
On Structural Induction and Homework 3

Peter Höfner

1 Introduction

Exercise 2 of Homework 3 (http://www.cse.unsw.edu.au/~rvg/6752/homework.html) was con-
sidered very hard. One reason is that many students are not familiar with structural induction. The
purpose of this short note is to recapitulate the basic principles of structural induction and to present one
solution for Exercise 2. As usual, there may be other correct solutions for the same exercise; hence the
presented solution should not be considered as the only solution.

2 On Structural induction

A good overview of structural induction is provided by Wikipedia (https://en.wikipedia.org/
wiki/Structural_induction).

Structural Induction is a generalisation of induction over the natural numbers, which should be fa-
miliar to anybody who took a basic course in mathematics at university.

Induction over the natural numbers is a proof technique to establish results for all natural numbers.
An induction (over natural numbers) is done in two steps. The first, known as the base case, is to prove
the statement (proof goal) for a “first” natural number. (Often the base case considers the number “0”
or “1”, but is not limited to these numbers.) The second step, called induction step is to prove that the
statement holds for any given number (larger than the number used in the base case). This is done by
assuming that the statement holds for a number n—this assumption is called induction hypothesis. Using
this hypothesis one has to show that the statement holds for n+ 1. If these two steps can be shown,
the statement holds for all natural numbers larger than or equal to the number used for the base case.
(Sometimes it is necessary to expand the hypothesis to all natural numbers between the number used
in the base case and n; it is easy to see that this expansion generalises classical induction on natural
numbers.) The key to apply induction over natural numbers is the fact that any number can be split into
strictly smaller numbers.

Structural induction generalises this idea and works on any recurse data type (any structure that can
be split into smaller fragments). Structural induction is a proof technique to establish results for all
elements of a recursively defined structure (or a well-founded structure). All ‘indivisible’ elements will
form the base case. For example, any list can be built from the empty list and all lists containing only a
single element, using list concatenation.

A structural induction is done in two steps. The first, known as the base case, is to prove the statement
(proof goal) for the small indivisible elements. The second step, called induction step is to prove that the
statement holds for all structures that can be built from the base elements. This is done by assuming that
the statement holds for elements n1 to nk and then to prove that is holds for all structures that are built up
from these elements.

http://www.cse.unsw.edu.au/~rvg/6752/homework.html
https://en.wikipedia.org/wiki/Structural_induction
https://en.wikipedia.org/wiki/Structural_induction

2 On Structural Induction

Exercise 2 of Homework 3

Having the basics of structural induction in mind, we can now look at an example, namely Exercise 2 of
Homework 3.
Exercise. Let Cl = tick.Cl and Cl2 = tick.tick.Cl2. Show that no modal formula (of HML) distin-
guishes these clocks.
Solution. The idea is to use structural induction. The syntax of Hennesy-Milner-Logic was given by

Φ = true | false |Φ∧Φ |Φ∨Φ | ¬Φ | [K]Φ | 〈K〉Φ

It is easy to see that ∨ can be defined using ¬ and ∧, hence we will not consider ∨ later on. In principle,
[K]Φ can be expressed as 〈K〉Φ and could be skipped as well (to keep the proof short); for completeness
I include the case for 〈K〉Φ.

Looking at the syntax we easily see that the only ‘indivisible’ element is true (false can be ex-
pressed by means of true). So the base case has to consider true; however, for all processes P, P |= true

holds, so the claim is trivial.
Cl |= true ⇔ Cl2 |= true

The induction hypothesis states that for HML-formulas Φ1 and Φ2 cannot distinguish Cl and CL2
That is

Cl |= Φ1 ⇔ Cl2 |= Φ1 , and

Cl |= Φ2 ⇔ Cl2 |= Φ2 .

Based on this hypothesis we now have to show that the formulas Φ1∧Φ2, ¬Φ1, [K]Φ1 and 〈K〉Φ1 cannot
distinguish CL and CL2 either.

Case Φ1∧Φ2: Using the semantic definition of ∧, the induction hypothesis and the definition again, the
statement is easy to show.

Cl |= Φ1∧Φ2

⇔ {|semantic definition of ∧ as shown in the lecture|}
Cl |= Φ1 and Cl |= Φ2

⇔ {|induction hypothesis|}
Cl2 |= Φ1 and Cl2 |= Φ2

⇔ {|semantic definition of ∧ as shown in the lecture|}
Cl2 |= Φ1∧Φ2

Case ¬Φ1: The case for negation is even simpler:

Cl |= ¬Φ1

⇔ {|semantic definition of ¬ as shown in the lecture|}
not (Cl |= Φ1)

⇔ {|induction hypothesis|}
not (Cl2 |= Φ1)

⇔ {|semantic definition of ¬ as shown in the lecture|}
Cl2 |= ¬Φ1

P. Höfner 3

The remaining two cases are the most interesting ones, since they consider the modal operators of
HML. We assume K to be an arbitrary set.

Case [K]Φ1: As before we ‘unfold’ the formula using the semantic definition. This splits the formula
into smaller parts where we can use the induction hypothesis.

Unfolding yields the following equivalences

Cl |= [K]Φ1 ⇔ ∀F ∈ {E |Cl b−→ E, b ∈ K}. F |= Φ1 , and

Cl2 |= [K]Φ1 ⇔ ∀F ∈ {E |Cl2 b−→ E, b ∈ K}. F |= Φ1 .

Both Cl and Cl2 can only perform a tick-action. Depending on whether tick∈K we can determine
the sets that show up in the above calculations.
tick 6∈ K: In this case {E |Cl b−→ E, b ∈ K}= {E |Cl2 b−→ E, b ∈ K}= /0, and hence the claim follows
immediatly.

Cl |= [K]Φ1

⇔ ∀F ∈ {E |Cl b−→ E, b ∈ K}. F |= Φ1

⇔ ∀F ∈ /0. F |= Φ1

⇔ ∀F ∈ {E |Cl2 b−→ E, b ∈ K}. F |= Φ1

⇔ Cl2 |= [K]Φ1

(We do not even use the induction hypothesis.)
tick ∈ K: Since the process can only do a single transition, the sets contain a single element.

Cl |= [K]Φ1 ⇔ ∀F ∈ {Cl}. F |= Φ1 ⇔ Cl |= Φ1 , and

Cl2 |= [K]Φ1 ⇔ ∀F ∈ {tick.Cl2}. F |= Φ1 ⇔ tick.Cl2 |= Φ1 .

If we could show that Cl2 and tick.Cl2 are undistinguishable, then we would be done:

Cl |= [K]Φ1

⇔ {|see above|}
Cl |= Φ1

⇔ {|induction hypothesis|}
Cl2 |= Φ1

⇔ {|assumption: for all Φ: tick.Cl2 |= Φ⇔Cl2 |= Φ|}
⇔ tick.Cl2 |= Φ1

⇔ {|see above|}
Cl2 |= [K]Φ1

Therefore it remains to show the assumption, which will be done in a separate lemma below.

Case 〈K〉Φ1: This case is similar to the previous one: replace all occurrences of [K] by 〈K〉,
and ∀ by ∃.

4 On Structural Induction

We now show the remaining assumption.

Lemma. For all formulas Φ we have tick.Cl2 |= Φ⇔Cl2 |= Φ.

Proof. The proof is again by structural induction. The induction base (true) is trivial since, for all
process P, P |= true (as before).

So, let’s assume that tick.Cl2 |= Φ1⇔Cl2 |= Φ1 and tick.Cl2 |= Φ2⇔Cl2 |= Φ2—the induction
hypothesis.

Since the reasoning is similar to the calculations shown before, I keep the explanations short.

Case Φ1∧Φ2:

Cl2 |= Φ1∧Φ2

⇔ {|semantics|}
Cl2 |= Φ1 and Cl2 |= Φ2

⇔ {|induction hypothesis|}
tick.Cl2 |= Φ1 and tick.Cl2 |= Φ2

⇔ {|semantics|}
tick.Cl2 |= Φ1∧Φ2

Case ¬Φ1:

Cl2 |= ¬Φ1

⇔ {|semantics|}
not (Cl2 |= Φ1)

⇔ {|induction hypothesis|}
not (tick.Cl2 |= Φ1)

⇔ {|semantics|}
tick.Cl2 |= ¬Φ1

Case [K]Φ1: I only show the case if tick ∈ K, the other case is the same as above.

Cl2 |= [K]Φ1

⇔ {|semantics|}

∀F ∈ {E |Cl2 b−→ E, b ∈ K}. F |= Φ1

⇔ {|definition of Cl2|}
∀F ∈ {tick.Cl2}. F |= Φ1

⇔ {|set theory|}
tick.Cl2 |= Φ1

⇔ {|induction hypothesis|}
Cl2 |= Φ1

P. Höfner 5

⇔ {|set theory|}
∀F ∈ {Cl2}. F |= Φ1

⇔ {|definition of prefix|}

∀F ∈ {E |tick.Cl2 b−→ E, b ∈ K}. F |= Φ1

⇔ {|semantics|}
tick.Cl2 |= [K]Φ1

Case 〈K〉Φ1: Similar to the previous case—again I only consider tick ∈ K

Cl2 |= 〈K〉Φ1

⇔ {|semantics|}

∃F ∈ {E |Cl2 b−→ E, b ∈ K}. F |= Φ1

⇔ {|definition of Cl2|}
∃F ∈ {tick.Cl2}. F |= Φ1

⇔ {|set theory|}
tick.Cl2 |= Φ1

⇔ {|induction hypothesis|}
Cl2 |= Φ1

⇔ {|set theory|}
∃F ∈ {Cl2}. F |= Φ1

⇔ {|definition of prefix|}

∃F ∈ {E |tick.Cl2 b−→ E, b ∈ K}. F |= Φ1

⇔ {|semantics|}
tick.Cl2 |= 〈K〉Φ1

	Introduction
	On Structural induction

