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2 The linear time { bran
hing time spe
trum IIntrodu
tionPro
ess theory A pro
ess is the behaviour of a system. The system 
an be a ma
hine, anelementary parti
le, a 
ommuni
ation proto
ol, a network of falling dominoes, a 
hess player,or any other system. Pro
ess theory is the study of pro
esses. Two main a
tivities of pro
esstheory are modelling and veri�
ation. Modelling is the a
tivity of representing pro
esses, mostlyby mathemati
al stru
tures or by expressions in a system des
ription language. Veri�
ation is thea
tivity of proving statements about pro
esses, for instan
e that the a
tual behaviour of a systemis equal to its intended behaviour. Of 
ourse, this is only possible if a 
riterion has been de�ned,determining whether or not two pro
esses are equal, i.e. two systems behave similarly. Su
h a
riterion 
onstitutes the semanti
s of a pro
ess theory. (To be pre
ise, it 
onstitutes the semanti
sof the equality 
on
ept employed in a pro
ess theory.) Whi
h aspe
ts of the behaviour of a systemare of importan
e to a 
ertain user depends on the environment in whi
h the system will be running,and on the interests of the parti
ular user. Therefore it is not a task of pro
ess theory to �nd the`true' semanti
s of pro
esses, but rather to determine whi
h pro
ess semanti
s is suitable for whi
happli
ations.Comparative 
on
urren
y semanti
s This paper aims at the 
lassi�
ation of pro
ess se-manti
s.1 The set of possible pro
ess semanti
s 
an be partially ordered by the relation `makesstri
tly more identi�
ations on pro
esses than', thereby be
oming a 
omplete latti
e3. Now the
lassi�
ation of some useful pro
ess semanti
s 
an be fa
ilitated by drawing parts of this latti
e andlo
ating the positions of some interesting pro
ess semanti
s, found in the literature. Furthermorethe ideas involved in the 
onstru
tion of these semanti
s 
an be unravelled and 
ombined in new
ompositions, thereby 
reating an abundan
e of new pro
ess semanti
s. These semanti
s will, bytheir intermediate positions in the semanti
 latti
e, shed light on the di�eren
es and similarities ofthe established ones. Sometimes they also turn out to be interesting in their own right. Finallythe semanti
 latti
e serves as a map on whi
h it 
an be indi
ated whi
h semanti
s satisfy 
ertaindesirable properties, and are suited for a parti
ular 
lass of appli
ations.Most semanti
 notions en
ountered in 
ontemporary pro
ess theory 
an be 
lassi�ed along fourdi�erent lines, 
orresponding with four di�erent kinds of identi�
ations. First there is the di
hotomyof linear time versus bran
hing time: to what extent should one identify pro
esses di�ering only inthe bran
hing stru
ture of their exe
ution paths? Se
ondly there is the di
hotomy of interleavingsemanti
s versus partial order semanti
s: to what extent should one identify pro
esses di�eringonly in the 
ausal dependen
ies between their a
tions (while agreeing on the possible orders ofexe
ution)? Thirdly one en
ounters di�erent treatments of abstra
tion from internal a
tions in apro
ess: to what extent should one identify pro
esses di�ering only in their internal or silent a
tions?And fourthly there are di�erent approa
hes to in�nity: to what extent should one identify pro
essesdi�ering only in their in�nite behaviour? These 
onsiderations give rise to a four dimensionalrepresentation of the proposed semanti
 latti
e.1This �eld of resear
h is 
alled 
omparative 
on
urren
y2semanti
s, a terminology �rst used by Meyer in [36℄.2Here 
on
urren
y is taken to be synonymous with pro
ess theory, although stri
tly speaking it is only the studyof parallel (as opposed to sequential) pro
esses. These are the behaviours of systems 
apable of performing di�erenta
tions at the same time. In this paper the term 
on
urren
y is 
onsidered to in
lude sequential pro
ess theory. Thismay be justi�ed sin
e mu
h work on sequential pro
esses is intended to fa
ilitate later studies involving parallelism.3The supremum of a set of pro
ess semanti
s is the semanti
s identifying two pro
esses whenever they are identi�edby every semanti
s in this set.
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Introdu
tion 3However, at least three more dimensions 
an be distinguished. In this paper, sto
hasti
 and real-time aspe
ts of pro
esses are 
ompletely negle
ted. Furthermore it deals with uniform 
on
urren
y4only. This means that pro
esses are studied, performing a
tions5 a; b; 
; ::: whi
h are not subje
t tofurther investigations. So it remains unspe
i�ed if these a
tions are in fa
t assignments to variablesor the falling of dominoes or other a
tions. If also the options are 
onsidered of modelling (to a
ertain degree) the sto
hasti
 and real-time aspe
ts of pro
esses and the operational behaviour ofthe elementary a
tions, three more parameters in the 
lassi�
ation emerge.Pro
ess domains In order to be able to reason about pro
esses in a mathemati
al way, it is
ommon pra
ti
e to represent pro
esses as elements of a mathemati
al domain6. Su
h a domainis 
alled a pro
ess domain. The relation between the domain and the world of real pro
esses ismostly stated informally. The semanti
s of a pro
ess theory 
an be modelled as an equivalen
e ona pro
ess domain, 
alled a semanti
 equivalen
e. In the literature one �nds among others:� graph domains, in whi
h a pro
ess is represented as a pro
ess graph, or state transition diagram,� net domains, in whi
h a pro
ess is represented as a (labelled) Petri net,� event stru
ture domains, in whi
h a pro
ess is represented as a (labelled) event stru
ture,� expli
it domains, where a pro
ess is represented as a mathemati
ally 
oded set of its properties,� proje
tive limit domains, whi
h are obtained as proje
tive limits of series of �nite term domains,� and term domains, in whi
h a pro
ess is represented as a term in a system des
ription language.A
tion relations Write p a�! q if the pro
ess p 
an evolve into the pro
ess q, while performingthe a
tion a. The binary predi
ates a�! are 
alled a
tion relations. The semanti
 equivalen
eswhi
h are treated in this paper will be de�ned entirely in terms of a
tion relations. Hen
e thesede�nitions apply to any pro
ess domain on whi
h a
tion relations are de�ned. Su
h a domain is
alled a labelled transition system. Furthermore they will be de�ned uniformly in terms of a
tionrelations, meaning that all a
tions are treated in the same way. For reasons of 
onvenien
e, eventhe usual distin
tion between internal and external a
tions is dropped in this paper.Finitely bran
hing, 
on
rete, sequential pro
esses Being a �rst step, this paper limits itselfto a very simple 
lass of pro
esses. First of all only sequential pro
esses are investigated: pro
esses
apable of performing at most one a
tion at a time. Furthermore, instead of dropping the usualdistin
tion between internal and external a
tions, one 
an equivalently maintain to study 
on
retepro
esses: pro
esses in whi
h no internal a
tions o

ur. For this simple 
lass of pro
esses theannoun
ed semanti
 latti
e 
ollapses in two out of four dimensions and 
overs only the in�nitarylinear time { bran
hing time spe
trum.Moreover, the main interest is in �nitely bran
hing pro
esses: pro
esses having in ea
h state only�nitely many possible ways to pro
eed. The material pertaining to in�nitely bran
hing pro
esses|
oloured brown in the ele
troni
 version of this paper|
an easily be omitted in �rst reading.4The term uniform 
on
urren
y is employed by De Bakker et al [8℄.5Stri
tly speaking pro
esses do not perform a
tions, but systems do. However, for reasons of 
onvenien
e, thispaper sometimes uses the word pro
ess, when a
tually referring to a system of whi
h the pro
ess is the behaviour.6I use the word domain in the sense of universal algebra; it 
an be any 
lass of mathemati
al obje
ts|typi
ally the�rst 
omponent of an algebra; the other 
omponent being a 
olle
tion of operators de�ned on this domain. Withoutfurther adje
tives I do not refer to the more restri
tive domains employed in domain theory.
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4 The linear time { bran
hing time spe
trum ILiterature In the literature on uniform 
on
urren
y 12 semanti
s 
an be found, whi
h are uni-formly de�nable in terms of a
tion relations and di�erent on the domain of �nitely bran
hing,sequential pro
esses (see Figure 1). The 
oarsest one (i.e. the semanti
s making the most identi�-

tra
e semanti
s
ompleted tra
e semanti
sfailures semanti
sreadiness semanti
sfailure tra
e semanti
sready tra
e semanti
spossible worlds semanti
sready simulation semanti
s2-nested simulation semanti
sbisimulation semanti
s

simulation semanti
s
possible-futures semanti
s

(tree semanti
s)

Figure 1: The linear time { bran
hing time spe
trum
ations) is tra
e semanti
s, as presented in Hoare [30℄. In tra
e semanti
s only partial tra
es areemployed. The �nest one (making less identi�
ations than any of the others) is bisimulation seman-ti
s, as presented inMilner [39℄. Bisimulation semanti
s is the standard semanti
s for the systemdes
ription language CCS (Milner [37℄). The notion of bisimulation was introdu
ed in Park [41℄.Bisimulation equivalen
e is a re�nement of observational equivalen
e, as introdu
ed by Hennessy& Milner in [27℄. On the domain of �nitely bran
hing, 
on
rete, sequential pro
esses, both equiv-alen
es 
oin
ide. Also the semanti
s of De Bakker & Zu
ker, presented in [9℄, 
oin
ides withbisimulation semanti
s on this domain. Then there are ten semanti
s in between. First of all avariant of tra
e semanti
s 
an be obtained by using 
omplete tra
es besides partial ones. In thispaper it is 
alled 
ompleted tra
e semanti
s. Failures semanti
s is introdu
ed in Brookes, Hoare& Ros
oe [13℄, and used in the 
onstru
tion of a model for the system des
ription language CSP
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failure trace
ready trace
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Introdu
tion 5(Hoare [29, 31℄). It is �ner than 
ompleted tra
e semanti
s. The semanti
s based on testing equiv-alen
es, as developed in De Ni
ola & Hennessy [17℄, 
oin
ides with failures semanti
s on thedomain of �nitely bran
hing, 
on
rete, sequential pro
esses, as do the semanti
s of Kennaway [34℄and Darondeau [15℄. This has been established in De Ni
ola [16℄. In Olderog & Hoare [40℄readiness semanti
s is presented, whi
h is slightly �ner than failures semanti
s. Between readinessand bisimulation semanti
s one �nds ready tra
e semanti
s, as introdu
ed independently in Pnueli[43℄ (there 
alled barbed semanti
s), Baeten, Bergstra & Klop [6℄ and Pomello [44℄ (under thename exhibited behaviour semanti
s). The natural 
ompletion of the square, suggested by failures,readiness and ready tra
e semanti
s yields failure tra
e semanti
s. For �nitely bran
hing pro
essesthis is the same as refusal semanti
s, introdu
ed in Phillips [42℄. Simulation semanti
s, based onthe 
lassi
al notion of simulation (see e.g. Park [41℄), is independent of the last �ve semanti
s.Ready simulation semanti
s was introdu
ed in Bloom, Istrail & Meyer [12℄ under the nameGSOS tra
e 
ongruen
e. It is �ner than ready tra
e as well as simulation semanti
s. In Larsen& Skou [35℄ a more operational 
hara
terization of this equivalen
e was given under the name23 -bisimulation equivalen
e. The (denotational) notion of possible worlds semanti
s of Veglioni &De Ni
ola [49℄ �ts between ready tra
e and ready simulation semanti
s. Finally 2-nested simula-tion semanti
s, introdu
ed in Groote & Vaandrager [25℄, is lo
ated between ready simulationand bisimulation semanti
s, and possible-futures semanti
s, as proposed in Rounds & Brookes[46℄, 
an be positioned between 2-nested simulation and readiness semanti
s.Tree semanti
s, employed inWinskel [50℄, is even �ner than bisimulation semanti
s. However,a proper treatment requires more than mere a
tion relations.About the 
ontents The �rst se
tion of this paper introdu
es labelled transition systems andpro
ess graphs. A labelled transition system is any pro
ess domain that is equipped with a
tionrelations. The domain of pro
ess graphs or state transition diagrams is one of the most popularlabelled transition systems. In Se
tions 2{14 all semanti
 equivalen
es mentioned above are de�nedon arbitrary labelled transition systems. In parti
ular these de�nitions apply to the domain ofpro
ess graphs. Most of the equivalen
es 
an be motivated by the observable behaviour of pro
esses,a

ording to some testing s
enario. (Two pro
esses are equivalent if they allow the same set ofpossible observations, possibly in response to 
ertain experiments.) I will try to 
apture thesemotivations in terms of button pushing experiments (
f. Milner [37℄, pp. 10-12). Furthermore thesemanti
s will be partially ordered by the relation `makes at least as many identi�
ations as'. Thisyields the linear time { bran
hing time spe
trum. Counterexamples are provided, showing that onthe graph domain this ordering 
annot be further expanded. However, for deterministi
 pro
essesthe spe
trum 
ollapses, as was �rst observed by Park [41℄. Se
tion 16 des
ribes various other 
lassesof pro
esses on whi
h parts of the spe
trum 
ollapse. In Se
tion 17, the semanti
s are applied to asimple language for �nite, 
on
rete, sequential, nondeterministi
 pro
esses, and for twelve of thema 
omplete axiomatization is provided. Se
tion 18 applies a few 
riteria indi
ating whi
h semanti
sare suitable for whi
h appli
ations. Finally, in Se
tion 19 the work of this paper is extended tolabelled transition systems that distinguish between deadlo
k and su

essful termination.With ea
h of the semanti
 equivalen
es treated in this paper (ex
ept for tree semanti
s) apreorder is asso
iated that may serve as an implementation relation between pro
esses. The resultsobtained for the equivalen
es are extended to the asso
iated preorders as well.A
knowledgment My thanks to Tony Hoare for suggesting that the axioms of Table 2 
ould besimpli�ed along the lines of Table 5.
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6 The linear time { bran
hing time spe
trum I1 Labelled transition systems and pro
ess graphs1.1 Labelled transition systemsIn this paper pro
esses will be investigated that are 
apable of performing a
tions from a given setA
t. By an a
tion any a
tivity is understood that is 
onsidered as a 
on
eptual entity on a 
hosenlevel of abstra
tion. A
tions may be instantaneous or durational and are not required to terminate,but in a �nite time only �nitely many a
tions 
an be 
arried out. Any a
tivity of an investigatedpro
ess should be part of some a
tion a 2 A
t performed by the pro
ess. Di�erent a
tivities thatare indistinguishable on the 
hosen level of abstra
tion are interpreted as o

urren
es of the samea
tion a 2 A
t.A pro
ess is sequential if it 
an perform at most one a
tion at the same time. In this paper onlysequential pro
esses will be 
onsidered. A 
lass of sequential pro
esses 
an often be 
onvenientlyrepresented as a labelled transition system. This is a domain IP on whi
h in�x written binarypredi
ates a�! are de�ned for ea
h a
tion a 2 A
t. The elements of IP represent pro
esses, andp a�! q means that p 
an start performing the a
tion a and after 
ompletion of this a
tion rea
ha state where q is its remaining behaviour. In a labelled transition system it may happen thatp a�! q and p b�! r for di�erent a
tions a and b or di�erent pro
esses q and r. This phenomenonis 
alled bran
hing. It need not be spe
i�ed how the 
hoi
e between the alternatives is made, orwhether a probability distribution 
an be atta
hed to it.Certain a
tions may be syn
hronizations of a pro
ess with its environment, or the re
eipt ofa signal sent by the environment. Naturally, these a
tions 
an only o

ur if the environment
ooperates. In the labelled transition system representation of pro
esses all these potential a
tionsare in
luded, so p a�! q merely means that there is an environment in whi
h the a
tion a 
an o

ur.Notation: For any alphabet �, let �� be the set of �nite sequen
es and �1 the set of in�nitesequen
es over �. �! := �� [ �1. Write " for the empty sequen
e, �� for the 
on
atenation of� 2 �� and � 2 �!, and a for the sequen
e 
onsisting of the single symbol a 2 �.De�nition 1.1 A labelled transition system is a pair (IP;!) with IP a 
lass and! � IP�A
t� IP,su
h that for p 2 IP and a 2 A
t the 
lass fq 2 IP j (p; a; q) 2 !g is a set.Most of this paper should be read in the 
ontext of a given labelled transition system (IP;!),ranged over by p; q; r; :::. Write p a�! q for (p; a; q) 2 !. The binary predi
ates a�! are 
alleda
tion relations.De�nition 1.2 (Remark that the following 
on
epts are de�ned in terms of a
tion relations only)� The generalized a
tion relations ��! for � 2 A
t� are de�ned re
ursively by:1. p "�! p, for any pro
ess p.2. (p; a; q) 2 ! with a 2 A
t implies p a�! q with a 2 A
t�.3. p ��! q ��! r implies p ���! r.In words: the generalized a
tion relations ��! are the re
exive and transitive 
losure of theordinary a
tion relations a�!. p ��! q means that p 
an evolve into q, while performing thesequen
e � of a
tions. Remark that the overloading of the notion p a�! q is quite harmless.� A pro
ess q 2 IP is rea
hable from p 2 IP if p ��! q for some � 2 A
t�.



Labelled transition systems and pro
ess graphs 7� The set of initial a
tions of a pro
ess p is de�ned by: I(p) = fa 2 A
t j 9q : p a�! qg.� A pro
ess p 2 IP is �nite if the set f(�; q) 2 (A
t� � IP) j p ��! qg is �nite.� p is image �nite if for ea
h � 2 A
t� the set fq 2 IP j p ��! qg is �nite.� p is deterministi
 if p ��! q ^ p ��! r ) q = r.� p is well-founded if there is no in�nite sequen
e p a1�! p1 a2�! p2 a3�! � � �.� p is �nitely bran
hing if for ea
h q rea
hable from p, the set f(a; r)2A
t� IP j q a�! rg is �nite.Note that a pro
ess p 2 IP is image �nite i� for ea
h q 2 IP rea
hable from p and ea
h a 2 A
t, theset fr 2 IP j q a�! rg is �nite. Hen
e �nitely bran
hing pro
esses are image �nite. Moreover, byK�onig's lemma a pro
ess is �nite i� it is well-founded and �nitely bran
hing.1.2 Pro
ess graphsDe�nition 1.3 A pro
ess graph over an alphabet A
t is a rooted, dire
ted graph whose edges arelabelled by elements of A
t. Formally, a pro
ess graph g is a triple (nodes(g);root(g);edges(g)),where� nodes(g) is a set, of whi
h the elements are 
alled the nodes or states of g,� root(g) 2 nodes(g) is a spe
ial node: the root or initial state of g,� and edges(g) � nodes(g)�A
t�nodes(g) is a set of triples (s; a; t) with s; t 2 nodes(g) anda 2 A
t: the edges or transitions of g.If e = (s; a; t) 2 edges(g), one says that e goes from s to t. A (�nite) path � in a pro
ess graph is analternating sequen
e of nodes and edges, starting and ending with a node, su
h that ea
h edge goesfrom the node before it to the node after it. If � = s0(s0; a1; s1)s1(s1; a2; s2) � � � (sn�1; an; sn)sn,also denoted as � : s0 a1�! s1 a2�! � � � an�! sn, one says that � goes from s0 to sn; it starts in s0 andends in end(�) = sn. Let paths(g) be the set of paths in g starting from the root. If s and t arenodes in a pro
ess graph then t 
an be rea
hed from s if there is a path going from s to t. A pro
essgraph is said to be 
onne
ted if all its nodes 
an be rea
hed from the root; it is a phrase-tree if ea
hnode 
an be rea
hed from the root by exa
tly one path. Let jG be the domain of 
onne
ted pro
essgraphs over a given alphabet A
t.De�nition 1.4 Let g; h 2 jG. A graph isomorphism between g and h is a bije
tive fun
tionf : nodes(g)! nodes(h) satisfying� f(root(g)) = root(g) and� (s; a; t) 2 edges(g) , (f(s); a; f(t)) 2 edges(h).Graphs g and h are isomorphi
, notation g �= h, if there exists a graph isomorphism between them.In this 
ase g and h di�er only in the identity of their nodes. Remark that graph isomorphism isan equivalen
e relation on jG.Conne
ted pro
ess graphs 
an be pi
tured by using open dots (Æ) to denote nodes, and labelledarrows to denote edges, as 
an be seen further on. There is no need to mark the root of su
h apro
ess graph if it 
an be re
ognized as the unique node without in
oming edges, as is the 
asein all my examples. These pi
tures determine pro
ess graphs only up to graph isomorphism, butusually this suÆ
es sin
e it is virtually never needed to distinguish between isomorphi
 graphs.



8 The linear time { bran
hing time spe
trum IDe�nition 1.5 For g 2 jG and s 2 nodes(g), let gs be the pro
ess graph de�ned by� nodes(gs) = ft 2 nodes(g) j there is a path going from s to tg,� root(gs) = s 2 nodes(gs),� and (t; a; u) 2 edges(gs) i� t; u 2 nodes(gs) and (t; a; u) 2 edges(g).Of 
ourse gs 2 jG. Note that groot(g) = g. Now on jG a
tion relations a�! for a 2 A
t are de�nedby g a�! h i� (root(g); a; s) 2 edges(g) and h = gs. This makes jG into a labelled transitionsystem.1.3 Embedding labelled transition systems in jGLet (IP;!) be an arbitrary labelled transition system and let p 2 IP. The 
anoni
al graph G(p) ofp is de�ned as follows:� nodes(G(p)) = fq 2 IP j 9� 2 A
t� : p ��! qg,� root(G(p)) = p 2 nodes(G(p)),� and (q; a; r) 2 edges(G(p)) i� q; r 2 nodes(G(p)) and q a�! r.Of 
ourse G(p) 2 jG. This means G is a fun
tion from IP to jG.Proposition 1.1 G : IP ! jG is inje
tive and satis�es, for a 2 A
t: G(p) a�! G(q) , p a�! q.Moreover, G(p) a�! h only if h has the form G(q) for some q 2 IP (with p a�! q).Proof: Trivial. 2Proposition 1.1 says that G is an embedding of IP in jG. It implies that any labelled transitionsystem over A
t 
an be represented as a sub
lass G(IP) = fG(p) 2 jG j p 2 IPg of jG.Sin
e jG is also a labelled transition system, G 
an be applied to jG itself. The followingproposition says that the fun
tion G : jG! jG leaves its arguments inta
t up to graph isomorphism.Proposition 1.2 For g 2 jG, G(g) �= g.Proof: Remark that nodes(G(g)) = fgs j s 2 nodes(g)g.Now the fun
tion f : nodes(G(g)) ! nodes(g) de�ned by f(gs) = s is a graph isomorphism. 21.4 Equivalen
es relations and preorders on labelled transition systemsThis paper studies semanti
s on labelled transition systems. Ea
h of the semanti
s examined here(ex
ept for tree semanti
s) is de�ned or 
hara
terized in terms of a fun
tion O that asso
iates withevery pro
ess p 2 IP a set O(p). In most 
ases the elements of O(p) 
an be regarded as the possibleobservations one 
ould make while intera
ting with the pro
ess p in the 
ontext of a parti
ulartesting s
enario. The set O(p) then 
onstitutes the observable behaviour of p. For every su
h O, theequivalen
e relation =O 2 IP� IP is given by p =O q , O(p) = O(q), and the preorder vO 2 IP� IPby p vO q , O(p) � O(q). Obviously p =O q , p vO q ^ q vO p. The semanti
 equivalen
e=O partitions IP into equivalen
e 
lasses of pro
esses that are indistinguishable by observation(using observations of type O). The preorder vO moreover provides a partial order between theseequivalen
e 
lasses; one that 
ould be taken to 
onstitute an \implementation" relation. Theasso
iated semanti
s, also 
alled O, is the 
riterion that identi�es two pro
esses whenever they are

pr-embedding


Tra
e semanti
s 9O-equivalent. Two semanti
s are 
onsidered the same if the asso
iated equivalen
e relations arethe same.As the de�nitions of O are given entirely in terms of a
tion relations, they apply to any la-belled transition system IP. Moreover, the de�nitions of O(p) involve only a
tion relations betweenpro
esses rea
hable from p. Thus Proposition 1.1 implies that O(G(p)) = O(p). This in turn yieldsCorollary 1.1 p vO q i� G(p) vO G(q) and p =O q i� G(p) =O G(q). 2Write O �IP N if semanti
s O makes at least as mu
h identi�
ations as semanti
s N . This is the
ase if the equivalen
e 
orresponding with O is equal to or 
oarser than the one 
orresponding withN , i.e. if p =N q ) p =O q for all p; q 2 IP. Let � abbreviate � jG. The following is then immediateby Corollary 1.1.Corollary 1.2 O � N i� O �IP N for ea
h labelled transition system IP.On the other hand, O 6� N i� O 6�IP N for some labelled transition system IP. 2Write O ��IP N if p vN q ) p vO q for all p; q 2 IP, and let �� abbreviate ��jG. By de�nitionO �� N ) O � N for all semanti
s O and N . The reverse does not hold by de�nition, but it willbe shown to hold for all semanti
s dis
ussed in this paper (
f. Se
tion 15).1.5 Initial nondeterminismIn a pro
ess graph it need not be determined in whi
h state one ends after performing a nonemptysequen
e of a
tions. This phenomenon is 
alled nondeterminism. However, pro
ess graphs asde�ned above are not 
apable of modelling initial nondeterminism, as there is only one initialstate. This 
an be re
ti�ed by 
onsidering pro
ess graphs with multiple roots, in whi
h roots(g)may be any nonempty subset of nodes(g)|let jGmr be the 
lass of su
h 
onne
ted pro
ess graphs.A pro
ess graph with multiple roots 
an also be regarded as a nonempty set of pro
ess graphs withsingle roots. More generally, initial nondeterminism 
an be modelled in any labelled transitionsystem IP by regarding the nonempty subsets of IP (rather than merely its elements) to be pro
esses.The elements of a pro
ess P � IP then represent the possible initial states of P .Now any notion of observability O on IP extends to pro
esses with initial nondeterminism byde�ning O(P ) = Sp2P O(p) for P � IP. Thus also the equivalen
es =O and preorders vO arede�ned on su
h pro
esses. Write O �0IP N if P =N Q) P =O Q for all nonempty P;Q � IP, andlet �0 abbreviate �0jG. Clearly, one has O �0 N ) O � N for all semanti
s O and N .Let g be a pro
ess graph over A
t with multiple roots. Let i be an a
tion (initialize) whi
h isnot in A
t. De�ne �(g) as the pro
ess graph over A
t[fig obtained from g by adding a new state �,whi
h will be the root of �(g), and adding a transition (�; i; r) for every r 2 roots(g). Now for everysemanti
s O to be dis
ussed in this paper it will be the 
ase that g vO h , �(g) vO �(h), as thereader may easily verify for ea
h su
h O. From this it follows that we have in fa
t O �0 N , O � Nfor all semanti
s O andN treated in this paper. This justi�es fo
using hen
eforth on pro
ess graphswith single roots and pro
esses as mere elements of labelled transition systems.2 Tra
e semanti
sDe�nition 2 � 2 A
t� is a tra
e of a pro
ess p if there is a pro
ess q su
h that p ��! q. LetT (p) denote the set of tra
es of p. Two pro
esses p and q are tra
e equivalent, notation p =T q, ifT (p) = T (q). In tra
e semanti
s (T ) two pro
esses are identi�ed i� they are tra
e equivalent.

pr-embedding
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10 The linear time { bran
hing time spe
trum ITesting s
enario Tra
e semanti
s is based on the idea that two pro
esses are to be identi�edif they allow the same set of observations, where an observation simply 
onsists of a sequen
e ofa
tions performed by the pro
ess in su

ession.Modal 
hara
terizationDe�nition 2.1 The set LT of tra
e formulas over A
t is de�ned re
ursively by:� > 2 LT .� If ' 2 LT and a 2 A
t then a' 2 LT .The satisfa
tion relation j= � IP�LT is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= a' if for some q 2 IP: p a�! q and q j= '.Note that a tra
e formula satis�ed by a pro
ess p represents nothing more or less than a tra
e ofp. Hen
e one hasProposition 2.1 p =T q , 8' 2 LT (p j= ', q j= '). 2Pro
ess graph 
hara
terization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).Then T (�) := a1a2 � � � an 2 A
t� is the tra
e of �. As jG is a labelled transition system, T (g) isde�ned above. Alternatively, it 
ould be de�ned as the set of tra
es of paths of g. It is easy to seethat these de�nitions are equivalent:Proposition 2.2 T (g) = fT (�) j � 2 paths(g)g. 2Expli
it model In tra
e semanti
s a pro
ess 
an be represented by a tra
e equivalen
e 
lassof pro
ess graphs, or equivalently by the set of its tra
es. Su
h a tra
e set is always nonemptyand pre�x-
losed. The next proposition shows that the domain TT of tra
e sets is in bije
tive
orresponden
e with the domain jG==T of pro
ess graphs modulo tra
e equivalen
e, as well as withthe domain jGmr==T of pro
ess graphs with multiple roots modulo tra
e equivalen
e. Models of
on
urren
y like TT, in whi
h a pro
ess is not represented as an equivalen
e 
lass but rather as amathemati
ally 
oded set of its properties, are sometimes referred to as expli
it models.De�nition 2.2 The tra
e domain TT is the set of subsets T of A
t� satisfyingT1 " 2 T,T2 �� 2 T ) � 2 T.Proposition 2.3 T 2 TT, 9g 2 jG : T (g) = T, 9g 2 jGmr : T (g) = T.Proof: Let T 2 TT. De�ne the 
anoni
al graph G(T) of T by nodes(G(T)) = T, root(G(T)) = "and (�; a; �) 2 edges(G(T)) i� � = �a. As T satis�es T2, G(T) is 
onne
ted, i.e. G(T) 2 jG. Infa
t, G(T) is a tree. Moreover, for every path � 2 paths(G(T)) one has T (�) = end(�). Hen
e,using Proposition 2.2, T (G(T)) = T.For the remaining two impli
ation, note that jG � jGmr , and the tra
e set T (g) of any graphg 2 jGmr satis�es T1 and T2. 2TT was used as a model of 
on
urren
y in Hoare [30℄.

pr-trace paths
Ho80


Completed tra
e semanti
s 11In�nite pro
esses For in�nite pro
esses one distinguishes two variants of tra
e semanti
s: (�ni-tary) tra
e semanti
s as de�ned above, and in�nitary tra
e semanti
s (T1), obtained by takingin�nite runs into a

ount.De�nition 2.3 a1a2 � � � 2 A
t1 is an in�nite tra
e of a pro
ess p 2 IP if there are pro
essesp1; p2; ::: su
h that p a1�! p1 a2�! � � �. Let T1(p) denote the set of in�nite tra
es of p. Two pro
essesp and q are in�nitary tra
e equivalent, notation p =1T q, if T (p) = T (q) and T1(p) = T1(q).Clearly p =1T q ) p =T q. That on jG the reverse does not hold follows from Counterexample 1:a aa aa a a � � �a aa
a aa aa a a � � �aa a aa

=!B6=1T6=PFCounterexample 1: Finitary equivalent but not in�nitary equivalentone has T (left) = T (right) = fan j n 2 INg, but T1(left) 6= T1(right), as only the graph at theright has an in�nite tra
e.However, with K�onig's lemma one easily proves that for image �nite pro
esses �nitary andin�nitary tra
e equivalen
e 
oin
ide:Proposition 2.4 Let p and q be image �nite pro
esses with p =T q. Then p =1T q.Proof: It is suÆ
ient to show that T1(p) 
an be expressed in terms of T (p) for any image �nitepro
ess p. In fa
t, T1(p) 
onsists of all those in�nite tra
es for whi
h all �nite pre�xes are in T (p).One dire
tion of this statement is trivial: if � 2 T1(p), all �nite pre�xes of � must be in T (p).For the other dire
tion suppose that, for i 2 IN, ai 2 A
t and a1a2 � � � ai 2 T (p). With indu
tionon i 2 IN one 
an show that there exists pro
esses pi su
h that i = 0 and p0 = p, or pi�1 ai�! pi,and for every j � i one has ai+1ai+2 � � � aj 2 T (pi). The existen
e of these pi's immediately entailsthat a1a2a3 � � � 2 T1(p). The base 
ase (i = 0) is trivial. Suppose the 
laim holds for 
ertaini. For every j � i + 1 there must be a pro
ess q with pi �ai+1�! q and ai+2ai+3 � � � aj 2 T (q). Asthere are only �nitely many pro
esses q with pi �ai+1�! q, there must be one 
hoi
e of q for whi
hai+2ai+3 � � � aj 2 T (q) for in�nitely many values of j. Take this q to be pi+1. As T (pi+1) is pre�x-
losed, one has ai+2ai+3 � � � aj 2 T (pi+1) for all j � i+ 1. 2An expli
it representation of in�nitary tra
e semanti
s is obtained by taking the subsets T of A
t!satisfying T1 and T2.3 Completed tra
e semanti
sDe�nition 3 � 2 A
t� is a 
omplete tra
e of a pro
ess p, if there is a pro
ess q su
h that p ��! qand I(q) = ;. Let CT (p) denote the set of 
omplete tra
es of p. Two pro
esses p and q are
ompleted tra
e equivalent, notation p =CT q, if T (p) = T (q) and CT (p) = CT (q). In 
ompletedtra
e semanti
s (CT ) two pro
esses are identi�ed i� they are 
ompleted tra
e equivalent.

infinitary


12 The linear time { bran
hing time spe
trum ITesting s
enario Completed tra
e semanti
s 
an be explained with the following (rather trivial)
ompleted tra
e ma
hine. The pro
ess is modelled as a bla
k box that 
ontains as its interfa
e tobFigure 2: The 
ompleted tra
e ma
hinethe outside world a display on whi
h the name of the a
tion is shown that is 
urrently 
arried outby the pro
ess. The pro
ess autonomously 
hooses an exe
ution path that is 
onsistent with itsposition in the labelled transition system (IP;!). During this exe
ution always an a
tion nameis visible on the display. As soon as no further a
tion 
an be 
arried out, the pro
ess rea
hes astate of deadlo
k and the display be
omes empty. Now the existen
e of an observer is assumedthat wat
hes the display and re
ords the sequen
e of a
tions displayed during a run of the pro
ess,possibly followed by deadlo
k. It is assumed that an observation takes only a �nite amount of timeand may be terminated before the pro
ess stagnates. Hen
e the observer re
ords either a sequen
e ofa
tions performed in su

ession|a tra
e of the pro
ess|or su
h a sequen
e followed by deadlo
k|a 
ompleted tra
e. Two pro
esses are identi�ed if they allow the same set of observations in thissense.The tra
e ma
hine 
an be regarded as a simpler version of the 
ompleted tra
e ma
hine, werethe last a
tion name remains visible in the display if deadlo
k o

urs (unless deadlo
k o

urs in thebeginning already). On this ma
hine tra
es 
an be re
orded, but stagnation 
an not be dete
ted,sin
e in 
ase of deadlo
k the observer may think that the last a
tion is still 
ontinuing.Modal 
hara
terizationDe�nition 3.1 The set LCT of 
ompleted tra
e formulas over A
t is de�ned re
ursively by:� > 2 LCT .� 0 2 LCT .� If ' 2 LCT and a 2 A
t then a' 2 LCT .The satisfa
tion relation j= � IP�LCT is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= 0 if I(p) = ;.� p j= a' if for some q 2 IP: p a�! q and q j= '.Note that a 
ompleted tra
e formula satis�ed by a pro
ess p represents either a tra
e (if it has theform a1a2 � � � an>) or a 
ompleted tra
e (if it has the form a1a2 � � � an0). Hen
e one hasProposition 3.1 p =CT q , 8' 2 LCT (p j= ', q j= '). 2Also note the 
lose link between the 
onstru
tors of the modal formulas (
orresponding to thethree 
lauses in De�nition 3.1) and the types of observations a

ording to the testing s
enario: >

df-modal completed trace


Completed tra
e semanti
s 13represents the a
t of the observer of terminating the observation, regardless of whether the observedpro
ess has terminated, 0 represents the observation of deadlo
k (the display be
omes empty), anda' represents the observation of a being displayed, followed by the observation '.Pro
ess graph 
hara
terization Let g 2 jGmr and s 2 nodes(g). Then I(s) := fa 2 A
t j 9t :(s; a; t) 2 edges(g)g is the menu of s. CT (g) 
an now be 
hara
terized as follows.Proposition 3.2 CT (g) = fT (�) j � 2 paths(g) ^ I(end(�)) = ;g. 2Classi�
ation Trivially T � CT (as in Figure 1). Counterexample 2 shows that the reversea ab ab+ a
=T6=CT=S6=1F ababCounterexample 2: Tra
e and simulation equivalent, but not 
ompleted tra
e equivalentdoes not hold: one has T (left) = T (right) = f"; a; abg, whereas CT (left) 6= CT (right) (sin
ea 2 CT (left) � CT (right)). Hen
e the two pro
ess graphs are identi�ed in tra
e semanti
s butdistinguished in 
ompleted tra
e semanti
s. Thus T � CT : on jG 
ompleted tra
e semanti
s makesstri
tly less identi�
ations than tra
e semanti
s.Expli
it model In 
ompleted tra
e semanti
s a pro
ess 
an be represented by a 
ompleted tra
eequivalen
e 
lass of pro
ess graphs, or equivalently by the pair (T;CT) of its sets of tra
es and
omplete tra
es. The next proposition gives an expli
it 
hara
terization of the domain jCTT of pairsof sets of tra
es and 
omplete tra
es of pro
ess graphs with multiple roots.De�nition 3.2 The 
ompleted tra
e domain jCTT is the set of pairs (T;CT) 2 A
t��A
t� satisfyingT 2 TT and CT � T,� 2 T� CT ) 9a 2 A
t : �a 2 T.Proposition 3.3 (T;CT) 2 jCTT, 9g 2 jGmr : T (g) = T ^ CT (g) = T.Proof: Let (T;CT) 2 jCTT. De�ne the 
anoni
al graph G(T;CT) of (T;CT) by� nodes(G(T;CT)) = T [ f�Æ j � 2 CTg,� roots(G(T;CT)) = f"g [ fÆ j " 2 CTg and� (�; a; �) 2 edges(G(T)) i� � = �a _ � = �aÆ.As T satis�es T2, G(T;CT) is 
onne
ted, i.e. G(T;CT) 2 jGmr . In fa
t, G(T;CT) is a tree, ex
eptthat it may have two roots. Using Propositions 2.2 and 3.2 it is easy to see that T (G(T;CT)) = Tand CT (G(T;CT)) = CT. 2The pairs obtained from pro
ess graphs with single roots are the ones moreover satisfying" 2 CT , T = f"g:

fig-spectrum
TvsCT
pr-trace paths


14 The linear time { bran
hing time spe
trum IIn�nite pro
esses Also for 
ompleted tra
e semanti
s one 
an distinguish a �nitary and anin�nitary variant. In terms of the testing s
enario, the latter (CT1) postulates that observationsmay take an in�nite amount of time.De�nition 3.3 Two pro
esses p and q are in�nitary 
ompleted tra
e equivalent, notation p =1CT q,if CT (p) = CT (q) and T1(p) = T1(q). Note that in this 
ase also T (p) = T (q).Proposition 2.4 implies that for image �nite pro
esses CT and CT1 
oin
ide, whereas Counterex-ample 1 shows that in general the two are di�erent. In fa
t, T � T1 � CT1 and T � CT � CT1,and the two pre
eding 
ounterexamples show that there are no further in
lusions.4 Failures semanti
sTesting s
enario The failures ma
hine 
ontains as its interfa
e to the outside world not only thedisplay of the 
ompleted tra
e ma
hine, but also a swit
h for ea
h a
tion a 2 A
t (as in Figure 3).By means of these swit
hes the observer may determine whi
h a
tions are free and whi
h are
a� b� � � � z� a

Figure 3: The failure tra
e ma
hineblo
ked. This situation may be 
hanged any time during a run of the pro
ess. As before, thepro
ess autonomously 
hooses an exe
ution path that �ts with its position in (IP;!), but this timethe pro
ess may only start the exe
ution of free a
tions. If the pro
ess rea
hes a state where allinitial a
tions of its remaining behaviour are blo
ked, it 
an not pro
eed and the ma
hine stagnates,whi
h 
an be re
ognized from the empty display. In this 
ase the observer may re
ord that aftera 
ertain sequen
e of a
tions �, the set X of free a
tions is refused by the pro
ess. X is therefore
alled a refusal set and =n�;Xn= a failure pair. The set of all failure pairs of a pro
ess is 
alled itsfailure set, and 
onstitutes its observable behaviour.De�nition 4 =n�;Xn= 2 A
t� � P(A
t) is a failure pair of a pro
ess p if there is a pro
ess q su
hthat p ��! q and I(q) \X = ;. Let F (p) denote the set of failure pairs of p. Two pro
esses p andq are failures equivalent, notation p =F q, if F (p) = F (q). In failures semanti
s (F ) two pro
essesare identi�ed i� they are failures equivalent.Note that T (p) 
an be expressed in terms of F (p): T (p) = f� 2 A
t� j =n�; ;n= 2 F (p)g; hen
e p =F qimplies T (p) = T (q).

pr-koenig
infinitary
failure trace machine


Failures semanti
s 15De�nition 4.1 For p 2 IP and � 2 T (p), let Contp(�) = fa 2 A
t j �a 2 T (p)g, the set of possible
ontinuations of �.The following proposition says that the failure set F (p) of a pro
ess p is 
ompletely determined bythe set of failure pairs =n�;Xn= with X � Contp(�).Proposition 4.1 Let p2 IP, �2T (p) and X�A
t. Then =n�;Xn=2F (p), =n�;X \ Contp(�)n=2F (p).Proof: If p ��! q then I(q) � Contp(�). 2Modal 
hara
terizationDe�nition 4.2 The set LF of failure formulas over A
t is de�ned re
ursively by:� > 2 LF .� eX 2 LF for X � A
t.� If ' 2 LF and a 2 A
t then a' 2 LF .The satisfa
tion relation j= � IP�LF is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= eX if I(p) \X = ;.� p j= a' if for some q 2 IP: p a�! q and q j= '.eX represents the observation that the pro
ess refuses the set of a
tions X, i.e. that stagnationo

urs in a situation where X is the set of a
tions allowed by the environment. Note that a failureformula satis�ed by a pro
ess p represents either a tra
e (if it has the form a1a2 � � � an>) or a failurepair (if it has the form a1a2 � � � an eX). Hen
e one hasProposition 4.2 p =F q , 8' 2 LF (p j= ', q j= '). 2Pro
ess graph 
hara
terization Let g 2 jGmr and � 2 paths(g). ThenF (�) := f=nT (�);Xn= j I(end(�)) \X = ;gis the failure set of �. F (g) 
an now be 
hara
terized as follows.Proposition 4.3 F (g) = S�2paths(g) F (�). 2Classi�
ation CT � F .Proof: For \CT � F" it suÆ
es to show that also CT (p) 
an be expressed in terms of F (p):CT (p) = f� 2 A
t� j =n�;A
tn= 2 F (p)g:It also suÆ
es to show that the modal language LCT is a sublanguage of LF : p j= 0, p j= gA
t.\CT 6� F" follows from Counterexample 3: one has CT (left) = CT (right) = fab; a
g, whereasF (left) 6= F (right) (sin
e =na; f
gn= 2 F (left)� F (right)). 2

CTvsF


16 The linear time { bran
hing time spe
trum Ia ab b 
ab+ a(b+ 
)
=CT6=F=CS6=1F ab 
a(b+ 
)Counterexample 3: Completed tra
e and 
ompleted simulation equivalent, but not failures equiva-lent or even singleton-failures equivalentExpli
it model In failures semanti
s a pro
ess 
an be represented by a failures equivalen
e
lass of pro
ess graphs, or equivalently by its failure set. The next proposition gives an expli
it
hara
terization of the domain IF of failure sets of pro
ess graphs with multiple roots.De�nition 4.3 The failures domain IF is the set of subsets F of A
t� �P(A
t) satisfyingF1 =n"; ;n= 2 F,F2 =n��; ;n= 2 F ) =n�; ;n= 2 F,F3 =n�; Y n= 2 F ^X � Y ) =n�;Xn= 2 F,F4 =n�;Xn= 2 F ^ 8a 2 Y (=n�a; ;n= 62 F) ) =n�;X [ Y n= 2 F.Proposition 4.4 F 2 IF, 9g 2 jGmr : F (g) = F.Proof: \(": F1 and F2 follow from T1 and T2 in Se
tion 2, as one has =n�; ;n= 2 F (g), � 2 T (g).F3 follows immediately from the de�nitions, as I(q) \ Y = ; ^X � Y ) I(q) \X = ;.F4 follows immediately from Proposition 4.1, as 8a 2 Y (=n�a; ;n= 62 F (g)) i� Y \Contg(�) = ;.For \)" let F 2 IF. For � 2 A
t� write ContF(�) for fa 2 A
t j =n�a; ;n= 2 Fg.De�ne the 
anoni
al graph G(F) of F by� nodes(G(F)) = f=n�;Xn= 2 F j X � ContF(�)g,� roots(G(F)) = f=n";Xn= j =n";Xn= 2 Fg,� edges(G(F)) = f(=n�;Xn=; a; =n�a; Y n=) j =n�;Xn=; =n�a; Y n= 2 nodes(G(F)) ^ a 62 Xg.By F1, roots(G(F)) 6= ;. Using F3 and F2, any node s = =na1 � � � an;Xn= of G(F) is rea
hable froma root by the path �s : =n"; ;n= a1�! =na1; ;n= a2�! � � � an�1�! =na1 � � � an�1; ;n= an�! =na1 � � � an;Xn=; hen
e G(F ) is
onne
ted. So G(F) 2 jGmr . I have to show that F (G(F)) = F.\�": Suppose =n�;Xn= 2 F. Then, by F3, s := =n�;X \ ContF(�)n= 2 nodes(G(F)). By 
onstru
-tion one has T (�s) = � and I(s) \X = ;. Hen
e =n�;Xn= 2 F (�s) � F (G(F)).\�": With indu
tion on the length of paths, it follows immediately from the de�nition of G(F)that for � 2 paths(G(F)), if end(�) = =n�; Y n= then � = T (�) and I(end(�)) = ContF(�)� Y . (*)Suppose =n�;Xn= 2 F (G(F)). Then, by Proposition 4.3, there must be a path � 2 paths(G(F)) with=n�;Xn= 2 F (�). So T (�) = � and I(end(�)) \X = ;. Let end(�) := =n�; Y n= 2 F. By (*), � = � andX \ContF(�) � Y . By F3 it follows that =n�;X \ ContF(�)n= 2 F, and F4 yields =n�;Xn= 2 F. 2A variant of IF was used as a model of 
on
urren
y in Hoare [31℄.77There a pro
ess is given as a triple (A;F;D) with A � A
t a set of a
tions that may o

ur in the pro
ess, F 2 IFand D a set of so-
alled divergen
ies, tra
es that 
an lead along a state where an in�nite sequen
e of internal a
tionsis possible. As this paper 
onsiders only 
on
rete, and hen
e divergen
e-free, pro
esses, D is always empty here.
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Failures semanti
s 17If roots(g) would be allowed to be empty, a 
hara
terization is obtained by dropping require-ment F1. A 
hara
terization of the domain of failure sets of pro
ess graphs with single roots isgiven by adding to F1{4 the requirementF5 =n";Xn= 2 F ) 8a 2 X : =na; ;n= 62 F.That F5 holds follows from the observation that I(root(g)) = fa 2 A
t j =na; ;n= 2 F (g)g for g 2 jG.Alternative 
hara
terizations In De Ni
ola [16℄ several equivalen
es, that were proposed inKennaway [34℄, Darondeau [15℄ and De Ni
ola & Hennessy [17℄, are shown to 
oin
ide withfailures semanti
s on the domain of �nitely bran
hing transition systems without internal moves.For this purpose he uses the following alternative 
hara
terization of failures equivalen
e.De�nition 4.4 Write p after � MUST X if for ea
h q 2 IP with p ��! q there is an a 2 I(q) witha 2 X. Put p ' q if for all � 2 A
t� and X � A
t: p after � MUST X , q after � MUST X.Proposition 4.5 Let p; q 2 IP. Then p ' q , p =F q.Proof: p after � MUST X , =n�;Xn= 62 F (p) [16℄. 2Instead of the 
omplement of the failure set of a pro
ess p, one 
an also take the 
omplementContp(�)�X of every refusal set X within a failure pair =n�;Xn= of p. In view of Proposition 4.1, thesame information stored in F (p) is given by the set of all pairs =n�;Xn= 2 A
t� � P(A
t) for whi
hthere is a pro
ess q su
h that p ��! q and I(q) � X � Contp(�). In Hennessy [26℄, a model fornondeterministi
 behaviours is proposed in whi
h a pro
ess is represented as an a

eptan
e tree.An a

eptan
e tree of a �nitely bran
hing pro
ess without internal moves is essentially the set ofpairs des
ribed above, 
onveniently represented as a �nitely bran
hing, deterministi
 pro
ess tree,of whi
h the nodes are labelled by 
olle
tions of sets of a
tions. Thus a

eptan
e trees 
onstitutean expli
it model of failures semanti
s.In�nite pro
esses For in�nite pro
esses, three versions of failures semanti
s 
an be distinguished.De�nition 4.5 Two pro
esses p and q are (�nitary) failures equivalent if F (p) = F (q). p and qare in�nitary failures equivalent, notation p =1F q, if F (p) = F (q) and T1(p) = T1(q). They are�nite-failures equivalent, notation p =�F q, if F�(p) = F�(q), where F�(p) denotes the set of failurepairs =n�;Xn= of p with X �nite.The original failures semanti
s of Brookes, Hoare & Ros
oe [13℄ is F�, i.e. what I 
all �nite-failures semanti
s. They \adopt this view of distinguishability be
ause [they℄ 
onsider a realisti
environment to be one that is at any time 
apable of performing only a �nite number of events." Interms of the failures ma
hine this means that at any time only �nitely many swit
hes 
an be set onfree. Finitary failures semanti
s is the default version introdu
ed at the beginning of this se
tion.This 
an be regarded to be the semanti
s employed in Brookes & Ros
oe [14℄ and Hoare[31℄. In�nitary failures semanti
s was �rst dis
ussed in Bergstra, Klop & Olderog [10℄; it wasproposed as a semanti
s for CSP in Ros
oe [45℄. The di�eren
e between the testing s
enarios for Fand F1 is that only the latter allows observations of in�nite duration. Obviously, F� � F � F1.That the latter in
lusion is stri
t follows from Counterexample 1; Counterexample 4 shows thatalso the former is stri
t: one has F�(left) = F�(right), whereas F (left) 6= F (right). In fa
t even
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18 The linear time { bran
hing time spe
trum Ia aa ab1 b2 b3 ::: aa ab1 b2 b3 :::=�B6=CTCounterexample 4: HML- and �nite-failures equivalent, but not 
ompleted tra
e equivalentCT (left) 6= CT (right), as a 2 CT (left) � CT (right). Thus, although T � F�, CT � F andCT1 � F1, CT and F� are independent, as are CT1 and F .In addition to the three variants of De�nition 4.5 one 
ould also de�ne a version of failuressemanti
s based on in�nite tra
es and �nite refusal sets. Su
h a semanti
s would distinguish thetwo graphs of Counterexample 1, but identify the ones of Counterexample 4. As this semanti
sdoes not o

ur in the literature, and has no 
lear advantages over the other variants, I will notfurther 
onsider it here.Proposition 4.6 Let p en q be image �nite pro
esses. Then p =�F q , p =F q , p =1F q.Proof: \(" has been established for all pro
esses, and the se
ond \)" follows immediately fromProposition 2.4 (as p =F q ) p =T q ) p =1T q). So it remains to show that p 6=F q ) p 6=�F q.Suppose F (p) 6= F (q), say there is a failure pair =n�;Xn= 2 F (p) � F (q). By the image �niteness ofq there are only �nitely many pro
esses ri with q ��! ri, and for ea
h of them there is an a
tionai 2 I(ri) \X (as otherwise =n�;Xn= would be a failure pair of q). Let Y be the set of all those ai's.Then Y is a �nite subset of X, so =n�; Y n= 2 F�(p). On the other hand, ai 2 I(ri) \ Y for all ri, so=n�; Y n= 62 F�(q). 2It is not hard to 
hange the leftmost pro
ess in Counterexample 4 to an image �nite one with thesame failure pairs. Thus, in the �rst statement of Proposition 4.6 it is ne
essary that both pro
essesare image �nite. For the sub
lass of �nitely bran
hing pro
esses a stronger result 
an be obtained.Proposition 4.7 Let p; q 2 IP and p is �nitely bran
hing. Then p =�F q , p =F q.Proof: Suppose p =�F q. As p is �nitely bran
hing, Contp(�) is �nite for all � 2 T (p). And asT (q) = T (p), Contq(�) = Contp(�), whi
h is �nite, for all � 2 T (q). Now for pro
esses p with thisproperty, F (p) is 
ompletely determined by F�(p), as follows from Proposition 4.1. 2The se
ond statement of Proposition 4.6 does not allow su
h a strengthening, as will follow fromCounterexample 12.5 Failure tra
e semanti
sTesting s
enario The failure tra
e ma
hine has the same layout as the failures ma
hine, butis does not stagnate permanently if the pro
ess 
annot pro
eed due to the 
ir
umstan
e that alla
tions it is prepared to 
ontinue with are blo
ked by the observer. Instead it idles|re
ognizablefrom the empty display|until the observer 
hanges its mind and allows one of the a
tions thepro
ess is ready to perform. What 
an be observed are tra
es with idle periods in between, and forea
h su
h period the set of a
tions that are not blo
ked by the observer. Su
h observations 
an be
oded as sequen
es of members and subsets of A
t.
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Failure tra
e semanti
s 19Example: The sequen
e fa; bg
dbfb; 
gfb; 
; dga(A
t) is the a

ount of the following observa-tion: At the beginning of the exe
ution of the pro
ess p, only the a
tions a and b were allowed bythe observer. Apparently, these a
tions were not on the menu of p, for p started with an idle period.Suddenly the observer 
an
eled its veto on 
, and this resulted in the exe
ution of 
, followed byd and b. Then again an idle period o

urred, this time when b and 
 were the a
tions not beingblo
ked by the observer. After a while the observer de
ided to allow d as well, but the pro
essignored this gesture and remained idle. Only when the observer gave the green light for the a
tiona, it happened immediately. Finally, the pro
ess be
ame idle on
e more, but this time not evenone a
tion was blo
ked. This made the observer realize that a state of eternal stagnation had beenrea
hed, and disappointed he terminated the observation.A set X � A
t, o

urring in su
h a sequen
e, 
an be regarded as an o�er from the environment,that is refused by the pro
ess. Therefore su
h a set is 
alled a refusal set. The o

urren
e of arefusal set may be interpreted as a `failure' of the environment to 
reate a situation in whi
h thepro
ess 
an pro
eed without being disturbed. Hen
e a sequen
e over A
t [ P(A
t), resulting froman observation of a pro
ess p may be 
alled a failure tra
e of p. The observable behaviour of apro
ess, a

ording to this testing s
enario, is given by the set of its failure tra
es, its failure tra
eset. The semanti
s in whi
h pro
esses are identi�ed i� their failure tra
e sets 
oin
ide, is 
alledfailure tra
e semanti
s (FT ).For image �nite pro
esses failure tra
e semanti
s is exa
tly the equivalen
e that originates fromPhillips notion of refusal testing [42℄. (Image in�nite pro
esses are not 
onsidered in [42℄.) Thereit is 
alled refusal equivalen
e.De�nition 5� The refusal relations X�! for X � A
t are de�ned by: p X�! q i� p = q and I(p) \X = ;.p X�! q means that p 
an evolve into q, while being idle during a period in whi
h X is the setof a
tions allowed by the environment.� The failure tra
e relations ��! for � 2 (A
t[P(A
t))� are de�ned as the re
exive and transitive
losure of both the a
tion and the refusal relations. Again the overloading of notation isharmless.� � 2 (A
t[P(A
t))� is a failure tra
e of a pro
ess p if there is a pro
ess q su
h that p ��! q. LetFT (p) denote the set of failure tra
es of p. Two pro
esses p and q are failure tra
e equivalent,notation p =FT q, if FT (p) = FT (q).Modal 
hara
terizationDe�nition 5.1 The set LFT of failure tra
e formulas over A
t is de�ned re
ursively by:� > 2 LFT .� If ' 2 LFT and X � A
t then eX' 2 LFT .� If ' 2 LFT and a 2 A
t then a' 2 LFT .The satisfa
tion relation j= � IP�LFT is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= eX' if I(p) \X = ; and p j= '.� p j= a' if for some q 2 IP: p a�! q and q j= '.
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20 The linear time { bran
hing time spe
trum IeX' represents the observation that the pro
ess refuses the set of a
tions X, followed by the obser-vation '. A modal failure tra
e formula satis�ed by a pro
ess p represents exa
tly a failure tra
eas de�ned above. Hen
e one hasProposition 5.1 p =FT q , 8' 2 LFT (p j= ', q j= '). 2Pro
ess graph 
hara
terization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).Then the failure tra
e set of �, FT (�), is the smallest subset of (A
t [ P(A
t))� satisfying� (A
t� I(s0))a1(A
t� I(s1))a2 � � � an(A
t� I(sn)) 2 FT (�),� �X� 2 FT (�)) �� 2 FT (�),� �X� 2 FT (�)) �XX� 2 FT (�),� �X� 2 FT (�) ^ Y � X ) �Y � 2 FT (�).FT (g) 
an now be 
hara
terized as follows.Proposition 5.2 FT (g) = S�2paths(g) FT (�). 2Proposition 5.2 yields a te
hnique for de
iding that two pro
ess graphs are failure tra
e equivalent,without 
al
ulating their entire failure tra
e set.Let g; h2 jGmr, � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g) and �0: t0 b1�! t1 b2�! � � � bm�! tm 2 paths(h).Path �0 is a failure tra
e augmentation of �, notation � �FT �0, if FT (�) � FT (�0). This is the
ase exa
tly when n = m, ai = bi and I(ti) � I(si) for i = 1; :::; n. From this the following 
an be
on
luded.Corollary 5.1 Two pro
ess graphs g; h 2 jGmr are failure tra
e equivalent i�� for any path � 2 paths(g) in g there is a �0 2 paths(h) su
h that � �FT �0� and for any path � 2 paths(g) in h there is a �0 2 paths(g) su
h that � �FT �0.If g and h are moreover without in�nite paths, then it suÆ
es to 
he
k the requirements above formaximal paths. 2Classi�
ation F � FT .Proof: For \F � FT" it suÆ
es to show that F (p) 
an be expressed in terms of FT (p):=n�;Xn= 2 F (p) , �X 2 FT (p):\F 6� FT" follows from Counterexample 5; see Se
tion 7 for details. 2In�nite pro
esses As for failures semanti
s, three variants of failure tra
e semanti
s for in�nitepro
esses 
an be de�ned. Besides the default version (FT ) there is an in�nitary version (FT1),motivated by observations that may last forever, and a �nite version (FT�), motivated by anobserver that may only set �nitely many swit
hes on free at any time.De�nition 5.2 �1�2 � � � 2 (A
t [ P(A
t))1 is an in�nite failure tra
e of a pro
ess p 2 IP if thereare pro
esses p1; p2; ::: su
h that p �1�! p1 �2�! � � �. Let FT1(p) denote the set of in�nite failuretra
es of p. Two pro
esses p and q are in�nitary failure tra
e equivalent, notation p =1FT q, if

pr-failure trace paths
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Failure tra
e semanti
s 21a a
 
b fd ea(b+ 
d) + a(f + 
e)
=F6=FT=R6=RT

aa 

 fb dea(b+ 
e) + a(f + 
d)Counterexample 5: Failures and ready equivalent, but not failure tra
e or ready tra
e equivalentFT1(p) = FT1(q) and FT (p) = FT (q). They are �nite-failure tra
e equivalent, notation p =�FT q,if FT�(p) = FT�(q), where FT�(p) denotes the set of failure tra
es of p in whi
h all refusal setsare �nite.Clearly, FT� � FT � FT1; Counterexamples 1 and 4 show that the in
lusions and stri
t. Onealso has F� � FT�, F � FT and F1 � FT1; here stri
tness follows from Counterexample 5.Proposition 5.3 Let p en q be image �nite pro
esses. Then p =�FT q , p =FT q , p =1FT q.Proof: \p =�FT q ( p =FT q ( p =1FT q" holds for all pro
esses.Note that the de�nition of FT (p) is exa
tly like the de�nition of T (p), ex
ept that the failuretra
e relations are used instead of the generalized a
tion relations; the same relation exists betweenFT1(p) and T1(p). Moreover, a pro
ess p 2 IP is image �nite in terms of the failure tra
e relationson IP i� it is image �nite in terms of terms of the (generalized) a
tion relations on IP, as de�ned inDe�nition 1.2. Hen
e \p =FT q ) p =1FT q" follows immediately from Proposition 2.4.\p =�FT q ) p =FT q": Suppose FT (p) 6= FT (q), say FT (p)� FT (q) 6= ;. Let � be a failure tra
ein FT (p) � FT (q) with at least one in�nite refusal set. I will show that there must be a failuretra
e in FT (p) � FT (q) with stri
tly fewer in�nite refusal sets than �. By applying this result a�nite number of times, a failure tra
e � 2 FT (p) � FT (q) is found without in�nite refusal sets,showing that FT�(p) 6= FT�(q).So let � = �1X�2 2 FT (p) � FT (q) with X an in�nite refusal set. Clearly �1�2 2 FT (p). Bythe image �niteness of q there are only �nitely many pairs of pro
esses ri; si with q �1�! ri �2�! si,and for ea
h of them there is an a
tion ai 2 I(ri) \ X (as otherwise �1X�2 would be a failuretra
e of q). Let Y be the set of all those ai's. Then Y is �nite. As Y is a subset of X, one has�1Y �2 2 FT (p). On the other hand, ai 2 I(ri) \ Y for all ri, so �1Y �2 62 FT (q). 2Unlike the situation for failures semanti
s, in the �rst statement of Proposition 5.3 it is not ne
essarythat both pro
esses are image �nite.Proposition 5.4 Let p; q 2 IP and p is image �nite. Then p =�FT q , p =FT q.Proof: More diÆ
ult, and omitted here. 2The se
ond statement of Proposition 5.3 does not allow su
h a strengthening, as will follow fromCounterexample 12.
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22 The linear time { bran
hing time spe
trum I6 Ready tra
e semanti
sTesting s
enario The ready tra
e ma
hine is a variant of the failure tra
e ma
hine that isequipped with a lamp for ea
h a
tion a 2 A
t. Ea
h time the pro
ess idles, the lamps of all a
tions
a� b� � � � z� b

Figure 4: The ready tra
e ma
hinethe pro
ess is ready to engage in are lit. Of 
ourse all these a
tions are blo
ked by the observer,otherwise the pro
ess wouldn't idle. Now the observer 
an see whi
h a
tions 
ould be released inorder to let the pro
ess pro
eed. During the exe
ution of an a
tion no lamps are lit. An observationnow 
onsists of a sequen
e of members and subsets of A
t, the a
tions representing informationobtained from the display, and the sets of a
tions representing information obtained from the lights.Su
h a sequen
e is 
alled a ready tra
e of the pro
ess, and the subsets o

urring in a ready tra
eare referred to as menus. The information about the free and blo
ked a
tions is now redundant.The set of all ready tra
es of a pro
ess is 
alled its ready tra
e set, and 
onstitutes its observablebehaviour.De�nition 6� The ready tra
e relations ��+�! for � 2 (A
t [ P(A
t))� are de�ned re
ursively by:1. p "�+�! p, for any pro
ess p.2. p a�! q implies p a�+�! q.3. p X�+�! q with X � A
t whenever p = q and I(p) = X.4. p ��+�! q ��+�! r implies p ���+�! r.The spe
ial arrow ��+�! had to be used, sin
e further overloading of ��! would 
ause 
onfusionwith the failure tra
e relations.� � 2 (A
t[P(A
t))� is a ready tra
e of a pro
ess p if there is a pro
ess q su
h that p ��+�! q. LetRT (p) denote the set of ready tra
es of p. Two pro
esses p and q are ready tra
e equivalent,notation p =RT q, if RT (p) = RT (q). In ready tra
e semanti
s (RT ) two pro
esses areidenti�ed i� they are ready tra
e equivalent.In Baeten, Bergstra & Klop [6℄, Pnueli [43℄ and Pomello [44℄ ready tra
e semanti
s wasde�ned slightly di�erently. By Proposition 6.1 below, their de�nition yields the same equivalen
eas mine.

BBK87b
Pn85
Pm86
pr-barbed


Ready tra
e semanti
s 23a b a 
De�nition 6.1 X0a1X1a2 � � � anXn 2 P(A
t)�(A
t�P(A
t))� is a normal ready tra
e of a pro
essp if there are pro
esses p1; :::; pn su
h that p a1�! p1 a2�! � � � an�! pn and I(pi) = Xi for i = 1; :::; n.Let RTN (p) denote the set of normal ready tra
es of p. Two pro
esses p and q are ready tra
eequivalent in the sense of [6, 43, 44℄ if RTN (p) = RTN (q).Proposition 6.1 Let p; q 2 IP. Then RTN (p) = RTN (q) , RT (p) = RT (q).Proof: The normal ready tra
es of a pro
ess are just the ready tra
es whi
h are an alternatingsequen
e of sets and a
tions, and vi
e versa the set of all ready tra
es 
an be 
onstru
ted form theset of normal ready tra
es by means of doubling and leaving out menus. 2Modal 
hara
terizationDe�nition 6.2 The set LRT of ready tra
e formulas over A
t is de�ned re
ursively by:� > 2 LRT .� If ' 2 LRT and X � A
t then X' 2 LRT .� If ' 2 LRT and a 2 A
t then a' 2 LRT .The satisfa
tion relation j= � IP�LRT is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= X' if I(p) = X and p j= '.� p j= a' if for some q 2 IP: p a�! q and q j= '.X' represents the observation of a menu, followed by the observation '. A ready tra
e formulasatis�ed by a pro
ess p represents exa
tly a ready tra
e in De�nition 6. Hen
e one hasProposition 6.2 p =RT q , 8' 2 LRT (p j= ', q j= '). 2Pro
ess graph 
hara
terization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).The ready tra
e of � is given by RTN (�) := I(s0)a1I(s1)a2 � � � anI(sn).RTN (g) 
an now be 
hara
terized by:Proposition 6.3 RTN (g) = fRTN (�) j � 2 paths(g)g. 2Moreover, RT (g) is the smallest subset of (A
t [ P(A
t))� 
ontaining RTN (g) and satisfying�X� 2 RT (g)) �� 2 RT (g) ^ �XX� 2 RT (g):Classi�
ation FT � RT .Proof: For \FT � RT" it suÆ
es to show that FT (p) 
an be expressed in terms of RT (p):� = �1�2 � � � �n 2 FT (p) (�i 2 A
t [ P(A
t)) ,9� = �1�2 � � � �n 2 RT (p) (�i 2 A
t [ P(A
t)) su
h that for i = 1; :::; n either�i = �i 2 A
t or �i; �i � A
t and �i \ �i = ;.\FT 6� RT" follows from Counterexample 6; see Se
tion 7 for details. 2
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24 The linear time { bran
hing time spe
trum Ia ab 
ab+ a

=F6=R=FT6=RT ab 
a ab 
ab+ a(b+ 
) + a
Counterexample 6: Failures and failure tra
e equivalent, but not ready or ready tra
e equivalentExpli
it model In ready tra
e semanti
s a pro
ess 
an be represented by a ready tra
e equiva-len
e 
lass of pro
ess graphs, or equivalently by its ready tra
e set, possibly in the normal form ofDe�nition 6.1. The next proposition gives an expli
it 
hara
terization of the domain IRTT of readytra
e sets in this form of pro
ess graphs with multiple roots.De�nition 6.3 The ready tra
e domain IRTT is the set of subsets RT of P(A
t)� (A
t�P(A
t))�satisfying RT1 9X(X 2 RT);RT2 �X 2 RT ^ a 2 X , 9Y (�XaY 2 RT):Proposition 6.4 RT 2 IRTT, 9g 2 jGmr : RTN (g) = RT.Proof: \(" is evident. For \)" let RT 2 IRTT. De�ne the 
anoni
al graph G(RT) of RT by� nodes(G(RT)) = RT,� roots(G(RT)) = fX � A
t j X 2 RTg,� edges(G(RT)) = f(�; a; �aY ) j �; �aY 2 nodes(G(RT))g.By RT1, roots(G(RT)) 6= ;. Using R2, G(RT) is 
onne
ted. So G(RT) 2 jGmr . Moreover, forevery path � 2 paths(G(RT)) one has RTN (�) = end(�). Hen
e RTN (G(RT)) = RT. 2If roots(g) would be allowed to be empty, a 
hara
terization is obtained by dropping requirementRT1. A 
hara
terization of the domain of ready tra
e sets of pro
ess graphs with single roots isgiven by strengthening RT1 to 9!X(X 2 RT), where 9!X means \there is exa
tly one X su
h that".In�nite pro
esses An in�nitary version of ready tra
e semanti
s (RT1) is de�ned analogouslyto in�nitary failure tra
e semanti
s. A �nite version is not so straightforward; a de�nition will beproposed in the next se
tion.De�nition 6.4 �1�2 � � � 2 (A
t [ P(A
t))1 is an in�nite ready tra
e of a pro
ess p 2 IP if thereare pro
esses p1; p2; ::: su
h that p �1�+�! p1 �2�+�! � � �. Let RT1(p) denote the set of in�nite readytra
es of p. Two pro
esses p and q are in�nitary ready tra
e equivalent, notation p =1RT q, ifRT1(p) = RT1(q) and RT (p) = RT (q).Clearly, RT � RT1; Counterexample 1 shows that the in
lusion is stri
t. Moreover FT1 � RT1.Proposition 6.5 Let p en q be image �nite pro
esses. Then p =RT q , p =1RT q.Proof: Exa
tly as the 
orresponding part of Proposition 5.3. 2Counterexample 12 will show that in Proposition 6.5 both p and q need to be image �nite.
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Readiness semanti
s and possible-futures semanti
s 257 Readiness semanti
s and possible-futures semanti
sTesting s
enario The readiness ma
hine has the same layout as the ready tra
e ma
hine, but,like the failures ma
hine, 
an not re
over from an idle period. By means of the lights the menu ofinitial a
tions of the remaining behaviour of an idle pro
ess 
an be re
orded, but this happens atmost on
e during an observation of a pro
ess, namely at the end. An observation either results ina tra
e of the pro
ess, or in a pair of a tra
e and a menu of a
tions by whi
h the observation 
ouldhave been extended if the observer wouldn't have blo
ked them. Su
h a pair is 
alled a ready pairof the pro
ess, and the set of all ready pairs of a pro
ess is its ready set.De�nition 7 =n�;Xn= 2 A
t� � P(A
t) is a ready pair of a pro
ess p if there is a pro
ess q su
hthat p ��! q and I(q) = X. Let R(p) denote the set of ready pairs of p. Two pro
esses p and q areready equivalent, notation p =R q, if R(p) = R(q). In readiness semanti
s (R) two pro
esses areidenti�ed i� they are ready equivalent.Modal 
hara
terizationDe�nition 7.1 The set LR of readiness formulas over A
t is de�ned re
ursively by:� > 2 LR.� X 2 LR for X � A
t.� If ' 2 LR and a 2 A
t then a' 2 LR.The satisfa
tion relation j= � IP�LR is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= X if I(p) = X.� p j= a' if for some q 2 IP: p a�! q and q j= '.X represents the observation of a menu. A readiness formula satis�ed by a pro
ess p representseither a tra
e (if it has the form a1a2 � � � an>) or a ready pair (if it has the form a1a2 � � � anX).Hen
e one hasProposition 7.1 p =R q , 8' 2 LR(p j= ', q j= '). 2Pro
ess graph 
hara
terization Let g 2 jGmr and � 2 paths(g). The ready pair of � is givenby R(�) := =nT (�); I(end(�))n=. R(g) 
an now be 
hara
terized by:Proposition 7.2 R(g) = fR(�) j � 2 paths(g)g. 2Classi�
ation F � R � RT , but R and FT are independent.Proof: For \F � R" it suÆ
es to show that F (p) 
an be expressed in terms of R(p):=n�;Xn= 2 F (p) , 9Y � A
t : =n�; Y n= 2 R(p) ^ X \ Y = ;:For \R � RT" it suÆ
es to show that R(p) 
an be expressed in terms of RT (p):=n�;Xn= 2 R(p) , �X 2 RT (p):



26 The linear time { bran
hing time spe
trum I\R 6� FT" (and hen
e \R 6� RT" and \F 6� FT") follows from Counterexample 5, in whi
hR(left) = R(right) but FT (left) 6= FT (right). The �rst statement follows with Proposition 7.2.Both graphs have 9 paths starting from the root, and hen
e 9 ready pairs. These are easily seento be the same at both sides; in the se
ond graph only 4 ready pairs swapped pla
es. The se
ondstatement follows sin
e afbg
e 2 FT (left)� FT (right).\R 6� FT" (and hen
e \R 6� F" and \RT 6� FT") follows from Counterexample 6, in whi
hFT (left) = FT (right) but R(left) 6= R(right). The �rst statement follows from Corollary 5.1, sin
ethe new maximal paths at the right-hand side are both failure tra
e augmented by the two maximalpaths both sides have in 
ommon. The se
ond one follows sin
e =na; fb; 
gn= 2 R(right)�R(left). 2Expli
it model In readiness semanti
s a pro
ess 
an be represented by a ready equivalen
e
lass of pro
ess graphs, or equivalently by its ready set. The next proposition gives an expli
it
hara
terization of the domain IR of ready sets of pro
ess graphs with multiple roots.De�nition 7.2 The readiness domain IR is the set of subsets R of A
t� �P(A
t) satisfyingR1 9X(=n";Xn= 2 R),R2 9X(=n�;X [ fagn= 2 R), 9Y(=n�a; Y n= 2 R).Proposition 7.3 R 2 IR, 9g 2 jGmr : R(g) = R.Proof: \(" is evident. For \)" let R 2 IR. De�ne the 
anoni
al graph G(R) of R by� nodes(G(R)) = R,� roots(G(R)) = f=n";Xn= j =n";Xn= 2 Rg,� edges(G(R)) = f(=n�;Xn=; a; =n�a; Y n=) j =n�;Xn=; =n�a; Y n= 2 nodes(G(R)) ^ a 2 Xg.By R1, roots(G(R)) 6= ;. Using R2, G(R) is 
onne
ted. Hen
e G(R) 2 jGmr . Moreover, for everypath � 2 paths(G(R)) one has R(�) = end(�). From this it follows that R(G(R)) = R. 2If roots(g) would be allowed to be empty, a 
hara
terization is obtained by dropping requirementR1. A 
hara
terization of the domain of ready sets of pro
ess graphs with single roots is given bystrengthening R1 to 9!X(=n";Xn= 2 R), where 9!X means \there is exa
tly one X su
h that".Possible-futures and a

eptan
e-refusal semanti
s Readiness semanti
s was proposed byOlderog & Hoare [40℄. Two preliminary versions stem from Rounds & Brookes [46℄: inpossible-futures semanti
s (PF ) the menu 
onsists of the entire tra
e set of the remaining behaviourof an idle pro
ess, instead of only the set of its initial a
tions; in a

eptan
e-refusal semanti
s amenu may be any �nite subset of initial a
tions, while also the �nite refusal sets of Se
tion 4 areobservable.De�nition 7.3 =n�;Xn= 2 A
t� � P(A
t�) is a possible future of a pro
ess p if there is a pro
ess qsu
h that p ��! q and T (q) = X. Let PF (p) denote the set of possible futures of p. Two pro
essesp and q are possible-futures equivalent, notation p =PF q, if PF (p) = PF (q).The modal and pro
ess graph 
hara
terizations of possible-future semanti
s are straightforward,but a plausible testing s
enario has not been proposed. Trivially R � PF . That the reverse doesnot hold, and even that PF 6� RT , will follow from Counterexample 10. Counterexample 7 shows
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Readiness semanti
s and possible-futures semanti
s 27that FT 6� PF . There PF (left) = PF (right) but FT (left) 6= FT (right). As for the �rst statement,both graphs have 18 paths starting from the root, and hen
e 18 possible futures. These are easilyseen to be the same at both sides; in the se
ond graph only 2 possible futures swapped pla
es. These
ond statement follows sin
e afbgafbg
d 2 FT (left)�FT (right). Thus possible-future semanti
sis in
omparable with failure tra
e and ready tra
e semanti
s.ab a a
 
b d e
aa a
 
 bd ea(b+ a(b+ 
d) + a
e) + a(a
d+ a(
e+ b))

=PF6=FT6=S
aa a
 
b d ea(a(b+ 
d) + a
e) + a(a
d + a(
e+ b) + b)

a ba a
 
 bd e
Counterexample 7: Possible-futures equivalent, but not failure tra
e or simulation equivalentDe�nition 7.4 =n�;X; Y n= 2 A
t� � P(A
t) � P(A
t) is an a

eptan
e-refusal triple of a pro
ess pif X and Y are �nite and there is a pro
ess q su
h that p ��! q, X � I(q) and Y \ I(q) = ;. LetAR(p) denote the set of a

eptan
e-refusal triples of p. Two pro
esses p and q are a

eptan
e-refusalequivalent, notation p =AR q, if AR(p) = AR(q).The modal and pro
ess graph 
hara
terizations are again straightforward. A motivating testings
enario would be the same as for readiness semanti
s, ex
ept that at any time only �nitely manyswit
hes 
an be set on free, and only �nitely many lamps 
an be investigated in a �nite amount oftime. Clearly p =R q ) p =AR q, forAR(p) = f=n�;X; Y n= j 9=n�;Zn= 2 R(p) j X;Y �nite ^X � Z ^ Y \ Z = ;g:That this impli
ation is stri
t follows from Counterexample 4. It is not diÆ
ult to see that for�nitely bran
hing pro
esses a

eptan
e-refusal equivalen
e 
oin
ides with ready equivalen
e: =n�;Xn=is a ready pair of a pro
ess p i� p has an a

eptan
e-refusal triple =n�;X; Y n= with X [Y = Contp(�)(
f. De�nition 4.1).In�nite pro
esses Note that if in De�nition 7.4 the sets X and Y are allowed to be in�nite theresulting equivalen
e would be ready equivalen
e again. Namely =n�;Xn= is a ready pair of a pro
essp i� p has su
h an a

eptan
e-refusal triple =n�;X;A
t � Y n=. Thus a

eptan
e-refusal semanti
s 
anbe regarded as the �nite variant of readiness semanti
s, and will therefore be denoted R�. Thein�nitary variant of readiness semanti
s (R1), motivated by observations that may last forever, isde�ned analogously to F1:De�nition 7.5 p and q are in�nitary ready equivalent if R(p) = R(q) and T1(p) = T1(q).Clearly, R � R1; by Counterexample 1 the in
lusion is stri
t. Moreover, F1 � R1 � RT1.
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28 The linear time { bran
hing time spe
trum IProposition 7.4 Let p en q be image �nite pro
esses. Then p =R q , p =1R q.Proof: \(" has been established for all pro
esses, and the se
ond \)" follows immediately fromProposition 2.4 (as p =R q ) p =T q ) p =1T q). 2Proposition 7.5 Let p; q 2 IP and p is image �nite. Then p =AR q , p =R q.Proof: \(" holds for all pro
ess. I will prove \)" assuming that p has the property that for any� 2 A
t� there are only �nitely many ready pairs =n�;Xn= 2 R(p). This property (
all it RIF ) is
learly implied by image �niteness. So suppose p has the RIF property and AR(p) = AR(q). I willshow that R(p) = R(q).Suppose =n�; Y n= 62 R(p). By RIF there are only �nitely many ready pairs =n�;Xin= 2 R(p). Forea
h of them 
hoose an a
tion ai 2 Y �Xi or bi 2 Xi � Y . Let U be the set of all those ai's, andV the set of the bi's. Then =n�;U; V n= 62 AR(p) = AR(q) and hen
e =n�; Y n= 62 R(q).It follows that R(q) � R(p), and thus q has the property RIF as well. Now the same argumentapplies in the other dire
tion, yielding R(p) � R(q). 2Inspired by the de�nition of R�, a �nite version of ready tra
e semanti
s (RT�) 
an be de�nedlikewise. Here I will just give its modal 
hara
terization.De�nition 7.6 The set L�RT of �nite ready tra
e formulas over A
t is given by:� > 2 L�RT .� If ' 2 L�RT and X ��n A
t then X' 2 L�RT and eX' 2 L�RT .� If ' 2 L�RT and a 2 A
t then a' 2 L�RT .The satisfa
tion relation j= � IP�L�RT is given by the usual 
lauses for > and a', and:� p j= X' if X � I(p) and p j= '.� p j= eX' if I(p) \X = ; and p j= '.Pro
esses p and q are �nite-ready tra
e equivalent, notation p =�RT q, if 8' 2 L�RT (p j= ', q j= ').As these formulas are expressible in terms of the ones of De�nition 6.2, one has RT� � RT ;Counterexample 4 shows that the in
lusion is stri
t. Also FT� � RT� and F� � R� � RT�.Proposition 7.6 Let p; q 2 IP and p is image �nite. Then p =�RT q , p =RT q.Proof: \(" holds for all pro
ess. \)" follows just as in Proposition 7.5, using the property thatfor any a1a2 � � � an 2 A
t! there are only �nitely many normal ready tra
es X0a1X1a2 � � � anXn 2RTN (p). 2Unlike the semanti
s T to RT , possible-futures semanti
s distinguishes between the two pro
essesof Counterexample 1: =na; a�n= 2 PF (right) � PF (left). Still, T1 6� PF , as 
an be seen from thevariant of Counterexample 1 in whi
h the left-hand pro
ess is appended to the endnodes of bothpro
esses. The so obtained systems have the same possible futures, in
luding f=nan; a�n= j n 2 INg,but only the right-hand side has an in�nite tra
e.For the sake of 
ompleteness I in
lude a de�nition of in�nitary possible-futures semanti
s (PF1),su
h that PF � PF1 and R1 � PF1. A �nite variant of PF has not been explored.De�nition 7.7 =n�;Xn= 2 A
t� � P(A
t�) is an in�nitary possible future of a pro
ess p if there is apro
ess q su
h that p ��! q and T (q)[T1(q) = X. Let PF1(p) denote the set of in�nitary possiblefutures of p. Two pro
esses p and q are in�nitary possible-futures equivalent, notation p =1PF q, ifPF1(p) = PF1(q).
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Simulation semanti
s 298 Simulation semanti
sThe following 
on
ept of simulation o

urs frequently in the literature (see e.g. Park [41℄).De�nition 8 A simulation is a binary relation R on pro
esses, satisfying, for a 2 A
t:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0.Pro
ess p 
an be simulated by q, notation p �! q, if there is a simulation R with pRq.p and q are similar, notation p ! q, if p �! q and q �! p.Proposition 8.1 Similarity is an equivalen
e relation on the domain of pro
esses.Proof: Symmetry is immediate, so it has to be 
he
ked that p �! p, and p �! q ^ q �! r ) p �! r.� The identity relation is a simulation with pRp.� If R is a simulation with pRq and S is a simulation with qSr, then the relation R;S, de�ned byx(R;S)z i� 9y : xRy ^ ySz, is a simulation with p(R;S)r. 2Hen
e the relation will be 
alled simulation equivalen
e. In simulation semanti
s (S) two pro
essesare identi�ed i� they are simulation equivalent.Testing s
enario and modal 
hara
terization The testing s
enario for simulation semanti
sresembles that for tra
e semanti
s, but in addition the observer is, at any time during a run of theinvestigated pro
ess, 
apable of making arbitrary many 
opies of the pro
ess in its present state andobserve them independently. Thus an observation yields a tree rather than a sequen
e of a
tions.Su
h a tree 
an be 
oded as an expression in a simple modal language.De�nition 8.1 The 
lass LS of simulation formulas over A
t is de�ned re
ursively by:� If I is a set and 'i 2 LS for i 2 I then Vi2I 'i 2 LS .� If ' 2 LS and a 2 A
t then a' 2 LS.The satisfa
tion relation j= � IP�LS is de�ned re
ursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.Let S(p) denote the 
lass of simulation formulas satis�ed by the pro
ess p: S(p) = f' 2 LS j p j= 'g.Write p vS q if S(p) � S(q) and p =S q if S(p) = S(q).Write > for Vi2; 'i, and '1 ^ '2 for Vi2f1;2g 'i. It turns out that LT is a sublanguage of LS .Proposition 8.2 p �! q , p vS q. Hen
e p ! q , p =S q.Proof: For \)" I have to prove that for any simulation R and for all ' 2 LS one haspRq ) (p j= ') q j= '):I will do so with stru
tural indu
tion on '. Suppose pRq.{ Let p j= a'. Then there is a p0 2 IP with p a�! p0 and p0 j= '. As R is a simulation, theremust be a q0 2 IP with q a�! q0 and p0Rq0. So by indu
tion q0 j= ', and hen
e q j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:=) 8i2I(q j= 'i), q j= Vi2I 'i.

Pa81


30 The linear time { bran
hing time spe
trum IFor \(" it suÆ
es to establish that vS is a simulation.Suppose p vS q and p a�! p0. I have to show that 9q0 2 IP with q a�! q0 and p0 vS q0. Let Q0 befq0 2 IP j q a�! q0 ^ p0 6vS q0g:By De�nition 1.1 Q0 is a set. For every q0 2 Q0 there is a formula 'q0 2 S(p0)� S(q0). Nowa ^q02Q0 'q0 2 S(p) � S(q);so there must be a q0 2 IP with q a�! q0 and q0 62 Q0, whi
h had to be shown. 2Pro
ess graph 
hara
terization Simulation equivalen
e 
an also be 
hara
terized by means ofrelations between the nodes of two pro
ess graphs, rather than between pro
ess graphs themselves.De�nition 8.2 Let g; h 2 jG. A simulation of g by h is a binary relation R � nodes(g)�nodes(h),satisfying:� root(g)Rroot(h).� If sRt and (s; a; s0) 2 edges(g), then there is an edge (t; a; t0) 2 edges(h) su
h that s0Rt0.This de�nition is illustrated in Figure 5. Solid lines indi
ates what is assumed, dashed lines whatis required. It follows easily that g �! h i� there exists a simulation of g by h.
a aFigure 5: A simulationFor pro
ess graphs with multiple roots, the �rst requirement of De�nition 8.2 generalizes to� 8s 2 roots(g)9t 2 roots(h) : sRt.Classi�
ation Simulation semanti
s (S) is �ner than tra
e semanti
s (T � S), but independentof CT , F , R, FT , RT and PF .Proof: \T � S" follows sin
e LT is a sublanguage of LS.\S 6� CT" (and hen
e \S 6� RT", \S 6� PF" et
.) follows from Counterexample 2. Thereleft 6=CT right , although left ! right ; the 
onstru
tion of the two simulations is left to the reader.\S 6� RT" (and hen
e \S 6� T" et
.) follows from Counterexample 8. There RT (left) = RT (left),but S(left) 6= S(left). The �rst statement follows from Proposition 6.3 and the insight that itsuÆ
es to 
he
k the two ready tra
es 
ontributed by the maximal paths; these are the same forboth graphs. The se
ond statement follows sin
e a(b
> ^ bd>) 2 S(right)� S(left).\S 6� PF" follows from Counterexample 7, where PF (left) = PF (right) but S(left) 6= S(left). Thelatter statement follows sin
e a(b> ^ a(b> ^ 
d>)) 2 S(left)� S(right). 2

df-LTS
a simulation
df-simulation graph
TvsCT
SvsRT
pr-ready trace paths
PFvsFT


Simulation semanti
s 31a ab b
 dab
+ abd
=PW=RT6=S ab b
 da(b
+ bd)Counterexample 8: Possible worlds and ready tra
e equivalent, but not simulation equivalentIn�nite pro
esses In order to make the testing s
enario mat
h its formalization in terms of themodal language LS even for in�nite pro
esses, one has to assume that the amount of 
opies one
an make at any time is in�nite. Moreover, although no single 
opy 
an be tested forever, due toits in�nite bran
hing there may be no upperbound upon the duration of an observation.One might 
onsider an even more in�nitary testing s
enario by allowing observations to go onforever on some or all of the 
opies. However, this would not give rise to a more dis
riminatingequivalen
e; ordinary simulation equivalen
es already preserves in�nite tra
es.Proposition 8.3 If p �! q then T1(p) � T1(q). Hen
e T1 � S.Proof: Suppose R is a simulation with p0Rq0 and a1a2 � � � 2 T1(p0). Then there are p1; p2; ::: su
hthat p0 a1�! p1 a2�! � � �. With indu
tion on i 2 IN it follows that there are pro
esses qi+1 su
h thatqi �ai+1�! qi+1 and pi+1Rqi+1. Hen
e a1a2 � � � 2 T1(q0). 2The most radi
al way to make the testing s
enario �nitary, is to allow only �nitely many 
opiesto be made in any state of the pro
ess. This also puts an upperbound on the duration of anyobservation. Observations 
an now be modelled with simulation formulas in whi
h the index sets Iof the �rst 
lause of De�nition 8.1 are always �nite. The modal language 
ontaining su
h simulationformulas 
an equivalently be de�ned by splitting the 
onstru
tion Vi2I into > and ^.De�nition 8.3 The set L�S of �nitary simulation formulas over A
t is de�ned re
ursively by:� > 2 L�S .� If '; 2 L�S then ' ^  2 L�S.� If ' 2 L�S and a 2 A
t then a' 2 L�S.The satisfa
tion relation j= � IP�L�S is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= ' ^  if p j= ' and p j=  .� p j= a' if for some q 2 IP: p a�! q and q j= '.Let S�(p) denote the set of all �nitary simulation formulas that are satis�ed by the pro
ess p:S�(p) = f' 2 L�S j p j= 'g. Two pro
esses p and q are �nitary simulation equivalent, notationp =�S q, if S�(p) = S�(q).In 
ontrast, the equivalen
e ! of De�nition 8 is then in�nitary simulation equivalen
e. Note how-ever, that 
ontrary to the previous equivalen
es surveyed, the default version (the one meant when
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simulation


32 The linear time { bran
hing time spe
trum Ileaving out the adje
tive \�nitary" or \in�nitary") is the in�nitary one. In general, I use thesupers
ript � for �nitary versions and 1 for in�nitary versions. However, for the tra
e orientedequivalen
es (Se
tions 2{7) I leave out the �, and for the simulation oriented equivalen
es (Se
tions8{12) I leave out the 1.The next proposition, and hen
e also the essen
e of Proposition 8.2, stems from in Hennessy &Milner [28℄. It states that for image �nite pro
esses �nitary and in�nitary simulation equivalen
e
oin
ide.Proposition 8.4 Let p; q 2 IP be image �nite pro
esses. Then p ! q , p =�S q.Proof: Exa
tly as the proof of Proposition 8.2, but for \(" one shows that the relation vi:f:S givenby p vi:f:S q i� p vS q and q is image �nite is a simulation, using that, as q is image �nite, Q0 mustbe �nite. 2In fa
t, this proposition is a spe
ial 
ase of the following one, whi
h is proved likewise.Proposition 8.5 Let S�(p) denote the set of all simulation formulas satis�ed by p in whi
h allindex sets have 
ardinality less than �. Let p; q 2 IP and assume jfq0 j q ��! q0gj < � for ea
h� 2 A
t�. Then p �! q , S�(p) � S�(q). 2Although only q needs to be image �nite in order to obtain p �! q , p v�S q, Counterexample 12will show that both p and q need to be image �nite in the statement of Proposition 8.4.A less radi
al way to �nitize the testing s
enario for simulation semanti
s is to allow in�nitelymany 
opies to be made in any state of the pro
ess, but put a �nite upperbound on the duration ofany observation. Observations 
an then be modelled with simulation formulas in whi
h the indexsets 
an be arbitrary, but there is a �nite upperbound on the nesting of the 
onstru
tion a' of these
ond 
lause of De�nition 8.1.De�nition 8.4 Let L!S = S1n=0 LnS , where LnS is given by:� If I is a set and 'i 2 LnS for i 2 I then Vi2I 'i 2 LnS .� If ' 2 LnS and a 2 A
t then a' 2 Ln+1S .Let S!(p) = f' 2 L!S j p j= 'g and write p =!S q if S!(p) = S!(q).Now p =S q ) p =!S q ) p =�S q, and for image �nite pro
esses all three equivalen
es 
oin
ide.For image in�nite pro
esses both impli
ations are stri
t, as illustrated by Counterexamples 9 and 1.
ompare the pro
esses withand without the left bran
h ab1 b2 b3b 4 � � � =�RB6=!S ab2 b3b 4 � � � ab1 b3b 4 � � �a b1 b2 b 4 � � � � � �. . .
Counterexample 9: Finitary equivalent, but not S!-equivalentIn Counterexample 9 S�(with) = S�(without), yet aV1i=1 bi> 2 S!(with)� S!(without ).In Counterexample 1 S!(left) = S!(right), yet right 6�! left . For the �rst statement, let ' 2 L!S .Then there is an n su
h that ' 2 LnS . Now parts of trees that are further than n edges away fromthe root play no rôle in the satisfa
tion relation for '. Thus, the validity of ' remains un
hanged
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Ready simulation semanti
s 33if in both trees all paths are 
ut o� after n steps. However, the 
ut versions of both trees areisomorphi
, and hen
e satisfy the same formulas (
f. Corollary 12.1). The se
ond statement followsimmediately from Proposition 8.3.It follows that T � S� � S! � S and T � T1 � S, whereas T1 is in
omparable with S� andS!. Moreover, S�, S! and S are in
omparable with the semanti
s ranging from CT or F� to RT1.9 Ready simulation semanti
sTesting s
enario Of 
ourse one 
an also 
ombine the 
opying fa
ility with any of the other testings
enarios. The observer 
an then plan experiments on one of the ma
hines from the Se
tions 3 to7 together with a repli
ator, an ingenious devi
e by whi
h one 
an repli
ate the ma
hine wheneverand as often as one wants. In order to represent observations, the modal languages from Se
tions3 to 7 need to be 
ombined with the one from Se
tion 8.De�nition 9 The language LCS and the 
orresponding satisfa
tion relation is de�ned re
ursivelyby 
ombining the 
lauses of De�nition 3.1 (for LCT ) with those of De�nition 8.1 (for LS ). Likewise,LFS is obtained by 
ombining LF and LS ; LFTS by 
ombining LFT and LS ; LRS by 
ombining LRand LS ; and LRTS by 
ombining LRT and LS . For p 2 IP and O 2 fCS ;FS ;FTS ;RS ;RTSg letO(p) = f' 2 LO j p j= 'g. Two pro
esses p; q 2 IP are� 
ompleted simulation equivalent, notation p =CS q, if CS (p) = CS (q);� failure simulation equivalent, notation p =FS q, if FS (p) = FS (q);� failure tra
e simulation equivalent, notation p =FTS q, if FTS (p) = FTS (q);� ready simulation equivalent, notation p =RS q, if RS (p) = RS (q);� ready tra
e simulation equivalent, notation p =RTS q, if RTS (p) = RTS (q).It is obvious that failure tra
e simulation equivalen
e 
oin
ides with failure simulation equivalen
eand ready tra
e simulation equivalen
e with ready simulation equivalen
e (p j= X', p j= X ^').Also it is not diÆ
ult to see that failure simulation equivalen
e and ready simulation equivalen
e
oin
ide (p j= X , p j= eY ^Va2X a>, where Y = A
t�X). So one hasProposition 9.1 p =FS q , p =FTS q , p =RTS q , p =RS q. 2Relational 
hara
terizations The two remaining equivalen
es 
an be 
hara
terized as follows:De�nition 9.1 A 
omplete simulation is a binary relation R on pro
esses, satisfying, for a 2 A
t:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq then I(p) = ; , I(q) = ;.Proposition 9.2 Two pro
esses p and q are 
ompleted simulation equivalent if there exists a
omplete simulation R with pRq and a 
omplete simulation S with qSp.Proof: A trivial modi�
ation of the proof of Proposition 8.2. 2De�nition 9.2 A ready simulation is a binary relation R on pro
esses, satisfying, for a 2 A
t:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq then I(p) = I(q).
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34 The linear time { bran
hing time spe
trum IProposition 9.3 Two pro
esses p and q are ready simulation equivalent if there exists a readysimulation R with pRq and a ready simulation S with qSp.Proof: A trivial modi�
ation of the proof of Proposition 8.2. 2A variant of ready simulation equivalen
e was originally proposed by Bloom, Istrail & Meyer[12℄ under the name GSOS tra
e 
ongruen
e; they provided a modal 
hara
terization, to be dis-
ussed in Se
tion 10. A relational 
hara
terization was �rst given by Larsen & Skou [35℄ underthe name 23 -bisimulation equivalen
e. A 23 -bisimulation is de�ned just like a ready simulation, ex-
ept that the se
ond 
lause reads \if pRq and 9q0 : q a�! q0 then 9p0 : p a�! p0". This is 
learlyequivalent.Classi�
ation RT � RS, CT � CS and S � CS � RS. CS is independent of F to RT .Proof: \RT � RS" follows sin
e LRT is a sublanguage of LRTS , using Proposition 9.1.\CT � CS" and \S � CS � RS" follow sin
e LCT and LS are sublanguages of LCS , whi
h is asublanguage of LFS .\RT 6� RS" follows from Counterexample 8, using \RS � S"; similarly RT 6� CS and CT 6� CS.\S 6� CS" follows from Counterexample 2, using \CS � CT".\CS 6� F" (and hen
e \CS 6� RS") follows from Counterexample 3, in whi
h F (left) 6= F (right)but left =CS right ; the 
onstru
tion of the two 
omplete simulations is left to the reader. 2Proposition 9.4 PF is in
omparable with CS and RS.Proof: \CS 6� PF" (and hen
e \RS 6� PF") follows from Counterexample 7, using \CS � S".� a ab b b
 
 dab
+ a(b
+ bd)
=RS6=PF �ab b
 da(b
+ bd)Counterexample 10: Ready simulation equivalent, but not possible-futures equivalent\RS 6� PF" (and hen
e \CS 6� PF") follows from Counterexample 10, whi
h shows two graphsthat are ready simulation equivalent but not possible-futures equivalent. Con
erning the �rst 
laim,note that there exists exa
tly one simulation of right by left, namely the one mapping right on theright-hand side of left. There also exists exa
tly one simulation of left by right, whi
h relates thered (or shaded) node on the left to the red (or shaded) shaded node on the right. Both simulationsare ready simulations, as related nodes have the same menu of initial a
tions. The se
ond 
laimfollows sin
e =na; f"; b; b
gn= 2 PF (left)� PF (right). 2In�nite pro
esses For ea
h of the semanti
s CS, FS, FTS, RS and RTS a �nitary variant(supers
ripted with a *), motivated by allowing �nite repli
ation only, is de�ned by 
ombining themodal languages LCT , LF , LFT , LR and LRT , respe
tively, with L�S . Likewise, an intermediate
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Ready simulation semanti
s 35variant (supers
ripted with an !), motivated by requiring any observation to be over within a�nite amount of time, is de�ned by 
ombining these languages with L!S . Finally, a �nite variant(supers
ripted with a �), motivated by observers that 
an only engage in �nite repli
ation, 
anonly set �nitely many swit
hes on free, and 
an only inspe
t �nitely many lamps in a �nite time,is obtained by 
ombining the (obvious) modal languages L�F , L�FT , L�R and L�RT with L�S (there isno CS�). Exa
tly as in the 
ase of Proposition 9.1 one �nds:Proposition 9.5 FS! = FTS! = RTS! = RS! and FS� = FTS� = RTS� = RS�. Moreover,FS � = FTS � and RTS � = RS �. 2However, as pointed out in S
hnoebelen [47℄, FS � and RS � are di�erent: in Counterexample 11
ompare the pro
esses withand without the left bran
h a1 2 3 4 ::: =�FB6=R a2 3 4 ::: a1 3 4 ::: a 1 2 4 ::: :::. . .Counterexample 11: Finitary failure simulation equivalent, but not ready equivalentone has FS �(with) = FS �(without ), but =na; f1; 2; :::gn= 2 R(with)�R(without).Clearly one has CS � � CS! � CS and RS� � FS � � RS � � RS! � RS . The stri
tness ofthese in
lusions is given by Counterexamples 4, 11, 9 and 1. In addition one has RT� � RS�,S � � RS�, RT � RS �, FT � FS �, CT � CS� and S� � CS� � FS �; as well as RT1 � RS ,CT1 � CS, S! � CS! � RS! and S � CS � RS. Counterexamples against further in
lusionshave already been provided.Proposition 9.6 Let p; q 2 IP be image �nite. Then p =CS q , p =�CS q and p =RS q , p =�RS q.Proof: Two trivial modi�
ations of the proof of Proposition 8.4. In the se
ond one, one uses thatif 8' 2 L�RS(p j= ') q j= ') then surely I(p) = I(q). 2In fa
t, if it is merely known that only q is image �nite it follows already that p vCS q , p v�CS qand p vRS q , p v�RS q. However, the following variant of Counterexample 1 shows that in thestatement of Proposition 9.6 it is essential that both p and q are image �nite. In Counterexample 12right is image �nite|in fa
t, it is even �nitely bran
hing|but left is not. It turns out thatleft =!RS right (and hen
e left =�RS right , left =�CS right , left =RT right , left =F right , et
.) butleft 6=1T right (and hen
e left 6=1F right , left 6=1RT right , left 6=CS right , left 6=RS right , et
.).a aa aa a aa a a ::: aaa a=!RS6=1TCounterexample 12: Finitary ready simulation equivalent but not in�nitary equivalentFor general (non-image-�nite) pro
esses, no relational 
hara
terizations of the �nite, �nitary andintermediate equivalen
es are known.
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36 The linear time { bran
hing time spe
trum ITesting s
enario An alternative and maybe more natural testing s
enario for �nitary readysimulation semanti
s (or simulation semanti
s) 
an be obtained by ex
hanging the repli
ator foran undo-button on the (ready) tra
e ma
hine (Figure 6). It is assumed that all intermediate states
a� b� � � � z� 
 �undoFigure 6: The ready simulation ma
hinethat are past through during a run of a pro
ess are stored in a memory inside the bla
k box. Nowpressing the undo-button 
auses the ma
hine to shift one state ba
kwards. In the initial statepressing the button has no e�e
t. An observation now 
onsists of a (ready) tra
e, enri
hed withundo-a
tions. Su
h observations 
an easily be translated into �nitary (ready) simulation formulas.10 Rea
tive versus generative testing s
enariosIn the testing s
enarios presented so far, a pro
ess is 
onsidered to perform a
tions and make 
hoi
esautonomously. The investigated behaviours 
an therefore be 
lassi�ed as generative pro
esses. Theobserver merely restri
ts the spontaneous behaviour of the generative ma
hine by 
utting o� somepossible 
ourses of a
tion. An alternative view of the investigated pro
esses 
an be obtained by
onsidering them to rea
t on stimuli from the environment and be passive otherwise. Rea
tivema
hines 
an be obtained out of the generative ma
hines presented so far by repla
ing the swit
hesby buttons and the display by a green light. Initially the pro
ess waits patiently until the observer

a� b� � � � z� �undoFigure 7: The rea
tive ready simulation ma
hinetries to press one of the buttons. If the observer tries to press an a-button, the ma
hine 
an rea
tin two di�erent ways: if the pro
ess 
an not start with an a-a
tion the button will not go downand the observer may try another one; if the pro
ess 
an start with an a-a
tion it will do so andthe button goes down. Furthermore the green light swit
hes on. During the exe
ution of a no

ready simulation machine


Rea
tive versus generative testing s
enarios 37buttons 
an be pressed. As soon as the exe
ution of a is 
ompleted the light swit
hes o�, so thatthe observer knows that the pro
ess is ready for a new trial. Rea
tive ma
hines as des
ribed aboveoriginate from Milner [37, 38℄.One family of testing s
enarios with rea
tive ma
hines 
an be obtained by allowing the observerto try to depress more than one button at a time. In order to in
uen
e a parti
ular 
hoi
e, theobserver 
ould already start exer
ising pressure on buttons during the exe
ution of the pre
edinga
tion (when no button 
an go down). When this pre
eding a
tion is �nished, at most one of thebuttons will go down. These testing s
enarios are equipotent with the generative ones: puttingpressure on a button is equivalent to setting the 
orresponding swit
h on `free'; moreover an a
tiona appearing in the display is mimi
ked by the a-button going down, and the disappearan
e of afrom the display by the green light going o�.Another family of testing s
enarios is obtained by allowing the user to try only one button ata time. They are equipotent with those generative testing s
enarios in whi
h at any time only oneswit
h 
an be set on `free'. Next I will dis
uss the equivalen
es that originate from these s
enarios.First 
onsider the rea
tive ma
hine that resembles the failure tra
e ma
hine, thus without menu-lights and undo-button. An observation on su
h a ma
hine 
onsists of a sequen
e of a

epted andrefused a
tions, indi
ating whi
h buttons went down in a sequen
e of trials of the user. Su
h asequen
e 
an be seen as a failure tra
e where all refusal sets are singletons. Call the resultingsemanti
s FT 1. Clearly, the failure tra
e set of any pro
ess p satis�es�(X [ Y )� 2 FT (p) , �XY � 2 FT (p):Thus, any failure tra
e �fa1; : : : ; ang� 
an be rewritten as (
ontains the same information as)�fa1gfa2g � � � fang�. It follows that the singleton-failure tra
e set FT 1(p) of a pro
ess p 
ontains asmu
h information as its �nite-failure tra
e set FT�(p), so the semanti
s FT 1 
oin
ides with FT�.In order to arrive at a rea
tive 
ounterpart to failures semanti
s, one 
ould suppose that anobserver 
ontinues an experiment only as long as all buttons he tries to depress a
tually go down;when a button refuses to go down, he will not try another one. This testing s
enario gives rise tothe variant F 1 of failures semanti
s in whi
h all refusal sets are singletons.De�nition 10 =n�; an= 2 A
t� � A
t is a singleton-failure pair of a pro
ess p if there is a pro
essq su
h that p ��! q and a 62 I(q). Let F 1(p) denote the set of singleton-failure pairs of p. Twopro
esses p and q are singleton-failures equivalent, p =1F q, if T (p) = T (q) and F 1(p) = F 1(q).Unlike for F and F�, F 1(p) = F 1(q) does not always imply that T (p) = T (q), so one has to keeptra
k of tra
es expli
itly. These model observations ended by the observer before stagnation o

urs.Singleton-failures semanti
s (F 1) is situated stri
tly between tra
e (T ) and �nite-failures se-manti
s (F�). For Counterexample 2 shows two pro
esses with T (left) = T (right) but =na; bn= 2F 1(left)�F 1(right), and Counterexample 13 shows two pro
esses with F 1(left) = F 1(right) (both
ontain =na; bn= and =na; 
n=), but =na; fb; 
gn= 2 F (left) � F (right). Furthermore, F 1 is independent ofCT , S and CS, for in Counterexample 13 one has CT (left) 6= CT (right), in Counterexample 8one has left =1F right but left 6=S right , and in Counterexample 3 one has left =CS right but=na; 
n= 2 F 1(left)� F 1(right).Adding the undo-button to the rea
tive failure tra
e ma
hine gives a semanti
s FS 1 
hara
ter-ized by the modal language L�S to whi
h has been added a modality \Can't(a)", with p j= Can't(a)i� a 62 I(p). This modality denotes a failed attempt to depress the a-button. If fa
t, Bloom, Is-trail & Meyer studied the 
oarsest equivalen
e �ner than tra
e equivalen
e that is a 
ongruen
e
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38 The linear time { bran
hing time spe
trum Ia aab 
ab+ a+ a

=1F6=CT6=�F ab a 
ab+ a
Counterexample 13: Singleton-failures equivalent, but not 
ompleted tra
e or failures equivalentfor the 
lass of so-
alled GSOS-operators, and 
hara
terized this GSOS tra
e 
ongruen
e by themodal language above; its formulas were 
alled denial formulas. As in the modal language L�FSone has p j= gX [ Y , p j= eX ^ eY , and Can't(a) is the same as gfag, it follows that the language ofdenial formulas is equally expressive as L�FS , and hen
e FS 1 
oin
ides with FS� and RS�.If the menu-lights are added to the rea
tive failure tra
e ma
hine 
onsidered above one 
anobserve ready tra
e sets, and the green light is redundant. Likewise, adding menu-lights to therea
tive failure s
enario would give readiness semanti
s, and adding them to the rea
tive failuresimulation ma
hine would yield ready simulation. If the green light (as well as the menu-lights)are removed from the rea
tive failure tra
e ma
hine, one 
an only test tra
e equivalen
e, sin
eany refusal may be 
aused by the last a
tion not being ready yet. Likewise, removing the greenlight from the rea
tive failure simulation ma
hine (with undo-button) yields (�nitary) simulationsemanti
s. Rea
tive ma
hines on whi
h only one button at a time is depressed appear to be unsuitedfor testing 
ompleted tra
e, 
ompleted simulation and failures equivalen
e.11 2-nested simulation semanti
s2-nested simulation equivalen
e popped up naturally inGroote & Vaandrager [25℄ as the 
oars-est 
ongruen
e with respe
t to a large and general 
lass of operators that is �ner than 
ompletedtra
e equivalen
e.De�nition 11 A 2-nested simulation is a simulation 
ontained in simulation equivalen
e (! ).Two pro
esses p and q are 2-nested simulation equivalent, notation p =2S q, if there exists a2-nested simulation R with pRq and a 2-nested simulation S with qSp.Modal 
hara
terization A modal 
hara
terization of this notion is obtained by the fragmentof the in�nitary Hennessy-Milner logi
 (
f. De�nition 12.1) without nested negations.De�nition 11.1 The 
lass L2S of 2-nested simulation formulas over A
t is de�ned re
ursively by:� If I is a set and 'i 2 L2S for i 2 I then Vi2I 'i 2 L2S .� If ' 2 L2S and a 2 A
t then a' 2 L2S .� If ' 2 LS then :' 2 L2S .Note that LS � L2S . The satisfa
tion relation j= � IP�L2S is de�ned re
ursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.
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Bisimulation semanti
s 39Proposition 11.1 p =2S q , 8' 2 L2S (p j= ', q j= ').Proof: A trivial modi�
ation of the proof of Proposition 8.2. 2Testing s
enario In order to obtain a testing s
enario for this equivalen
e one has to introdu
ethe rather unnatural notion of a lookahead [25℄: The 2-nested simulation ma
hine is a variant of theready tra
e ma
hine with repli
ator, where in an idle state the ma
hine not only tells whi
h a
tionsare on the menu, but even whi
h simulation formulas are (not) satis�ed in the 
urrent state.Classi�
ation RS � 2S and PF � 2S .Proof: For \RS � 2S" it suÆ
es to show that ea
h 2-nested simulation is a ready simulation.This follows sin
e p ! q ) I(p) = I(q). PF � 2S is easily established using that T � S. Thatboth in
lusions are stri
t follows immediately from the fa
t that RS and PF are in
omparable(Proposition 9.4). 2In�nite pro
esses Exa
tly as for ready simulations semanti
s, 5 versions of 2-nested simulationsemanti
s 
an be de�ned that di�er for in�nite pro
esses. 2S� is the semanti
s whose modal
hara
terization has the 
onstru
ts >, ^, a' and :'0 with '0 2 L�S . The 
onstru
ts eX and Xfor X ��n A
t are expressible in this logi
. F2S � additionally has the 
onstru
t eX, and R2S � the
onstru
t X, for X � A
t. Finally 2S! is 
hara
terized by the 
lass of 2-nested simulation formulaswith a �nite upperbound on the nesting of the a' 
onstru
t. The 
onstru
ts eX and X for X � A
tare expressible in L!2S , and hen
e also in L2S .We have 2S� � F2S � � R2S � � 2S! � 2S . The stri
tness of these in
lusions is given byCounterexamples 4, 11, 9 and 1. In addition one has RS� � 2S�, FS � � F2S �, RS � � R2S �,RS! � 2S! and RS � 2S ; as well as PF1 � 2S . Counterexample 1 shows that PF 6� 2S!:2S!(left) = 2S!(right) (
f. Proposition 12.10), but =na; a�n= 2 PF (right)� PF (left).Proposition 11.2 Let p; q 2 IP be image �nite. Then p =2S q , p =�2S q.Proof: An easy modi�
ation of the proof of Proposition 8.4, also using its result. 212 Bisimulation semanti
sThe 
on
ept of bisimulation equivalen
e stems from Milner [37℄. Its formulation below is due toPark [41℄.De�nition 12 A bisimulation is a binary relation R on pro
esses, satisfying, for a 2 A
t:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq and q a�! q0, then 9p0 : p a�! p0 and p0Rq0.Two pro
esses p and q are bisimilar, notation p$ q, if there exists a bisimulation R with pRq.The relation $ is again a bisimulation. As for similarity, one easily 
he
ks that bisimilarityis an equivalen
e relation on IP. Hen
e the relation will be 
alled bisimulation equivalen
e. Inbisimulation semanti
s (B) two pro
esses are identi�ed i� they are bisimulation equivalent. Notethat the 
on
ept of bisimulation does not 
hange if in the de�nition above the a
tion relations a�!were repla
ed by generalized a
tion relations ��!.
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40 The linear time { bran
hing time spe
trum IModal 
hara
terizationDe�nition 12.1 The 
lass LB of in�nitary Hennessy-Milner formulas over A
t is de�ned by:� If I is a set and 'i 2 LB for i 2 I then Vi2I 'i 2 LB .� If ' 2 LB and a 2 A
t then a' 2 LB.� If ' 2 LB then :' 2 LB.The satisfa
tion relation j= � IP�LB is de�ned re
ursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.Let B(p) denote the 
lass of all in�nitary Hennessy-Milner formulas satis�ed by the pro
ess p:B(p) = f' 2 LB j p j= 'g. Write p vB q if B(p) � B(q) and p =B q if B(p) = B(q).Proposition 12.1 p vB q , p =B q.Proof: If ' 2 B(q)�B(p) then :' 2 B(p)�B(q). 2Proposition 12.2 p$ q , p =B q.Proof: For \)" I have to prove that for any bisimulation R and for all ' 2 LB one haspRq ) (p j= ', q j= '):I will do so with stru
tural indu
tion on '. Suppose pRq.{ Let p j= a'. Then there is a p0 2 IP with p a�! p0 and p0 j= '. As R is a bisimulation, theremust be a q0 2 IP with q a�! q0 and p0Rq0. So by indu
tion q0 j= ', and hen
e q j= a'.By symmetry one also obtains q j= a') p j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:() 8i2I(q j= 'i), q j= Vi2I 'i.{ p j= :', p 6j= ' ind:() q 6j= ', q j= :'.For \(" it suÆ
es to establish that vB is a simulation (Proposition 12.1 then implies that =B =vB = v�1B is a bisimulation). This goes exa
tly as in the proof of Proposition 8.2. 2Testing s
enario The testing s
enario for bisimulation semanti
s, as presented in Milner [37℄,is the oldest and most powerful testing s
enario, from whi
h most others have been derived byomitting some of its features. It was based on a rea
tive failure tra
e ma
hine with repli
ator,but additionally the observer is equipped with the 
apa
ity of global testing. Global testing isdes
ribed in Abramsky [1℄ as: \the ability to enumerate all (of �nitely many) possible `operatingenvironments' at ea
h stage of the test, so as to guarantee that all nondeterministi
 bran
hes willbe pursued by various 
opies of the subje
t pro
ess". Milner [37℄ implemented global testing byassuming that\(i) It is the weather at any moment whi
h determines the 
hoi
e of transition (in 
ase of ambiguity[...℄);(ii) The weather has only �nitely many states|at least as far as 
hoi
e-resolution is 
on
erned;(iii) We 
an 
ontrol the weather."

pr-bisimulation preorder
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Bisimulation semanti
s 41Now it 
an be ensured that all possible moves a pro
ess 
an perform in rea
tion on a givena-experiment will be investigated by simply performing the experiment in all possible weather
onditions. Unfortunately, as remarked in Milner [38℄, the se
ond assumption implies that theamount of di�erent moves an investigated pro
ess 
an perform in response to any given experi-ment is bounded by the number of possible weather 
onditions (i.e. 9n 2 IN 8p 2 IP 8a 2 A
t :jfq 2 IP j p a�! qgj < n). So for general appli
ation this 
ondition has to be dropped, therebylosing the possibility of e�e
tive implementation of the testing s
enario.An observation in the global testing s
enario 
an be represented as an in�nitary Hennessy-Milner formula ' 2 LB. This is essentially a simulation formula in whi
h it is possible to indi
atethat 
ertain bran
hes are not present. A formula :' says that by making suÆ
iently many 
opiesof the investigated pro
ess, and exposing them to all possible weather 
onditions, it 
an be observedthat none of these 
opies permits the observation '.Remark: Let [a℄' denote :a:'. Now the negation in LB 
an be eliminated in favour of themodalities [a℄ and in�nitary disjun
tion Wi2I . A formula [a℄' says that in all possible weather
onditions, after an a-move it is always possible to make the observation '.In order to justify the observations of LB in a generative testing s
enario no swit
hes or menu-lights are needed; the ar
hite
ture of the 
ompleted tra
e ma
hine suÆ
es. However, in order towarrant negative observations, one has to assume that a
tions take only a �nite amount of time,and idling 
an be dete
ted (either by observations that last forever, or by means of the displaybe
oming empty). Adding swit
hes and or menu-lights does not in
rease the dis
riminating powerof the observers. It would give rise to observations that 
an be modelled as formulas in languagesLFB , LRTB , et
., obtained by 
ombining LF , LRT , et
. with LB . These observations 
an alreadybe expressed in LB: p j= eX , p j= Va2X :a> and p j= X', p j= (Va62X :a>) ^ (Va2X a>) ^ '.A di�erent implementation of global testing is given in Larsen & Skou [35℄. They assumedthat every transition in a transition system has a 
ertain probability of being taken. Thereforean observer 
an with an arbitrary high degree of 
on�den
e assume that all transitions have beenexamined, simply by repeating an experiment many times.As argued among others in Bloom, Istrail & Meyer [12℄, global testing in the above sense isa rather unrealisti
 testing ability. On
e you assume that the observer is really as powerful as in thedes
ribed s
enarios, in fa
t more 
an be tested then only bisimulation equivalen
e: in the testings
enario of Milner also the 
orrelation between weather 
onditions and transitions being taken bythe investigated pro
ess 
an be re
overed, and in that of Larsen & Skou one 
an determine therelative probabilities of the various transitions.Pro
ess graph 
hara
terization Also bisimulation equivalen
e 
an be 
hara
terized by meansof relations between the nodes of two pro
ess graphs.De�nition 12.2 Let g; h 2 jG. A bisimulation between g and h is a binary relation R � nodes(g)�nodes(h), satisfying:� root(g)Rroot(h).� If sRt and (s; a; s0) 2 edges(g), then there is an edge (t; a; t0) 2 edges(h) su
h that s0Rt0.� If sRt and (t; a; t0) 2 edges(h), then there is an edge (s; a; s0) 2 edges(g) su
h that s0Rt0.
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42 The linear time { bran
hing time spe
trum IThis de�nition is illustrated in Figure 8. Solid lines indi
ates what is assumed, dashed lines whatis required. It follows easily that g$ h i� there exists a bisimulation between g and h.
aa aaFigure 8: A bisimulationFor pro
ess graphs with multiple roots, the �rst requirement of De�nition 12.2 generalizes to� 8s 2 roots(g)9t 2 roots(h) : sRt.� 8t 2 roots(h)9s 2 roots(g) : sRt.Classi�
ation 2S � B .Proof: \2S � B" follows sin
e L2S is a sublanguage of LB.\2S 6� B" follows from Counterexample 14, whi
h shows two graphs that are 2-nested simulationequivalent, but not bisimulation equivalent. Con
erning the �rst 
laim, as in Counterexample 10there exists exa
tly one simulation of left by right, whi
h relates the red (or shaded) node on the leftto the red (or shaded) node on the right. Unlike in Counterexample 10, this simulation is 2-nested,for the two subgraphs originating from the two red (or shaded) nodes are simulation equivalent, asare the graphs left and right themselves. Likewise, the simulation mapping right on the right-handside of left is also 2-nested. The se
ond 
laim follows sin
e a:b:
> 2 B(left)� B(right). 2� a ab b b
 
ab
+ a(b
+ b)

=2S6=B �ab b
 a(b
+ b)Counterexample 14: 2-nested simulation equivalent, but not bisimulation equivalentThus bisimulation equivalen
e is the �nest semanti
 equivalen
e treated so far. The following showshowever that on jG graph isomorphism is even �ner, i.e. isomorphi
 graphs are always bisimilar. Infa
t, a graph isomorphism 
an be seen as a bije
tive bisimulation. That not all bisimilar graphsare isomorphi
 will follow from Counterexample 15.

a bisimulation
df-bisimulation graph
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Bisimulation semanti
s 43Proposition 12.3 For g; h 2 jG, g �= h i� there exists a bisimulation R between g and h, satisfying� If sRt and uRv then s = u, t = v. (*)Proof: Suppose g �= h. Let f : nodes(g) ! nodes(h) be a graph isomorphism. De�ne R �nodes(g)� nodes(h) by sRt i� f(s) = t. Then it is routine to 
he
k that R satis�es all 
lauses ofDe�nition 12.2 and (*). Now suppose R is a bisimulation between g and h satisfying (*). De�nef : nodes(g) ! nodes(h) by f(s) = t i� sRt. Sin
e g is 
onne
ted it follows from the de�nitionof a bisimulation that for ea
h s su
h a t 
an be found. Furthermore dire
tion \)" of (*) impliesthat f(s) is uniquely determined. Hen
e f is well-de�ned. Now dire
tion \(" of (*) implies that fis inje
tive. From the 
onne
tedness of h if follows that f is also surje
tive, and hen
e a bije
tion.Finally, the 
lauses of De�nition 12.2 imply that f is a graph isomorphism. 2Corollary 12.1 If g �= h then g and h are equivalent a

ording to all semanti
 equivalen
esen
ountered so far. 2Non-well-founded sets Another 
hara
terization of bisimulation semanti
s 
an be given bymeans of A
zel's universe V of non-well-founded sets [4℄. This universe is an extension of the VonNeumann universe of well-founded sets, where the axiom of foundation (every 
hain x0 3 x1 3 � � �terminates) is repla
ed by an anti-foundation axiom.De�nition 12.3 Let B denote the unique fun
tion M : IP! V satisfyingM(p) = f=na;M(q)n= j p a�! qgfor all p 2 IP. Two pro
esses p and q are bran
hing equivalent (my terminology) if B(p) = B(q).It follows from A
zel's anti-foundation axiom that su
h a fun
tion exists. In fa
t the axiom amountsto saying that systems of equations like the one above have unique solutions. In [4℄ there is alsoa se
tion on 
ommuni
ating systems. There two pro
esses are identi�ed i� they are bran
hingequivalent.A similar idea underlies the semanti
s of De Bakker & Zu
ker [9℄, but there the domain ofpro
esses is a 
omplete metri
 spa
e and the de�nition of B above only works for �nitely bran
hingpro
esses, and only if = is interpreted as isometry, rather then equality, in order to stay in well-founded set theory. For �nitely bran
hing pro
esses the semanti
s of De Bakker and Zu
ker 
oin
ideswith the one of A
zel and also with bisimulation semanti
s. This is observed in Van Glabbeek& Rutten [22℄, where also a proof 
an be found of the next proposition, saying that bisimulationequivalen
e 
oin
ides with bran
hing equivalen
e.Proposition 12.4 Let p; q 2 IP. Then p$ q , B(p) = B(q).Proof: \(": Let B be the relation de�ned by pBq i� B(p) = B(q); then it suÆ
es to prove that Bis a bisimulation. Suppose pBq and p a�! p0. Then =na;B(p0)n= 2 B(p) = B(q). So by the de�nitionof B(q) there must be a pro
ess q0 with B(p0) = B(q0) and q a�! q0. Hen
e p0Bq0, whi
h had to beproved. The se
ond requirement for B being a bisimulation follows by symmetry.\)": Let B� denote the unique solution of M�(p) = f=na;M�(r0)n= j 9r : r $ p ^ r a�! r0g.As for B it follows from the anti-foundation axiom that su
h a unique solution exists. From thesymmetry and transitivity of $ it follows thatp$ q ) B�(p) = B�(q): (1)
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44 The linear time { bran
hing time spe
trum IHen
e it remains to be proven that B� = B. This 
an be done by showing that B� satis�esthe equations M(p) = f=na;M(q)n= j p a�! qg, whi
h have B as unique solution. So it has tobe established that B�(p) = f=na;B�(q)n= j p a�! qg. The dire
tion \�" follows dire
tly from there
exivity of $ . For \�", suppose =na;Xn= 2 B�(p). Then 9r : r$ p, r a�! r0 and X = B�(r0).Sin
e $ is a bisimulation, 9p0 : p a�! p0 and r0$ p0. From (1) it follows that X = B�(r0) = B�(p0).Therefore =na;Xn= 2 f=na;B�(q)n= j p a�! qg, whi
h had to be established. 2In�nite pro
esses The following prede
essor of bisimulation equivalen
e was proposed in Hen-nessy & Milner [27, 28℄.De�nition 12.4 Let p; q 2 IP. Then:� p �0 q is always true.� p �n+1 q if for all a 2 A
t:� p a�! p0 implies 9q0 : q a�! q0 and p0 �n q0;� q a�! q0 implies 9p0 : p a�! p0 and p0 �n q0.� p and q are observationally equivalent, notation p � q, if p �n q for every n 2 IN.Hennessy and Milner provided the following modal 
hara
terization of observational equivalen
eon image �nite pro
esses.De�nition 12.5 The set LHM of Hennessy-Milner formulas over A
t is de�ned re
ursively by:� > 2 LHM.� If '; 2 LHM then ' ^  2 LHM.� If ' 2 LHM and a 2 A
t then a' 2 LHM.� If ' 2 LHM then :' 2 LHM.The satisfa
tion relation j= � IP�LHM is de�ned re
ursively by:� p j= > for all p 2 IP.� p j= ' ^  if p j= ' and p j=  .� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.The modal logi
 above is now known as the Hennessy-Milner logi
 (HML). Let HM (p) denote the setof all Hennessy-Milner formulas that are satis�ed by the pro
ess p: HM (p) = f' 2 LHM j p j= 'g.Two pro
esses p and q are HML-equivalent, notation p =�B q, if HM (p) = HM (q).Theorem 2.2 in Hennessy & Milner [27, 28℄ says that � and =�B 
oin
ide for image �nitepro
esses. This result will be strengthened by Proposition 12.6. Below I provide a modal 
hara
-terization of � that is valid for arbitrary pro
esses.De�nition 12.6 Let L!B = S1n=0 LnB , where LnB is given by:� If I is a set and 'i 2 LnB for i 2 I then Vi2I 'i 2 LnB .� If ' 2 LnB and a 2 A
t then a' 2 Ln+1B .
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Bisimulation semanti
s 45� If ' 2 LnB then :' 2 LnB.Let B!(p) = f' 2 L!B j p j= 'g and write p =!B q if B!(p) = B!(q).Proposition 12.5 p �n q , 8' 2 LnB(p j= ', q j= ') for all n 2 IN. Hen
e p � q , p =!B q.Proof: Indu
tion Base: Formulas in L0B do not 
ontain the 
onstru
t a'. Hen
e for su
h formulas the statement p j=  is independent of p. Thus 8p; q 2 IP : 8' 2 L0B(p j= ', q j= ').Indu
tion Step: Suppose p �n+1 q. I now use stru
tural indu
tion on '.{ Let p j= a' with a' 2 Ln+1B . Then there is a p0 2 IP with p a�! p0 and p0 j= ' 2 LnB. Asp �n+1 q, there must be a q0 2 IP with q a�! q0 and p0 �n q0. So by indu
tion q0 j= ', andhen
e q j= a'.By symmetry one also obtains q j= a') p j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:() 8i2I(q j= 'i), q j= Vi2I 'i.{ p j= :', p 6j= ' ind:() q 6j= ', q j= :'.Now suppose 8' 2 Ln+1B (p j= ' , q j= ') and p a�! p0. Considering the symmetry in thede�nitions involved, all I have to show is that 9q0 2 IP with q a�! q0 and p0 �n q0. Let Q0 befq0 2 IP j q a�! q0 ^ p0 6�n q0g:By De�nition 1.1 Q0 is a set. For every q0 2 Q0 there must, by indu
tion, be a formula 'q0 2 LnBwith p0 j= 'q0 but q0 6j= 'q0 (use negation if ne
essary). Now p j= aVq02Q0 'q0 2 Ln+1B and thereforeq j= aVq02Q0 'q0 . So there must be a q0 2 IP with q a�! q0 and q0 62 Q0, whi
h had to be shown. 2Comparing their modal 
hara
terizations (=B of $ and =!B of �) one �ndsp$ q ) p � q ) p =�B q:Theorem 2.1 in Hennessy & Milner [27, 28℄ says, essentially, that for image �nite pro
essesthe relation � satis�es the de�ning properties of a bisimulation (
f. De�nition 12). Inspired bythis insight, Park [41℄ proposed the 
on
ise formulation of bisimulation equivalen
e employed inDe�nition 12. It follows immediately that if p; q 2 IP are image �nite, then p$ q , p � q. Thefollowing strengthening of this result is due to Hollenberg [32℄.Proposition 12.6 Let p; q 2 IP and p is image �nite. Then p$ q , p =�B q.Proof: Write pBq i� p =�B q and p is image �nite. It suÆ
es to establish that B is a bisimulation.{ Suppose pBq and q a�! q0. I have to show that 9r 2 IP with p a�! r and HM (r) = HM (q0).Let R be fr 2 IP j p a�! r ^HM (r) 6= HM (q0)g:As p is image �nite, R is �nite. For every r 2 R take a formula 'r 2 HM (q0)�HM (r) (notethat if  2 HM (r)�HM (q0) then : 2 HM (q0)�HM (r)). Nowa r̂2R'r 2 HM (q) = HM (p);so there must be a r 2 IP with p a�! r and r j= Vr2R 'r. The latter implies r 62 R, i.e.HM (r) = HM (q0), whi
h had to be shown.
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46 The linear time { bran
hing time spe
trum I{ Suppose pBq and p a�! p0. I have to show that 9q0 2 IP with q a�! q0 and HM (p0) = HM (q0).Let S be fs 2 IP j p a�! s ^HM (s) 6= HM (p0)g:As p is image �nite, S is �nite. For every s 2 S take a formula 's 2 HM (p0)�HM (s). Nowa ŝ2S 's 2 HM (p) = HM (q);so there must be a q0 2 IP with q a�! q0 and q0 j= Vs2S 's. By the previous item in this proof,9r 2 IP with p a�! r and HM (r) = HM (q0), hen
e r j= Vs2S 's. The latter implies r 62 S, soHM (r) = HM (p0). Thus HM (p0) = HM (q0), whi
h had to be shown. 2By Counterexample 12, a result like the one above does not hold for (ready) simulation semanti
s.For the sake of 
ompleteness, two more variants of bisimulation equivalen
e 
an be 
onsidered.Let FB� be 
hara
terized by the Hennessy-Milner logi
 augmented with formulas eX, and RB� bythe Hennessy-Milner logi
 augmented with formulas X, for X � A
t.Then B� � FB� � RB� � B! � B , and for image �nite pro
esses all �ve equivalen
es 
oin
ide.The stri
tness of these in
lusions is given by Counterexamples 4, 11, 9 and 1:Proposition 12.7 CT 6� B�, and hen
e FB� 6� B�.Proof: Counterexample 4 shows two pro
esses with CT (left) 6= CT (right). It remains to be shownthat HM (left) = HM (right), i.e. that for all ' 2 LHM: left j= ', right j= '. Using De�nition 12.5it is suÆ
ient to restri
t attention to formulas ' whi
h are of the form a(Vi2I bi> ^ Vj2J :bj>)with I and J �nite sets of indi
es. It is not diÆ
ult to see that ea
h su
h formula that is satis�edon one side is also satis�ed on the other side. 2Proposition 12.8 R 6� FB�, and hen
e RB� 6� FB�.Proof: Counterexample 11, shows two pro
esses with R(with) 6= R(without). It remains to beshown that FB�(with) = FB�(without ). The argument is the same as in the previous proof, butthis time fo
using on formulas of the form a( eX ^ Vi2I i> ^ Vj2J :j>) with I and J �nite sets ofnumbers and X a possibly in�nite set of numbers (= a
tions). 2Proposition 12.9 S! 6� RB�, and hen
e RB! 6� RB�.Proof: Counterexample 9 shows two pro
esses with S!(with) 6= S!(without ). It remains to beshown that RB�(with) = RB�(without). The argument is the same as in the previous proofs|thistime using formulas a(fbg ^Vi2I bi> ^Vj2J :bj>) with I and J �nite sets of numbers. 2Proposition 12.10 T1 6� B!, and hen
e B 6� B!. In addition, PF 6� B!.Proof: Counterexample 1 shows two pro
esses with T1(left) 6= T1(right). As remarked at theend of Se
tion 7, also PF (left) 6= PF (right). It remains to be shown that left =!B right , i.e. thatfor all n 2 IN: left �n right . In order to establish p �n q for two trees p and q, the parts of p andq that are further than n edges away from the root play no rôle, and 
an just as well be omitted.As the 
ut versions of left and right are isomorphi
, by Corollary 12.1 surely left �n right . 2In addition one has 2S� � B�, F2S � � FB�, R2S � � RB�, 2S! � B! and 2S � B .
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Tree semanti
s 4713 Tree semanti
sDe�nition 13 Let g 2 jG. The unfolding of g is the graph U(g) 2 jG de�ned by� nodes(U(g)) = paths(g),� root(U(g)) = root(g), i.e. the empty path, starting and ending at the root of g,� (�; a; �0) 2 edges(U(g)) i� �0 extends � by one edge, whi
h is labelled a.Two pro
esses p and q are tree equivalent, notation p =U q, if their unfoldings are isomorphi
, i.e. ifU(G(p)) �= U(G(p)). In tree semanti
s (U) two pro
esses are identi�ed i� they are tree equivalent.It is easy to see that the unfolding of any pro
ess graph is a tree, and the unfolding of a tree isisomorphi
 to itself. It follows that up to isomorphism every tree equivalen
e 
lass of pro
ess graphs
ontains exa
tly one tree, whi
h 
an be obtained from an arbitrary member of the 
lass by meansof unfolding.Proposition 13.1 Let g 2 jG. Then U(g)$ g. Hen
e g =U h) g$ h.Proof: As is easily veri�ed, f(�; end(�)) j � 2 paths(g)g is a bisimulation between U(g) and g. 2Tree semanti
s is employed in Winskel [50℄. No plausible testing s
enario or modal 
hara
teriza-tion is known for it. Proposition 13.1 shows that B� U . That B 6� U follows from Counterexample15. a aa+ a =B6=U aaCounterexample 15: Bisimulation equivalent, but not tree equivalentAlthough above tree equivalen
e is de�ned entirely in terms of a
tion relations, su
h a de�ni-tion is in fa
t misleading, as a
tion relations abstra
t from an aspe
t of system behaviour that treesemanti
s tries to 
apture. The problem 
an best be explained by 
onsidering the pro
ess aathat 
an pro
eed from its initial to its �nal state by performing one of two di�erent a-transitions.In tree semanti
s, su
h a pro
ess should be 
onsidered equivalent to the leftmost pro
ess of Coun-terexample 15, and hen
e di�erent from the rightmost one. However, a
tion relations only tellwhether a pro
ess p 
an evolve into q by performing an a-a
tion; they do not tell in how manyways this 
an happen. So in labelled transition systems as de�ned in this paper the mentionedpro
ess is represented as a and hen
e 
onsidered tree equivalent to the rightmost pro
ess ofCounterexample 15. The mishap that ensues this way will be illustrated in Se
tion 17.Tree semanti
s on labelled transitions systems as in Se
tion 1.1 is a sensible notion only ifone knows that ea
h transition in the system 
an be taken in only one way. In general, moresatisfa
tory domains for de�ning tree equivalen
e are labelled transition systems in whi
h thetransitions (p; a; q) are equipped with a multipli
ity, telling in how many di�erent ways this transi-tion 
an be taken, or pro
ess graphs g = (nodes(g);root(g);edges(g); begin; end ; label) in whi
hnodes(g) and edges(g) are sets, root(g) 2 nodes(g), begin; end : edges(g) ! nodes(g) and
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48 The linear time { bran
hing time spe
trum Ilabel : edges(g) ! A
t . The fun
tions begin, end and label asso
iate with every edge a triple(s; a; t) 2 nodes(g)�A
t�nodes(g), but 
ontrary to the situation in De�nition 1.3 the identity ofan edge is not 
ompletely determined by su
h a triple. On su
h pro
ess graphs, the notions paths,unfolding and tree equivalen
e are de�ned exa
tly as for the pro
ess graphs of De�nition 1.3.14 Possible worlds semanti
sIn Veglioni & De Ni
ola [49℄, a nondeterministi
 pro
ess is viewed as a set of deterministi
ones: its possible worlds. Two pro
esses are said to be possible worlds equivalent i� they havethe same possible worlds. Two di�erent approa
hes by whi
h a nondeterministi
 pro
ess 
an beresolved into a set of deterministi
 ones need to be distinguished; I 
all them the state-based andthe path-based approa
h. In the state-based approa
h a deterministi
 pro
ess h is obtained out of anondeterministi
 pro
ess g 2 jG by 
hoosing, for every state s of g and every a
tion a 2 I(s) a singleedge s a�! s0. Now h is the rea
hable part of the subgraph of g 
onsisting of the 
hosen edges. Inthe path-based approa
h on the other hand, one 
hooses for every path � 2 paths(g) and everya
tion a 2 I(end(�)) a single edge end(�) a�! s0 to 
ontinue with. The 
hosen edges may now bedi�erent for di�erent paths ending in the same state. The di�eren
e between the two approa
hesis illustrated in Counterexample 16. In the state-based approa
h, the pro
ess in the middle hasab
bbb =statePW6=pathPW6=T a bb
 6=statePW=pathPW=U ab
 b b
 b b
 b
Counterexample 16: State-based versus path-based possible worlds equivalen
etwo possible worlds, depending on whi
h of the two b-edges is 
hosen. These worlds are essentiallyab
 and ab1. In the path-based approa
h, the pro
ess in the middle has 
ountably many possibleworlds, namely abn
 for n � 1 and ab1.In [49℄, Veglioni & De Ni
ola take the state-based approa
h: \on
e we have resolved the under-spe
i�
ation present in a state s by saying, for example, s a�! s, then, we 
annot 
hoose s a�! 0in the same possible world." However, they provide a denotational 
hara
terization of possibleworlds semanti
s on �nite pro
esses, namely by indu
tively allo
ating sets of deterministi
 trees toBCCSP expressions (
f. Se
tion 17), whi
h 
an be regarded as path-based. In addition, they givean operational 
hara
terization of possible world semanti
s, essentially following the state-basedapproa
h outlined above. They 
laim that both 
hara
terizations agree. This, however, is notthe 
ase, as Counterexample 17 reveals a di�eren
e between the two approa
hes even on �nitepro
esses. In the path-based approa
h the pro
ess displayed has a possible world a
d + b
e (i.e. apro
ess with bran
hes a
d and b
e), whi
h it has not in the state-based approa
h. As it turns out,the 
omplete axiomatization they provide w.r.t. BCCSP is 
orre
t for the path-based, denotational
hara
terization, but is unsound for the state-based, operational 
hara
terization. To be pre
ise:their operational semanti
s fails to be 
ompositional w.r.t. BCCSP.
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Possible worlds semanti
s 49a b
 
d eCounterexample 17: State-based versus path-based possible worlds equivalen
e for �nite pro
essesCounterexample 16 shows that a suitable formulation8 of the state-based approa
h to possibleworlds semanti
s is in
omparable with any of the semanti
s en
ountered so far. The pro
esses leftand middle are state-based possible worlds equivalent, yet abb
 2 T (middle)�T (left). Furthermore,the pro
esses right and middle are tree equivalent, yet in the state-based approa
h one has abb
 2PW (right)� PW (middle).Below I propose a formalization of the path-based approa
h to possible worlds semanti
s that,on �nite pro
esses, agrees with the denotational 
hara
terization of [49℄.De�nition 14 A pro
ess p is a possible world of a pro
ess q if p is deterministi
 and p vRS q. LetPW (q) denote the 
lass of possible worlds of q. Two pro
esses q and r are possible worlds equivalent,notation q =PW r, if PW (q) = PW (r). In possible worlds semanti
s (PW ) two pro
esses areidenti�ed i� they are possible worlds equivalent. Write q vPW r i� PW (q) � PW (r).It 
an be argued that the philosophy underlying possible worlds semanti
s is in
ompatible with theview on labelled transition systems taken in this paper. The informal explanation of the a
tionrelations in Se
tion 1.1 implies for instan
e that the right-hand pro
ess graph of Counterexample 8has a state in whi
h a has happened already and both b
 and bd are possible 
ontinuations. In thepossible worlds philosophy on the other hand, this pro
ess graph is just a 
ompa
t representationof the set of deterministi
 pro
esses fab
; abdg. None of the two pro
esses in this set has su
h astate.This 
ould be a reason not to treat possible worlds semanti
s on the same footing as the othersemanti
s of this paper. However, one 
an give up on thinking of non-deterministi
 pro
esses assets of deterministi
 ones, and justify possible worlds semanti
s|at least the path-based version ofDe�nition 14|by an appropriate testing s
enario. This makes it �t in the present paper.Testing s
enario A testing s
enario for possible worlds semanti
s 
an be obtained by makingone 
hange in the rea
tive testing s
enario of failure simulation semanti
s. Namely in ea
h stateonly as many 
opies of the pro
ess 
an be made as there are a
tions in A
t, and, for a 2 A
t, the�rst test on 
opy pa of p is pressing the a-button. If it goes down, one goes on testing that 
opy,but is has already 
hanged its state; if it does not go down, the test on pa ends.Modal 
hara
terization On well-founded pro
esses, a modal 
hara
terization of possible worldssemanti
s 
an be obtained out of the modal 
hara
terization of ready simulation semanti
s by
hanging the modality Vi2I 'i into Va2X a'a with X � A
t. Possible worlds of a well-founded8Let two pro
esses be possible worlds equivalent i� ea
h possible world of the one is �-equivalent to a possibleworld of the other, where � is any of the equivalen
es treated in this paper. Theorem 6 will imply that the 
hoi
e of� is immaterial.
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hing time spe
trum Ipro
ess p 
an be simply en
oded as modal formulas in the resulting language. Probably, thismodal 
hara
terization applies to image �nite pro
esses as well. For pro
esses that are neitherwell-founded nor image �nite this 
hara
terization is not exa
t, as it fails to distinguish the twopro
esses of Counterexample 1.Classi�
ation RT � PW � RS . PW is independent of S, CS and PF .Proof: \PW � RS"9 follows by the transitivity of vRS .\RT � PW " holds as � is a ready tra
e of p 2 IP i� it is a ready tra
e of a possible world of p.\S 6� PW " (and hen
e \RS 6� PW ") follows from Counterexample 8. There S (left) 6= S (right),but PW (left) = PW (right) = fab
; abdg.\PF 6� PW " follows sin
e PF 6� RS .\CS 6� PW " follows sin
e CS 6� RT , and \PF 6� PW " sin
e PF 6� RT .Finally, \RT 6� PW " follows from Counterexample 18, taken from [49℄. There the �rst pro
essdenotes two possible worlds, whereas the se
ond one denotes four. 2bd b g
a a
 
e fa(bd+ 
e) + a(
f + bg)

=RT6=PW bd b ga
 
e fa(bd+ 
e+ 
f + bg)Counterexample 18: Ready tra
e equivalent, but not possible worlds equivalentIn�nite pro
esses The version of possible worlds semanti
s de�ned above is the in�nitary one.Note that RT1 � PW . Exa
tly as above one even establishes p vRS q ) p vPW q ) p v1RT q, i.e.RT1 �� PW �� RS . Finitary versions 
ould be de�ned by means of the modal 
hara
terizationgiven above. I will not pursue this here.15 SummaryIn Se
tions 2{14 �fteen semanti
s were de�ned that are di�erent for �nitely bran
hing pro
esses.These are abbreviated by T, CT, F 1, F, R, FT, RT, PF, S, CS, RS, PW, 2S, B and U. For ea
h ofthese semanti
s O, ex
ept U , a modal language LO (a set of modal formulas ') has been de�ned:LT ' ::= > j a'0 ('0 2 LT ) the (partial) tra
e formulasLCT ' ::= > j a'0 ('0 2 LCT ) j 0 the 
ompleted tra
e formulasLF 1 ' ::= > j a'0 ('0 2 LF 1) j ea (a 2 A
t) the singleton-failure formulasLF ' ::= > j a'0 ('0 2 LF ) j eX (X � A
t) the failure formulasLR ' ::= > j a'0 ('0 2 LR) j X (X � A
t) the readiness formulasLFT ' ::= > j a'0 ('0 2 LFT ) j eX'0 (X � A
t, '0 2 LFT ) the failure tra
e formulas9The 
ounterexample against \PW � RS" given in [49℄ is in
orre
t. The two pro
esses displayed there are notready simulation equivalent.

infinitary
SvsRT
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Summary 51LRT ' ::= > j a'0 ('0 2 LRT ) j X'0 (X � A
t, '0 2 LRT ) the ready tra
e formulasLPF ' ::= a'0 ('0 2 LPF ) j Vi2I 'i ^Vj2J :'0j ('i; '0j 2 LT ) the possible-futures formulasLS ' ::= a'0 ('0 2 LS) j Vi2I 'i ('i 2 LS) the simulation formulasLCS ' ::= a'0 ('0 2 LCS) j Vi2I 'i ('i 2 LCS) j 0 the 
ompleted simulation formulasLRS ' ::= a'0 ('0 2 LRS) j Vi2I 'i ('i 2 LRS) j X (X � A
t) the ready simulation formulasLPW Va2X a'a ('a 2 LPW ; X � A
t) j X (X � A
t) the possible worlds formulasL2S ' ::= a'0 ('0 2 L2S ) j Vi2I 'i ('i 2 L2S ) j :'0 ('0 2 LS) the 2-nested simulation formulasLB ' ::= a'0 ('0 2 LB) j Vi2I 'i ('i 2 LB) j :'0 ('0 2 LB) the bisimulation formulas.All these languages 
an be regarded as sublanguages of LB, the in�nitary Hennessy-Milner logi
,namely by 
onsidering the 
onstru
ts not in LB as abbreviations:> := Vi2; 'i eX := Va2X :a> eX'0 := eX ^ '0 0 := gA
t'1 ^ '2 := Vi2f1;2g 'i X := Va2X a> ^Va62X :a> X'0 := X ^ '0 ea := :a>On any labelled transition system IP, the satisfa
tion relation j= � IP�LB is given by:p j= a' if for some q 2 IP: p a�! q ^ q j= '; p j= Vi2I 'i if 8i 2 I : p j= 'i; p j= :' if p 6j= '.For ea
h semanti
s O 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;Bg this de�nition spe-
ializes to the sublanguage LO. Now a modal 
hara
terization of O-equivalen
e10 is given by:p =O q , 8' 2 LO(p j= ', q j= '):In the 
ases O 2 fT ;CT ;F 1;F ;R;FT ;RT g O-equivalen
e was de�ned by p =O q , O(p) = O(q).Writing Omodal(p) for f' 2 LO j p j= 'g, it 
an be observed that the formulas in Omodal(p) aremild synta
ti
 variations of the elements in O(p). Thus, the modal 
hara
terization is a rathertrivial restatement of the original de�nition of the equivalen
e. The modal 
hara
terization of PFis fairly easy to 
he
k. This is left to the reader. In the 
ases O 2 fS ;CS ;RS ; 2S ;Bg the modal
hara
terization of =O has been proven equivalent to a relational 
hara
terization in Propositions8.2, 9.2, 9.3, 11.1 and 12.2. It is a matter of taste whi
h one is taken to be the oÆ
ial de�nition.The same applies to the modal 
hara
terizations of the O-preorders10, given byp vO q , 8' 2 LO(p j= ') q j= '):For ea
h of the semanti
s T ;CT ;F 1;F ;R;FT ;RT ;S ;CS ;RS ;PW ;B a testing s
enario hasbeen proposed in whi
h the modal formulas satis�ed by a pro
ess p are interpreted as the possibleobservations that 
an be made on a suitable ma
hine intera
ting with p. In parti
ular, the formulaa' represents the observation of \a" appearing in the display of a generative ma
hine (or the a-button going down on a rea
tive ma
hine) followed by the observation '. The formula eX representsthe display of the generative ma
hine be
oming empty, whileX is the set of a
tions that are allowedto happen by the environment/observer, i.e. the ones whose swit
hes are set \free". In parti
ular,0 represents the display be
oming empty while all a
tions are free (in the absen
e of swit
hes).On a rea
tive ma
hine, ea represents the a-button refusing to go down, and eX means that noneof the a-buttons for a2X go down when they all re
eive pressure. X represents the menu lightsfor the a
tions in X being lit while the ma
hine is idling. > represents the a
t of the observerterminating his observations, and Vi2I 'i represents the observations that 
an be made on jIj10In 
ase O = PW the modal 
hara
terization is known to be valid for well-founded pro
esses only.
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hing time spe
trum I
opies of the investigated pro
ess in its 
urrent state, obtained by means of a repli
ation fa
ility.Finally :' represents the observation that ' 
annot be observed|an observation whi
h o

urswhen 
opies of the investigated pro
ess are exposed to all possible weather 
onditions, and innone of them the observation ' is made. A testing s
enario for a parti
ular semanti
s is obtainedby allowing ma
hines that are equipped with (only) those features 
orresponding with its modal
hara
terization.I write O � N if semanti
s O makes at least as mu
h identi�
ations as semanti
s N , i.e. if=O � =N . Clearly, if LO is a sublanguage of LN it must be that O � N . This immediatelyyields11 the following theorem, whose proof has also appeared in the various subse
tions entitled\
lassi�
ation".Theorem 1 T � CT � F � R � RT , T � F 1 � F � FT � RT � PW � RS � 2S � B � U ,R � PF � 2S , T � S � CS � RS and CT � CS.Theorem 1 is illustrated in Figure 1. There, however, singleton-failures semanti
s and 
ompletedsimulation semanti
s are missing, sin
e they did not o

ur in the literature, and appear to beof minor interest. The theorem applies to any labelled transition system (IP;!). Whether thein
lusions are stri
t depends on the 
hoi
e of (IP;!). In the subse
tions \
lassi�
ation" a numberof 
ounterexamples have been presented, showing that on jG all semanti
 notions mentioned inTheorem 1 are di�erent and O � N holds only if this follows from that theorem. Moreover, allrelevant examples use �nite pro
esses only.Let IH be the set of �nite 
onne
ted pro
ess graphs. Here �nite is used in the sense of De�nition1.2; a pro
ess graph g 2 jG is �nite i� paths(g) is �nite, whi
h is the 
ase i� g is a
y
li
 and hasonly �nitely many nodes and edges. Now the next theorem follows.Theorem 2 Let O;N 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;B ;U g. Then O 6� N ,and even O 6�IH N , unless O � N follows from Theorem 1 (and the fa
t that � is a partial order).The following theorem says that the in
lusion hierar
hy of the preorders T, CT, F 1, F, R, FT,RT, PF, S, CS, RS, PW, 2S and B is the same as the in
lusion hierar
hy of the 
orrespondingequivalen
es (there is no preorder for U).Theorem 3 Let O;N 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;Bg. Then O �� N i�O� N.Proof: Clearly, if LO is a sublanguage of LN it must be that p vN q ) p vO q, i.e. O �� N . Thisyields \if" (ex
ept for RT �� PW �� RS , whi
h have been established in Se
tion 14). \Only if"is immediate (
f. Se
tion 1.4). 2When the restri
tion to �nitely bran
hing pro
esses is dropped, there exists a �nitary and anin�nitary variant of ea
h of these semanti
s, depending on whether or not in�nite observationsare taken into a

ount (I do not 
onsider the �nitary version of PW or the in�nitary versionof F 1 though). These versions are notationally distinguished by means of supers
ripts \*" and\1", respe
tively; the unsubs
ripted abbreviation will refer to the in�nitary versions in 
ase ofsimulation-like semanti
s (treated in Se
tions 8{12) and to the �nitary versions for the de
orated11The statements involving PW and U do not follow this way, but have been established in Se
tions 13 and 14.

thm-spectrum fb
fig-spectrum
thm-spectrum fb
df-process graph
thm-spectrum fb
possible worlds
equivalences
tree
possible worlds


Summary 53

TCT
F RFT RTRS�FS � R2S �F2S � RB�FB�

S�CS�
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T1CT1F1 R1FT1 RT1PWRS2S
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Figure 9: The in�nitary linear time { bran
hing time spe
trumtra
e semanti
s (treated in Se
tion 2{7). The modal 
hara
terizations summarized above apply tothe default (= unsubs
ripted) versions. Modal 
hara
terizations of T1, CT1, F1, R1, resp. FT1and RT1, are obtained by allowing tra
es, resp. failure tra
es or ready tra
es, of in�nite length asmodal formulas; a modal 
hara
terization of PF1 is obtained by repla
ing the referen
e to T by oneto T1. Modal 
hara
terizations of S�, CS�, et
. are obtained by requiring the index sets I to be�nite. For the simulation-like semanti
s also an intermediate variant is 
onsidered|supers
riptedwith \!"|based on the assumption that observers 
an investigate arbitrary many 
opies of apro
ess in parallel, but have only a �nite amount of time to do so. Modally, this 
orrespondsto the restri
tion to modal formulas with a �nite upperbound on the number of nestings of thea' 
onstru
t. For the semanti
s that in
orporate refusal sets, the �nitary versions 
ome in twovariants, depending on whether the refusal sets are required to be �nite (supers
ript \�") or not(the default assumption). A similar distin
tion is made for semanti
s where menus of a
tions 
anbe observed: in R�, RT� and RS� the modal formula X is repla
ed by Va2Y :a> ^ Va2Z a>,where the sets of a
tions Y and Z are required to be �nite. Finally, whereas failure simulationsemanti
s, modally 
hara
terized byLFS ' ::= a'0 ('0 2 LFS ) j Vi2I 'i ('i 2 LFS ) j eX (X � A
t) the failure simulation formulas,
oin
ides with ready simulation semanti
s, its �nitary version (FS �) 
an be distinguished from RS�.The intermediate notions FS! and RS! 
oin
ide again, as do FS� and RS�. By analogy, new
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hing time spe
trum Isemanti
s FB� and RB� 
an be de�ned by adding the modality eX resp. X to L�B. These modalitieswould be redundant on top of L!B or LB . A similar situation o

urs for 2-nested simulation.All semanti
s en
ountered are displayed in Figure 9, in whi
h the �-relation is represented bysolid and dotted arrows.Theorem 4 For all semanti
s O and N de�ned so far, the formula O � N holds i� there is a pathO ! � � � ! N (
onsisting of solid and dotted arrows alike) in Figure 9. Furthermore, semanti
s
onne
ted by dotted arrows 
oin
ide for image �nite pro
esses.Proof: That T1 � S has been established in Proposition 8.3; that CT1 � CS, RT1 � RS andPF1 � 2S follows in the same way. R1 � PW � RS has been established in Se
tion 14. Allother impli
ations O � N follow from the observation that the modal language LO is in
luded inLN . The latter statement has been established in Propositions 2.4, 4.6, 5.3, 6.5, 7.4, 7.5, 7.6, 8.4,9.6, 11.2 and 12.6 (ex
ept that the 
ase of possible-futures semanti
s is left to the reader). In orderto show that on jG there are no in
lusions that are not indi
ated in Figure 9, is suÆ
es, in view ofTheorem 2, the already established parts of Theorem 4, and the fa
t that � is a partial order, toshow that CT 6� B�, R 6� FB�, S! 6� RB�, T1 6� B!, PF 6� B! and T1 6� PF . This has beendone in Propositions 12.7, 12.8, 12.9 and 12.10, and at the end of Se
tion 7. 2Again, the in
lusion hierar
hy for the preorders is the same as for the equivalen
es.Theorem 5 For all semanti
s O and N de�ned so far, the formula O �� N holds i� there is apath O ! � � � ! N (
onsisting of solid and dotted arrows alike) in Figure 9.Proof: That p vS q ) p v1T q has been established in Proposition 8.3; that p vCS q ) p v1CT q,p vRS q ) p v1RT q and p v2S q ) p v1PF q follows in the same way. In Se
tion 14 it has beenestablished that p vRS q ) p vPW q ) p v1RT q. All other impli
ations p vO q ) p vN q followfrom the observation that the modal language LO is in
luded in LN . The \only if" part is animmediate 
onsequen
e of Theorem 4. 216 Deterministi
 and saturated pro
essesIf the labelled transition system IP on whi
h the semanti
 equivalen
es of Se
tion 15 are de�ned islarge enough, then they are all di�erent and O �IP N holds only if this is indi
ated in Figure 9.However, for 
ertain labelled transition systems mu
h more identi�
ations 
an be made. Is has beenremarked already that for image �nite pro
esses all semanti
s that are 
onne
ted by dotted arrows
oin
ide. In this se
tion various other 
lasses of pro
esses are examined on whi
h parts of the lineartime { bran
hing time spe
trum 
ollapse. All results of this se
tion, expe
t for Propositions 16.1and 16.2, will be used in the 
ompleteness proofs in Se
tion 17.Re
all that a pro
ess p is deterministi
 i� p ��! q ^ p ��! r ) q = r.Remark: If p is deterministi
 and p ��! p0 then also p0 is deterministi
. Hen
e any domain ofpro
esses on whi
h a
tion relations are de�ned, has a subdomain of deterministi
 pro
esses withthe inherited a
tion relations. (A similar remark 
an be made for image �nite pro
esses.)Proof: Suppose p0 ��! q and p0 ��! r. Then p ���! q and p ���! r, so q = r. 2
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Deterministi
 and saturated pro
esses 55Theorem 6 (Park [41℄) On a domain of deterministi
 pro
esses all semanti
s in the in�nitarylinear time { bran
hing time spe
trum 
oin
ide.Proof: Be
ause of Theorem 4 it suÆ
es to show that g =T h) g =U h for any two deterministi
pro
ess graphs g; h 2 jG. Note that a pro
ess graph g 2 jG is deterministi
 i� for every tra
e� 2 T (g) there is exa
tly one path � 2 paths(g) with T (�) = �. Now let g and h be deterministi
pro
ess graphs with g =T h. Then the relation i � paths(g)� paths(h) that relates � 2 paths(g)with �0 2 paths(h) i� T (�) = T (�0) 
learly is an isomorphism between U(g) and U(h). 2Thus, if two pro
esses p and q are both deterministi
, then p =T q , p =1F q , p$ q , p =U q.In 
ase only one of them is deterministi
, this 
annot be 
on
luded, for in Counterexamples 2 and15 the right-hand pro
esses are deterministi
. However, in su
h 
ases one still has p =1F q , p$ q.In fa
t, a stronger statement holds: if q is deterministi
, then p v1F q , p$ q.Lemma 16.1 If p v1F q then I(p) = I(q).Proof: Let p v1F q, i.e. T (p) � T (q) and F 1(p) � F 1(q). Then a 2 I(p), a 2 T (p)) a 2 T (q),a 2 I(q) and a 62 I(p), =n"; an= 2 F 1(p)) =n"; an= 2 F 1(q), a 62 I(q). 2Proposition 16.1 If q is deterministi
 then p v1F q , p$ q.Proof: Let R be the binary relation on IP de�ned by pRq i� q is deterministi
 and p v1F q, then itsuÆ
es to prove that R is a bisimulation. Suppose pRq and p a�! p0. Then a 2 I(p) = I(q). Sothere is a pro
ess q0 2 IP with q a�! q0. As q is deterministi
, so is q0. Now let =n�; bn= 2 F 1(p0). Then9r : p0 ��! r ^ b 62 I(r). Hen
e p a��! r and =na�; bn= 2 F 1(p) � F 1(q). So there must be a pro
esss with q a��! s ^ b 62 I(s). By the de�nition of the generalized a
tion relations 9t : q a�! t ��! s,and sin
e q is deterministi
, t = q0. Thus =n�; bn= 2 F 1(q0). From this it follows that F 1(p0) � F 1(q0).Similarly one �nds T (p0) � T (q0), hen
e p0 v1F q0.Now suppose pRq and q a�! q0. Then a 2 I(q) = I(p). So there is a pro
ess p0 2 IP withp a�! p0. Exa
tly as above it follows that q0 is deterministi
 and p0 v1F q0. 2Call a pro
ess p deterministi
 up to �, for � an equivalen
e relation or preorder, if there exists adeterministi
 pro
ess p0 with p � p0. Now the above proposition implies that determinism up to $
oin
ides with determinism up to =1F , and even with determinism up to v1F . In 
ontrast, any pro
essis deterministi
 up to =T , as the 
anoni
al graphs 
onstru
ted in the proof of Proposition 2.3 aredeterministi
. Furthermore, determinism up to =U is just determinism, for g 2 jG is deterministi
i� U(g) is, and determinism is preserved under isomorphism.The following notion of determina
y was proposed in Engelfriet [18℄.De�nition 16.1 Let � be an equivalen
e relation on IP. A pro
ess p 2 IP is �-determinate ifp ��! q ^ p ��! r ) q � r.Note that =-determina
y is determinism. Furthermore, if O � N then =O-determina
y is impliedby =N -determina
y. Besides =T -determina
y, =F -determina
y and $ -determina
y, Engelfrietalso 
onsiders =I-determina
y, where =I is given by p =I q i� I(p) = I(q). Clearly =I is 
oarserthan any of the equivalen
es of Se
tion 15: p =T q ) p =I q. Moreover, =I is even 
oarser thanmost of the preorders: p v1F q ) p =I q, as established in Lemma 16.1.Engelfriet established the following three results:
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hing time spe
trum I(1) $ -determina
y and =I-determina
y are the same. Hen
e �-determina
y is the same for allequivalen
es � of Se
tion 15, ex
ept U . Therefore, he just 
alls this determina
y.(2) For determinate pro
esses, bisimulation equivalen
e and tra
e equivalen
e (and hen
e all equiv-alen
es in between) are the same.(3) Determina
y is preserved under failures equivalen
e (and hen
e under $ ). Even stronger, if qis determinate and p vF q, then p is determinate and p$ q. (In [18℄, wF is written �f .)Using Proposition 16.1 I show that both =I-determina
y and $ -determina
y 
oin
ide with deter-minism up to $ , from whi
h (1), (2) and (3) follow.Proposition 16.2 Let p 2 IP. The following are equivalent:(a) p is $ -determinate(b) p is =I-determinate(
) p is deterministi
 up to =R(d) p is deterministi
 up to $ .Proof: \(a)) (b)" is immediate as =I is 
oarser than $ .\(b) ) (
)": Suppose p is =I-determinate. Let G(T (p)) be the 
anoni
al graph of the tra
eset of p as de�ned in the proof of Proposition 2.3. By 
onstru
tion, G(T (p)) is deterministi
 andT (p) = T (G(T (p))). It remains to be shown that p =R G(T (p)).As p is =I-determinate, one has =n�;Xn=; =n�; Y n= 2 R(p) ) X = Y . Hen
e =n�;Xn= 2 R(p) i�� 2 T (p) ^ X = fa 2 A
t j �a 2 T (p)g, i.e. R(p) is 
ompletely determined by T (p). As alsoG(T (p)) is =I-determinate (for it is even deterministi
), also R(G(T (p))) is 
ompletely determinedby T (G(T (p))): =n�;Xn= 2 R(G(T (p))) i� � 2 T (G(T (p))) ^X = fa 2 A
t j �a 2 T (G(T (p)))g. Itfollows that R(p) = R(G(T (p))).\(
)) (d)" has been established in Proposition 16.1.\(d) ) (a)": Suppose p $ q and q is deterministi
. Let p ��! p0 and p ��! p00. Then9q0 : q ��! q0 ^ p0$ q0 and 9q00 : q ��! q00 ^ p00$ q00. As q is deterministi
, q0 = q00. Hen
e p0$ p00.It follows that p is $ -determinate. 2Now (1) is part of Proposition 16.2. (2) is a generalization of Theorem 6, that is now implied by it:Suppose p and q are determinate and p =T q. By Proposition 16.2 there are deterministi
 pro
essesp0 with p$ p0 and q0 with q$ q0. Hen
e p0 =T q0, so by Theorem 6 p0$ q0. Thus p$ q, yielding (2).(3) holds even for F 1 instead of F . For let q be determinate and p v1F q. Then there is adeterministi
 pro
ess q0 with q$ q0. Hen
e p v1F q0. By Proposition 16.1 p$ q0, so p is determinateand p$ q.Note that a pro
ess p is deterministi
 i� for �; �0 2 paths(G(p)) one has T (�) = T (�0)) � = �0.For this reason, determinism 
ould have been 
alled tra
e determinism, and the notions of readytra
e determinism and 
ompleted tra
e determinism 
an be de�ned analogously.De�nition 16.2 A pro
ess p is ready tra
e deterministi
 if for �; �0 2 paths(G(p)) one hasRT (�) = RT (�0) ) � = �0. It is 
ompleted tra
e deterministi
 if for �; �0 2 paths(G(p)) onehas T (�) = T (�0) ^ �I(end(�)) = ; , I(end(�0)) = ;�) � = �0.A pro
ess p 2 IP is ready tra
e deterministi
 i� there is are no p0; q; r 2 IP and a 2 A
t su
hthat p0 is rea
hable from p, p0 a�! q, p0 a�! r, I(q) = I(r) and q 6= r. For tra
e determinismthe 
ondition I(q) = I(r) is dropped, and for 
ompleted tra
e determinism it is weakened to
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Deterministi
 and saturated pro
esses 57I(q) = ; , I(r) = ;. Note that if p is ready (or 
ompleted) tra
e deterministi
 and p ��! p0 thenso is p0. Now the following variants of Theorem 6 
an be established.Proposition 16.3 If g and h 2 jG are ready tra
e deterministi
 then g =RT h, g =U h.Likewise, if g and h 2 jG are 
ompleted tra
e deterministi
 then g =CT h, g =U h.Proof: Let g and h be ready tra
e deterministi
 pro
ess graphs with g =RT h. Then the relationi � paths(g)�paths(h) that relates � 2 paths(g) with �0 2 paths(h) i� RT (�) = RT (�0) 
learlyis an isomorphism between U(g) and U(h). The proof of the se
ond statement goes likewise. 2For 
ompleted tra
e deterministi
 pro
esses, the equivalen
es =T and =CT are di�erent, as 
an beseen from Counterexample 2. For ready tra
e deterministi
 pro
esses, the equivalen
es =T , =CT ,=1F , =F , =FT , =R, =RT , =S and =CS are all di�erent, as 
an be seen from Counterexamples 2, 3, 5,6 and 13. Theorem 6 and Proposition 16.3 do not generalize to the 
orresponding preorders, for inCounterexample 19 one �nds two deterministi
 pro
esses middle and right with middle vCT rightbut middle 6vB right , and in Counterexample 3 one �nds two ready tra
e deterministi
 pro
essesright and left with right vRT left but right 6vB left . However, the following variants of these results
an be obtained.Proposition 16.4 If q is ready tra
e deterministi
 then p vRT q , p vRS q.Likewise, if q is 
ompleted tra
e deterministi
 then p vCT q , p vCS q,and if q is (tra
e) deterministi
 then p vT q , p vS q.Proof: Let R be the binary relation on IP given by pRq if q is ready tra
e deterministi
 andp vRT q. For the �rst statement it suÆ
es to prove that R is a ready simulation. Clearly pRqimplies I(p) = I(q). Now suppose pRq and p a�! p0. Let X be I(p0). Then aX 2 RT (p) � RT (q).So there is a pro
ess q0 2 IP with q a�! q0 and I(q0) = X. Now let � 2 RT (p0). Then 9r : p0 ��+�! r.Hen
e p aX��+�! r and aX� 2 RT (p) � RT (q). So there must be a pro
ess s with q aX��+�! s. By thede�nition of the ready tra
e relations 9t : q a�! t ��+�! s ^ I(t) = X, and sin
e q is ready tra
edeterministi
, t = q0. Thus � 2 RT (q0). From this it follows that RT (p0) � RT (q0), implying p0Rq0.This �nishes the proof of the �rst statement. The proofs of the other two statements go thesame way (but involving a trivial 
ase distin
tion for the 
ompleted tra
e deterministi
 one). 2Together, Propositions 16.1 and 16.4 imply that on a domain of deterministi
 pro
esses only threeof the preorders of Se
tion 15 are di�erent, namely vT , vCT and v1F , 
oin
iding with vS , vCSand vB, respe
tively. That these three are indeed di�erent is shown in Counterexample 19.
0 vT6vCT aa vCT6vF a ba+ bCounterexample 19: The tra
e, 
ompleted tra
e, and failures preorders are all di�erent on deter-ministi
 pro
essesDe�nition 16.3 A pro
ess p is 
ross saturated if p ��! q a�! r ^ p ��! s a�! t) q a�! t.
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58 The linear time { bran
hing time spe
trum IThus a pro
ess graph g 2 jG is 
ross saturated i� for any �; �0 2 paths(g) and a 2 A
t su
h thata 2 I(end(�)) and T (�0) = T (�)a one has (end(�); a; end(�0)) 2 edges(g).Proposition 16.5 If g and h 2 jG are 
ross saturated then g =R h, g$ h.Proof: Let g and h 2 jG be 
ross saturated and suppose that R(g) = R(h). De�ne the relationR � nodes(g) � nodes(h) by sRt i� there are � 2 paths(g) and � 2 paths(h) with end(�) = s,end(�) = t and R(�) = R(�). It suÆ
es to show that R is a bisimulation between g and h.As I(root(g)) = I(root(h)) one 
learly has root(g)Rroot(h).Now suppose sRt and (s; a; s0) 2 edges(g). Let � and � be su
h that end(�) = s, end(�) = t andR(�) = R(�), and let �0 be the extension of � with (s; a; s0). Now a 2 I(end(�)) = I(end(�)).Choose �0 2 paths(h) with R(�0) = R(�0) (using that R(g) = R(h)). Then T (�0) = T (�0) =T (�)a = T (�)a, so (t; a; end(�0)) 2 edges(h). Moreover, s0Rend(�0).The remaining requirement of De�nition 12.2 follows by symmetry. 2Proposition 16.6 If h 2 jG is 
ross saturated then g vR h, g vRS h.Proof: Exa
tly as above. 2De�nition 16.4 A pro
ess p is saturated if =n�;Xn= 2 R(p)^ =n�; Y [ Zn= 2 R(p)) =n�;X [ Y n= 2 R(p).Proposition 16.7 If p is �nitely bran
hing and q is saturated then p vF q , p vR q. Thus ifboth p and q are �nitely bran
hing and saturated then p =F q , p =R q.Proof: Suppose p is �nitely bran
hing, q is saturated and p vF q. Let =n�; Y n= 2 R(p). Then Y is�nite. In 
ase Y = ; one has =n�;A
tn= 2 F (p) � F (q), implying =n�; ;n= 2 R(q), as desired. So assumeY 6= ;. Then, for all a 2 Y , =n�a; ;n= 2 F (p) � F (q) so 9Za � A
t with =n�; fag [ Zan= 2 R(q). Hen
e,using De�nition 16.4 with Z = ;, one obtains =n�; Y [Sa2Y Zan= 2 R(q). As =n�;A
t� Y n= 2 F (p) �F (q) it must be that =n�;Xn= 2 R(q) for some X � Y . Now De�nition 16.4 gives =n�; Y n= 2 R(q). 2De�nition 16.5 A pro
ess p is RT-saturated if�X� 2 RTN (p) ^ �Y 2 RTN (p)) �(X [ Y )� 2 RTN (p):Proposition 16.8 If p is �nitely bran
hing and q is RT-saturated then p vFT q , p vRT q. Thusif both p and q are �nitely bran
hing and RT-saturated then p =FT q , p =RT q.Proof: Suppose p is �nitely bran
hing, q is RT-saturated and p vFT q. With indu
tion onk 2 IN I will show that whenever X0a1X1a2 � � � anXn 2 RT (p) then there are Yi � Xi for i =k+1; : : : ; n su
h that X0a1X1a2 � � � akXkak+1Yk+1ak+2 � � � anYn 2 RT (q): The 
ase k = n, togetherwith Proposition 6.1, 
ompletes the proof of the proposition.Indu
tion base (k = 0): Let X0a1X1a2 � � � anXn 2 RT (p). Write X for A
t�X.Then X0a1X1a2 � � � anXn 2 FT (p) � FT (q). Hen
e there are Yi � Xi for i = 0; :::; n su
h thatY0a1Y1a2 � � � anYn 2 RT (q). As p vFT q ) p vT q ) I(p) � I(q), we have Y0 = X0.Indu
tion step: Take k > 0 and suppose the statement has been established for k � 1.Let X0a1X1a2 � � � anXn 2 RT (p). Then, by indu
tion, there are Yi � Xi for i = k; :::; n su
hthat X0a1X1a2 � � � ak�1Xk�1akYkak+1Yk+1ak+2 � � � anYn 2 RT (q). Moreover, for every b 2 Xk,X0a1X1a2 � � � akXkb 2 RT (p), so, again using the indu
tion hypothesis, there must be a Zb � Xksu
h that X0a1X1 � � �Xk�1akZbb 2 RT (q), and hen
e X0a1X1 � � �Xk�1ak(Zb [ fbg) 2 RT (q). AsXk is �nite and Yk [Sb2Xk(Zb [ fbg) = Xk, the RT-saturation of q givesX0a1 � � � akXkak+1Yk+1ak+2 � � � anYn 2 RT (q), whi
h had to be established. 2
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Complete axiomatizations 5917 Complete axiomatizations17.1 A language for �nite, 
on
rete, sequential pro
essesConsider the following basi
 CCS- and CSP-like language BCCSP for �nite, 
on
rete, sequentialpro
esses over a given alphabet A
t:ina
tion : 0 (
alled nil or stop) is a 
onstant, representing a pro
ess that refuses to do any a
tion.a
tion : a is a unary operator for any a
tion a 2 A
t. The expression ap represents a pro
ess,starting with an a-a
tion and pro
eeding with p.
hoi
e : + is a binary operator. p + q represents a pro
ess, �rst being involved in a 
hoi
ebetween its summands p and q, and then pro
eeding as the 
hosen pro
ess.The set T(BCCSP) of (
losed) pro
ess expressions or terms over this language is de�ned as usual:� 0 2 T(BCCSP),� ap 2 T(BCCSP) for any a 2 A
t and p 2 T(BCCSP),� p+ q 2 T(BCCSP) for any p; q 2 T(BCCSP).Subterms a0 may be abbreviated by a. Bra
kets are used for disambiguation only, assumingasso
iativity of +, and letting a bind stronger than +. If P = fp1; :::; png is a �nite nonemptymultiset of BCCSP expressions, then �P abbreviates p1 + � � �+ pn. This expression is determinedonly up to asso
iativity and 
ommutativity of +. Let �; := 0. An expression ap0 is 
alled asummand of p if, up to asso
iativity and 
ommutativity of +, p 
an be written as �P with ap0 2 P .On T(BCCSP) a
tion relations a�! for a 2 A
t are de�ned as the predi
ates on T(BCCSP)generated by the a
tion rules of Table 1. Here a ranges over A
t and p and q over T(BCCSP).ap a�! p p a�! p0p+ q a�! p0 q a�! q0p+ q a�! q0Table 1: A
tion rules for BCCSPA trivial stru
tural indu
tion shows that p a�! p0 i� ap0 is a summand of p. Now all semanti
equivalen
es of Se
tions 2{14 are well-de�ned on T(BCCSP), and for ea
h of the semanti
s it isdetermined when two pro
ess expressions denote the same pro
ess.The following theorem says that, apart from U , all these semanti
s are 
ompositional w.r.t.BCCSP, i.e. all semanti
 equivalen
es are 
ongruen
es for BCCSP.Theorem 7 Let p; q; r; s 2 T(BCCSP) and let O be any of the semanti
s of Se
tion 15 ex
ept U .Then p =O q ^ r =O s ) ap =O aq ^ p+ r =O q + s:Proof: Ea
h of the semanti
s O has a modal 
hara
terization, given by p =O q , O(p) = O(q),where O(p) is the set of modal formulas of the appropriate form satis�ed by p. Let O+(p) :=fa' j a' 2 O(p)g be the set of su
h formulas whi
h are of the form a'. For ea
h 
hoi
e of O oneeasily veri�es that O(p) is 
ompletely determined by O+(p), i.e. O(p) = O(q) , O+(p) = O+(q).One also veri�es easily that O+(0) = ;, O+(ap) = fa' j ' 2 O(p)g and O+(p+q) = O+(p)[O+(q).From this the theorem follows immediately. 2

BCCSP
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60 The linear time { bran
hing time spe
trum IFor ea
h su
h 
hoi
e of O one easily veri�es that moreover O(p) � O(q), O+(p) � O+(q). Fromthis it follows that all the preorders of Se
tion 15 are pre
ongruen
es for BCCSP:Theorem 7b Let p; q; r; s 2 T(BCCSP) and let O be any of the semanti
s of Se
tion 15 but U .Then p vO q ^ r =O s ) ap vO aq ^ p+ r vO q + s. 2Tree semanti
s, when de�ned merely in terms of the a
tion relations on T(BCCSP), fails to be
ompositional w.r.t. BCCSP. The expression a0 + a0 has only a single outgoing a-transition,namely to the expression 0. Thus, by De�nition 13, a0 + a0 =U a0. Likewise b(a0 + a0) =U ba0.However, b(a0 + a0) + b0 6=U ba0 + ba0, as the �rst pro
ess has two outgoing b-transitions andthe se
ond pro
ess only one. If follows that tree equivalen
e as de�ned above is not 
ompositionalw.r.t. +.T(BCCSP) 
an be turned into a labelled transition system with multipli
ities by assuming adi�erent transition p a�! q for every di�erent proof of p a�! q from the a
tion rules of Table 1. Onsu
h a transition system tree equivalen
e is 
ompositional w.r.t. BCCSP.A straightforward stru
tural indu
tion shows that any pro
ess p 2 T(BCCSP) is �nite in thesense of De�nition 1.2. Hen
e the pro
ess graph G(p) is �nite as well. The next proposition estab-lishes that moreover, up to bisimulation equivalen
e, any �nite pro
ess graph 
an be represented bya BCCSP expression. In fa
t, all �nite pro
ess graphs displayed in this paper have been annotatedby their representing BCCSP expressions.De�nition 17.1 Let ==nn�nn== : IH! T(BCCSP) be a mapping satisfying ==nngnn== = �fa==nnhnn== j g a�! hg.A straightforward indu
tion on the length of the longest path of �nite pro
ess graphs tea
hes thatsu
h a mapping exists and is 
ompletely determined up to asso
iativity and 
ommutativity of +.Proposition 17.1 Let g 2 IH. Then there is a p 2 T(BCCSP) with G(p)$ g. In fa
t, G(==nngnn==)$ g.Proof: It suÆ
es to show that the relation fh;G(==nnhnn==) j h 2 IHg is a bisimulation. Suppose h a�! h0.Then a==nnh0nn== is a summand of ==nnhnn==, so ==nnhnn== a�! ==nnh0nn==, and by Proposition 1.1 G(==nnhnn==) a�! G(==nnh0nn==).Vi
e versa, let G(==nnhnn==) a�! h00. Then, by Proposition 1.1, h00 = G(p0) for some p0 2 T(BCCSP) with==nnhnn== a�! p0. Thus ap0 must be a summand of ==nnhnn==. By De�nition 17.1 p0 = ==nnh0nn== for some h0 2 IHwith h a�! h0. As h0 is related to h00 = G(==nnh0nn==), also this requirement is satis�ed. 2Corollary 17.1 Let p 2 T(BCCSP). Then p$ ==nnG(p)nn==.Proof: By the above G(==nnG(p)nn==)$G(p). Now apply Corollary 1.1. 2Corollary 17.2 Let g; h 2 IH and let O be any of the semanti
s of Se
tion 15. Theng vO h, ==nngnn== vO ==nnhnn== and g =O h, ==nngnn== =O ==nnhnn==:Proof: Let g vO h. By the above G(==nngnn==)$ g vO h$G(==nnhnn==). Now apply Corollary 1.1.For \(" let ==nngnn== vO ==nnhnn==. By Corollary 1.1 and Proposition 17.1 g$G(==nngnn==) vO G(==nnhnn==)$ h. 2
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Complete axiomatizations 6117.2 Axiomatizing the equivalen
esIn Table 2, 
omplete axiomatizations 
an be found for twelve of the �fteen semanti
 equivalen
es ofthis paper that di�er on BCCSP. Axioms for singleton-failures, 2-nested simulation and possible-futures semanti
s are more 
umbersome, and the 
orresponding testing notions are less plausible.Therefore they have been omitted. The axiomatization of tree semanti
s (U) requires a
tion rela-tions with multipli
ities. Although rather trivial, I will not formally establish its soundness and
ompleteness here. In order to formulate the axioms, variables have to be added to the languageas usual. In the axioms they are supposed to be universally quanti�ed. Most of the axioms areaxiom s
hemes, in the sense that there is one axiom for ea
h substitution of a
tions from A
t forthe parameters a; b; 
. Some of the axioms are 
onditional equations, using an auxiliary operatorI. Thus provability is de�ned a

ording to the standards of either �rst-order logi
 with equalityor 
onditional equational logi
. I is a unary operator that 
al
ulates the set of initial a
tions of apro
ess expression, 
oded as a pro
ess expression again.Theorem 8 For ea
h of the semanti
s O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg twopro
ess expressions p; q 2 T(BCCSP) are O-equivalent i� they 
an be proved equal from the axiomsmarked with \+" in the 
olumn for O in Table 2. The axioms marked with \v" or \!" are valid inO-semanti
s but not needed for the proof. U B RS PW RT FT R F CS CT S T(x+ y) + z = x+ (y + z) + + + + + + + + + + + +x+ y = y + x + + + + + + + + + + + +x+ 0 = x + + + + + + + + + + + +x+ x = x + + + + + + + + + + +I(x) = I(y) ) a(x+ y) = a(x+ y) + ay + v v v v v v v v va(bx+ by + z) = a(bx+ z) + a(by + z) + v v v v v vI(x) = I(y) ) ax+ ay = a(x+ y) + + v v v vax+ ay = ax+ ay + a(x+ y) + v v va(bx+u) + a(by+v) = a(bx+by+u) + a(by+v) + + v vax+ a(y + z) = ax+ a(x+ y) + a(y + z) + ! va(x+ by + z) = a(x+ by + z) + a(by + z) + v v va(bx+ u) + a(
y + v) = a(bx+ 
y + u+ v) + va(x+ y) = a(x+ y) + ay + vax+ ay = a(x+ y) +I(0) = 0 + + + + + + + + + + + +I(ax) = a0 + + + + + + + + + + + +I(x+ y) = I(x) + I(y) + + + + + + + + + + + +Table 2: Complete axiomatizations for the equivalen
esProof: \If" (soundness): In the light of Theorem 7 it suÆ
es to show that the 
losed instan
es ofthe indi
ated axioms are valid in the 
orresponding semanti
s. This is straightforward.

axioms
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62 The linear time { bran
hing time spe
trum I\Only if" (
ompleteness): Let TO be the set of axioms marked with \+" in the 
olumn for O.Write TO ` p = q if the equation p = q is provable from TO. I have to show thatp =O q ) TO ` p = q (2)for any p; q 2 T(BCCSP). For the 
ases O 2 fB; S; RS; CSg I will show thatp vO q ) TO ` q = q + p (3)for any p; q 2 T(BCCSP), from whi
h (2) follows immediately. This will be done with stru
turalindu
tion on p and q. So assume p vO q and (3) has been proven for all pairs of smaller expres-sions p0; q0 2 T(BCCSP). Provided TO 
ontains at least the �rst four axioms of Table 2, one hasTO ` q = q + p i� TO ` q = q + ap0 for every summand ap0 of p.Take O = B, so p vB q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 =B q0. By indu
tion TB ` p0 = p0 + q0 = q0, using Proposition 12.1. Furthermore, aq0 must be asummand of q, so TB ` q = q + aq0 = q + ap0 and therefore TB ` q = q + p.Take O = S, so p vS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vS q0. By indu
tion TS ` q0 = q0 + p0, so TS ` aq0 = a(q0 + p0) = a(q0 + p0) + ap0 = aq0 + ap0.Furthermore, aq0 must be a summand of q, so TS ` q = q + aq0 = q + ap0 and thus TS ` q = q + p.Take O = RS , so p vRS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vRS q0. Now I(p0) = I(q0) and hen
e TRS ` I(p0) = I(q0). By indu
tion TRS ` q0 = q0 + p0, soTRS ` aq0 = a(q0 + p0) = a(q0 + p0) + ap0 = aq0+ ap0. Furthermore, aq0 must be a summand of q, soTRS ` q = q + aq0 = q + ap0 and thus TRS ` q = q + p.Take O = CS , so p vCS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vCS q0. In 
ase I(p0) = ; it must be that I(q0) = ; as well, and hen
e TCS ` p0 = q0 = 0.Otherwise, TCS ` p0 = bp00 + r and by indu
tion TCS ` q0 = q0 + p0, so TCS ` aq0 = a(q0 + p0) =a(q0 + bp00 + r) = a(q0 + bp00 + r) + a(bp00 + r) = a(q0 + p0) + ap0 = aq0 + ap0. Furthermore, aq0 mustbe a summand of q, so in both 
ases TCS ` q = q + aq0 = q + ap0 and thus TCS ` q = q + p.Take O = PW . Suppose p =PW q. The axiom a(bx + by + z) = a(bx + z) + a(by + z)allows to rewrite p and q to BCCSP expressions p0 = �i2Iaipi and q0 = �j2Jajqj with pi and qjdeterministi
. For expressions of this form it is easy to establish that p0 =PW q0 , p0$ q0. Usingthe soundness of the axiom employed, and the 
ompleteness of TB � TPW for $ , it follows thatTPW ` p = p0 = q0 = q.For F and R (as well as B) a proof is given in Bergstra, Klop & Olderog [11℄ by means ofgraph transformations. A similar proof for RT 
an be found in Baeten, Bergstra & Klop [6℄.This method, applied to semanti
s O, requires the de�nition of a 
lass IH� of �nite pro
ess graphsthat 
ontains at least all �nite pro
ess trees, and a binary relation O;� IH� � IH� | a system ofgraph transformations|su
h that the following 
an be established:1. O;, used as a rewriting system, is terminating on IH�, i.e. any redu
tion sequen
e g0 O; g1 O; � � �leads (in �nitely many steps) to a normal form, a graph that 
annot be further transformed,2. if g O; h then (a) g =O h and (b) TO ` ==nngnn== = ==nnhnn==3. and two normal forms are bisimilar i� they are O-equivalent.Now the 
ompleteness proof goes as follows: Suppose p =O q. As paths(G(p)) and paths(G(q))are �nite, U(G(p)) and U(G(q)) belong to IH�, and by requirement 1 they 
an be rewritten tonormal forms g and h. Using Corollary 1.1, Proposition 13.1 and requirement 2(a) aboveg =O U(G(p))$ G(p) =O G(q)$ U(G(q)) =O h:
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Complete axiomatizations 63Thus, with requirement 3, g$ h; and Corollaries 17.1 and 17.2 yieldp$ ==nnG(p)nn==$ ==nnU(G(p))nn==; ==nngnn==$ ==nnhnn==; ==nnU(G(q))nn==$ ==nnG(q)nn==$ q:Requirement 2(b) and the 
ompleteness result for bisimulation semanti
s proved above �nally giveTO ` p = ==nnU(G(p))nn== = ==nngnn== = ==nnhnn== = ==nnU(G(q))nn== = q:I will now apply this method to T , RT , CT , R, F and FT . In the 
ases of T , RT and CT , IH� istaken to be IHtree , the 
lass of �nite pro
ess trees.Take O = T . Let T; be the graph transformation that 
onverts g into h, notation g T; h, i�g is a �nite tree with edges (s; a; t) and (s; a; u) with t 6= u, and h is obtained by identifying tand u. Formally speaking, the nodes of h are those of g, ex
ept that t and u are omitted anda fresh node v has been added instead. Often v is taken to be the (equivalen
e) 
lass ft; ug.De�ne the fun
tion 0 : nodes(g) ! nodes(h) by t0 = v, u0 = v and w0 = w for w 6= t; u. Nowedges(h) = f(p0; a; q0) j (p; a; q) 2 edges(g)g and root(h) = root(g)0. This graph transformationis illustrated in Figure 10.
� � � � � �st ua ab1 bn 
1 
m T; � � � � � �svab1 bn 
1
m � � �tu vwa1 ana1anb b R; � � �tu vwa1 ana1anb bbbFigure 10: Graph transformationsIf g is a �nite tree and g T; h then so is h. Moreover, h has fewer nodes than g. Hen
e T; isterminating on IHtree . The normal forms are exa
tly the �nite deterministi
 trees. Now requirement3 has been established by Theorem 6. Requirement 2(a) is trivial, and for 2(b) observe that anyappli
ation of T; 
orresponds to an appli
ation of the axiom ax+ ay = a(x+ y).Take O = RT . Let RT; be the same graph transformation as T;, ex
ept that it only applies ifI(t) = I(u). This time the normal forms are the ready tra
e deterministi
 trees, and requirement3 has been established by Proposition 16.3. Again requirement 2(a) is easy to 
he
k, and for2(b) it suÆ
e to observe that any appli
ation of RT; 
orresponds to an appli
ation of the axiomI(x) = I(y) ) ax+ ay = a(x+ y).Take O = CT . Let CT; be the same graph transformation as T;, ex
ept that it only applies ifI(t) = ; , I(u) = ;. This time the normal forms are the 
ompleted tra
e deterministi
 trees, andagain requirement 3 has been established by Proposition 16.3. On
e more requirement 2(a) is easyto 
he
k, and for 2(b) observe that any appli
ation of CT; 
orresponds to an appli
ation of the law(I(x) = 0 , I(y) = 0) ) ax + ay = a(x+ y). This law falls outside 
onditional equationallogi
, but it 
an be reformulated equationally by 
onsidering the two 
ases I(x) = 0 = I(y) andI(x) 6= 0 6= I(y). In the �rst 
ase it must be that TB ` x = 0 = y and hen
e the law follows fromthe third and fourth axiom of Table 2. In the se
ond, observe that I(p) 6= 0 i� p has the form bq+rwith b 2 A
t. Hen
e the law 
an be reformulated as a(bx+ u) + a(
y + v) = a(bx+ 
y + u+ v).A pro
ess graph g 2 jG is 
alled history unambiguous [11℄ if any two paths from the root tothe same node give rise to the same tra
e, i.e. if for �; �0 2 paths(g) one has end(�) = end(�0))T (�) = T (�0). The history or tra
e T (s) of a node s in su
h a graph g is de�ned as T (�) for � an
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hing time spe
trum Iarbitrary path from the root of g to s. Observe that trees are history unambiguous. In the nexttwo 
ompleteness proofs (the 
ases R and F ) IH� is taken to be the 
lass IHhu of �nite, historyunambiguous, 
onne
ted pro
ess graphs. For g 2 IHhu and t; v 2 nodes(g) let t � v abbreviate8s 2 nodes(g); a 2 A
t : (s; a; t) 2 edges(g), (s; a; v) 2 edges(g):Take O = R. Let R; be the graph transformation with g R; h i� g has edges (t; b; u) and (v; b; w)with t � v, and h is obtained by adding a new edge (t; b; w). This graph transformation is illustratedin Figure 10. Note that by applying R; twi
e, one 
an also add the edge (v; b; u) (indi
ated witha dashed arrow in Figure 10) if it isn't there already. If g is a �nite, history unambiguous pro
essgraph and g R; h then so is h. Moreover, h has more edges than g. As there is an upperbound tothe number of edges of graphs that 
an be obtained from a given graph g 2 IHhu by applying R;(namely n� l � n, where n is the number of nodes in g, and l the number of di�erent edge-labelso

urring in g), R; is terminating on IHhu (requirement 1). It is easy to see that R; does not add newready pairs. This gives requirement 2(a). For 2(b) observe that an appli
ation of R; 
orresponds toa number of appli
ations of a(bx+u)+a(by+v) = a(bx+by+u)+a(by+v). Finally, requirement3 follows from Proposition 16.5 and the followingClaim: The normal forms w.r.t. R; are 
ross saturated.Proof of the 
laim: Let g 2 IHhu be a normal form w.r.t. R;. With indu
tion to the length ofT (u) I will show that, for u;w 2 nodes(g),if T (u) = T (w) then u � w: (4)This implies that g is 
ross saturated, for if �; �0 and a are as in the remark below De�nition16.3, there must be an edge (end(�); a; u) in g. Now T (u) = T (�)a = T (end(�0)), so also(end(�); a; end(�0)) 2 edges(g).Indu
tion base: If length(T (u)) = 0, one has u = w = root(g) and the statement is trivial.Indu
tion step: Let T (u) = T (w) 6= ", and let (t; b; u) 2 edges(g). By symmetry, it suÆ
es toshow that (t; b; w) 2 edges(g). As g is 
onne
ted and history unambiguous, there must be an edge(v; b; w) with T (t) = T (v). By indu
tion t�v. As g is in normal form it must have an edge (t; b; w).
� � � � � � � � �b1 bn 
1 
k d1 dm

st a ua fork; � � � � � � � � �
ab1bn 
1 
kb1 bn 
1 
k d1 dm
st a uv a

Figure 11: ForkTake O = F . Let fork; be the graph transformation with g fork; h i� g has edges (s; a; t) and(s; a; u), 9Y � I(u) su
h that h is given by� nodes(h) = nodes(g) .[ fvg� root(h) = root(g)� edges(h) = edges(g) [ f(s; a; v)g[f(v; b; w) j (t; b; w) 2 edges(g)g [ f(v; b; w) j (u; b; w) 2 edges(g) ^ b 2 Y g

join
join
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Complete axiomatizations 65and jR(h)j > jR(g)j. This graph transformation is illustrated in Figure 11. Note that for anypath � 2 paths(h) not ending in v, a path �0 2 edges(g) 
an be found with T (�0) = T (�) andend(�0) = end(�), namely by 
ir
umventing the possible portion through v along t or u. Thus, su
hpaths do not give rise to new ready or failure pairs. For any path � 2 paths(h) ending in v thereis a path �0 2 edges(g) with T (�0) = T (�) and end(�0) = t. As I(t) � I(v), also su
h paths do notgive rise to new failure pairs. Hen
e one has R(h) = R(g) [ f=nT (t); I(t) [ Y n=g and F (h) = F (g).Note that if g 2 IHhu and g fork; h, then also h 2 IHhu . Let F; be R; [ fork; . As g fork; h) g =F hand g R; h) g =R h) g =F h, requirement 2(a) is satis�ed. For 2(b) observe that an appli
ationof fork; 
orresponds to an appli
ation of the axiom ax+ a(y + z) = ax+ a(x+ y) + a(y + z).The requirement jR(h)j > jR(g)j says that the transformation may only take pla
e if it a
tuallyin
reases the ready set of the transformed graph. Note that if g F; h then T (g) = T (h). As there isan upperbound to the number of ready pairs of graphs g with a given tra
e set (namely jT (g)j� 2l,where l is the number of di�erent edge-labels o

urring in g), a redu
tion sequen
e g0 F; g1 F; � � �on IHhu 
an 
ontain only �nitely many o

urren
es of fork; . After the last su
h o

urren
e it leadsin �nitely many steps to a normal form, be
ause R; is terminating on IHhu . Hen
e also F; isterminating on IHhu (requirement 1).Suppose g is a normal form w.r.t. F; and =n�;Xn= 2 R(g) ^ =n�; Y [ Zn= 2 R(g). Then g has nodest and u with T (t) = T (u) = �, I(t) = X and Y � I(u). As g must be a normal form w.r.t. R;, itsatis�es (4) and hen
e t � u. As g is 
onne
ted, there are edges (s; a; t) and (s; a; u) in g. As g mustalso be a normal form w.r.t. fork; , =n�;X [ Y n= 2 R(g). Thus normal forms w.r.t. F; are saturated aswell as 
ross saturated, and hen
e requirement 3 follows by Propositions 16.7 and 16.5.Take O = FT . Let sf; (symmetri
 fork) be the graph transformation 
onsisting of those instan
esof fork; where Y = I(u), but with the requirement jR(h)j > jR(g)j relaxed to jRTN (h)j > jRTN (g)j.Let IH� be IHtree , and de�ne sfu; by g sfu; h if g sf; h0 and h = U(h0). Thus sfu; is the variant of sf;in whi
h the target is unfolded into a tree. Let FT; be RT; [ sfu;. As there is an upperbound to thenumber of normal ready tra
es of graphs with a given �nite tra
e set, FT; is terminating on IH�(requirement 1). The normal forms are exa
tly the �nite RT -saturated ready tra
e deterministi
pro
ess trees, so requirement 3 follows from Propositions 16.3 and 16.8. It follows immediately fromCorollary 5.1 that g sf; h) g =FT h. Hen
e Proposition 13.1 gives g sfu; h) g =FT h. Moreover,g RT; h) g =RT h) g =FT h, whi
h yields requirement 2(a). For 2(b) observe that an appli
ationof sf; 
orresponds to an appli
ation of the axiom ax+ ay = ax+ ay + a(x+ y), and as h$ U(h)Corollary 17.2 gives TB ` ==nnhnn== = ==nnU(h)nn== for h 2 IH. 2In Theorem 8 the �fth and seventh axioms of Table 2 may be replayed bya nXi=1(bixi + biyi) = a nXi=1(bixi + biyi) + a nXi=1 biyi and a nXi=1 bixi + a nXi=1 biyi = a nXi=1(bixi + biyi):These laws derive the same 
losed substitution instan
es. Thus none of the axiomatizations requirethe operator I, or 
onditional equations. However, the laws above are axioms s
hemes whi
h haveinstan
es for any 
hoi
e of n 2 IN. Even if A
t is �nite, the axiomatizations involving these lawsare in�nite.Theorem 9 Suppose A
t is in�nite. For ea
h of the semanti
s O 2 fT; S; CT; F; R; FT; RT;RS; B; Ug two BCCSP expressions with variables are O-equivalent i� they 
an be proved equal
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hing time spe
trum Ifrom the axioms marked with `+' or `!' in the 
olumn for O in Table 2. It follows that the axiomsmarked with `v' are derivable.Proof: For O 2 fT; CT; F; R; FT; RT; Bg this has been established in Groote [23℄. His prooffor F , R, FT and RT 
an be applied to S and RS as well. The proof for U is rather trivial, butomitted here. 2Groote also showed that if A
t is �nite, Theorem 9 does not hold for F , R, FT and RT . But forB and CT it suÆ
es to assume that A
t is nonempty, and for T it suÆ
es to assume that A
t hasat least two elements. I do not know whi
h 
ardinality restri
tion on A
t is needed in the 
ases ofS and RS. A 
omplete axiomatization for open terms for 
ompleted simulation or possible worldssemanti
s has so far not been provided.17.3 Axiomatizing the preordersIn Table 3, 
omplete axiomatizations 
an be found for the eleven preorders 
orresponding to theequivalen
es axiomatized in Table 2 (there is no preorder for tree semanti
s (U)). This time prov-ability is de�ned a

ording to the standards of either �rst-order logi
 with inequality or 
onditionalinequational logi
, i.e. it may be used that v is re
exive and transitive and satis�es the pre
ongru-en
e properties of Theorem 7b. For any semanti
s O the O-preorder and O-equivalen
e are relatedby p =O q , p vO q ^ q vO p. Thus either p = q is taken to be an abbreviation of p v q ^ q v por the 
onditional axioms p = q ) p v q and p v q ^ q v p ) p = q are 
onsidered part of theaxiomatizations. In the latter 
ase, the axioms of Table 3 also 
onstitute 
omplete axiomatizationsof the equivalen
es.The three axioms in Table 3 in whi
h the inequality is written \v" represent strengthenings ofthe 
orresponding axioms in Table 2. The axioms in whi
h the inequality is written \w" are merelysli
k reformulations of the 
orresponding axioms in Table 2, and 
ould be repla
ed by them. Unlikein Table 2, the 
hara
teristi
 axiom for the readiness preorder (the ninth) is now a substitutioninstan
e of the 
hara
teristi
 axiom for the failures preorder (the tenth).Note that the 
hara
teristi
 axiom for the ready simulation preorder (the �fth) derives all 
losedinstan
es of I(x) = I(y)) ax v a(x+ y), whi
h gives the �fth axiom of Table 2. Hen
e all 
losedinstan
es of the 
hara
teristi
 axiom for the ready tra
e preorder (the seventh) are derivable fromthe �fth and eighth axioms. It follows that 
onditional (in)equations, involving the operator I, orunbounded sums, are no longer needed in the axiomatizations of ready simulation and failure tra
esemanti
s.Theorem 10 For ea
h of the semanti
s O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg onehas p vO q for p; q 2 T(BCCSP) i� p v q 
an be proved from the axioms marked with \+" in the
olumn for O in Table 3. The axioms marked with \v" are valid in O-semanti
s but not neededfor the proof.Proof: \If" (soundness): In the light of Theorem 7b it suÆ
es to show that the 
losed instan
esof the indi
ated axioms are valid in the 
orresponding semanti
s. This is straightforward.\Only if" (
ompleteness): Let T �O be the set of axioms marked with \+" in the 
olumn for O.Write T �O ` p v q if the inequation p v q is provable from T �O. I have to show thatp vO q ) T �O ` p v q (5)
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Complete axiomatizations 67B RS PW RT FT R F CS CT S T(x+ y) + z = x+ (y + z) + + + + + + + + + + +x+ y = y + x + + + + + + + + + + +x+ 0 = x + + + + + + + + + + +x+ x = x + + + + + + + + + + +ax v ax+ ay + + + + + + v v v va(bx+ by + z) = a(bx+ z) + a(by + z) + v v v v v vI(x) = I(y) ) ax+ ay = a(x+ y) + v v v v vax+ ay w a(x+ y) + v v va(bx+ u) + a(by + v) w a(bx+ by + u) + v v vax+ a(y + z) w a(x+ y) + v vax v ax+ y + + v va(bx+ u) + a(
y + v) = a(bx+ 
y + u+ v) + vx v x+ y + +ax+ ay = a(x+ y) +I(0) = 0 + + + + + + + + + + +I(ax) = a0 + + + + + + + + + + +I(x+ y) = I(x) + I(y) + + + + + + + + + + +Table 3: Complete axiomatizations for the preordersfor any p; q 2 T(BCCSP). The 
ase O = B follows from Proposition 12.1 and Theorem 8. For the
ases O 2 fS; CS; RSg (5) will be established with stru
tural indu
tion on p and q. So assumep vO q and (5) has been proven for all pairs of smaller expressions p0; q0 2 T(BCCSP).Take O = S, so p vS q. Using the axiom x v x + y one �nds that T �S ` p v q if for everysummand ap0 of p there is a summand aq0 of q su
h that T �S ` ap0 v aq0. So let ap0 be a summandof p. Then p a�! p0, so 9q0 : q a�! q0 and p0 vS q0. Note that aq0 is a summand of q. By indu
tionT �S ` p0 v q0, so T �S ` ap0 v aq0.Take O = CS, so p vCS q. Using the axiom ax v ax+ y one �nds that T �CS ` p v q if I(p) 6= ;and for every summand ap0 of p there is a summand aq0 of q su
h that T �CS ` ap0 v aq0. In 
aseI(p) = ; it must be that I(q) = ; as well, and hen
e T �CS ` p = q = 0. Otherwise, let ap0 be asummand of p. Then p a�! p0, so 9q0 : q a�! q0 and p0 vCS q0. Note that aq0 is a summand of q.By indu
tion T �CS ` p0 v q0, so T �CS ` ap0 v aq0.Take O = RS, so p vRS q. Using the �rst �ve axioms of Table 3 one �nds that T �RS ` p v q ifI(p) = I(q) and for every summand ap0 of p there is a summand aq0 of q su
h that T �RS ` ap0 v aq0.As p vRS q one has I(p) = I(q). Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vRS q0. Note that aq0 is a summand of q. By indu
tion T �RS ` p0 v q0, so T �RS ` ap0 v aq0.Take O = PW . Suppose p vPW q. The axiom a(bx + by + z) = a(bx + z) + a(by + z)allows to rewrite p and q to BCCSP expressions p0 = �i2Iaipi and q0 = �j2Jajqj with pi and qjdeterministi
. For expressions of this form it is easy to establish that p0 vPW q0 , p0 vRS q0. Usingthe soundness of the axiom employed, and the 
ompleteness of TRS � TPW for vRS , it follows thatTPW ` p = p0 v q0 = q.The remaining 
ompleteness proofs go by a variant of the method of graph transformations,
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hing time spe
trum Iwhere requirement 3 is repla
ed byif g and h are normal forms, then g vO h, g vN h.Here N should be a semanti
s �ner than O, for whi
h the 
ompleteness theorem has already beenestablished, and for whi
h T �N � T �O. The reasoning now goes exa
tly as in the proof of Theorem 8:Suppose p vO q. Rewrite U(G(p)) and U(G(q)) to normal forms g and h. Theng =O U(G(p))$ G(p) vO G(q)$ U(G(q)) =O h:Thus, with requirement 3, g vN h. Corollary 17.2 yields ==nngnn== vN ==nnhnn==, and one obtainsT �O ` p = ==nnU(G(p))nn== = ==nngnn== v ==nnhnn== = ==nnU(G(q))nn== = q:For ea
h of the six remaining 
ompleteness proofs, the 
lass IH� and the graph transformationsare the same as in the proof of Theorem 8. Thus requirements 1 and 2(a) are ful�lled. As (the
losed instan
es of) the axioms for the respe
tive equivalen
es from Table 2 are easily derivablefrom the ones for the 
orresponding preorders from Table 3, requirement 2(b) is ful�lled as well.Requirement 3, whi
h used to follow from Theorem 6 and Propositions 16.3, 16.5, 16.7 and 16.8,now follows from Propositions 16.4, 16.6, 16.7 and 16.8. 217.4 A language for �nite, 
on
rete, sequential pro
esses with internal 
hoi
eLet BCSP be the language that extends BCCSP with a binary operator �, modelling internal
hoi
e. Like p+q, the expression p�q represents a pro
ess, �rst being involved in a 
hoi
e betweenits summands p and q, and then pro
eeding as the 
hosen pro
ess. However, whereas + representsa 
hoi
e that 
an be in
uen
ed by the environment of the pro
ess (an external 
hoi
e), � representsone that is due to internal nondeterminism of the spe
i�ed system. BCSP 
an be regarded as abasi
 fragment of the language CSP of Hoare [31℄.The set T(BCSP) of (
losed) terms over BCSP, or (
losed) BCSP-expressions, and its subsetT1(BCSP) of initially deterministi
 BCSP-expressions, are de�ned by:� 0 2 T1(BCSP) � T(BCSP),� aP 2 T1(BCSP) for any a 2 A
t and P 2 T(BCSP),� p+ q 2 T1(BCSP) for any p; q 2 T1(BCSP),� P +Q 2 T(BCSP) for any P;Q 2 T(BCSP),� P �Q 2 T(BCSP) for any P;Q 2 T(BCSP).Again, subterms a0 may be abbreviated by a. Bra
kets are used for disambiguation only, assumingasso
iativity of + and�, and letting a bind stronger than + and�. Semanti
ally, BCSP-expressionsrepresent nonempty, �nite sets of initially deterministi
 BCSP expressions: for P;Q 2 T(BCSP) let[[0℄℄ := f0g [[aP ℄℄ := faPg [[P +Q℄℄ := fp+ q j p 2 [[P ℄℄; q 2 [[Q℄℄g [[P �Q℄℄ := [[P ℄℄ [ [[Q℄℄:On T1(BCSP) a
tion relations a�! for a 2 A
t are de�ned as the predi
ates on T1(BCSP) generatedby the a
tion rules of Table 4. Here a ranges over A
t, P over T(BCSP) and p and q over T1(BCSP).This makes T1(BCSP) into a labelled transition system. Hen
e, in the light of Se
tion 1.5 allsemanti
 equivalen
es of Se
tions 2{12 and 14 are well-de�ned on T(BCSP), and for ea
h of thesemanti
s it is determined when two BCSP-expressions denote the same pro
ess.
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Complete axiomatizations 69p 2 [[P ℄℄aP a�! p p a�! p0p+ q a�! p0 q a�! q0p+ q a�! q0Table 4: A
tion rules for BCSPThe following theorem says that all these semanti
 equivalen
es are 
ongruen
es for BCSP.Even stronger, all the preorders of this paper are pre
ongruen
es for BCCSP.Theorem 11 Let P;Q;R; S 2 T(BCSP) and let O be any of the semanti
s of Se
tions 2{12, 14.Then P =O Q ^ R =O S ) aP =O aQ ^ P +R =O Q+ S ^ P �R =O Q� S;P vO Q ^ R vO S ) aP vO aQ ^ P +R vO Q+ S ^ P �R vO Q� S:Proof: Ea
h of the preorders O has a modal 
hara
terization, given by P vO Q, O(P ) � O(Q),where O(P ) = Sp2[[P ℄℄O(p) for P 2 T(BCSP) and O(p) = f' 2 LO j p j= 'g for p 2 T1(BCSP).Now O(P � Q) = O(P ) [ O(Q). This immediately yields the 
ompositionality of O w.r.t. �:P vO Q ^R vO S ) P �R vO Q� S, and hen
e P =O Q ^R =O S ) P �R =O Q� S.Note that every formula in the in�nitary Hennessy-Milner logi
 is logi
ally equivalent to adisjun
tion of formulas of the form Vi2I ai'i ^ Vj2J :aj'j . Let O0(P ) be the 
lass of formulas inO(P ) of that form. It follows that P vO Q, O0(P ) � O0(Q) for P;Q 2 T(BCSP).For p; q 2 T1(BCSP) one has p+ q j= Vi2I ai'i ^Vj2J :aj'j i� I 
an be written as I1 [ I2 su
hthat p j= Vi2I1 ai'i^Vj2J :aj'j and q j= Vi2I2 ai'i^Vj2J :aj'j . Moreover, for ea
h semanti
s Oof this paper, ifVi2I ai'i^Vj2J :aj'j 2 LO and I 0 � I, then Vi2I0 ai'i^Vj2J :aj'j 2 LO12. Thus,for P;Q 2 T(BCSP) and Vi2I ai'i^Vj2J :aj'j 2 LO, one has Vi2I ai'i^Vj2J :aj'j 2 O0(P +Q)i� I = I1 [ I2 su
h that Vi2I1 ai'i ^ Vj2J :aj'j 2 O0(P ) and Vi2I2 ai'i ^ Vj2J :aj'j 2 O0(Q).This immediately yields the 
ompositionality of O w.r.t. +.The 
ompositionality of O w.r.t. a is straightforward. 2If P 2 T(BCSP), then G([[P ℄℄) is a �nite pro
ess graph with multiple roots. Vi
e versa, any�nite pro
ess graph with multiple roots g 2 jGmr 
an be represented by a BCSP-expression ==nngnn== 2T(BCSP), su
h that G(==nngnn==)$ g. Just extend De�nition 17.1 by ==nngnn== =Lr2roots(g) ==nngrnn==.Axioms In Table 5, 
omplete axiomatizations in terms of BCSP 
an be found for the same elevensemanti
s axiomatized in terms of BCCSP in Tables 2 and 3. The �rst two se
tions of the tableapply to the equivalen
es and the �rst and last se
tion to the preorders. These axioms are mildvariations of the ones in Tables 2 and 3, and have been found by exploiting a 
lose 
orresponden
ein semanti
 validity between BCSP and BCCSP expressions. First of all, using the de�nitionsjust given, the soundness of the axioms in the �rst se
tion of Table 5 is easily established. Usingthese, any 
losed BCSP expression 
an be rewritten in the form Lni=1 pi with pi 
losed BCCSPexpressions. Now the following lemma redu
es the validity of (in)equations over BCSP to that of(in)equations over BCCSP.Lemma 17.1 nMi=1 pi vO mMj=1 qj , nXi=1 api vO mXj=1 aqj for pi; qj 2 T(BCCSP).Proof: ' 2 O(Lni=1 pi), a' 2 O(Pni=1 api). 212At least when repla
ing the modality X of R, RT , PW and RS by Va2Y :a>^Va2Z a>.

df-finite BCCSP
axioms BCSP
axioms
axioms preorders
axioms
axioms preorders
axioms BCSP


70 The linear time { bran
hing time spe
trum IB RS PW RT FT R F CS CT S T(x� y)� z = x� (y � z) + + + + + + + + + + +x� y = y � x + + + + + + + + + + +x� x = x + + + + + + + + + + +(x+ y) + z = x+ (y + z) + + + + + + + + + + +x+ y = y + x + + + + + + + + + + +x+ 0 = x + + + + + + + + + + +(x� y) + z = (x+ z)� (y + z) + + + + + + + + + + +a(x� y) = ax+ ay + + + + + + + + + + +Pni=1(bixi+biyi) = Pni=1(bixi+biyi)�Pni=1biyi + v v v v v v v v vbx+ by + z = (bx+ z)� (by + z) + v v v v v vPni=1 bixi �Pni=1 biyi = Pni=1(bixi + biyi) + + v v v vx+ x = x + v v v(bx+ u)� (by + v) = (bx+ by + u)� (by + v) + + v vx� (y + z) = x� (x+ y)� (y + z) + v vx+ by + z = (x+ by + z)� (by + z) + v v v(bx+ u)� (
y + v) = bx+ 
y + u+ v + vx+ y = (x+ y)� y + vx� y = x+ y +x v x� y + + + + + + + + + +bx+ by + z = (bx+ z)� (by + z) + v v v v v vPni=1 bixi �Pni=1 biyi = Pni=1(bixi + biyi) + v v v v vx+ x = x + v v v(bx+ u)� (by + v) w bx+ by + u + v v vx� (y + z) w x+ y + v vax v ax+ y + v v v(bx+ u)� (
y + v) = bx+ 
y + u+ v + vx v x+ y + vx� y = x+ y +Table 5: Complete axiomatizations in terms of BCSPMost of the axioms in the last two se
tions of Table 5 
an be re
ognized as restatements of theaxioms of Tables 2 and 3, using the insight of Lemma 17.1. However, in BCSP it is not so 
lear howthe set of initial a
tions of a pro
ess should be de�ned, and the obvious adaptations of the axiomsinvolving the operator I would not be sound. Therefore the alternatives to those axioms dis
ussednear the end of Se
tion 17.2 are used. Moreover, in BCSP the axiom x + x = x is not sound forreadiness semanti
s. Substituting a� b for x, one derives a� (a+ b)� b = a� b, of whi
h only theleft-hand side has a ready pair =n"; fa; bgn=. However, in the setting of BCCSP all 
losed instan
esof x + x = x are derivable from the law ax + ax = ax, whi
h 
orresponds with the BCSP axiomx� x = x. Following Lemma 17.1, the 
hara
teristi
 axiom for failure tra
e equivalen
e should bex�y = x�y� (x+y). This axiom is derivable from x+x = x, and all 
losed instan
es of x+x = xare derivable from x� y = x� y � (x+ y) and the axioms in the �rst se
tion of Table 5.

axioms BCSP
axioms
axioms preorders
lem-reducing BCSP
thm-open completeness
lem-reducing BCSP
axioms BCSP


Complete axiomatizations 71Let UO be the set of axioms marked with \+" in the 
olumn for O in the �rst two se
tions ofTable 5, and U�O be the set of axioms marked with \+" in the 
olumn for O in the �rst and lastse
tion of Table 5. Write S ` � if the formula � is provable from the set of axioms S.Theorem 12 For O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg and P;Q 2 T(BCSP) onehas P =O Q, UO ` P = Q and P vO Q, U�O ` P v Q.Proof: \(" (soundness): In the light of Theorem 11 it suÆ
es to show that the 
losed instan
es ofthe indi
ated axioms are valid in the 
orresponding semanti
s. In fa
t, one may restri
t attentionto the instan
es where expressions Lni=1 pi with pi 
losed BCCSP expressions are substituted forthe variables. It is not diÆ
ult to 
he
k, for ea
h of these axioms, that su
h instan
es of it arederivable from the instan
es of it where simple 
losed BCCSP expressions are substituted for thevariables (but taking x � y = x� y � (x + y) instead of x+ x = x to be the 
hara
teristi
 axiomfor failure tra
e semanti
s). That the instan
es of the latter kind are valid in the 
orrespondingsemanti
s follows immediately from Lemma 17.1 and the soundness of the axioms for BCCSP.\First)" (
ompleteness of the axioms for the equivalen
es): Let T 0O be the set of axioms markedwith \+" in the 
olumn for O in Table 2, but using aPni=1 bixi + aPni=1 biyi = aPni=1(bixi + biyi)and aPni=1(bixi + biyi) = aPni=1(bixi + biyi) + aPni=1 biyi instead of the axioms involving theoperator I. As Theorem 8 establishes 
ompleteness for 
losed terms only, it holds for T 0O as well.Claim: If T 0O ` p = Pmj=1 aqj for p; qj 2 T(BCCSP), then, modulo appli
ations of the �rstthree axioms of Table 2, p has the form p =Pni=1 api.Proof of the 
laim: As all axioms in T 0O are equations, I may use indu
tion on the proof ofp = Pmj=1 aqj in equational logi
. The 
ase that p = Pmj=1 aqj is a 
losed instan
e of an axiom ofT 0O pro
eeds by inspe
tion of those axioms. The 
ases of pla
ing an equation in a 
ontext, as wellas re
exivity, symmetry and transitivity, are trivial.Claim: T 0O ` nXi=1 api = mXj=1 aqj ) UO ` nMi=1 pi = mMj=1 qj for any pi; qj 2 T(BCCSP).Proof of the 
laim: I use indu
tion on the proof of Pni=1 api =Pmj=1 aqj from T 0O in equa-tional logi
. The 
ase that Pni=1 api = Pmj=1 aqj is a 
losed instan
e of an axiom of T 0O pro
eedsby inspe
tion of those axioms, taking into a

ount the remark about x� y = x� y � (x+ y) rightbefore this theorem. The 
ase of a 
losed instan
e of an axiom of T 0O in a 
ontext is straightfor-ward, also using that all 
losed instan
es of axioms of T 0O are derivable from the ones of UO, takinginto a

ount the remark about x + x = x right before this theorem. The 
ases of re
exivity andsymmetry are trivial. Transitivity follows from the previous 
laim.Completeness proof: Suppose P =O Q for 
ertain P;Q 2 T(BCSP). Using the axiomsin the �rst se
tion of Table 5 one obtains UO ` P = Lni=1 pi and UO ` Q = Lmj=1 qj withpi; qj 2 T(BCCSP). By the soundness of these axioms one has Lni=1 pi =O Lmj=1 qj. ThereforePni=1 api =O aLni=1 pi =O aLmj=1 qj =O Pmj=1 aqj by the soundness of a(x� y) = ax+ay andTheorem 11, and hen
e T 0O ` Pni=1 api = Pmj=1 aqj by the 
ompleteness of T 0O. Now UO ` P = Qfollows by the 
laim above.The se
ond \)" (
ompleteness of the axioms for the preorders) goes likewise, ex
ept that inthe proof of the se
ond 
laim, in order to handle the axioms ax v ax+ y and x v x+ y, one usesthe axiom x v x� y of U�O. Furthermore, ax v ax+ y is derivable from U�CT , and x v x+ y fromU�T . 2

axioms BCSP
axioms BCSP
thm-congruence BCSP
lem-reducing BCSP
axioms
thm-closed completeness
axioms
axioms BCSP
thm-congruence BCSP


72 The linear time { bran
hing time spe
trum I18 Criteria for sele
ting a semanti
s for parti
ular appli
ationsMust testing Assume the testing s
enario of tra
e semanti
s: we are unable to in
uen
e thebehaviour of an investigated system in any way and 
an observe the performed a
tions only. Noteven deadlo
k is observable. In this 
ase there appears to be no reason to distinguish the twopro
esses of Counterexample 3, ab + a(b + 
) and a(b + 
). They have the same tra
es, and
onsequently allow the same observations. Likewise, one might see no reason to distinguish betweenthe two pro
esses of Counterexample 2, ab + a and ab; also these have the same tra
es. However,when buying pro
ess ab, it may 
ome with the guarantee that, in every run of the system, sooneror later it will perform the a
tion b, at least if the a
tion a is known to terminate. Su
h a guarantee
annot be given for ab+a. The distin
tion between ab and ab+a alluded to here 
an be formalizedwith the 
on
ept of must testing, originally due to De Ni
ola & Hennessy [17℄: ab must do a b,whereas ab+ a must not.For �nite pro
esses, must testing 
ould be formalized as follows. For t � A
t� we say that a�nite pro
ess p 2 IP must pass the test t if CT (p) � t. To test whether a pro
ess will sooner or laterperform a b-a
tion take t to be all sequen
es of a
tions 
ontaining a b. To test whether a pro
esswill always perform a b immediately after it does an a, take t to be all tra
es in whi
h any a isimmediately followed by a b. Now write p vmustT q if for all tests t � A
t� su
h that p must pass t,q must pass t as well. It is easy to see that, for �nite pro
esses p and q, p vmustT q i� q vCT p.All testing s
enarios O sket
hed earlier in this paper 
an be regarded as forms of may testing :it is re
orded whether an observation ' 2 LO may be made for a pro
ess p, and one writes p vO qif any observation that may be made for p, may also be made for q.In the 
ontext of a testing s
enario O with O � CT , a plausible form of must testing 
an bede�ned as well, and for �nite pro
esses plausible formalizations yield that p vmustO q i� q vO p.For in�nite pro
esses there are several ways to formalize must testing, and analyzing the result-ing preorders falls outside of the s
ope if this paper.Deadlo
k behaviour A pro
ess is said to rea
h a state of deadlo
k if it 
an do no further a
-tions.13 The pro
ess ab+ a for instan
e may deadlo
k right after performing an a-a
tion, whereasthe pro
ess ab may not. One 
ould say that a semanti
s O respe
ts deadlo
k behaviour i� O � CT .Counterexample 4 then shows that none of the semanti
s on the left in Figure 9 respe
ts deadlo
kbehaviour; only the left-hand pro
ess of Counterexample 4 
an deadlo
k after an a-move. Respe
t-ing deadlo
k behaviour may be a requirement on semanti
s in appli
ations where either deadlo
kis important in its own right, or where (impli
itly) a form of must-testing is 
onsidered.Full abstra
tion Many testing s
enarios mentioned in this paper employ the notion that ana
tion 
an happen only if it is not blo
ked by the environment, that is, only if both the investigatedpro
ess and the environment are ready to parti
ipate in it. Modelling both the investigated pro
essand the responsible part of the environment as pro
ess graphs gives rise to the following binaryinterse
tion operator that allows an a
tion to happen only if it 
an happen in both of its arguments.De�nition 18.1 Let \ be the binary operator on pro
ess graphs de�ned by� nodes(g \ h) = nodes(g)� nodes(h),13In settings were su

essful termination is modelled (
f. Se
tion 19) a state of deadlo
k is only rea
hed if moreoverthe pro
ess 
annot terminate su

essfully.
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ting a semanti
s for parti
ular appli
ations 73� roots(g \ h) = roots(g)� roots(h),� ((s; t); a; (s0; t0)) 2 edges(g) i� (s; a; s0) 2 edges(g) ^ (t; a; t0) 2 edges(h).In order to obtain a 
onne
ted pro
ess graph, unrea
hable parts need to be removed.This operator is also 
alled syn
hronous parallel 
omposition and is denoted k in Hoare [31℄. It
an be added to BCCSP or BCSP by employing the a
tion rule p a�! p0; q a�! q0p \ q a�! p0 \ q0 .Tra
e semanti
s turns out to 
ompositional for the interse
tion operator, i.e. if g =T g0 andh =T h0 then g \h =T g0 \h0. For T (g \h) = T (g)\T (h). So are failures and readiness semanti
s:=n�;Xn= 2 F (g \ h) , 9=n�; Y n= 2 F (g); =n�;Zn= 2 F (h) : X = Y [ Z=n�;Xn= 2 R(g \ h) , 9=n�; Y n= 2 R(g); =n�;Zn= 2 R(h) : X = Y \ Z:In fa
t, it is not hard to see that all semanti
s of this paper are 
ompositional for \, ex
ept for CTand CS , and their (in)�nitary versions. The two pro
esses of Counterexample 3, ab+ a(b+ 
) anda(b+
), are 
ompleted tra
e equivalent, even 
ompleted simulation equivalent, yet after interse
tingthem with a
 only the �rst one has a 
ompleted tra
e a.In appli
ations where the interse
tion operator is used, one may require a suitable semanti
s tobe 
ompositional for it. This rules out CT and CS . If also deadlo
k behaviour is of importan
e,F appears to be the 
oarsest semanti
s to be 
onsidered, as least among the ones reviewed in thispaper. As a matter of fa
t, it is the 
oarsest semanti
s even among the ones not reviewed here.De�nition 18.2 An equivalen
e relation is 
alled fully abstra
t w.r.t. a property if it is the 
oarsestequivalen
e with that property, i.e. if it has the property, and any other equivalen
e having thatproperty is �ner.An equivalen
e is said to fully abstra
t w.r.t. another equivalen
e � and some operators, if it isthe 
oarsest equivalen
e �ner than � that is 
ompositional w.r.t. those operators.An equivalen
e � on jG is fully abstra
t w.r.t. an equivalen
e � and a set L of operators on jG i�(1) it is 
ompositional w.r.t. the operators in L, and(2) for any two pro
ess graphs g; h 2 jG with g 6� h there exists a 
ontext C[�℄ of operators fromL su
h that C[g℄ 6� C[h℄.In fa
t, for every equivalen
e relation � on jG and every set L of operators on jG there exists aunique equivalen
e relation � that is fully abstra
t w.r.t. � and the operators in L, namely theone de�ned by g � h i� C[g℄ � C[h℄ for every 
ontext C[�℄ of operators from L.Theorem 13 Failures equivalen
e is fully abstra
t w.r.t. =CT and \, i.e. w.r.t. deadlo
k behaviourand interse
tion.Proof: (1) has already been established. For (2), let g 6=F h. W.l.o.g. let =n�;Xn= 2 F (g) � F (h).Let k be the pro
ess graph that is shaped like the failure pair =n�;Xn=, i.e. the pro
ess that performsthe a
tions of � in su

ession, after whi
h it o�ers a 
hoi
e between the a
tions of X, and nothingelse. Then � 2 CT (g \ k)� CT (h \ k). 2Variants of Theorem 13 are abundant in the literature. See e.g. [11℄.
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hing time spe
trum IRenaming For every fun
tion f : A
t ! A
t one 
an de�ne a unary renaming operator on jGthat renames the labels of all transitions in its argument a

ording to f . In 
ase f is inje
tive,all semanti
s of this paper are 
ompositional for the asso
iated renaming operator, as is trivial to
he
k. Non-inje
tive renaming operators are useful to express a degree of abstra
tion. Imagine apro
ess that 
an do, among others, a
tions a1 and a2. At some level of abstra
tion, the di�eren
ebetween a1 and a2 may be 
onsidered irrelevant. This 
an be expressed by applying a renamingthat relabels both a1 and a2 into the same a
tion a. Naturally, if two pro
esses are equivalent beforeapplying su
h a renaming operator, one would expe
t them to still be equivalent afterwards, i.e.after abstra
ting from the di�eren
e between a1 and a2. It is for this reason that one might requiresemanti
s to be 
ompositional for (non-inje
tive) renaming. As it happens, all semanti
s betweenF 1 and B� fail this requirement. For the two pro
esses of Counterexample 4 are HML-equivalent(=�B), but after renaming all a
tions bi into b (for i = 1; 2; : : :) the resulting pro
esses are not evensingleton-failures equivalent (=1F ). For only the �rst one has a singleton-failure pair =na; bn=. This 
anbe 
onsidered an argument against the semanti
s on the left of Figure 9.Counterexample 20 shows that also F2S �, R2S �, FB� and RB� are not 
ompositional forrenaming. In this 
ounterexample b is a shorthand for �1i=1bi, in the sense that whenever a transitionp b�! q is displayed, all the transitions p bi�! q for i � 1 are meant to be present. With some e�ort
b b b1
 b b2
 b b3


a aa a . . . b b1
 b b2
 b b3

aa a . . .=�RB6=!2S=RSCounterexample 20: F2S �, R2S �, FB� and RB� are not 
ompositional for renamingone 
he
ks that both pro
esses satisfy the same formulas in L�RB . However, after renaming alla
tions bi into b they are no longer 2S�-equivalent: only the �rst pro
ess satis�es a:(b
>). For allother semanti
s of Figure 9 it is rather easy to establish that they are 
ompositional for renaming.Other 
ompositionality requirements Many formal languages for the des
ription of 
on
ur-rent systems, in
luding CCS [37℄, SCCS [39℄, CSP [31℄ and ACP [7℄, are De Simone languages (
f.[3℄). This means that their operators (the De Simone operators) 
an be de�ned with a
tion rulesof a parti
ular form (the De Simone format). Be
ause De Simone languages are used heavily inalgebrai
 system veri�
ation, semanti
 equivalen
es that are 
ompositional for su
h languages areoften desirable.Theorem 14 The semanti
s T ; T1; F ; F1; R; R1; FT ; FT1; RT ; RT1; PF ; PF1; S �; S!; S ;FS �; RS �; RS!; RS ; 2S!; 2S ; B! and B are 
ompositional w.r.t. all De Simone languages.Proof: Omitted. 2For all the other semanti
s of Figure 9, whi
h are displayed there in red (or shaded), there are
ounterexamples against su
h a result. Tree semanti
s fails to be 
ompositional w.r.t. the + of
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spectrum
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Criteria for sele
ting a semanti
s for parti
ular appli
ations 75BCCSP, unless the a
tion relations are upgraded with multipli
ities, but that takes us outside ofDe Simone format. The semanti
s F 1 ; F�; R�; FT�; RT�; RS�; 2S�; B�; F2S �; R2S �; FB� andRB� fail to be 
ompositional w.r.t. renaming, and CT ; CT1; CS ; CS!; CS fail to be 
ompositionalw.r.t. interse
tion. These are all De Simone operators. Finally, Counterexample 21 shows that PWis not 
ompositional for the syn
hronization operator � of SCCS [39℄|also a De Simone operator.This operator 
an be used to 
reate a 
ontext, in whi
h the two possible worlds equivalent pro
essesof Counterexample 8 are 
onverted into the two pro
esses below. These are no longer possiblea3 a3b1 b2 b1 b2
4 d4(ab
+ abd)� 3(1:4 + 2:4)
6=PW a3b1 b2 b1b2
4 d4a(b
+ bd)� 3(1:4 + 2:4)Counterexample 21: Possible worlds semanti
s is not 
ompositional for syn
hronizationworlds equivalent, for only the one on the right has a possible world a3(b1
4 + b2d4). The same
ounterexample 
an also be 
reated with the inverse image operator of CSP [31℄.In Baeten, Bergstra & Klop [6℄ a unary priority operator was de�ned on pro
ess graphs.This operator, whi
h is not a De Simone operator, assumes a partial ordering < on A
t, i.e. thereis one priority operator for ea
h su
h ordering. The operator a
ts on graphs by removing alltransitions (s; a; t) for whi
h there is a transition (s; b; u) with b > a (and unrea
hable parts areremoved as well). Thus, in a 
hoi
e between several a
tions, only the a
tions with maximal prioritymay be exe
uted. It is known that RT , RS, B and U are 
ompositional for the priority operators.I think that RT1, PW , RS�, RS!, RB� and B! are too. However, none of the other semanti
s ofFigure 9 is. Thus, in appli
ations where priority operators are used and algebrai
 reasoning makes
ompositionality essential, only semanti
s like RT , RS and B are re
ommendable.Depending on the appli
ation, 
ompositionality for other operators may be required as well,leading to various restri
tions on the array of suitable semanti
s. More on whi
h semanti
s are
ompositional for whi
h operators 
an be found in A
eto, Fokkink & Verhoef [3℄ and thereferen
es therein.The Re
ursive Spe
i�
ation Prin
iple A re
ursive spe
i�
ation is an equation of the formX = t with X a variable and t a term (in a language su
h as BCCSP) 
ontaining no othervariables than X. (In the literature often re
ursive spe
i�
ations are allowed to involve morevariables and more su
h equations, but I do not need those here.) A re
ursive spe
i�
ation X = tover BCCSP is guarded if every o

urren
e of X in t o

urs in a subterm at0 of t with a 2 A
t.Re
ursive spe
i�
ations are meant to spe
ify pro
esses. A pro
ess p is said to be a solution ofthe re
ursive spe
i�
ation X = t, using the semanti
s O, if the equation evaluates to a truestatement when substituting p for X and interpreting = as =O. The re
ursive spe
i�
ation prin
iple(RSP) says that guarded re
ursive spe
i�
ations have unique solutions. It has been establishedfor bisimulation semanti
s by Milner [39℄ (using the language SCCS), and holds in fa
t for most
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hing time spe
trum Isemanti
s en
ountered in this paper. In pro
ess algebra, two pro
esses are often proven semanti
allyequivalent by showing that they are solutions of the same re
ursive spe
i�
ation (
f. [5℄). For thispurpose it is important to work with a semanti
s in whi
h RSP holds. In the in�nitary semanti
sbetween T1 and PW this is in fa
t not the 
ase. For in those semanti
s the two di�erent pro
essesof Counterexample 1 are both solutions of the guarded re
ursive spe
i�
ation X = aX + a. Forthe �nitary semanti
s this 
ounterexample does not apply, be
ause the two pro
esses are identi�ed,whereas in simulation semanti
s (of �ner) these two pro
esses fail to be solutions of the samere
ursive spe
i�
ation.Other 
onsiderations In general it depends on the kind of intera
tions that are permittedbetween a pro
ess and its environment (i.e. the testing s
enario) whi
h semanti
s is suÆ
ientlydis
riminating for a parti
ular appli
ation. When a range of appropriate semanti
s is found, also
onsidering the 
riteria dis
ussed earlier in the se
tion, the question rises whi
h of these semanti
s toa
tually use (e.g. in making a formal veri�
ation). A natural 
hoi
e is the 
oarsest of the appropriatesemanti
s, i.e. the one whi
h is fully abstra
t w.r.t. the requirements it has to meet in order to beadequate in the 
ontext in whi
h the investigated pro
esses will be operating. In this semanti
smore equations are valid than in any other. If the goal is to prove that two pro
esses are equivalent,this may su

eed when using the fully abstra
t semanti
s, whereas it may not even be true in a�ner one. Sometimes it is argued that the 
omplexity of de
iding equivalen
e between pro
esses istoo high for 
ertain semanti
s; using them would give rise to too hard veri�
ations. However, this
an not be an argument for reje
ting a semanti
s in favour of a �ner one. For doing the veri�
ationin the �ner semanti
s is a
tually a method of establishing equivalen
e in the 
oarser semanti
s. Inother words, when O � N , establishing p =O q 
annot be harder than establishing p =N q, asestablishing p =N q is one of the ways of establishing p =O q. If de
idingO-equivalen
e has a higher
omplexity than de
iding N -equivalen
e, the hard 
ases to de
ide must be the equations p =O qfor whi
h p =N q is not even true. It is espe
ially for those appli
ations that O-semanti
s has adistin
t advantage over N -semanti
s. This argument has been made for
efully in Valmari [48℄.In pra
ti
e, it may not always be 
ertain in what ways the environment 
an intera
t with inves-tigated pro
esses, and hen
e what 
onstitutes their observable behaviour. Moreover, the pro
essesunder investigation may be transferred to more powerful environments long after their initial use.One of the ways this 
ould happen is through the introdu
tion of more operators for whi
h theunderlying semanti
s has to be 
ompositional. A big disadvantage of semanti
s that are fully ab-stra
t with respe
t to non-stable notions of observability (or non-stable sets of operators) is thatwhenever a veri�
ation is 
arried out in a su
h a semanti
s, and one de
ides that the 
ontext inwhi
h the veri�ed system will be working is su
h that a
tually a little bit more 
an be observedthat what was originally a

ounted for, the veri�
ation has to be 
ompletely redone. Moreover,the 
orre
tness of the investigated systems keeps depending on the 
ompleteness of the underlyingtesting s
enario. In su
h 
ases it is preferable to 
arry out veri�
ations in the �nest semanti
sfor whi
h this is 
onvenient. This gives stronger equivalen
e results, whi
h have a greater 
hangeof surviving in 
onditions where the environment gets more powerful than originally anti
ipated.Espe
ially using bisimulation is safe bet, as it respe
ts the internal stru
ture of pro
esses to su
ha degree that it is hard to imagine ever running into an environment that distinguishes bisimilarpro
esses. In Bloom, Istrail & Meyer [12℄ it is argued that ready simulation semanti
s alreadyrespe
ts the limits of observable behaviour, so this may be a good alternative. It should be pointedout, however, that most appli
ations involve abstra
tion from internal a
tions (not treated in this
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essful termination 77paper), and hen
e require variants of the semanti
s treated here that a

ommodate su
h abstra
-tions. In this setting, the question of whi
h semanti
s represents the limit of observable behaviouris mu
h harder.19 Distinguishing deadlo
k and su

essful terminationOften resear
hers feel the need to distinguish two ways in whi
h a pro
ess 
an end: su

essfully(by 
ompleting its mission) or unsu

essfully (for instan
e be
ause its waits for an input from theenvironment that will never arrive). This distin
tion 
an be formally modelled in the 
ontext oflabelled transition systems by 
onsidering triples (IP;!;p) in whi
h (IP;!) is a labelled transitionsystem as in De�nition 1.1 and p � IP is a predi
ate on pro
esses expressing whi
h ones 
anterminate su

essfully in their 
urrent state. It may or may not be required that the pro
essesp 2 IP with p(p) have no outgoing transitions. Likewise, in the setting of pro
ess graphs, onestudies tuples (nodes(g);root(g);edges(g);p(g)) with p(g) � nodes(g). Now any labelledtransition system over an alphabet A
t equipped with su
h a su

essful termination predi
ate, 
anbe en
oded as an ordinary labelled transition system over an alphabet A
t [ fpg with p 62 A
t.Namely, instead of labelling the pro
esses/states where su

essful termination o

urs with p, one
an view su

essful termination as a kind of a
tion, and add p-labelled transitions from thosepro
esses/states to fresh endstates. Now any semanti
 equivalen
e de�ned on ordinary labelledtransition systems extends to labelled transition systems with a su

essful termination predi
ateby de
laring two pro
esses equivalent i� they are equivalent in the en
oded transition system. Infa
t, in the same way all equivalen
es and preorders of this paper extend to labelled transitionsystems equipped with arbitrary predi
ates P � IP. Below, three of the thusly de�ned equivalen
esare 
hara
terized expli
itly in terms of p.De�nition 19.1 Let (IP;!;p) be a labelled transition system with su

essful termination.� 2 A
t� is a terminating tra
e of a pro
ess p if there is a pro
ess q su
h that p ��! q and p(q).Let L(p) denote the set of terminating tra
es of p (and let T (p) and CT (p) be de�ned as before).Now two pro
esses p and q are tra
e equivalent i� T (p) = T (q) and L(p) = L(q). They are 
ompletedtra
e equivalent i� T (p) = T (q), CT (p) = CT (q) and L(p) = L(q). They are bisimulation equivalenti� there exists a binary relation R on IP with pRq, satisfying, for a 2 A
t:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq and q a�! q0, then 9p0 : p a�! p0 and p0Rq0;� if pRq, then p(p),p(q).Language semanti
s The nondeterministi
 automata studied in automata theory (
f.Hop
roft& Ullman [33℄) 
an be regarded as pro
ess graphs with a termination predi
ate (ex
ept that inautomata theory the fo
us is on �nite automata). The states s 2 nodes(g) with p(s) are 
alleda

epting or �nal states, and a string � 2 A
t� is said to be a

epted by the automaton g i� � 2 L(g).The set L(g) of all strings a

epted by g is 
alled the language a

epted by g. In automata theorytwo automata are 
onsidered equivalent i� they a

ept the same language. Therefore languageequivalen
e 
an be de�ned as follows.De�nition 19.2 Two pro
esses p and q in a labelled transition system with su

essful terminationare language equivalent, notation p =L q, if L(p) = L(q). Write p �L q i� L(p) � L(q).
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78 The linear time { bran
hing time spe
trum IClearly, language semanti
s makes more identi�
ations than tra
e semanti
s (i.e. L � T ). It 
ouldbe appended to the bottoms of Figures 1 and 9. The reason for not treating it earlier in this paperis that it 
annot be de�ned uniformly in terms of a
tion relations. For either the de�nition dependson the predi
ate p, whi
h is not a part of ordinary labelled transition systems, or, when en
odingthe p-predi
ate by a transition label p, the de�nition treats p�! di�erent from the other a
tionrelations.Complete axiomatizations A variant of the language BCCSP of Se
tion 17 that distinguishesbetween deadlo
k and su

essful termination is the language BCCSPÆ", obtained from BCCSP byrepla
ing the 
onstant 0 by two 
onstants Æ and ", representing deadlo
k and su

essful termination,respe
tively. On T(BCCSPÆ") a
tion relations a�! for a 2 A
t are again de�ned as the predi
ates onT(BCCSPÆ") generated by the a
tion rules of Table 1. Furthermore, the predi
atep � T(BCCSPÆ")is generated by the rules of Table 6. Now the 
omplete axiomatizations of Table 2 apply to BCCSPÆ"p(") p(p)p(p+ q) p(q)p(p+ q)Table 6: Rules for the termination predi
ateas well, provided that the o

urren
es of 0 are 
hanged into Æ, an axiom I(") = " is added, and the
hara
teristi
 axioms for CS and CT also get variants in whi
h by + z resp. 
y + v is repla
ed by". Language equivalen
e 
an be axiomatized by adding the axiom aÆ = Æ to the axioms for tra
eequivalen
e. This axiom 
orresponds with a transformation on �nite pro
ess trees that removesstates from whi
h it is impossible to rea
h a state of su

essful termination. On the normal formsw.r.t. this transformation, language equivalen
e and tra
e equivalen
e 
oin
ide.Su

essful termination as default Naturally, ordinary transition systems 
an be regarded astransition systems with su

essful termination by taking the termination predi
ate to be empty. Onsu
h transition systems, language equivalen
e turns out to be the universal relation, axiomatized bythe equation x = y. Alternatively, ordinary transition systems 
an be regarded as transition systemswith su

essful termination by letting p be the set of pro
esses without outgoing transitions, i.e.by regarding all termination to be su

essful. In this 
ontext, on a transition system (IP;!) on 
ande�ne any of the semanti
s O of this paper as in Se
tion 15, or by taking su

essful termination intoa

ount as in the present se
tion. Denote the latter version ofO by Op. Then two pro
esses are Op-equivalent i� they are O-equivalent after appending a p-transition to every endstate. Comparingsemanti
s that take termination into a

ount as well as semanti
s that abstra
t from it yieldsin �rst approximation a \double" version of Figure 9, of whi
h a tiny fragment is displayed inFigure 12(a). However, for pro
esses p for whi
h all termination is su

essful one has CT (p) = L(p).Hen
e the semanti
s Tp, CTp and CT 
oin
ide. One also veri�es easily that R 
oin
ides withRp, FT with FTp, RT with RTp, RS with RSp, B with Bp, et
. However, F and Fp di�er,as demonstrated by Counterexample 22. There F (left) = F (right) but =na; f
;pgn= 2 Fp(left) �Fp(right). Also PF di�ers from PF 0 and 2S from 2S 0 , for in Counterexample 14 one has left =2Sright but, after appending a p-transition to every endnode, a:bp0 2 Lp2S (left)�Lp2S (right). ThusFigure 12(a) 
ollapses to Figure 12(b). In Groote & Huttel [24℄ normed pro
esses are studied:pro
esses that never loose the possibility to terminate eventually. A pro
ess p is normed i� forea
h pro
ess q rea
hable from p, there is a pro
ess r rea
hable from q that terminates (i.e. has
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LpTp
CTpFpRp

TCT
FR

(a) �rst approximation (b) general 
ase (
) normed pro
essesLp TCTF
FpR

TLp
FFp
R

Figure 12: The linear time { bran
hing time spe
trum for su

essfully terminating pro
essesno outgoing transitions) (and all termination is 
onsidered su

essful). For normed pro
esses p,T (p) is 
ompletely determined by L(p). Hen
e Figure 12(b) 
ollapses further to Figure 12(
). Thisexplains why in [24℄ Lp 
oin
ides with CT and is �ner than T .Sequen
ing and sequential 
omposition The sequential 
omposition of pro
esses p and q (
f.[31, 7℄), denoted p � q, is the pro
ess that �rst exe
utes p, and upon su

essful termination of pexe
utes q. This operator is de�ned only on domains of pro
esses on whi
h su

essful terminationis somehow represented. Sequen
ing on the other hand is de�ned on domains of pro
esses thatdo not distinguish between deadlo
k and su

essful termination: let p;q denote the pro
ess that�rst exe
utes p until it 
an do no further a
tions, and then q [12℄. On pro
ess graphs, g;h 
an be
onstru
ted by appending (at its root) a disjoint 
opy of h to every endnode of g. On pro
ess graphswith su

essful termination, g � h on the other hand 
an be 
onstru
ted by appending a disjoint
opy of h to every node s of g with p(s). In 
ase p(s) is possible even if s is not an endnode, thegraph h needs to be transformed �rst in su
h a way that its root has no in
oming edges [7℄.a a ab b 
a+ ab+ a(b+ 
)
=F6=pF=1pF aa b 
a+ a(b+ 
)Counterexample 22: Failures semanti
s is not 
ompositional for sequen
ingCounterexample 22 shows that failures semanti
s is not 
ompositional for sequen
ing. Thereleft =F right , but left ;
 6=F right ;
. The same 
ounterexample, with all endnodes su

essfullyterminating, shows that singleton-failures semanti
s is not 
ompositional for either sequen
ing orsequential 
omposition. Likewise, Counterexample 14 shows that PF and 2S are not 
ompositionalfor sequen
ing, and Counterexample 4 shows that none of the semanti
s between T and B� are. All
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80 The linear time { bran
hing time spe
trum Iof the semanti
s studied in this paper, ex
ept for F 1, are 
ompositional for sequential 
omposition.As sequen
ing is the same as sequential 
omposition on pro
esses where all endstates, and onlythose, are 
onsidered to be su

essfully terminating, this implies that all the semanti
s Op, ex
eptfor F 1p, are 
ompositional for sequen
ing. If 
 is an a
tion that does not o

ur in p or q, thenp;
 =O q;
, p =pO q. (Think of 
 as p.) From this it follows that for all semanti
s O, ex
eptF 1, Op is fully abstra
t w.r.t. O and sequen
ing, at least for pro
esses that 
an not exe
ute everya
tion in A
t.Con
luding remarksIn this paper various semanti
 equivalen
es for 
on
rete sequential pro
esses are de�ned, motivated,
ompared and axiomatized. Of 
ourse many more equivalen
es 
an be given than the ones presentedhere. The reason for sele
ting just these, is that they 
an be motivated rather ni
ely and/or playa rôle in the literature on semanti
 equivalen
es. In Abramsky & Vi
kers [2℄ the observationswhi
h underly many of the semanti
s in this paper are pla
ed in a uniform algebrai
 framework,and some general 
ompleteness 
riteria are stated and proved. They also introdu
e a

eptan
esemanti
s, whi
h 
an be obtained from a

eptan
e-refusal semanti
s (Se
tion 7) by dropping therefusals, and analogously a

eptan
e tra
e semanti
s. I am not aware of any reasonable testings
enario for these notions.In Se
tion 9 I remarked that a testing s
enario for simulation and ready simulation semanti
s
an be obtained by adding an undo-button to the s
enario's for tra
e and ready tra
e semanti
s.Likewise, S
hnoebelen [47℄ investigates the addition of an undo-button to the testing s
enariosfor 
ompleted tra
e, readiness, failures and failure tra
e semanti
s, thereby obtaining 3 new equiv-alen
es CT#, R# and F#. Undo-failure tra
e equivalen
e 
oin
ides with �nitary failure simulationequivalen
e, just like undo-tra
e and undo-ready tra
e equivalen
e 
oin
ide with �nitary simula-tion and �nitary ready simulation equivalen
e. For image �nite pro
esses R# 
oin
ides with F#.Furthermore R � R# � RS�, F � F# � FS �, CT � CT# � CS� and S� � CT# � F# � R#.An interesting topi
 is the generalization of this work to a setting with silent moves and/or withparallelism. In both 
ases there turn out to be many interesting variations. The generalization to asetting with invisible a
tions will be ta
kled in [21℄. Some work towards generalizing the spe
trumto a setting with parallelism 
an be found for instan
e in [44℄ and [19℄.Referen
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