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Specification, analysis and verification of distributed systems

At an increasing rate, humanity is creating distributed systems through hardware and software—systems
consisting of multiple components that interact with each other through message passing or other syn-
chronisation mechanisms. Examples are distributed databases, communication networks, operating sys-
tems, industrial control systems, etc. Many of these systems are hard to understand, yet vitally important.
Therefore, significant effort needs to be made to ensure their correct working.

Formal methods are an indispensable tool towards that end. They consist of specification formalisms
to unambiguously capture the intended requirements and behaviour of a system under consideration,
tools and analysis methods to study and reason about vital properties of the system, and mathematically
rigorous methods to verify that (a) a system specification ensures the required properties, and (b) an
implementation meets the specification.

The standard alternative to formal specification formalisms are descriptions in English, or other nat-
ural languages, that try to specify the requirements and intended workings of a system. History has
shown, almost without exception, that such descriptions are riddled with ambiguities, contradictions and
under-specification. Formalisation of such a description—regardless in which formalism—is the key to
elimination of these holes.

A formal specification of a distributed system typically comes in (at least) two parts.
One part formulates therequirementsimposed on the system as a list of properties the system should

have. Amongst the formalisms to specify such requirements are temporal logics like Linear-time Tem-
poral Logic (LTL) [Pnu77] or Computation Tree Logic (CTL) [EC82]. Amongst others, they can specify
safety properties, saying that something bad will never happen, andliveness properties, saying that
something good will happen eventually [Lam77].

The other part is a formal description of how the system oughtto work on anoperational(= step by
step) basis, but abstracting from implementation details.For distributed systems such accounts typically
consist of descriptions of each of the parallel components,as well as of the communication interfaces
that specify how different components interact with each other. Languages for giving such formal de-
scriptions aresystem description languages. When a system description language features constants to
specify elementary system activities, and operators (likeparallel or sequential composition) to create
more complex systems out of simpler ones, it is sometimes called aprocess algebra. Alternatively, op-
erational system descriptions can be rendered in a model of concurrency, such as Petri nets or labelled
transition systems. Such models are also used to describe the meaning of system description languages.

Once such a two-tiered formalisation of a system has been provided, there are two obvious tasks to
ensure the correct working of implementations: (a) guaranteeing that the operational system description
meets the requirements imposed on the system, and (b) ensuring that an implementation satisfies the
specification. The latter task additionally requires a definition of what it means for an implementation to
satisfy a specification, and this definition should ensure that any relevant correctness properties that are
shown to hold for the specification also hold for the implementation.

A third type of task is the study of other properties of the implementation, not implied by the spec-
ification. Examples are measuring its execution times, whenthese are not part of the specification, or
its success rate, for operations for which success cannot beguaranteed and only a best effort is made.
Potentially, these tasks call for applications of probability theory.

Traditional approaches to ensure the correct working of distributed systems are simulation and test-
bed experiments. While these are important and valid methods for system evaluation, in particular for
quantitative performance evaluation, they have limitations in regards to the evaluation of basic correct-
ness properties. Experimental evaluation is resource-intensive and time-consuming, and, even after a
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very long time of evaluation, only a finite set of operationalscenarios can be considered—no general
guarantee can be given about correct system behaviour for a wide range of unpredictable deployment
scenarios. I believe that formal methods help in this regard; they complement simulation and test-bed
experiments as methods for system evaluation and verification, and provide stronger and more general
assurances about system properties and behaviour.

Achievements of process algebra and related formalisms

Process algebrais a family of approaches to the specification, analysis and verification of distributed
systems. Its tools encompass algebraic languages for the specification of processes (mentioned above),
algebraic laws to reason about processes, and induction principles to derive behaviours of infinite systems
from those of their finite approximations.

Many industrial size distributed systems have been successfully specified, analysed and verified in
frameworks based on process algebra. Examples can be found though the following links. Major toolsets
primarily based on process algebra include FDR [GABR14], CADP [GLMS11], mCRL2 [GM14] and
the Psi-Calculi Workbench [BGRV15, BJPV11]. Most of these toolsets also use model checking or other
mathematical techniques that explore the state spaces of distributed systems. Similar toolsets primarily
based on the latter techniques include SPIN [Hol04], UPPAAL[BDL04], PRISM [KNP10] and TLA
[Lam02].

References

[BDL04] G. Behrmann, A. David & K.G. Larsen (2004):A Tutorial on Uppaal. In M. Bernardo & F. Corradini,
editors: Revised Lectures onFormal Methods for the Design of Real-Time Systems, LNCS 3185,
Springer, pp. 200–236, doi:10.1007/978-3-540-30080-9_7.

[BGRV15] J. Borgström, R. Gutkovas, I. Rodhe & B. Victor (2015): The Psi-Calculi Workbench: A Generic
Tool for Applied Process Calculi. ACM Trans. Embedded Comput. Syst.14(1), pp. 9:1–9:25, doi:10.
1145/2682570.

[BJPV11] J. Bengtson, M. Johansson, J. Parrow & B. Victor (2011): Psi-calculi: a framework for mobile pro-
cesses with nominal data and logic. Logical Methods in Computer Science7(1), doi:10.2168/
LMCS-7(1:11)2011.

[EC82] E.A. Emerson & E.M. Clarke (1982):Using Branching Time Temporal Logic to Synthesize Syn-
chronization Skeletons. Science of Computer Programming2(3), pp. 241–266, doi:10.1016/
0167-6423(83)90017-5.

[GABR14] T. Gibson-Robinson, P.J. Armstrong, A. Boulgakov& A.W. Roscoe (2014):FDR3 - A Modern Re-
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