A Description of the rUNSWift 2003 Legged
Robot Soccer Team

Jin Chen', Eric Chung', Ross Edwards', Nathan Wong', Eileen Mak!,
Raymond Sheh!, Min Sub Kim!, Alex Tang', Nicodemus Sutanto!, Bernhard
Hengst!, Claude Sammut!, and William Uther?

! School of Computer Science and Engineering
The University of New South Wales
Sydney, NSW, 2052, Australia
{hengst,claude,willu}@cse.unsw.edu.au
2 National ICT Australia

Abstract. This paper describes the 2003 world champion legged robot
soccer team, TUNSWift. The 2003 rUNSWift team is enhanced in a num-
ber of ways over previous teams; both long and short range collabo-
ration between team members was carefully crafted, a new method of
ball localization was used when the ball was close, new tools were de-
veloped for developing filters for objects returned by the vision code,
self-localization was simplified, opponent localization was significantly
improved with distributed data fusion, ball tracking was improved to
account for the ball’s velocity, edges and lines on the field were used to
assist in self-localization, and automatic gait optimization was used to
improve the forward walking speed of the robots. The result of these
changes is a team that is significantly improved over previous teams.

1 Introduction

This paper describes the rUNSWift 2003 legged robot soccer team. This team
was based upon the rUNSWift 2002 team [1], with significant extensions. In
particular, the architecture of the code was changed from a single monolithic
object in the operating system into a number of interacting modules. At the
same time, many of those modules were enhanced. As a result of these changes,
rUNSWift was the world champion team in the legged league of the RoboCup
2003 international robotic soccer competition.

Due to space limitations, not all the details of the technologies developed are
described in this paper. Readers are referred to the undergraduate theses of the
student members of the team, which will be released as UNSW technical reports
in late 2003, for complete details (also see [?]).

This paper describes a number of distinct changes to the rtUNSWift team.
In Section 2 we describe the organisational changes to the codebase itself. In
Sections 3 and 4 we describe the team coordination used. Vision changes are
described in Section 5 before moving to object tracking and data fusion in Sec-
tion 6. Section 7 gives an overview of the automatic gait optimisation, and finally,
Section 8 describes the code used in the three technical challenges.

2 Internal Breakdown

The rUNSWift 2002 legged robot soccer team [1] used a single operating sys-
tem (OS) object. In contrast, the 2003 team has broken this into multiple OS
objects in a similar manner to [3]. There are now three OS objects; the first is
triggered by incoming camera frames, the second handles actuator control, and
the third wireless communication. The main OS object handles the majority of
tasks performed by the robot; it handles vision processing, localization and world
modelling, and overall strategy. The actuator control object receives messages
from the main object telling it the directions to look and walk. It then handles
locomotion and joint control. The third object is designed to handle all data
Input/Output from the robot, mainly through wireless communication.

In addition to the large scale breakdown into multiple OS objects. The inter-
nal structure of the main object was significantly changed. In previous UNSW
teams long term behaviour, e.g. switching between forward and goal keeper,
was changed at compilation time. Each of the long term behaviours was its own
source file. In the current system, the behaviours have been consolidated into
a single hierarchy and can be switched dynamically. They have also been bro-
ken into multiple source files. During this change, cleaner interfaces between the
various modules were defined allowing the modules to be upgraded individually.

3 Behaviours

The consolidation of behaviours into a single hierarchy accompanied a major
reworking of the behaviour of the rUNSWift team. While most aspects of the
rUNSWift design philosophy for individual players remained the same, much
more emphasis was placed on team co-operation. It is important to note that we
do not equate team cooperation solely with a passing game. The close quarter
cooperation among the robots was integral to behaviour of the team and is
described in detail in the next section (Section 4). However, first we will describe
the large scale behaviour of the robots.

rUNSWift’s strategy relating to forwards was centred on aggressive play. Two
design principles underly the rUNSWift strategy: first, a forward must strive to
reach the ball ahead of the opposing team, and second, a forward should only
attempt fine control of the ball if it has enough of a lead on the opposition to
carry out that fine control, otherwise that player should concentrate on moving
the ball upfield fast without worrying overly about the exact direction of move-
ment. This is preferable to slowing down to reliably grab the ball for a front
kick, because moving the ball upfield behind the opposing team stochastically
increases rUNSWift’s chances of scoring.

The aggressive play by the forwards is tempered by a mechanism, “dynamic
role determination”, which facilitates collaboration and minimises interference
among the forwards. In “dynamic role determination”, each of the three forwards
assumes a role of attacker, supporter or striker depending on information that
is shared by the robots, via wireless ethernet as well as visually, regarding each

robot’s location, whether they see the ball, their proximity to the ball and their
current role. An attacker is a robot that is currently playing the ball. A supporter
is a robot that is supplying close-in support to an attacking robot. The striker
is the robot providing long distance support, sometimes as a wing player on the
far side of the field, and sometimes as a back.

When the Sony AIBO robots are in close proximity, they have a tendency for
their legs to become entangled. To try and avoid this, an automatic “backoff”
mechanism (see Section 4) is triggered when a forward’s vision system detects
that a teammate is in very close proximity. It is this backoff mechanism that
controls the roles of the two robots nearest the ball.

The robot furthest from the ball plays the striker role, and moves swiftly
towards a point on the field, determined by whether the ball is in the offensive
half and whether it is in the left or right half of the field. If the ball is in its own
(defensive) half, the point lies back from the ball near the robot’s own goal; if
the ball is in the target half, the point lies in the offensive quadrant opposite to
where the ball is located.

rUNSWift’s play strategy does not adopt the popular strategy of permanently
having a forward remaining back in its own half defensively but instead favours
the principle that defence is best achieved through offence and that it would be
undesirable to lose the resources of an active third forward. This strategy leaves
rUNSWift exposed to an extremely problematic situation that arises when all
three forwards are on the wrong side of the ball and opponent robots have
possession of the ball. In the Robocup 2003 final against UPenn, rUNSWift
found itself in such a situation several times because the UPenn forwards had a
kick that successfully flicked the ball past rUNSWift’s forwards.

rUNSWift developed a defensive behaviour to counter this problem: the for-
ward with the greatest offset across the field from the ball quickly rushes to
position itself behind the ball, while the two other forwards rush directly to-
wards the ball. This defensive behaviour is dynamically triggered when all three
forwards are on the wrong side of the ball. The behaviour is effective because
when this situation occurs, an opponent robot is likely to be either closer to
the ball than the forwards or is between the forwards and the ball. If all three
forwards rush directly towards the ball, they will either become blocked by op-
ponent robots or become entangled with one another. In order to ensure effective
defence, one of the forwards needs to quickly get back to its own half, between
the ball and its own goal to block a possible goal. As it is important that this
robot does not become entangled or taken off the field, it circles around other
robots and travels along the boundary of the goalbox if it finds that its path
would otherwise travel through it.

4 Local Robot Interactions

In addition to possessing a global form of cooperation between the robots, where
a third robot is placed apart from the main two forwards, the close-in cooperation
and local interactions are an important feature of the UNSW/NICTA strategy.

The two robots closest to the ball do a lot of shifting and reconfiguring of their
positions relative to the ball and one another as they chase the ball. Collectively,
this allows them to better maintain possession and control of the ball, as the
robots support one another and take turns attacking the ball. Typically one
robot will be attacking the ball, and the other will be closely supporting, getting
ready to take over the attack. This is mostly used in overcoming the opponents’
defensive moves. When the original attacking robot runs into the opponents’
resistance, the supporting robot will then take over the attack.

As delays of 500ms were common in the wireless communication system, this
close-in cooperation was heavily reliant upon vision to verify the last known
position of a robot’s teammates. If a robot cannot see any of its teammates, it
will simply attack the ball. However, when a robot can see a teammate, a decision
is made to determine whether it should attack the ball, or support the attack.
This decision is made based on three aspects: the robots position relative to the
field, the ball and its teammates. The overall effect is subtle but exceptionally
effective.

This strategy uses the concept of “Desired Kick Direction” (DKD) from
previous UNSW teams. Depending on where the ball relative to the field, the
robots will want to move the ball in a different direction (See Fig. 1a). This
desired direction will help in determining which robot is in the better position
relative to the ball, and thus which robot should attack the ball. Generally, the
DKD is away from the robots own goal, and towards the target goal.

Top Quarter

Middle Half

Bottom Third

(a) (b)

Fig. 1. (a) Desired Kick Directions (DKD). (b) Various “L” support positions.

After the DKD has been determined, we draw a star, centred on the ball and
pointing in the direction of the DKD (see Fig. 2). This splits the area around
the ball into regions, and it is the teammate’s positions relative to each other on
this star that determines which is to attack and which is to support. The details
of this algorithm are shown in Table 1.

DKD

Mid Region
Top Region

Bottom Region Mid Region

Fig. 2. Star, dividing the area around the ball into regions

The final major component in our local cooperation strategy is the close-in
support/backoff position. If the robot is not attacking the ball, it will position
itself to prevent the ball from travelling towards the defending goal, and to get
ready to take over the attack towards the target goal. This position is based on
where you are on the field, and relative to the position of the ball (See Fig. 1b).

If the ball is in the top quarter of the field, the supporting robot will position
itself in an “L” shape to the side and behind the ball, such as that depicted by
points A and B. The robot will go to point A or B depending on which side of
the DKD line it is on. If it is to the left of the line, it will go to the left most
position, i.e. A, otherwise it will go to point B. The reasoning behind this is
that this will keep the dog from obstructing goals by travelling between the ball
and the target goal. Probabilistically, it will also have the dog travelling to the
closer support position, and it will have the dog closer to the centre of the field,
and between the ball and its own goal. The support position is back more than
it is to the side. This is so that the supporting robot will more often be behind
any loose balls, ready to take over the attack.

If the ball is in the middle half of the field, the supporting position will be in
a wider “L” shape such as that depicted by points C and D relative to the ball.
Again the robot will choose between points C and D depending on which side
of the DKD line it is on. The “L” is wider here so that the supporting robot is
wider, ready to intercept sideways passes.

In the bottom quarter of the field, i.e. the defensive quarter, the support
position is in an “L” shape in front of the ball. Instead of positioning itself

— If a robot is in the bottom region of the star, and the other robot is not, then that
robot will attack the ball and the other robot will go to the supporting position.

— If both robots are in the top region, then the one who is closer will attack the ball,
and the other will get out of the way as the closer robot will probably perform a
180 degree kick. After getting out of the way, that robot will move into the support
position.

— If both robots are in the bottom region, then the robot to attack the ball is deter-
mined based on the following:

e Which robot can actually see the ball. (as opposed to wireless knowledge).
e Which robot is closer to the ball.

e Which robot is closer to the DKD.

e Which robot has the lower player number.

— In all other cases both robots will closely circle around the ball towards the DKD
until one stops seeing its teammate, and thus is free to attack the ball, or one
enters the bottom/attacking region. Circling around closely allows the robots to
maintain a defensive position relative to the ball.

Table 1. The algorithm for deciding the role of a robot.

defensively between the ball and the defending goal, it is away and in front of
the ball. This is so that the support robot stays out of the attacking robots way,
minimizing the chance of getting leg locked with that robot and inhibiting the
defense. It is also then able to capitalize on any opportunities where the ball
becomes momentarily loose from the opponent attacker.

An emergent property of the up field “L” shape in the bottom third of the
field is that the two robots tend to move in a circular path around the bottom
corners (See Fig. 3a).

Typically, the attacking robot will be in the in the bottom corner trying to
stop an opponent from progressing any further with the ball. Meanwhile, the
supporting robot will wait in the supporting position. As the first robot loses
control of the defense and moves out of the bottom region of the “star shape”, the
supporting robot will take over the attack and the first robot will then assume
the support position. In this way, the robots exchange positions, moving in a
circular fashion until the ball is out of the corner.

A special case that needs to be discussed is what happens to the supporting
position when the ball is near the side edges. In this case, the supporting position
will be against the side edge and behind the ball (See Fig. 3b).

Often the attacking robot will get into a scrum on the side wall with one of
the opponent robots. In the case where the opponent robot wins and gets the
ball past the attacking robot, the supporting robot is there as a second line of
defense to stop the ball from advancing to far towards the defensive goal, and
as a second chance to clear the ball.

The behaviour of local cooperation in the UNSW/NICTA strategy is a result
of having Desired Kick Directions, Star shaped region dividers, L shaped support
positions and the ability to visually see teammates and opponents. It is the
combination of local cooperation skills and global cooperation skills that results

October 2, 2003
Draft

Target Goa

(a) (b)

Fig. 3. (a) Corner, and (b) side defensive locations

in an effective team strategy. Although to the unfamiliar eye, the behaviour may
not be obvious, the behaviour, subtle as it is, is quite deliberate, planned and
effective.

5 Vision Overview

The vision system used in 2003 is very similar to that used previously. Informa-
tion from the CMOS camera is processed by first identifying the colours, then
forming coloured blobs, combining the coloured blobs to form objects and finally
calculating the location of objects relative to the robot.

rUNSWift 2003 used replaced the nearest neighbour algorithm from 2002,
with a table generated using the C4.5 decision tree inducer as it was found to
be less susceptible to lighting changes. Neither method was found to be entirely
satisfactory, so it was also necessary to fine-tune the result with a manual clas-
sifier.

Ball localisation close to the robot gained more importance this year due to
the heavy emphasis on close-in interactions. As the close-in interactions require
accurate recognition of the ball’s position when a large portion of the ball would
reside outside of the camera frame, a new method was introduced that could
determine the centre of the ball by applying circle geometry and edge detection.
Once the centre is accurately determined, the ball’s location is calculated by

projecting the ball centre onto a plane parallel with the ground plane. For far
away balls, distance is determined by the width of the bounding box.

Beacon detection is unchanged from previous years. The relative positioning
of colour blobs forms the basis of beacon recognition. Given the location and
size of two colour blobs, a series of logical deductions are made to determine
whether they form a valid beacon. Distance to the beacon is determined by
taking the Cartesian distance between coloured blobs centroids, and an equation
that maps centroids distance to world distance is then applied. The Cartesian
distance above all else was used because it is found to be least susceptible to
different colour calibrations. Geometric transformation was found not to be a
viable solution due to inaccuracies in the robot’s joint readings (£5°), which
could introduce a significant error over large distances.

Goal recognition is similar to beacon recognition, but distance is determined
by goal height. Because the goal often intersects with the top camera frame,
simple height extensions based on the width of the goal is applied.

While detection of beacons and other objects is largely unchanged from previ-
ous years, the filtering of false positive identifications was significantly changed.
These filters have traditionally been hand crafted after watching the behaviour of
the robots. This year a more structured approach was taken. A port of the vision
module that can be executed offline using logs taken from the robots allowed the
filters to be tested with large sets of sample images. This system shows both over
and under-filtering quickly, as well as allowing the identification of which rules
are causing over-filtering. Originally intended for development of sanity checks,
this offline port have introduced improvements to development and debugging
time in other areas, including both the ball and edge detection challenge.

6 Object Tracking

The agent’s internal model of the world allows it to track it’s own location on
the field, as well as the location of the ball, it’s teammates and opponents. This
section of the rUNSWift team was entirely re-written this year using extended
Kalman filters. The location of the robot itself was tracked with a single 3D
Kalman filter over X, Y, and 6. The location of the ball was tracked, along with
its velocity, in a pair of 2D Kalman filters. Finally, the opponents were tracked
using a set of four filters on each robot. These final filters shared information
between allied robots using distributed data fusion.

Tracking opponent robots is inherently difficult since the visual detection of
robots is relatively poor, and the observation frequency is low. Our aim is to
track the approximate position of the opposition team, hence we are not inter-
ested in fine accuracy as we would be with our own position, or especially in the
case of the ball. For these reasons we developed a distributed sensor network
for opponent tracking. This consists of multiple sensor nodes (i.e. our team’s
robots), which are connected with a temporal constraint, since our robots do
not communicate every frame (the cycle period of the sensor), but rather wait
for a period of several frames. The processing of the network is also done in a

distributed fashion, with each node keeping it’s own model of the opponents’
positions. The model we developed is based on Information Form Kalman Fil-
tering.

6.1 Information Form Kalman Filter (IFKF) Algorithm

For a full introduction into Information Form Kalman Filtering see [4]. This work
extends that work through adaptation to non-linear observations. The informa-
tion form Kalman filter algorithm is a recasting of the basic Kalman filtering
algorithm. The data contained in a Kalman filter, expected value z and co-
variance matrix @, can be represented in the form of inverse covariance times

expected value y = Q 'z and inverse covariance Y = Q!, known as infor-

mation form. B; doing this, and rearranging the update eiuations accordingly,
we obtain a system mathematically identical to a Kalman filter model where
updates are of the form

y(klk) = y(klk —1) + i(k)
Y(klk) = Y(klk = 1) + L(k)

where i(k) and I(k) are the updates due to observations at time k. This pro-
vides a distinct advantage over regular Kalman filtering, in that estimations are
formed from linear combinations of observation information. Hence if sensor n
last sent distributed update data at time k-c, then it simply sends Zfz o 2(7)
and similar for I, as an update to the other sensors. Therefore, ignoring the com-
plexity of synchronization of updates, all sensors should hold the data (assuming

N sensors)

y(k) = yk—a) + S0 (X ain(d)

and similar for I. This solves a key problem in decentralised data fusion,
all nodes hold equivalent data in the long term. We also mentioned that the
information form of the Kalman filter is mathematically equivalent to the regular
Kalman filter, therefore the estimation held by all the nodes is equivalent to the
estimation made if a single node was to receive all observations by all nodes
combined.

6.2 Observation Matching

The algorithm described above solves the problem of having multiple sensor
nodes with our temporal constraint, however the task of tracking opponent po-
sitions still holds other issues. Tracking a team of four opponents requires the
estimation of four positional vectors, this indicates that four separate informa-
tion Kalman filter models need to be used, or a similar approach applied. This
leads to a very elementary problem, given an observation, and that all opponents

look identical, which model should be updated? There are two simple solutions
to this problem, both of which were tried.

The first solution is arguably the logical one, choose the most probable model.
This approach can be realised through the equation

ETKE

P(O|Gy) = —L—¢~

211, /1K

where O represents the observation, G, the nth gaussian probability dis-
tribution, 2 the innovation vector and K the gaussian covariance projected to
observation space. By choosing the gaussian with the largest of these probabili-
ties, and updating it’s Kalman filter model with the observation, we can match
individual observations to individual models. Although this solution is perhaps
the mathematically precise one, it suffers from several problems, the most severe
of which is that some gaussians reach outer limits, growing very large, and end
up not winning any observations, while other gaussians win alot of observations
and hence “bounce” between observations.

A variation of the above is to use the same algorithm, except instead of using
the probability of the observation given the gaussian, use the number of stan-
dar(i variations away from the expected value the observation is, this is given by

z- Kz
e~ —z . By using this value instead gaussians that do not attract observations,
grow in variance, and hence have a much greater chance of “winning” an ob-
servation. However this method still does not offer adaptation to an opponent’s
positions quick enough, suffering especially in the kidnapped robot situation.

The second simple solution to the problem of observation matching is to
“share” the observation around. We can apply a fraction of an observation to
a gaussian in the IFKF by multiplying the variance of the observation by the
inverse of the fraction. Hence we can alot a weight for each gaussian (n)

w, = —LOIGn)
> ., P(OlGy)

and apply the fraction of the given observation to the IFKF. This solution
leads to a set of models that can very quickly adapt to changes in the opposition’s
positions as gaussians quickly move from areas where there are no observations
to places of high observations. However the solution also leads to problems of
multiple gaussian distributions becoming extremely similar, at which point they
are very unlikely to separate.

After analysing the two simple solutions discussed, we can see that both have
their problems. Ideally the solution should have the ability for models to adapt
to sudden changes in opposition position’s that the second method offers, while
maintaining a reasonable spread of gaussian distributions that the first method
has. The logical step was to try to create a hybrid method which combined
the two, and hopefully inherits both ideal behaviours. By using the calculated
weights above, we can create a new weighting system taking both methods into
account. The new weight v can be calculated by

vy, = (1 —a)w, + dp,c

where w,, is the original weight, j is the “winning” gaussian calculated using
standard deviations, ¢ is the Kronecker delta and « is a constant between 0 and
1. In fact if we take o as 1 we get the first solution, and as 0 we get the second.
We can see this solution takes a portion of the observation and assigns it to
the “winner”, then breaks the compliment portion into pieces according to the
second solution. This hybrid solution works extremely well, providing a highly
adaptive set of distributions while maintaining a spread over all observation
areas. It of course still inherits some of the problems that the initial solutions
had, and it certainly would not be reasonable where acute accuracy of positions
was required, but it succeeds in our initial goals, providing a good approximation
of the opponent’s positions, representing observations from all teammates.

7 Automatic Gait Optimisation

A major innovation made by the UNSW/NICTA entry this year was automatic
gait optimisation (see [2] for more details). This was the first such technique
seen in the competition and resulted in improvements in speed and stability over
previous hand-crafted gaits. The technique learned fast enough to run on-site
at the event during the allocated practice days before the start of competition
matches.

7.1 Background

This work was built on top of the locomotion module from previous years, orig-
inally developed by the year 2000 UNSW team. The walking component of the
locomotion module was designed on the concept of a rectangular walk locus; this
is the trajectory traced out by the robot foot as it walked [5]. It was parametrised
by three movement parameters for omnidirectional control, one speed parame-
ter that controlled the rate at which the paw moved around the locus, and eight
stance parameters. These parameters were used to define the four corners of the
rectangular locus, as well as the position of the loci relative to the robot body.

A variation of the walk locus used by the 2002 UNSW team was a trapezoidal
locus. This was designed to reduce the slowing effect caused by the claws on the
rear feet of the robot catching on the carpet surface. This change resulted in
a significant speed increase of approximately 12% over the rectangular locus,
but it was found that it was much less manoeuvrable and not very smooth. For
these reasons, both gaits were used, with the strategy determining when it was
suitable to use a particular gait.

This work builds on these previous gaits by exploring the space of quadrilat-
eral loci to find an effective gait. This automation has two effects: we are able
to find a more effective gait than used previously, and we are able to optimise
that gait for a particular walking surface. As with the 2002 architecture, the new
walk was only used for walking forward, with no sideways movement component
and less than 15°s~! turn.

7.2 Problem Representation

The problem representation was formulated with the intent of restricting explo-
ration to small local changes to the walk locus. Large changes were not con-
sidered as it was known from previous years that effective walks existed in the
space being searched, and small changes both increase search speed and min-
imise disruption to other tasks, such as localisation, that may be dependent on
characteristics of the previous walking system.

The new quadrilateral walk locus is described by four offsets from the original
rectangular locus, and the speed of the robot foot around the locus is constant.
Using the original locus as a base allows all of the existing speed and turn controls
to carry over to the new gait. In order to explore this search space, each of the
offsets can be moved in three dimensions — either forward or backward, sideways,
and up or down. Since there are four corner points in a quadrilateral locus, this
produces a 12-dimensional vector representation. This was then extended by
using different loci for front and rear pairs of legs, resulting in a 24-dimensional
vector representation.

The basis rectangular locus is positioned relative to the robot body using
the same low forward-leaning stance used by the UNSW team in past years.
Specifically, this places the centre of the front locus 60mm in front and 5mm out
sideways from the shoulder joint, and the centre of the rear locus is positioned
55mm behind and 10mm out sideways from the hip joint. The shoulder and hip
joints are raised 70mm and 110mm from the ground respectively. The result of
this is a quadrilateral locus shape in three dimensional space.

7.3 Experiment Environment

The experiment environment was largely based on the setup used by Hornby
et al. [6,7]. The robot walks back and forth between two landmarks, and the
optimisation method tries to minimise the time required.

Landmark Landmark

Robot

Fig. 4. The experiment environment.

The landmarks used in the experiment were the two beacons at either end
of the middle field line. To determine when the robot has reached a landmark, a
combination of visual distance estimation and infrared distance reading are used.

Once the robot determines that it is within a pre-defined distance of the target
landmark, it stops, turns around and lines up to face the opposite landmark,
and begins the next trial run. The environment is shown in Figure 4.

The time measurement was based on the camera frame rate and execution
cycle of the robot. The camera receives 25 frames per second; a count of the
number of camera frames processed is kept as the robot walks from one land-
mark to the other. The goal of the optimisation process then is to minimise
this amount. Given the fixed distance walked, minimising time corresponds to
maximising speed.

There were two main sources of stochasticity in this experiment. Specifically,
they were:

— FError in distance measurement from sensors — this may cause the robot
to stop either too early or too late in front of the target landmark. As a
consequence, the distance walked on each trial is not exactly the same.

— Error in positioning — the distance covered could also turn out to be different
if the robot ventured slightly off course. While the robot was programmed
to head straight towards the landmark, some error in sideways shifting was
present.

In particular, the error in distance measurement was greatest when a bouncy
walk was produced. A bouncy walk had the side effect of shaking the robot
head, which would result in the sensors producing inaccurate distance readings,
and would thus tend to end trials prematurely. To work around this problem, the
robot stopped briefly after each trial to settle, and then re-measured its distance
to the target landmark; trials that fell short by more than a certain threshold
were penalised.

To reduce the effect of stochasticity, a single measurement of gait speed
was implemented as four separate runs between the landmarks. The average
of the two median readings was used as the evaluated time. This meant that
measurements would take more time, but allowed us to use a non-stochastic
optimisation technique.

It should also be noted that while the robot was mostly walking straight
forward, it was applying small corrections to its heading to reach the destination
landmark. This had the important effect of introducing small amounts of turn
into the evaluation of the walk. The final walk was quite robust to small amounts
of turn.

7.4 Optimisation Method

With the problem representation and experiment environment established, the
problem has been reduced to one of multidimensional optimisation and many
algorithms are applicable. A major restriction is that gradient information is not
available.

We expected the search space to be relatively smooth, and the method we
chose to employ was Powell’s (direction set) method for multidimensional min-
imisation, as outlined by Press et al. [8]. Powell’s minimisation method starts

with a set of directions in the multidimensional space, minimises along each one,
and notes the effectiveness of each direction. It then uses that to derive new
directions, with the intention of finding directions that minimise the function
quickly.

As stated previously, the locus is represented as four corner points of the
quadrilateral, and each point can be moved in three dimensions. Using different
locus shapes for front and rear pairs of legs, this adds up to a 24-dimensional
search space. Instead of using the set of unit vectors in the search space as
the initial direction set, we chose a different set with the intention of exploring
the search space more efficiently. This was a linear transform of the set of unit
vectors, i.e. we can reach any point in the space using a linear combination of
this set of vectors.

The directions are shown in Figure 5. They are divided into three partitions
of eight directions each. Each partition shifts the loci in a certain physical direc-
tions. Note that when minimising along each direction, the values found for each
direction may be positive or negative. In other words, the physical movement of
the locus points for each minimisation direction may be in the directions shown
or they may be reversed.

7.5 Other Experimental Details

The minimisation method was run at the 2003 RoboCup competition. Unfortu-
nately, due to preparation time constraints at the venue, we were not able to run
the method through to complete convergence. We were able to get through min-
imisation along 22 of the 24 dimensions. At one point during the minimisation
we noticed that the robot seemed to be stuck in a poor local minima, and so
we restarted that particular line minimisation. It did not get stuck in the local
minima the second time. We believe the minima was an artifact of noise in the
robot’s measurements. Also, a programming error in the code resulted in some
different minimisation directions. This inverts the two points on the right hand
side of the rectangles in Figure 5. Note that this is a linear change in basis and
the modified basis set can still reach every point in the search space.

7.6 Results

The loci produced by the minimisation technique are shown in Figure 6 and Ta-
ble 2. The offsets in Table 2 are added to the x —y — 2z positions of corresponding
corner points in the original rectangular loci to produce the final loci. For ex-
ample, locus point 1 corresponds to the bottom right corner point of the front
locus. To calculate the shifted position of locus point 1, the bottom right corner
point of the front locus in the basis rectangular locus is shifted back 3.64829mm,
4.65264mm outward, and 5.44244mm downwards.

In general, the walk tended to take long forward strides with the front legs,
with the sideways spread reducing in towards the body when stretching forwards
and spreading outwards from the body when pulling back. The rear legs took
large, high steps forward, with sideways spread reducing in towards the body

Direction # Front leg locus Rear leg locus Direction # Front leg locus Rear leg locus
1 DR AR S A A 5 DR A S S
R s IR s o | Teeee eae
g | e g ;| e e 9

(a) Forward/backward directions: these directions have the effect of modifying the
horizontal length of the locus.

Direction # Front leg locus Rear leg locus Direction # Front leg locus Rear leg locus
s | A ST 13 ;
P / f O
et .- e -
10 / : 14 ’
/ e [. o
eerereeen e @ -
1 / : 15 ’
/ e [— =
eerereren et [-
12 / : 16 ’
[S— o [TRr— [

(b) Sideways directions: these directions have the effect of either bringing the locus
closer towards or further outwards from the robot body.

Direction # Front leg locus Rear leg locus Direction # Front leg locus Rear leg locus
@@ e St)

17 21 ; ; I ;

[e] @

22

>

oo
A
oo
oo
i
oo
)

i

L]

e . e L] [= -9
19 I I 23 ; ;
[] [1 > [®

T 3 -) - - * [1

20 : ¢ 24 ’ ;
[2 N [3 > [38 > r e @)

(c) Vertical directions: these directions have the effect of either raising or lowering the
height of the locus.

Fig. 5. Search directions used for manipulating the locus with Powell’s method.

Front locus Walk direction

72.48mm
3 N 2eee.
/- _________________________ 34 smm
: ———— :
Rear locus Walk direction
—

25mm

Fig. 6. A side view of the loci produced by the minimisation technique, shown in bold.
The dotted lines show the basis rectangular loci.

Locus| Forwards| Sideways Vertical
Point|offset (mm)|offset (mm)|offset (mm)
-3.64829 4.65264 5.44244
9.40879 -2.16859 1.80812
0.50342 2.12128| -0.298782
7.92933 10.6357 4.47817
-6.30445 -4.70413 -5.22602
-2.58385 14.6642 10.4322
13.8908 2.5354 -4.09243
-8.3251 -1.80062 -1.51026
Table 2. The offsets learned by our optimisation procedure.

0 O Uk W N

when pushing back and spreading outwards from the body as the legs were raised
and brought forward for the next step.

The speed of the gait was measured at 27cm s~!. This was significantly faster
than the previous hand-developed trapezoidal walk locus on the particular sur-
face used at the competition. In addition, the minimised locus was considerably
smoother than the trapezoidal locus, and kept the robot’s camera steadier. This
had helpful effects on other tasks required to play soccer effectively, such as
distance and velocity estimation and localisation.

To evaluate the effectiveness of the technique under more controlled condi-
tions, the walk produced by the technique at RoboCup was compared with the
hand-crafted trapezoidal locus and rectangular locus walks in our lab. The com-
parison was run on a similar surface to that used at RoboCup, timing the robot
over a distance of 1 metre, over 50 trials for each walk. The rectangular locus
was the slowest, as expected, with an average speed of 22.69 + 0.45cms~!. The
trapezoidal locus was next, measured at 25.42 +0.50cms~!. The walk produced

at the competition came out as the fastest, measured at 26.99 & 0.50cms—!.

8 Challenges

In addition to the main robocup competition, there were three technical chal-
lenges which teams competed to complete at RoboCup 2003. These were to walk
the length of the field avoiding other stationary robots, to kick a black and white
ball, rather than the normal single-colour orange ball, into the goal, and finally,
to move to each of five separate points on the field in turn without the aid of
markers around the side of the field.

8.1 Obstacle Avoidance

To complete the first challenge, the robot is given an additional internal repre-
sentation of the world in the form of a grid. When an obstacle is detected, it
is placed into this grid. A reinforcement-learning framework is applied to this
information, thus determining action policies for the robot. This action policy
maps grid-squares to the direction in which the robot should travel to achieve
its goal.

When an obstacle is seen through the robot’s vision system, its location in
the world and its existent probability are calculated. This information is then
recorded in the robot’s internal world model.

When a previously detected obstacle cannot be seen when it should be visi-
ble, its existent probability decays. Prolonged unseen period of an obstacle will
result in it being removed from the world model. This step is done to overcome
reliability issues in the robot’s vision system.

The reinforcement-learning framework consists of a set of states and a set of
actions for each state. At any time, the robot is in a state S and it must choose
to take an action A, upon completion of the action, the robot will result in a

state S’ and receive a reward R. When determining its next action, the robot
should aim to maximise the cumulative reward.

Each grid in the world model is a state in the reinforcement-learning frame-
work, there are eight possible actions that a robot can do in each state, that
is, moving in the eight basic directions. The reward scheme is defined such that
the robot will result in severe penalty if it collides with an obstacle, moreover, a
small penalty is awarded to the robot for each action it takes, so that the robot
would learn to reduce the number of actions it needs to achieve its goal, thus
result in a shorter path through the obstacles.

Since the action policies are discrete and the real world is continuous, to
smooth out robot movements, the actual motion of the robot is determined by
combining the policies of the four grids closest to the robot’s location. The poli-
cies are translated into vectors where the direction of the vector is the direction
of the policy, they are then combined by calculating their vector sum.

8.2 Black-and-White Ball Detection

In order to detect pixels that have a high probability of forming part of the
black-and-white ball, each pixel in the colour-classified image was examined for
such characteristics as classified colour, number of white classified pixels in the
immediate vicinity, number of green classified pixels in the immediate vicinity
and the like. These criteria were developed by trial-and-error, however future
development may allow a machine-learning approach to this problem.

Spatially dense clumps of these so-called ‘interesting pixels’ were then found
using an Expectation-Maximisation based algorithm. The spatial average posi-
tion of all these interesting pixels was first determined. A weighting function
was then applied to all interesting pixels, centred at this average position and
scaled based on the average distance of all pixels from this average position. The
weighted average spatial position was then found and the process repeated until
convergence.

It was found that at short range this algorithm would converge to single spots
on the ball. As a result, a second, similar processing stage was applied but with
the weighting function scaled based on the expected apparent size of the ball.
This improvement was found to be effective in causing the algorithm to converge
to the actual ball position at middle to close distances.

Once the position of the ball in the image was found, a geometric transform
was applied to find the position of the ball relative to the robot, based on knowl-
edge of the camera position and the fact that the ball lies on the field. Various
heuristic ‘sanity checks’ were then applied before the parameters of the ball were
passed onto the behaviour subsystem.

Finding and Manipulation The traditional rUNSWift frontkick, chestkick
and turnkick were found to be ineffective on the challenge ball due to its variable
size and surface texture. However, due to the relative softness of the ball, it was
found that by bringing the front paws inwards, it was possible to run into the ball

and kick it forwards with reasonable accuracy and force, even if the approach to
the ball was off-centre.

8.3 Edge Detection and Matching

Over most of the field, it is possible to localise based on triangulation off the two
goals, using largely existing infrastructure and some data smoothing. However,
In order to provide localisation information when too close to a goal, a visual
edge matching algorithm was developed. Firstly, the edges between white and
green classified pixels were found. This search was limited to areas of the image
that corresponded to locations on the field closer than 2 meters. These edge
points were filtered for noise and randomly culled to leave about 20 to 30 edge
points.

A geometric transform was applied to these points to find their position on
the playing field, based on knowledge of the camera position and the fact that
these points intersect the ground plane. Once these points are found, they are
converted to global co-ordinates based on the current best-guess position (ob-
tained via triangulation of the goals and odometry). A lookup table was then
used to determine the distance between the projected points and the nearest
consistent feature, such as a field line or field edge and these distances summed
to form a cost function. A spatial offset was applied to all the points and the
cost function recalculated. This process is repeated for a number of offsets in the
two translational and one rotational dimension to find the one that results in
the lowest cost function. This represented the position that explains the current
observation with the highest probability and was taken as the best ‘match’ posi-
tion. This process was then repeated using successively smaller offsets and using
the lowest cost position of the previous iteration as a starting point, until the
required accuracy is obtained. This algorithm was referred dubbed ‘NightOwl’.

Behaviour Three broad behaviours were developed in solving this challenge.
The first routine localised in the absence of any previous localisation knowledge
by facing one goal, turning the body whilst tracking that goal then panning to
face the other goal, turning around if the angle was too large (as would be the
case if the robot were facing out of the field). Simple triangulation was used to
determine the location based on this observation. The second routine involved
keeping the robot facing across the field whilst panning the head left and right to
observe the two goals. Distance and heading measurements from each goal were
added to a Kalman filter which would track the robot’s position whilst it was
moving. Finally, when the desired point to move to was too close to a goal for
an accurate measurement, the NightOwl routine would be invoked which would
look down at the field, near the goalbox, and attempt to perform edge matching
to obtain localisation.

9 Conclusion

Significant development occurred in the rUNSWift team this year along a number
of lines. Software engineering process improvements as well as code re-structuring
allowed the team to progress in a number of different directions.

The overall strategy of the team was re-implemented with a strong focus
on cooperation of two forwards working in close proximity. A new method of
ball localization was used when the ball was close, and hence partially out of
the camera frame of the robot. New tools were developed for building filters
for objects returned by the vision code. Tracking of objects was made main-
stream using Kalman filters. In addition, opponent localization was significantly
improved with distributed data fusion. For the challenges, a system using edges
and lines on the field to localise the robot was developed and used to aid locali-
sation during games. Finally, automatic gait optimization was used to improve
the forward walking speed of the robots. The result of all these improvements
was a high effective, world champion, robot soccer team.

References

1. Olave, A., Wang, D., Wong, J., Tam, T., Leung, B., Kim, M.S., Brooks, J., Chang,
A., Huben, N.V., Sammut, C., Hengst, B.: The UNSW RoboCup 2002 Legged
League Team. Undergraduate thesis in computer and software engineering, Univer-
sity of New South Wales (2002)

2. Kim, M.S., Uther, W.: Automatic gait optimisation for quadruped robots. In:
Australasian Conference on Robotics and Automation, Brisbane (2003) Under Sub-
mission.

3. Veloso, M.M., Uther, W.T.B.: The CMTrio-98 Sony legged robot team. In Asada,
M., Kitano, H., eds.: RoboCup-98: Robot Soccer World Cup II, Berlin, Springer
Verlag (1999) 491-497

4. Durrant-Whyte, H., Stevens, M.: Data fusion in decentralized sensing networks. In:
4th International Conference on Information Fusion, Montreal, Canada (2001)

5. Hengst, B., Ibbotson, D., Pham, S.B., (2001), C.S.: Omnidirectional Locomotion for
Quadruped Robots. In Birk, A., Coradeschi, S., Tadokoro, S., eds.: Lecture Notes
in Computer Science, RoboCup 2001: Robot Soccer World Cup V, Springer (2002)
368-373

6. Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Autonomous
Evolution of Gaits with the Sony Quadruped Robot. In Banzhaf, W., Daida, J.,
Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E., eds.: Proceedings
of the Genetic and Evolutionary Computation Conference. Volume 2., Orlando,
Florida, USA, Morgan Kaufmann (1999) 1297-1304

7. Hornby, G.S., Fujita, M., Takamura, S., Yamamoto, T., Hanagata, O.: Evolving
Robust Gaits with AIBO. In: IEEE International Conference on Robotics and
Automation. (2000) 3040-3045

8. Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes
in C: The Art of Scientific Computing. Cambridge University Press (1992)

