
Structural Operational Semantics
The main definitions

R.J. van Glabbeek

National ICT Australia

and School of Computer Science and Engineering

The University of New South Wales

rvg@cs.stanford.edu

Structural Operational Semantics [6, 7] is one of the main methods for defining the meaning of op-
erators in system description languages like CCS [6]. A system behaviour, or process, is represented
by a closed term built from a collection of operators, and the behaviour of a process is given by its
collection of (outgoing) transitions, each specifying the action the process performs by taking this
transition, and the process that results after doing so. For each n-ary operator f in the language, a
number of transition rules are specified that generate the transitions of a term f(p1, . . . , pn) from
the transitions (or the absence thereof) of its arguments p1, . . . , pn.

For purposes of representation and verification, several behavioural equivalence relations have
been defined on processes, of which the most well-known is strong bisimulation equivalence [6],
and its variants weak and branching bisimulation equivalence [6, 5], that feature abstraction from
internal actions. In order to allow compositional system verification, such equivalence relations need
to be congruences for the operators under consideration, meaning that the equivalence class of an n-
ary operator f applied to arguments p1, . . . , pn is completely determined by the equivalence classes
of these arguments. Although strong bisimulation equivalence is a congruence for the operators of
CCS and many other languages found in the literature, weak bisimulation equivalence fails to be a
congruence for the choice or alternative composition operator + of CCS. To bypass this problem
one uses the coarsest congruence relation for + that is finer than weak bisimulation equivalence,
characterised as rooted weak bisimulation equivalence [6, 2], which turns out to be a minor variation
of weak bisimulation equivalence, and a congruence for all of CCS and many other languages.
Analogously, rooted branching bisimulation is the coarsest congruence for CCS and many other
languages that is finer than branching bisimulation equivalence [5].

In order to streamline the process of proving that a certain equivalence is a congruence for
certain operators, and to guide sensible language definitions, syntactic criteria (rule formats) for
the transition rules in structural operational semantics have been developed, ensuring that the
equivalence is a congruence for any operator specified by rules that meet these criteria. One of
these is the GSOS format of Bloom, Istrail & Meyer [4], generalising an earlier format by
De Simone [8]. When adhering to this format, all processes are computably finitely branching,
and strong bisimulation equivalence is a congruence [4]. Bloom [3] defines congruence formats for
(rooted) weak and branching bisimulation equivalence by imposing additional restrictions on the
GSOS format.

1



1 Preliminaries

In this paper V = {x1, x2, . . .} and Act are two sets of variables and actions.

Definition 1 A signature is a collection Σ of function symbols f 6∈ V equipped with a function
ar : Σ → IN. The set TT(Σ) of terms over a signature Σ is defined recursively by:

• V ⊆ TT(Σ),

• if f ∈ Σ and t1, . . . , tar(f) ∈ TT(Σ) then f(t1, . . . , tar(f)) ∈ TT(Σ).

A term c() is abbreviated as c. For t ∈ TT(Σ), var (t) denotes the set of variables that occur in t.
T (Σ) is the set of closed terms over Σ, i.e. the terms p ∈ TT(Σ) with var(p) = ∅. A Σ-substitution

σ is a partial function from V to TT(Σ). If σ is a substitution and S is any syntactic object, then
σ(S) denotes the object obtained from S by replacing, for x in the domain of σ, every occurrence of
x in S by σ(x). In that case σ(S) is called a substitution instance of S. A Σ-substitution is closed

if it is a total function from V to T (Σ).

Definition 2 Let Σ be a signature. A positive Σ-literal is an expression t
a

−→ t′ and a negative

Σ-literal an expression t 6
a
−→ with t, t′ ∈ TT(Σ) and a ∈ Act. A transition rule over Σ is an expression

of the form H
α

with H a set of Σ-literals (the premises of the rule) and α a positive Σ-literal (the
conclusion). The left- and right-hand side of α are called the source and the target of the rule,
respectively. A rule H

α
with H = ∅ is also written α. A transition system specification (TSS ),

written (Σ, R), consists of a signature Σ and a collection R of transition rules over Σ. A TSS is
positive if the premises of its rules are positive.

Definition 3 [4] A GSOS rule is a transition rule such that

• its source has the form f(x1, . . . , xar(f)) with f ∈ Σ and xi ∈ V ,

• the left-hand sides of its premises are variables xi with 1 ≤ i ≤ ar(f),

• the right-hand sides of its positive premises are variables that that are all distinct, and that do
not occur in its source,

• its target only contains variables that also occur in its source or premises.

A GSOS language, or TSS in GSOS format, is a TSS whose rules are GSOS rules.

Example 1 The following fragment of CCS has the constant 0, unary operators a. for a∈Act,
binary operators + and ‖, and the GSOS rules below, one for every α ∈ Act and a ∈ A. Here
Act = A

.

∪ {τ} and A = N
.

∪ N with N a set of names and N = {a | a ∈ N} the set of co-names.
The function · is extended to A by a = a.

x1
α

−→ y1

x1 + x2
α

−→ y1

x2
α

−→ y2

x1 + x2
α

−→ y2

a.x1
α

−→ x1

x1
α

−→ y1

x1‖x2
α

−→ y1‖x2

x2
α

−→ y2

x1‖x2
α

−→ x1‖y2

x1
a

−→ y1 x2
a

−→ y2

x1‖x2
τ

−→ y1‖y2

2



Definition 4 A transition over a signature Σ is a closed positive Σ-literal. With structural recur-
sion on p one defines when a GSOS language L generates a transition p

a
−→ p′ (notation p

a
−→L p′):

f(p1, . . . , pn)
a

−→L q iff L has a transition rule H

f(x1,...,xn)
a

−→t
and there is a closed substitution

σ with σ(xi) = pi for i = 1, ..., n and σ(t) = q, such that pi
c

−→L σ(y) for (xi
c

−→ y) ∈ H and
¬∃r(pi

c
−→L r) for (xi 6

c
−→) ∈ H.

Definition 5 Two processes t and u are weak bisimulation equivalent or weakly bisimilar (t↔w u)
if tRu for a symmetric binary relation R on processes (a weak bisimulation) satisfying, for a ∈ Act,

if pRq and p
a

−→ p′ then ∃q1, q2, q
′ such that q =⇒ q1

(a)
−→ q2 =⇒ q′ ∧ p′Rq′. (*)

Here p =⇒ p′ abbreviates p = p0
τ

−→ p1
τ

−→ · · ·
τ

−→ pn = p′ for some n ≥ 0, whereas p
(a)
−→ p′

abbreviates (p
a

−→ p′) ∨ (a = τ ∧ p = p′).
t and u are η-bisimilar (t↔η u) if in (*) one additionally requires pRq1;
t and u are delay bisimilar (t↔d u) if in (*) one additionally requires q2 = q′;
t and u are branching bisimilar (t↔b u) if in (*) one requires both;
t and u are strongly bisimilar (t↔ u) if in (*) one simply requires q

a
−→ q′.

Two processes t and u are rooted weak bisimulation equivalent (t↔rw u), if they satisfy

if t
a

−→ t′ then ∃u1, u2, u such that u =⇒ u1
a

−→ u2 =⇒ u′ and t′↔w u′, and

if u
a

−→ u′ then ∃t1, t2, t such that t =⇒ t1
a

−→ t2 =⇒ t′ and t′↔w u′.

They are rooted η-bisimilar (t↔rη u) if above one additionally requires u1 = u, t1 = t, and t′↔η u′,
they are rooted delay bisimilar (t↔rd u) if one requires u2 = u′, t2 = t′ and t′↔d u′, and they are
rooted branching bisimilar (t↔rb u) if one requires u1 = u, u2 = u′, t1 = t, t2 = t′ and t′↔b u′.

It is well known and easy to check that the nine relations on processes defined above are equiva-
lence relations indeed [1, 5], and that, for x ∈ {weak, η, delay, branching, strong}, x-bisimulation
equivalence is the largest x-bisimulation relation on processes. Moreover, p↔rx q implies p↔x q.

Definition 6 An equivalence relation ∼ on processes is a congruence if

pi ∼ qi for i = 1, . . . , ar(f) ⇒ f(p1, . . . , par(f)) ∼ f(q1, . . . , qar(f))

for all f ∈ Σ. This is equivalent to the requirement that for all t ∈ TT(Σ) and closed substitutions
σ, ν : V → T (Σ)

σ(x) = ν(x) for x ∈ var (t) ⇒ σ(t) = ν(t).

Theorem 1 On any GSOS language, ↔ is a congruence.

References

[1] T. Basten. Branching bisimulation is an equivalence indeed! Information Processing Letters,
58(3):141–147, 1996.

[2] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. Theoretical

Computer Science, 37(1):77–121, 1985.

3



[3] B. Bloom. Structural operational semantics for weak bisimulations. Theoretical Computer

Science, 146:25–68, 1995.

[4] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can’t be traced. Journal of the ACM,
42(1):232–268, January 1995.

[5] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation seman-
tics. Journal of the ACM, 43(3):555–600, 1996.

[6] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, ed-
itor, Handbook of Theoretical Computer Science, chapter 19, pages 1201–1242. Elsevier Science
Publishers B.V. (North-Holland), 1990. Alternatively see Communication and Concurrency,
Prentice-Hall International, Englewood Cliffs, 1989, of which an earlier version appeared as A

Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.

[7] G.D. Plotkin. A structural approach to operational semantics. The Journal of Logic and

Algebraic Programming, 60–61:17–139, 2004. Originally appeared in 1981.

[8] R. de Simone. Higher-level synchronising devices in Meije-SCCS. Theoretical Computer Sci-

ence, 37:245–267, 1985.

4


