Specification, analysis and verification of distributed sygems

At an increasing rate, humanity is creating distributedesys through hardware and software—systems
consisting of multiple components that interact with eattfenthrough message passing or other syn-
chronisation mechanisms. Examples are distributed dsggbaommunication networks, operating sys-
tems, industrial control systems, etc. Many of these syst&m® hard to understand, yet vitally important.
Therefore, significant effort needs to be made to ensure ¢beiect working.

Formal methods are an indispensable tool towards that emal; donsist of specification formalisms
to unambiguously capture the intended requirements andvimir of a system under consideration,
tools and analysis methods to study and reason about vitgepies of the system, and mathematically
rigorous methods to verify that (a) a system specificatiosusss the required properties, and (b) an
implementation meets the specification.

The standard alternative to formal specification formadisare descriptions in English, or other nat-
ural languages, that try to specify the requirements arehded workings of a system. History has
shown, almost without exception, that such descriptiorgsiddled with ambiguities, contradictions and
under-specification. Formalisation of such a descriptioegardless in which formalism—is the key to
elimination of these holes.

A formal specification of a distributed system typically agsrin (at least) two parts.

One part formulates threquirementsmposed on the system as a list of properties the systemahoul
have. Amongst the formalisms to specify such requirememgdesmporal logics like Linear-time Tem-
poral Logic (LTL) [Pnu7¥] or Computation Tree Logic (CTL)@BZ2]. Amongst others, they can specify
safety propertiessaying that something bad will never happen, ¢meness propertiessaying that
something good will happen eventually [Lam77].

The other part is a formal description of how the system otmkatork on anoperational(= step by
step) basis, but abstracting from implementation detkibs.distributed systems such accounts typically
consist of descriptions of each of the parallel componeagsyell as of the communication interfaces
that specify how different components interact with eadtent Languages for giving such formal de-
scriptions aresystem description language#/hen a system description language features constants to
specify elementary system activities, and operators fikeallel or sequential composition) to create
more complex systems out of simpler ones, it is sometimdsdcalprocess algebraAlternatively, op-
erational system descriptions can be rendered in a modarmiucrency, such as Petri nets or labelled
transition systems. Such models are also used to descabedhning of system description languages.

Once such a two-tiered formalisation of a system has beendem, there are two obvious tasks to
ensure the correct working of implementations: (a) guaeing that the operational system description
meets the requirements imposed on the system, and (b) eggbtat an implementation satisfies the
specification. The latter task additionally requires a digdim of what it means for an implementation to
satisfy a specification, and this definition should ensua¢ dmy relevant correctness properties that are
shown to hold for the specification also hold for the impletagan.

A third type of task is the study of other properties of the liempentation, not implied by the spec-
ification. Examples are measuring its execution times, whegse are not part of the specification, or
its success rate, for operations for which success canngudé@anteed and only a best effort is made.
Potentially, these tasks call for applications of prokigbtheory.

Traditional approaches to ensure the correct working dfidiged systems are simulation and test-
bed experiments. While these are important and valid mstifimdsystem evaluation, in particular for
guantitative performance evaluation, they have limitaiin regards to the evaluation of basic correct-
ness properties. Experimental evaluation is resouresste and time-consuming, and, even after a



very long time of evaluation, only a finite set of operatioreénarios can be considered—no general
guarantee can be given about correct system behaviour fadearange of unpredictable deployment

scenarios. | believe that formal methods help in this regdrely complement simulation and test-bed

experiments as methods for system evaluation and verditaéind provide stronger and more general
assurances about system properties and behaviour.

Achievements of process algebra and related formalisms

Process algebras a family of approaches to the specification, analysis ardieation of distributed
systems. Its tools encompass algebraic languages for guifisption of processes (mentioned above),
algebraic laws to reason about processes, and inductiocigigs to derive behaviours of infinite systems
from those of their finite approximations.

Many industrial size distributed systems have been suftdlysspecified, analysed and verified in
frameworks based on process algebra. Examples can be toounght the following links. Major toolsets
primarily based on process algebra include FDR [GABR14]DEAGLMS11],, mCRL2[GM14] and
the Psi-Calculi Workbench [BGRV15, BJPV11]. Most of thesel$ets also use model checking or other
mathematical techniques that explore the state spacestdbdied systems. Similar toolsets primarily
based on the latter techniques include SRIN [Hol04], UPPABDLO04], PRISM [KNP10] and TLA
[LamOZ].
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