Algorithmic Verification
Model Checking

Aidan Farrell

UNSW

August 4, 2020



Outline

» Review of Kripke Structures
» Structure & Parsing of CTL
» CTL checking example

» CTL checking algorithm



Kripke Structures

@ {suspend}
(@Y (@)

{stop} {run}

{terminate}

P> Represent Processes as states and transitions:
» Each state has an associated set atomic propositions

» stop, run, terminate, suspend



CTL Verification

{suspend}
start *}./—\

{stop} {run}

{terminate}

> To verify a property, we express said property as CTL.



CTL Verification

{suspend}
—run
start *}./—\

{stop} {run}

{terminate}

> To verify a property, we express said property as CTL.

» E.g. CTL —run is true in at go because g is not in the set of
states satisfying run.



CTL Verification

@ {suspend}
—run
start *}./—\

{stop} {run}

{terminate}

> To verify a property, we express said property as CTL.

» E.g. CTL —run is true in at go because g is not in the set of
states satisfying run.

» Similarly for any CTL without timing operators.



CTL Parsing

» Atomic propositions as leaf nodes

» Branch nodes are operators.

» E.g. E (EF (suspend V stop) U terminate) becomes
E(U)
/N

EF. terminate

|
VA
/ N\
stop  suspend

» Branches are true/false at states

» States with child node true determe states where parent is
true.



Step by step Verification

f {suspend} E ( U )
EF- terminate
start —)./—‘ !

RV
{stop} {run} e ~N

t
{terminate} stop suspend

» How do we apply this CTL parse tree to verification?



Step by step Verification

f {suspend} E ( U )
EF - terminate
start —)./—‘ !

AV

{stop} {run} .
t
{terminate} SuSpend

» How do we apply this CTL parse tree to verification?
» Our parse tree makes it easy to verify incrementally.



Step by step Verification

' {suspend} E ( U )

EF- terminate
I

AV

—a
start %—>
AN
{stop} {run} ~
sto suspend
{terminate} P

» How do we apply this CTL parse tree to verification?
» Our parse tree makes it easy to verify incrementally.

P Already, states that are suspend or stop are atomic
propositions



Step by step Verification

' {suspend} E ( U )

EF- terminate

I
V-

~

1
{terminate} EOP susper|d

» How do we apply this CTL parse tree to verification?

—a
start ——>
AN

{stop} {run}

» Our parse tree makes it easy to verify incrementally.

P Already, states that are suspend or stop are atomic
propositions

» Going up the parse tree to more complicated CTL, can we
determine states that are stop V suspend?



Step by step Verification

q2 ) {suspend} E ( U )
stop V suspend’ L N
stop V suspend .
. terminate
L EF
start —— !
> | VAR

fstop) {ran} ~

e {terminate} EOP Suspend

» How do we apply this CTL parse tree to verification?

v

Our parse tree makes it easy to verify incrementally.

» Already, states that are suspend or stop are atomic
propositions

» Going up the parse tree to more complicated CTL, can we

determine states that are stop V suspend?

» Union of stop states and suspend states.



Step by step Verification

{suspend}
stop V suspend
stop V suspend
()Y ()

{stop} {run}
e {terminate}

E(U)

st

op‘

EF .-

V-

teg

~
suspernd

rminate

» What about Timing operators? EF stop V suspend



Step by step Verification

{suspend}
stop V suspend

stop V suspend

(&Y

{stop}

{run}

e {terminate}

E(U")

st

op[

EF .-

V-

teg

~
suspernd

rminate

» What about Timing operators? EF stop V suspend

> States that have are stop V suspend, obviously eventually get

there.



Step by step Verification

92 ) {suspend}
F stop V suspend|
EF stop V suspend

start 4}
S

E(U)

st

op[

EF .-

V-

terminate

~
suspernd

» What about Timing operators? EF stop V suspend

> States that have are stop V suspend, obviously eventually get

there.



Step by step Verification

92 ) {suspend}
F stop V suspend|

EF stop V suspend

(Y|
Wt

{stop}
TSPy

E(U")

~

terminate

suspernd

» What about Timing operators? EF stop V suspend

> States that have are stop V suspend, obviously eventually get

there.

» States with any transition to a EF stop V suspend states.



Step by step Verification

92 ) {suspend} E ( U )
/' F stop V suspend|

EF stop v d .
Stop ¥ Suspenel o / EF- términate
start —)/(lh EF stop V suspen| |
| AV
un}

fsiop) {

~

Y
{terminate} ‘ stop [ suspend

» What about Timing operators? EF stop V suspend

> States that have are stop V suspend, obviously eventually get
there.

» States with any transition to a EF stop V suspend states.



Step by step Verification

92 ) {suspend} E ( U )
/ F stop V suspend|
EF stop v d .
Stop ¥ Suspenel o / EF- términate
start —)/(lh EF stop V suspen| |
S VAN
un}

T {

~

Y
{terminate} ‘ stop [ suspend

» What about Timing operators? EF stop V suspend

> States that have are stop V suspend, obviously eventually get
there.

» States with any transition to a EF stop V suspend states.

» No more states can transition to those states.



Step by step Verification

q2 ) {suspend} E ( U )
/ F stop V suspend|

EF stop\/suspend\ / EF. terminate
start|——> /<q1 EF stop V suspend |

> | VS
{stop} ~

Py un}
{terminate} ’ SﬂOP ‘ susper|d

P> g3 satisfies because it is marked terminate.

~—




Step by step Verification

92 ) {suspend} E ( U )
/ F stop V suspend|

EF stop v d i
stop V suspen L / EF - terminate
start _)/<q1 EF stop V suspend !
> "V
{stop} {run} »
Y F stop V suspend U terminate ’ SHOP ‘ susper|d
{terminate}

» g3 satisfies because it is marked terminate.



Step by step Verification

92 ) {suspend} E ( U )
/ F stop V suspend|
EF stop\/suspend\ / EF. terminate
start|—> /<l71 EF stop V suspend !
> -
ftop) fhan ~

Y F stop V suspend U terminate SHOP ‘ susper|d
{terminate}

» g3 satisfies because it is marked terminate.

) 1. Marked with LHS: EF stop V suspend
> g is ok because



Step by step Verification

92 ) {suspend}
/ F stop V suspend|

EF stop V suspend
o
start|—> /<l71 EF stop V suspend
S
un}

{stop) {

R Y F stop V suspend U termi
{terminate}

jate

E(-U")

sﬂop‘

EF - términa

susperiq

te

» g3 satisfies because it is marked terminate.
1. Marked with LHS: EF stop V suspend

> g is ok because

2. Transitions to an already E(-U-) state



Step by step Verification

{suspend} E ( U )

F stop V suspend|

EF stop V suspend .
e / EF - terminate
start|—> @ @E stop V suspend) U terminate !
S VAR
fstop} ~

Fstop\/suspendU terminate SHOP‘ suspend

{term\nate}

» g3 satisfies because it is marked terminate.

) 1. Marked with LHS: EF stop V suspend
> g is ok because

2. Transitions to an already E(-U-) state



Step by step Verification

{suspend} E ( U )

F stop V suspend|

EF stop V suspend .
e / EF - terminate
start|—> a @E stop V suspend) U terminate !
S VAR
fstop} ~

Fstop\/suspendU terminate SHOP‘ suspend

{term\nate}

» g3 satisfies because it is marked terminate.

) 1. Marked with LHS: EF stop V suspend
> g is ok because

2. Transitions to an already E(-U-) state
» Same for gp and g



Step by step Verification

@ {suspend} E ( U )
Bp V suspend) U termin.

EF stop V suspend) U terminal EF. terminate
tart —) go/p V suspend) U termil |
VAR
~

F stop V suspend U terminjate| SHOP ‘ susper|d
q {terminate}

E.
by

o
&

» g3 satisfies because it is marked terminate.

1. Marked with LHS: EF stop V suspend

> g is ok because
2. Transitions to an already E (- U-) state

» Same for qg and g



Step by step Verification

e {suspend} E ( U )
(EFptdp V suspend) U terminate
E (|EF stop V suspend) U terminat, EF. tdrminate
tart —)(IE Stop V suspend) U terminate !
-
un} ~
F stop \/ suspend U terminate| stop [ susperid
{terminate}

» g3 satisfies because it is marked terminate.

. 1. Marked with LHS: EF stop V suspend
> g is ok because
2. Transitions to an already E (- U-) state

» Same for qg and g
» go now marked with the CTL we wanted to prove!



Marking algorithm

» Recursively process the CTL Parse tree.

» Input: CTL Parse tree ¢, Kripke Structure Q@ = {qo, g1, ...}

» Output: Set Sat,, of states where ¢ is true.



Marking algorithm

» Recursively process the CTL Parse tree.

» Input: CTL Parse tree ¢, Kripke Structure Q@ = {qo, g1, ...}
» Output: Set Sat,, of states where ¢ is true.

» L(q) = set of propositions at q. (q,q’) € edges set of edges.



Marking algorithm

» Recursively process the CTL Parse tree.

» Input: CTL Parse tree ¢, Kripke Structure Q = {qo, q1, .-}

» Output: Set Sat,, of states where ¢ is true.

» L(q) = set of propositions at q. (q,q’) € edges set of edges.
Mark(y) where ¢ is an atomic proposition

foreach g € Q do
if o € L(q) then » Mark depending if in the

Sat, :=Sat, U {q} set of propositions



Marking algorithm

» Recursively process the CTL Parse tree.

» Input: CTL Parse tree ¢, Kripke Structure Q = {qo, q1, .-}

» Output: Set Sat,, of states where ¢ is true.

» L(q) = set of propositions at q. (q,q’) € edges set of edges.
Mark(¢ = —)) boolean negation

Saty = Mark(1)); » Run algorithm for
foreach g € Q do un-negated .
if g ¢Sat,, then » For every state, ¢
Sat, :=Sat, U{q}; marking is opposite of v

marking.



Marking algorithm

» Recursively process the CTL Parse tree.

» Input: CTL Parse tree ¢, Kripke Structure Q = {qo, q1, .-}

» Output: Set Sat,, of states where ¢ is true.

» L(q) = set of propositions at q. (q,q’) € edges set of edges.
Mark(¢ = 11 A 1),) boolean and/or

Saty, == Mark(¢1); » Run algorithm for both

Saty, = Mark(1,); 1 and 1.

foreach ¢ € Q do » Only add to set if state is
if (g €Saty,) A (q €Saty,) then 4 1 both U1 and ¥y

Sat, :=Sat, U ; - i is simi
aty at, U{q} » Disjunction V is similar.



Marking algorithm

Mark exists until: ¢ = E1 U,

Saty, = Mark(y1);Saty, := Mark(yz)
foreach g € Q do
if g €Saty,, then
Sat, :=Sat, U {q};

Vi=Vu{q}
W= WuU{q}
while W # 0 do

q := remove from W;
foreach g’, where edge ¢’ — q do
if ¢’ ¢ V then
Vi=vu{qd}
if ¢/ ESat,lPl then
Saty, :=Sat, U{q'}; W :=WuU{q'};

» visit every node, from 1,
back through edges.

» W is the ‘frontier’ of the ¢
marked nodes.



Marking algorithm

Mark always until: ¢ = Ay Uy

Saty, = Mark(y1);Saty, := Mark(yz)
foreach g € Q do
counts[q] := # of edges g —;
if g €Saty,, then
Sat, :=Sat, U {q};
W= WuU {q};

while W # 0 do
q := remove from W;
foreach g’, where edge g’ — q do
counts[q’] := counts[q] — 1;
if counts[q] = 0 A ¢’ €Saty, A q’ ¢Sat, then
Sat, :=Sat, U {q'};
w:=wu{¢}

counts[q] is the # edges
not visited yet.

Instead of visited, check
every outgoing edge, by
counting down numC.



Marking algorithm

Mark exists globally: ¢ = EGy

Saty, = Mark(v);
SCC := {C|C is a nontrivial SCC of Sat,, };

T = Ucescc{s\s Xat
Sat, ::Satq; uT;
while T # (0 do
s := remove from T;
foreach q €Saty, A edge ¢ — s do;
T:=TU{q}
Sat, :=Sat, U {q};

Allows for fairness
assumption

(SCQ)C (strongly
connected components)
maximal subgraph where
every node reachable from
every other, in C.

nontrivial = either > 1
node or self-loop.



Fairness

> Most fairness can be expressed as LTL, but not CTL, because
they are path-based.

» Modify the definition of V and 3

» Such that interpreted on fair paths



References

[1] 2]
[4 Christel Baier. Principles of model checking. eng. Cambridge,
Mass.: MIT Press, 2008. 1SBN: 026226756X.

[} (Edmund Melson) Clarke Edmund M. Model checking. eng.
Cambridge, Mass.: MIT Press, 1999. 1sBN: 0585385580.



	References

