Two process graphs G and H over Act and P are isomorphic—notation $G \cong H$ —iff there is a bijective mapping between their sets of states that preserves $I, \to \text{ and } \models$. Thus, if $G = (S_G, I_G, \to_G, \models_G)$ and $H = (S_H, I_H, \to_H, \models_H)$, then $G \cong H$ iff there is a mapping $i: S_G \to S_H$ such that $i(I_G) = I_H$, $i(s) \xrightarrow{a}_{H} i(t)$ iff $s \xrightarrow{a}_{G} t$ (for $s, t \in S_G$, and $a \in Act$), $i(s) \models_H p$ iff $s \models_G p$ (for $s \in S_G$ and $p \in P$), and for all $s' \in I_H$ there is exactly one $s \in I_G$ with i(s) = s'.

Usually one does not distinguish isomorphic process graphs. This means that one abstracts from the identity of the nodes. In drawings of process graphs states are represented as dots, a transition (p, a, q) is represented by an *a*-labelled arrow from *p* to *q* and the initial state is represented by an incoming arrow (not originating from another state). Hence these drawings represent process graphs only up to isomorphism.