{\rho}[c/r]) \setminus c$. The expansion law for |, together with the laws for the restriction operator $\backslash m$ gives

$$P_{\varepsilon,\varepsilon} = \sum_{d \in \mathcal{D}} r(d) . P_{d,\varepsilon}$$
$$P_{d,\varepsilon} = \tau . P_{\varepsilon,d}$$
$$P_{\varepsilon,e} = \bar{s}(e) . P_{\varepsilon,\varepsilon} + \sum_{d \in \mathcal{D}} r(d) . P_{d,e}$$
$$P_{d,e} = \bar{s}(e) . P_{d,\varepsilon}$$

Now fill in $\tau P_{\varepsilon,d}$ for $P_{d,\varepsilon}$ in the first and last equation, and apply the axiom $a.\tau P = a.P$, which holds for branching bisimilarity. This yields

$$P_{\varepsilon,\varepsilon} = \sum_{d \in \mathcal{D}} r(d) . P_{\varepsilon,d}$$
$$P_{\varepsilon,e} = \bar{s}(e) . P_{\varepsilon,\varepsilon} + \sum_{d \in \mathcal{D}} r(d) . P_{d,e}$$
$$P_{d,e} = \bar{s}(e) . P_{\varepsilon,d}$$

Now $P_{\varepsilon,\varepsilon}$, $P_{\varepsilon,e}$ and $P_{d,e}$ satisfy the defining equations of Q_{ε} , Q_{e} and Q_{de} , respectively. Hence RDP yields $P_{\varepsilon,\varepsilon} = Q_{\varepsilon}$.

- 5. (a) $\mathbf{F}(ec_B)$ holds for A_{33} , but not for A_{32} .
 - (b) $\mathbf{G}(ec_A \Rightarrow (\neg ec_B)\mathbf{U}(lc_A)) \land \mathbf{G}(ec_B \Rightarrow (\neg ec_A)\mathbf{U}(lc_B)).$
 - (c) Yes. There are no reachable states where Process A is between ec_A and lc_A while Process B is between ec_B and lc_B .
 - (d) $\mathbf{G}(\underline{ln}_A \Rightarrow \mathbf{F}\underline{ec}_A)$.
 - (e) No. One could go forever to the right from state A_{21} .
 - (f) 64-9+1=56 states. See Figure 1 on the next page.
 - (g) 42. (This question has been anticipated for a long time.) See Figure 2.
 - (h) The dark blue separator lines in Figure 2 can be deleted for weak bisimilarity. Let formula ψ say that ec_B will occur after the first, but prior to the second occurrence of ec_A . That formula holds exclusively in stated B_{43} , A_{44} and A_{54} . It does not hold in B_{53} . Let $\varphi = \mathbf{EG} \neg ec_B$ be the formula that says that ec_B might never occur. It holds in B_{42} and B_{52} , but not in B_{53} . Now B_{42} and B_{52} for instance can be separated by the formula $\mathbf{E}(\varphi \mathbf{U}\psi)$.

The formula ψ can be given as

$$\mathbf{A}(\neg(ec_B)\mathbf{U}(ec_A \land \mathbf{A}(ec_A\mathbf{U}((\neg ec_A) \land \mathbf{A}(\neg(ec_A)\mathbf{U}ec_B))))).$$

FOR INTERNAL SCRUTINY (date of this version: 15/2/2024)

iii

iv