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Kripke Structures

q0start

{stop}

q1

{run}

q2 {suspend}

q3 {terminate}

I Represent Processes as states and transitions:
I Each state has an associated set atomic propositions
I stop, run, terminate, suspend



CTL Verification

q0start

{stop}

q1

{run}

q2 {suspend}

q3 {terminate}

¬run

I To verify a property, we express said property as CTL.

I E.g. CTL ¬run is true in at q0 because q0 is not in the set of
states satisfying run.

I Similarly for any CTL without timing operators.
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CTL Parsing

I Atomic propositions as leaf nodes
I Branch nodes are operators.
I E.g. E ( EF (suspend ∨ stop) U terminate) becomes

E (·U ·)

EF ·

· ∨ ·

stop suspend

terminate

I Branches are true/false at states
I States with child node true determe states where parent is

true.



Step by step Verification
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I How do we apply this CTL parse tree to verification?

I Our parse tree makes it easy to verify incrementally.
I Already, states that are suspend or stop are atomic

propositions
I Going up the parse tree to more complicated CTL, can we

determine states that are stop ∨ suspend?
I Union of stop states and suspend states.
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I How do we apply this CTL parse tree to verification?
I Our parse tree makes it easy to verify incrementally.
I Already, states that are suspend or stop are atomic
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I What about Timing operators? EF stop ∨ suspend

I States that have are stop ∨ suspend , obviously eventually get
there.

I States with any transition to a EF stop ∨ suspend states.
I No more states can transition to those states.
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I q3 satisfies because it is marked terminate.

I q2 is ok because

1. Marked with LHS: EF stop ∨ suspend

2. Transitions to an already E (·U ·) state

I Same for q0 and q2
I q0 now marked with the CTL we wanted to prove!
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Marking algorithm

I Recursively process the CTL Parse tree.
I Input: CTL Parse tree ϕ, Kripke Structure Q = {q0, q1, . . .}.
I Output: Set Satϕ of states where ϕ is true.

I L(q) = set of propositions at q. (q, q′) ∈ edges set of edges.
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I Recursively process the CTL Parse tree.
I Input: CTL Parse tree ϕ, Kripke Structure Q = {q0, q1, . . .}.
I Output: Set Satϕ of states where ϕ is true.
I L(q) = set of propositions at q. (q, q′) ∈ edges set of edges.

Mark(ϕ) where ϕ is an atomic proposition

foreach q ∈ Q do
if ϕ ∈ L(q) then

Satϕ :=Satϕ ∪ {q}
I Mark depending if in the

set of propositions



Marking algorithm
I Recursively process the CTL Parse tree.
I Input: CTL Parse tree ϕ, Kripke Structure Q = {q0, q1, . . .}.
I Output: Set Satϕ of states where ϕ is true.
I L(q) = set of propositions at q. (q, q′) ∈ edges set of edges.

Mark(ϕ = ¬ψ) boolean negation

Satψ = Mark(ψ);
foreach q ∈ Q do

if q /∈Satψ then
Satϕ :=Satϕ ∪ {q};

I Run algorithm for
un-negated ψ.

I For every state, ϕ
marking is opposite of ψ
marking.



Marking algorithm
I Recursively process the CTL Parse tree.
I Input: CTL Parse tree ϕ, Kripke Structure Q = {q0, q1, . . .}.
I Output: Set Satϕ of states where ϕ is true.
I L(q) = set of propositions at q. (q, q′) ∈ edges set of edges.

Mark(ϕ = ψ1 ∧ ψ2) boolean and/or

Satψ1 := Mark(ψ1);
Satψ2 := Mark(ψ2);
foreach q ∈ Q do

if (q ∈Satψ1) ∧ (q ∈Satψ2) then
Satϕ :=Satϕ ∪ {q};

I Run algorithm for both
ψ1 and ψ2.

I Only add to set if state is
marked both ψ1 and ψ2

I Disjunction ∨ is similar.



Marking algorithm

Mark exists until: ϕ = Eψ1 Uψ2

Satψ1 := Mark(ψ1);Satψ2 := Mark(ψ2)
foreach q ∈ Q do

if q ∈Satψ2 then
Satϕ :=Satϕ ∪ {q};
V := V ∪ {q};
W := W ∪ {q};

while W 6= ∅ do
q := remove from W ;
foreach q′, where edge q′ → q do

if q′ /∈ V then
V := V ∪ {q′};
if q′ ∈Satψ1 then

Satϕ :=Satϕ ∪ {q′}; W := W ∪ {q′};

I visit every node, from ψ2
back through edges.

I W is the ‘frontier’ of the ϕ
marked nodes.



Marking algorithm

Mark always until: ϕ = Aψ1 Uψ2

Satψ1 := Mark(ψ1);Satψ2 := Mark(ψ2)
foreach q ∈ Q do

counts[q] := # of edges q →;
if q ∈Satψ2 then

Satϕ :=Satϕ ∪ {q};
W := W ∪ {q};

while W 6= ∅ do
q := remove from W ;
foreach q′, where edge q′ → q do

counts[q′] := counts[q]− 1;
if counts[q] = 0 ∧ q′ ∈Satψ1 ∧ q′ /∈Satϕ then

Satϕ :=Satϕ ∪ {q′};
W := W ∪ {q′};

I counts[q] is the # edges
not visited yet.

I Instead of visited, check
every outgoing edge, by
counting down numC.



Marking algorithm

Mark exists globally: ϕ = EGψ

Satψ := Mark(ψ);
SCC := {C|C is a nontrivial SCC of Satψ};
T :=

⋃
c∈SCC

{s|s ∈ C};
Satϕ :=Satϕ ∪ T ;
while T 6= ∅ do

s := remove from T ;
foreach q ∈Satψ ∧ edge q → s do;

T := T ∪ {q};
Satϕ :=Satϕ ∪ {q};

I Allows for fairness
assumption

I (SCC)C (strongly
connected components)

I maximal subgraph where
every node reachable from
every other, in C .

I nontrivial = either > 1
node or self-loop.



Fairness

I Most fairness can be expressed as LTL, but not CTL, because
they are path-based.

I Modify the definition of ∀ and ∃
I Such that interpreted on fair paths
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