
Flat Holonomies on Automata Networks
∗†

Please take the latest version from http://arXiv.org/abs/cs.DC/0512077

Gene Itkis‡ Leonid A. Levin‡

May 17, 2009

Abstract

We consider asynchronous networks of identical finite (independent of network’s size or topology)
automata. Our automata drive any network from any initial configuration of states, to a coherent one
in which it can carry efficiently any computations implementable on synchronous properly initialized
networks of the same size.

A useful data structure on such networks is a partial orientation of its edges. It needs to be flat, i.e.,
have null holonomy (no excess of up or down edges in any cycle). It also needs to be centered, i.e., have
a unique node with no down edges.

There are (interdependent) self-stabilizing asynchronous finite automata protocols assuring flat cen-
tered orientation. Such protocols may vary in assorted efficiency parameters and it is desirable to have
each replaceable with any alternative, responsible for a simple limited task. We describe an efficient
reduction of any computational task to any such set of protocols compliant with our interface conditions.

1 Introduction

1.1 Dynamic Asynchronous Networks with Faults

The computing environment is rapidly evolving into a huge global network spanning scales from molecular to
planetary and set to penetrate all aspects of life. It is interesting to investigate when such diverse complex
unpredictable networks —including tiny and unreliable nodes— can organize themselves into a coherent
computing environment.

Let us view networks as connected graphs of identical asynchronous finite automata and try to equip
them with a self-organizing protocol. The automata have no information about the network, and even no
room in their O(1) memories to store, say, its size, time, etc. They run asynchronously with widely varying
speeds. Each sees the states of its adjacent nodes but cannot know how many (if any) transitions they made
between its own transitions. The networks must be self-stabilizing, i.e., recover a meaningful configuration
if faults initialize their automata in any combination of states whatsoever.1

Such conditions and requirements may seem drastic, but stronger assumptions may be undesirable for
the really ubiquitous networks that we came to expect. For instance, the popular assumption that each node
grows in complexity with the size of the network, keeps some global information, and yet preserves reliable
integrity, may become too restrictive (and is certainly inelegant).

So, which tasks and how efficiently can be solved by such networks? The network’s distributed nature,
unknown topology, asynchrony, dynamics and faults, etc., complicate this question. The computational
power of any network with total memory n is in the obvious class Space(n). In fact, this trivial condition is
sufficient as well.

∗A preliminary version of this article appeared in [STACS-06].
†Supported in part by NSF grants CCR-0311411 and CCR-0311485.
‡Boston University, Department of Computer Science, 111 Cummington St., Boston, MA 02215.
1The faults are assumed transient i.e., self-stabilization is achieved after faulty transitions seize. Automata constant size

and uniformity may help comparing neighbors and cutting edges to dissimilar ones. Absence of topology restrictions makes
cutting-off persistently faulty nodes harmless.

1

1.2 Orientation and Computing

We consider protocols based on orientation for each directed edge (up, down, or horizontal) implemented
by comparing Z3 values held in nodes. It is a somewhat stretched transplantation to graphs of widely used
geometric structures, connections, that map coordinate features between nearby points of smooth manifolds.
Orientation is a simplest analog of such structures, comparing relative heights of adjacent nodes.

An important aspect of a connection is its holonomy, i.e., the composition over each circular path (often
assumed contractible, though in graphs this restriction is mute). Connections are called flat if this holonomy
is null (identity), for each cycle. For our orientations this means every cycle is balanced, i.e., has equal
numbers of up and down edges.

Here is an example of utility of flat orientations. (Other types of connections on graphs might be beneficial
for other problems, too.) Some networks deal with asynchrony by keeping in each node a step counter with
equal or adjacent values in adjacent nodes. Nodes advance their counters only at local minima. For our
model, such counters may be reduced mod 3 when no self-stabilization is required. The change of their
values across edges induces orientation, obviously flat. Faulty configurations, however, can have inconsistent
mod 3 counters with vortices, i.e., unbalanced (even unidirectional in extreme cases) cycles.

Flat orientations are especially useful when centered, i.e., having a unique node with no down edges. It
then yields a BFS tree, maintaining which is known to self-stabilize many network management protocols.

Assuring these properties is the task of our automata. Their constant size combined with network’s
permissiveness, present steep challenges, require powerful symmetry-breaking tools, such as Thue sequences
[Thu12] and others. These tools are highly interdependent: each can be disrupted by adversarial manipula-
tion of others. This makes them hard to analyze, optimize, and implement.

Here we efficiently reduce these (and thus any other) tasks to several smaller problems; each can be
solved completely independently as long as the protocols conform to a simple interface preventing them from
disrupting each other. Such protocols may vary in assorted efficiency parameters, and it is desirable to have
each replaceable with any alternative solving a simple limited task.

1.3 Maintaining Flat Centered Orientation

The task of assuring a non-centered flat orientation is easier in some aspects, e.g., it can be done determin-
istically. This is known to be impossible for the other task, centering an orientation. A fast randomized
algorithm for it, using one byte per node, is given in [IL92]. The appendix there gives a collection of deter-
ministic finite automata protocols that make orientation flat, running simultaneously in concert with each
other and with the centering protocol.

In this paper we refer to three separate tasks: (1) rectify orientation on graphs spanned by forest of
such trees, (2) center such an orientation merging the forest into a tree, and (3) fence vortices blocking
centering process around them. Our main goal is to develop a protocol (4) Shell that (using no additional
states) coordinates any (e.g., provided by an adversary) protocols performing these four tasks to assure
that a centered orientation is verified and repaired if necessary, with the efficiency close to that of these
supplied underlying task protocols. One more protocol (5) then efficiently reduces self-stabilization and
synchronization of any computational task to assuring a centered orientation. The protocol (5) is described
in Sec. 3. The tasks (1)–(3) are formally defined in Sec. 4, and the Shell protocol (4) is presented in Sec. 4.

1.4 Self-Stabilizing Protocols

The concept of self-stabilizing was pioneered by Dijkstra [Dij74] and has since been a topic of much research in
distributed computation and other areas (see bibliography by T. Herman [Her]). Self-stabilization for typical
tasks was widely believed unattainable unless nodes are not identical or grow in size (at least logarithmically)
with the size of the network. (See, e.g., [M+92] for discussion of undesirability of such assumptions.)

Logarithmic lower bounds for self-stabilizing leader election on rings [IJ90] (see also [DGS96]) reinforced
this belief. However, such lower bounds depend on (often implicit) restrictions on accepted types of protocols:
configurations with no potential leaders (tokens) must disappear in one step. Awerbuch, Itkis, and Ostrovsky
[I+92], gave randomized self-stabilizing protocols using lg lg n space per edge for leader election, spanning
tree, network reset, and other tasks. This was improved to constant space per node for all linear space tasks
by Itkis in [I+92], and by [IL92] (using hierarchical constructions similar to those used in other contexts

2

in [Thu12, Ro71, G86]). These results were later modified in [AO94] to extend the scope of tasks solvable
deterministically in O(log∗ n) space per edge (beyond forest/orientation construction, for which algorithms
of [IL92] were already deterministic).

There is extensive literature on self-stabilization and similar features in other contexts which we cannot
review here. For instance, many difficult and elegant results on related issues were obtained for cellular
automata (see, e.g., [G86]) on grids. However, the irregular nature of our networks presents different serious
complications.

2 Models

Our network is based on a reflexive undirected (i.e., all edges have inverses) connected communication graph
G=(V, E) of n nodes, diameter d, and degree bound ∆. Nodes v are anonymous and labeled with states
consisting of bits and pointers to adjacent nodes w ∈ E(v). Protocols are automata operating on functions
of these states called fields. Their implementation specifies what changes of states actions on fields imply.

We avoid duplication when an edge carries pointers of several protocols as follows. The system call
creates a hard pointer and sets a protocol’s soft pointer to its name. Such soft pointer fields can be copied
by other protocols. Hard pointers are removed when no soft pointers to them remain. A soft pointer can
point at its source node; we then synonymously refer to it as absent or looping.

A link [v, w] is the state of edge vw: a network obtained by renaming nodes v, w canonically and dropping
all other nodes; pointers between v, w (incl. loops) are part of the link. Nodes act as automata changing
their states based on the set (without multiplicity) of all incident links. Thus, a node’s state transition may
be conditioned on having (or not) neighbors in some state, but not on having five of them. When a node sets
a hard pointer, it chooses a link, but not a specific (anonymous) neighbor connected by such a link. Some
protocols may require this choice to be deterministic, e.g., using an ordering of edges. Thus, lemma 3.2 uses
it on a tree to choose each child in turn for the TM simulation.

On a rooted tree with ∆ = O(1), edges can be easily ordered by parents coloring them in ∆ colors. Then, a

general network N with a centered orientation allows a TM simulation by theorem 3.1. Such TM can use ∆2 colors

to color distinctly any nodes with common neighbors, thus ordering each node’s edges in N . For non-constant ∆,

cyclic ordering of node’s edges needs to be provided by the model.2

2.1 Asynchrony

Asynchrony is modeled by Adversary selecting the next node to act: she adaptively determines a sequence
of nodes with unlimited repetitions; the nodes act in this order. A network’s (or protocol’s P) step is the
shortest time period since the end of the previous step within which each node acts (or P is called in it) at
least once. By τ ≻ s we denote that all of the step s occurs before the time instant τ . For simplicity, we
assume that only one node acts at any time. Since node transitions depend only on its set of incident links,
this is equivalent to allowing Adversary to activate simultaneously any independent set of nodes.

We could relax this model to full asynchrony allowing Adversary activate any set of nodes. This involves
replacing each edge uv with a dummy node x and edges ux and xv. This change of the network affects only our
structure fields protocols (assuring centered orientation: see Sec. 3.1), which tolerate any network. Node x is simulated
by one of the endpoints, say u, chosen arbitrarily, e.g., at random. We call u host and x satellite; v, x — buddies.
When activated by Adversary, a node first performs its own action and then acts for all its satellites. Thus, the
dummy nodes never act simultaneously with their hosts.

To avoid simultaneous activation of buddies let each node (real or dummy) have a black or white color, flipped

when the node acts (even if that action changes nothing else). A dummy node x acts only when its color is opposite

to its buddy’s; a real node v acts only when its and all its buddies’ colors match. If a node does not act, in one step

its buddies will have the color freeing it to act. Thus, at the cost of using a bit per edge, any structure protocol

designed for our model can be run on a fully asynchronous network.

2For general undirected graphs, cyclic ordering of the edges for each node is equivalent to embedding the graph in a two-
dimensional orientable manifold.

3

2.2 Faults

The faults are modeled by allowing Adversary to select the initial state of the whole network. This is a
standard way of modeling the worst-case but transient, “catastrophic” faults. The same model applies to
any changes in the network: since even a non-malicious local changes may cause major global change, we
treat them as faults. After changes or faults are introduced by Adversary, the network takes some time to
stabilize (see Sec. 3.1 for the precise definitions) — we assume that Adversary does not affect the transitions
during the stabilization period, except by controlling the timing (see Sec. 2.1 above). Our protocols in this
paper are all deterministic and make no assumptions about computational powers of Adversary. They may
interact with or emulate other algorithms, deterministic or randomized. These other algorithms may impose
their own restrictions on Adversary, which would be inherited by our simulations.

2.3 Orientation and Slope Bits

Edge orientation dir() of G maps each directed edge vw of G to dir(vw) ∈ {0,±1}. The rise of a path

v0 . . . vk is
∑k−1

i=0 dir(vivi+1). We consider only orientations for which the rise of any cycle is 0 (mod 3).
They have economical representations: Let each node v keep a slope bits field v.h3∈{0,±1} and define

dir(vw)
def

= − dir(wv)
def

=(w.h3−v.h3 mod 3)∈{0,±1}. We say that w ∈ E(v) is over v (and v is under w) if

dir(vw)= + 1; directed edge vw points up and wv down; define up(vw)
def

=(dir(vw)= + 1). A path v0 . . . vk

is an up-path if vi+1 is over vi for all 0≤i<k. Cycles of 0 rise are called balanced, others — vortices.
A unique node with no down edges is called the center. We will mark potential centers, calling them

roots. We call flat an orientation with roots, each with h3 = −1, only up edges, and rise≥ 0 outgoing paths.
This implies no vortices and no up-paths3 of > d nodes, but is more restrictive than in the Introduction
(Sec. 1). A flat orientation with a center is called centered.

2.4 Tree-CA Time and TM Reversals

We characterize in usual complexity terms the computational power of asynchronous dynamic networks G
in two steps. First we express it in terms of Cellular Automata H on G-spanning trees (tree-CA). We treat
H as a special case of our networks when they are trees initialized in a blank state and acting synchronously.
H holds the network topology as adjacency lists lv (say, by the dfs numbering of the tree) of its nodes v. lv
are held in read-only input registers; v have access to one bit of lv, rotated synchronously by the root.

Once its flat orientation stabilizes, our network can simulate tree-CA (subsection 3.2). Tree-CA are
simpler than our networks, but still have significant variability depending on the topology of the trees. To
avoid this variability, we further compare them in computational power to Turing Machines (TM). Tree-
CA can simulate TMs and vice versa (subsection 3.2). The efficiency of this mutual simulation seems best
expressed using the number of reversals i.e., changes of the TM head direction as (parallel) time complexity.
When using this measure [Tra64, Bar65], we refer to TM as reversal TM (rTM).

Our rTM has read-write work and output tapes W, O of size ‖W‖ = ‖O‖ = n, and a read-only input
tape I. For simplicity we assume rTM’s heads turn only when the work head is at the end of its tape. The
bits of tree-CA input registers are stored on rTM’s input tape at intervals 2n, so that when the work-tape
head is in cell i, the input-tape head reads a bit of the i’s register.

Ignoring d, ∆ time factors, tree-CA on any tree have the same computing power as rTM with the same
space and time, thus exceeding power of sequential RAM. rTM can simulate RAM fast but can also, say, flip
all bits in one sweep, which takes θ(n) RAM time. Variant connectivity gives some networks greater power
of parallelism than others. For instance, tree-CA take nearly linear time to simulate sorting networks, while
the latter given read-only access to the adjacency list of any other network, can simulate it (or PRAM) with
polylog overhead.

3Such paths determine delays in many applications, but higher limits often suffice. Many algorithms modify orientation
gradually, changing rise of any path by at most 1 at a time. Then the rise of any cycle (being a multiple of 3) stays constant.
This limits the cumulative rise change of any path to ±2d. Thus, the maximum node-length of up-paths can vary with time
by at most a 2d factor.

4

3 Solving Any Task with Centered Orientation

Consider an rTM algorithm Tn(x) that computes a function tn(x) when initialized on a working tape of size
n with x on the input tape. T, t are called constructible if T runs in (reversal) time O(t) and space O(n).
The running time of any algorithm T is constructible since T can be modified to count and output its time.

We need to tighten this condition slightly to assure the time bound even when T is initialized in ma-
liciously chosen configurations. We call algorithm T , and the function tn(x) > lg n it computes, strictly

constructible if for some c ∈ (0, 1), T runs in space O(n/| lgc n|) with O(tc) expected reversals. Most
functions t used as time bounds take for their computation significantly (usually exponentially) less time
and space than tn(x) steps and n cells. Thus, the overheads of strict constructibility are rarely an issue.

Let q be an input-output relation on pairs 〈x, y〉 of questions x and “correct answers” y ∈ qx. With a
strictly constructible time bound tn(x) it forms a task Γ if there exist a pair 〈Λ, Φ〉 of probabilistic algorithms:
Checker (needed only if ‖qx‖ > 1) and Solver, running in space ‖y‖ and expected time tn(x) such that

• Λn(x, y) never rejects any y ∈ qx, but with probability > 1/2 rejects every y 6∈ qx;

• Φn(x) with probability > 1/2 computes y ∈ qx.

Our goal is for any task (specified for a faultless and synchronous computational model such as rTM)
to produce a protocol running the task in the tough distributed environment where Adversary controls the
timing and the initial state of the system. We separate this job into two: First, we assume that some special
structure protocols generate a centered orientation and stabilize, i.e., the orientation stops changing.
Section 3 and its Theorem 3.1 discuss how to achieve our goal after that. The remainder of the paper
starting with Sec. 4 describes the structure protocols, which run in the special structure fields.

3.1 Self-Stabilization

Let each processor (node) in the network G have read-only input field, and read/write work, output,
and structure fields. A configuration at time instant τ is a quintuple 〈G, I, Oτ , Wτ , Sτ 〉, where functions
I, Oτ , Wτ , Sτ on V represent the input, output, work and structure fields respectively. The structure protocols
serve to maintain the centered orientation. They run in Sτ , are independent of the task and computation
running in Wτ , Oτ , and affect it only via setting the orientation fields of Sτ which the computation can read.

Let q be a set of correct i/o configurations 〈(G,I),O〉, and Γ = 〈T, q〉 be a corresponding task. A protocol
solves Γ with self-stabilization in s steps if starting from any initial configuration, for any time τ ≻ s
the configuration 〈(G, I), Oτ 〉 ∈ q. For randomized protocols we measure the expected stabilization time.
Our protocols do not halt, but after stabilization their output is independent of the subsequent coin-flips.
(For synchronized protocols stabilization could also include repetition of the configuration.)

Protocols, which accept (potentially incorrect 〈(G,I), O′〉 6∈ q) halting configurations, cannot be self-
stabilizing: the network put by Adversary in an incorrect halted configuration cannot correct itself. Our
protocols for Γ repeatedly emulate checker Λ, invoking Φ when Λ rejects an incorrect configuration. We use
here the Las Vegas property of (properly initialized) Λ: it never rejects a good configuration. Adversary may
still start the network in a bad configuration from which neither Φ nor Λ recover within the desired time.
To handle this, we use the self-stabilizing timer T constructed in Lemma 3.1.

Remark 3.1 (Dynamic Properties) For simplicity, we focus on “static” problems. However, the dy-
namic behavior of protocols is often of interest as well. We note that many temporal properties can be
achieved by creating (with self-stabilization) a static configuration that, once correctly established, allows
regular algorithms (without self-stabilization or asynchrony resistance) to assure the desired behavior.

Theorem 3.1 Any task Γ can be solved on any asynchronous networks G with (unchanging) centered ori-
entation in their S-fields by protocols self-stabilizing in T (G, I)O(d∆lg n) steps.

For a proof we define a stably constructible rTM Tn(x) (or timer) as one that starting from any
configuration on n-cell work tape, stabilizes with O(Tn(x)) expected time.

Lemma 3.1 Any strictly constructible function t can be computed by a stably constructible algorithm.

5

When Tn(x) is a timer, any task can be self-stabilized. M keeps two counters t, r and runs T repeatedly.
Whenever T halts, its output overwrites t. Each step, r is decremented if r ∈ [1, t]. Otherwise, r is reset to
t and M runs Λ, properly initialized. If Λ rejects, M runs Φ. If outputs of Φ are unique, no Λ is needed: Φ
is run always but its rewriting correct outputs makes no changes and does not disrupt the stabilization.

Proof of Lemma 3.1 Let C = ⌈1/(1− c)⌉; we round c to 1−1/C. First, we set a ⌈lg n⌉ steps rTM timer.
It sweeps the tape, each time marking every second unmarked cell. When all are marked, it unmarks the
tape, and restarts. With it, we stabilize the following O(k) steps task. It computes k = ⌈lg n− lg(C lg n)⌉
similarly to the above timer, and by k merges divides the tape into numbered segments si of length 2k (s0

may be shorter), each keeping a binary counter ri bounded by ti with ‖t1‖ = C, ‖ti+1‖ = ⌊‖ti‖/c⌋ ≈ c−i).
In each si, rTM runs T (x) (iterated to error probability < 1/3k if randomized), in parallel. The i-th run

goes for ti steps and restarts from the blank state. If it halts, all other runs are restarted, too. Thus, if T (x)

takes Tx ∈ (ti−1, ti] steps, then starting from any configuration, within ti < T
1/c
x < T (x) steps the i-th run

restarts from blank state and halts in < T (x) expected time.

3.2 Tree-CA, rTM, and Network Simulations

In this section, we consider how tree-CA H and an rTM M can simulate each other. Let H have n nodes
and M have 2n cells, numbered from left to right. We map each node x of H to two cells of M , denoted
x(and x) reflecting the two visit times of dfs traversal of H . Let input tape bits M reads when its work
head is at nodes x(, x) and bits in the input register of x reflect each other. Let functions h, g), g(map the
tape characters of M to the automaton states of H and vice versa. We say a machine A simulates B with
overhead t if after any number i of steps (or sweeps) of B and ti steps of A, the state of each cell (or node)
of B is determined by the function h or g applied to the corresponding node of A.

Lemma 3.2 Any tree-CA H (diameter d, degree ∆) and rTM M with matching inputs, can simulate each
other: H with overhead O(d∆) and M with O(d).

Proof: H simulating M . The automata nodes x of each depth in turn, starting from the leaves, compute
the transition function fx. This fx depends on the current states and inputs of the subtree tx of x and its
descendants. It maps each state in which M may enter tx from the parent of x (sweeping the tape along the
dfs pass of H) to the state in which it would exit back to the parent. Once fy is computed for each child y
of x, the new states of x), x(and fx are computed in O(∆) more steps. Since the depth of the tree is d, it
takes O(d∆) to compute froot, and thus to simulate one sweep of M work tape.

M simulating H. Each node x of H corresponds to a pair x(, x) of matching parentheses enclosing
images of all its descendants (in tx). On each sweep M passes the information between matching parentheses
of certain depth. Nodes x at this depth are marked as serve, their descendants as done, and their ancestors
as wait. When the root is done, all marks are turned to wait and M starts simulating the next step of H
(from the leaves). When x(and x) wait and their children serve, M serves x(, x) as follows.

The next sweep carries the state of x to its children allowing them to finish their current transition and
enter done. The same sweep gathers information from the children of x for the transition of x and carries
it to x). The return sweep brings this information to x(; at this point, x(, x) go into serve state — only the
parent of x information is needed to complete the transaction of x.

M keeps two counters: for the input register place all automata of H read at this simulation cycle, and
for the segment of input tape M reads at this sweep. M reads its input when the counters match.

Proof of Theorem 3.1 A centered orientation on G yields a spanning bfs tree via its up edges. Consider
a tree-CA H on it. It can be synchronized by keeping a second orientation, incrementing its slope bits and
making a step in each node with no tree-neighbors under it. H in turn emulates an rTM M . We also need
G to simulate the rotating registers of H carrying addresses of their G-neighbors.

The vertices are numbered linearly on the tape of M covered with counters, each with the number of its
first vertex. Such counters are initialized in O(lg n) time similarly to marking the intervals in Lemma 3.1
proof. The root keeps a (rotating) place i and all points display the i-th digit of their numbers, giving access
to it to all network neighbors. An adjacency list look-up can thus be simulated in O(d∆lg n).

6

4 Assuring Centered Orientation: Problem Decomposition

The protocols in Theorem 3.1, use centered orientation (in h3 fields, Sec. 2.3). The rest of the paper reduces
assuring such an orientation to three separate tasks of: orientation Rectifier R, Leader Elector LE, and
Fence F blocking LE around vortices. This section presents these tasks in terms of interfaces (read/write
permissions for fields a protocol P shares with its environment EP) and commitments (with time parameters
tR, tLE, tF). Any protocols complying with these contracts will work for our reduction, given below as the
Shell protocol Sh. Sh uses only one bit bF and one pointer pb (it also reads pointer pl).

4

Legality, Guard, and Crashing. Adversary initiates the network with arbitrary links, possibly “abnor-
mal,” disruptive for P . Correcting them might be hard for P : it is restricted by the interface and acts at
one node at a time, affecting all incident links, not just abnormal ones. Let P come with a list of P -legal

links; v is P -legal if all links exiting it are or if v to on� (defined below). Any activated v invokes a function
guard G, with the list of illegal links and access to all fields. It crashes illegal v into on�, and does nothing
else. P -legality of nodes and in-links must be preserved by crash and any actions P makes or permits to EP .

Shell fields. G,R (and only they) create roots – potential centers of the orientation. LE “uproots” them
and, in non-roots, calls Float which, with no edges to roots or down, increments h3. Eventually the orientation
has a center led to by all down paths. Uprooting creates non-root local minima, and thus, down-paths not
leading to roots. To guide to roots, LE keeps lead pointers v.pl=~v; pl loops (~r=r) in roots, cutting off
pointer chains. Invoking LE at v, Sh copies v.pl to the backup v.pb (to help other protocols adjust if LE
changes pl). Sh initiates F on a pl-tree by turning on its root’s fence bit or phase (r.bF←1); F exits
turning it off (r.bF←0; only F can turn the roots off).5

Notation. Ll (stub –↓), Lb: p-loop predicates; v.pbl: (v.pb).pl; Lbl: v.pbl=v, etc. Adjacent stubs are locks,
isolated – roots. Li: i=Lb+Ll∈{0, 1, 2}. ◦: L2; single ↓: L1&Lb; reset �: L1&Ll. Duplex � (L0) are
double ⇓ if v.pb=~v, else hook ↓↿ if off&Lbl & v.pb /∈⇓, split ' otherwise. Ground: root or Lbl split. We
denote Sh states by bF and pointer pattern (e.g., on◦, off↓).

Height. Senior pointer v.pB loops in ground, is v.pb in other splits, ~v otherwise. The height h(v) of
v becomes undefined (⊥) when v is lock or crashes, and remains so until non-lock v changes Sh field(s).

Otherwise h(v)
def

=v.h3 in ground v. For other v 6=v.pB=w, h(v) is h(w)+dir(wv), retaining its previous value
if h(w)=⊥. A directed edge vw becomes bound when w or its pl-descendant changes bF←1, or the senior
ancestor root of v or w changes between on◦ and on�. It reverts to unbound when v crashes. Around vortices
rise varies with paths and edge ends may differ by >1 in height; such edges are called rips.

Symmetry breaking. R (with minimal help from F) maintains a hierarchic structure on trees to enable
initiation of parallel R protocols. It is kept via sign bits λ(k) of v.h3= ± 0, where k=h(v)/3=2i(4j+s),
s=±1 and λ(k)=sgn(s).6 As an exception, we set λ(k+1) to −, marking “round” k=2i(4c+j2), j<2c with an
otherwise impossible mark pattern −+−+. Here c is a constant that depends on the one in the commitment
(LE.ht) below. Any segment of λ with two marked heights determines them uniquely. Thus, R can use the
slope bits h3 to quickly detect rips even when the senior chain is much larger than the height.

4.1 Protocols

Interface permissions. Read restrictions serve only to help reader’s focus; write restrictions apply only
to the shared fields (h3, pl, pb, bF). E of each protocol can do all actions of Sh, and (when Sh calls other

4The tasks of R and F correspond roughly to the two functions of SI in [IL92] – initiating a flat slope and keeping nodes
open for LE. While [IL92] protocols comply with our contracts, they had other interdependences and were not designed to
take full advantage of the efficiencies allowed by the separation provided here by Sh and contracts. SI was concerned only
with nO(1) time-bounds, while here our Sh preserves the efficiency up to factors dO(1), possibly exponentially smaller than the
number of nodes n. Our present Sh, F, and (sketched in the appendix) R adjust SI tasks to the new opportunities.

5The fence bit bF is used to pass control between F and Sh analogously to the control bit in [IL92].
6This sequence λ is based on one used (implicitly) in [Ro71], and discussed in [Le05]. [IL92] uses instead µ(k) (based on

[Thu12]) defined as “−” if binary encoding of k has an odd > 1 number of 1s, or “−” otherwise.

7

protocols P) those listed below as permitted to P . v is ready if ~v=v or v.bF 6=~v.bF, or v∈⇓, ~v∈�. R,G can
crash any v. Otherwise, shared fields change only in ready v with no ready pl-child, and R can change only
locks (not to off with pl-children). F changes only bF, pb in roots and h3=± 0 signs. R can open lock v into
on↓ with v.pb∈on� under v, all down and no up edges of v going to stubs. R can decrement h3 of locks with
no up edges to non-stub, and change ±0 sign. Only R can set off�. LE reads dir(), pl, calls Float and moves
v.pl (to 6=v); it idles in v, w if ~v=v and dir(vw)6=1.

Shell. Sh starts by changing off◦ to on◦, and invoking F,R,G; locks with ⇓-children change to on�. Invoked
in other (ready) non-locks, Sh does the following.

Split: v invokes LE,F,R if v (1) is off◦, or on↓ with Lb(~v), has (2) a ⇓ or no child, (3) no split pb-child,
and (4) no ↓child. Before this, Sh sets pb to pl or, in root, to a ⇓child, if any. Uprooted childless v turns ⇓.

Merge: Activated as ', v merges (1) into ⇓ if ~v∈off↓ and v has ↓ or no child, (2) into ↓ if ~v is � and (a)
v∈on has a ↓ or no child, or (b) v has off children, all ' or ↓↿. ⇓ merges into ↓ if ~v is � or on�.

Phase Wave: Then Sh sets v.bF←~v.bF, changing ↓↿ to ↓, and ↓ with a child and a � parent, to ↓↿.

Commitments. After the first step (when G’s crashes stop) under the above Interface and Shell:
(LE.ht): LE assures a segment of rise c ·m, c=θ(1) in any m-node pl-chain.
(F.cln): F assures that no v with v.bF=0 6=~v.bF has a bF=0 pl-ancestor.
(F.sgn): F sets the sign of h3 to λ(h(v)/3) in (ready) v with a bound in-edge and h3=± 0.
(F.rip): F assures that senior chains from bound rips do not change.
(R.stb): With the above commitments, R stabilizes in tR steps: crashes stop, orientation is flat.
(F.off): F turns each root off every tF steps after R stabilization.
(LE.ct): LE centers orientation within expected tLE LE-steps after R stabilization.

4.2 Shell Performance

A non-lock is low if it has only ↓ and –↓ ancestors (incl. self), high otherwise; a high with a low parent is
border. Only on↓ occurs in both high and low (but not border). A node becomes high (border) only as a
result of invoking LE in leaves of low. A root, after invoking LE (unless uprooted) resets its tree to low by
passing through on�, and a new cycle of LE calls starts. Intuitively, F waits for the whole pl-tree to turn
on, checks it for rips (more precisely, vu such that the root-root path against pl pointers, across vu, and
then along senior chain, has non-0 variance), and, if none, turns the tree root off (then Sh propagates off

through the tree). Turning off, double children of a split become single, so the split merges at the next off

—after completing a full F cycle with its checks. However, a split v merges prematurely if it has no children
(when turning off) or if it has only split children and ~v∈on� (thus, e.g., as a pl-chain of splits turns on, the
alternating ones merge prematurely; the remaining splits will merge upon the next off wave). Uprooting, r,
if childless, instantly merges into its new tree; if with a double child w, remains ground (but now a split).

We show that centered orientation will be assured by any protocols that satisfy the above commitments.
For the rest of the subsection assume that R has stabilized (R.stb): the orientation is flat (incl. has roots, no
locks), R no longer changes any shared fields (and thus can be ignored). Then any pl-chain is at most O(d):
the orientation flatness bounds rise by O(d), and (LE.ht) extends this bound to the length of pl-chains. For
every root r, F changes on◦ to off◦ within tF steps (F.off), and then (unless r uproots) Sh changes it back
to on◦ in one more step (after all its pl-children had a chance to copy r.bF). Assume tF=Ω(d) (otherwise we
may need to replace tF with tF + d below). A node v is a switch if v.bF>(~v).bF.

For any v, v.bF=1 within O(d) steps. Indeed, let v.bF=0. (F.cln) assures any on pl-child of v has no off

child, in a step all children of v are off. The maximal off pl-chain from v gets shorter within each step.
For any v, v.bF=0 within O(dtF) steps. Indeed, a low on v changes to off or high within O(tF) steps:

its root is turned off or uproots (making v high) within tF (F.off); if its root is off, the on pl-chain from
low v shrinks (O(d) times) within a step till v either splits or changes to off. After the initial O(d) steps a
high node does not invoke LE (an on↓ with an off� parent changes to off). Then for a high v consider the
maximal high on pl-chain to a split. This chain can only shrink if the split changes to off (and then within
O(d) so does v). Within O(tF) steps the chain either grows (at most O(d) times) or v changes phase: its
nearest low ancestor becomes off or high within O(tF), either becoming a split (increasing the chain), or off⇓

(and then the on pL-chain from v shrinks each step). Thus, v.bF=0 within O(dtF) steps.

8

A split v can change v.bF ≤ 3 times without merging, thus v merges in O(dtF). Indeed, when v changes
to on� it looses its double children (or merges). Then it merges by the next change to off.

A low v invokes LE within O(d2tF). Indeed, any low leaf looses its split pb-children in O(dtF) (similarly,
if it is a root its existing split children merge into ⇓), and then invokes LE the next time it is a switch (or
on◦ with only on⇓ children). The depth of the low node (sub)tree (of v) can be so reduced O(d) times.

Lemma 4.1 Any node invokes LE within O(d3tF) steps.

Indeed, consider a high v and the shortest pl-chain from v to a border, split or ground w (possibly =v).
Such a chain cannot shrink without v invoking LE: new grounds are not created any more (except when a
childless root floats possibly making its new parent a ground) and new splits are created with only border
children. Moreover, within O(d2tF) steps the chain grows or v invokes LE: If w is a root, then v is low
(and invokes LE within O(d2tF)); otherwise, if w is a split, it merges in O(dtF); and if w is a double, then
in O(d2tF) ~w invokes LE and w changes to single O(dtF) steps later. Since this chain can grow only O(d)
times v will invoke LE within O(d3tF) steps.

Since LE interface fields are not affected by any other protocols, this lemma implies prompt (polynomial
in the network diameter d and degree ∆) centralization:

Theorem 4.1 (Main) Given any contract abiding protocols LE,R,F, our Shell Sh assures centered ori-
entation within expected tR(∆, d) + O(d3tFtLE) steps.

5 Fence F

Intuitively, the main function of F is to prevent changes of senior chains from rips. Only locks and splits
may change their senior pointers, and thus their and their descendants’ senior chains (and heights).

Call v hanging if the pl-chain from v has a long pl.
7 An apex is a low v with no low children; when v

becomes a switch it might split (or float). An on-apex v is loose if it has no pl-children: it can split and then
merge prematurely (without completing a full F cycle, see below). To assure (F.rip), F needs to check that
its tree has no incident rips (including pl), but such a check is unreliable if a neighbor v is (1) hanging; (2)
childless low with a hanging neighbor or a long edge; (3) childless low with a childless low neighbor u and a
long edge uw to a low w.8 Such v can change height creating rips for its (possibly already checked) neighbors.
So, in addition to rip-checking incident edges, F must assure that before getting an off pl-ancestor, (1) its
high neighbors will check that they are not hanging, and (2) its childless low neighbors v will rip-check their
edges and in turn assure that their childless low neighbors u have no rips uw to a low w. This requires two
“milestones” in the high nodes and three for the childless low nodes. So, next we describe the F cycle which
achieves these “milestones”; then we describe the rip-checking and exiting from locks.

5.1 F cycle

F cycle is initiated on a pl-tree from its root by switching to on (“registering” pl-pointers forming the tree;
a pl pointer joining the tree after this registration will participate only in the subsequent F cycle). Unless
specified otherwise, the parents and children below refer only to these (registered pl-) tree edges.

Transitions. The F-cycle consists of two phases (0 and 1), each with three states: start, active, done.
Intuitively, the goal of phase-1 is to provide assurance (to the neighbors) of height preservation, while phase-0
is focused on assuring no rips (for its own nodes). In a regular F cycle phase-0 is run once (following off

wave), while phase-1 is potentially re-cycled repeatedly (until the next off), from an unregistered split.
In high nodes the states function similarly to the classical children game of fire-water-hay: with fire (start,

propagating up: from parent to children) consuming hay (done), but put out by water (active, propagating
down: from children, when all active, to parent), which in turn is absorbed by hay (done, propagating down,
similarly to active).

7An alternative more precise definition is possible: the pl-chain from v to the long edge contains no splits with double
children and no nodes that were ever off.

8In the last case, u can split to w, while w is on; changing w to off will result in u prematurely merging into a double
(changing its height and making vu long); then v can split to u while u is still off, and have another neighbor split to v; then
changing u to on will result in the premature merge of v, changing its height.

9

In low nodes the transitions are slightly more complex: there start, done and active-0 propagate in the
same directions as in high, but active-1 propagates from parent to children. More specifically, done-0 in
low nodes is delayed while active-0 (which enters a low node only when all its high children enter done-0)
propagates to the root turning into active-1 signal propagating back towards done-0. Then done-0 propagates
on low (replacing active-1) towards root. Upon reaching the root, done changes into start-1, which propagates
up replacing done-0. Similar to phase-0, a low start-1 does not change until its high children are all done-1,
but here it changes directly to done-1 which proceeds towards the root (consuming start-1 parents). A root
with all children done-1 changes to off, signaling that F is finished on this tree.

If a node v in done-1 (and all children in done-1) splits or uproots, then it recycles phase-1 on its subtree
until changing to off: done-1 with low (also done-1) parent changes to start-1. Thus, intuitively, start

propagates always from the parent to the children; and done — from the children (when all are done) to the
parent; active-0 propagates similarly to done, while active-1—towards border: as an echo (preceding done-1)
in high, and as a signal in low.

F can mark nodes as high, low, apex and loose (in the draft and certificate, see below), so that it is visible
not only to the node but also to its neighbors (loose, or even apex, status can be omitted, then all apexes, or
even all low, would be treated as loose); the algorithm description below uses this recorded high/low status.

Checks. F needs to check that its tree has no incident rips, and that the neighbors will not create them
after the check is complete. Low nodes —unless loose— need no such checks: they can change neither senior
chains nor heights until after the next change to on. Thus, the following checks are performed: In start-1: a
loose u rip-checks all its edges before changing to done-1. In active-1: split u rip-check its pl-pointer (delaying
change to done-1). Also a loose active-1 w (which in low occurs before start-1) waits for each low (loose)
neighbor to be in phase-0 or active-1 before changing to done-0 (thus assuring correctness of the start-1 check
above). In active-0: a high v before changing to done-0 (1) rip-checks all edges, and (2) waits for each (a)
high neighbor w to be in phase-0, or to enter active-1 and then enter start-1, (b) low (loose) neighbor w to be
in start-0 or active-0 (assuring correctness of the subsequent active-1 check above). Finally, in start-0, loose
v waits for the same events as in (2) above before changing to active-0.

Splits: borrowing a pointer. The above checking requires a pointer to “rotate” over the node’s
neighbors. This (soft) pointer can use the unused hard pointer in the singles or doubles. In splits no spare
hard pointer is available, however (instead of adding a hard pointer) we can “borrow” a pointer from the
pb-parent as follows. When a split w needs to use an extra pointer, w requests help from its pb-parent (low,
and thus always single) v. Such v goes around pointing at its needy pb-children with the “lending” pointer.
Such a “lending” pointer on w (there can be at most one), can implement its pb pointer (in the opposite
direction), allowing w to use the corresponding hard pointer for other purposes. When w is done using its
client pointer, it can free the “lending” pointer, allowing v to lend it to its other pb-children. Each split
needs to borrow a pointer only when in active-0, so it can request help from its pb-parent at most once in a
F cycle, and thus at most two times total before it merges. Since split w might be waiting for its low (loose)
neighbors to be in start-0 or active-0, the lending low v should do the lending in the same states (otherwise,
a deadlock can occur).

Rip-checking is more efficient if it runs on small groups, called clients. The client tree is formed of
the registered pl when the F tree is formed. The subsequent change of the tree to off changes the clients
into servers, functioning in a similar fashion (the off may lead to new splits, so the servers are along senior
pointer trees). The rip-checking is implemented by interactions of clients and servers as described below.
Each client must be large enough to contain its own height (rise from the root) ρ; for ρ = O(1) the client
is just one node, making its rips instantly detectable. In fact, each client should contain θ(lg ρ) nodes and
is computed (allocated and initialized) from the parent client.9 Each client also computes a timer (as in
sec. 3.1) which re-checks repeatedly both the client size (compared to its rise ρ, which in turn is checked
with the parent client) and the upper bound on its computation time (wlog, assume it is 2t − 1 for some t;
then co-located step counters are trivially assured never to exceed it).

9For example, let i be the smallest such that the subtree Tv(i) of all descendants of v at distance ≤ i from v contains
|Tv(i)| ≥ lg ρ nodes. Then Tv(i) forms a client of v if |Tv(i)| < 2 lg ρ. Otherwise, additional clients are formed (e.g., from the
leaves of Tv(i)). These additional clients might not be able to form a separate connected subtree, but their nodes can still
communicate (as in sec. 3.2) through the nodes of the parent client (thus nodes might need additional child support fields).
Finally, subtrees of the nodes which are too small to have clients of their own join the parent, possibly splitting it into more
clients similarly to the above. The child support does not introduce any overhead, since similar communication needs to be
provided, whether for the own or the child client.

10

To detect rips, each client is first re-initialized (to assure that it is not created by the adversary) and
then goes through its edges one at a time, using a special client pointer, attaching it as a leaf to the server.
Each server periodically registers the attached client pointers, then verifies its correctness (from the root),
and then serves its height to all the registered clients one bit at a time (the clients that attached to the
server after its registration stage are ignored by the server until the next registration). Each client, upon
receiving this height, compares it with its own height value. The client-server interface is across the (client
pointer) edge connecting them and can work as follows: Let the server height be encoded in ternary, so that
no two consequent digits are the same (e.g., we can use “2” as a separator between 0 and 1 digits; more
efficiently, to encode the next bit use the two values different from the current one: the greater to encode
1, and the smaller for 0).10 The step counters and the timer assure that even the adversarially initiated
clients and servers terminate promptly (∆(lg d)O(1) after R stabilization11). If a rip is detected then this and
the neighboring trees need to be restructured, so we change the rip servers to void to initiate the following
restarting procedure, used also in the case of crashing.

5.2 Restarting

A crash might corrupt computations in the clients and servers, so it is safer to reconstruct them, e.g., as
follows. Let F keep a special reborn flag, typically set to false, but with the default value true. So, when the
node is crashed (incl. into a root) and then opened by R, it is still reborn. Servers adjacent to a reborn are
marked as void (starting from the reborn’s neighbor and spreading through the whole server tree); cleared
server fields in nodes that were crashed (and exited) are also interpreted as void. Both high and low start-0
(propagating along the on wave) freezes at the pl-pointer of a split with a void server, neither crossing the
pointer nor changing till the server changes to non-void. If v is adjacent to a void certificate, then v’s client-
tree (if any) is cleared: v’s void-client propagates from client-child to its parent until reaching the client’s
root there the client is cleared, causing the descendant clients to clear as well (the void server’s origin also
clears its client). If the void-client mark (on its way to the root) meets an off wave moving this client to
server fields, then the move leaves the resulting server void (since it was just moved from the client fields,
this new server does not intersect any clients, so this process does not propagate any further). A reborn flag
is cleared when all adjacent servers and clients are void.

When a void server tree has no clients in any of its nodes and no adjacent reborn, F computes re-clients
on the void server tree (similar to clients, but not on pl-tree). A re-client near a reborn is cleared similarly
to the client (the reborn could have been the re-client’s child potentially corrupting it): it changes to void
re-draft which propagates to the re-client tree root and is erased from there.

When a re-client is constructed, it checks (as part of an echo state propagating from re-client tree leaves
to roots, when a node’s children are all in echo) that neither reborn nor clients are adjacent; then re-clients
are copied to servers (non-void; possibly changing the sign of h3= ± 0 at root child accordingly) from the
root up the server tree.

5.3 F Performance

In this section all the distances are along the tree edges described in the previous section, and we assume
that R has stabilized.

A high start-1 changes to active-1 within O(d). Indeed, a high done with start-1 parent changes to start-1
within a step. So, the distance from a high v in start-1 to the nearest done-1 descendant as above (i.e., with
no active in between) grows each step till (within O(d)) none remain (only start can be a parent of start;
similarly, done can have only done children). a high start-1 with neither done nor start-1 children (i.e., only

10A client not copying the served bit delays the step in its server parent node (i.e., its mod3 counter is not incremented).
Similarly, the server not serving the next bit after the current one is copied delays all its clients’ clocks. Thus a client might
indirectly delay a different client of the same server. However, since each client has only one server parent, after a server serves
a bit, all clients independently and in parallel must consume it promptly, thus avoiding deadlocks. After R stabilization, such
delays are O(∆ lg d); and before it, they do not impact any commitments.

11Indeed, if for the client (the same for servers) its ∆ = O(lg d) then the ∆ factor can be ignored; otherwise, if v has > 2 lg d

children then these children (without grand-children of v!) form one or more clients of < 2 lg d nodes, whose communication has
a ∆ delay due to the information going through v, so any polynomial algorithm can be executed by the client in ∆(lg d)O(1).

11

active-1, if any) changes to active-1, so the distance to the furthest high start-1 descendant decreases each
step and any high start-1 changes to active-1 within O(d).

a high active-1 changes to done-1 (or off) within O(d) + ∆(lg d)O(1). Indeed, each active-1 split must
rip-check its pl (which takes ∆(lg d)O(1) steps), after which each high active-1 with all children (if any) in
done-1 changes to done-1 within a step, (unless its parent is off).

A loose start-1 v with done-1 children checks the lengths of all its edges within ∆2(lg d)O(1) steps: each
edge is rip-checked in ∆2(lg d)O(1) and a client can have O(∆ lg d) edges, checked one at a time. Once this
rip-check is completed, v changes to done-1.

If a high v in done-1 has a split ancestor with unregistered pl, then it too changes to done-1 within
O(d) + ∆(lg d)O(1) and then changes to start-1 or off; and then in O(d) steps more v changes to start-1, or
off (and then to start-0) as well. Thus any high v enters active-1 and then start-1 (or changes to start-0).
Similarly, a low v in start-1 or done-1 changes to start-0, but with the additional ∆2(lg d)O(1) delay due to
the loose nodes.

Let tl1
def

=d + ∆2(lg d)O(1) be the time required by a loose w to be seen in phase-0 or active-1. Let

tu1
def

=d + ∆(lg d)O(1) be the time required by an high w to be seen in phase-0, or to enter active-1 and then
start-1.

Low active-1, done-0 change to start-0 within O(∆tl1). Indeed, within O(d) low active-1 has no active-0
descendants: the closest of these changes to active-1 in one step. A loose active-1 changes to done-0 within
∆tl1: after waiting for each low (loose) neighbor to be in phase-0 or active-1. A non-loose low active-1 with
only done-0 children changes to done-0 in a step, and so the distance to the farthest active-1 decreases. A
root with only done-0 children changes to start-1, which changes to start-0, since it has a low descendant,
which will change to start-0 too O(d) steps later.

a high start-0 changes to active-0 in O(d). Indeed, any start-0 has no off descendants within O(d). Then
a high start-0 with no start-0 children (all, if any, are active-0) changes to active-0, so the distance to the
furthest high start-0 descendant decreases each step.

Before a high active-0 can change to done-0 and a loose start-0 to active-0, the rip-checks for the high and
neighbor state checks for both high and loose need to be performed. For high, these checks can be done by
all the nodes in parallel. Each client needs to check O(∆ lg d) edges, each edge checking taking ∆(lg d)O(1)

steps (plus a delay due to splits borrowing pointers).
In addition to rip-checking, high active-0 and loose start-0 wait ∆tl1 > tu1 to see each low (loose) neighbor

in start-0 or active-0 (this dominates the check of the high neighbors, which still needs to be performed).
Both of these active-0 checks can be done by all high in parallel (with the client restrictions for the rip-check)
and both requires pointers (thus splits still need to borrow them from their pb-parents). The checking of the
states dominates the rip-checking, so the time it takes a high active-0 v to check all of its edges is O(∆2tl1).

Thus, a split may need to wait for tlend
def

=O(∆3tl1) steps before its pb-parent could lend it the pointer. Thus,
all high active-0 v will all complete their checking within O(∆3tl1) and then any high active-0 with no active-0
children will change to done-0. So, within O(∆3tl1) steps (O(d) time for done-0 propagation is absorbed
since d = O(tl1)) all high start-0 change to done-0.

A loose start-0 does not need to borrow a pointer, and so exits to active-0 within ∆2tl1. The propagation
of active-0, active-1 and done-0 in both directions on the ancestors of loose v takes additional O(d) (absorbed

in the asymptotics of tl1). Thus all start-0 change to done-0 within t0
def

=O(∆3tl1), which also provides the
asymptotic upper bound on the F cycle time: the time within which F turns off at a root (fulfilling (F.off)).

5.4 F Correctness

Assuring (F.off) is demonstrated above.
Any senior chain contains at most one pb. Indeed, a split-pb separates high nodes from low ones, and

chains from low nodes can (legally) contain only low (or lock).
A node with off descendants can only be in start-0 or off, together with the above assuring (F.cln).
A crash of v marks it reborn, which voids the server trees of v and its neighbors, and clears the client trees

adjacent to these void trees. This effectively freezes F in the respective nodes. Then reborn it reset to false,
and void servers as well as cleared clients are recomputed. Thus, the tree of v and the adjacent trees have
new (uncorrupted by crash) servers; the client trees of v and its distance two neighbors are also recomputed
and restart their F cycles (and will not let F turn off when detecting a long edge). Thus, this situation

12

essentially as if the leaves of each of these trees have just changed from off to on (binding corresponding
edges), and so it is now reduced to the following.

Assume now no crashes taking place. Consider v changing its senior chain while vw is a rip. Then v is
either high or loose: an apex can split, but —unless loose— will go through another F cycle before merging
(and thus changing its senior chain). Consider the interval from the last moment v was start-0 with an off

descendant (there was one that made vw bound) and until F turns off before the senior chain change.
F rip-checks all edges incident to high and loose nodes of the tree (start-0 guarantees correctness). Thus,

during the rip-check, vw was not long, so w must have changed its height after the rip-check.
If w is high, then v observes it in phase-0, therefore ancestors will rip-check their pl before F turns off at

the root (and so before merging). Thus, high w cannot create the rip.
A low w cannot change height unless it is loose. Then v had to wait for w to be in start-0 or active-0. A

loose w can change height only if it splits and then merges prematurely: (i) with the new parent u which
was on during the split of w, then w merges (possibly without any F checks) when changing to off; (ii) with
the new parent u which was off� during the split of w, then before w changes to on, some splits pointed at
it and u remained non-single, so w merges when changing to on. Before w splits, it rip-checks wu, so if w
changes height then u must changes height after the check and before w merges. In case (i) this possibility
is eliminated by w waiting (in active-1) for u to be in phase-0 or active-1. Then u rip-checks its pl-chain if
high; if low, u cannot change height either: even if it splits u cannot merge when changing to off (since it
has children), and so rip-check of w prevents its change of height. In case (ii) u rip-checks its edges before
splitting; if its new parent change height after the check, u would merge prematurely into single, and w
would not merge prematurely. Thus w cannot change height.

Therefore, F assures (F.rip).
Finally, it remains to satisfy (F.sgn). This is done by the clients computing λ((h(v) + 1)/3) in addition

to h(v) for each node to be used in case it floats to h3 = 0.

13

References

[AKY90] Yehuda Afek, Shay Kutten, Moti Yung. Memory-efficient self-stabilization on general networks.
In Workshop on Distributed Algorithms, 1990.

[AO94] B. Awerbuch, R. Ostrovsky. Memory-efficient and self-stabilizing network reset. [PODC], 1994.

[Bar65] J. M. Barzdin. The complexity of symmetry recognition by Turing machines. (in Russian)
Problemi Kibernetiki, v. 15, pp.245-248, 1965.

[Dij74] E. W. Dijkstra. Self stabilizing systems in spite of distributed control. CACM, 17, 1974.

[DGS96] Shlomi Dolev, Mohamed G. Gouda, Marco Schneider. Memory requirements for silent stabilization.
[PODC], 1996.

[FOCS] Proc. IEEE Ann. Symp. on the Foundations of Computer Sci..

[G86] Peter Gács. Reliable computation with cellular automata. J. of Comp. System Sci., 32, 1, 1986.

[GKL78] Peter Gács, Georgiy L. Kurdiumov, Leonid A. Levin.
One-Dimensional Homogeneous Media Dissolving Finite Islands. Probl. Inf. Transm., 14/3, 1978.

[Her] Ted Herman. Self-stabilization bibliography: Access guide.
Chicago J. Theor. Comp. Sci., Working Paper WP-1, initiated Nov., 1996. Also at
http://www.cs.uiowa.edu/ftp/selfstab/bibliography/

[IJ90] Amos Israeli, Marc Jalfon.
Token management schemes and random walks yield self-stabilizing mutual exclusion. [PODC], 1990.

[I+92] Gene Itkis. Self-stabilizing distributed computation with constant space per edge. Colloquia presen-
tations at MIT, IBM, Bellcore, CMU, ICSI Berkeley, Stanford, SRI, UC Davis. 1992. Includes joint
results with B. Awerbuch and R. Ostrovsky, and with L. A. Levin (submitted to [FOCS], 1992).

[IL92] Gene Itkis, Leonid A. Levin. Self-stabilization with constant space. Manuscript, Nov. 1992 (submitted
to [STOC], 1993). Also in [IL94]. Later versions: Fast and lean self-stabilizing asynchronous protocols.
TR#829, Technion, Israel, July 1994, and in [FOCS], 1994, pp. 226-239.

[IL94] Leonid A. Levin. (Joint work with G. Itkis). Self-Stabilization.
Sunday’s Tutorial Lecture. ICALP, July 1994, Jerusalem.

[Joh97] Colette Johnen. Memory efficient, self-stabilizing algorithm to construct BFS spanning trees.
[PODC], 1997. Extended version in Proc. Workshop on Self-Stabilizing System (WSS), 1997.

[Le05] Leonid A. Levin. Aperiodic Tilings: Breaking Translational Symmetry. Computer J., 48, 6, 2005.

[M+92] A. Mayer, Y. Ofek, R. Ostrovsky, M. Yung. Self-stabilizing symmetry breaking in constant-space.
[STOC], 1992.

[PODC] Proc. ACM Ann. Symp. on Principles of Distributed Computing.

[Ro71] R. Robinson, Undecidability and non-periodicity for tiling a plane.
Invencione Mathematicae 12: 177-209, 1971.

[STACS-06] Proc. 23rd International Symp. on Theor. Aspects of Computer Sci. Marseille, Feb. 23-25, 2006.

[STOC] Proc. ACM Ann. Symp. on the Theory of Computation.

[Thu12] A. Thue. Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreichem.
Kra.Vidensk.Selsk.I. Mat.-Nat.Kl., 10, 1912. Also in: A.Thue. Selected Math. Papers.
ed.: T.Nagell, A.Selberg, S.Selberg, K.Thalberg. Universitetsforlaget, 1977.

[Tra64] B. Trakhtenbrot. Turing computations with logarithmic delay (in Russian).
Algebra i Logika, 3, pp. 33-48, 1964.

14

APPENDICES

A Sketch for R

R controls crashed roots (since R is invoked last, it can crash them back if the roots are uprooted by other
protocols) and locks, keeping its own pointers in them. Intuitively, these pointers must always point down,
according to the R own notion of height; the lock (R pointer) cycles are broken with the help of acyclicity
certificates (similar to those of [IL92]) maintained in the lock pointer chains. R crashes its long edges;
changing the pointers and requiring adjustment of the certificates. Unlike the clients and servers of F, these
certificates must be adjusted locally (on a sufficiently small interval of the certificate: the whole certificate
tree is too big). Furthermore, we will define the long edges in such a way that if a configuration has no
stubs, it will be guaranteed to have long edges, which can be promptly detected and crashed.

Thus we will reduce R to (1) c: lock cycle Cutter, and (2) d: Dropper; their performance parameters
tcc, tcm; td are functions of d, ∆, n and sometimes other aspects of the configuration.

A.1 Reduction

Interface. Fields: c, d share pc, pd in each lock (~v̊
def

=v. ~pd

def

=v.pd if 6=v, else v.pc; v is a rootR if ~v̊=v; dd

is the length of the longest ~pd-chain). An additional bit bl indicates long ~pd (used mainly for the contracts).
Automatic (local) actions: A lock v adjacent to a rootR 6=v is crashed if v is rootR, or ~v̊ is not a

rootR, or v 6=v.pd 6=v.pc 6=v. Crash always loops pc, and sets pd to an adjacent rootR (possibly resulting from
an open root) if there is one; if not, pd is looped too (we call such crash ground), except d can also set pd

to an adjacent lock with non-loop pc. (So, after the first step, rootR nodes are never adjacent; and for lock
v=v.pc either u=v.pd is a rootR or u.pc 6=u). A lock v decrements h3 (whenever allowed by the interface of
Sec. 4.1) if v is rootR with v.h36=−1, else if v.h36≡(~v̊).h3+1 (mod 3). A lock v sets v.bl←1 if (~v̊).bl=1.

Permissions: c is invoked in (and reads fields of) only locks; d acts in all v. c,d can crash any node.
d can also set v.bl←1 of any lock v. When bl=1 for v and all its lock ~pd-children, d can change pd to an
adjacent lock u with non-looping pc and u.bl=0, resetting v.bl←0. d can loop pd, when pd=pc and bl=0. c

can set pc←pd for any lock v. d can also change the sign of h3=± 0 in locks, and open on locks by swapping
v.pl, v.pb (both while obeying Interface permissions of Sec. 4.1).

Height. First, let v be a lock. Then hR(v)
def

=−1 if v is rootR, else hR(v)
def

=hR(~v̊)+1 unless v.bl=1 — in
this case hR(v) is unchanged from its previous value (undefined before the first action).

Now, let v be open. Then define h
(i)
R

(v)
def

=h∈[−1, 3·2i−1), for unique h such that w.h3 ≡ h+ρv,w (mod 3)
for all w on some (sufficiently long: O(2i)) open pB-chain from v, where ρv,w is the chain rise from v to w,
and if w.h3=±0 then its sign is λ((h+ρv,w)/3), if w is ground then h+ρv,w=w.h3. If no h′ ≥ 3 ·2i−1 satisfies
the same condition on the same chain (intuitively, when the O(2i) chain contains ground or two marks with

non-0 rise between them), then we say that h
(i)
R

(v) is final and write hR(v)=h. If h
(i)
R

(v) is defined but not
final, we say hR(v) ≥ 3 ·2i−1. If more than one h∈[−1, 3 ·2i−1) satisfies the above condition for the maximal

open pB-chain (the chain is too short, anchored in a lock), then h
(i)
R

(v)
def

=∗, and hR(v) is unchanged from its

previous value. If not even one such h exists (signs of h3=±0 are inconsistent with λ), then h
(i)
R

(v)
def

=⊥.

i-rips. An edge vu is an i-rip if (a) v, u are open, h
(i)
R

(v)−h
(i)
R

(u)6≡0,±1 (mod 3·2i), or h
(i)
R

(v)=⊥;
or (b) v is a lock with hR(v)<3·2i−1 and hR(u)>hR(v)+1. The i-rip vu is fixed when u is a lock and
hR(u)≤hR(v)+1. v matures when ground or rootR, when resets v.bl←0, and after td(hR(v)) steps.

d commitments: (1) In mature v, d (a) can reset v.bl←0 (and change v. ~pd) only if decreasing hR(v);
(b) can open v only with no i-rips, but (c) cannot ground v. (2) d fixes i-rip within td(2

i) (>tcm(2i) below).
(3) If orientation remains flat with all non-rootR lock pointers down, then d promptly opens locks.

c commitments: (1) After the initial tcc steps, c assures a rootR if there are locks. (2) c un-loops v.pc

in non-rootR lock v within tcm(hR(v)). (3) c does not crash tcm(dd). (4) c merges v.pc ← v. ~pd for every lock
v within tcm(dd).

15

A.2 Correctness

Claim A.1 (d.2) promptly assures stubs.

This follows directly from the fact that any configuration with no stubs contains a ⌈lg (d+1)⌉-rip.
Indeed, set k=⌈lg (d+1)⌉ and let there be no stubs. Then there is pl-cycle; by (F.cln) it is all one phase,

thus its Sh pointers do not change. By (LE.ht), it must also contain a pl-chain from v to w of rise d+1.

If h
(k)
R

(w)6≡h
(k)
R

(v)+d+1 (mod 3·2k), then some pl in the chain is a k-rip. Else, consider a shortest path
v0...vs, v0=v, vs=w, s≤d. Since s<d+1<3(d+1)−s, for at least one j<s the edge vjvj+1 is a k-rip.

Claim A.2 (d.2) and (c.1) assure rootR or ground any time after a prompt initial period.

Indeed, assuming tcc, td(≤2d) are prompt, (d.2) promptly assures a root or rootR if there were no locks
initially; otherwise, (c.1) promptly assures rootR. A rootR may change only to a root. A root r may uproot;
then its pl-chain leads either to another root, or lock (then rootR is assured by c), or cycle. By (LE.ht) the
cycle in the last case must be unbalanced, which implies that v was not bound (F.rip) and remains ground
(since the cycle contains only bF=1 nodes by (F.cln)). Furthermore, if there are no more stubs, there must
be a ⌈lg (d+1)⌉-rip, which was there even before the uprooting.

For the next claim let us measure time as the number of activations (of any nodes), starting from some
initial configuration at time denoted as 0. Let ht(v) be hR(v) at time t. We say that node v has (m, h, t)-
trajectory if in the 0 to t period (inclusively) the minimum height hR(v) of v when mature is m, and at the
end of this period ht(v) = h.

Claim A.3 If v has (m, h, t)-trajectory and h > m + 2 then for any neighbor w ∈ E(v) there are t′ < t,
m′, h′, such that w has (m′, h′, t′)-trajectory and |m−m′| ≤ 2, |h− h′| ≤ 1.

Proof: Let v have (m, h, t)-trajectory and h > m+2. Let t′ be the largest such that ht′+1(v) = ht′(v)+1 =
h (i.e., it is the last float to h of the trajectory of v). Then v has (m, h, t′ + 1)-trajectory.

Suppose that the (m′, h′, t′)-trajectory of w violates either |m −m′| ≤ 2 or |h − h′| ≤ 1. Consider the
(first) time i when v is at the minimum height m = hi(v) and floats at the next step hi+1(v) = m + 1.
(Mature v cannot increase hR(v), other than by floating (d.1); only the first float may be adjacent to rips
(F.rip).) Since h > m+1, v must float again, now to height m+2. At that time, hR(w) will be defined (and
=h(w)) and will have the value m + 1 or m + 2. Thus, m′ ≤ m + 2. Similar argument provides m ≤ m′ + 2,
showing |m−m′| ≤ 2.

The above implies that at time t′ both ht′(v) and ht′(w) are defined. Furthermore, to permit floating of
v, we must have ht′(w) be either h− 1 or h.

Corollary A.4 If v rises by d+1 while remaining at hR(v)>2d then during that period hR(u)>0 for all u.

Proof by induction on distance k from v to (any) u (and using Claim for the inductive step).

Corollary A.5 If v is a ground or rootR, then hR(v) remains O(d).

This corollary follows from the previous and Claim A.2 (v is mature after 1 step).

Claim A.6 Given v, hR(v)=O(d), (d.1) promptly assures hR(u) = O(d) for all u.

Assume td(h), tcm(h) are polynomial in h. Let v=u0u1. . .uk=u be the shortest path from v to u, and let
hR(v)≤h = O(d). Then if hR(ui)≤h+i then within O(tcm(h+i)) v is open or has a non-loop pc (c.2), and
within O(td(h+i)) more (d.2) assures hR(ui+1)≤h+i+1.

Claim A.7 c and d both promptly stop grounding.

The previous claim implies that all v promptly mature and dd is promptly O(d). Then (d.1c) stops d

grounding, and (c.3) promptly stops c grounding.

Claim A.8 i-rips disappear promptly after grounding stops.

The minimum hR(v) with i-rip vu increases by (d.2) within td(2
i).

Lemma A.1 d (and R) promptly stabilize.

After there remains no i-rips for any i (see previous two claims), pc are promptly merged into non-loop
pd, so non-rootR locks pc point down. Then, (d.3) assures that locks are opened, stabilizing R.

16

A.3 c sketch

c consists of two protocols Checker cc and Mender cm, both sharing acyclicity certificate in special lock
fields. Intuitively, cc checks certificate crashing pc cycles. cc can also check certificate drafts along ~pd-chains
to avoid delayed crashes when the drafts are moved to the official certificates along the (possibly merged)
pc-chains. cm mends the certificates when pc-chains change, and extends them to new locks. So, cc write
access is limited only to crash. cm reads and writes certificate fields in locks, merges pc←pd cc promptly (in
tcc) breaks any pc-cycle, thus assuring (c.1). cc can verify the correctness of certificate on an k-long chain
in poly(k) time, allowing to assure (d.3). cm assures that its modification to the certificates will not harm
their correctness (so only ill-initialized certificates and/or processes can cause cc to crash the certificates).
When all the certificate chains are short, the certificates can be verified and the cc crashes stop.

cc can use the acyclicity certificates similar to those in [IL92] (see below). Unlike the certificates of F,
the acyclicity certificates here cannot be reconstructed on the whole tree (as it might be too deep) and so
they must be adjusted locally. When one of the endpoints is open, the adjustment is simple: the open node
is either crashed into root or the certificate is extended just by one — trivial for many certificates.

A.3.1 Acyclicity Certificates

We illustrate the idea of acyclicity certificates, by briefly sketching a variant used in [IL92]. While there
certificate was constructed along the dfs traversal path of a tree, here we define using tree height.

Define µ(k) = −0 iff
∑

i ki is odd and > 1; µ(k) = +0 otherwise.12 In section 4 we defined a similar
sequence λ. Either of these two (and possibly some others) can be used to break symmetry: We say string
x = x1x2 . . . xk is asymmetric if it has one or two (separated by a special mark) segments of µ or λ embedded
in its digits (one sequence bit per constant number of string digits). For simplicity, we ignore other ways
to break symmetry. Asymmetry is required for organizing (hierarchical) computations (and for this reason
λ(h(v)/3) is made available to R, d specifically, via h3 = ±0).

Let us cut off the tail of each binary string k according to some rule, say, the shortest one starting with
00 (assume binary representation of any k starts with 00). Let us fix a natural representation of all integers
j > 2 by such tails ̂ and call j the suffix σ(k) of k. For a string χ, define ρ(χ, k) to be χσ(k) if σ(k) ≤ ‖χ‖,
and special symbol # otherwise. Then α[k] = ρ(k, k), and α(k) = 〈α[k], µ(k)〉. 13 Let Lα be the set of all
segments of α. Lα can be recognized in polynomial time.

Lemma A.2 Any string of the form ss, ‖s‖>2, contains segment y 6∈Lα, ‖y‖=(log ‖s‖)2+o(1).

Other variants of α can be devised to provide greater efficiency or other desirable properties (e.g., one
such variant was proposed in [IL92]).

For a language L of strings define a Γ(L) to be the language of trees, such that any root-leaf path contains
a string in L, and any equal length strings on down-paths ending at the same node are identical.

Let TA(XT) be a tree T of cellular automata A starting in the initial state with unchanging input XT . We
say that TA(XT) rejects XT if some of the automata enter a reject state. Language Γ of trees is t-recognized
by A if for all T , TA(XT) (1) rejects within t(k) steps those XT , which contain a subtree Y 6∈ Γ of depth k;
and (2) reject none of the X with all subtrees in Γ. For asynchronous self-stabilizing automata, requirement
(1) extends to arbitrary starting configurations and to trees rooted in a cycle; requirement (2) extends to
the case when ancestors or children branches of the tree are cut off during the computation.

Lemma A.3 For any polynomial time language L of asymmetric strings, Γ(L) is recognizable in polynomial
time by self-stabilizing protocols on asynchronous cellular tree-automata.

A.4 d sketch

d maintains groups somewhat similar to servers and clients of F. Each group maintains a contiguous
segment of an asymmetric sequence (e.g., µ or λ above) and contains the height of (or a lower bound, if

12This is a variant of Thue (or Thue-Morse) sequence [Thu12] defined as θ(k)
def

=
P

i
ki mod 2, where ki is the i-th bit of k.

13Inclusion of µ in α makes it asymmetric but otherwise is useful only for <40-bit segments. Also, µ(k) could be used instead
of # if i > ‖k‖ in α[k], but this complicates the coding and thus is skipped. It is also possible to reformulate the definition
using λ instead of µ.

17

near a sufficiently low group). This allows d to hierarchically check for i-rips using the same mechanisms as
the acyclicity certificates above. Intuitively, a group, working as a client, checks each of its incident edges
one at a time (non-hierarchically, since we are interested only in the groups at O(d) height). However, the
servers need to be organized hierarchically, storing also the pointer address in the hierarchical sub-groups
to the edges being served. Then even a large group can quickly detect a low adjacent group. For rips with
sufficiently large height difference, the subgroup of the appropriate hierarchy level changes the tree as a unit.
This may break the original group, but the remaining contiguous segments of asymmetric strings will be
sufficiently large to support the subgroups with the sufficiently large lower bounds on height (sufficiently
larger than the defecting subgroup’s new height).

d extends its the above data structures to the open trees rooted in locks. There, it computes the height
using λ embedded in h3=± 0. If the open tree is not large enough (does not contain two marks with non-0
rise between them), nor contains height information written there by d, then d crashes the whole tree. d

treats open low and high branches separately: the low subtree is crashed as a group if it has too few nodes
to determine the height (even if the high nodes would have added enough nodes).

18

