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Abstract— This paper introduces an Iterative Closest Point
(ICP) inspired inverse sensor model for robot localisation
given multiple simultaneous observations of aliased landmarks.
Combined with a Kalman filter, the sensor model offers a
robust alternative to maximum likelihood data association, or
a computationally inexpensive alternative to a particle filter.
The technique can also be used as a means for re-localising a
kidnapped robot, or a sensor resetting method for a particle
filter. In the RoboCup Standard Platform League, this sensor
model is able to localise the robot from a single observation in
42% of field positions where multiple landmarks are visible.

I. INTRODUCTION

Many robot localisation problems require a robot to
localise itself in a 2D environment given a map of the
environment and observations of various landmarks. The
application of sensor models and recursive localisation filters
to these problems is well documented [1]. In their simplest
form, localisation filters assume that observable landmarks
can be uniquely identified, and that there is one sensor update
per time step.

These assumptions are often violated. In many practical
applications, there can be multiple simultaneous observations
during a time step, and landmark correspondences between
observations and the map are often difficult to determine with
certainty. This is known as the data association problem.

To address both of these issues, we propose a novel inverse
sensor model inspired by the Iterative Closest Point (ICP)
matching algorithm. The technique is a robust alternative to
the maximum likelihood association of each observation sep-
arately. The method calculates a single robot pose estimate
conditioned on the prior pose, a map of the environment, and
a set of landmark observations with unknown associations.
The resulting pose can either be used as a meta-measurement
in state space coordinates for a Kalman filter, as a means
for re-localisation in kidnapped robot scenarios, as a sensor
resetting method for particle filters, or as a stand-alone
localisation approach.

The technique was developed for the 2012 RoboCup
Standard Platform League (SPL) robot soccer competition,
which takes place on a field with many aliased landmarks,
as illustrated in Figure 1. The field itself, consisting of
white field markings and yellow goals, contains two axes
of symmetry, meaning that all of the key field-features such
as goal posts, field-line corners and field-line T-junctions are
found in at least four locations on the field. Also, from most
positions on the field multiple field-features will be observed
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Fig. 1. Scale diagram of the RoboCup Standard Platform League field
(measurements in millimetres). All key field-features are found in at least
four separate locations on the field, and multiple field-features can be
observed from most positions. Sourced from [2].

simultaneously. In our application, the sensor model was
combined with a dual mode Kalman filter and used as an
alternative to particle filter localisation, which can be limited
by computational constraints set by the robot hardware.
The robot used was an Aldebaran Nao v4 humanoid robot
equipped with a 1.6 GHz Intel Atom processor and two 30
fps cameras.

Although the method was developed for RoboCup, it could
be applied to any robot localisation problem where there are
multiple simultanous observations of aliased landmarks. The
remainder of this paper is organised as follows: Section II
outlines related work, Section III describes the ICP-inspired
sensor model, and Section IV presents experimental results.

II. BACKGROUND

To work effectively, localisation filters require well-
specified sensor models to describe the process by which
sensor measurements, such as landmark observations, are
generated by the physical world. Inverse sensor models
specify a distribution over possible robot poses conditioned
on the observation and the map. In this paper we describe
the ICP-inspired technique as an inverse sensor model, whilst
acknowledging that the prior pose estimate is also required
as an input.

When multiple landmark observations are made simultane-
ously, one course of action is to perform several consecutive
sensor updates on the localisation filter. This approach suffers
from a number of disadvantages. If the errors in the obser-



vations are correlated (for example, when the observations
are all extracted from the one camera frame), the use of
iterative filter updates results in a significant deterioration in
localisation accuracy [3].

An alternative approach to dealing with multiple simulta-
neous observations is to perform a joint sensor update, as
recommended by [3]. This approach requires that the ob-
servation covariance matrix accurately reflects the estimated
level of error correlation between observations, and it does
not solve the data association problem when landmarks are
aliased.

A number of approaches to the data association problem
have been formulated, including maximum likelihood land-
mark association, and Monte Carlo methods such as particle
filters [1]. This paper outlines an alternative approach, in
which observations are associated to the map in a hierar-
chical fashion, and an adaptation of the ICP algorithm is
used to estimate the robot pose that minimises the squared
positioning error over all observed features simultaneously.

By way of background, ICP is a widely used algorithm
for geometric alignment of 2D or 3D point clouds when
an initial estimate of the relative pose is known. Since the
introduction of ICP by [4], many variants of the algorithm
have been proposed, but in general the basic steps of the
algorithm as outlined by [5] include:

1) Selection of some set of points in one or both point
clouds.

2) Matching these points to samples in the other point
cloud.

3) Weighting the corresponding pairs appropriately.
4) Rejecting certain pairs (optional).
5) Assigning an error metric based on the point pairs.
6) Minimising the error metric by finding a transforma-

tion between the two point clouds.
7) Iterating the above steps to further improve the align-

ment.
By representing both observed landmarks and the land-

mark map as 2D points, the ICP algorithm lends itself to the
construction of an inverse sensor model, as described below.

III. INVERSE SENSOR MODEL
Given a set of observed non-unique landmarks in robot

relative coordinates, a global landmark map, and a prior robot
pose estimate, the ICP inspired sensor model calculates a
robot pose estimate consistent with the observed landmarks.

In this application the robot pose is defined by its 2D
planar coordinates x and y, along with its angular orientation
θ, and the landmarks are SPL field-features outputted by a
robot vision system that identifies field-lines (11), field-edges
(4), field-line corners (8), field-line T junctions (6), goal posts
(4), parallel lines (2) and the centre circle (1). The numbers
in brackets indicate how many of each feature are found in
the SPL field map.

If the application permits, the first step in the calculation
of the robot pose observation should be to pragmatically
pre-process landmark observations to restrict the number
of possible map associations. In our application, this is

achieved by examining the geometric relationship between
field-features observed in the same frame. For example, if
a goal post is observed next to a field-line T junction, the
spatial relationship between the two features can be used
to restrict the association of the T junction to one of two
possible map features, rather than one of six.

After pre-processing, the key steps in the calculation of
an updated pose observation include:

1) Mapping observed field-features from robot relative
coordinates to field coordinates, using the prior iter-
ation’s robot pose estimate xk−1, yk−1 and θk−1. In
the first iteration this robot pose estimate is provided
by the localisation filter, in subsequent iterations the
computed pose is used.

2) Hierarchically Matching observed field-features with
the map correspondence that maximises the data like-
lihood, starting with the most unique features in early
iterations, and progressively including less unique fea-
tures in subsequent iterations.

3) Representing matched field-features using 2D point
pairs.

4) Weighting the corresponding pairs appropriately, given
the confidence level of the observation.

5) Assigning a squared Euclidean distance error metric
based on the distance between point pairs.

6) Minimising the error metric by finding a new robot
pose estimate xk, yk and θk.

7) Iterating the above steps to further improve the robot
pose and to allow any incorrectly associated features
to be matched correctly.

There are many similarities between the algorithm de-
scribed above and the ICP algorithm. Aspects of the algo-
rithm are described in further detail below.

A. Hierarchical matching

During hierarchical matching (step 2), each observed field-
feature in field coordinates is independently associated with
the maximum likelihood map feature. However, only a subset
of landmarks are included at each iteration, starting with the
most unique landmark in the first iteration, and including
the most unique remaining landmark at each subsequent
iteration. This ensures that the association of the most
heavily aliased landmarks (such as single field lines in
our application) benefits from the improvement in the pose
estimate provided by previous iterations, reducing the chance
of incorrect association. In the RoboCup implementation,
the following matching priority of field-features was used:
Two goal posts, parallel lines, field-line corners, field-line T
junctions, a single goal post, a centre circle, and lastly single
field-lines.

It is important to note that this strategy is not just a greedy
maximum likelihood approach, nor is it equivalent to iterative
Kalman updates. Firstly, this is because (consistent with
the ICP algorithm), all landmarks are re-associated at each
iteration. This means that even if a landmark is incorrectly
associated in an early iteration, there is still an opportunity
for it to be re-associated correctly in subsequent iterations



as the pose estimate improves, assuming enough subsequent
landmarks are correctly associated. If an incorrect association
is corrected, there will be no negative impact on the accuracy
of the localisation filter (which is not updated until the sensor
model algorithm terminates). We have observed in testing
that this correction happens quite frequently.

Secondly, if the individual landmark associations are
internally inconsistent when the algorithm terminates, for
example due to a false positive landmark identification, or an
incorrect association, the error metric defined in step 6 will
remain stubbornly high. In many cases this will allow false
positives or incorrect associations to be detected. Greedy
approaches and iterative Kalman updates do not have this
ability.

In practise there are many camera frames in which no
distinctive field-features can be seen, and the sensor model
is forced to rely on a single-field line observation, as outlined
in Table I. In this case, the sensor model relies heavily on the
filter’s prior robot pose to generate a new pose estimate, as
indicated in Figure 7. Nevertheless, the hierarchical approach
ensures that when a distinctive field-feature or a distinctive
combination of features is seen, poor robot pose initialisation
is unlikely to prevent the sensor model from converging to
the correct robot pose, as demonstrated by the results in
Section IV.

B. Representing and solving

Once observed field-features have been matched to the
field map, matched field-features must be represented as 2D
point pairs for the ICP based approach to be used (step 3).
These points exist in the global field coordinate frame. In
each point pair, one point represents the observed position
of some field-feature, transformed from robot relative co-
ordinates to field coordinates using the current robot pose
estimate. The second point represents the true position of
that field-feature on the map. In our application, compound
features such as field-lines, T junctions and corners are
represented with sets of point pairs.

In step 4, the weighting on each point pair is scaled
according to the inverse distance between the robot and
the observation. This puts less emphasis on the features
that are further away and less precisely located than nearer
features. As with ICP, it is also possible to weight point pairs
according to the distance between the two points, which will
tend to de-weight and reject false positive observations which
do not converge to a true position on the map.

In steps 5 and 6, a new robot pose is estimated by
rotating and translating the prior robot pose to approximately
minimise the squared positioning error over all observed
features simultaneously. Given a set of N source points
{~p1, . . . , ~pN} and N target points {~q1, . . . , ~qN} with weights
{w1, . . . , wN}, the mean squared positioning error e is given
as a function of rotation matrix R(δθ) and translation vector
~t by:

e(R,~t) =
1

N

N∑
i=1

wi||~qi −R~pi − ~t||2 (1)

To find an approximate minimum for this error function,
the centroids ~̄p and ~̄q are deducted from both source and
target point clouds (in order to separate rotation from trans-
lation). The rotation matrix R is approximated using a first
order Taylor series approximation such that sin(δθ) ≈ δθ
and cos(δθ) ≈ 1. Note that this approximation has little
effect on the accuracy of the final pose since it is repeated
at each iteration. Equating the first order partial derivatives
of e with respect to tx, ty and δθ to zero gives the following
matrix system for each point pair i:

Ai

txty
δθ

 = bi (2)

where

Ai =

 2wi 0 −2wipi,y
0 2wi 2wipi,x

−2wipi,y 2wipi,x 2wip
2
i,y + 2wip

2
i,x

 (3)

bi =

 2wiqi,x − 2wipi,x
2wiqi,y − 2wipi,y

−2wipi,y(qi,x − pi,x) + 2wipi,x(qi,y − pi,y)

 (4)

Since each point pair i contributes three equations, if
N > 1, this system is overdetermined, and the least squares
solution can be found using a singular value decomposition.
The new estimate for the robot pose observation can then be
calculated from the previous pose estimate as follows:

(
xk
yk

)
= T

(
xk−1

yk−1

)
= R(δθ)[

(
xk−1

yk−1

)
− ~̄p]+

(
tx
ty

)
+~̄q (5)

θk = θk−1 + atan2(yk − p̂i,y, xk − p̂i,x)

−atan2(yk−1 − pi,y, xk−1 − pi,x) (6)

where
~̂pi = T (~pi) (7)

and
i ∈ {1, . . . , N} (8)

Step 7, iteration, is continued until all observed features
have been included in the process, and the squared position-
ing error e(R,~t) falls below a threshold or fails to improve,
or a maximum number of iterations is reached (which is 12
in our case). At this point, if the mean squared error e(R,~t)
is sufficiently small, the robot pose observation estimate x, y
and θ can be provided to the localisation filter. If the position
error is large, it may indicate that the observed combination
of field-features is inconsistent, for example due to a false
positive feature identification. It can also indicate that the
algorithm became stuck in a local minima due to a poor
initial pose, potentially indicating that the robot is lost.



C. Line observations

The sensor model as described treats all field-features as
points. It does not deal well with observations of line fea-
tures which leave the robot’s location unconstrained in one
direction. The use of a point representation will artificially
constrain the robot’s pose from sliding along line features to
improve the alignment of other observations.

Since the field-line features on the SPL field are always
aligned to the x or y axis of the field coordinate system,
this problem can easily be improved by minimising the
error function e(R,~t) with respect to just two of the three
components of the change in the robot’s pose. If the field-
line parallels the x-axis, the correct minimisation is with
respect to θ and tx, and Equations 3 and 4 are replaced with
Equations 9 and 10.

Ai =

0 0 0
0 2wi 2wipi,x
0 2wipi,x 2wip

2
i,x

txty
δθ

 (9)

bi =

 0
2wiqi,y − 2wipi,y

2wipi,x(qi,y − pi,y)

 (10)

If the field-line parallels the y-axis, the minimisation is
with respect to θ and ty , and Equations 3 and 4 are replaced
with Equations 11 and 12.

Ai =

 2wi 0 −2wipi,y
0 0 0

−2wipi,y 0 2wip
2
i,y

 (11)

bi =

 2wiqi,x − 2wipi,x
0

−2wipi,y(qi,x − pi,x)

 (12)

IV. RESULTS

A. Examples

Figures 2 and 3 illustrate the performance of the sensor
model when multiple field-features are observed simulta-
neously by a robot standing near the centre of the SPL
field. Since bipedal robots frequently push and collide while
playing soccer, causing large unanticipated heading changes,
robustness of the sensor model to poor robot pose initial-
isation is an important feature in this application. In this
example, even if the heading of the initial robot pose is
extremely poor (plus or minus 90 degrees from the true
heading), the sensor model still converges on the correct
robot pose from approximately 50% of all possible field
locations.

Since it is not possible to distinguish one end of the field
from the other using only field-features, this result indicates
that the sensor model can localise the robot from a single
observation in this field location. If the sensor model is
initialised with less heading error, the area of convergence
to the correct pose increases to cover the entire field, as
illustrated in Figure 3.

Fig. 2. Left: Sensor model area of convergence. Orange shading is used
to indicate the set of initial robot poses that converge to the correct robot
pose observation, shown as a yellow circle with direction cut-out, provided
heading initialised within 90 degrees of the robot’s true heading. Right:
Colour classified source images from the robot’s top and bottom cameras.
Observations consist of a centre circle and a field line in the bottom camera,
and a centre circle and goal post in the top camera.

Fig. 3. Sensor model area of convergence after reducing the initial heading
error to less than 60 degrees (left) and less than 45 degrees (right). These
results indicate that when several field-features are observed, the sensor
model is able to localise the robot from a single observation even if the
robot pose initialisation is quite poor.

Fig. 4. Sensor model area of convergence given simultaneous observations
of a field-line T junction and a goal post. The area of converge to the correct
robot pose (shaded in orange) assumes the initial robot pose heading error
is less than 45 degrees.

Figures 4, 5, 6 and 7 illustrate further examples of field-
feature observations and the corresponding areas of conver-
gence given 45 degrees initial heading error. In all results
the sensor model observation is considered to be correct if
it is within 10 cm and 10 degrees of the true robot pose,
which in this application is sufficient to field a strong soccer
team. In any case, the final positioning error of the sensor
model is primarily determined by the accuracy of the field-
feature observations, which are a function of the distance
to the observation, the resolution of the camera image, and



Fig. 5. Sensor model area of convergence given simultaneous observations
of parallel field-lines and a goal post, assuming initial heading error of less
than 45 degrees.

Fig. 6. Sensor model area of convergence given a single observation of a
field-line corner, assuming initial heading error of less than 45 degrees.

Fig. 7. Sensor model area of convergence given a single observation of a
field-line, assuming initial heading error of less than 45 degrees. In this case
the sensor model can only converge to the true robot pose if the component
of the robot pose in the direction of the field-line is already correct.

errors in the robot’s kinematic chain.
The area of convergence is largest when multiple field-

features are observed or if the field-features seen are rel-
atively unique. As shown in Figure 7, when only a single
field-line is observed, the sensor model can only converge to
the correct robot pose if the component of robot pose in the
direction of the line is already correct.

B. Randomly Sampled Field Positions

To evaluate the effectiveness of the sensor model more
formally, this section quantifies the sensor model’s area of
convergence to the correct robot pose, and its positioning

TABLE I
INCIDENCE OF VARIOUS FIELD-FEATURE OBSERVATIONS IN 20

RANDOMLY SELECTED SPL FIELD POSITIONS.

Field-feature Incidence

Single goal post 15%
Two goal posts 10%
Centre circle 20%
Field-line corner 5%
Field-line T junction 5%
Parallel field-lines 10%
Field-lines 95%

error, at a range of different field locations. To represent the
diversity of robot poses achieved during an SPL match in this
test, 20 locations on the SPL field were chosen using uniform
random sampling from the robot’s x, y, θ field configuration
space. The resulting test locations are shown in Figure 8.

Fig. 8. Randomly determined robot poses used for sensor model evaluation.
In positions marked with yellow, multiple field-features were visible. From
blue positions, only a single field-line can be observed, and from the red
position no field-features were visible. Position numbers correspond to
Figure 9.

This data confirms that the general assumption of one sen-
sor update per time step is frequently violated in RoboCup.
In this data set of 20 randomly selected field positions,
5% of field positions yielded no useful observations (shown
in red), 35% of positions yielded observations of a single
field-line (shown in blue), and in 60% of positions multiple
field-features could be observed (shown in yellow). The
incidence of various types of field-feature observation in this
dataset is presented in Table I. Note that the frequency of
each observation owes more to the capabilities of the vision
system than any inherent feature of the SPL field.

After discarding positions where only one or zero field-
features could be observed, the performance of the sensor
model in the remaining 12 positions with multiple field-
feature observations was analysed. The area of convergence
to the correct robot pose, given initial pose heading errors of
plus and minus 15 degrees, 30 degrees, 45 degrees and 90
degrees respectively was used to evaluate the sensor model.



As previously discussed, since field-features cannot re-
solve one end of the field from the other, an area of
convergence close to 50% with 90 degrees heading error
indicates that the sensor model can localise the robot from
a single observation. As indicated in Figure 9, this standard
was achieved in 5 out of 12 (42%) of randomly determined
field positions with multiple visible field-features, and 5 out
of 20 (25%) of all field positions. The most informative field
positions (positions 1 - 3) all contained observations of the
centre circle.

Fig. 9. Area of convergence to the correct robot pose over 12 randomly
determined field positions with multiple visible field-features.

The mean positioning error of the sensor model across all
trials in all 12 positions was 50 mm, and the mean execution
time for the sensor model algorithm on the Nao robot was
3.2ms.

C. Kidnap Tests and RoboCup Performance

In the final test, the robustness of the sensor model was
evaluated by combining it with a dual-mode Kalman filter
and executing repeated kidnap tests. In this test, the Nao
robot was programmed to walk to the kick-off position on the
SPL field. It was then repeatedly kidnapped to various field
locations and expected to return to the kick-off position. The
robot was deemed to have arrived when it stopped walking
and the time taken to localise and return to the kick-off
position was recorded.

The four kidnap positions that were chosen are illustrated
in Figure 10. Two trials were undertaken at each position.
Position 1 is the kick-off position. Table II records the robot’s
final positioning error and the time taken in each trial.

As indicated by Table II, in every trial the robot was
able to correctly return to the kick-off position. The mean
final positioning error over the the 8 trials was 45 mm. A
short uncut video illustrating a similar real-world experiment
has been included as a supplement to this paper. It should
be noted that the performance of the sensor model at the
RoboCup competition, with spectators around the field and
robots on the field, is similar to the results demonstrated in
the video and in this paper. The sensor model is relatively
robust to incorrect associations, as outlined in Section III, and

TABLE II
KIDNAP PERFORMANCE OF THE SENSOR MODEL.

Kidnap
Position

Time Taken (s) Positioning Error
(mm)

2 12.9, 13.2 53, 25
3 32.1, 30.4 22, 95
4 16.9, 17.0 7, 28
5 16.6, 15.9 88, 42

the localisation system uses the sensor model error metric to
reject camera frames containing false positive observations.

Fig. 10. Illustration of the positions used in the kidnap experiment. In
each case the robot was required to return to the kick-off position labelled
as position 1.

V. CONCLUSION

This paper has presented a novel ICP inspired sensor
model applicable to a range of problems involving mul-
tiple simultaneous observations of aliased landmarks. The
approach performs strongly in the RoboCup environment
which is characterised by false positive observations and poor
pose initialisation.

ACKNOWLEDGMENT

The authors gratefully acknowledge the support of the
School of Computer Science and Engineering at UNSW,
past and present members of the rUNSWift RoboCup SPL
team, and associated staff and students in the school’s robotic
laboratory.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. MIT Press,
2005.

[2] RoboCup SPL Technical Committee, “Robocup stan-
dard platform league (nao) rule book,” Website:
http://www.tzi.de/spl/pub/Website/Downloads/Rules2012.pdf, 2012.

[3] S. Tasse, M. Hofmann, and O. Urbann, “On Sensor Model Design
Choices for Humanoid Robot Localization,” in RoboCup International
Symposium 2012, Mexico, June 2012.

[4] Y. Chen and G. Medioni, “Object modeling by registration of multiple
range images,” Proceedings of the IEEE International Conference on
Robotics and Automation, vol. 3, pp. 2724–2729, 1991.

[5] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP algorithm,”
in 3rd International Conference on 3D Digital Imaging and Modeling
(3DIM 2001), 28 May - 1 June 2001, Quebec City, Canada. IEEE
Computer Society, 2001, pp. 145–152.


