
COMP 3152 Homework 11

This homework centres around Peterson’s famous mutual exclusion algorithm as running ex-
ample. It is an improvement of the brilliant original algorithm of Dekker.

The algorithm deals with two concurrent processes A and B that want to alternate critical
and noncritical sections. Each of these processes will stay only a finite amount of time in its
critical section, although it is allowed to stay forever in its noncritical section. The purpose
of the algorithm is to ensure that they are never simultaneously in the critical section, and to
guarantee that both processes keep making progress.

The processes use three variables. The boolean variable readyA can be written by process
A and read by process B, whereas readyB can be written by B and read by A. By setting
readyA to true, process A signals to process B that it wants to enter the critical section. The
variable turn is a shared variable: it can be written and read by both processes. Its use is the
brilliant part of the algorithm. Initially readyA and readyB are both false and turn = A.

Process A

repeat forever






































ℓ1 noncritical section

ℓ2 readyA := true

ℓ3 turn := B

ℓ4 await (readyB = false ∨ turn = A)
ℓ5 critical section

ℓ6 readyA := false

Process B

repeat forever






































m1 noncritical section

m2 readyB := true

m3 turn := A

m4 await (readyA = false ∨ turn = B)
m5 critical section

m6 readyB := false

1. What would be wrong with this protocol if we omitted the variable turn?

2. Express Process A as a CCS, CSP or ACP expression, featuring six atomic actions
l1, . . . , l6 and a recursive equation with variable X .

3. Represent Process A as a process graph, by using l1, . . . , l6 as transition labels. Also
attach names to the states by calling each state after the transition that is enabled there.
Thus transition ℓ3 goes from state ℓ3 to state ℓ4.

4. Correct the answers to questions 2 and 3 by replacing the action l4 by the two actions
“B not ready” and “turn = A”. “B not ready” denotes the action of reading the value of
readyB and finding that it is false. Likewise, “turn = A” denotes the action of reading
the value of turn and finding that it is A. [You may skip the original answers to 2 and 3.]

It would be possible to model instruction ℓ4 assuming busy waiting, by drawing self-loops
in state ℓ4 labelled “B ready” and “turn = B”. However, I want to abstract from these
unsuccessful read actions from the onset by not including them in our formal specification.
Thus, the intuition of the await statement is that the process A patiently sits in state ℓ4
until one of the transitions “B not ready” or “turn = A” is enabled.

5. Represent Peterson’s algorithm as Petri net with 18 places: 6 places for each of the 6
internal states of the processes A and B and 2 places for each of the 3 variables. You
need 16 transitions: 2 copies of ℓ3 and m3, and 1 copy of each of the other transitions.

1



6. Represent the behaviour of variable readyA as a process graph. Its transition labels are
the write actions l2 and l6 that can be performed by processes A, and the read action
“A not ready” that can be performed by process B.

7. Give a process algebraic expression of this behaviour.

8. Represent the behaviour of variable turn as a process graph. Its transition labels are the
write actions l3 and m3 that can be performed by processes A and B, and the read actions
turn = A and turn = B. Also give a process algebraic expression of this behaviour.

9. Now give a process algebraic expression of the entire protocol, involving the parallel
composition of 5 processes. All actions except the critical and noncritical sections (ℓ1,
ℓ5, m1 and m5) are internal (only needed to make the protocol work) and should be
abstracted away. (You may choose whether to use CCS, CSP or ACP, and feel free to
rename for instance ℓ2 into ℓ2 if this suits you.)

10. On the next page you see the potential states of a process graph representation of the
entire algorithm. A state of the algorithm is completely determined by a state of process
A, a state of process B and a state of turn. For the states of readyA and readyB are
completely determined by the states of A and B. This observation yields 6× 6× 2 = 72
potential states.

Complete the given drawing into a process graph by supplying the transitions. Don’t
bother labelling them. Also don’t draw loops backwards to the left or top rows; instead
use the gray shadows, which represent copies of the transitions at the opposite end of the
diagram. How many states are reachable from the initial state?

11. In this question we have an atomic proposition IntentA, saying that Process A intends
to enter the critical section, but has not done so yet. It holds whenever Process A is in
states ℓ2 ℓ3, ℓ4 or ℓ5. We also have an atomic proposition CritA, sating that Process A
is about to enter its critical section; it holds in state ℓ5 only. Likewise we have atomic
propositions IntentB and CritB.

Formulate an LTL property in terms of these four atomic propositions expressing the
correctness of Peterson’s algorithm. (See the beginning of this homework for the informal
description of the two properties the protocol should have in order to be correct.)

2

http://en.wikipedia.org/wiki/Linear_temporal_logic


Process Graph of

Peterson’s Mutual Exclusion Algorithm

ℓ1m1B ℓ1m2B ℓ1m3B ℓ1m4B ℓ1m5B ℓ1m6B

ℓ2m1B ℓ2m2B ℓ2m3B ℓ2m4B ℓ2m5B ℓ2m6B

ℓ3m1B ℓ3m2B ℓ3m3B ℓ3m4B ℓ3m5B ℓ3m6B

ℓ4m1B ℓ4m2B ℓ4m3B ℓ4m4B ℓ4m5B ℓ4m6B

ℓ5m1B ℓ5m2B ℓ5m3B ℓ5m4B ℓ5m5B ℓ5m6B

ℓ6m1B ℓ6m2B ℓ6m3B ℓ6m4B ℓ6m5B ℓ6m6B

ℓ1m1A ℓ1m2A ℓ1m3A ℓ1m4A ℓ1m5A ℓ1m6A

ℓ2m1A ℓ2m2A ℓ2m3A ℓ2m4A ℓ2m5A ℓ2m6A

ℓ3m1A ℓ3m2A ℓ3m3A ℓ3m4A ℓ3m5A ℓ3m6A

ℓ4m1A ℓ4m2A ℓ4m3A ℓ4m4A ℓ4m5A ℓ4m6A

ℓ5m1A ℓ5m2A ℓ5m3A ℓ5m4A ℓ5m5A ℓ5m6A

ℓ6m1A ℓ6m2A ℓ6m3A ℓ6m4A ℓ6m5A ℓ6m6A

3


