Structural Operational Semantics The main definitions

R.J. van Glabbeek National ICT Australia and School of Computer Science and Engineering The University of New South Wales rvg@cs.stanford.edu

Structural Operational Semantics [6, 7] is one of the main methods for defining the meaning of operators in system description languages like CCS [6]. A system behaviour, or process, is represented by a closed term built from a collection of operators, and the behaviour of a process is given by its collection of (outgoing) transitions, each specifying the action the process performs by taking this transition, and the process that results after doing so. For each *n*-ary operator f in the language, a number of transition rules are specified that generate the transitions of a term $f(p_1, \ldots, p_n)$ from the transitions (or the absence thereof) of its arguments p_1, \ldots, p_n .

For purposes of representation and verification, several behavioural equivalence relations have been defined on processes, of which the most well-known is *strong bisimulation equivalence* [6], and its variants *weak* and *branching* bisimulation equivalence [6, 5], that feature abstraction from internal actions. In order to allow compositional system verification, such equivalence relations need to be *congruences* for the operators under consideration, meaning that the equivalence class of an *n*ary operator *f* applied to arguments p_1, \ldots, p_n is completely determined by the equivalence classes of these arguments. Although strong bisimulation equivalence is a congruence for the operators of CCS and many other languages found in the literature, weak bisimulation equivalence fails to be a congruence for the *choice* or *alternative composition* operator + of CCS. To bypass this problem one uses the coarsest congruence relation for + that is finer than weak bisimulation equivalence, characterised as *rooted weak bisimulation equivalence* [6, 2], which turns out to be a minor variation of weak bisimulation equivalence, and a congruence for all of CCS and many other languages. Analogously, *rooted branching bisimulation* is the coarsest congruence for CCS and many other languages that is finer than branching bisimulation equivalence [5].

In order to streamline the process of proving that a certain equivalence is a congruence for certain operators, and to guide sensible language definitions, syntactic criteria (*rule formats*) for the transition rules in structural operational semantics have been developed, ensuring that the equivalence is a congruence for any operator specified by rules that meet these criteria. One of these is the *GSOS format* of BLOOM, ISTRAIL & MEYER [4], generalising an earlier format by DE SIMONE [8]. When adhering to this format, all processes are computably finitely branching, and strong bisimulation equivalence is a congruence [4]. BLOOM [3] defines congruence formats for (rooted) weak and branching bisimulation equivalence by imposing additional restrictions on the GSOS format.

1 Preliminaries

In this paper $V = \{x_1, x_2, ...\}$ and Act are two sets of variables and actions.

Definition 1 A signature is a collection Σ of function symbols $f \notin V$ equipped with a function $ar: \Sigma \to \mathbb{N}$. The set $\mathbb{T}(\Sigma)$ of terms over a signature Σ is defined recursively by:

- $V \subseteq \mathbf{T}(\Sigma)$,
- if $f \in \Sigma$ and $t_1, \ldots, t_{ar(f)} \in \mathbb{T}(\Sigma)$ then $f(t_1, \ldots, t_{ar(f)}) \in \mathbb{T}(\Sigma)$.

A term c() is abbreviated as c. For $t \in \mathbb{T}(\Sigma)$, var(t) denotes the set of variables that occur in t. $T(\Sigma)$ is the set of closed terms over Σ , i.e. the terms $p \in \mathbb{T}(\Sigma)$ with $var(p) = \emptyset$. A Σ -substitution σ is a partial function from V to $\mathbb{T}(\Sigma)$. If σ is a substitution and S is any syntactic object, then $\sigma(S)$ denotes the object obtained from S by replacing, for x in the domain of σ , every occurrence of x in S by $\sigma(x)$. In that case $\sigma(S)$ is called a substitution instance of S. A Σ -substitution is closed if it is a total function from V to $T(\Sigma)$.

Definition 2 Let Σ be a signature. A positive Σ -literal is an expression $t \xrightarrow{a} t'$ and a negative Σ -literal an expression $t \xrightarrow{a}$ with $t, t' \in \mathbb{T}(\Sigma)$ and $a \in Act$. A transition rule over Σ is an expression of the form $\frac{H}{\alpha}$ with H a set of Σ -literals (the premises of the rule) and α a positive Σ -literal (the conclusion). The left- and right-hand side of α are called the source and the target of the rule, respectively. A rule $\frac{H}{\alpha}$ with $H = \emptyset$ is also written α . A transition system specification (TSS), written (Σ, R) , consists of a signature Σ and a collection R of transition rules over Σ . A TSS is positive if the premises of its rules are positive.

Definition 3 [4] A GSOS rule is a transition rule such that

- its source has the form $f(x_1, \ldots, x_{ar(f)})$ with $f \in \Sigma$ and $x_i \in V$,
- the left-hand sides of its premises are variables x_i with $1 \le i \le ar(f)$,
- the right-hand sides of its positive premises are variables that that are all distinct, and that do not occur in its source,
- its target only contains variables that also occur in its source or premises.

A GSOS language, or TSS in GSOS format, is a TSS whose rules are GSOS rules.

Example 1 The following fragment of CCS has the constant 0, unary operators a_{-} for $a \in Act$, binary operators + and \parallel , and the GSOS rules below, one for every $\alpha \in Act$ and $a \in A$. Here $Act = A \cup \{\tau\}$ and $A = \mathcal{N} \cup \overline{\mathcal{N}}$ with \mathcal{N} a set of names and $\overline{\mathcal{N}} = \{\overline{a} \mid a \in \mathcal{N}\}$ the set of co-names. The function $\overline{\cdot}$ is extended to A by $\overline{\overline{a}} = a$.

$$\frac{x_1 \xrightarrow{\alpha} y_1}{x_1 + x_2 \xrightarrow{\alpha} y_1} \quad \frac{x_2 \xrightarrow{\alpha} y_2}{x_1 + x_2 \xrightarrow{\alpha} y_2} \quad a.x_1 \xrightarrow{\alpha} x_1$$

$$\frac{x_1 \xrightarrow{\alpha} y_1}{x_1 \| x_2 \xrightarrow{\alpha} y_1 \| x_2} \quad \frac{x_2 \xrightarrow{\alpha} y_2}{x_1 \| x_2 \xrightarrow{\alpha} x_1 \| y_2} \quad \frac{x_1 \xrightarrow{a} y_1 x_2 \xrightarrow{\overline{a}} y_2}{x_1 \| x_2 \xrightarrow{\tau} y_1 \| y_2}$$

Definition 4 A transition over a signature Σ is a closed positive Σ -literal. With structural recursion on p one defines when a GSOS language \mathcal{L} generates a transition $p \xrightarrow{a} p'$ (notation $p \xrightarrow{a}_{\mathcal{L}} p'$):

 $f(p_1, \ldots, p_n) \xrightarrow{a}_{\mathcal{L}} q$ iff \mathcal{L} has a transition rule $\frac{H}{f(x_1, \ldots, x_n) \xrightarrow{a} t}$ and there is a closed substitution σ with $\sigma(x_i) = p_i$ for $i = 1, \ldots, n$ and $\sigma(t) = q$, such that $p_i \xrightarrow{c}_{\mathcal{L}} \sigma(y)$ for $(x_i \xrightarrow{c} y) \in H$ and $\neg \exists r(p_i \xrightarrow{c}_{\mathcal{L}} r)$ for $(x_i \xrightarrow{c}_{\mathcal{L}} H) \in H$.

Definition 5 Two processes t and u are weak bisimulation equivalent or weakly bisimilar $(t \simeq u)$ if $t\mathcal{R}u$ for a symmetric binary relation \mathcal{R} on processes (a weak bisimulation) satisfying, for $a \in Act$,

if
$$p\mathcal{R}q$$
 and $p \xrightarrow{a} p'$ then $\exists q_1, q_2, q'$ such that $q \Longrightarrow q_1 \xrightarrow{(a)} q_2 \Longrightarrow q' \land p'\mathcal{R}q'$. (*)

Here $p \Longrightarrow p'$ abbreviates $p = p_0 \xrightarrow{\tau} p_1 \xrightarrow{\tau} \cdots \xrightarrow{\tau} p_n = p'$ for some $n \ge 0$, whereas $p \xrightarrow{(a)} p'$ abbreviates $(p \xrightarrow{a} p') \lor (a = \tau \land p = p')$.

- t and u are η -bisimilar $(t \leq_{\eta} u)$ if in (*) one additionally requires $p\mathcal{R}q_1$;
- t and u are delay bisimilar $(t \simeq_d u)$ if in (*) one additionally requires $q_2 = q'$;
- t and u are branching bisimilar $(t \simeq_b u)$ if in (*) one requires both;
- t and u are strongly bisimilar $(t \leq u)$ if in (*) one simply requires $q \stackrel{a}{\longrightarrow} q'$.

Two processes t and u are rooted weak bisimulation equivalent $(t \simeq_{rw} u)$, if they satisfy

if $t \xrightarrow{a} t'$ then $\exists u_1, u_2, u$ such that $u \Longrightarrow u_1 \xrightarrow{a} u_2 \Longrightarrow u'$ and $t' \underset{w}{\hookrightarrow} u'$, and if $u \xrightarrow{a} u'$ then $\exists t_1, t_2, t$ such that $t \Longrightarrow t_1 \xrightarrow{a} t_2 \Longrightarrow t'$ and $t' \underset{w}{\hookrightarrow} u'$.

They are rooted η -bisimilar $(t \simeq_{r\eta} u)$ if above one additionally requires $u_1 = u$, $t_1 = t$, and $t' \simeq_{\eta} u'$, they are rooted delay bisimilar $(t \simeq_{rd} u)$ if one requires $u_2 = u'$, $t_2 = t'$ and $t' \simeq_{d} u'$, and they are rooted branching bisimilar $(t \simeq_{rb} u)$ if one requires $u_1 = u$, $u_2 = u'$, $t_1 = t$, $t_2 = t'$ and $t' \simeq_{b} u'$.

It is well known and easy to check that the nine relations on processes defined above are equivalence relations indeed [1, 5], and that, for $x \in \{\text{weak}, \eta, \text{delay}, \text{branching}, \text{strong}\}$, x-bisimulation equivalence is the largest x-bisimulation relation on processes. Moreover, $p \rightleftharpoons_{rx} q$ implies $p \rightleftharpoons_{x} q$.

Definition 6 An equivalence relation \sim on processes is a *congruence* if

$$p_i \sim q_i \text{ for } i = 1, \dots, ar(f) \Rightarrow f(p_1, \dots, p_{ar(f)}) \sim f(q_1, \dots, q_{ar(f)})$$

for all $f \in \Sigma$. This is equivalent to the requirement that for all $t \in \mathbb{T}(\Sigma)$ and closed substitutions $\sigma, \nu: V \to T(\Sigma)$

$$\sigma(x) = \nu(x) \text{ for } x \in var(t) \implies \sigma(t) = \nu(t).$$

Theorem 1 On any GSOS language, \leq is a congruence.

References

- T. Basten. Branching bisimulation is an equivalence indeed! Information Processing Letters, 58(3):141-147, 1996.
- [2] J.A. Bergstra and J.W. Klop. Algebra of communicating processes with abstraction. *Theoretical Computer Science*, 37(1):77–121, 1985.

- [3] B. Bloom. Structural operational semantics for weak bisimulations. Theoretical Computer Science, 146:25–68, 1995.
- [4] B. Bloom, S. Istrail, and A.R. Meyer. Bisimulation can't be traced. Journal of the ACM, 42(1):232–268, January 1995.
- [5] R.J. van Glabbeek and W.P. Weijland. Branching time and abstraction in bisimulation semantics. Journal of the ACM, 43(3):555–600, 1996.
- [6] R. Milner. Operational and algebraic semantics of concurrent processes. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 19, pages 1201–1242. Elsevier Science Publishers B.V. (North-Holland), 1990. Alternatively see Communication and Concurrency, Prentice-Hall International, Englewood Cliffs, 1989, of which an earlier version appeared as A Calculus of Communicating Systems, LNCS 92, Springer-Verlag, 1980.
- [7] G.D. Plotkin. A structural approach to operational semantics. *The Journal of Logic and Algebraic Programming*, 60–61:17–139, 2004. Originally appeared in 1981.
- [8] R. de Simone. Higher-level synchronising devices in MEIJE-SCCS. Theoretical Computer Science, 37:245–267, 1985.