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2 The linear time { branhing time spetrum IIntrodutionProess theory A proess is the behaviour of a system. The system an be a mahine, anelementary partile, a ommuniation protool, a network of falling dominoes, a hess player,or any other system. Proess theory is the study of proesses. Two main ativities of proesstheory are modelling and veri�ation. Modelling is the ativity of representing proesses, mostlyby mathematial strutures or by expressions in a system desription language. Veri�ation is theativity of proving statements about proesses, for instane that the atual behaviour of a systemis equal to its intended behaviour. Of ourse, this is only possible if a riterion has been de�ned,determining whether or not two proesses are equal, i.e. two systems behave similarly. Suh ariterion onstitutes the semantis of a proess theory. (To be preise, it onstitutes the semantisof the equality onept employed in a proess theory.) Whih aspets of the behaviour of a systemare of importane to a ertain user depends on the environment in whih the system will be running,and on the interests of the partiular user. Therefore it is not a task of proess theory to �nd the`true' semantis of proesses, but rather to determine whih proess semantis is suitable for whihappliations.Comparative onurreny semantis This paper aims at the lassi�ation of proess se-mantis.1 The set of possible proess semantis an be partially ordered by the relation `makesstritly more identi�ations on proesses than', thereby beoming a omplete lattie3. Now thelassi�ation of some useful proess semantis an be failitated by drawing parts of this lattie andloating the positions of some interesting proess semantis, found in the literature. Furthermorethe ideas involved in the onstrution of these semantis an be unravelled and ombined in newompositions, thereby reating an abundane of new proess semantis. These semantis will, bytheir intermediate positions in the semanti lattie, shed light on the di�erenes and similarities ofthe established ones. Sometimes they also turn out to be interesting in their own right. Finallythe semanti lattie serves as a map on whih it an be indiated whih semantis satisfy ertaindesirable properties, and are suited for a partiular lass of appliations.Most semanti notions enountered in ontemporary proess theory an be lassi�ed along fourdi�erent lines, orresponding with four di�erent kinds of identi�ations. First there is the dihotomyof linear time versus branhing time: to what extent should one identify proesses di�ering only inthe branhing struture of their exeution paths? Seondly there is the dihotomy of interleavingsemantis versus partial order semantis: to what extent should one identify proesses di�eringonly in the ausal dependenies between their ations (while agreeing on the possible orders ofexeution)? Thirdly one enounters di�erent treatments of abstration from internal ations in aproess: to what extent should one identify proesses di�ering only in their internal or silent ations?And fourthly there are di�erent approahes to in�nity: to what extent should one identify proessesdi�ering only in their in�nite behaviour? These onsiderations give rise to a four dimensionalrepresentation of the proposed semanti lattie.1This �eld of researh is alled omparative onurreny2semantis, a terminology �rst used by Meyer in [36℄.2Here onurreny is taken to be synonymous with proess theory, although stritly speaking it is only the studyof parallel (as opposed to sequential) proesses. These are the behaviours of systems apable of performing di�erentations at the same time. In this paper the term onurreny is onsidered to inlude sequential proess theory. Thismay be justi�ed sine muh work on sequential proesses is intended to failitate later studies involving parallelism.3The supremum of a set of proess semantis is the semantis identifying two proesses whenever they are identi�edby every semantis in this set.
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Introdution 3However, at least three more dimensions an be distinguished. In this paper, stohasti and real-time aspets of proesses are ompletely negleted. Furthermore it deals with uniform onurreny4only. This means that proesses are studied, performing ations5 a; b; ; ::: whih are not subjet tofurther investigations. So it remains unspei�ed if these ations are in fat assignments to variablesor the falling of dominoes or other ations. If also the options are onsidered of modelling (to aertain degree) the stohasti and real-time aspets of proesses and the operational behaviour ofthe elementary ations, three more parameters in the lassi�ation emerge.Proess domains In order to be able to reason about proesses in a mathematial way, it isommon pratie to represent proesses as elements of a mathematial domain6. Suh a domainis alled a proess domain. The relation between the domain and the world of real proesses ismostly stated informally. The semantis of a proess theory an be modelled as an equivalene ona proess domain, alled a semanti equivalene. In the literature one �nds among others:� graph domains, in whih a proess is represented as a proess graph, or state transition diagram,� net domains, in whih a proess is represented as a (labelled) Petri net,� event struture domains, in whih a proess is represented as a (labelled) event struture,� expliit domains, where a proess is represented as a mathematially oded set of its properties,� projetive limit domains, whih are obtained as projetive limits of series of �nite term domains,� and term domains, in whih a proess is represented as a term in a system desription language.Ation relations Write p a�! q if the proess p an evolve into the proess q, while performingthe ation a. The binary prediates a�! are alled ation relations. The semanti equivaleneswhih are treated in this paper will be de�ned entirely in terms of ation relations. Hene thesede�nitions apply to any proess domain on whih ation relations are de�ned. Suh a domain isalled a labelled transition system. Furthermore they will be de�ned uniformly in terms of ationrelations, meaning that all ations are treated in the same way. For reasons of onveniene, eventhe usual distintion between internal and external ations is dropped in this paper.Finitely branhing, onrete, sequential proesses Being a �rst step, this paper limits itselfto a very simple lass of proesses. First of all only sequential proesses are investigated: proessesapable of performing at most one ation at a time. Furthermore, instead of dropping the usualdistintion between internal and external ations, one an equivalently maintain to study onreteproesses: proesses in whih no internal ations our. For this simple lass of proesses theannouned semanti lattie ollapses in two out of four dimensions and overs only the in�nitarylinear time { branhing time spetrum.Moreover, the main interest is in �nitely branhing proesses: proesses having in eah state only�nitely many possible ways to proeed. The material pertaining to in�nitely branhing proesses|oloured brown in the eletroni version of this paper|an easily be omitted in �rst reading.4The term uniform onurreny is employed by De Bakker et al [8℄.5Stritly speaking proesses do not perform ations, but systems do. However, for reasons of onveniene, thispaper sometimes uses the word proess, when atually referring to a system of whih the proess is the behaviour.6I use the word domain in the sense of universal algebra; it an be any lass of mathematial objets|typially the�rst omponent of an algebra; the other omponent being a olletion of operators de�ned on this domain. Withoutfurther adjetives I do not refer to the more restritive domains employed in domain theory.
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4 The linear time { branhing time spetrum ILiterature In the literature on uniform onurreny 12 semantis an be found, whih are uni-formly de�nable in terms of ation relations and di�erent on the domain of �nitely branhing,sequential proesses (see Figure 1). The oarsest one (i.e. the semantis making the most identi�-

trae semantisompleted trae semantisfailures semantisreadiness semantisfailure trae semantisready trae semantispossible worlds semantisready simulation semantis2-nested simulation semantisbisimulation semantis

simulation semantis
possible-futures semantis

(tree semantis)

Figure 1: The linear time { branhing time spetrumations) is trae semantis, as presented in Hoare [30℄. In trae semantis only partial traes areemployed. The �nest one (making less identi�ations than any of the others) is bisimulation seman-tis, as presented inMilner [39℄. Bisimulation semantis is the standard semantis for the systemdesription language CCS (Milner [37℄). The notion of bisimulation was introdued in Park [41℄.Bisimulation equivalene is a re�nement of observational equivalene, as introdued by Hennessy& Milner in [27℄. On the domain of �nitely branhing, onrete, sequential proesses, both equiv-alenes oinide. Also the semantis of De Bakker & Zuker, presented in [9℄, oinides withbisimulation semantis on this domain. Then there are ten semantis in between. First of all avariant of trae semantis an be obtained by using omplete traes besides partial ones. In thispaper it is alled ompleted trae semantis. Failures semantis is introdued in Brookes, Hoare& Rosoe [13℄, and used in the onstrution of a model for the system desription language CSP
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Introdution 5(Hoare [29, 31℄). It is �ner than ompleted trae semantis. The semantis based on testing equiv-alenes, as developed in De Niola & Hennessy [17℄, oinides with failures semantis on thedomain of �nitely branhing, onrete, sequential proesses, as do the semantis of Kennaway [34℄and Darondeau [15℄. This has been established in De Niola [16℄. In Olderog & Hoare [40℄readiness semantis is presented, whih is slightly �ner than failures semantis. Between readinessand bisimulation semantis one �nds ready trae semantis, as introdued independently in Pnueli[43℄ (there alled barbed semantis), Baeten, Bergstra & Klop [6℄ and Pomello [44℄ (under thename exhibited behaviour semantis). The natural ompletion of the square, suggested by failures,readiness and ready trae semantis yields failure trae semantis. For �nitely branhing proessesthis is the same as refusal semantis, introdued in Phillips [42℄. Simulation semantis, based onthe lassial notion of simulation (see e.g. Park [41℄), is independent of the last �ve semantis.Ready simulation semantis was introdued in Bloom, Istrail & Meyer [12℄ under the nameGSOS trae ongruene. It is �ner than ready trae as well as simulation semantis. In Larsen& Skou [35℄ a more operational haraterization of this equivalene was given under the name23 -bisimulation equivalene. The (denotational) notion of possible worlds semantis of Veglioni &De Niola [49℄ �ts between ready trae and ready simulation semantis. Finally 2-nested simula-tion semantis, introdued in Groote & Vaandrager [25℄, is loated between ready simulationand bisimulation semantis, and possible-futures semantis, as proposed in Rounds & Brookes[46℄, an be positioned between 2-nested simulation and readiness semantis.Tree semantis, employed inWinskel [50℄, is even �ner than bisimulation semantis. However,a proper treatment requires more than mere ation relations.About the ontents The �rst setion of this paper introdues labelled transition systems andproess graphs. A labelled transition system is any proess domain that is equipped with ationrelations. The domain of proess graphs or state transition diagrams is one of the most popularlabelled transition systems. In Setions 2{14 all semanti equivalenes mentioned above are de�nedon arbitrary labelled transition systems. In partiular these de�nitions apply to the domain ofproess graphs. Most of the equivalenes an be motivated by the observable behaviour of proesses,aording to some testing senario. (Two proesses are equivalent if they allow the same set ofpossible observations, possibly in response to ertain experiments.) I will try to apture thesemotivations in terms of button pushing experiments (f. Milner [37℄, pp. 10-12). Furthermore thesemantis will be partially ordered by the relation `makes at least as many identi�ations as'. Thisyields the linear time { branhing time spetrum. Counterexamples are provided, showing that onthe graph domain this ordering annot be further expanded. However, for deterministi proessesthe spetrum ollapses, as was �rst observed by Park [41℄. Setion 16 desribes various other lassesof proesses on whih parts of the spetrum ollapse. In Setion 17, the semantis are applied to asimple language for �nite, onrete, sequential, nondeterministi proesses, and for twelve of thema omplete axiomatization is provided. Setion 18 applies a few riteria indiating whih semantisare suitable for whih appliations. Finally, in Setion 19 the work of this paper is extended tolabelled transition systems that distinguish between deadlok and suessful termination.With eah of the semanti equivalenes treated in this paper (exept for tree semantis) apreorder is assoiated that may serve as an implementation relation between proesses. The resultsobtained for the equivalenes are extended to the assoiated preorders as well.Aknowledgment My thanks to Tony Hoare for suggesting that the axioms of Table 2 ould besimpli�ed along the lines of Table 5.
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6 The linear time { branhing time spetrum I1 Labelled transition systems and proess graphs1.1 Labelled transition systemsIn this paper proesses will be investigated that are apable of performing ations from a given setAt. By an ation any ativity is understood that is onsidered as a oneptual entity on a hosenlevel of abstration. Ations may be instantaneous or durational and are not required to terminate,but in a �nite time only �nitely many ations an be arried out. Any ativity of an investigatedproess should be part of some ation a 2 At performed by the proess. Di�erent ativities thatare indistinguishable on the hosen level of abstration are interpreted as ourrenes of the sameation a 2 At.A proess is sequential if it an perform at most one ation at the same time. In this paper onlysequential proesses will be onsidered. A lass of sequential proesses an often be onvenientlyrepresented as a labelled transition system. This is a domain IP on whih in�x written binaryprediates a�! are de�ned for eah ation a 2 At. The elements of IP represent proesses, andp a�! q means that p an start performing the ation a and after ompletion of this ation reaha state where q is its remaining behaviour. In a labelled transition system it may happen thatp a�! q and p b�! r for di�erent ations a and b or di�erent proesses q and r. This phenomenonis alled branhing. It need not be spei�ed how the hoie between the alternatives is made, orwhether a probability distribution an be attahed to it.Certain ations may be synhronizations of a proess with its environment, or the reeipt ofa signal sent by the environment. Naturally, these ations an only our if the environmentooperates. In the labelled transition system representation of proesses all these potential ationsare inluded, so p a�! q merely means that there is an environment in whih the ation a an our.Notation: For any alphabet �, let �� be the set of �nite sequenes and �1 the set of in�nitesequenes over �. �! := �� [ �1. Write " for the empty sequene, �� for the onatenation of� 2 �� and � 2 �!, and a for the sequene onsisting of the single symbol a 2 �.De�nition 1.1 A labelled transition system is a pair (IP;!) with IP a lass and! � IP�At� IP,suh that for p 2 IP and a 2 At the lass fq 2 IP j (p; a; q) 2 !g is a set.Most of this paper should be read in the ontext of a given labelled transition system (IP;!),ranged over by p; q; r; :::. Write p a�! q for (p; a; q) 2 !. The binary prediates a�! are alledation relations.De�nition 1.2 (Remark that the following onepts are de�ned in terms of ation relations only)� The generalized ation relations ��! for � 2 At� are de�ned reursively by:1. p "�! p, for any proess p.2. (p; a; q) 2 ! with a 2 At implies p a�! q with a 2 At�.3. p ��! q ��! r implies p ���! r.In words: the generalized ation relations ��! are the reexive and transitive losure of theordinary ation relations a�!. p ��! q means that p an evolve into q, while performing thesequene � of ations. Remark that the overloading of the notion p a�! q is quite harmless.� A proess q 2 IP is reahable from p 2 IP if p ��! q for some � 2 At�.



Labelled transition systems and proess graphs 7� The set of initial ations of a proess p is de�ned by: I(p) = fa 2 At j 9q : p a�! qg.� A proess p 2 IP is �nite if the set f(�; q) 2 (At� � IP) j p ��! qg is �nite.� p is image �nite if for eah � 2 At� the set fq 2 IP j p ��! qg is �nite.� p is deterministi if p ��! q ^ p ��! r ) q = r.� p is well-founded if there is no in�nite sequene p a1�! p1 a2�! p2 a3�! � � �.� p is �nitely branhing if for eah q reahable from p, the set f(a; r)2At� IP j q a�! rg is �nite.Note that a proess p 2 IP is image �nite i� for eah q 2 IP reahable from p and eah a 2 At, theset fr 2 IP j q a�! rg is �nite. Hene �nitely branhing proesses are image �nite. Moreover, byK�onig's lemma a proess is �nite i� it is well-founded and �nitely branhing.1.2 Proess graphsDe�nition 1.3 A proess graph over an alphabet At is a rooted, direted graph whose edges arelabelled by elements of At. Formally, a proess graph g is a triple (nodes(g);root(g);edges(g)),where� nodes(g) is a set, of whih the elements are alled the nodes or states of g,� root(g) 2 nodes(g) is a speial node: the root or initial state of g,� and edges(g) � nodes(g)�At�nodes(g) is a set of triples (s; a; t) with s; t 2 nodes(g) anda 2 At: the edges or transitions of g.If e = (s; a; t) 2 edges(g), one says that e goes from s to t. A (�nite) path � in a proess graph is analternating sequene of nodes and edges, starting and ending with a node, suh that eah edge goesfrom the node before it to the node after it. If � = s0(s0; a1; s1)s1(s1; a2; s2) � � � (sn�1; an; sn)sn,also denoted as � : s0 a1�! s1 a2�! � � � an�! sn, one says that � goes from s0 to sn; it starts in s0 andends in end(�) = sn. Let paths(g) be the set of paths in g starting from the root. If s and t arenodes in a proess graph then t an be reahed from s if there is a path going from s to t. A proessgraph is said to be onneted if all its nodes an be reahed from the root; it is a phrase-tree if eahnode an be reahed from the root by exatly one path. Let jG be the domain of onneted proessgraphs over a given alphabet At.De�nition 1.4 Let g; h 2 jG. A graph isomorphism between g and h is a bijetive funtionf : nodes(g)! nodes(h) satisfying� f(root(g)) = root(g) and� (s; a; t) 2 edges(g) , (f(s); a; f(t)) 2 edges(h).Graphs g and h are isomorphi, notation g �= h, if there exists a graph isomorphism between them.In this ase g and h di�er only in the identity of their nodes. Remark that graph isomorphism isan equivalene relation on jG.Conneted proess graphs an be pitured by using open dots (Æ) to denote nodes, and labelledarrows to denote edges, as an be seen further on. There is no need to mark the root of suh aproess graph if it an be reognized as the unique node without inoming edges, as is the asein all my examples. These pitures determine proess graphs only up to graph isomorphism, butusually this suÆes sine it is virtually never needed to distinguish between isomorphi graphs.



8 The linear time { branhing time spetrum IDe�nition 1.5 For g 2 jG and s 2 nodes(g), let gs be the proess graph de�ned by� nodes(gs) = ft 2 nodes(g) j there is a path going from s to tg,� root(gs) = s 2 nodes(gs),� and (t; a; u) 2 edges(gs) i� t; u 2 nodes(gs) and (t; a; u) 2 edges(g).Of ourse gs 2 jG. Note that groot(g) = g. Now on jG ation relations a�! for a 2 At are de�nedby g a�! h i� (root(g); a; s) 2 edges(g) and h = gs. This makes jG into a labelled transitionsystem.1.3 Embedding labelled transition systems in jGLet (IP;!) be an arbitrary labelled transition system and let p 2 IP. The anonial graph G(p) ofp is de�ned as follows:� nodes(G(p)) = fq 2 IP j 9� 2 At� : p ��! qg,� root(G(p)) = p 2 nodes(G(p)),� and (q; a; r) 2 edges(G(p)) i� q; r 2 nodes(G(p)) and q a�! r.Of ourse G(p) 2 jG. This means G is a funtion from IP to jG.Proposition 1.1 G : IP ! jG is injetive and satis�es, for a 2 At: G(p) a�! G(q) , p a�! q.Moreover, G(p) a�! h only if h has the form G(q) for some q 2 IP (with p a�! q).Proof: Trivial. 2Proposition 1.1 says that G is an embedding of IP in jG. It implies that any labelled transitionsystem over At an be represented as a sublass G(IP) = fG(p) 2 jG j p 2 IPg of jG.Sine jG is also a labelled transition system, G an be applied to jG itself. The followingproposition says that the funtion G : jG! jG leaves its arguments intat up to graph isomorphism.Proposition 1.2 For g 2 jG, G(g) �= g.Proof: Remark that nodes(G(g)) = fgs j s 2 nodes(g)g.Now the funtion f : nodes(G(g)) ! nodes(g) de�ned by f(gs) = s is a graph isomorphism. 21.4 Equivalenes relations and preorders on labelled transition systemsThis paper studies semantis on labelled transition systems. Eah of the semantis examined here(exept for tree semantis) is de�ned or haraterized in terms of a funtion O that assoiates withevery proess p 2 IP a set O(p). In most ases the elements of O(p) an be regarded as the possibleobservations one ould make while interating with the proess p in the ontext of a partiulartesting senario. The set O(p) then onstitutes the observable behaviour of p. For every suh O, theequivalene relation =O 2 IP� IP is given by p =O q , O(p) = O(q), and the preorder vO 2 IP� IPby p vO q , O(p) � O(q). Obviously p =O q , p vO q ^ q vO p. The semanti equivalene=O partitions IP into equivalene lasses of proesses that are indistinguishable by observation(using observations of type O). The preorder vO moreover provides a partial order between theseequivalene lasses; one that ould be taken to onstitute an \implementation" relation. Theassoiated semantis, also alled O, is the riterion that identi�es two proesses whenever they are
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Trae semantis 9O-equivalent. Two semantis are onsidered the same if the assoiated equivalene relations arethe same.As the de�nitions of O are given entirely in terms of ation relations, they apply to any la-belled transition system IP. Moreover, the de�nitions of O(p) involve only ation relations betweenproesses reahable from p. Thus Proposition 1.1 implies that O(G(p)) = O(p). This in turn yieldsCorollary 1.1 p vO q i� G(p) vO G(q) and p =O q i� G(p) =O G(q). 2Write O �IP N if semantis O makes at least as muh identi�ations as semantis N . This is thease if the equivalene orresponding with O is equal to or oarser than the one orresponding withN , i.e. if p =N q ) p =O q for all p; q 2 IP. Let � abbreviate � jG. The following is then immediateby Corollary 1.1.Corollary 1.2 O � N i� O �IP N for eah labelled transition system IP.On the other hand, O 6� N i� O 6�IP N for some labelled transition system IP. 2Write O ��IP N if p vN q ) p vO q for all p; q 2 IP, and let �� abbreviate ��jG. By de�nitionO �� N ) O � N for all semantis O and N . The reverse does not hold by de�nition, but it willbe shown to hold for all semantis disussed in this paper (f. Setion 15).1.5 Initial nondeterminismIn a proess graph it need not be determined in whih state one ends after performing a nonemptysequene of ations. This phenomenon is alled nondeterminism. However, proess graphs asde�ned above are not apable of modelling initial nondeterminism, as there is only one initialstate. This an be reti�ed by onsidering proess graphs with multiple roots, in whih roots(g)may be any nonempty subset of nodes(g)|let jGmr be the lass of suh onneted proess graphs.A proess graph with multiple roots an also be regarded as a nonempty set of proess graphs withsingle roots. More generally, initial nondeterminism an be modelled in any labelled transitionsystem IP by regarding the nonempty subsets of IP (rather than merely its elements) to be proesses.The elements of a proess P � IP then represent the possible initial states of P .Now any notion of observability O on IP extends to proesses with initial nondeterminism byde�ning O(P ) = Sp2P O(p) for P � IP. Thus also the equivalenes =O and preorders vO arede�ned on suh proesses. Write O �0IP N if P =N Q) P =O Q for all nonempty P;Q � IP, andlet �0 abbreviate �0jG. Clearly, one has O �0 N ) O � N for all semantis O and N .Let g be a proess graph over At with multiple roots. Let i be an ation (initialize) whih isnot in At. De�ne �(g) as the proess graph over At[fig obtained from g by adding a new state �,whih will be the root of �(g), and adding a transition (�; i; r) for every r 2 roots(g). Now for everysemantis O to be disussed in this paper it will be the ase that g vO h , �(g) vO �(h), as thereader may easily verify for eah suh O. From this it follows that we have in fat O �0 N , O � Nfor all semantis O andN treated in this paper. This justi�es fousing heneforth on proess graphswith single roots and proesses as mere elements of labelled transition systems.2 Trae semantisDe�nition 2 � 2 At� is a trae of a proess p if there is a proess q suh that p ��! q. LetT (p) denote the set of traes of p. Two proesses p and q are trae equivalent, notation p =T q, ifT (p) = T (q). In trae semantis (T ) two proesses are identi�ed i� they are trae equivalent.
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10 The linear time { branhing time spetrum ITesting senario Trae semantis is based on the idea that two proesses are to be identi�edif they allow the same set of observations, where an observation simply onsists of a sequene ofations performed by the proess in suession.Modal haraterizationDe�nition 2.1 The set LT of trae formulas over At is de�ned reursively by:� > 2 LT .� If ' 2 LT and a 2 At then a' 2 LT .The satisfation relation j= � IP�LT is de�ned reursively by:� p j= > for all p 2 IP.� p j= a' if for some q 2 IP: p a�! q and q j= '.Note that a trae formula satis�ed by a proess p represents nothing more or less than a trae ofp. Hene one hasProposition 2.1 p =T q , 8' 2 LT (p j= ', q j= '). 2Proess graph haraterization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).Then T (�) := a1a2 � � � an 2 At� is the trae of �. As jG is a labelled transition system, T (g) isde�ned above. Alternatively, it ould be de�ned as the set of traes of paths of g. It is easy to seethat these de�nitions are equivalent:Proposition 2.2 T (g) = fT (�) j � 2 paths(g)g. 2Expliit model In trae semantis a proess an be represented by a trae equivalene lassof proess graphs, or equivalently by the set of its traes. Suh a trae set is always nonemptyand pre�x-losed. The next proposition shows that the domain TT of trae sets is in bijetiveorrespondene with the domain jG==T of proess graphs modulo trae equivalene, as well as withthe domain jGmr==T of proess graphs with multiple roots modulo trae equivalene. Models ofonurreny like TT, in whih a proess is not represented as an equivalene lass but rather as amathematially oded set of its properties, are sometimes referred to as expliit models.De�nition 2.2 The trae domain TT is the set of subsets T of At� satisfyingT1 " 2 T,T2 �� 2 T ) � 2 T.Proposition 2.3 T 2 TT, 9g 2 jG : T (g) = T, 9g 2 jGmr : T (g) = T.Proof: Let T 2 TT. De�ne the anonial graph G(T) of T by nodes(G(T)) = T, root(G(T)) = "and (�; a; �) 2 edges(G(T)) i� � = �a. As T satis�es T2, G(T) is onneted, i.e. G(T) 2 jG. Infat, G(T) is a tree. Moreover, for every path � 2 paths(G(T)) one has T (�) = end(�). Hene,using Proposition 2.2, T (G(T)) = T.For the remaining two impliation, note that jG � jGmr , and the trae set T (g) of any graphg 2 jGmr satis�es T1 and T2. 2TT was used as a model of onurreny in Hoare [30℄.
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Completed trae semantis 11In�nite proesses For in�nite proesses one distinguishes two variants of trae semantis: (�ni-tary) trae semantis as de�ned above, and in�nitary trae semantis (T1), obtained by takingin�nite runs into aount.De�nition 2.3 a1a2 � � � 2 At1 is an in�nite trae of a proess p 2 IP if there are proessesp1; p2; ::: suh that p a1�! p1 a2�! � � �. Let T1(p) denote the set of in�nite traes of p. Two proessesp and q are in�nitary trae equivalent, notation p =1T q, if T (p) = T (q) and T1(p) = T1(q).Clearly p =1T q ) p =T q. That on jG the reverse does not hold follows from Counterexample 1:a aa aa a a � � �a aa
a aa aa a a � � �aa a aa

=!B6=1T6=PFCounterexample 1: Finitary equivalent but not in�nitary equivalentone has T (left) = T (right) = fan j n 2 INg, but T1(left) 6= T1(right), as only the graph at theright has an in�nite trae.However, with K�onig's lemma one easily proves that for image �nite proesses �nitary andin�nitary trae equivalene oinide:Proposition 2.4 Let p and q be image �nite proesses with p =T q. Then p =1T q.Proof: It is suÆient to show that T1(p) an be expressed in terms of T (p) for any image �niteproess p. In fat, T1(p) onsists of all those in�nite traes for whih all �nite pre�xes are in T (p).One diretion of this statement is trivial: if � 2 T1(p), all �nite pre�xes of � must be in T (p).For the other diretion suppose that, for i 2 IN, ai 2 At and a1a2 � � � ai 2 T (p). With indutionon i 2 IN one an show that there exists proesses pi suh that i = 0 and p0 = p, or pi�1 ai�! pi,and for every j � i one has ai+1ai+2 � � � aj 2 T (pi). The existene of these pi's immediately entailsthat a1a2a3 � � � 2 T1(p). The base ase (i = 0) is trivial. Suppose the laim holds for ertaini. For every j � i + 1 there must be a proess q with pi �ai+1�! q and ai+2ai+3 � � � aj 2 T (q). Asthere are only �nitely many proesses q with pi �ai+1�! q, there must be one hoie of q for whihai+2ai+3 � � � aj 2 T (q) for in�nitely many values of j. Take this q to be pi+1. As T (pi+1) is pre�x-losed, one has ai+2ai+3 � � � aj 2 T (pi+1) for all j � i+ 1. 2An expliit representation of in�nitary trae semantis is obtained by taking the subsets T of At!satisfying T1 and T2.3 Completed trae semantisDe�nition 3 � 2 At� is a omplete trae of a proess p, if there is a proess q suh that p ��! qand I(q) = ;. Let CT (p) denote the set of omplete traes of p. Two proesses p and q areompleted trae equivalent, notation p =CT q, if T (p) = T (q) and CT (p) = CT (q). In ompletedtrae semantis (CT ) two proesses are identi�ed i� they are ompleted trae equivalent.
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12 The linear time { branhing time spetrum ITesting senario Completed trae semantis an be explained with the following (rather trivial)ompleted trae mahine. The proess is modelled as a blak box that ontains as its interfae tobFigure 2: The ompleted trae mahinethe outside world a display on whih the name of the ation is shown that is urrently arried outby the proess. The proess autonomously hooses an exeution path that is onsistent with itsposition in the labelled transition system (IP;!). During this exeution always an ation nameis visible on the display. As soon as no further ation an be arried out, the proess reahes astate of deadlok and the display beomes empty. Now the existene of an observer is assumedthat wathes the display and reords the sequene of ations displayed during a run of the proess,possibly followed by deadlok. It is assumed that an observation takes only a �nite amount of timeand may be terminated before the proess stagnates. Hene the observer reords either a sequene ofations performed in suession|a trae of the proess|or suh a sequene followed by deadlok|a ompleted trae. Two proesses are identi�ed if they allow the same set of observations in thissense.The trae mahine an be regarded as a simpler version of the ompleted trae mahine, werethe last ation name remains visible in the display if deadlok ours (unless deadlok ours in thebeginning already). On this mahine traes an be reorded, but stagnation an not be deteted,sine in ase of deadlok the observer may think that the last ation is still ontinuing.Modal haraterizationDe�nition 3.1 The set LCT of ompleted trae formulas over At is de�ned reursively by:� > 2 LCT .� 0 2 LCT .� If ' 2 LCT and a 2 At then a' 2 LCT .The satisfation relation j= � IP�LCT is de�ned reursively by:� p j= > for all p 2 IP.� p j= 0 if I(p) = ;.� p j= a' if for some q 2 IP: p a�! q and q j= '.Note that a ompleted trae formula satis�ed by a proess p represents either a trae (if it has theform a1a2 � � � an>) or a ompleted trae (if it has the form a1a2 � � � an0). Hene one hasProposition 3.1 p =CT q , 8' 2 LCT (p j= ', q j= '). 2Also note the lose link between the onstrutors of the modal formulas (orresponding to thethree lauses in De�nition 3.1) and the types of observations aording to the testing senario: >
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Completed trae semantis 13represents the at of the observer of terminating the observation, regardless of whether the observedproess has terminated, 0 represents the observation of deadlok (the display beomes empty), anda' represents the observation of a being displayed, followed by the observation '.Proess graph haraterization Let g 2 jGmr and s 2 nodes(g). Then I(s) := fa 2 At j 9t :(s; a; t) 2 edges(g)g is the menu of s. CT (g) an now be haraterized as follows.Proposition 3.2 CT (g) = fT (�) j � 2 paths(g) ^ I(end(�)) = ;g. 2Classi�ation Trivially T � CT (as in Figure 1). Counterexample 2 shows that the reversea ab ab+ a
=T6=CT=S6=1F ababCounterexample 2: Trae and simulation equivalent, but not ompleted trae equivalentdoes not hold: one has T (left) = T (right) = f"; a; abg, whereas CT (left) 6= CT (right) (sinea 2 CT (left) � CT (right)). Hene the two proess graphs are identi�ed in trae semantis butdistinguished in ompleted trae semantis. Thus T � CT : on jG ompleted trae semantis makesstritly less identi�ations than trae semantis.Expliit model In ompleted trae semantis a proess an be represented by a ompleted traeequivalene lass of proess graphs, or equivalently by the pair (T;CT) of its sets of traes andomplete traes. The next proposition gives an expliit haraterization of the domain jCTT of pairsof sets of traes and omplete traes of proess graphs with multiple roots.De�nition 3.2 The ompleted trae domain jCTT is the set of pairs (T;CT) 2 At��At� satisfyingT 2 TT and CT � T,� 2 T� CT ) 9a 2 At : �a 2 T.Proposition 3.3 (T;CT) 2 jCTT, 9g 2 jGmr : T (g) = T ^ CT (g) = T.Proof: Let (T;CT) 2 jCTT. De�ne the anonial graph G(T;CT) of (T;CT) by� nodes(G(T;CT)) = T [ f�Æ j � 2 CTg,� roots(G(T;CT)) = f"g [ fÆ j " 2 CTg and� (�; a; �) 2 edges(G(T)) i� � = �a _ � = �aÆ.As T satis�es T2, G(T;CT) is onneted, i.e. G(T;CT) 2 jGmr . In fat, G(T;CT) is a tree, exeptthat it may have two roots. Using Propositions 2.2 and 3.2 it is easy to see that T (G(T;CT)) = Tand CT (G(T;CT)) = CT. 2The pairs obtained from proess graphs with single roots are the ones moreover satisfying" 2 CT , T = f"g:
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14 The linear time { branhing time spetrum IIn�nite proesses Also for ompleted trae semantis one an distinguish a �nitary and anin�nitary variant. In terms of the testing senario, the latter (CT1) postulates that observationsmay take an in�nite amount of time.De�nition 3.3 Two proesses p and q are in�nitary ompleted trae equivalent, notation p =1CT q,if CT (p) = CT (q) and T1(p) = T1(q). Note that in this ase also T (p) = T (q).Proposition 2.4 implies that for image �nite proesses CT and CT1 oinide, whereas Counterex-ample 1 shows that in general the two are di�erent. In fat, T � T1 � CT1 and T � CT � CT1,and the two preeding ounterexamples show that there are no further inlusions.4 Failures semantisTesting senario The failures mahine ontains as its interfae to the outside world not only thedisplay of the ompleted trae mahine, but also a swith for eah ation a 2 At (as in Figure 3).By means of these swithes the observer may determine whih ations are free and whih are
a� b� � � � z� a

Figure 3: The failure trae mahinebloked. This situation may be hanged any time during a run of the proess. As before, theproess autonomously hooses an exeution path that �ts with its position in (IP;!), but this timethe proess may only start the exeution of free ations. If the proess reahes a state where allinitial ations of its remaining behaviour are bloked, it an not proeed and the mahine stagnates,whih an be reognized from the empty display. In this ase the observer may reord that aftera ertain sequene of ations �, the set X of free ations is refused by the proess. X is thereforealled a refusal set and =n�;Xn= a failure pair. The set of all failure pairs of a proess is alled itsfailure set, and onstitutes its observable behaviour.De�nition 4 =n�;Xn= 2 At� � P(At) is a failure pair of a proess p if there is a proess q suhthat p ��! q and I(q) \X = ;. Let F (p) denote the set of failure pairs of p. Two proesses p andq are failures equivalent, notation p =F q, if F (p) = F (q). In failures semantis (F ) two proessesare identi�ed i� they are failures equivalent.Note that T (p) an be expressed in terms of F (p): T (p) = f� 2 At� j =n�; ;n= 2 F (p)g; hene p =F qimplies T (p) = T (q).
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Failures semantis 15De�nition 4.1 For p 2 IP and � 2 T (p), let Contp(�) = fa 2 At j �a 2 T (p)g, the set of possibleontinuations of �.The following proposition says that the failure set F (p) of a proess p is ompletely determined bythe set of failure pairs =n�;Xn= with X � Contp(�).Proposition 4.1 Let p2 IP, �2T (p) and X�At. Then =n�;Xn=2F (p), =n�;X \ Contp(�)n=2F (p).Proof: If p ��! q then I(q) � Contp(�). 2Modal haraterizationDe�nition 4.2 The set LF of failure formulas over At is de�ned reursively by:� > 2 LF .� eX 2 LF for X � At.� If ' 2 LF and a 2 At then a' 2 LF .The satisfation relation j= � IP�LF is de�ned reursively by:� p j= > for all p 2 IP.� p j= eX if I(p) \X = ;.� p j= a' if for some q 2 IP: p a�! q and q j= '.eX represents the observation that the proess refuses the set of ations X, i.e. that stagnationours in a situation where X is the set of ations allowed by the environment. Note that a failureformula satis�ed by a proess p represents either a trae (if it has the form a1a2 � � � an>) or a failurepair (if it has the form a1a2 � � � an eX). Hene one hasProposition 4.2 p =F q , 8' 2 LF (p j= ', q j= '). 2Proess graph haraterization Let g 2 jGmr and � 2 paths(g). ThenF (�) := f=nT (�);Xn= j I(end(�)) \X = ;gis the failure set of �. F (g) an now be haraterized as follows.Proposition 4.3 F (g) = S�2paths(g) F (�). 2Classi�ation CT � F .Proof: For \CT � F" it suÆes to show that also CT (p) an be expressed in terms of F (p):CT (p) = f� 2 At� j =n�;Atn= 2 F (p)g:It also suÆes to show that the modal language LCT is a sublanguage of LF : p j= 0, p j= gAt.\CT 6� F" follows from Counterexample 3: one has CT (left) = CT (right) = fab; ag, whereasF (left) 6= F (right) (sine =na; fgn= 2 F (left)� F (right)). 2
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16 The linear time { branhing time spetrum Ia ab b ab+ a(b+ )
=CT6=F=CS6=1F ab a(b+ )Counterexample 3: Completed trae and ompleted simulation equivalent, but not failures equiva-lent or even singleton-failures equivalentExpliit model In failures semantis a proess an be represented by a failures equivalenelass of proess graphs, or equivalently by its failure set. The next proposition gives an expliitharaterization of the domain IF of failure sets of proess graphs with multiple roots.De�nition 4.3 The failures domain IF is the set of subsets F of At� �P(At) satisfyingF1 =n"; ;n= 2 F,F2 =n��; ;n= 2 F ) =n�; ;n= 2 F,F3 =n�; Y n= 2 F ^X � Y ) =n�;Xn= 2 F,F4 =n�;Xn= 2 F ^ 8a 2 Y (=n�a; ;n= 62 F) ) =n�;X [ Y n= 2 F.Proposition 4.4 F 2 IF, 9g 2 jGmr : F (g) = F.Proof: \(": F1 and F2 follow from T1 and T2 in Setion 2, as one has =n�; ;n= 2 F (g), � 2 T (g).F3 follows immediately from the de�nitions, as I(q) \ Y = ; ^X � Y ) I(q) \X = ;.F4 follows immediately from Proposition 4.1, as 8a 2 Y (=n�a; ;n= 62 F (g)) i� Y \Contg(�) = ;.For \)" let F 2 IF. For � 2 At� write ContF(�) for fa 2 At j =n�a; ;n= 2 Fg.De�ne the anonial graph G(F) of F by� nodes(G(F)) = f=n�;Xn= 2 F j X � ContF(�)g,� roots(G(F)) = f=n";Xn= j =n";Xn= 2 Fg,� edges(G(F)) = f(=n�;Xn=; a; =n�a; Y n=) j =n�;Xn=; =n�a; Y n= 2 nodes(G(F)) ^ a 62 Xg.By F1, roots(G(F)) 6= ;. Using F3 and F2, any node s = =na1 � � � an;Xn= of G(F) is reahable froma root by the path �s : =n"; ;n= a1�! =na1; ;n= a2�! � � � an�1�! =na1 � � � an�1; ;n= an�! =na1 � � � an;Xn=; hene G(F ) isonneted. So G(F) 2 jGmr . I have to show that F (G(F)) = F.\�": Suppose =n�;Xn= 2 F. Then, by F3, s := =n�;X \ ContF(�)n= 2 nodes(G(F)). By onstru-tion one has T (�s) = � and I(s) \X = ;. Hene =n�;Xn= 2 F (�s) � F (G(F)).\�": With indution on the length of paths, it follows immediately from the de�nition of G(F)that for � 2 paths(G(F)), if end(�) = =n�; Y n= then � = T (�) and I(end(�)) = ContF(�)� Y . (*)Suppose =n�;Xn= 2 F (G(F)). Then, by Proposition 4.3, there must be a path � 2 paths(G(F)) with=n�;Xn= 2 F (�). So T (�) = � and I(end(�)) \X = ;. Let end(�) := =n�; Y n= 2 F. By (*), � = � andX \ContF(�) � Y . By F3 it follows that =n�;X \ ContF(�)n= 2 F, and F4 yields =n�;Xn= 2 F. 2A variant of IF was used as a model of onurreny in Hoare [31℄.77There a proess is given as a triple (A;F;D) with A � At a set of ations that may our in the proess, F 2 IFand D a set of so-alled divergenies, traes that an lead along a state where an in�nite sequene of internal ationsis possible. As this paper onsiders only onrete, and hene divergene-free, proesses, D is always empty here.
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Failures semantis 17If roots(g) would be allowed to be empty, a haraterization is obtained by dropping require-ment F1. A haraterization of the domain of failure sets of proess graphs with single roots isgiven by adding to F1{4 the requirementF5 =n";Xn= 2 F ) 8a 2 X : =na; ;n= 62 F.That F5 holds follows from the observation that I(root(g)) = fa 2 At j =na; ;n= 2 F (g)g for g 2 jG.Alternative haraterizations In De Niola [16℄ several equivalenes, that were proposed inKennaway [34℄, Darondeau [15℄ and De Niola & Hennessy [17℄, are shown to oinide withfailures semantis on the domain of �nitely branhing transition systems without internal moves.For this purpose he uses the following alternative haraterization of failures equivalene.De�nition 4.4 Write p after � MUST X if for eah q 2 IP with p ��! q there is an a 2 I(q) witha 2 X. Put p ' q if for all � 2 At� and X � At: p after � MUST X , q after � MUST X.Proposition 4.5 Let p; q 2 IP. Then p ' q , p =F q.Proof: p after � MUST X , =n�;Xn= 62 F (p) [16℄. 2Instead of the omplement of the failure set of a proess p, one an also take the omplementContp(�)�X of every refusal set X within a failure pair =n�;Xn= of p. In view of Proposition 4.1, thesame information stored in F (p) is given by the set of all pairs =n�;Xn= 2 At� � P(At) for whihthere is a proess q suh that p ��! q and I(q) � X � Contp(�). In Hennessy [26℄, a model fornondeterministi behaviours is proposed in whih a proess is represented as an aeptane tree.An aeptane tree of a �nitely branhing proess without internal moves is essentially the set ofpairs desribed above, onveniently represented as a �nitely branhing, deterministi proess tree,of whih the nodes are labelled by olletions of sets of ations. Thus aeptane trees onstitutean expliit model of failures semantis.In�nite proesses For in�nite proesses, three versions of failures semantis an be distinguished.De�nition 4.5 Two proesses p and q are (�nitary) failures equivalent if F (p) = F (q). p and qare in�nitary failures equivalent, notation p =1F q, if F (p) = F (q) and T1(p) = T1(q). They are�nite-failures equivalent, notation p =�F q, if F�(p) = F�(q), where F�(p) denotes the set of failurepairs =n�;Xn= of p with X �nite.The original failures semantis of Brookes, Hoare & Rosoe [13℄ is F�, i.e. what I all �nite-failures semantis. They \adopt this view of distinguishability beause [they℄ onsider a realistienvironment to be one that is at any time apable of performing only a �nite number of events." Interms of the failures mahine this means that at any time only �nitely many swithes an be set onfree. Finitary failures semantis is the default version introdued at the beginning of this setion.This an be regarded to be the semantis employed in Brookes & Rosoe [14℄ and Hoare[31℄. In�nitary failures semantis was �rst disussed in Bergstra, Klop & Olderog [10℄; it wasproposed as a semantis for CSP in Rosoe [45℄. The di�erene between the testing senarios for Fand F1 is that only the latter allows observations of in�nite duration. Obviously, F� � F � F1.That the latter inlusion is strit follows from Counterexample 1; Counterexample 4 shows thatalso the former is strit: one has F�(left) = F�(right), whereas F (left) 6= F (right). In fat even
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18 The linear time { branhing time spetrum Ia aa ab1 b2 b3 ::: aa ab1 b2 b3 :::=�B6=CTCounterexample 4: HML- and �nite-failures equivalent, but not ompleted trae equivalentCT (left) 6= CT (right), as a 2 CT (left) � CT (right). Thus, although T � F�, CT � F andCT1 � F1, CT and F� are independent, as are CT1 and F .In addition to the three variants of De�nition 4.5 one ould also de�ne a version of failuressemantis based on in�nite traes and �nite refusal sets. Suh a semantis would distinguish thetwo graphs of Counterexample 1, but identify the ones of Counterexample 4. As this semantisdoes not our in the literature, and has no lear advantages over the other variants, I will notfurther onsider it here.Proposition 4.6 Let p en q be image �nite proesses. Then p =�F q , p =F q , p =1F q.Proof: \(" has been established for all proesses, and the seond \)" follows immediately fromProposition 2.4 (as p =F q ) p =T q ) p =1T q). So it remains to show that p 6=F q ) p 6=�F q.Suppose F (p) 6= F (q), say there is a failure pair =n�;Xn= 2 F (p) � F (q). By the image �niteness ofq there are only �nitely many proesses ri with q ��! ri, and for eah of them there is an ationai 2 I(ri) \X (as otherwise =n�;Xn= would be a failure pair of q). Let Y be the set of all those ai's.Then Y is a �nite subset of X, so =n�; Y n= 2 F�(p). On the other hand, ai 2 I(ri) \ Y for all ri, so=n�; Y n= 62 F�(q). 2It is not hard to hange the leftmost proess in Counterexample 4 to an image �nite one with thesame failure pairs. Thus, in the �rst statement of Proposition 4.6 it is neessary that both proessesare image �nite. For the sublass of �nitely branhing proesses a stronger result an be obtained.Proposition 4.7 Let p; q 2 IP and p is �nitely branhing. Then p =�F q , p =F q.Proof: Suppose p =�F q. As p is �nitely branhing, Contp(�) is �nite for all � 2 T (p). And asT (q) = T (p), Contq(�) = Contp(�), whih is �nite, for all � 2 T (q). Now for proesses p with thisproperty, F (p) is ompletely determined by F�(p), as follows from Proposition 4.1. 2The seond statement of Proposition 4.6 does not allow suh a strengthening, as will follow fromCounterexample 12.5 Failure trae semantisTesting senario The failure trae mahine has the same layout as the failures mahine, butis does not stagnate permanently if the proess annot proeed due to the irumstane that allations it is prepared to ontinue with are bloked by the observer. Instead it idles|reognizablefrom the empty display|until the observer hanges its mind and allows one of the ations theproess is ready to perform. What an be observed are traes with idle periods in between, and foreah suh period the set of ations that are not bloked by the observer. Suh observations an beoded as sequenes of members and subsets of At.
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Failure trae semantis 19Example: The sequene fa; bgdbfb; gfb; ; dga(At) is the aount of the following observa-tion: At the beginning of the exeution of the proess p, only the ations a and b were allowed bythe observer. Apparently, these ations were not on the menu of p, for p started with an idle period.Suddenly the observer aneled its veto on , and this resulted in the exeution of , followed byd and b. Then again an idle period ourred, this time when b and  were the ations not beingbloked by the observer. After a while the observer deided to allow d as well, but the proessignored this gesture and remained idle. Only when the observer gave the green light for the ationa, it happened immediately. Finally, the proess beame idle one more, but this time not evenone ation was bloked. This made the observer realize that a state of eternal stagnation had beenreahed, and disappointed he terminated the observation.A set X � At, ourring in suh a sequene, an be regarded as an o�er from the environment,that is refused by the proess. Therefore suh a set is alled a refusal set. The ourrene of arefusal set may be interpreted as a `failure' of the environment to reate a situation in whih theproess an proeed without being disturbed. Hene a sequene over At [ P(At), resulting froman observation of a proess p may be alled a failure trae of p. The observable behaviour of aproess, aording to this testing senario, is given by the set of its failure traes, its failure traeset. The semantis in whih proesses are identi�ed i� their failure trae sets oinide, is alledfailure trae semantis (FT ).For image �nite proesses failure trae semantis is exatly the equivalene that originates fromPhillips notion of refusal testing [42℄. (Image in�nite proesses are not onsidered in [42℄.) Thereit is alled refusal equivalene.De�nition 5� The refusal relations X�! for X � At are de�ned by: p X�! q i� p = q and I(p) \X = ;.p X�! q means that p an evolve into q, while being idle during a period in whih X is the setof ations allowed by the environment.� The failure trae relations ��! for � 2 (At[P(At))� are de�ned as the reexive and transitivelosure of both the ation and the refusal relations. Again the overloading of notation isharmless.� � 2 (At[P(At))� is a failure trae of a proess p if there is a proess q suh that p ��! q. LetFT (p) denote the set of failure traes of p. Two proesses p and q are failure trae equivalent,notation p =FT q, if FT (p) = FT (q).Modal haraterizationDe�nition 5.1 The set LFT of failure trae formulas over At is de�ned reursively by:� > 2 LFT .� If ' 2 LFT and X � At then eX' 2 LFT .� If ' 2 LFT and a 2 At then a' 2 LFT .The satisfation relation j= � IP�LFT is de�ned reursively by:� p j= > for all p 2 IP.� p j= eX' if I(p) \X = ; and p j= '.� p j= a' if for some q 2 IP: p a�! q and q j= '.

Ph87
Ph87


20 The linear time { branhing time spetrum IeX' represents the observation that the proess refuses the set of ations X, followed by the obser-vation '. A modal failure trae formula satis�ed by a proess p represents exatly a failure traeas de�ned above. Hene one hasProposition 5.1 p =FT q , 8' 2 LFT (p j= ', q j= '). 2Proess graph haraterization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).Then the failure trae set of �, FT (�), is the smallest subset of (At [ P(At))� satisfying� (At� I(s0))a1(At� I(s1))a2 � � � an(At� I(sn)) 2 FT (�),� �X� 2 FT (�)) �� 2 FT (�),� �X� 2 FT (�)) �XX� 2 FT (�),� �X� 2 FT (�) ^ Y � X ) �Y � 2 FT (�).FT (g) an now be haraterized as follows.Proposition 5.2 FT (g) = S�2paths(g) FT (�). 2Proposition 5.2 yields a tehnique for deiding that two proess graphs are failure trae equivalent,without alulating their entire failure trae set.Let g; h2 jGmr, � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g) and �0: t0 b1�! t1 b2�! � � � bm�! tm 2 paths(h).Path �0 is a failure trae augmentation of �, notation � �FT �0, if FT (�) � FT (�0). This is thease exatly when n = m, ai = bi and I(ti) � I(si) for i = 1; :::; n. From this the following an beonluded.Corollary 5.1 Two proess graphs g; h 2 jGmr are failure trae equivalent i�� for any path � 2 paths(g) in g there is a �0 2 paths(h) suh that � �FT �0� and for any path � 2 paths(g) in h there is a �0 2 paths(g) suh that � �FT �0.If g and h are moreover without in�nite paths, then it suÆes to hek the requirements above formaximal paths. 2Classi�ation F � FT .Proof: For \F � FT" it suÆes to show that F (p) an be expressed in terms of FT (p):=n�;Xn= 2 F (p) , �X 2 FT (p):\F 6� FT" follows from Counterexample 5; see Setion 7 for details. 2In�nite proesses As for failures semantis, three variants of failure trae semantis for in�niteproesses an be de�ned. Besides the default version (FT ) there is an in�nitary version (FT1),motivated by observations that may last forever, and a �nite version (FT�), motivated by anobserver that may only set �nitely many swithes on free at any time.De�nition 5.2 �1�2 � � � 2 (At [ P(At))1 is an in�nite failure trae of a proess p 2 IP if thereare proesses p1; p2; ::: suh that p �1�! p1 �2�! � � �. Let FT1(p) denote the set of in�nite failuretraes of p. Two proesses p and q are in�nitary failure trae equivalent, notation p =1FT q, if
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Failure trae semantis 21a a b fd ea(b+ d) + a(f + e)
=F6=FT=R6=RT

aa  fb dea(b+ e) + a(f + d)Counterexample 5: Failures and ready equivalent, but not failure trae or ready trae equivalentFT1(p) = FT1(q) and FT (p) = FT (q). They are �nite-failure trae equivalent, notation p =�FT q,if FT�(p) = FT�(q), where FT�(p) denotes the set of failure traes of p in whih all refusal setsare �nite.Clearly, FT� � FT � FT1; Counterexamples 1 and 4 show that the inlusions and strit. Onealso has F� � FT�, F � FT and F1 � FT1; here stritness follows from Counterexample 5.Proposition 5.3 Let p en q be image �nite proesses. Then p =�FT q , p =FT q , p =1FT q.Proof: \p =�FT q ( p =FT q ( p =1FT q" holds for all proesses.Note that the de�nition of FT (p) is exatly like the de�nition of T (p), exept that the failuretrae relations are used instead of the generalized ation relations; the same relation exists betweenFT1(p) and T1(p). Moreover, a proess p 2 IP is image �nite in terms of the failure trae relationson IP i� it is image �nite in terms of terms of the (generalized) ation relations on IP, as de�ned inDe�nition 1.2. Hene \p =FT q ) p =1FT q" follows immediately from Proposition 2.4.\p =�FT q ) p =FT q": Suppose FT (p) 6= FT (q), say FT (p)� FT (q) 6= ;. Let � be a failure traein FT (p) � FT (q) with at least one in�nite refusal set. I will show that there must be a failuretrae in FT (p) � FT (q) with stritly fewer in�nite refusal sets than �. By applying this result a�nite number of times, a failure trae � 2 FT (p) � FT (q) is found without in�nite refusal sets,showing that FT�(p) 6= FT�(q).So let � = �1X�2 2 FT (p) � FT (q) with X an in�nite refusal set. Clearly �1�2 2 FT (p). Bythe image �niteness of q there are only �nitely many pairs of proesses ri; si with q �1�! ri �2�! si,and for eah of them there is an ation ai 2 I(ri) \ X (as otherwise �1X�2 would be a failuretrae of q). Let Y be the set of all those ai's. Then Y is �nite. As Y is a subset of X, one has�1Y �2 2 FT (p). On the other hand, ai 2 I(ri) \ Y for all ri, so �1Y �2 62 FT (q). 2Unlike the situation for failures semantis, in the �rst statement of Proposition 5.3 it is not neessarythat both proesses are image �nite.Proposition 5.4 Let p; q 2 IP and p is image �nite. Then p =�FT q , p =FT q.Proof: More diÆult, and omitted here. 2The seond statement of Proposition 5.3 does not allow suh a strengthening, as will follow fromCounterexample 12.
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22 The linear time { branhing time spetrum I6 Ready trae semantisTesting senario The ready trae mahine is a variant of the failure trae mahine that isequipped with a lamp for eah ation a 2 At. Eah time the proess idles, the lamps of all ations
a� b� � � � z� b

Figure 4: The ready trae mahinethe proess is ready to engage in are lit. Of ourse all these ations are bloked by the observer,otherwise the proess wouldn't idle. Now the observer an see whih ations ould be released inorder to let the proess proeed. During the exeution of an ation no lamps are lit. An observationnow onsists of a sequene of members and subsets of At, the ations representing informationobtained from the display, and the sets of ations representing information obtained from the lights.Suh a sequene is alled a ready trae of the proess, and the subsets ourring in a ready traeare referred to as menus. The information about the free and bloked ations is now redundant.The set of all ready traes of a proess is alled its ready trae set, and onstitutes its observablebehaviour.De�nition 6� The ready trae relations ��+�! for � 2 (At [ P(At))� are de�ned reursively by:1. p "�+�! p, for any proess p.2. p a�! q implies p a�+�! q.3. p X�+�! q with X � At whenever p = q and I(p) = X.4. p ��+�! q ��+�! r implies p ���+�! r.The speial arrow ��+�! had to be used, sine further overloading of ��! would ause onfusionwith the failure trae relations.� � 2 (At[P(At))� is a ready trae of a proess p if there is a proess q suh that p ��+�! q. LetRT (p) denote the set of ready traes of p. Two proesses p and q are ready trae equivalent,notation p =RT q, if RT (p) = RT (q). In ready trae semantis (RT ) two proesses areidenti�ed i� they are ready trae equivalent.In Baeten, Bergstra & Klop [6℄, Pnueli [43℄ and Pomello [44℄ ready trae semantis wasde�ned slightly di�erently. By Proposition 6.1 below, their de�nition yields the same equivaleneas mine.
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Ready trae semantis 23a b a De�nition 6.1 X0a1X1a2 � � � anXn 2 P(At)�(At�P(At))� is a normal ready trae of a proessp if there are proesses p1; :::; pn suh that p a1�! p1 a2�! � � � an�! pn and I(pi) = Xi for i = 1; :::; n.Let RTN (p) denote the set of normal ready traes of p. Two proesses p and q are ready traeequivalent in the sense of [6, 43, 44℄ if RTN (p) = RTN (q).Proposition 6.1 Let p; q 2 IP. Then RTN (p) = RTN (q) , RT (p) = RT (q).Proof: The normal ready traes of a proess are just the ready traes whih are an alternatingsequene of sets and ations, and vie versa the set of all ready traes an be onstruted form theset of normal ready traes by means of doubling and leaving out menus. 2Modal haraterizationDe�nition 6.2 The set LRT of ready trae formulas over At is de�ned reursively by:� > 2 LRT .� If ' 2 LRT and X � At then X' 2 LRT .� If ' 2 LRT and a 2 At then a' 2 LRT .The satisfation relation j= � IP�LRT is de�ned reursively by:� p j= > for all p 2 IP.� p j= X' if I(p) = X and p j= '.� p j= a' if for some q 2 IP: p a�! q and q j= '.X' represents the observation of a menu, followed by the observation '. A ready trae formulasatis�ed by a proess p represents exatly a ready trae in De�nition 6. Hene one hasProposition 6.2 p =RT q , 8' 2 LRT (p j= ', q j= '). 2Proess graph haraterization Let g 2 jGmr and � : s0 a1�! s1 a2�! � � � an�! sn 2 paths(g).The ready trae of � is given by RTN (�) := I(s0)a1I(s1)a2 � � � anI(sn).RTN (g) an now be haraterized by:Proposition 6.3 RTN (g) = fRTN (�) j � 2 paths(g)g. 2Moreover, RT (g) is the smallest subset of (At [ P(At))� ontaining RTN (g) and satisfying�X� 2 RT (g)) �� 2 RT (g) ^ �XX� 2 RT (g):Classi�ation FT � RT .Proof: For \FT � RT" it suÆes to show that FT (p) an be expressed in terms of RT (p):� = �1�2 � � � �n 2 FT (p) (�i 2 At [ P(At)) ,9� = �1�2 � � � �n 2 RT (p) (�i 2 At [ P(At)) suh that for i = 1; :::; n either�i = �i 2 At or �i; �i � At and �i \ �i = ;.\FT 6� RT" follows from Counterexample 6; see Setion 7 for details. 2
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24 The linear time { branhing time spetrum Ia ab ab+ a
=F6=R=FT6=RT ab a ab ab+ a(b+ ) + aCounterexample 6: Failures and failure trae equivalent, but not ready or ready trae equivalentExpliit model In ready trae semantis a proess an be represented by a ready trae equiva-lene lass of proess graphs, or equivalently by its ready trae set, possibly in the normal form ofDe�nition 6.1. The next proposition gives an expliit haraterization of the domain IRTT of readytrae sets in this form of proess graphs with multiple roots.De�nition 6.3 The ready trae domain IRTT is the set of subsets RT of P(At)� (At�P(At))�satisfying RT1 9X(X 2 RT);RT2 �X 2 RT ^ a 2 X , 9Y (�XaY 2 RT):Proposition 6.4 RT 2 IRTT, 9g 2 jGmr : RTN (g) = RT.Proof: \(" is evident. For \)" let RT 2 IRTT. De�ne the anonial graph G(RT) of RT by� nodes(G(RT)) = RT,� roots(G(RT)) = fX � At j X 2 RTg,� edges(G(RT)) = f(�; a; �aY ) j �; �aY 2 nodes(G(RT))g.By RT1, roots(G(RT)) 6= ;. Using R2, G(RT) is onneted. So G(RT) 2 jGmr . Moreover, forevery path � 2 paths(G(RT)) one has RTN (�) = end(�). Hene RTN (G(RT)) = RT. 2If roots(g) would be allowed to be empty, a haraterization is obtained by dropping requirementRT1. A haraterization of the domain of ready trae sets of proess graphs with single roots isgiven by strengthening RT1 to 9!X(X 2 RT), where 9!X means \there is exatly one X suh that".In�nite proesses An in�nitary version of ready trae semantis (RT1) is de�ned analogouslyto in�nitary failure trae semantis. A �nite version is not so straightforward; a de�nition will beproposed in the next setion.De�nition 6.4 �1�2 � � � 2 (At [ P(At))1 is an in�nite ready trae of a proess p 2 IP if thereare proesses p1; p2; ::: suh that p �1�+�! p1 �2�+�! � � �. Let RT1(p) denote the set of in�nite readytraes of p. Two proesses p and q are in�nitary ready trae equivalent, notation p =1RT q, ifRT1(p) = RT1(q) and RT (p) = RT (q).Clearly, RT � RT1; Counterexample 1 shows that the inlusion is strit. Moreover FT1 � RT1.Proposition 6.5 Let p en q be image �nite proesses. Then p =RT q , p =1RT q.Proof: Exatly as the orresponding part of Proposition 5.3. 2Counterexample 12 will show that in Proposition 6.5 both p and q need to be image �nite.

df-ready trace
infinitary
pr-image finite failure trace
infinitary RS
pr-image finite ready trace


Readiness semantis and possible-futures semantis 257 Readiness semantis and possible-futures semantisTesting senario The readiness mahine has the same layout as the ready trae mahine, but,like the failures mahine, an not reover from an idle period. By means of the lights the menu ofinitial ations of the remaining behaviour of an idle proess an be reorded, but this happens atmost one during an observation of a proess, namely at the end. An observation either results ina trae of the proess, or in a pair of a trae and a menu of ations by whih the observation ouldhave been extended if the observer wouldn't have bloked them. Suh a pair is alled a ready pairof the proess, and the set of all ready pairs of a proess is its ready set.De�nition 7 =n�;Xn= 2 At� � P(At) is a ready pair of a proess p if there is a proess q suhthat p ��! q and I(q) = X. Let R(p) denote the set of ready pairs of p. Two proesses p and q areready equivalent, notation p =R q, if R(p) = R(q). In readiness semantis (R) two proesses areidenti�ed i� they are ready equivalent.Modal haraterizationDe�nition 7.1 The set LR of readiness formulas over At is de�ned reursively by:� > 2 LR.� X 2 LR for X � At.� If ' 2 LR and a 2 At then a' 2 LR.The satisfation relation j= � IP�LR is de�ned reursively by:� p j= > for all p 2 IP.� p j= X if I(p) = X.� p j= a' if for some q 2 IP: p a�! q and q j= '.X represents the observation of a menu. A readiness formula satis�ed by a proess p representseither a trae (if it has the form a1a2 � � � an>) or a ready pair (if it has the form a1a2 � � � anX).Hene one hasProposition 7.1 p =R q , 8' 2 LR(p j= ', q j= '). 2Proess graph haraterization Let g 2 jGmr and � 2 paths(g). The ready pair of � is givenby R(�) := =nT (�); I(end(�))n=. R(g) an now be haraterized by:Proposition 7.2 R(g) = fR(�) j � 2 paths(g)g. 2Classi�ation F � R � RT , but R and FT are independent.Proof: For \F � R" it suÆes to show that F (p) an be expressed in terms of R(p):=n�;Xn= 2 F (p) , 9Y � At : =n�; Y n= 2 R(p) ^ X \ Y = ;:For \R � RT" it suÆes to show that R(p) an be expressed in terms of RT (p):=n�;Xn= 2 R(p) , �X 2 RT (p):



26 The linear time { branhing time spetrum I\R 6� FT" (and hene \R 6� RT" and \F 6� FT") follows from Counterexample 5, in whihR(left) = R(right) but FT (left) 6= FT (right). The �rst statement follows with Proposition 7.2.Both graphs have 9 paths starting from the root, and hene 9 ready pairs. These are easily seento be the same at both sides; in the seond graph only 4 ready pairs swapped plaes. The seondstatement follows sine afbge 2 FT (left)� FT (right).\R 6� FT" (and hene \R 6� F" and \RT 6� FT") follows from Counterexample 6, in whihFT (left) = FT (right) but R(left) 6= R(right). The �rst statement follows from Corollary 5.1, sinethe new maximal paths at the right-hand side are both failure trae augmented by the two maximalpaths both sides have in ommon. The seond one follows sine =na; fb; gn= 2 R(right)�R(left). 2Expliit model In readiness semantis a proess an be represented by a ready equivalenelass of proess graphs, or equivalently by its ready set. The next proposition gives an expliitharaterization of the domain IR of ready sets of proess graphs with multiple roots.De�nition 7.2 The readiness domain IR is the set of subsets R of At� �P(At) satisfyingR1 9X(=n";Xn= 2 R),R2 9X(=n�;X [ fagn= 2 R), 9Y(=n�a; Y n= 2 R).Proposition 7.3 R 2 IR, 9g 2 jGmr : R(g) = R.Proof: \(" is evident. For \)" let R 2 IR. De�ne the anonial graph G(R) of R by� nodes(G(R)) = R,� roots(G(R)) = f=n";Xn= j =n";Xn= 2 Rg,� edges(G(R)) = f(=n�;Xn=; a; =n�a; Y n=) j =n�;Xn=; =n�a; Y n= 2 nodes(G(R)) ^ a 2 Xg.By R1, roots(G(R)) 6= ;. Using R2, G(R) is onneted. Hene G(R) 2 jGmr . Moreover, for everypath � 2 paths(G(R)) one has R(�) = end(�). From this it follows that R(G(R)) = R. 2If roots(g) would be allowed to be empty, a haraterization is obtained by dropping requirementR1. A haraterization of the domain of ready sets of proess graphs with single roots is given bystrengthening R1 to 9!X(=n";Xn= 2 R), where 9!X means \there is exatly one X suh that".Possible-futures and aeptane-refusal semantis Readiness semantis was proposed byOlderog & Hoare [40℄. Two preliminary versions stem from Rounds & Brookes [46℄: inpossible-futures semantis (PF ) the menu onsists of the entire trae set of the remaining behaviourof an idle proess, instead of only the set of its initial ations; in aeptane-refusal semantis amenu may be any �nite subset of initial ations, while also the �nite refusal sets of Setion 4 areobservable.De�nition 7.3 =n�;Xn= 2 At� � P(At�) is a possible future of a proess p if there is a proess qsuh that p ��! q and T (q) = X. Let PF (p) denote the set of possible futures of p. Two proessesp and q are possible-futures equivalent, notation p =PF q, if PF (p) = PF (q).The modal and proess graph haraterizations of possible-future semantis are straightforward,but a plausible testing senario has not been proposed. Trivially R � PF . That the reverse doesnot hold, and even that PF 6� RT , will follow from Counterexample 10. Counterexample 7 shows
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Readiness semantis and possible-futures semantis 27that FT 6� PF . There PF (left) = PF (right) but FT (left) 6= FT (right). As for the �rst statement,both graphs have 18 paths starting from the root, and hene 18 possible futures. These are easilyseen to be the same at both sides; in the seond graph only 2 possible futures swapped plaes. Theseond statement follows sine afbgafbgd 2 FT (left)�FT (right). Thus possible-future semantisis inomparable with failure trae and ready trae semantis.ab a a b d e
aa a  bd ea(b+ a(b+ d) + ae) + a(ad+ a(e+ b))

=PF6=FT6=S
aa a b d ea(a(b+ d) + ae) + a(ad + a(e+ b) + b)

a ba a  bd e
Counterexample 7: Possible-futures equivalent, but not failure trae or simulation equivalentDe�nition 7.4 =n�;X; Y n= 2 At� � P(At) � P(At) is an aeptane-refusal triple of a proess pif X and Y are �nite and there is a proess q suh that p ��! q, X � I(q) and Y \ I(q) = ;. LetAR(p) denote the set of aeptane-refusal triples of p. Two proesses p and q are aeptane-refusalequivalent, notation p =AR q, if AR(p) = AR(q).The modal and proess graph haraterizations are again straightforward. A motivating testingsenario would be the same as for readiness semantis, exept that at any time only �nitely manyswithes an be set on free, and only �nitely many lamps an be investigated in a �nite amount oftime. Clearly p =R q ) p =AR q, forAR(p) = f=n�;X; Y n= j 9=n�;Zn= 2 R(p) j X;Y �nite ^X � Z ^ Y \ Z = ;g:That this impliation is strit follows from Counterexample 4. It is not diÆult to see that for�nitely branhing proesses aeptane-refusal equivalene oinides with ready equivalene: =n�;Xn=is a ready pair of a proess p i� p has an aeptane-refusal triple =n�;X; Y n= with X [Y = Contp(�)(f. De�nition 4.1).In�nite proesses Note that if in De�nition 7.4 the sets X and Y are allowed to be in�nite theresulting equivalene would be ready equivalene again. Namely =n�;Xn= is a ready pair of a proessp i� p has suh an aeptane-refusal triple =n�;X;At � Y n=. Thus aeptane-refusal semantis anbe regarded as the �nite variant of readiness semantis, and will therefore be denoted R�. Thein�nitary variant of readiness semantis (R1), motivated by observations that may last forever, isde�ned analogously to F1:De�nition 7.5 p and q are in�nitary ready equivalent if R(p) = R(q) and T1(p) = T1(q).Clearly, R � R1; by Counterexample 1 the inlusion is strit. Moreover, F1 � R1 � RT1.
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28 The linear time { branhing time spetrum IProposition 7.4 Let p en q be image �nite proesses. Then p =R q , p =1R q.Proof: \(" has been established for all proesses, and the seond \)" follows immediately fromProposition 2.4 (as p =R q ) p =T q ) p =1T q). 2Proposition 7.5 Let p; q 2 IP and p is image �nite. Then p =AR q , p =R q.Proof: \(" holds for all proess. I will prove \)" assuming that p has the property that for any� 2 At� there are only �nitely many ready pairs =n�;Xn= 2 R(p). This property (all it RIF ) islearly implied by image �niteness. So suppose p has the RIF property and AR(p) = AR(q). I willshow that R(p) = R(q).Suppose =n�; Y n= 62 R(p). By RIF there are only �nitely many ready pairs =n�;Xin= 2 R(p). Foreah of them hoose an ation ai 2 Y �Xi or bi 2 Xi � Y . Let U be the set of all those ai's, andV the set of the bi's. Then =n�;U; V n= 62 AR(p) = AR(q) and hene =n�; Y n= 62 R(q).It follows that R(q) � R(p), and thus q has the property RIF as well. Now the same argumentapplies in the other diretion, yielding R(p) � R(q). 2Inspired by the de�nition of R�, a �nite version of ready trae semantis (RT�) an be de�nedlikewise. Here I will just give its modal haraterization.De�nition 7.6 The set L�RT of �nite ready trae formulas over At is given by:� > 2 L�RT .� If ' 2 L�RT and X ��n At then X' 2 L�RT and eX' 2 L�RT .� If ' 2 L�RT and a 2 At then a' 2 L�RT .The satisfation relation j= � IP�L�RT is given by the usual lauses for > and a', and:� p j= X' if X � I(p) and p j= '.� p j= eX' if I(p) \X = ; and p j= '.Proesses p and q are �nite-ready trae equivalent, notation p =�RT q, if 8' 2 L�RT (p j= ', q j= ').As these formulas are expressible in terms of the ones of De�nition 6.2, one has RT� � RT ;Counterexample 4 shows that the inlusion is strit. Also FT� � RT� and F� � R� � RT�.Proposition 7.6 Let p; q 2 IP and p is image �nite. Then p =�RT q , p =RT q.Proof: \(" holds for all proess. \)" follows just as in Proposition 7.5, using the property thatfor any a1a2 � � � an 2 At! there are only �nitely many normal ready traes X0a1X1a2 � � � anXn 2RTN (p). 2Unlike the semantis T to RT , possible-futures semantis distinguishes between the two proessesof Counterexample 1: =na; a�n= 2 PF (right) � PF (left). Still, T1 6� PF , as an be seen from thevariant of Counterexample 1 in whih the left-hand proess is appended to the endnodes of bothproesses. The so obtained systems have the same possible futures, inluding f=nan; a�n= j n 2 INg,but only the right-hand side has an in�nite trae.For the sake of ompleteness I inlude a de�nition of in�nitary possible-futures semantis (PF1),suh that PF � PF1 and R1 � PF1. A �nite variant of PF has not been explored.De�nition 7.7 =n�;Xn= 2 At� � P(At�) is an in�nitary possible future of a proess p if there is aproess q suh that p ��! q and T (q)[T1(q) = X. Let PF1(p) denote the set of in�nitary possiblefutures of p. Two proesses p and q are in�nitary possible-futures equivalent, notation p =1PF q, ifPF1(p) = PF1(q).
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Simulation semantis 298 Simulation semantisThe following onept of simulation ours frequently in the literature (see e.g. Park [41℄).De�nition 8 A simulation is a binary relation R on proesses, satisfying, for a 2 At:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0.Proess p an be simulated by q, notation p �! q, if there is a simulation R with pRq.p and q are similar, notation p ! q, if p �! q and q �! p.Proposition 8.1 Similarity is an equivalene relation on the domain of proesses.Proof: Symmetry is immediate, so it has to be heked that p �! p, and p �! q ^ q �! r ) p �! r.� The identity relation is a simulation with pRp.� If R is a simulation with pRq and S is a simulation with qSr, then the relation R;S, de�ned byx(R;S)z i� 9y : xRy ^ ySz, is a simulation with p(R;S)r. 2Hene the relation will be alled simulation equivalene. In simulation semantis (S) two proessesare identi�ed i� they are simulation equivalent.Testing senario and modal haraterization The testing senario for simulation semantisresembles that for trae semantis, but in addition the observer is, at any time during a run of theinvestigated proess, apable of making arbitrary many opies of the proess in its present state andobserve them independently. Thus an observation yields a tree rather than a sequene of ations.Suh a tree an be oded as an expression in a simple modal language.De�nition 8.1 The lass LS of simulation formulas over At is de�ned reursively by:� If I is a set and 'i 2 LS for i 2 I then Vi2I 'i 2 LS .� If ' 2 LS and a 2 At then a' 2 LS.The satisfation relation j= � IP�LS is de�ned reursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.Let S(p) denote the lass of simulation formulas satis�ed by the proess p: S(p) = f' 2 LS j p j= 'g.Write p vS q if S(p) � S(q) and p =S q if S(p) = S(q).Write > for Vi2; 'i, and '1 ^ '2 for Vi2f1;2g 'i. It turns out that LT is a sublanguage of LS .Proposition 8.2 p �! q , p vS q. Hene p ! q , p =S q.Proof: For \)" I have to prove that for any simulation R and for all ' 2 LS one haspRq ) (p j= ') q j= '):I will do so with strutural indution on '. Suppose pRq.{ Let p j= a'. Then there is a p0 2 IP with p a�! p0 and p0 j= '. As R is a simulation, theremust be a q0 2 IP with q a�! q0 and p0Rq0. So by indution q0 j= ', and hene q j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:=) 8i2I(q j= 'i), q j= Vi2I 'i.
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30 The linear time { branhing time spetrum IFor \(" it suÆes to establish that vS is a simulation.Suppose p vS q and p a�! p0. I have to show that 9q0 2 IP with q a�! q0 and p0 vS q0. Let Q0 befq0 2 IP j q a�! q0 ^ p0 6vS q0g:By De�nition 1.1 Q0 is a set. For every q0 2 Q0 there is a formula 'q0 2 S(p0)� S(q0). Nowa ^q02Q0 'q0 2 S(p) � S(q);so there must be a q0 2 IP with q a�! q0 and q0 62 Q0, whih had to be shown. 2Proess graph haraterization Simulation equivalene an also be haraterized by means ofrelations between the nodes of two proess graphs, rather than between proess graphs themselves.De�nition 8.2 Let g; h 2 jG. A simulation of g by h is a binary relation R � nodes(g)�nodes(h),satisfying:� root(g)Rroot(h).� If sRt and (s; a; s0) 2 edges(g), then there is an edge (t; a; t0) 2 edges(h) suh that s0Rt0.This de�nition is illustrated in Figure 5. Solid lines indiates what is assumed, dashed lines whatis required. It follows easily that g �! h i� there exists a simulation of g by h.
a aFigure 5: A simulationFor proess graphs with multiple roots, the �rst requirement of De�nition 8.2 generalizes to� 8s 2 roots(g)9t 2 roots(h) : sRt.Classi�ation Simulation semantis (S) is �ner than trae semantis (T � S), but independentof CT , F , R, FT , RT and PF .Proof: \T � S" follows sine LT is a sublanguage of LS.\S 6� CT" (and hene \S 6� RT", \S 6� PF" et.) follows from Counterexample 2. Thereleft 6=CT right , although left ! right ; the onstrution of the two simulations is left to the reader.\S 6� RT" (and hene \S 6� T" et.) follows from Counterexample 8. There RT (left) = RT (left),but S(left) 6= S(left). The �rst statement follows from Proposition 6.3 and the insight that itsuÆes to hek the two ready traes ontributed by the maximal paths; these are the same forboth graphs. The seond statement follows sine a(b> ^ bd>) 2 S(right)� S(left).\S 6� PF" follows from Counterexample 7, where PF (left) = PF (right) but S(left) 6= S(left). Thelatter statement follows sine a(b> ^ a(b> ^ d>)) 2 S(left)� S(right). 2
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Simulation semantis 31a ab b dab+ abd
=PW=RT6=S ab b da(b+ bd)Counterexample 8: Possible worlds and ready trae equivalent, but not simulation equivalentIn�nite proesses In order to make the testing senario math its formalization in terms of themodal language LS even for in�nite proesses, one has to assume that the amount of opies onean make at any time is in�nite. Moreover, although no single opy an be tested forever, due toits in�nite branhing there may be no upperbound upon the duration of an observation.One might onsider an even more in�nitary testing senario by allowing observations to go onforever on some or all of the opies. However, this would not give rise to a more disriminatingequivalene; ordinary simulation equivalenes already preserves in�nite traes.Proposition 8.3 If p �! q then T1(p) � T1(q). Hene T1 � S.Proof: Suppose R is a simulation with p0Rq0 and a1a2 � � � 2 T1(p0). Then there are p1; p2; ::: suhthat p0 a1�! p1 a2�! � � �. With indution on i 2 IN it follows that there are proesses qi+1 suh thatqi �ai+1�! qi+1 and pi+1Rqi+1. Hene a1a2 � � � 2 T1(q0). 2The most radial way to make the testing senario �nitary, is to allow only �nitely many opiesto be made in any state of the proess. This also puts an upperbound on the duration of anyobservation. Observations an now be modelled with simulation formulas in whih the index sets Iof the �rst lause of De�nition 8.1 are always �nite. The modal language ontaining suh simulationformulas an equivalently be de�ned by splitting the onstrution Vi2I into > and ^.De�nition 8.3 The set L�S of �nitary simulation formulas over At is de�ned reursively by:� > 2 L�S .� If '; 2 L�S then ' ^  2 L�S.� If ' 2 L�S and a 2 At then a' 2 L�S.The satisfation relation j= � IP�L�S is de�ned reursively by:� p j= > for all p 2 IP.� p j= ' ^  if p j= ' and p j=  .� p j= a' if for some q 2 IP: p a�! q and q j= '.Let S�(p) denote the set of all �nitary simulation formulas that are satis�ed by the proess p:S�(p) = f' 2 L�S j p j= 'g. Two proesses p and q are �nitary simulation equivalent, notationp =�S q, if S�(p) = S�(q).In ontrast, the equivalene ! of De�nition 8 is then in�nitary simulation equivalene. Note how-ever, that ontrary to the previous equivalenes surveyed, the default version (the one meant when
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32 The linear time { branhing time spetrum Ileaving out the adjetive \�nitary" or \in�nitary") is the in�nitary one. In general, I use thesupersript � for �nitary versions and 1 for in�nitary versions. However, for the trae orientedequivalenes (Setions 2{7) I leave out the �, and for the simulation oriented equivalenes (Setions8{12) I leave out the 1.The next proposition, and hene also the essene of Proposition 8.2, stems from in Hennessy &Milner [28℄. It states that for image �nite proesses �nitary and in�nitary simulation equivaleneoinide.Proposition 8.4 Let p; q 2 IP be image �nite proesses. Then p ! q , p =�S q.Proof: Exatly as the proof of Proposition 8.2, but for \(" one shows that the relation vi:f:S givenby p vi:f:S q i� p vS q and q is image �nite is a simulation, using that, as q is image �nite, Q0 mustbe �nite. 2In fat, this proposition is a speial ase of the following one, whih is proved likewise.Proposition 8.5 Let S�(p) denote the set of all simulation formulas satis�ed by p in whih allindex sets have ardinality less than �. Let p; q 2 IP and assume jfq0 j q ��! q0gj < � for eah� 2 At�. Then p �! q , S�(p) � S�(q). 2Although only q needs to be image �nite in order to obtain p �! q , p v�S q, Counterexample 12will show that both p and q need to be image �nite in the statement of Proposition 8.4.A less radial way to �nitize the testing senario for simulation semantis is to allow in�nitelymany opies to be made in any state of the proess, but put a �nite upperbound on the duration ofany observation. Observations an then be modelled with simulation formulas in whih the indexsets an be arbitrary, but there is a �nite upperbound on the nesting of the onstrution a' of theseond lause of De�nition 8.1.De�nition 8.4 Let L!S = S1n=0 LnS , where LnS is given by:� If I is a set and 'i 2 LnS for i 2 I then Vi2I 'i 2 LnS .� If ' 2 LnS and a 2 At then a' 2 Ln+1S .Let S!(p) = f' 2 L!S j p j= 'g and write p =!S q if S!(p) = S!(q).Now p =S q ) p =!S q ) p =�S q, and for image �nite proesses all three equivalenes oinide.For image in�nite proesses both impliations are strit, as illustrated by Counterexamples 9 and 1.ompare the proesses withand without the left branh ab1 b2 b3b 4 � � � =�RB6=!S ab2 b3b 4 � � � ab1 b3b 4 � � �a b1 b2 b 4 � � � � � �. . .
Counterexample 9: Finitary equivalent, but not S!-equivalentIn Counterexample 9 S�(with) = S�(without), yet aV1i=1 bi> 2 S!(with)� S!(without ).In Counterexample 1 S!(left) = S!(right), yet right 6�! left . For the �rst statement, let ' 2 L!S .Then there is an n suh that ' 2 LnS . Now parts of trees that are further than n edges away fromthe root play no rôle in the satisfation relation for '. Thus, the validity of ' remains unhanged
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Ready simulation semantis 33if in both trees all paths are ut o� after n steps. However, the ut versions of both trees areisomorphi, and hene satisfy the same formulas (f. Corollary 12.1). The seond statement followsimmediately from Proposition 8.3.It follows that T � S� � S! � S and T � T1 � S, whereas T1 is inomparable with S� andS!. Moreover, S�, S! and S are inomparable with the semantis ranging from CT or F� to RT1.9 Ready simulation semantisTesting senario Of ourse one an also ombine the opying faility with any of the other testingsenarios. The observer an then plan experiments on one of the mahines from the Setions 3 to7 together with a repliator, an ingenious devie by whih one an repliate the mahine wheneverand as often as one wants. In order to represent observations, the modal languages from Setions3 to 7 need to be ombined with the one from Setion 8.De�nition 9 The language LCS and the orresponding satisfation relation is de�ned reursivelyby ombining the lauses of De�nition 3.1 (for LCT ) with those of De�nition 8.1 (for LS ). Likewise,LFS is obtained by ombining LF and LS ; LFTS by ombining LFT and LS ; LRS by ombining LRand LS ; and LRTS by ombining LRT and LS . For p 2 IP and O 2 fCS ;FS ;FTS ;RS ;RTSg letO(p) = f' 2 LO j p j= 'g. Two proesses p; q 2 IP are� ompleted simulation equivalent, notation p =CS q, if CS (p) = CS (q);� failure simulation equivalent, notation p =FS q, if FS (p) = FS (q);� failure trae simulation equivalent, notation p =FTS q, if FTS (p) = FTS (q);� ready simulation equivalent, notation p =RS q, if RS (p) = RS (q);� ready trae simulation equivalent, notation p =RTS q, if RTS (p) = RTS (q).It is obvious that failure trae simulation equivalene oinides with failure simulation equivaleneand ready trae simulation equivalene with ready simulation equivalene (p j= X', p j= X ^').Also it is not diÆult to see that failure simulation equivalene and ready simulation equivaleneoinide (p j= X , p j= eY ^Va2X a>, where Y = At�X). So one hasProposition 9.1 p =FS q , p =FTS q , p =RTS q , p =RS q. 2Relational haraterizations The two remaining equivalenes an be haraterized as follows:De�nition 9.1 A omplete simulation is a binary relation R on proesses, satisfying, for a 2 At:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq then I(p) = ; , I(q) = ;.Proposition 9.2 Two proesses p and q are ompleted simulation equivalent if there exists aomplete simulation R with pRq and a omplete simulation S with qSp.Proof: A trivial modi�ation of the proof of Proposition 8.2. 2De�nition 9.2 A ready simulation is a binary relation R on proesses, satisfying, for a 2 At:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq then I(p) = I(q).
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34 The linear time { branhing time spetrum IProposition 9.3 Two proesses p and q are ready simulation equivalent if there exists a readysimulation R with pRq and a ready simulation S with qSp.Proof: A trivial modi�ation of the proof of Proposition 8.2. 2A variant of ready simulation equivalene was originally proposed by Bloom, Istrail & Meyer[12℄ under the name GSOS trae ongruene; they provided a modal haraterization, to be dis-ussed in Setion 10. A relational haraterization was �rst given by Larsen & Skou [35℄ underthe name 23 -bisimulation equivalene. A 23 -bisimulation is de�ned just like a ready simulation, ex-ept that the seond lause reads \if pRq and 9q0 : q a�! q0 then 9p0 : p a�! p0". This is learlyequivalent.Classi�ation RT � RS, CT � CS and S � CS � RS. CS is independent of F to RT .Proof: \RT � RS" follows sine LRT is a sublanguage of LRTS , using Proposition 9.1.\CT � CS" and \S � CS � RS" follow sine LCT and LS are sublanguages of LCS , whih is asublanguage of LFS .\RT 6� RS" follows from Counterexample 8, using \RS � S"; similarly RT 6� CS and CT 6� CS.\S 6� CS" follows from Counterexample 2, using \CS � CT".\CS 6� F" (and hene \CS 6� RS") follows from Counterexample 3, in whih F (left) 6= F (right)but left =CS right ; the onstrution of the two omplete simulations is left to the reader. 2Proposition 9.4 PF is inomparable with CS and RS.Proof: \CS 6� PF" (and hene \RS 6� PF") follows from Counterexample 7, using \CS � S".� a ab b b  dab+ a(b+ bd)
=RS6=PF �ab b da(b+ bd)Counterexample 10: Ready simulation equivalent, but not possible-futures equivalent\RS 6� PF" (and hene \CS 6� PF") follows from Counterexample 10, whih shows two graphsthat are ready simulation equivalent but not possible-futures equivalent. Conerning the �rst laim,note that there exists exatly one simulation of right by left, namely the one mapping right on theright-hand side of left. There also exists exatly one simulation of left by right, whih relates thered (or shaded) node on the left to the red (or shaded) shaded node on the right. Both simulationsare ready simulations, as related nodes have the same menu of initial ations. The seond laimfollows sine =na; f"; b; bgn= 2 PF (left)� PF (right). 2In�nite proesses For eah of the semantis CS, FS, FTS, RS and RTS a �nitary variant(supersripted with a *), motivated by allowing �nite repliation only, is de�ned by ombining themodal languages LCT , LF , LFT , LR and LRT , respetively, with L�S . Likewise, an intermediate
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Ready simulation semantis 35variant (supersripted with an !), motivated by requiring any observation to be over within a�nite amount of time, is de�ned by ombining these languages with L!S . Finally, a �nite variant(supersripted with a �), motivated by observers that an only engage in �nite repliation, anonly set �nitely many swithes on free, and an only inspet �nitely many lamps in a �nite time,is obtained by ombining the (obvious) modal languages L�F , L�FT , L�R and L�RT with L�S (there isno CS�). Exatly as in the ase of Proposition 9.1 one �nds:Proposition 9.5 FS! = FTS! = RTS! = RS! and FS� = FTS� = RTS� = RS�. Moreover,FS � = FTS � and RTS � = RS �. 2However, as pointed out in Shnoebelen [47℄, FS � and RS � are di�erent: in Counterexample 11ompare the proesses withand without the left branh a1 2 3 4 ::: =�FB6=R a2 3 4 ::: a1 3 4 ::: a 1 2 4 ::: :::. . .Counterexample 11: Finitary failure simulation equivalent, but not ready equivalentone has FS �(with) = FS �(without ), but =na; f1; 2; :::gn= 2 R(with)�R(without).Clearly one has CS � � CS! � CS and RS� � FS � � RS � � RS! � RS . The stritness ofthese inlusions is given by Counterexamples 4, 11, 9 and 1. In addition one has RT� � RS�,S � � RS�, RT � RS �, FT � FS �, CT � CS� and S� � CS� � FS �; as well as RT1 � RS ,CT1 � CS, S! � CS! � RS! and S � CS � RS. Counterexamples against further inlusionshave already been provided.Proposition 9.6 Let p; q 2 IP be image �nite. Then p =CS q , p =�CS q and p =RS q , p =�RS q.Proof: Two trivial modi�ations of the proof of Proposition 8.4. In the seond one, one uses thatif 8' 2 L�RS(p j= ') q j= ') then surely I(p) = I(q). 2In fat, if it is merely known that only q is image �nite it follows already that p vCS q , p v�CS qand p vRS q , p v�RS q. However, the following variant of Counterexample 1 shows that in thestatement of Proposition 9.6 it is essential that both p and q are image �nite. In Counterexample 12right is image �nite|in fat, it is even �nitely branhing|but left is not. It turns out thatleft =!RS right (and hene left =�RS right , left =�CS right , left =RT right , left =F right , et.) butleft 6=1T right (and hene left 6=1F right , left 6=1RT right , left 6=CS right , left 6=RS right , et.).a aa aa a aa a a ::: aaa a=!RS6=1TCounterexample 12: Finitary ready simulation equivalent but not in�nitary equivalentFor general (non-image-�nite) proesses, no relational haraterizations of the �nite, �nitary andintermediate equivalenes are known.
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36 The linear time { branhing time spetrum ITesting senario An alternative and maybe more natural testing senario for �nitary readysimulation semantis (or simulation semantis) an be obtained by exhanging the repliator foran undo-button on the (ready) trae mahine (Figure 6). It is assumed that all intermediate states
a� b� � � � z�  �undoFigure 6: The ready simulation mahinethat are past through during a run of a proess are stored in a memory inside the blak box. Nowpressing the undo-button auses the mahine to shift one state bakwards. In the initial statepressing the button has no e�et. An observation now onsists of a (ready) trae, enrihed withundo-ations. Suh observations an easily be translated into �nitary (ready) simulation formulas.10 Reative versus generative testing senariosIn the testing senarios presented so far, a proess is onsidered to perform ations and make hoiesautonomously. The investigated behaviours an therefore be lassi�ed as generative proesses. Theobserver merely restrits the spontaneous behaviour of the generative mahine by utting o� somepossible ourses of ation. An alternative view of the investigated proesses an be obtained byonsidering them to reat on stimuli from the environment and be passive otherwise. Reativemahines an be obtained out of the generative mahines presented so far by replaing the swithesby buttons and the display by a green light. Initially the proess waits patiently until the observer

a� b� � � � z� �undoFigure 7: The reative ready simulation mahinetries to press one of the buttons. If the observer tries to press an a-button, the mahine an reatin two di�erent ways: if the proess an not start with an a-ation the button will not go downand the observer may try another one; if the proess an start with an a-ation it will do so andthe button goes down. Furthermore the green light swithes on. During the exeution of a no

ready simulation machine


Reative versus generative testing senarios 37buttons an be pressed. As soon as the exeution of a is ompleted the light swithes o�, so thatthe observer knows that the proess is ready for a new trial. Reative mahines as desribed aboveoriginate from Milner [37, 38℄.One family of testing senarios with reative mahines an be obtained by allowing the observerto try to depress more than one button at a time. In order to inuene a partiular hoie, theobserver ould already start exerising pressure on buttons during the exeution of the preedingation (when no button an go down). When this preeding ation is �nished, at most one of thebuttons will go down. These testing senarios are equipotent with the generative ones: puttingpressure on a button is equivalent to setting the orresponding swith on `free'; moreover an ationa appearing in the display is mimiked by the a-button going down, and the disappearane of afrom the display by the green light going o�.Another family of testing senarios is obtained by allowing the user to try only one button ata time. They are equipotent with those generative testing senarios in whih at any time only oneswith an be set on `free'. Next I will disuss the equivalenes that originate from these senarios.First onsider the reative mahine that resembles the failure trae mahine, thus without menu-lights and undo-button. An observation on suh a mahine onsists of a sequene of aepted andrefused ations, indiating whih buttons went down in a sequene of trials of the user. Suh asequene an be seen as a failure trae where all refusal sets are singletons. Call the resultingsemantis FT 1. Clearly, the failure trae set of any proess p satis�es�(X [ Y )� 2 FT (p) , �XY � 2 FT (p):Thus, any failure trae �fa1; : : : ; ang� an be rewritten as (ontains the same information as)�fa1gfa2g � � � fang�. It follows that the singleton-failure trae set FT 1(p) of a proess p ontains asmuh information as its �nite-failure trae set FT�(p), so the semantis FT 1 oinides with FT�.In order to arrive at a reative ounterpart to failures semantis, one ould suppose that anobserver ontinues an experiment only as long as all buttons he tries to depress atually go down;when a button refuses to go down, he will not try another one. This testing senario gives rise tothe variant F 1 of failures semantis in whih all refusal sets are singletons.De�nition 10 =n�; an= 2 At� � At is a singleton-failure pair of a proess p if there is a proessq suh that p ��! q and a 62 I(q). Let F 1(p) denote the set of singleton-failure pairs of p. Twoproesses p and q are singleton-failures equivalent, p =1F q, if T (p) = T (q) and F 1(p) = F 1(q).Unlike for F and F�, F 1(p) = F 1(q) does not always imply that T (p) = T (q), so one has to keeptrak of traes expliitly. These model observations ended by the observer before stagnation ours.Singleton-failures semantis (F 1) is situated stritly between trae (T ) and �nite-failures se-mantis (F�). For Counterexample 2 shows two proesses with T (left) = T (right) but =na; bn= 2F 1(left)�F 1(right), and Counterexample 13 shows two proesses with F 1(left) = F 1(right) (bothontain =na; bn= and =na; n=), but =na; fb; gn= 2 F (left) � F (right). Furthermore, F 1 is independent ofCT , S and CS, for in Counterexample 13 one has CT (left) 6= CT (right), in Counterexample 8one has left =1F right but left 6=S right , and in Counterexample 3 one has left =CS right but=na; n= 2 F 1(left)� F 1(right).Adding the undo-button to the reative failure trae mahine gives a semantis FS 1 harater-ized by the modal language L�S to whih has been added a modality \Can't(a)", with p j= Can't(a)i� a 62 I(p). This modality denotes a failed attempt to depress the a-button. If fat, Bloom, Is-trail & Meyer studied the oarsest equivalene �ner than trae equivalene that is a ongruene
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38 The linear time { branhing time spetrum Ia aab ab+ a+ a
=1F6=CT6=�F ab a ab+ aCounterexample 13: Singleton-failures equivalent, but not ompleted trae or failures equivalentfor the lass of so-alled GSOS-operators, and haraterized this GSOS trae ongruene by themodal language above; its formulas were alled denial formulas. As in the modal language L�FSone has p j= gX [ Y , p j= eX ^ eY , and Can't(a) is the same as gfag, it follows that the language ofdenial formulas is equally expressive as L�FS , and hene FS 1 oinides with FS� and RS�.If the menu-lights are added to the reative failure trae mahine onsidered above one anobserve ready trae sets, and the green light is redundant. Likewise, adding menu-lights to thereative failure senario would give readiness semantis, and adding them to the reative failuresimulation mahine would yield ready simulation. If the green light (as well as the menu-lights)are removed from the reative failure trae mahine, one an only test trae equivalene, sineany refusal may be aused by the last ation not being ready yet. Likewise, removing the greenlight from the reative failure simulation mahine (with undo-button) yields (�nitary) simulationsemantis. Reative mahines on whih only one button at a time is depressed appear to be unsuitedfor testing ompleted trae, ompleted simulation and failures equivalene.11 2-nested simulation semantis2-nested simulation equivalene popped up naturally inGroote & Vaandrager [25℄ as the oars-est ongruene with respet to a large and general lass of operators that is �ner than ompletedtrae equivalene.De�nition 11 A 2-nested simulation is a simulation ontained in simulation equivalene (! ).Two proesses p and q are 2-nested simulation equivalent, notation p =2S q, if there exists a2-nested simulation R with pRq and a 2-nested simulation S with qSp.Modal haraterization A modal haraterization of this notion is obtained by the fragmentof the in�nitary Hennessy-Milner logi (f. De�nition 12.1) without nested negations.De�nition 11.1 The lass L2S of 2-nested simulation formulas over At is de�ned reursively by:� If I is a set and 'i 2 L2S for i 2 I then Vi2I 'i 2 L2S .� If ' 2 L2S and a 2 At then a' 2 L2S .� If ' 2 LS then :' 2 L2S .Note that LS � L2S . The satisfation relation j= � IP�L2S is de�ned reursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.
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Bisimulation semantis 39Proposition 11.1 p =2S q , 8' 2 L2S (p j= ', q j= ').Proof: A trivial modi�ation of the proof of Proposition 8.2. 2Testing senario In order to obtain a testing senario for this equivalene one has to introduethe rather unnatural notion of a lookahead [25℄: The 2-nested simulation mahine is a variant of theready trae mahine with repliator, where in an idle state the mahine not only tells whih ationsare on the menu, but even whih simulation formulas are (not) satis�ed in the urrent state.Classi�ation RS � 2S and PF � 2S .Proof: For \RS � 2S" it suÆes to show that eah 2-nested simulation is a ready simulation.This follows sine p ! q ) I(p) = I(q). PF � 2S is easily established using that T � S. Thatboth inlusions are strit follows immediately from the fat that RS and PF are inomparable(Proposition 9.4). 2In�nite proesses Exatly as for ready simulations semantis, 5 versions of 2-nested simulationsemantis an be de�ned that di�er for in�nite proesses. 2S� is the semantis whose modalharaterization has the onstruts >, ^, a' and :'0 with '0 2 L�S . The onstruts eX and Xfor X ��n At are expressible in this logi. F2S � additionally has the onstrut eX, and R2S � theonstrut X, for X � At. Finally 2S! is haraterized by the lass of 2-nested simulation formulaswith a �nite upperbound on the nesting of the a' onstrut. The onstruts eX and X for X � Atare expressible in L!2S , and hene also in L2S .We have 2S� � F2S � � R2S � � 2S! � 2S . The stritness of these inlusions is given byCounterexamples 4, 11, 9 and 1. In addition one has RS� � 2S�, FS � � F2S �, RS � � R2S �,RS! � 2S! and RS � 2S ; as well as PF1 � 2S . Counterexample 1 shows that PF 6� 2S!:2S!(left) = 2S!(right) (f. Proposition 12.10), but =na; a�n= 2 PF (right)� PF (left).Proposition 11.2 Let p; q 2 IP be image �nite. Then p =2S q , p =�2S q.Proof: An easy modi�ation of the proof of Proposition 8.4, also using its result. 212 Bisimulation semantisThe onept of bisimulation equivalene stems from Milner [37℄. Its formulation below is due toPark [41℄.De�nition 12 A bisimulation is a binary relation R on proesses, satisfying, for a 2 At:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq and q a�! q0, then 9p0 : p a�! p0 and p0Rq0.Two proesses p and q are bisimilar, notation p$ q, if there exists a bisimulation R with pRq.The relation $ is again a bisimulation. As for similarity, one easily heks that bisimilarityis an equivalene relation on IP. Hene the relation will be alled bisimulation equivalene. Inbisimulation semantis (B) two proesses are identi�ed i� they are bisimulation equivalent. Notethat the onept of bisimulation does not hange if in the de�nition above the ation relations a�!were replaed by generalized ation relations ��!.
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40 The linear time { branhing time spetrum IModal haraterizationDe�nition 12.1 The lass LB of in�nitary Hennessy-Milner formulas over At is de�ned by:� If I is a set and 'i 2 LB for i 2 I then Vi2I 'i 2 LB .� If ' 2 LB and a 2 At then a' 2 LB.� If ' 2 LB then :' 2 LB.The satisfation relation j= � IP�LB is de�ned reursively by:� p j= Vi2I 'i if p j= 'i for all i 2 I.� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.Let B(p) denote the lass of all in�nitary Hennessy-Milner formulas satis�ed by the proess p:B(p) = f' 2 LB j p j= 'g. Write p vB q if B(p) � B(q) and p =B q if B(p) = B(q).Proposition 12.1 p vB q , p =B q.Proof: If ' 2 B(q)�B(p) then :' 2 B(p)�B(q). 2Proposition 12.2 p$ q , p =B q.Proof: For \)" I have to prove that for any bisimulation R and for all ' 2 LB one haspRq ) (p j= ', q j= '):I will do so with strutural indution on '. Suppose pRq.{ Let p j= a'. Then there is a p0 2 IP with p a�! p0 and p0 j= '. As R is a bisimulation, theremust be a q0 2 IP with q a�! q0 and p0Rq0. So by indution q0 j= ', and hene q j= a'.By symmetry one also obtains q j= a') p j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:() 8i2I(q j= 'i), q j= Vi2I 'i.{ p j= :', p 6j= ' ind:() q 6j= ', q j= :'.For \(" it suÆes to establish that vB is a simulation (Proposition 12.1 then implies that =B =vB = v�1B is a bisimulation). This goes exatly as in the proof of Proposition 8.2. 2Testing senario The testing senario for bisimulation semantis, as presented in Milner [37℄,is the oldest and most powerful testing senario, from whih most others have been derived byomitting some of its features. It was based on a reative failure trae mahine with repliator,but additionally the observer is equipped with the apaity of global testing. Global testing isdesribed in Abramsky [1℄ as: \the ability to enumerate all (of �nitely many) possible `operatingenvironments' at eah stage of the test, so as to guarantee that all nondeterministi branhes willbe pursued by various opies of the subjet proess". Milner [37℄ implemented global testing byassuming that\(i) It is the weather at any moment whih determines the hoie of transition (in ase of ambiguity[...℄);(ii) The weather has only �nitely many states|at least as far as hoie-resolution is onerned;(iii) We an ontrol the weather."
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Bisimulation semantis 41Now it an be ensured that all possible moves a proess an perform in reation on a givena-experiment will be investigated by simply performing the experiment in all possible weatheronditions. Unfortunately, as remarked in Milner [38℄, the seond assumption implies that theamount of di�erent moves an investigated proess an perform in response to any given experi-ment is bounded by the number of possible weather onditions (i.e. 9n 2 IN 8p 2 IP 8a 2 At :jfq 2 IP j p a�! qgj < n). So for general appliation this ondition has to be dropped, therebylosing the possibility of e�etive implementation of the testing senario.An observation in the global testing senario an be represented as an in�nitary Hennessy-Milner formula ' 2 LB. This is essentially a simulation formula in whih it is possible to indiatethat ertain branhes are not present. A formula :' says that by making suÆiently many opiesof the investigated proess, and exposing them to all possible weather onditions, it an be observedthat none of these opies permits the observation '.Remark: Let [a℄' denote :a:'. Now the negation in LB an be eliminated in favour of themodalities [a℄ and in�nitary disjuntion Wi2I . A formula [a℄' says that in all possible weatheronditions, after an a-move it is always possible to make the observation '.In order to justify the observations of LB in a generative testing senario no swithes or menu-lights are needed; the arhiteture of the ompleted trae mahine suÆes. However, in order towarrant negative observations, one has to assume that ations take only a �nite amount of time,and idling an be deteted (either by observations that last forever, or by means of the displaybeoming empty). Adding swithes and or menu-lights does not inrease the disriminating powerof the observers. It would give rise to observations that an be modelled as formulas in languagesLFB , LRTB , et., obtained by ombining LF , LRT , et. with LB . These observations an alreadybe expressed in LB: p j= eX , p j= Va2X :a> and p j= X', p j= (Va62X :a>) ^ (Va2X a>) ^ '.A di�erent implementation of global testing is given in Larsen & Skou [35℄. They assumedthat every transition in a transition system has a ertain probability of being taken. Thereforean observer an with an arbitrary high degree of on�dene assume that all transitions have beenexamined, simply by repeating an experiment many times.As argued among others in Bloom, Istrail & Meyer [12℄, global testing in the above sense isa rather unrealisti testing ability. One you assume that the observer is really as powerful as in thedesribed senarios, in fat more an be tested then only bisimulation equivalene: in the testingsenario of Milner also the orrelation between weather onditions and transitions being taken bythe investigated proess an be reovered, and in that of Larsen & Skou one an determine therelative probabilities of the various transitions.Proess graph haraterization Also bisimulation equivalene an be haraterized by meansof relations between the nodes of two proess graphs.De�nition 12.2 Let g; h 2 jG. A bisimulation between g and h is a binary relation R � nodes(g)�nodes(h), satisfying:� root(g)Rroot(h).� If sRt and (s; a; s0) 2 edges(g), then there is an edge (t; a; t0) 2 edges(h) suh that s0Rt0.� If sRt and (t; a; t0) 2 edges(h), then there is an edge (s; a; s0) 2 edges(g) suh that s0Rt0.
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42 The linear time { branhing time spetrum IThis de�nition is illustrated in Figure 8. Solid lines indiates what is assumed, dashed lines whatis required. It follows easily that g$ h i� there exists a bisimulation between g and h.
aa aaFigure 8: A bisimulationFor proess graphs with multiple roots, the �rst requirement of De�nition 12.2 generalizes to� 8s 2 roots(g)9t 2 roots(h) : sRt.� 8t 2 roots(h)9s 2 roots(g) : sRt.Classi�ation 2S � B .Proof: \2S � B" follows sine L2S is a sublanguage of LB.\2S 6� B" follows from Counterexample 14, whih shows two graphs that are 2-nested simulationequivalent, but not bisimulation equivalent. Conerning the �rst laim, as in Counterexample 10there exists exatly one simulation of left by right, whih relates the red (or shaded) node on the leftto the red (or shaded) node on the right. Unlike in Counterexample 10, this simulation is 2-nested,for the two subgraphs originating from the two red (or shaded) nodes are simulation equivalent, asare the graphs left and right themselves. Likewise, the simulation mapping right on the right-handside of left is also 2-nested. The seond laim follows sine a:b:> 2 B(left)� B(right). 2� a ab b b ab+ a(b+ b)

=2S6=B �ab b a(b+ b)Counterexample 14: 2-nested simulation equivalent, but not bisimulation equivalentThus bisimulation equivalene is the �nest semanti equivalene treated so far. The following showshowever that on jG graph isomorphism is even �ner, i.e. isomorphi graphs are always bisimilar. Infat, a graph isomorphism an be seen as a bijetive bisimulation. That not all bisimilar graphsare isomorphi will follow from Counterexample 15.
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Bisimulation semantis 43Proposition 12.3 For g; h 2 jG, g �= h i� there exists a bisimulation R between g and h, satisfying� If sRt and uRv then s = u, t = v. (*)Proof: Suppose g �= h. Let f : nodes(g) ! nodes(h) be a graph isomorphism. De�ne R �nodes(g)� nodes(h) by sRt i� f(s) = t. Then it is routine to hek that R satis�es all lauses ofDe�nition 12.2 and (*). Now suppose R is a bisimulation between g and h satisfying (*). De�nef : nodes(g) ! nodes(h) by f(s) = t i� sRt. Sine g is onneted it follows from the de�nitionof a bisimulation that for eah s suh a t an be found. Furthermore diretion \)" of (*) impliesthat f(s) is uniquely determined. Hene f is well-de�ned. Now diretion \(" of (*) implies that fis injetive. From the onnetedness of h if follows that f is also surjetive, and hene a bijetion.Finally, the lauses of De�nition 12.2 imply that f is a graph isomorphism. 2Corollary 12.1 If g �= h then g and h are equivalent aording to all semanti equivalenesenountered so far. 2Non-well-founded sets Another haraterization of bisimulation semantis an be given bymeans of Azel's universe V of non-well-founded sets [4℄. This universe is an extension of the VonNeumann universe of well-founded sets, where the axiom of foundation (every hain x0 3 x1 3 � � �terminates) is replaed by an anti-foundation axiom.De�nition 12.3 Let B denote the unique funtion M : IP! V satisfyingM(p) = f=na;M(q)n= j p a�! qgfor all p 2 IP. Two proesses p and q are branhing equivalent (my terminology) if B(p) = B(q).It follows from Azel's anti-foundation axiom that suh a funtion exists. In fat the axiom amountsto saying that systems of equations like the one above have unique solutions. In [4℄ there is alsoa setion on ommuniating systems. There two proesses are identi�ed i� they are branhingequivalent.A similar idea underlies the semantis of De Bakker & Zuker [9℄, but there the domain ofproesses is a omplete metri spae and the de�nition of B above only works for �nitely branhingproesses, and only if = is interpreted as isometry, rather then equality, in order to stay in well-founded set theory. For �nitely branhing proesses the semantis of De Bakker and Zuker oinideswith the one of Azel and also with bisimulation semantis. This is observed in Van Glabbeek& Rutten [22℄, where also a proof an be found of the next proposition, saying that bisimulationequivalene oinides with branhing equivalene.Proposition 12.4 Let p; q 2 IP. Then p$ q , B(p) = B(q).Proof: \(": Let B be the relation de�ned by pBq i� B(p) = B(q); then it suÆes to prove that Bis a bisimulation. Suppose pBq and p a�! p0. Then =na;B(p0)n= 2 B(p) = B(q). So by the de�nitionof B(q) there must be a proess q0 with B(p0) = B(q0) and q a�! q0. Hene p0Bq0, whih had to beproved. The seond requirement for B being a bisimulation follows by symmetry.\)": Let B� denote the unique solution of M�(p) = f=na;M�(r0)n= j 9r : r $ p ^ r a�! r0g.As for B it follows from the anti-foundation axiom that suh a unique solution exists. From thesymmetry and transitivity of $ it follows thatp$ q ) B�(p) = B�(q): (1)
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44 The linear time { branhing time spetrum IHene it remains to be proven that B� = B. This an be done by showing that B� satis�esthe equations M(p) = f=na;M(q)n= j p a�! qg, whih have B as unique solution. So it has tobe established that B�(p) = f=na;B�(q)n= j p a�! qg. The diretion \�" follows diretly from thereexivity of $ . For \�", suppose =na;Xn= 2 B�(p). Then 9r : r$ p, r a�! r0 and X = B�(r0).Sine $ is a bisimulation, 9p0 : p a�! p0 and r0$ p0. From (1) it follows that X = B�(r0) = B�(p0).Therefore =na;Xn= 2 f=na;B�(q)n= j p a�! qg, whih had to be established. 2In�nite proesses The following predeessor of bisimulation equivalene was proposed in Hen-nessy & Milner [27, 28℄.De�nition 12.4 Let p; q 2 IP. Then:� p �0 q is always true.� p �n+1 q if for all a 2 At:� p a�! p0 implies 9q0 : q a�! q0 and p0 �n q0;� q a�! q0 implies 9p0 : p a�! p0 and p0 �n q0.� p and q are observationally equivalent, notation p � q, if p �n q for every n 2 IN.Hennessy and Milner provided the following modal haraterization of observational equivaleneon image �nite proesses.De�nition 12.5 The set LHM of Hennessy-Milner formulas over At is de�ned reursively by:� > 2 LHM.� If '; 2 LHM then ' ^  2 LHM.� If ' 2 LHM and a 2 At then a' 2 LHM.� If ' 2 LHM then :' 2 LHM.The satisfation relation j= � IP�LHM is de�ned reursively by:� p j= > for all p 2 IP.� p j= ' ^  if p j= ' and p j=  .� p j= a' if for some q 2 IP: p a�! q and q j= '.� p j= :' if p 6j= '.The modal logi above is now known as the Hennessy-Milner logi (HML). Let HM (p) denote the setof all Hennessy-Milner formulas that are satis�ed by the proess p: HM (p) = f' 2 LHM j p j= 'g.Two proesses p and q are HML-equivalent, notation p =�B q, if HM (p) = HM (q).Theorem 2.2 in Hennessy & Milner [27, 28℄ says that � and =�B oinide for image �niteproesses. This result will be strengthened by Proposition 12.6. Below I provide a modal hara-terization of � that is valid for arbitrary proesses.De�nition 12.6 Let L!B = S1n=0 LnB , where LnB is given by:� If I is a set and 'i 2 LnB for i 2 I then Vi2I 'i 2 LnB .� If ' 2 LnB and a 2 At then a' 2 Ln+1B .
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Bisimulation semantis 45� If ' 2 LnB then :' 2 LnB.Let B!(p) = f' 2 L!B j p j= 'g and write p =!B q if B!(p) = B!(q).Proposition 12.5 p �n q , 8' 2 LnB(p j= ', q j= ') for all n 2 IN. Hene p � q , p =!B q.Proof: Indution Base: Formulas in L0B do not ontain the onstrut a'. Hene for suh formulas the statement p j=  is independent of p. Thus 8p; q 2 IP : 8' 2 L0B(p j= ', q j= ').Indution Step: Suppose p �n+1 q. I now use strutural indution on '.{ Let p j= a' with a' 2 Ln+1B . Then there is a p0 2 IP with p a�! p0 and p0 j= ' 2 LnB. Asp �n+1 q, there must be a q0 2 IP with q a�! q0 and p0 �n q0. So by indution q0 j= ', andhene q j= a'.By symmetry one also obtains q j= a') p j= a'.{ p j= Vi2I 'i , 8i2I(p j= 'i) ind:() 8i2I(q j= 'i), q j= Vi2I 'i.{ p j= :', p 6j= ' ind:() q 6j= ', q j= :'.Now suppose 8' 2 Ln+1B (p j= ' , q j= ') and p a�! p0. Considering the symmetry in thede�nitions involved, all I have to show is that 9q0 2 IP with q a�! q0 and p0 �n q0. Let Q0 befq0 2 IP j q a�! q0 ^ p0 6�n q0g:By De�nition 1.1 Q0 is a set. For every q0 2 Q0 there must, by indution, be a formula 'q0 2 LnBwith p0 j= 'q0 but q0 6j= 'q0 (use negation if neessary). Now p j= aVq02Q0 'q0 2 Ln+1B and thereforeq j= aVq02Q0 'q0 . So there must be a q0 2 IP with q a�! q0 and q0 62 Q0, whih had to be shown. 2Comparing their modal haraterizations (=B of $ and =!B of �) one �ndsp$ q ) p � q ) p =�B q:Theorem 2.1 in Hennessy & Milner [27, 28℄ says, essentially, that for image �nite proessesthe relation � satis�es the de�ning properties of a bisimulation (f. De�nition 12). Inspired bythis insight, Park [41℄ proposed the onise formulation of bisimulation equivalene employed inDe�nition 12. It follows immediately that if p; q 2 IP are image �nite, then p$ q , p � q. Thefollowing strengthening of this result is due to Hollenberg [32℄.Proposition 12.6 Let p; q 2 IP and p is image �nite. Then p$ q , p =�B q.Proof: Write pBq i� p =�B q and p is image �nite. It suÆes to establish that B is a bisimulation.{ Suppose pBq and q a�! q0. I have to show that 9r 2 IP with p a�! r and HM (r) = HM (q0).Let R be fr 2 IP j p a�! r ^HM (r) 6= HM (q0)g:As p is image �nite, R is �nite. For every r 2 R take a formula 'r 2 HM (q0)�HM (r) (notethat if  2 HM (r)�HM (q0) then : 2 HM (q0)�HM (r)). Nowa r̂2R'r 2 HM (q) = HM (p);so there must be a r 2 IP with p a�! r and r j= Vr2R 'r. The latter implies r 62 R, i.e.HM (r) = HM (q0), whih had to be shown.
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46 The linear time { branhing time spetrum I{ Suppose pBq and p a�! p0. I have to show that 9q0 2 IP with q a�! q0 and HM (p0) = HM (q0).Let S be fs 2 IP j p a�! s ^HM (s) 6= HM (p0)g:As p is image �nite, S is �nite. For every s 2 S take a formula 's 2 HM (p0)�HM (s). Nowa ŝ2S 's 2 HM (p) = HM (q);so there must be a q0 2 IP with q a�! q0 and q0 j= Vs2S 's. By the previous item in this proof,9r 2 IP with p a�! r and HM (r) = HM (q0), hene r j= Vs2S 's. The latter implies r 62 S, soHM (r) = HM (p0). Thus HM (p0) = HM (q0), whih had to be shown. 2By Counterexample 12, a result like the one above does not hold for (ready) simulation semantis.For the sake of ompleteness, two more variants of bisimulation equivalene an be onsidered.Let FB� be haraterized by the Hennessy-Milner logi augmented with formulas eX, and RB� bythe Hennessy-Milner logi augmented with formulas X, for X � At.Then B� � FB� � RB� � B! � B , and for image �nite proesses all �ve equivalenes oinide.The stritness of these inlusions is given by Counterexamples 4, 11, 9 and 1:Proposition 12.7 CT 6� B�, and hene FB� 6� B�.Proof: Counterexample 4 shows two proesses with CT (left) 6= CT (right). It remains to be shownthat HM (left) = HM (right), i.e. that for all ' 2 LHM: left j= ', right j= '. Using De�nition 12.5it is suÆient to restrit attention to formulas ' whih are of the form a(Vi2I bi> ^ Vj2J :bj>)with I and J �nite sets of indies. It is not diÆult to see that eah suh formula that is satis�edon one side is also satis�ed on the other side. 2Proposition 12.8 R 6� FB�, and hene RB� 6� FB�.Proof: Counterexample 11, shows two proesses with R(with) 6= R(without). It remains to beshown that FB�(with) = FB�(without ). The argument is the same as in the previous proof, butthis time fousing on formulas of the form a( eX ^ Vi2I i> ^ Vj2J :j>) with I and J �nite sets ofnumbers and X a possibly in�nite set of numbers (= ations). 2Proposition 12.9 S! 6� RB�, and hene RB! 6� RB�.Proof: Counterexample 9 shows two proesses with S!(with) 6= S!(without ). It remains to beshown that RB�(with) = RB�(without). The argument is the same as in the previous proofs|thistime using formulas a(fbg ^Vi2I bi> ^Vj2J :bj>) with I and J �nite sets of numbers. 2Proposition 12.10 T1 6� B!, and hene B 6� B!. In addition, PF 6� B!.Proof: Counterexample 1 shows two proesses with T1(left) 6= T1(right). As remarked at theend of Setion 7, also PF (left) 6= PF (right). It remains to be shown that left =!B right , i.e. thatfor all n 2 IN: left �n right . In order to establish p �n q for two trees p and q, the parts of p andq that are further than n edges away from the root play no rôle, and an just as well be omitted.As the ut versions of left and right are isomorphi, by Corollary 12.1 surely left �n right . 2In addition one has 2S� � B�, F2S � � FB�, R2S � � RB�, 2S! � B! and 2S � B .
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Tree semantis 4713 Tree semantisDe�nition 13 Let g 2 jG. The unfolding of g is the graph U(g) 2 jG de�ned by� nodes(U(g)) = paths(g),� root(U(g)) = root(g), i.e. the empty path, starting and ending at the root of g,� (�; a; �0) 2 edges(U(g)) i� �0 extends � by one edge, whih is labelled a.Two proesses p and q are tree equivalent, notation p =U q, if their unfoldings are isomorphi, i.e. ifU(G(p)) �= U(G(p)). In tree semantis (U) two proesses are identi�ed i� they are tree equivalent.It is easy to see that the unfolding of any proess graph is a tree, and the unfolding of a tree isisomorphi to itself. It follows that up to isomorphism every tree equivalene lass of proess graphsontains exatly one tree, whih an be obtained from an arbitrary member of the lass by meansof unfolding.Proposition 13.1 Let g 2 jG. Then U(g)$ g. Hene g =U h) g$ h.Proof: As is easily veri�ed, f(�; end(�)) j � 2 paths(g)g is a bisimulation between U(g) and g. 2Tree semantis is employed in Winskel [50℄. No plausible testing senario or modal harateriza-tion is known for it. Proposition 13.1 shows that B� U . That B 6� U follows from Counterexample15. a aa+ a =B6=U aaCounterexample 15: Bisimulation equivalent, but not tree equivalentAlthough above tree equivalene is de�ned entirely in terms of ation relations, suh a de�ni-tion is in fat misleading, as ation relations abstrat from an aspet of system behaviour that treesemantis tries to apture. The problem an best be explained by onsidering the proess aathat an proeed from its initial to its �nal state by performing one of two di�erent a-transitions.In tree semantis, suh a proess should be onsidered equivalent to the leftmost proess of Coun-terexample 15, and hene di�erent from the rightmost one. However, ation relations only tellwhether a proess p an evolve into q by performing an a-ation; they do not tell in how manyways this an happen. So in labelled transition systems as de�ned in this paper the mentionedproess is represented as a and hene onsidered tree equivalent to the rightmost proess ofCounterexample 15. The mishap that ensues this way will be illustrated in Setion 17.Tree semantis on labelled transitions systems as in Setion 1.1 is a sensible notion only ifone knows that eah transition in the system an be taken in only one way. In general, moresatisfatory domains for de�ning tree equivalene are labelled transition systems in whih thetransitions (p; a; q) are equipped with a multipliity, telling in how many di�erent ways this transi-tion an be taken, or proess graphs g = (nodes(g);root(g);edges(g); begin; end ; label) in whihnodes(g) and edges(g) are sets, root(g) 2 nodes(g), begin; end : edges(g) ! nodes(g) and
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48 The linear time { branhing time spetrum Ilabel : edges(g) ! At . The funtions begin, end and label assoiate with every edge a triple(s; a; t) 2 nodes(g)�At�nodes(g), but ontrary to the situation in De�nition 1.3 the identity ofan edge is not ompletely determined by suh a triple. On suh proess graphs, the notions paths,unfolding and tree equivalene are de�ned exatly as for the proess graphs of De�nition 1.3.14 Possible worlds semantisIn Veglioni & De Niola [49℄, a nondeterministi proess is viewed as a set of deterministiones: its possible worlds. Two proesses are said to be possible worlds equivalent i� they havethe same possible worlds. Two di�erent approahes by whih a nondeterministi proess an beresolved into a set of deterministi ones need to be distinguished; I all them the state-based andthe path-based approah. In the state-based approah a deterministi proess h is obtained out of anondeterministi proess g 2 jG by hoosing, for every state s of g and every ation a 2 I(s) a singleedge s a�! s0. Now h is the reahable part of the subgraph of g onsisting of the hosen edges. Inthe path-based approah on the other hand, one hooses for every path � 2 paths(g) and everyation a 2 I(end(�)) a single edge end(�) a�! s0 to ontinue with. The hosen edges may now bedi�erent for di�erent paths ending in the same state. The di�erene between the two approahesis illustrated in Counterexample 16. In the state-based approah, the proess in the middle hasabbbb =statePW6=pathPW6=T a bb 6=statePW=pathPW=U ab b b b b b
Counterexample 16: State-based versus path-based possible worlds equivalenetwo possible worlds, depending on whih of the two b-edges is hosen. These worlds are essentiallyab and ab1. In the path-based approah, the proess in the middle has ountably many possibleworlds, namely abn for n � 1 and ab1.In [49℄, Veglioni & De Niola take the state-based approah: \one we have resolved the under-spei�ation present in a state s by saying, for example, s a�! s, then, we annot hoose s a�! 0in the same possible world." However, they provide a denotational haraterization of possibleworlds semantis on �nite proesses, namely by indutively alloating sets of deterministi trees toBCCSP expressions (f. Setion 17), whih an be regarded as path-based. In addition, they givean operational haraterization of possible world semantis, essentially following the state-basedapproah outlined above. They laim that both haraterizations agree. This, however, is notthe ase, as Counterexample 17 reveals a di�erene between the two approahes even on �niteproesses. In the path-based approah the proess displayed has a possible world ad + be (i.e. aproess with branhes ad and be), whih it has not in the state-based approah. As it turns out,the omplete axiomatization they provide w.r.t. BCCSP is orret for the path-based, denotationalharaterization, but is unsound for the state-based, operational haraterization. To be preise:their operational semantis fails to be ompositional w.r.t. BCCSP.
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Possible worlds semantis 49a b d eCounterexample 17: State-based versus path-based possible worlds equivalene for �nite proessesCounterexample 16 shows that a suitable formulation8 of the state-based approah to possibleworlds semantis is inomparable with any of the semantis enountered so far. The proesses leftand middle are state-based possible worlds equivalent, yet abb 2 T (middle)�T (left). Furthermore,the proesses right and middle are tree equivalent, yet in the state-based approah one has abb 2PW (right)� PW (middle).Below I propose a formalization of the path-based approah to possible worlds semantis that,on �nite proesses, agrees with the denotational haraterization of [49℄.De�nition 14 A proess p is a possible world of a proess q if p is deterministi and p vRS q. LetPW (q) denote the lass of possible worlds of q. Two proesses q and r are possible worlds equivalent,notation q =PW r, if PW (q) = PW (r). In possible worlds semantis (PW ) two proesses areidenti�ed i� they are possible worlds equivalent. Write q vPW r i� PW (q) � PW (r).It an be argued that the philosophy underlying possible worlds semantis is inompatible with theview on labelled transition systems taken in this paper. The informal explanation of the ationrelations in Setion 1.1 implies for instane that the right-hand proess graph of Counterexample 8has a state in whih a has happened already and both b and bd are possible ontinuations. In thepossible worlds philosophy on the other hand, this proess graph is just a ompat representationof the set of deterministi proesses fab; abdg. None of the two proesses in this set has suh astate.This ould be a reason not to treat possible worlds semantis on the same footing as the othersemantis of this paper. However, one an give up on thinking of non-deterministi proesses assets of deterministi ones, and justify possible worlds semantis|at least the path-based version ofDe�nition 14|by an appropriate testing senario. This makes it �t in the present paper.Testing senario A testing senario for possible worlds semantis an be obtained by makingone hange in the reative testing senario of failure simulation semantis. Namely in eah stateonly as many opies of the proess an be made as there are ations in At, and, for a 2 At, the�rst test on opy pa of p is pressing the a-button. If it goes down, one goes on testing that opy,but is has already hanged its state; if it does not go down, the test on pa ends.Modal haraterization On well-founded proesses, a modal haraterization of possible worldssemantis an be obtained out of the modal haraterization of ready simulation semantis byhanging the modality Vi2I 'i into Va2X a'a with X � At. Possible worlds of a well-founded8Let two proesses be possible worlds equivalent i� eah possible world of the one is �-equivalent to a possibleworld of the other, where � is any of the equivalenes treated in this paper. Theorem 6 will imply that the hoie of� is immaterial.
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50 The linear time { branhing time spetrum Iproess p an be simply enoded as modal formulas in the resulting language. Probably, thismodal haraterization applies to image �nite proesses as well. For proesses that are neitherwell-founded nor image �nite this haraterization is not exat, as it fails to distinguish the twoproesses of Counterexample 1.Classi�ation RT � PW � RS . PW is independent of S, CS and PF .Proof: \PW � RS"9 follows by the transitivity of vRS .\RT � PW " holds as � is a ready trae of p 2 IP i� it is a ready trae of a possible world of p.\S 6� PW " (and hene \RS 6� PW ") follows from Counterexample 8. There S (left) 6= S (right),but PW (left) = PW (right) = fab; abdg.\PF 6� PW " follows sine PF 6� RS .\CS 6� PW " follows sine CS 6� RT , and \PF 6� PW " sine PF 6� RT .Finally, \RT 6� PW " follows from Counterexample 18, taken from [49℄. There the �rst proessdenotes two possible worlds, whereas the seond one denotes four. 2bd b g
a a e fa(bd+ e) + a(f + bg)

=RT6=PW bd b ga e fa(bd+ e+ f + bg)Counterexample 18: Ready trae equivalent, but not possible worlds equivalentIn�nite proesses The version of possible worlds semantis de�ned above is the in�nitary one.Note that RT1 � PW . Exatly as above one even establishes p vRS q ) p vPW q ) p v1RT q, i.e.RT1 �� PW �� RS . Finitary versions ould be de�ned by means of the modal haraterizationgiven above. I will not pursue this here.15 SummaryIn Setions 2{14 �fteen semantis were de�ned that are di�erent for �nitely branhing proesses.These are abbreviated by T, CT, F 1, F, R, FT, RT, PF, S, CS, RS, PW, 2S, B and U. For eah ofthese semantis O, exept U , a modal language LO (a set of modal formulas ') has been de�ned:LT ' ::= > j a'0 ('0 2 LT ) the (partial) trae formulasLCT ' ::= > j a'0 ('0 2 LCT ) j 0 the ompleted trae formulasLF 1 ' ::= > j a'0 ('0 2 LF 1) j ea (a 2 At) the singleton-failure formulasLF ' ::= > j a'0 ('0 2 LF ) j eX (X � At) the failure formulasLR ' ::= > j a'0 ('0 2 LR) j X (X � At) the readiness formulasLFT ' ::= > j a'0 ('0 2 LFT ) j eX'0 (X � At, '0 2 LFT ) the failure trae formulas9The ounterexample against \PW � RS" given in [49℄ is inorret. The two proesses displayed there are notready simulation equivalent.
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Summary 51LRT ' ::= > j a'0 ('0 2 LRT ) j X'0 (X � At, '0 2 LRT ) the ready trae formulasLPF ' ::= a'0 ('0 2 LPF ) j Vi2I 'i ^Vj2J :'0j ('i; '0j 2 LT ) the possible-futures formulasLS ' ::= a'0 ('0 2 LS) j Vi2I 'i ('i 2 LS) the simulation formulasLCS ' ::= a'0 ('0 2 LCS) j Vi2I 'i ('i 2 LCS) j 0 the ompleted simulation formulasLRS ' ::= a'0 ('0 2 LRS) j Vi2I 'i ('i 2 LRS) j X (X � At) the ready simulation formulasLPW Va2X a'a ('a 2 LPW ; X � At) j X (X � At) the possible worlds formulasL2S ' ::= a'0 ('0 2 L2S ) j Vi2I 'i ('i 2 L2S ) j :'0 ('0 2 LS) the 2-nested simulation formulasLB ' ::= a'0 ('0 2 LB) j Vi2I 'i ('i 2 LB) j :'0 ('0 2 LB) the bisimulation formulas.All these languages an be regarded as sublanguages of LB, the in�nitary Hennessy-Milner logi,namely by onsidering the onstruts not in LB as abbreviations:> := Vi2; 'i eX := Va2X :a> eX'0 := eX ^ '0 0 := gAt'1 ^ '2 := Vi2f1;2g 'i X := Va2X a> ^Va62X :a> X'0 := X ^ '0 ea := :a>On any labelled transition system IP, the satisfation relation j= � IP�LB is given by:p j= a' if for some q 2 IP: p a�! q ^ q j= '; p j= Vi2I 'i if 8i 2 I : p j= 'i; p j= :' if p 6j= '.For eah semantis O 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;Bg this de�nition spe-ializes to the sublanguage LO. Now a modal haraterization of O-equivalene10 is given by:p =O q , 8' 2 LO(p j= ', q j= '):In the ases O 2 fT ;CT ;F 1;F ;R;FT ;RT g O-equivalene was de�ned by p =O q , O(p) = O(q).Writing Omodal(p) for f' 2 LO j p j= 'g, it an be observed that the formulas in Omodal(p) aremild syntati variations of the elements in O(p). Thus, the modal haraterization is a rathertrivial restatement of the original de�nition of the equivalene. The modal haraterization of PFis fairly easy to hek. This is left to the reader. In the ases O 2 fS ;CS ;RS ; 2S ;Bg the modalharaterization of =O has been proven equivalent to a relational haraterization in Propositions8.2, 9.2, 9.3, 11.1 and 12.2. It is a matter of taste whih one is taken to be the oÆial de�nition.The same applies to the modal haraterizations of the O-preorders10, given byp vO q , 8' 2 LO(p j= ') q j= '):For eah of the semantis T ;CT ;F 1;F ;R;FT ;RT ;S ;CS ;RS ;PW ;B a testing senario hasbeen proposed in whih the modal formulas satis�ed by a proess p are interpreted as the possibleobservations that an be made on a suitable mahine interating with p. In partiular, the formulaa' represents the observation of \a" appearing in the display of a generative mahine (or the a-button going down on a reative mahine) followed by the observation '. The formula eX representsthe display of the generative mahine beoming empty, whileX is the set of ations that are allowedto happen by the environment/observer, i.e. the ones whose swithes are set \free". In partiular,0 represents the display beoming empty while all ations are free (in the absene of swithes).On a reative mahine, ea represents the a-button refusing to go down, and eX means that noneof the a-buttons for a2X go down when they all reeive pressure. X represents the menu lightsfor the ations in X being lit while the mahine is idling. > represents the at of the observerterminating his observations, and Vi2I 'i represents the observations that an be made on jIj10In ase O = PW the modal haraterization is known to be valid for well-founded proesses only.
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52 The linear time { branhing time spetrum Iopies of the investigated proess in its urrent state, obtained by means of a repliation faility.Finally :' represents the observation that ' annot be observed|an observation whih ourswhen opies of the investigated proess are exposed to all possible weather onditions, and innone of them the observation ' is made. A testing senario for a partiular semantis is obtainedby allowing mahines that are equipped with (only) those features orresponding with its modalharaterization.I write O � N if semantis O makes at least as muh identi�ations as semantis N , i.e. if=O � =N . Clearly, if LO is a sublanguage of LN it must be that O � N . This immediatelyyields11 the following theorem, whose proof has also appeared in the various subsetions entitled\lassi�ation".Theorem 1 T � CT � F � R � RT , T � F 1 � F � FT � RT � PW � RS � 2S � B � U ,R � PF � 2S , T � S � CS � RS and CT � CS.Theorem 1 is illustrated in Figure 1. There, however, singleton-failures semantis and ompletedsimulation semantis are missing, sine they did not our in the literature, and appear to beof minor interest. The theorem applies to any labelled transition system (IP;!). Whether theinlusions are strit depends on the hoie of (IP;!). In the subsetions \lassi�ation" a numberof ounterexamples have been presented, showing that on jG all semanti notions mentioned inTheorem 1 are di�erent and O � N holds only if this follows from that theorem. Moreover, allrelevant examples use �nite proesses only.Let IH be the set of �nite onneted proess graphs. Here �nite is used in the sense of De�nition1.2; a proess graph g 2 jG is �nite i� paths(g) is �nite, whih is the ase i� g is ayli and hasonly �nitely many nodes and edges. Now the next theorem follows.Theorem 2 Let O;N 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;B ;U g. Then O 6� N ,and even O 6�IH N , unless O � N follows from Theorem 1 (and the fat that � is a partial order).The following theorem says that the inlusion hierarhy of the preorders T, CT, F 1, F, R, FT,RT, PF, S, CS, RS, PW, 2S and B is the same as the inlusion hierarhy of the orrespondingequivalenes (there is no preorder for U).Theorem 3 Let O;N 2 fT ;CT ;F 1;F ;R;FT ;RT ;PF ;S ;CS ;RS ;PW ; 2S ;Bg. Then O �� N i�O� N.Proof: Clearly, if LO is a sublanguage of LN it must be that p vN q ) p vO q, i.e. O �� N . Thisyields \if" (exept for RT �� PW �� RS , whih have been established in Setion 14). \Only if"is immediate (f. Setion 1.4). 2When the restrition to �nitely branhing proesses is dropped, there exists a �nitary and anin�nitary variant of eah of these semantis, depending on whether or not in�nite observationsare taken into aount (I do not onsider the �nitary version of PW or the in�nitary versionof F 1 though). These versions are notationally distinguished by means of supersripts \*" and\1", respetively; the unsubsripted abbreviation will refer to the in�nitary versions in ase ofsimulation-like semantis (treated in Setions 8{12) and to the �nitary versions for the deorated11The statements involving PW and U do not follow this way, but have been established in Setions 13 and 14.
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Summary 53
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Figure 9: The in�nitary linear time { branhing time spetrumtrae semantis (treated in Setion 2{7). The modal haraterizations summarized above apply tothe default (= unsubsripted) versions. Modal haraterizations of T1, CT1, F1, R1, resp. FT1and RT1, are obtained by allowing traes, resp. failure traes or ready traes, of in�nite length asmodal formulas; a modal haraterization of PF1 is obtained by replaing the referene to T by oneto T1. Modal haraterizations of S�, CS�, et. are obtained by requiring the index sets I to be�nite. For the simulation-like semantis also an intermediate variant is onsidered|supersriptedwith \!"|based on the assumption that observers an investigate arbitrary many opies of aproess in parallel, but have only a �nite amount of time to do so. Modally, this orrespondsto the restrition to modal formulas with a �nite upperbound on the number of nestings of thea' onstrut. For the semantis that inorporate refusal sets, the �nitary versions ome in twovariants, depending on whether the refusal sets are required to be �nite (supersript \�") or not(the default assumption). A similar distintion is made for semantis where menus of ations anbe observed: in R�, RT� and RS� the modal formula X is replaed by Va2Y :a> ^ Va2Z a>,where the sets of ations Y and Z are required to be �nite. Finally, whereas failure simulationsemantis, modally haraterized byLFS ' ::= a'0 ('0 2 LFS ) j Vi2I 'i ('i 2 LFS ) j eX (X � At) the failure simulation formulas,oinides with ready simulation semantis, its �nitary version (FS �) an be distinguished from RS�.The intermediate notions FS! and RS! oinide again, as do FS� and RS�. By analogy, new



54 The linear time { branhing time spetrum Isemantis FB� and RB� an be de�ned by adding the modality eX resp. X to L�B. These modalitieswould be redundant on top of L!B or LB . A similar situation ours for 2-nested simulation.All semantis enountered are displayed in Figure 9, in whih the �-relation is represented bysolid and dotted arrows.Theorem 4 For all semantis O and N de�ned so far, the formula O � N holds i� there is a pathO ! � � � ! N (onsisting of solid and dotted arrows alike) in Figure 9. Furthermore, semantisonneted by dotted arrows oinide for image �nite proesses.Proof: That T1 � S has been established in Proposition 8.3; that CT1 � CS, RT1 � RS andPF1 � 2S follows in the same way. R1 � PW � RS has been established in Setion 14. Allother impliations O � N follow from the observation that the modal language LO is inluded inLN . The latter statement has been established in Propositions 2.4, 4.6, 5.3, 6.5, 7.4, 7.5, 7.6, 8.4,9.6, 11.2 and 12.6 (exept that the ase of possible-futures semantis is left to the reader). In orderto show that on jG there are no inlusions that are not indiated in Figure 9, is suÆes, in view ofTheorem 2, the already established parts of Theorem 4, and the fat that � is a partial order, toshow that CT 6� B�, R 6� FB�, S! 6� RB�, T1 6� B!, PF 6� B! and T1 6� PF . This has beendone in Propositions 12.7, 12.8, 12.9 and 12.10, and at the end of Setion 7. 2Again, the inlusion hierarhy for the preorders is the same as for the equivalenes.Theorem 5 For all semantis O and N de�ned so far, the formula O �� N holds i� there is apath O ! � � � ! N (onsisting of solid and dotted arrows alike) in Figure 9.Proof: That p vS q ) p v1T q has been established in Proposition 8.3; that p vCS q ) p v1CT q,p vRS q ) p v1RT q and p v2S q ) p v1PF q follows in the same way. In Setion 14 it has beenestablished that p vRS q ) p vPW q ) p v1RT q. All other impliations p vO q ) p vN q followfrom the observation that the modal language LO is inluded in LN . The \only if" part is animmediate onsequene of Theorem 4. 216 Deterministi and saturated proessesIf the labelled transition system IP on whih the semanti equivalenes of Setion 15 are de�ned islarge enough, then they are all di�erent and O �IP N holds only if this is indiated in Figure 9.However, for ertain labelled transition systems muh more identi�ations an be made. Is has beenremarked already that for image �nite proesses all semantis that are onneted by dotted arrowsoinide. In this setion various other lasses of proesses are examined on whih parts of the lineartime { branhing time spetrum ollapse. All results of this setion, expet for Propositions 16.1and 16.2, will be used in the ompleteness proofs in Setion 17.Reall that a proess p is deterministi i� p ��! q ^ p ��! r ) q = r.Remark: If p is deterministi and p ��! p0 then also p0 is deterministi. Hene any domain ofproesses on whih ation relations are de�ned, has a subdomain of deterministi proesses withthe inherited ation relations. (A similar remark an be made for image �nite proesses.)Proof: Suppose p0 ��! q and p0 ��! r. Then p ���! q and p ���! r, so q = r. 2
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Deterministi and saturated proesses 55Theorem 6 (Park [41℄) On a domain of deterministi proesses all semantis in the in�nitarylinear time { branhing time spetrum oinide.Proof: Beause of Theorem 4 it suÆes to show that g =T h) g =U h for any two deterministiproess graphs g; h 2 jG. Note that a proess graph g 2 jG is deterministi i� for every trae� 2 T (g) there is exatly one path � 2 paths(g) with T (�) = �. Now let g and h be deterministiproess graphs with g =T h. Then the relation i � paths(g)� paths(h) that relates � 2 paths(g)with �0 2 paths(h) i� T (�) = T (�0) learly is an isomorphism between U(g) and U(h). 2Thus, if two proesses p and q are both deterministi, then p =T q , p =1F q , p$ q , p =U q.In ase only one of them is deterministi, this annot be onluded, for in Counterexamples 2 and15 the right-hand proesses are deterministi. However, in suh ases one still has p =1F q , p$ q.In fat, a stronger statement holds: if q is deterministi, then p v1F q , p$ q.Lemma 16.1 If p v1F q then I(p) = I(q).Proof: Let p v1F q, i.e. T (p) � T (q) and F 1(p) � F 1(q). Then a 2 I(p), a 2 T (p)) a 2 T (q),a 2 I(q) and a 62 I(p), =n"; an= 2 F 1(p)) =n"; an= 2 F 1(q), a 62 I(q). 2Proposition 16.1 If q is deterministi then p v1F q , p$ q.Proof: Let R be the binary relation on IP de�ned by pRq i� q is deterministi and p v1F q, then itsuÆes to prove that R is a bisimulation. Suppose pRq and p a�! p0. Then a 2 I(p) = I(q). Sothere is a proess q0 2 IP with q a�! q0. As q is deterministi, so is q0. Now let =n�; bn= 2 F 1(p0). Then9r : p0 ��! r ^ b 62 I(r). Hene p a��! r and =na�; bn= 2 F 1(p) � F 1(q). So there must be a proesss with q a��! s ^ b 62 I(s). By the de�nition of the generalized ation relations 9t : q a�! t ��! s,and sine q is deterministi, t = q0. Thus =n�; bn= 2 F 1(q0). From this it follows that F 1(p0) � F 1(q0).Similarly one �nds T (p0) � T (q0), hene p0 v1F q0.Now suppose pRq and q a�! q0. Then a 2 I(q) = I(p). So there is a proess p0 2 IP withp a�! p0. Exatly as above it follows that q0 is deterministi and p0 v1F q0. 2Call a proess p deterministi up to �, for � an equivalene relation or preorder, if there exists adeterministi proess p0 with p � p0. Now the above proposition implies that determinism up to $oinides with determinism up to =1F , and even with determinism up to v1F . In ontrast, any proessis deterministi up to =T , as the anonial graphs onstruted in the proof of Proposition 2.3 aredeterministi. Furthermore, determinism up to =U is just determinism, for g 2 jG is deterministii� U(g) is, and determinism is preserved under isomorphism.The following notion of determinay was proposed in Engelfriet [18℄.De�nition 16.1 Let � be an equivalene relation on IP. A proess p 2 IP is �-determinate ifp ��! q ^ p ��! r ) q � r.Note that =-determinay is determinism. Furthermore, if O � N then =O-determinay is impliedby =N -determinay. Besides =T -determinay, =F -determinay and $ -determinay, Engelfrietalso onsiders =I-determinay, where =I is given by p =I q i� I(p) = I(q). Clearly =I is oarserthan any of the equivalenes of Setion 15: p =T q ) p =I q. Moreover, =I is even oarser thanmost of the preorders: p v1F q ) p =I q, as established in Lemma 16.1.Engelfriet established the following three results:
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56 The linear time { branhing time spetrum I(1) $ -determinay and =I-determinay are the same. Hene �-determinay is the same for allequivalenes � of Setion 15, exept U . Therefore, he just alls this determinay.(2) For determinate proesses, bisimulation equivalene and trae equivalene (and hene all equiv-alenes in between) are the same.(3) Determinay is preserved under failures equivalene (and hene under $ ). Even stronger, if qis determinate and p vF q, then p is determinate and p$ q. (In [18℄, wF is written �f .)Using Proposition 16.1 I show that both =I-determinay and $ -determinay oinide with deter-minism up to $ , from whih (1), (2) and (3) follow.Proposition 16.2 Let p 2 IP. The following are equivalent:(a) p is $ -determinate(b) p is =I-determinate() p is deterministi up to =R(d) p is deterministi up to $ .Proof: \(a)) (b)" is immediate as =I is oarser than $ .\(b) ) ()": Suppose p is =I-determinate. Let G(T (p)) be the anonial graph of the traeset of p as de�ned in the proof of Proposition 2.3. By onstrution, G(T (p)) is deterministi andT (p) = T (G(T (p))). It remains to be shown that p =R G(T (p)).As p is =I-determinate, one has =n�;Xn=; =n�; Y n= 2 R(p) ) X = Y . Hene =n�;Xn= 2 R(p) i�� 2 T (p) ^ X = fa 2 At j �a 2 T (p)g, i.e. R(p) is ompletely determined by T (p). As alsoG(T (p)) is =I-determinate (for it is even deterministi), also R(G(T (p))) is ompletely determinedby T (G(T (p))): =n�;Xn= 2 R(G(T (p))) i� � 2 T (G(T (p))) ^X = fa 2 At j �a 2 T (G(T (p)))g. Itfollows that R(p) = R(G(T (p))).\()) (d)" has been established in Proposition 16.1.\(d) ) (a)": Suppose p $ q and q is deterministi. Let p ��! p0 and p ��! p00. Then9q0 : q ��! q0 ^ p0$ q0 and 9q00 : q ��! q00 ^ p00$ q00. As q is deterministi, q0 = q00. Hene p0$ p00.It follows that p is $ -determinate. 2Now (1) is part of Proposition 16.2. (2) is a generalization of Theorem 6, that is now implied by it:Suppose p and q are determinate and p =T q. By Proposition 16.2 there are deterministi proessesp0 with p$ p0 and q0 with q$ q0. Hene p0 =T q0, so by Theorem 6 p0$ q0. Thus p$ q, yielding (2).(3) holds even for F 1 instead of F . For let q be determinate and p v1F q. Then there is adeterministi proess q0 with q$ q0. Hene p v1F q0. By Proposition 16.1 p$ q0, so p is determinateand p$ q.Note that a proess p is deterministi i� for �; �0 2 paths(G(p)) one has T (�) = T (�0)) � = �0.For this reason, determinism ould have been alled trae determinism, and the notions of readytrae determinism and ompleted trae determinism an be de�ned analogously.De�nition 16.2 A proess p is ready trae deterministi if for �; �0 2 paths(G(p)) one hasRT (�) = RT (�0) ) � = �0. It is ompleted trae deterministi if for �; �0 2 paths(G(p)) onehas T (�) = T (�0) ^ �I(end(�)) = ; , I(end(�0)) = ;�) � = �0.A proess p 2 IP is ready trae deterministi i� there is are no p0; q; r 2 IP and a 2 At suhthat p0 is reahable from p, p0 a�! q, p0 a�! r, I(q) = I(r) and q 6= r. For trae determinismthe ondition I(q) = I(r) is dropped, and for ompleted trae determinism it is weakened to

summary
En85
pr-determinism preorders
pr-explicit trace
pr-determinism preorders
pr-determinacy
thm-determinism
pr-determinacy
thm-determinism
pr-determinism preorders


Deterministi and saturated proesses 57I(q) = ; , I(r) = ;. Note that if p is ready (or ompleted) trae deterministi and p ��! p0 thenso is p0. Now the following variants of Theorem 6 an be established.Proposition 16.3 If g and h 2 jG are ready trae deterministi then g =RT h, g =U h.Likewise, if g and h 2 jG are ompleted trae deterministi then g =CT h, g =U h.Proof: Let g and h be ready trae deterministi proess graphs with g =RT h. Then the relationi � paths(g)�paths(h) that relates � 2 paths(g) with �0 2 paths(h) i� RT (�) = RT (�0) learlyis an isomorphism between U(g) and U(h). The proof of the seond statement goes likewise. 2For ompleted trae deterministi proesses, the equivalenes =T and =CT are di�erent, as an beseen from Counterexample 2. For ready trae deterministi proesses, the equivalenes =T , =CT ,=1F , =F , =FT , =R, =RT , =S and =CS are all di�erent, as an be seen from Counterexamples 2, 3, 5,6 and 13. Theorem 6 and Proposition 16.3 do not generalize to the orresponding preorders, for inCounterexample 19 one �nds two deterministi proesses middle and right with middle vCT rightbut middle 6vB right , and in Counterexample 3 one �nds two ready trae deterministi proessesright and left with right vRT left but right 6vB left . However, the following variants of these resultsan be obtained.Proposition 16.4 If q is ready trae deterministi then p vRT q , p vRS q.Likewise, if q is ompleted trae deterministi then p vCT q , p vCS q,and if q is (trae) deterministi then p vT q , p vS q.Proof: Let R be the binary relation on IP given by pRq if q is ready trae deterministi andp vRT q. For the �rst statement it suÆes to prove that R is a ready simulation. Clearly pRqimplies I(p) = I(q). Now suppose pRq and p a�! p0. Let X be I(p0). Then aX 2 RT (p) � RT (q).So there is a proess q0 2 IP with q a�! q0 and I(q0) = X. Now let � 2 RT (p0). Then 9r : p0 ��+�! r.Hene p aX��+�! r and aX� 2 RT (p) � RT (q). So there must be a proess s with q aX��+�! s. By thede�nition of the ready trae relations 9t : q a�! t ��+�! s ^ I(t) = X, and sine q is ready traedeterministi, t = q0. Thus � 2 RT (q0). From this it follows that RT (p0) � RT (q0), implying p0Rq0.This �nishes the proof of the �rst statement. The proofs of the other two statements go thesame way (but involving a trivial ase distintion for the ompleted trae deterministi one). 2Together, Propositions 16.1 and 16.4 imply that on a domain of deterministi proesses only threeof the preorders of Setion 15 are di�erent, namely vT , vCT and v1F , oiniding with vS , vCSand vB, respetively. That these three are indeed di�erent is shown in Counterexample 19.
0 vT6vCT aa vCT6vF a ba+ bCounterexample 19: The trae, ompleted trae, and failures preorders are all di�erent on deter-ministi proessesDe�nition 16.3 A proess p is ross saturated if p ��! q a�! r ^ p ��! s a�! t) q a�! t.
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58 The linear time { branhing time spetrum IThus a proess graph g 2 jG is ross saturated i� for any �; �0 2 paths(g) and a 2 At suh thata 2 I(end(�)) and T (�0) = T (�)a one has (end(�); a; end(�0)) 2 edges(g).Proposition 16.5 If g and h 2 jG are ross saturated then g =R h, g$ h.Proof: Let g and h 2 jG be ross saturated and suppose that R(g) = R(h). De�ne the relationR � nodes(g) � nodes(h) by sRt i� there are � 2 paths(g) and � 2 paths(h) with end(�) = s,end(�) = t and R(�) = R(�). It suÆes to show that R is a bisimulation between g and h.As I(root(g)) = I(root(h)) one learly has root(g)Rroot(h).Now suppose sRt and (s; a; s0) 2 edges(g). Let � and � be suh that end(�) = s, end(�) = t andR(�) = R(�), and let �0 be the extension of � with (s; a; s0). Now a 2 I(end(�)) = I(end(�)).Choose �0 2 paths(h) with R(�0) = R(�0) (using that R(g) = R(h)). Then T (�0) = T (�0) =T (�)a = T (�)a, so (t; a; end(�0)) 2 edges(h). Moreover, s0Rend(�0).The remaining requirement of De�nition 12.2 follows by symmetry. 2Proposition 16.6 If h 2 jG is ross saturated then g vR h, g vRS h.Proof: Exatly as above. 2De�nition 16.4 A proess p is saturated if =n�;Xn= 2 R(p)^ =n�; Y [ Zn= 2 R(p)) =n�;X [ Y n= 2 R(p).Proposition 16.7 If p is �nitely branhing and q is saturated then p vF q , p vR q. Thus ifboth p and q are �nitely branhing and saturated then p =F q , p =R q.Proof: Suppose p is �nitely branhing, q is saturated and p vF q. Let =n�; Y n= 2 R(p). Then Y is�nite. In ase Y = ; one has =n�;Atn= 2 F (p) � F (q), implying =n�; ;n= 2 R(q), as desired. So assumeY 6= ;. Then, for all a 2 Y , =n�a; ;n= 2 F (p) � F (q) so 9Za � At with =n�; fag [ Zan= 2 R(q). Hene,using De�nition 16.4 with Z = ;, one obtains =n�; Y [Sa2Y Zan= 2 R(q). As =n�;At� Y n= 2 F (p) �F (q) it must be that =n�;Xn= 2 R(q) for some X � Y . Now De�nition 16.4 gives =n�; Y n= 2 R(q). 2De�nition 16.5 A proess p is RT-saturated if�X� 2 RTN (p) ^ �Y 2 RTN (p)) �(X [ Y )� 2 RTN (p):Proposition 16.8 If p is �nitely branhing and q is RT-saturated then p vFT q , p vRT q. Thusif both p and q are �nitely branhing and RT-saturated then p =FT q , p =RT q.Proof: Suppose p is �nitely branhing, q is RT-saturated and p vFT q. With indution onk 2 IN I will show that whenever X0a1X1a2 � � � anXn 2 RT (p) then there are Yi � Xi for i =k+1; : : : ; n suh that X0a1X1a2 � � � akXkak+1Yk+1ak+2 � � � anYn 2 RT (q): The ase k = n, togetherwith Proposition 6.1, ompletes the proof of the proposition.Indution base (k = 0): Let X0a1X1a2 � � � anXn 2 RT (p). Write X for At�X.Then X0a1X1a2 � � � anXn 2 FT (p) � FT (q). Hene there are Yi � Xi for i = 0; :::; n suh thatY0a1Y1a2 � � � anYn 2 RT (q). As p vFT q ) p vT q ) I(p) � I(q), we have Y0 = X0.Indution step: Take k > 0 and suppose the statement has been established for k � 1.Let X0a1X1a2 � � � anXn 2 RT (p). Then, by indution, there are Yi � Xi for i = k; :::; n suhthat X0a1X1a2 � � � ak�1Xk�1akYkak+1Yk+1ak+2 � � � anYn 2 RT (q). Moreover, for every b 2 Xk,X0a1X1a2 � � � akXkb 2 RT (p), so, again using the indution hypothesis, there must be a Zb � Xksuh that X0a1X1 � � �Xk�1akZbb 2 RT (q), and hene X0a1X1 � � �Xk�1ak(Zb [ fbg) 2 RT (q). AsXk is �nite and Yk [Sb2Xk(Zb [ fbg) = Xk, the RT-saturation of q givesX0a1 � � � akXkak+1Yk+1ak+2 � � � anYn 2 RT (q), whih had to be established. 2
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Complete axiomatizations 5917 Complete axiomatizations17.1 A language for �nite, onrete, sequential proessesConsider the following basi CCS- and CSP-like language BCCSP for �nite, onrete, sequentialproesses over a given alphabet At:ination : 0 (alled nil or stop) is a onstant, representing a proess that refuses to do any ation.ation : a is a unary operator for any ation a 2 At. The expression ap represents a proess,starting with an a-ation and proeeding with p.hoie : + is a binary operator. p + q represents a proess, �rst being involved in a hoiebetween its summands p and q, and then proeeding as the hosen proess.The set T(BCCSP) of (losed) proess expressions or terms over this language is de�ned as usual:� 0 2 T(BCCSP),� ap 2 T(BCCSP) for any a 2 At and p 2 T(BCCSP),� p+ q 2 T(BCCSP) for any p; q 2 T(BCCSP).Subterms a0 may be abbreviated by a. Brakets are used for disambiguation only, assumingassoiativity of +, and letting a bind stronger than +. If P = fp1; :::; png is a �nite nonemptymultiset of BCCSP expressions, then �P abbreviates p1 + � � �+ pn. This expression is determinedonly up to assoiativity and ommutativity of +. Let �; := 0. An expression ap0 is alled asummand of p if, up to assoiativity and ommutativity of +, p an be written as �P with ap0 2 P .On T(BCCSP) ation relations a�! for a 2 At are de�ned as the prediates on T(BCCSP)generated by the ation rules of Table 1. Here a ranges over At and p and q over T(BCCSP).ap a�! p p a�! p0p+ q a�! p0 q a�! q0p+ q a�! q0Table 1: Ation rules for BCCSPA trivial strutural indution shows that p a�! p0 i� ap0 is a summand of p. Now all semantiequivalenes of Setions 2{14 are well-de�ned on T(BCCSP), and for eah of the semantis it isdetermined when two proess expressions denote the same proess.The following theorem says that, apart from U , all these semantis are ompositional w.r.t.BCCSP, i.e. all semanti equivalenes are ongruenes for BCCSP.Theorem 7 Let p; q; r; s 2 T(BCCSP) and let O be any of the semantis of Setion 15 exept U .Then p =O q ^ r =O s ) ap =O aq ^ p+ r =O q + s:Proof: Eah of the semantis O has a modal haraterization, given by p =O q , O(p) = O(q),where O(p) is the set of modal formulas of the appropriate form satis�ed by p. Let O+(p) :=fa' j a' 2 O(p)g be the set of suh formulas whih are of the form a'. For eah hoie of O oneeasily veri�es that O(p) is ompletely determined by O+(p), i.e. O(p) = O(q) , O+(p) = O+(q).One also veri�es easily that O+(0) = ;, O+(ap) = fa' j ' 2 O(p)g and O+(p+q) = O+(p)[O+(q).From this the theorem follows immediately. 2
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60 The linear time { branhing time spetrum IFor eah suh hoie of O one easily veri�es that moreover O(p) � O(q), O+(p) � O+(q). Fromthis it follows that all the preorders of Setion 15 are preongruenes for BCCSP:Theorem 7b Let p; q; r; s 2 T(BCCSP) and let O be any of the semantis of Setion 15 but U .Then p vO q ^ r =O s ) ap vO aq ^ p+ r vO q + s. 2Tree semantis, when de�ned merely in terms of the ation relations on T(BCCSP), fails to beompositional w.r.t. BCCSP. The expression a0 + a0 has only a single outgoing a-transition,namely to the expression 0. Thus, by De�nition 13, a0 + a0 =U a0. Likewise b(a0 + a0) =U ba0.However, b(a0 + a0) + b0 6=U ba0 + ba0, as the �rst proess has two outgoing b-transitions andthe seond proess only one. If follows that tree equivalene as de�ned above is not ompositionalw.r.t. +.T(BCCSP) an be turned into a labelled transition system with multipliities by assuming adi�erent transition p a�! q for every di�erent proof of p a�! q from the ation rules of Table 1. Onsuh a transition system tree equivalene is ompositional w.r.t. BCCSP.A straightforward strutural indution shows that any proess p 2 T(BCCSP) is �nite in thesense of De�nition 1.2. Hene the proess graph G(p) is �nite as well. The next proposition estab-lishes that moreover, up to bisimulation equivalene, any �nite proess graph an be represented bya BCCSP expression. In fat, all �nite proess graphs displayed in this paper have been annotatedby their representing BCCSP expressions.De�nition 17.1 Let ==nn�nn== : IH! T(BCCSP) be a mapping satisfying ==nngnn== = �fa==nnhnn== j g a�! hg.A straightforward indution on the length of the longest path of �nite proess graphs teahes thatsuh a mapping exists and is ompletely determined up to assoiativity and ommutativity of +.Proposition 17.1 Let g 2 IH. Then there is a p 2 T(BCCSP) with G(p)$ g. In fat, G(==nngnn==)$ g.Proof: It suÆes to show that the relation fh;G(==nnhnn==) j h 2 IHg is a bisimulation. Suppose h a�! h0.Then a==nnh0nn== is a summand of ==nnhnn==, so ==nnhnn== a�! ==nnh0nn==, and by Proposition 1.1 G(==nnhnn==) a�! G(==nnh0nn==).Vie versa, let G(==nnhnn==) a�! h00. Then, by Proposition 1.1, h00 = G(p0) for some p0 2 T(BCCSP) with==nnhnn== a�! p0. Thus ap0 must be a summand of ==nnhnn==. By De�nition 17.1 p0 = ==nnh0nn== for some h0 2 IHwith h a�! h0. As h0 is related to h00 = G(==nnh0nn==), also this requirement is satis�ed. 2Corollary 17.1 Let p 2 T(BCCSP). Then p$ ==nnG(p)nn==.Proof: By the above G(==nnG(p)nn==)$G(p). Now apply Corollary 1.1. 2Corollary 17.2 Let g; h 2 IH and let O be any of the semantis of Setion 15. Theng vO h, ==nngnn== vO ==nnhnn== and g =O h, ==nngnn== =O ==nnhnn==:Proof: Let g vO h. By the above G(==nngnn==)$ g vO h$G(==nnhnn==). Now apply Corollary 1.1.For \(" let ==nngnn== vO ==nnhnn==. By Corollary 1.1 and Proposition 17.1 g$G(==nngnn==) vO G(==nnhnn==)$ h. 2
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Complete axiomatizations 6117.2 Axiomatizing the equivalenesIn Table 2, omplete axiomatizations an be found for twelve of the �fteen semanti equivalenes ofthis paper that di�er on BCCSP. Axioms for singleton-failures, 2-nested simulation and possible-futures semantis are more umbersome, and the orresponding testing notions are less plausible.Therefore they have been omitted. The axiomatization of tree semantis (U) requires ation rela-tions with multipliities. Although rather trivial, I will not formally establish its soundness andompleteness here. In order to formulate the axioms, variables have to be added to the languageas usual. In the axioms they are supposed to be universally quanti�ed. Most of the axioms areaxiom shemes, in the sense that there is one axiom for eah substitution of ations from At forthe parameters a; b; . Some of the axioms are onditional equations, using an auxiliary operatorI. Thus provability is de�ned aording to the standards of either �rst-order logi with equalityor onditional equational logi. I is a unary operator that alulates the set of initial ations of aproess expression, oded as a proess expression again.Theorem 8 For eah of the semantis O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg twoproess expressions p; q 2 T(BCCSP) are O-equivalent i� they an be proved equal from the axiomsmarked with \+" in the olumn for O in Table 2. The axioms marked with \v" or \!" are valid inO-semantis but not needed for the proof. U B RS PW RT FT R F CS CT S T(x+ y) + z = x+ (y + z) + + + + + + + + + + + +x+ y = y + x + + + + + + + + + + + +x+ 0 = x + + + + + + + + + + + +x+ x = x + + + + + + + + + + +I(x) = I(y) ) a(x+ y) = a(x+ y) + ay + v v v v v v v v va(bx+ by + z) = a(bx+ z) + a(by + z) + v v v v v vI(x) = I(y) ) ax+ ay = a(x+ y) + + v v v vax+ ay = ax+ ay + a(x+ y) + v v va(bx+u) + a(by+v) = a(bx+by+u) + a(by+v) + + v vax+ a(y + z) = ax+ a(x+ y) + a(y + z) + ! va(x+ by + z) = a(x+ by + z) + a(by + z) + v v va(bx+ u) + a(y + v) = a(bx+ y + u+ v) + va(x+ y) = a(x+ y) + ay + vax+ ay = a(x+ y) +I(0) = 0 + + + + + + + + + + + +I(ax) = a0 + + + + + + + + + + + +I(x+ y) = I(x) + I(y) + + + + + + + + + + + +Table 2: Complete axiomatizations for the equivalenesProof: \If" (soundness): In the light of Theorem 7 it suÆes to show that the losed instanes ofthe indiated axioms are valid in the orresponding semantis. This is straightforward.

axioms
axioms
thm-congruence


62 The linear time { branhing time spetrum I\Only if" (ompleteness): Let TO be the set of axioms marked with \+" in the olumn for O.Write TO ` p = q if the equation p = q is provable from TO. I have to show thatp =O q ) TO ` p = q (2)for any p; q 2 T(BCCSP). For the ases O 2 fB; S; RS; CSg I will show thatp vO q ) TO ` q = q + p (3)for any p; q 2 T(BCCSP), from whih (2) follows immediately. This will be done with struturalindution on p and q. So assume p vO q and (3) has been proven for all pairs of smaller expres-sions p0; q0 2 T(BCCSP). Provided TO ontains at least the �rst four axioms of Table 2, one hasTO ` q = q + p i� TO ` q = q + ap0 for every summand ap0 of p.Take O = B, so p vB q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 =B q0. By indution TB ` p0 = p0 + q0 = q0, using Proposition 12.1. Furthermore, aq0 must be asummand of q, so TB ` q = q + aq0 = q + ap0 and therefore TB ` q = q + p.Take O = S, so p vS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vS q0. By indution TS ` q0 = q0 + p0, so TS ` aq0 = a(q0 + p0) = a(q0 + p0) + ap0 = aq0 + ap0.Furthermore, aq0 must be a summand of q, so TS ` q = q + aq0 = q + ap0 and thus TS ` q = q + p.Take O = RS , so p vRS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vRS q0. Now I(p0) = I(q0) and hene TRS ` I(p0) = I(q0). By indution TRS ` q0 = q0 + p0, soTRS ` aq0 = a(q0 + p0) = a(q0 + p0) + ap0 = aq0+ ap0. Furthermore, aq0 must be a summand of q, soTRS ` q = q + aq0 = q + ap0 and thus TRS ` q = q + p.Take O = CS , so p vCS q. Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vCS q0. In ase I(p0) = ; it must be that I(q0) = ; as well, and hene TCS ` p0 = q0 = 0.Otherwise, TCS ` p0 = bp00 + r and by indution TCS ` q0 = q0 + p0, so TCS ` aq0 = a(q0 + p0) =a(q0 + bp00 + r) = a(q0 + bp00 + r) + a(bp00 + r) = a(q0 + p0) + ap0 = aq0 + ap0. Furthermore, aq0 mustbe a summand of q, so in both ases TCS ` q = q + aq0 = q + ap0 and thus TCS ` q = q + p.Take O = PW . Suppose p =PW q. The axiom a(bx + by + z) = a(bx + z) + a(by + z)allows to rewrite p and q to BCCSP expressions p0 = �i2Iaipi and q0 = �j2Jajqj with pi and qjdeterministi. For expressions of this form it is easy to establish that p0 =PW q0 , p0$ q0. Usingthe soundness of the axiom employed, and the ompleteness of TB � TPW for $ , it follows thatTPW ` p = p0 = q0 = q.For F and R (as well as B) a proof is given in Bergstra, Klop & Olderog [11℄ by means ofgraph transformations. A similar proof for RT an be found in Baeten, Bergstra & Klop [6℄.This method, applied to semantis O, requires the de�nition of a lass IH� of �nite proess graphsthat ontains at least all �nite proess trees, and a binary relation O;� IH� � IH� | a system ofgraph transformations|suh that the following an be established:1. O;, used as a rewriting system, is terminating on IH�, i.e. any redution sequene g0 O; g1 O; � � �leads (in �nitely many steps) to a normal form, a graph that annot be further transformed,2. if g O; h then (a) g =O h and (b) TO ` ==nngnn== = ==nnhnn==3. and two normal forms are bisimilar i� they are O-equivalent.Now the ompleteness proof goes as follows: Suppose p =O q. As paths(G(p)) and paths(G(q))are �nite, U(G(p)) and U(G(q)) belong to IH�, and by requirement 1 they an be rewritten tonormal forms g and h. Using Corollary 1.1, Proposition 13.1 and requirement 2(a) aboveg =O U(G(p))$ G(p) =O G(q)$ U(G(q)) =O h:
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Complete axiomatizations 63Thus, with requirement 3, g$ h; and Corollaries 17.1 and 17.2 yieldp$ ==nnG(p)nn==$ ==nnU(G(p))nn==; ==nngnn==$ ==nnhnn==; ==nnU(G(q))nn==$ ==nnG(q)nn==$ q:Requirement 2(b) and the ompleteness result for bisimulation semantis proved above �nally giveTO ` p = ==nnU(G(p))nn== = ==nngnn== = ==nnhnn== = ==nnU(G(q))nn== = q:I will now apply this method to T , RT , CT , R, F and FT . In the ases of T , RT and CT , IH� istaken to be IHtree , the lass of �nite proess trees.Take O = T . Let T; be the graph transformation that onverts g into h, notation g T; h, i�g is a �nite tree with edges (s; a; t) and (s; a; u) with t 6= u, and h is obtained by identifying tand u. Formally speaking, the nodes of h are those of g, exept that t and u are omitted anda fresh node v has been added instead. Often v is taken to be the (equivalene) lass ft; ug.De�ne the funtion 0 : nodes(g) ! nodes(h) by t0 = v, u0 = v and w0 = w for w 6= t; u. Nowedges(h) = f(p0; a; q0) j (p; a; q) 2 edges(g)g and root(h) = root(g)0. This graph transformationis illustrated in Figure 10.
� � � � � �st ua ab1 bn 1 m T; � � � � � �svab1 bn 1m � � �tu vwa1 ana1anb b R; � � �tu vwa1 ana1anb bbbFigure 10: Graph transformationsIf g is a �nite tree and g T; h then so is h. Moreover, h has fewer nodes than g. Hene T; isterminating on IHtree . The normal forms are exatly the �nite deterministi trees. Now requirement3 has been established by Theorem 6. Requirement 2(a) is trivial, and for 2(b) observe that anyappliation of T; orresponds to an appliation of the axiom ax+ ay = a(x+ y).Take O = RT . Let RT; be the same graph transformation as T;, exept that it only applies ifI(t) = I(u). This time the normal forms are the ready trae deterministi trees, and requirement3 has been established by Proposition 16.3. Again requirement 2(a) is easy to hek, and for2(b) it suÆe to observe that any appliation of RT; orresponds to an appliation of the axiomI(x) = I(y) ) ax+ ay = a(x+ y).Take O = CT . Let CT; be the same graph transformation as T;, exept that it only applies ifI(t) = ; , I(u) = ;. This time the normal forms are the ompleted trae deterministi trees, andagain requirement 3 has been established by Proposition 16.3. One more requirement 2(a) is easyto hek, and for 2(b) observe that any appliation of CT; orresponds to an appliation of the law(I(x) = 0 , I(y) = 0) ) ax + ay = a(x+ y). This law falls outside onditional equationallogi, but it an be reformulated equationally by onsidering the two ases I(x) = 0 = I(y) andI(x) 6= 0 6= I(y). In the �rst ase it must be that TB ` x = 0 = y and hene the law follows fromthe third and fourth axiom of Table 2. In the seond, observe that I(p) 6= 0 i� p has the form bq+rwith b 2 At. Hene the law an be reformulated as a(bx+ u) + a(y + v) = a(bx+ y + u+ v).A proess graph g 2 jG is alled history unambiguous [11℄ if any two paths from the root tothe same node give rise to the same trae, i.e. if for �; �0 2 paths(g) one has end(�) = end(�0))T (�) = T (�0). The history or trae T (s) of a node s in suh a graph g is de�ned as T (�) for � an
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64 The linear time { branhing time spetrum Iarbitrary path from the root of g to s. Observe that trees are history unambiguous. In the nexttwo ompleteness proofs (the ases R and F ) IH� is taken to be the lass IHhu of �nite, historyunambiguous, onneted proess graphs. For g 2 IHhu and t; v 2 nodes(g) let t � v abbreviate8s 2 nodes(g); a 2 At : (s; a; t) 2 edges(g), (s; a; v) 2 edges(g):Take O = R. Let R; be the graph transformation with g R; h i� g has edges (t; b; u) and (v; b; w)with t � v, and h is obtained by adding a new edge (t; b; w). This graph transformation is illustratedin Figure 10. Note that by applying R; twie, one an also add the edge (v; b; u) (indiated witha dashed arrow in Figure 10) if it isn't there already. If g is a �nite, history unambiguous proessgraph and g R; h then so is h. Moreover, h has more edges than g. As there is an upperbound tothe number of edges of graphs that an be obtained from a given graph g 2 IHhu by applying R;(namely n� l � n, where n is the number of nodes in g, and l the number of di�erent edge-labelsourring in g), R; is terminating on IHhu (requirement 1). It is easy to see that R; does not add newready pairs. This gives requirement 2(a). For 2(b) observe that an appliation of R; orresponds toa number of appliations of a(bx+u)+a(by+v) = a(bx+by+u)+a(by+v). Finally, requirement3 follows from Proposition 16.5 and the followingClaim: The normal forms w.r.t. R; are ross saturated.Proof of the laim: Let g 2 IHhu be a normal form w.r.t. R;. With indution to the length ofT (u) I will show that, for u;w 2 nodes(g),if T (u) = T (w) then u � w: (4)This implies that g is ross saturated, for if �; �0 and a are as in the remark below De�nition16.3, there must be an edge (end(�); a; u) in g. Now T (u) = T (�)a = T (end(�0)), so also(end(�); a; end(�0)) 2 edges(g).Indution base: If length(T (u)) = 0, one has u = w = root(g) and the statement is trivial.Indution step: Let T (u) = T (w) 6= ", and let (t; b; u) 2 edges(g). By symmetry, it suÆes toshow that (t; b; w) 2 edges(g). As g is onneted and history unambiguous, there must be an edge(v; b; w) with T (t) = T (v). By indution t�v. As g is in normal form it must have an edge (t; b; w).
� � � � � � � � �b1 bn 1 k d1 dm

st a ua fork; � � � � � � � � �
ab1bn 1 kb1 bn 1 k d1 dm
st a uv a

Figure 11: ForkTake O = F . Let fork; be the graph transformation with g fork; h i� g has edges (s; a; t) and(s; a; u), 9Y � I(u) suh that h is given by� nodes(h) = nodes(g) .[ fvg� root(h) = root(g)� edges(h) = edges(g) [ f(s; a; v)g[f(v; b; w) j (t; b; w) 2 edges(g)g [ f(v; b; w) j (u; b; w) 2 edges(g) ^ b 2 Y g
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Complete axiomatizations 65and jR(h)j > jR(g)j. This graph transformation is illustrated in Figure 11. Note that for anypath � 2 paths(h) not ending in v, a path �0 2 edges(g) an be found with T (�0) = T (�) andend(�0) = end(�), namely by irumventing the possible portion through v along t or u. Thus, suhpaths do not give rise to new ready or failure pairs. For any path � 2 paths(h) ending in v thereis a path �0 2 edges(g) with T (�0) = T (�) and end(�0) = t. As I(t) � I(v), also suh paths do notgive rise to new failure pairs. Hene one has R(h) = R(g) [ f=nT (t); I(t) [ Y n=g and F (h) = F (g).Note that if g 2 IHhu and g fork; h, then also h 2 IHhu . Let F; be R; [ fork; . As g fork; h) g =F hand g R; h) g =R h) g =F h, requirement 2(a) is satis�ed. For 2(b) observe that an appliationof fork; orresponds to an appliation of the axiom ax+ a(y + z) = ax+ a(x+ y) + a(y + z).The requirement jR(h)j > jR(g)j says that the transformation may only take plae if it atuallyinreases the ready set of the transformed graph. Note that if g F; h then T (g) = T (h). As there isan upperbound to the number of ready pairs of graphs g with a given trae set (namely jT (g)j� 2l,where l is the number of di�erent edge-labels ourring in g), a redution sequene g0 F; g1 F; � � �on IHhu an ontain only �nitely many ourrenes of fork; . After the last suh ourrene it leadsin �nitely many steps to a normal form, beause R; is terminating on IHhu . Hene also F; isterminating on IHhu (requirement 1).Suppose g is a normal form w.r.t. F; and =n�;Xn= 2 R(g) ^ =n�; Y [ Zn= 2 R(g). Then g has nodest and u with T (t) = T (u) = �, I(t) = X and Y � I(u). As g must be a normal form w.r.t. R;, itsatis�es (4) and hene t � u. As g is onneted, there are edges (s; a; t) and (s; a; u) in g. As g mustalso be a normal form w.r.t. fork; , =n�;X [ Y n= 2 R(g). Thus normal forms w.r.t. F; are saturated aswell as ross saturated, and hene requirement 3 follows by Propositions 16.7 and 16.5.Take O = FT . Let sf; (symmetri fork) be the graph transformation onsisting of those instanesof fork; where Y = I(u), but with the requirement jR(h)j > jR(g)j relaxed to jRTN (h)j > jRTN (g)j.Let IH� be IHtree , and de�ne sfu; by g sfu; h if g sf; h0 and h = U(h0). Thus sfu; is the variant of sf;in whih the target is unfolded into a tree. Let FT; be RT; [ sfu;. As there is an upperbound to thenumber of normal ready traes of graphs with a given �nite trae set, FT; is terminating on IH�(requirement 1). The normal forms are exatly the �nite RT -saturated ready trae deterministiproess trees, so requirement 3 follows from Propositions 16.3 and 16.8. It follows immediately fromCorollary 5.1 that g sf; h) g =FT h. Hene Proposition 13.1 gives g sfu; h) g =FT h. Moreover,g RT; h) g =RT h) g =FT h, whih yields requirement 2(a). For 2(b) observe that an appliationof sf; orresponds to an appliation of the axiom ax+ ay = ax+ ay + a(x+ y), and as h$ U(h)Corollary 17.2 gives TB ` ==nnhnn== = ==nnU(h)nn== for h 2 IH. 2In Theorem 8 the �fth and seventh axioms of Table 2 may be replayed bya nXi=1(bixi + biyi) = a nXi=1(bixi + biyi) + a nXi=1 biyi and a nXi=1 bixi + a nXi=1 biyi = a nXi=1(bixi + biyi):These laws derive the same losed substitution instanes. Thus none of the axiomatizations requirethe operator I, or onditional equations. However, the laws above are axioms shemes whih haveinstanes for any hoie of n 2 IN. Even if At is �nite, the axiomatizations involving these lawsare in�nite.Theorem 9 Suppose At is in�nite. For eah of the semantis O 2 fT; S; CT; F; R; FT; RT;RS; B; Ug two BCCSP expressions with variables are O-equivalent i� they an be proved equal
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66 The linear time { branhing time spetrum Ifrom the axioms marked with `+' or `!' in the olumn for O in Table 2. It follows that the axiomsmarked with `v' are derivable.Proof: For O 2 fT; CT; F; R; FT; RT; Bg this has been established in Groote [23℄. His prooffor F , R, FT and RT an be applied to S and RS as well. The proof for U is rather trivial, butomitted here. 2Groote also showed that if At is �nite, Theorem 9 does not hold for F , R, FT and RT . But forB and CT it suÆes to assume that At is nonempty, and for T it suÆes to assume that At hasat least two elements. I do not know whih ardinality restrition on At is needed in the ases ofS and RS. A omplete axiomatization for open terms for ompleted simulation or possible worldssemantis has so far not been provided.17.3 Axiomatizing the preordersIn Table 3, omplete axiomatizations an be found for the eleven preorders orresponding to theequivalenes axiomatized in Table 2 (there is no preorder for tree semantis (U)). This time prov-ability is de�ned aording to the standards of either �rst-order logi with inequality or onditionalinequational logi, i.e. it may be used that v is reexive and transitive and satis�es the preongru-ene properties of Theorem 7b. For any semantis O the O-preorder and O-equivalene are relatedby p =O q , p vO q ^ q vO p. Thus either p = q is taken to be an abbreviation of p v q ^ q v por the onditional axioms p = q ) p v q and p v q ^ q v p ) p = q are onsidered part of theaxiomatizations. In the latter ase, the axioms of Table 3 also onstitute omplete axiomatizationsof the equivalenes.The three axioms in Table 3 in whih the inequality is written \v" represent strengthenings ofthe orresponding axioms in Table 2. The axioms in whih the inequality is written \w" are merelyslik reformulations of the orresponding axioms in Table 2, and ould be replaed by them. Unlikein Table 2, the harateristi axiom for the readiness preorder (the ninth) is now a substitutioninstane of the harateristi axiom for the failures preorder (the tenth).Note that the harateristi axiom for the ready simulation preorder (the �fth) derives all losedinstanes of I(x) = I(y)) ax v a(x+ y), whih gives the �fth axiom of Table 2. Hene all losedinstanes of the harateristi axiom for the ready trae preorder (the seventh) are derivable fromthe �fth and eighth axioms. It follows that onditional (in)equations, involving the operator I, orunbounded sums, are no longer needed in the axiomatizations of ready simulation and failure traesemantis.Theorem 10 For eah of the semantis O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg onehas p vO q for p; q 2 T(BCCSP) i� p v q an be proved from the axioms marked with \+" in theolumn for O in Table 3. The axioms marked with \v" are valid in O-semantis but not neededfor the proof.Proof: \If" (soundness): In the light of Theorem 7b it suÆes to show that the losed instanesof the indiated axioms are valid in the orresponding semantis. This is straightforward.\Only if" (ompleteness): Let T �O be the set of axioms marked with \+" in the olumn for O.Write T �O ` p v q if the inequation p v q is provable from T �O. I have to show thatp vO q ) T �O ` p v q (5)
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Complete axiomatizations 67B RS PW RT FT R F CS CT S T(x+ y) + z = x+ (y + z) + + + + + + + + + + +x+ y = y + x + + + + + + + + + + +x+ 0 = x + + + + + + + + + + +x+ x = x + + + + + + + + + + +ax v ax+ ay + + + + + + v v v va(bx+ by + z) = a(bx+ z) + a(by + z) + v v v v v vI(x) = I(y) ) ax+ ay = a(x+ y) + v v v v vax+ ay w a(x+ y) + v v va(bx+ u) + a(by + v) w a(bx+ by + u) + v v vax+ a(y + z) w a(x+ y) + v vax v ax+ y + + v va(bx+ u) + a(y + v) = a(bx+ y + u+ v) + vx v x+ y + +ax+ ay = a(x+ y) +I(0) = 0 + + + + + + + + + + +I(ax) = a0 + + + + + + + + + + +I(x+ y) = I(x) + I(y) + + + + + + + + + + +Table 3: Complete axiomatizations for the preordersfor any p; q 2 T(BCCSP). The ase O = B follows from Proposition 12.1 and Theorem 8. For theases O 2 fS; CS; RSg (5) will be established with strutural indution on p and q. So assumep vO q and (5) has been proven for all pairs of smaller expressions p0; q0 2 T(BCCSP).Take O = S, so p vS q. Using the axiom x v x + y one �nds that T �S ` p v q if for everysummand ap0 of p there is a summand aq0 of q suh that T �S ` ap0 v aq0. So let ap0 be a summandof p. Then p a�! p0, so 9q0 : q a�! q0 and p0 vS q0. Note that aq0 is a summand of q. By indutionT �S ` p0 v q0, so T �S ` ap0 v aq0.Take O = CS, so p vCS q. Using the axiom ax v ax+ y one �nds that T �CS ` p v q if I(p) 6= ;and for every summand ap0 of p there is a summand aq0 of q suh that T �CS ` ap0 v aq0. In aseI(p) = ; it must be that I(q) = ; as well, and hene T �CS ` p = q = 0. Otherwise, let ap0 be asummand of p. Then p a�! p0, so 9q0 : q a�! q0 and p0 vCS q0. Note that aq0 is a summand of q.By indution T �CS ` p0 v q0, so T �CS ` ap0 v aq0.Take O = RS, so p vRS q. Using the �rst �ve axioms of Table 3 one �nds that T �RS ` p v q ifI(p) = I(q) and for every summand ap0 of p there is a summand aq0 of q suh that T �RS ` ap0 v aq0.As p vRS q one has I(p) = I(q). Let ap0 be a summand of p. Then p a�! p0, so 9q0 : q a�! q0 andp0 vRS q0. Note that aq0 is a summand of q. By indution T �RS ` p0 v q0, so T �RS ` ap0 v aq0.Take O = PW . Suppose p vPW q. The axiom a(bx + by + z) = a(bx + z) + a(by + z)allows to rewrite p and q to BCCSP expressions p0 = �i2Iaipi and q0 = �j2Jajqj with pi and qjdeterministi. For expressions of this form it is easy to establish that p0 vPW q0 , p0 vRS q0. Usingthe soundness of the axiom employed, and the ompleteness of TRS � TPW for vRS , it follows thatTPW ` p = p0 v q0 = q.The remaining ompleteness proofs go by a variant of the method of graph transformations,
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68 The linear time { branhing time spetrum Iwhere requirement 3 is replaed byif g and h are normal forms, then g vO h, g vN h.Here N should be a semantis �ner than O, for whih the ompleteness theorem has already beenestablished, and for whih T �N � T �O. The reasoning now goes exatly as in the proof of Theorem 8:Suppose p vO q. Rewrite U(G(p)) and U(G(q)) to normal forms g and h. Theng =O U(G(p))$ G(p) vO G(q)$ U(G(q)) =O h:Thus, with requirement 3, g vN h. Corollary 17.2 yields ==nngnn== vN ==nnhnn==, and one obtainsT �O ` p = ==nnU(G(p))nn== = ==nngnn== v ==nnhnn== = ==nnU(G(q))nn== = q:For eah of the six remaining ompleteness proofs, the lass IH� and the graph transformationsare the same as in the proof of Theorem 8. Thus requirements 1 and 2(a) are ful�lled. As (thelosed instanes of) the axioms for the respetive equivalenes from Table 2 are easily derivablefrom the ones for the orresponding preorders from Table 3, requirement 2(b) is ful�lled as well.Requirement 3, whih used to follow from Theorem 6 and Propositions 16.3, 16.5, 16.7 and 16.8,now follows from Propositions 16.4, 16.6, 16.7 and 16.8. 217.4 A language for �nite, onrete, sequential proesses with internal hoieLet BCSP be the language that extends BCCSP with a binary operator �, modelling internalhoie. Like p+q, the expression p�q represents a proess, �rst being involved in a hoie betweenits summands p and q, and then proeeding as the hosen proess. However, whereas + representsa hoie that an be inuened by the environment of the proess (an external hoie), � representsone that is due to internal nondeterminism of the spei�ed system. BCSP an be regarded as abasi fragment of the language CSP of Hoare [31℄.The set T(BCSP) of (losed) terms over BCSP, or (losed) BCSP-expressions, and its subsetT1(BCSP) of initially deterministi BCSP-expressions, are de�ned by:� 0 2 T1(BCSP) � T(BCSP),� aP 2 T1(BCSP) for any a 2 At and P 2 T(BCSP),� p+ q 2 T1(BCSP) for any p; q 2 T1(BCSP),� P +Q 2 T(BCSP) for any P;Q 2 T(BCSP),� P �Q 2 T(BCSP) for any P;Q 2 T(BCSP).Again, subterms a0 may be abbreviated by a. Brakets are used for disambiguation only, assumingassoiativity of + and�, and letting a bind stronger than + and�. Semantially, BCSP-expressionsrepresent nonempty, �nite sets of initially deterministi BCSP expressions: for P;Q 2 T(BCSP) let[[0℄℄ := f0g [[aP ℄℄ := faPg [[P +Q℄℄ := fp+ q j p 2 [[P ℄℄; q 2 [[Q℄℄g [[P �Q℄℄ := [[P ℄℄ [ [[Q℄℄:On T1(BCSP) ation relations a�! for a 2 At are de�ned as the prediates on T1(BCSP) generatedby the ation rules of Table 4. Here a ranges over At, P over T(BCSP) and p and q over T1(BCSP).This makes T1(BCSP) into a labelled transition system. Hene, in the light of Setion 1.5 allsemanti equivalenes of Setions 2{12 and 14 are well-de�ned on T(BCSP), and for eah of thesemantis it is determined when two BCSP-expressions denote the same proess.
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Complete axiomatizations 69p 2 [[P ℄℄aP a�! p p a�! p0p+ q a�! p0 q a�! q0p+ q a�! q0Table 4: Ation rules for BCSPThe following theorem says that all these semanti equivalenes are ongruenes for BCSP.Even stronger, all the preorders of this paper are preongruenes for BCCSP.Theorem 11 Let P;Q;R; S 2 T(BCSP) and let O be any of the semantis of Setions 2{12, 14.Then P =O Q ^ R =O S ) aP =O aQ ^ P +R =O Q+ S ^ P �R =O Q� S;P vO Q ^ R vO S ) aP vO aQ ^ P +R vO Q+ S ^ P �R vO Q� S:Proof: Eah of the preorders O has a modal haraterization, given by P vO Q, O(P ) � O(Q),where O(P ) = Sp2[[P ℄℄O(p) for P 2 T(BCSP) and O(p) = f' 2 LO j p j= 'g for p 2 T1(BCSP).Now O(P � Q) = O(P ) [ O(Q). This immediately yields the ompositionality of O w.r.t. �:P vO Q ^R vO S ) P �R vO Q� S, and hene P =O Q ^R =O S ) P �R =O Q� S.Note that every formula in the in�nitary Hennessy-Milner logi is logially equivalent to adisjuntion of formulas of the form Vi2I ai'i ^ Vj2J :aj'j . Let O0(P ) be the lass of formulas inO(P ) of that form. It follows that P vO Q, O0(P ) � O0(Q) for P;Q 2 T(BCSP).For p; q 2 T1(BCSP) one has p+ q j= Vi2I ai'i ^Vj2J :aj'j i� I an be written as I1 [ I2 suhthat p j= Vi2I1 ai'i^Vj2J :aj'j and q j= Vi2I2 ai'i^Vj2J :aj'j . Moreover, for eah semantis Oof this paper, ifVi2I ai'i^Vj2J :aj'j 2 LO and I 0 � I, then Vi2I0 ai'i^Vj2J :aj'j 2 LO12. Thus,for P;Q 2 T(BCSP) and Vi2I ai'i^Vj2J :aj'j 2 LO, one has Vi2I ai'i^Vj2J :aj'j 2 O0(P +Q)i� I = I1 [ I2 suh that Vi2I1 ai'i ^ Vj2J :aj'j 2 O0(P ) and Vi2I2 ai'i ^ Vj2J :aj'j 2 O0(Q).This immediately yields the ompositionality of O w.r.t. +.The ompositionality of O w.r.t. a is straightforward. 2If P 2 T(BCSP), then G([[P ℄℄) is a �nite proess graph with multiple roots. Vie versa, any�nite proess graph with multiple roots g 2 jGmr an be represented by a BCSP-expression ==nngnn== 2T(BCSP), suh that G(==nngnn==)$ g. Just extend De�nition 17.1 by ==nngnn== =Lr2roots(g) ==nngrnn==.Axioms In Table 5, omplete axiomatizations in terms of BCSP an be found for the same elevensemantis axiomatized in terms of BCCSP in Tables 2 and 3. The �rst two setions of the tableapply to the equivalenes and the �rst and last setion to the preorders. These axioms are mildvariations of the ones in Tables 2 and 3, and have been found by exploiting a lose orrespondenein semanti validity between BCSP and BCCSP expressions. First of all, using the de�nitionsjust given, the soundness of the axioms in the �rst setion of Table 5 is easily established. Usingthese, any losed BCSP expression an be rewritten in the form Lni=1 pi with pi losed BCCSPexpressions. Now the following lemma redues the validity of (in)equations over BCSP to that of(in)equations over BCCSP.Lemma 17.1 nMi=1 pi vO mMj=1 qj , nXi=1 api vO mXj=1 aqj for pi; qj 2 T(BCCSP).Proof: ' 2 O(Lni=1 pi), a' 2 O(Pni=1 api). 212At least when replaing the modality X of R, RT , PW and RS by Va2Y :a>^Va2Z a>.

df-finite BCCSP
axioms BCSP
axioms
axioms preorders
axioms
axioms preorders
axioms BCSP


70 The linear time { branhing time spetrum IB RS PW RT FT R F CS CT S T(x� y)� z = x� (y � z) + + + + + + + + + + +x� y = y � x + + + + + + + + + + +x� x = x + + + + + + + + + + +(x+ y) + z = x+ (y + z) + + + + + + + + + + +x+ y = y + x + + + + + + + + + + +x+ 0 = x + + + + + + + + + + +(x� y) + z = (x+ z)� (y + z) + + + + + + + + + + +a(x� y) = ax+ ay + + + + + + + + + + +Pni=1(bixi+biyi) = Pni=1(bixi+biyi)�Pni=1biyi + v v v v v v v v vbx+ by + z = (bx+ z)� (by + z) + v v v v v vPni=1 bixi �Pni=1 biyi = Pni=1(bixi + biyi) + + v v v vx+ x = x + v v v(bx+ u)� (by + v) = (bx+ by + u)� (by + v) + + v vx� (y + z) = x� (x+ y)� (y + z) + v vx+ by + z = (x+ by + z)� (by + z) + v v v(bx+ u)� (y + v) = bx+ y + u+ v + vx+ y = (x+ y)� y + vx� y = x+ y +x v x� y + + + + + + + + + +bx+ by + z = (bx+ z)� (by + z) + v v v v v vPni=1 bixi �Pni=1 biyi = Pni=1(bixi + biyi) + v v v v vx+ x = x + v v v(bx+ u)� (by + v) w bx+ by + u + v v vx� (y + z) w x+ y + v vax v ax+ y + v v v(bx+ u)� (y + v) = bx+ y + u+ v + vx v x+ y + vx� y = x+ y +Table 5: Complete axiomatizations in terms of BCSPMost of the axioms in the last two setions of Table 5 an be reognized as restatements of theaxioms of Tables 2 and 3, using the insight of Lemma 17.1. However, in BCSP it is not so lear howthe set of initial ations of a proess should be de�ned, and the obvious adaptations of the axiomsinvolving the operator I would not be sound. Therefore the alternatives to those axioms disussednear the end of Setion 17.2 are used. Moreover, in BCSP the axiom x + x = x is not sound forreadiness semantis. Substituting a� b for x, one derives a� (a+ b)� b = a� b, of whih only theleft-hand side has a ready pair =n"; fa; bgn=. However, in the setting of BCCSP all losed instanesof x + x = x are derivable from the law ax + ax = ax, whih orresponds with the BCSP axiomx� x = x. Following Lemma 17.1, the harateristi axiom for failure trae equivalene should bex�y = x�y� (x+y). This axiom is derivable from x+x = x, and all losed instanes of x+x = xare derivable from x� y = x� y � (x+ y) and the axioms in the �rst setion of Table 5.
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Complete axiomatizations 71Let UO be the set of axioms marked with \+" in the olumn for O in the �rst two setions ofTable 5, and U�O be the set of axioms marked with \+" in the olumn for O in the �rst and lastsetion of Table 5. Write S ` � if the formula � is provable from the set of axioms S.Theorem 12 For O 2 fT; S; CT; CS; F; R; FT; RT; PW; RS; Bg and P;Q 2 T(BCSP) onehas P =O Q, UO ` P = Q and P vO Q, U�O ` P v Q.Proof: \(" (soundness): In the light of Theorem 11 it suÆes to show that the losed instanes ofthe indiated axioms are valid in the orresponding semantis. In fat, one may restrit attentionto the instanes where expressions Lni=1 pi with pi losed BCCSP expressions are substituted forthe variables. It is not diÆult to hek, for eah of these axioms, that suh instanes of it arederivable from the instanes of it where simple losed BCCSP expressions are substituted for thevariables (but taking x � y = x� y � (x + y) instead of x+ x = x to be the harateristi axiomfor failure trae semantis). That the instanes of the latter kind are valid in the orrespondingsemantis follows immediately from Lemma 17.1 and the soundness of the axioms for BCCSP.\First)" (ompleteness of the axioms for the equivalenes): Let T 0O be the set of axioms markedwith \+" in the olumn for O in Table 2, but using aPni=1 bixi + aPni=1 biyi = aPni=1(bixi + biyi)and aPni=1(bixi + biyi) = aPni=1(bixi + biyi) + aPni=1 biyi instead of the axioms involving theoperator I. As Theorem 8 establishes ompleteness for losed terms only, it holds for T 0O as well.Claim: If T 0O ` p = Pmj=1 aqj for p; qj 2 T(BCCSP), then, modulo appliations of the �rstthree axioms of Table 2, p has the form p =Pni=1 api.Proof of the laim: As all axioms in T 0O are equations, I may use indution on the proof ofp = Pmj=1 aqj in equational logi. The ase that p = Pmj=1 aqj is a losed instane of an axiom ofT 0O proeeds by inspetion of those axioms. The ases of plaing an equation in a ontext, as wellas reexivity, symmetry and transitivity, are trivial.Claim: T 0O ` nXi=1 api = mXj=1 aqj ) UO ` nMi=1 pi = mMj=1 qj for any pi; qj 2 T(BCCSP).Proof of the laim: I use indution on the proof of Pni=1 api =Pmj=1 aqj from T 0O in equa-tional logi. The ase that Pni=1 api = Pmj=1 aqj is a losed instane of an axiom of T 0O proeedsby inspetion of those axioms, taking into aount the remark about x� y = x� y � (x+ y) rightbefore this theorem. The ase of a losed instane of an axiom of T 0O in a ontext is straightfor-ward, also using that all losed instanes of axioms of T 0O are derivable from the ones of UO, takinginto aount the remark about x + x = x right before this theorem. The ases of reexivity andsymmetry are trivial. Transitivity follows from the previous laim.Completeness proof: Suppose P =O Q for ertain P;Q 2 T(BCSP). Using the axiomsin the �rst setion of Table 5 one obtains UO ` P = Lni=1 pi and UO ` Q = Lmj=1 qj withpi; qj 2 T(BCCSP). By the soundness of these axioms one has Lni=1 pi =O Lmj=1 qj. ThereforePni=1 api =O aLni=1 pi =O aLmj=1 qj =O Pmj=1 aqj by the soundness of a(x� y) = ax+ay andTheorem 11, and hene T 0O ` Pni=1 api = Pmj=1 aqj by the ompleteness of T 0O. Now UO ` P = Qfollows by the laim above.The seond \)" (ompleteness of the axioms for the preorders) goes likewise, exept that inthe proof of the seond laim, in order to handle the axioms ax v ax+ y and x v x+ y, one usesthe axiom x v x� y of U�O. Furthermore, ax v ax+ y is derivable from U�CT , and x v x+ y fromU�T . 2
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72 The linear time { branhing time spetrum I18 Criteria for seleting a semantis for partiular appliationsMust testing Assume the testing senario of trae semantis: we are unable to inuene thebehaviour of an investigated system in any way and an observe the performed ations only. Noteven deadlok is observable. In this ase there appears to be no reason to distinguish the twoproesses of Counterexample 3, ab + a(b + ) and a(b + ). They have the same traes, andonsequently allow the same observations. Likewise, one might see no reason to distinguish betweenthe two proesses of Counterexample 2, ab + a and ab; also these have the same traes. However,when buying proess ab, it may ome with the guarantee that, in every run of the system, sooneror later it will perform the ation b, at least if the ation a is known to terminate. Suh a guaranteeannot be given for ab+a. The distintion between ab and ab+a alluded to here an be formalizedwith the onept of must testing, originally due to De Niola & Hennessy [17℄: ab must do a b,whereas ab+ a must not.For �nite proesses, must testing ould be formalized as follows. For t � At� we say that a�nite proess p 2 IP must pass the test t if CT (p) � t. To test whether a proess will sooner or laterperform a b-ation take t to be all sequenes of ations ontaining a b. To test whether a proesswill always perform a b immediately after it does an a, take t to be all traes in whih any a isimmediately followed by a b. Now write p vmustT q if for all tests t � At� suh that p must pass t,q must pass t as well. It is easy to see that, for �nite proesses p and q, p vmustT q i� q vCT p.All testing senarios O skethed earlier in this paper an be regarded as forms of may testing :it is reorded whether an observation ' 2 LO may be made for a proess p, and one writes p vO qif any observation that may be made for p, may also be made for q.In the ontext of a testing senario O with O � CT , a plausible form of must testing an bede�ned as well, and for �nite proesses plausible formalizations yield that p vmustO q i� q vO p.For in�nite proesses there are several ways to formalize must testing, and analyzing the result-ing preorders falls outside of the sope if this paper.Deadlok behaviour A proess is said to reah a state of deadlok if it an do no further a-tions.13 The proess ab+ a for instane may deadlok right after performing an a-ation, whereasthe proess ab may not. One ould say that a semantis O respets deadlok behaviour i� O � CT .Counterexample 4 then shows that none of the semantis on the left in Figure 9 respets deadlokbehaviour; only the left-hand proess of Counterexample 4 an deadlok after an a-move. Respet-ing deadlok behaviour may be a requirement on semantis in appliations where either deadlokis important in its own right, or where (impliitly) a form of must-testing is onsidered.Full abstration Many testing senarios mentioned in this paper employ the notion that anation an happen only if it is not bloked by the environment, that is, only if both the investigatedproess and the environment are ready to partiipate in it. Modelling both the investigated proessand the responsible part of the environment as proess graphs gives rise to the following binaryintersetion operator that allows an ation to happen only if it an happen in both of its arguments.De�nition 18.1 Let \ be the binary operator on proess graphs de�ned by� nodes(g \ h) = nodes(g)� nodes(h),13In settings were suessful termination is modelled (f. Setion 19) a state of deadlok is only reahed if moreoverthe proess annot terminate suessfully.
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Criteria for seleting a semantis for partiular appliations 73� roots(g \ h) = roots(g)� roots(h),� ((s; t); a; (s0; t0)) 2 edges(g) i� (s; a; s0) 2 edges(g) ^ (t; a; t0) 2 edges(h).In order to obtain a onneted proess graph, unreahable parts need to be removed.This operator is also alled synhronous parallel omposition and is denoted k in Hoare [31℄. Itan be added to BCCSP or BCSP by employing the ation rule p a�! p0; q a�! q0p \ q a�! p0 \ q0 .Trae semantis turns out to ompositional for the intersetion operator, i.e. if g =T g0 andh =T h0 then g \h =T g0 \h0. For T (g \h) = T (g)\T (h). So are failures and readiness semantis:=n�;Xn= 2 F (g \ h) , 9=n�; Y n= 2 F (g); =n�;Zn= 2 F (h) : X = Y [ Z=n�;Xn= 2 R(g \ h) , 9=n�; Y n= 2 R(g); =n�;Zn= 2 R(h) : X = Y \ Z:In fat, it is not hard to see that all semantis of this paper are ompositional for \, exept for CTand CS , and their (in)�nitary versions. The two proesses of Counterexample 3, ab+ a(b+ ) anda(b+), are ompleted trae equivalent, even ompleted simulation equivalent, yet after intersetingthem with a only the �rst one has a ompleted trae a.In appliations where the intersetion operator is used, one may require a suitable semantis tobe ompositional for it. This rules out CT and CS . If also deadlok behaviour is of importane,F appears to be the oarsest semantis to be onsidered, as least among the ones reviewed in thispaper. As a matter of fat, it is the oarsest semantis even among the ones not reviewed here.De�nition 18.2 An equivalene relation is alled fully abstrat w.r.t. a property if it is the oarsestequivalene with that property, i.e. if it has the property, and any other equivalene having thatproperty is �ner.An equivalene is said to fully abstrat w.r.t. another equivalene � and some operators, if it isthe oarsest equivalene �ner than � that is ompositional w.r.t. those operators.An equivalene � on jG is fully abstrat w.r.t. an equivalene � and a set L of operators on jG i�(1) it is ompositional w.r.t. the operators in L, and(2) for any two proess graphs g; h 2 jG with g 6� h there exists a ontext C[�℄ of operators fromL suh that C[g℄ 6� C[h℄.In fat, for every equivalene relation � on jG and every set L of operators on jG there exists aunique equivalene relation � that is fully abstrat w.r.t. � and the operators in L, namely theone de�ned by g � h i� C[g℄ � C[h℄ for every ontext C[�℄ of operators from L.Theorem 13 Failures equivalene is fully abstrat w.r.t. =CT and \, i.e. w.r.t. deadlok behaviourand intersetion.Proof: (1) has already been established. For (2), let g 6=F h. W.l.o.g. let =n�;Xn= 2 F (g) � F (h).Let k be the proess graph that is shaped like the failure pair =n�;Xn=, i.e. the proess that performsthe ations of � in suession, after whih it o�ers a hoie between the ations of X, and nothingelse. Then � 2 CT (g \ k)� CT (h \ k). 2Variants of Theorem 13 are abundant in the literature. See e.g. [11℄.
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74 The linear time { branhing time spetrum IRenaming For every funtion f : At ! At one an de�ne a unary renaming operator on jGthat renames the labels of all transitions in its argument aording to f . In ase f is injetive,all semantis of this paper are ompositional for the assoiated renaming operator, as is trivial tohek. Non-injetive renaming operators are useful to express a degree of abstration. Imagine aproess that an do, among others, ations a1 and a2. At some level of abstration, the di�erenebetween a1 and a2 may be onsidered irrelevant. This an be expressed by applying a renamingthat relabels both a1 and a2 into the same ation a. Naturally, if two proesses are equivalent beforeapplying suh a renaming operator, one would expet them to still be equivalent afterwards, i.e.after abstrating from the di�erene between a1 and a2. It is for this reason that one might requiresemantis to be ompositional for (non-injetive) renaming. As it happens, all semantis betweenF 1 and B� fail this requirement. For the two proesses of Counterexample 4 are HML-equivalent(=�B), but after renaming all ations bi into b (for i = 1; 2; : : :) the resulting proesses are not evensingleton-failures equivalent (=1F ). For only the �rst one has a singleton-failure pair =na; bn=. This anbe onsidered an argument against the semantis on the left of Figure 9.Counterexample 20 shows that also F2S �, R2S �, FB� and RB� are not ompositional forrenaming. In this ounterexample b is a shorthand for �1i=1bi, in the sense that whenever a transitionp b�! q is displayed, all the transitions p bi�! q for i � 1 are meant to be present. With some e�ort
b b b1 b b2 b b3

a aa a . . . b b1 b b2 b b3
aa a . . .=�RB6=!2S=RSCounterexample 20: F2S �, R2S �, FB� and RB� are not ompositional for renamingone heks that both proesses satisfy the same formulas in L�RB . However, after renaming allations bi into b they are no longer 2S�-equivalent: only the �rst proess satis�es a:(b>). For allother semantis of Figure 9 it is rather easy to establish that they are ompositional for renaming.Other ompositionality requirements Many formal languages for the desription of onur-rent systems, inluding CCS [37℄, SCCS [39℄, CSP [31℄ and ACP [7℄, are De Simone languages (f.[3℄). This means that their operators (the De Simone operators) an be de�ned with ation rulesof a partiular form (the De Simone format). Beause De Simone languages are used heavily inalgebrai system veri�ation, semanti equivalenes that are ompositional for suh languages areoften desirable.Theorem 14 The semantis T ; T1; F ; F1; R; R1; FT ; FT1; RT ; RT1; PF ; PF1; S �; S!; S ;FS �; RS �; RS!; RS ; 2S!; 2S ; B! and B are ompositional w.r.t. all De Simone languages.Proof: Omitted. 2For all the other semantis of Figure 9, whih are displayed there in red (or shaded), there areounterexamples against suh a result. Tree semantis fails to be ompositional w.r.t. the + of
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Criteria for seleting a semantis for partiular appliations 75BCCSP, unless the ation relations are upgraded with multipliities, but that takes us outside ofDe Simone format. The semantis F 1 ; F�; R�; FT�; RT�; RS�; 2S�; B�; F2S �; R2S �; FB� andRB� fail to be ompositional w.r.t. renaming, and CT ; CT1; CS ; CS!; CS fail to be ompositionalw.r.t. intersetion. These are all De Simone operators. Finally, Counterexample 21 shows that PWis not ompositional for the synhronization operator � of SCCS [39℄|also a De Simone operator.This operator an be used to reate a ontext, in whih the two possible worlds equivalent proessesof Counterexample 8 are onverted into the two proesses below. These are no longer possiblea3 a3b1 b2 b1 b24 d4(ab+ abd)� 3(1:4 + 2:4)
6=PW a3b1 b2 b1b24 d4a(b+ bd)� 3(1:4 + 2:4)Counterexample 21: Possible worlds semantis is not ompositional for synhronizationworlds equivalent, for only the one on the right has a possible world a3(b14 + b2d4). The sameounterexample an also be reated with the inverse image operator of CSP [31℄.In Baeten, Bergstra & Klop [6℄ a unary priority operator was de�ned on proess graphs.This operator, whih is not a De Simone operator, assumes a partial ordering < on At, i.e. thereis one priority operator for eah suh ordering. The operator ats on graphs by removing alltransitions (s; a; t) for whih there is a transition (s; b; u) with b > a (and unreahable parts areremoved as well). Thus, in a hoie between several ations, only the ations with maximal prioritymay be exeuted. It is known that RT , RS, B and U are ompositional for the priority operators.I think that RT1, PW , RS�, RS!, RB� and B! are too. However, none of the other semantis ofFigure 9 is. Thus, in appliations where priority operators are used and algebrai reasoning makesompositionality essential, only semantis like RT , RS and B are reommendable.Depending on the appliation, ompositionality for other operators may be required as well,leading to various restritions on the array of suitable semantis. More on whih semantis areompositional for whih operators an be found in Aeto, Fokkink & Verhoef [3℄ and thereferenes therein.The Reursive Spei�ation Priniple A reursive spei�ation is an equation of the formX = t with X a variable and t a term (in a language suh as BCCSP) ontaining no othervariables than X. (In the literature often reursive spei�ations are allowed to involve morevariables and more suh equations, but I do not need those here.) A reursive spei�ation X = tover BCCSP is guarded if every ourrene of X in t ours in a subterm at0 of t with a 2 At.Reursive spei�ations are meant to speify proesses. A proess p is said to be a solution ofthe reursive spei�ation X = t, using the semantis O, if the equation evaluates to a truestatement when substituting p for X and interpreting = as =O. The reursive spei�ation priniple(RSP) says that guarded reursive spei�ations have unique solutions. It has been establishedfor bisimulation semantis by Milner [39℄ (using the language SCCS), and holds in fat for most
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76 The linear time { branhing time spetrum Isemantis enountered in this paper. In proess algebra, two proesses are often proven semantiallyequivalent by showing that they are solutions of the same reursive spei�ation (f. [5℄). For thispurpose it is important to work with a semantis in whih RSP holds. In the in�nitary semantisbetween T1 and PW this is in fat not the ase. For in those semantis the two di�erent proessesof Counterexample 1 are both solutions of the guarded reursive spei�ation X = aX + a. Forthe �nitary semantis this ounterexample does not apply, beause the two proesses are identi�ed,whereas in simulation semantis (of �ner) these two proesses fail to be solutions of the samereursive spei�ation.Other onsiderations In general it depends on the kind of interations that are permittedbetween a proess and its environment (i.e. the testing senario) whih semantis is suÆientlydisriminating for a partiular appliation. When a range of appropriate semantis is found, alsoonsidering the riteria disussed earlier in the setion, the question rises whih of these semantis toatually use (e.g. in making a formal veri�ation). A natural hoie is the oarsest of the appropriatesemantis, i.e. the one whih is fully abstrat w.r.t. the requirements it has to meet in order to beadequate in the ontext in whih the investigated proesses will be operating. In this semantismore equations are valid than in any other. If the goal is to prove that two proesses are equivalent,this may sueed when using the fully abstrat semantis, whereas it may not even be true in a�ner one. Sometimes it is argued that the omplexity of deiding equivalene between proesses istoo high for ertain semantis; using them would give rise to too hard veri�ations. However, thisan not be an argument for rejeting a semantis in favour of a �ner one. For doing the veri�ationin the �ner semantis is atually a method of establishing equivalene in the oarser semantis. Inother words, when O � N , establishing p =O q annot be harder than establishing p =N q, asestablishing p =N q is one of the ways of establishing p =O q. If deidingO-equivalene has a higheromplexity than deiding N -equivalene, the hard ases to deide must be the equations p =O qfor whih p =N q is not even true. It is espeially for those appliations that O-semantis has adistint advantage over N -semantis. This argument has been made forefully in Valmari [48℄.In pratie, it may not always be ertain in what ways the environment an interat with inves-tigated proesses, and hene what onstitutes their observable behaviour. Moreover, the proessesunder investigation may be transferred to more powerful environments long after their initial use.One of the ways this ould happen is through the introdution of more operators for whih theunderlying semantis has to be ompositional. A big disadvantage of semantis that are fully ab-strat with respet to non-stable notions of observability (or non-stable sets of operators) is thatwhenever a veri�ation is arried out in a suh a semantis, and one deides that the ontext inwhih the veri�ed system will be working is suh that atually a little bit more an be observedthat what was originally aounted for, the veri�ation has to be ompletely redone. Moreover,the orretness of the investigated systems keeps depending on the ompleteness of the underlyingtesting senario. In suh ases it is preferable to arry out veri�ations in the �nest semantisfor whih this is onvenient. This gives stronger equivalene results, whih have a greater hangeof surviving in onditions where the environment gets more powerful than originally antiipated.Espeially using bisimulation is safe bet, as it respets the internal struture of proesses to suha degree that it is hard to imagine ever running into an environment that distinguishes bisimilarproesses. In Bloom, Istrail & Meyer [12℄ it is argued that ready simulation semantis alreadyrespets the limits of observable behaviour, so this may be a good alternative. It should be pointedout, however, that most appliations involve abstration from internal ations (not treated in this
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Distinguishing deadlok and suessful termination 77paper), and hene require variants of the semantis treated here that aommodate suh abstra-tions. In this setting, the question of whih semantis represents the limit of observable behaviouris muh harder.19 Distinguishing deadlok and suessful terminationOften researhers feel the need to distinguish two ways in whih a proess an end: suessfully(by ompleting its mission) or unsuessfully (for instane beause its waits for an input from theenvironment that will never arrive). This distintion an be formally modelled in the ontext oflabelled transition systems by onsidering triples (IP;!;p) in whih (IP;!) is a labelled transitionsystem as in De�nition 1.1 and p � IP is a prediate on proesses expressing whih ones anterminate suessfully in their urrent state. It may or may not be required that the proessesp 2 IP with p(p) have no outgoing transitions. Likewise, in the setting of proess graphs, onestudies tuples (nodes(g);root(g);edges(g);p(g)) with p(g) � nodes(g). Now any labelledtransition system over an alphabet At equipped with suh a suessful termination prediate, anbe enoded as an ordinary labelled transition system over an alphabet At [ fpg with p 62 At.Namely, instead of labelling the proesses/states where suessful termination ours with p, onean view suessful termination as a kind of ation, and add p-labelled transitions from thoseproesses/states to fresh endstates. Now any semanti equivalene de�ned on ordinary labelledtransition systems extends to labelled transition systems with a suessful termination prediateby delaring two proesses equivalent i� they are equivalent in the enoded transition system. Infat, in the same way all equivalenes and preorders of this paper extend to labelled transitionsystems equipped with arbitrary prediates P � IP. Below, three of the thusly de�ned equivalenesare haraterized expliitly in terms of p.De�nition 19.1 Let (IP;!;p) be a labelled transition system with suessful termination.� 2 At� is a terminating trae of a proess p if there is a proess q suh that p ��! q and p(q).Let L(p) denote the set of terminating traes of p (and let T (p) and CT (p) be de�ned as before).Now two proesses p and q are trae equivalent i� T (p) = T (q) and L(p) = L(q). They are ompletedtrae equivalent i� T (p) = T (q), CT (p) = CT (q) and L(p) = L(q). They are bisimulation equivalenti� there exists a binary relation R on IP with pRq, satisfying, for a 2 At:� if pRq and p a�! p0, then 9q0 : q a�! q0 and p0Rq0;� if pRq and q a�! q0, then 9p0 : p a�! p0 and p0Rq0;� if pRq, then p(p),p(q).Language semantis The nondeterministi automata studied in automata theory (f.Hoproft& Ullman [33℄) an be regarded as proess graphs with a termination prediate (exept that inautomata theory the fous is on �nite automata). The states s 2 nodes(g) with p(s) are alledaepting or �nal states, and a string � 2 At� is said to be aepted by the automaton g i� � 2 L(g).The set L(g) of all strings aepted by g is alled the language aepted by g. In automata theorytwo automata are onsidered equivalent i� they aept the same language. Therefore languageequivalene an be de�ned as follows.De�nition 19.2 Two proesses p and q in a labelled transition system with suessful terminationare language equivalent, notation p =L q, if L(p) = L(q). Write p �L q i� L(p) � L(q).
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78 The linear time { branhing time spetrum IClearly, language semantis makes more identi�ations than trae semantis (i.e. L � T ). It ouldbe appended to the bottoms of Figures 1 and 9. The reason for not treating it earlier in this paperis that it annot be de�ned uniformly in terms of ation relations. For either the de�nition dependson the prediate p, whih is not a part of ordinary labelled transition systems, or, when enodingthe p-prediate by a transition label p, the de�nition treats p�! di�erent from the other ationrelations.Complete axiomatizations A variant of the language BCCSP of Setion 17 that distinguishesbetween deadlok and suessful termination is the language BCCSPÆ", obtained from BCCSP byreplaing the onstant 0 by two onstants Æ and ", representing deadlok and suessful termination,respetively. On T(BCCSPÆ") ation relations a�! for a 2 At are again de�ned as the prediates onT(BCCSPÆ") generated by the ation rules of Table 1. Furthermore, the prediatep � T(BCCSPÆ")is generated by the rules of Table 6. Now the omplete axiomatizations of Table 2 apply to BCCSPÆ"p(") p(p)p(p+ q) p(q)p(p+ q)Table 6: Rules for the termination prediateas well, provided that the ourrenes of 0 are hanged into Æ, an axiom I(") = " is added, and theharateristi axioms for CS and CT also get variants in whih by + z resp. y + v is replaed by". Language equivalene an be axiomatized by adding the axiom aÆ = Æ to the axioms for traeequivalene. This axiom orresponds with a transformation on �nite proess trees that removesstates from whih it is impossible to reah a state of suessful termination. On the normal formsw.r.t. this transformation, language equivalene and trae equivalene oinide.Suessful termination as default Naturally, ordinary transition systems an be regarded astransition systems with suessful termination by taking the termination prediate to be empty. Onsuh transition systems, language equivalene turns out to be the universal relation, axiomatized bythe equation x = y. Alternatively, ordinary transition systems an be regarded as transition systemswith suessful termination by letting p be the set of proesses without outgoing transitions, i.e.by regarding all termination to be suessful. In this ontext, on a transition system (IP;!) on ande�ne any of the semantis O of this paper as in Setion 15, or by taking suessful termination intoaount as in the present setion. Denote the latter version ofO by Op. Then two proesses are Op-equivalent i� they are O-equivalent after appending a p-transition to every endstate. Comparingsemantis that take termination into aount as well as semantis that abstrat from it yieldsin �rst approximation a \double" version of Figure 9, of whih a tiny fragment is displayed inFigure 12(a). However, for proesses p for whih all termination is suessful one has CT (p) = L(p).Hene the semantis Tp, CTp and CT oinide. One also veri�es easily that R oinides withRp, FT with FTp, RT with RTp, RS with RSp, B with Bp, et. However, F and Fp di�er,as demonstrated by Counterexample 22. There F (left) = F (right) but =na; f;pgn= 2 Fp(left) �Fp(right). Also PF di�ers from PF 0 and 2S from 2S 0 , for in Counterexample 14 one has left =2Sright but, after appending a p-transition to every endnode, a:bp0 2 Lp2S (left)�Lp2S (right). ThusFigure 12(a) ollapses to Figure 12(b). In Groote & Huttel [24℄ normed proesses are studied:proesses that never loose the possibility to terminate eventually. A proess p is normed i� foreah proess q reahable from p, there is a proess r reahable from q that terminates (i.e. has
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Distinguishing deadlok and suessful termination 79
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Figure 12: The linear time { branhing time spetrum for suessfully terminating proessesno outgoing transitions) (and all termination is onsidered suessful). For normed proesses p,T (p) is ompletely determined by L(p). Hene Figure 12(b) ollapses further to Figure 12(). Thisexplains why in [24℄ Lp oinides with CT and is �ner than T .Sequening and sequential omposition The sequential omposition of proesses p and q (f.[31, 7℄), denoted p � q, is the proess that �rst exeutes p, and upon suessful termination of pexeutes q. This operator is de�ned only on domains of proesses on whih suessful terminationis somehow represented. Sequening on the other hand is de�ned on domains of proesses thatdo not distinguish between deadlok and suessful termination: let p;q denote the proess that�rst exeutes p until it an do no further ations, and then q [12℄. On proess graphs, g;h an beonstruted by appending (at its root) a disjoint opy of h to every endnode of g. On proess graphswith suessful termination, g � h on the other hand an be onstruted by appending a disjointopy of h to every node s of g with p(s). In ase p(s) is possible even if s is not an endnode, thegraph h needs to be transformed �rst in suh a way that its root has no inoming edges [7℄.a a ab b a+ ab+ a(b+ )
=F6=pF=1pF aa b a+ a(b+ )Counterexample 22: Failures semantis is not ompositional for sequeningCounterexample 22 shows that failures semantis is not ompositional for sequening. Thereleft =F right , but left ; 6=F right ;. The same ounterexample, with all endnodes suessfullyterminating, shows that singleton-failures semantis is not ompositional for either sequening orsequential omposition. Likewise, Counterexample 14 shows that PF and 2S are not ompositionalfor sequening, and Counterexample 4 shows that none of the semantis between T and B� are. All
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80 The linear time { branhing time spetrum Iof the semantis studied in this paper, exept for F 1, are ompositional for sequential omposition.As sequening is the same as sequential omposition on proesses where all endstates, and onlythose, are onsidered to be suessfully terminating, this implies that all the semantis Op, exeptfor F 1p, are ompositional for sequening. If  is an ation that does not our in p or q, thenp; =O q;, p =pO q. (Think of  as p.) From this it follows that for all semantis O, exeptF 1, Op is fully abstrat w.r.t. O and sequening, at least for proesses that an not exeute everyation in At.Conluding remarksIn this paper various semanti equivalenes for onrete sequential proesses are de�ned, motivated,ompared and axiomatized. Of ourse many more equivalenes an be given than the ones presentedhere. The reason for seleting just these, is that they an be motivated rather niely and/or playa rôle in the literature on semanti equivalenes. In Abramsky & Vikers [2℄ the observationswhih underly many of the semantis in this paper are plaed in a uniform algebrai framework,and some general ompleteness riteria are stated and proved. They also introdue aeptanesemantis, whih an be obtained from aeptane-refusal semantis (Setion 7) by dropping therefusals, and analogously aeptane trae semantis. I am not aware of any reasonable testingsenario for these notions.In Setion 9 I remarked that a testing senario for simulation and ready simulation semantisan be obtained by adding an undo-button to the senario's for trae and ready trae semantis.Likewise, Shnoebelen [47℄ investigates the addition of an undo-button to the testing senariosfor ompleted trae, readiness, failures and failure trae semantis, thereby obtaining 3 new equiv-alenes CT#, R# and F#. Undo-failure trae equivalene oinides with �nitary failure simulationequivalene, just like undo-trae and undo-ready trae equivalene oinide with �nitary simula-tion and �nitary ready simulation equivalene. For image �nite proesses R# oinides with F#.Furthermore R � R# � RS�, F � F# � FS �, CT � CT# � CS� and S� � CT# � F# � R#.An interesting topi is the generalization of this work to a setting with silent moves and/or withparallelism. In both ases there turn out to be many interesting variations. The generalization to asetting with invisible ations will be takled in [21℄. Some work towards generalizing the spetrumto a setting with parallelism an be found for instane in [44℄ and [19℄.Referenes[1℄ S. Abramsky (1987): Observation equivalene as a testing equivalene. Theoretial ComputerSiene 53, pp. 225{241.[2℄ S. Abramsky & S. Vikers (1993): Quantales, observational logi and proess semantis.Mathematial Strutures in Computer Siene 3, pp. 161{227.[3℄ L. Aeto, W.J. Fokkink & C. Verhoef (2000): Strutural operational semantis. In J.A.Bergstra, A. Ponse & S.A. Smolka, editors: Handbook of Proess Algebra, hapter 3. Elsevier.[4℄ P. Azel (1988): Non-well-founded Sets, CSLI Leture Notes 14. Stanford University.[5℄ J.C.M. Baeten, editor (1990): Appliations of Proess Algebra. Cambridge Trats in Theo-retial Computer Siene 17. Cambridge University Press.
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