
SFEDL’04 Preliminary Version

Semantics and Analysis of Instruction List
Programs

Ralf Huuck 1

National ICT Australia
University of New South Wales

2052 Sydney, Australia

Abstract

Instruction List (IL) is a simple typed assembly language commonly used in em-
bedded control. There is little tool support for IL and, although defined in the
IEC 61131-3 standard, there is no formal semantics. In this work we develop a
formal operational semantics. Moreover, we present an abstract semantics, which
allows approximative program simulation for a (possibly infinte) set of inputs in
one simulation run. We also extended this framework to an abstract interpretation
based analysis, which is implemented in our tool Homer. All these analyses can be
carried out without knowledge of formal methods, which is typically not present in
the IL community.

Key words: Instruction List, Programmable Logic Controllers,
operational semantics, abstract simulation, abstract
interpretation.

1 Introduction

Programmable Logic Controllers (PLC) are widely used in automation control.
They drive assembly lines, robots, and whole chemical plants. The standard
IEC 61131-3 [IEC98] defines a number of programming languages for PLCs.
These languages range from high-level, graphical ones with powerful struc-
turing possibilities to low level languages close to circuit design or machine
language. One of the low level languages is Instruction List (IL).

IL is a simple typed assembly language, frequently used whenever it is
necessary to have compact, time-critical code. The IL language itself provides
little structuring possibilities, in fact, goto-like jumps are the only ones. This
makes IL programs difficult to read and difficult to manually analyze. Fur-
thermore, there are hardly any tools available for algorithmic analyses of IL

1 Email: rhuuck@cse.unsw.edu.au

This is a preliminary version. The final version will be published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Huuck

programs. The situation is even worsened by the fact that the standard itself
does not provide a formal semantics.

The IL language is by its nature particularly prone to run-time errors:
variables exceed their allowed range, code is unreachable or leads to infinite
loops, there are typing mistakes, or illegal arithmetic operations.

There have been some approaches to abstract IL programs to automata
[MW99,Wil99,CCL+00] and Petri net like formalisms [HTLW97,HM98,Bau98].
The analysis is generally carried out by translating [RK98,KBP+99] the for-
malism into model checking tools ([OY93,LPY97,HHWT97,McM00]). The
disadvantages we see in these approaches are that there is no formal opera-
tional semantics for IL itself, the abstract models are sometimes too coarse for
the nature of errors, and the analysis process requires substantial background
in formal methods. The people programming PLCs, however, are often con-
trol engineers whose expertise is rather in the development of the plant itself
which is driven by the PLC

In this work we propose analysis approaches which do not require any
formal methods knowledge and can often be carried out fully automatically.
We first develop a formal operational semantics for IL programs. The oper-
ational semantics does allow code to be simulated. Since PLC are reactive
systems, it is tedious and sometimes impossible to simulate all possible runs.
One improvement we propose is an abstract simulation. This allows to simu-
late approximatively for possibly infinite sets of inputs in one simulation run.
Moreover, we explain the extension of this abstract simulation to standard ab-

stract interpretation [Cou78,CC79], for analyzing statically the program code
with respect to certain generic properties. This has been implemented into
the tool Homer.

The remainder of this work is organized as follows: In Section 2 we give
a formal semantics to IL programs. The subsequent Section 3 provides the
framework for abstract simulation of IL programs and its extension to abstract
interpretation. Section 4 explains the analysis features implemented in the tool
Homer. Conclusions and future work are discussed in Section 5.

2 Syntax and Semantics of IL Programs

2.1 Basics

PLCs are reactive systems interacting in a cyclic manner with their environ-
ment. In each cycle inputs (sensor values) are read, computations take place
and outputs are written (to actuators). It is possible that a number of IL
programs are called sequentially within one cycle.

Each IL program starts with a declaration part, defining program vari-

ables and their respective types. IL basically supports Booleans, integers,

2

Huuck

and floating point numbers. In this work we consider Booleans and integers
only. The extension of our framework to floating point numbers, however, is
straightforward. We denote the set of all program variables by Var , where we
tacitly assume all variables and expressions to be well typed. Some variables
are marked as input or output variables or both, and we write Var in and
Varout for the corresponding subsets of Var . Variables that are neither input
nor output variables are called local variables. The set of all local variables is
denoted by Var loc ⊆ Var .

Next to variables IL supports the use of one distinct register call current

result (CR). Every computation takes place in the CR. E.g., a variable value is
loaded into the CR, some operations are performed on it and, then, the current
value of the CR is stored back into some variable. Since every variable can
be loaded into the CR it is dynamically typed. In contrast to most other
assembly languages, IL only supports exactly one distinct register. A distinct
variable cr 6∈ Var is used to denote the CR.

2.2 Syntax

Apart from a variable declaration part, instruction list programs are sequences
of statements. A statement consist of an instruction (operator) and an operand

which can either be a variable, a constant or a jump label. Additionally,
programs can be augmented by comments. An example is shown below.

instruction operand comment

LD x (* loads operand’s value to CR *)

JMP lab1 (* jumps to lab1 *)

Some instructions can be augmented by modifiers. There are two modi-
fiers: N and C. The N modifier changes an operation from the original to an
operation with the negated argument, i.e., negated operand value, while an
instruction augmented by the C modifier is only executed under the condi-
tion that the CR value is true. The use of brackets is allowed to force the
evaluation of sub-expressions first and, hence, to avoid auxiliary variables or
additional load/store operations. However, it does not add to the expressive-
ness of this language and we omit this feature in the following. Table 1 lists
the most prominent IL commands we use throughout this work.

We denote the set of all instructions, possibly augmented by a modifier, by
Ins and the set of operands (variables, CR, labels) by Ops. Hence, a statement
is an element in Ins ×Ops. The set of all statements is denoted by Stms. For
the sake of simplicity we assume in the remainder that the last instruction of
every IL program is RET.

2.3 Semantics

We formally define the operational semantics of an IL program by the set of
all its possible executions.

3

Huuck

Table 1
List of basic IL commands

Instruction Modifier Operand Description

LD N variable, constant loads operand

ST N variable, constant stores operand

S variable sets operand to true

R variable sets operand to false

NOT Boolean negation

AND N variable, constant Boolean AND

OR N variable, constant Boolean OR

XOR N variable, constant Boolean XOR

ADD variable, constant addition

SUB variable, constant subtraction

MUL variable, constant multiplication

DIV variable, constant integer division

GT variable, constant comparison greater than

GE variable, constant comparison greater equal

LT variable, constant comparison less than

LE variable, constant comparison less equal

EQ variable, constant comparison equal

NE variable, constant comparison unequal

JMP N, C label jump to label

RET return from function (block)

A program location is just a line number of code. We freely assume that
every program location contains exactly one IL statement. The set of all
locations of a program P is denoted by LocsP and the first location by l0. The
function stm : LocsP → Stms maps each location to its statement. Moreover,
let succ : LocsP → 2LocsP denote the function mapping each location to the
set of its successors, i.e., the next location and, if the instruction is a jump to
the location with the corresponding label.

We define some auxiliary functions instr and op. The function instr :
LocsP → Ins maps any location l ∈ LocsP to the corresponding instruction
stm(l)1. Complementary, the function op : LocsP → Ops maps any location
l ∈ LocsP to the operand of its associated statement, i.e., stm(l)2.

A state of a program is a snapshot of all its variable values while a con-

figuration also includes the current program location as well as the mode the
PLC is currently in. Formally:

Definition 2.1 [IL State] The global IL state contains the values of all vari-
ables and is modeled as a mapping Σ : Var ∪ {cr} → D, where D stands for
the union of all data domains.

We assume the values in the state to be type-consistent; we use σ as typical
element of Σ.

Definition 2.2 [IL configuration] An IL configuration γ : Locs × Σ × Mode

4

Huuck

of a program is characterized by

• a location l ∈ Locs,

• a state σ ∈ Σ, and

• a mode of type Mode, which can be either I, O or C(ILi), where ILi is an
IL instruction.

The mode in the configuration is used to control the various phases of the
system behavior and I stands for “input”, C(ILi) for “calculating” a statement
ILi , and O for “output”.

The operational semantics for IL programs in our framework is based on
labeled transition systems. The nodes of the transitions systems are config-
urations and the transitions themselves represent the i/o behavior as well as
the execution of single IL statements. The transition system is labeled to
distinguish between input, output and internal transitions.

Definition 2.3 [Labeled Transition System of IL Program] With every IL
program P we associate a labeled transition system TP = (Γ, γ0,→ξ), where

• Γ denotes the set of IL configurations,

• γ0 ∈ Γ is the initial IL configuration and

• →ξ is the transition relation between configurations.

The initial configuration γ0 is given by (l0, σ0, I), where the initial state σ0

evaluates all Booleans to false and all integers to 0. The operational rules 2

are shown in Figure 1 specifying the labeled transition relation →ξ between
system configurations.

The labeled transitions →?v and →!v in Figure 1 are used to mark reading
the input and writing the output variables; all other transitions are unlabeled
and internal.

An execution cycle starts by reading the input (cf. rule Input). The
state σ is updated by assigning values to all input variable as read from the
environment and the next mode is activated, the computation. During the
computation phase C the values of the variables or of the CR are updated
according to the operations. After performing an operation control moves to
the next statement. Note, despite jumps and the final return statement, every
statement has only one successor node in the IL graph, i.e., for a node l the
successor l′ ∈ succ(l) is unique. Jumps are treated as (possible) branches to
nodes with the label statement. They have exactly two successors and we as-
sume that only one of the successors is a label. IL programs are executed until
a return statement occurs (cf. rule RET). This statement forces a program
to terminate and the mode switches from C to O where the output values are
written (cf. rule Output). Afterwards, the complete cycle restarts.

2 Due to space limitations only representative rules are shown. The full set get be found
in [Huu03].

5

Huuck

σ′ = σ[x 7→v] x = Var in

(l, σ, I) →?v (l, σ′, C(instr(l)))
Input

instr(l) = RET

(l, σ, C(instr(l))) → (l0, σ, O)
RET

v = [[x]](σ) x = Varout

(l, σ, O) →!v (l, σ, I)
Output

instr(l) = LABEL l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ, C(instr(l′)))
LABEL

instr(l) = JMP l′ ∈ succ(l) instr(l′) = LABEL

(l, σ, C(instr(l))) → (l′, σ, C(instr(l′)))
JMP

instr(l) = JMPC l′ ∈ succ(l)cr(σ) = false instr(l′) 6= LABEL

(l, σ, C(instr(l))) → (l′, σ, C(instr(l′)))
JMPCff

instr(l) = JMPC l′ ∈ succ(l)cr(σ) = true instr(l′) = LABEL

(l, σ, C(instr(l))) → (l′, σ, C(instr(l′)))
JMPCtt

instr(l) = LD σ′ = σ[op(l) 7→ cr] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
LD

instr(l) = ST σ′ = σ[cr 7→ op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
ST

instr(l) = ADD σ′ = σ[cr 7→ cr+op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
ADD

instr(l) = MUL σ′ = σ[cr 7→ cr∗op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
MUL

instr(l) = NOT σ′ = σ[cr 7→ ¬cr] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
NOT

instr(l) = AND σ′ = σ[cr 7→ cr∧op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
AND

instr(l) = LT σ′ = σ[cr 7→ cr<op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
LT

instr(l) = EQ σ′ = σ[cr 7→ cr=op(l)] l′ ∈ succ(l)

(l, σ, C(instr(l))) → (l′, σ′,C(instr(l′)))
EQ

Fig. 1. Concrete operational semantics

The semantics of an IL program is defined by the set of all possible execu-
tion sequences.

3 Analysis

When considering analysis techniques for IL programs it is important to have
in mind the users of these techniques. PLCs are foremost programmed by

6

Huuck

control engineers more familiar with technical design of the driven plant than,
e.g., formal methods. Hence, any proposed analysis should reflect this, i.e.,
should be able to be carried mostly automatically or reside in the known
context.

Moreover, the types of errors occurring in IL programming a likely to
be generic run-time errors such as variables exceeding their allowed range,
unreachable code, deadlocks, or illegal arithmetic operations.

The developed operational semantics allows to simulate the code for given
inputs. A complete coverage is, however, tedious or even impossible. In this
section we propose two solutions: One is an abstract simulation of the code.
This means, we estimate the range of variables in a simulation run not only
for single inputs but (possibly infinite) sets of inputs. Second, we explain
how to extend this framework to abstract interpretation which gives us an
approximation for all runs at all program locations.

Since we are mostly concerned to find upper and lower bounds for vari-
ables, an interval approximation for integer variables seems to be appropriate.
Booleans will be extended to carry don’t know (>) elements, denoting that
Boolean variables can be of any Boolean value.

To replace the concrete semantics with an abstract one, we have to replace
the concrete domain with the mentioned abstract domain and define for any
concrete operation a corresponding abstract semantic operations. Based on
this we define the abstract semantics allowing for abstract simulation. And
by enforcing safe termination of the simulation, we extend it to the standard
abstract interpretation.

3.1 Abstract Domains

In the previous section the concrete domains have been the set of Booleans and
integers. Since we are only interested in the minimum and maximum value
of each program variable at each location we introduce as abstract domains
the lattices [Bri67] of Booleans 〈B,⊆B〉 and intervals 〈I,⊆I〉 . The lattice of
Booleans is depicted in Figure 2. The lattice of intervals is defined by the set I
of all intervals over natural numbers augmented by the top element [−∞, +∞].
The top element denotes the interval comprising all numbers including infinity.
The empty interval [] represents the bottom element ⊥. The partial ordering
relation ⊆I is defined by interval inclusion. Moreover, for any any lattice L

with a partial ordering relation ⊆L we say p2 approximates p1 if, and only if,
p1 ⊆L p2.

PSfrag replacements

true false

>

⊥

Fig. 2. Lattice of Booleans

7

Huuck

3.2 Abstract Semantic Operations

The corresponding abstract operators are defined in Table 2. Note that we
consider all operators to be strict, i.e., if any argument is the bottom element
of the respective lattice the result yields the bottom element. For the sake
of brevity this is not explicitly mentioned in the definitions. Note that in
an abstract semantics comparisons and logic operations might result into an
unknown, i.e., >, result, e.g., by comparing two overlapping intervals such as
[1, 3] < [2, 4]. The operation glb stands for the greatest lower bound and lub

for the least upper bound.

Table 2
Abstract operators

operator abstract semantics

¬# ¬#b =

> if b = >

¬b otherwise

∧# b1 ∧
b2 =

b1 ∧ b2 if b1 6= > and b2 6= >

> otherwise

+# i1 +# i2 = [glb(i1 + i2), lub(i1 + i2)]

∗# i1 ∗
i2 = [min(product), max(product)] where

product = {glb(i1 ∗ i2), lub(i1 ∗ i2)}

=# i1 =# i2 =

true if i1 =I i2

false if i2 6=I i1

<# i1 <# i2 =

true if i1 ⊂I i2

false if i2 ⊆I i1

> otherwise

As a remark: It can be shown, that every abstract operation safely ap-

proximates its concrete counterpart, i.e., the effects of an abstract operation
comprise the effect of the corresponding concrete operation.

3.3 Abstract Simulation

As its concrete counter-part in Section 2.3 the interpretation of the abstract
semantics is based on labeled transition systems where nodes are configura-
tions and the transitions themselves represent the i/o behavior as well as the
abstract execution of single IL statements. Each execution of an IL program
is then covered by a run in this transition system. Abstract states and abstract

configurations are defined as follows:

Definition 3.1 [abstract state] The global abstract IL state contains the val-
ues of all variables and is modeled as a mapping Σ# : Var ∪ {cr} → D#,
where D# stands for the union of all abstract data domains.

8

Huuck

Again, we assume the values in the state to be type consistent and use σ#

as typical element of Σ#.

Definition 3.2 [abstract configuration] An IL configuration γ : Locs ×Σ# ×
Mode of a program is characterized by

• a location l ∈ Locs,

• an abstract state σ# ∈ Σ#, and

• a configuration of type Mode.

The differences between abstract states or abstract configurations to their
concrete counterparts are the different data domains. The labeled transition
systems are defined accordingly:

Definition 3.3 [abstract labeled transition system] With every IL program
P we associate an abstract labeled transition system T #

P = (Γ#, γ
#
0 ,→#

ξ),
where

• Γ# denotes the set of abstract configurations,

• γ
#
0 ∈ Γ# is the initial configuration and

• →#
ξ is the transition relation between abstract configurations.

The initial configuration γ
#
0 is given by (l0, σ

#
0 , I), where the initial state

σ
#
0 evaluates all Booleans to > and all integer intervals to top element of the

lattice [−∞, +∞]. The operational rules are shown in Figure 3 specifying the
labeled transition relation →#

ξ between system configurations.

These initial configurations are abstractions of the initial configuration for
the concrete level. The operational rules a very similar to the ones of Sec-
tion 2.3 and the semantics is again given by the set of all possible executions.

3.4 Abstract Interpretation

While abstract simulation is a way to execute IL programs for set of inputs
and tracks program behavior for certain paths, abstract interpretation approx-
imates the program behavior for all possible inputs and all possible paths.
Moreover, unlike abstract simulation it ensures termination of the analysis
process. In order to do so, acceleration techniques are used to speed-up the
convergence of the analysis. These accelerations provided a safe approxima-
tion of the program behavior, however, they often come with an additional
loss of precision, i.e., can lead to further over-approximation.

More formal, from a fixed point perspective the semantics of any program
P is described by its least fixed point µP . The abstract semantics µ

#
P we

developed, safely approximates the concrete one, while adding any acceleration
∇ is a further approximation, i.e., µ

∇#
P approximates µ

#
P .

The design of an appropriate way of acceleration is, e.g., discussed in
[Cou78], [Bou92], and [Sch95]. Our approach is based on these investiga-

9

Huuck

σ#′
= σ#[x 7→

#
v] x

= Var in

(l, σ#, I) →#
?v

(l, σ′#, C(instr(l)))
Input

instr(l) = RET

(l, σ#, C(instr(l))) →# (l, σ#,O)
RET

v
= [[x]]#(σ#) x

= Varout

(l, σ#,O) →#
!v (l0, σ#, I)

Output

instr(l) = LABEL l′ ∈ Succ(l)

(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))
LABEL

instr(l) = JMP l′ ∈ Succ(l) instr(l′) = LABEL

(l, σ#,C(instr(l))) →# (l′, σ#,C(instr(l′)))
JMP

instr(l) = JMPC l′ ∈ Succ(l)cr#(σ#) = false ∨ cr#(σ#) = > instr(l′) 6= LABEL

(l, σ#, C(instr(l))) →# (l′, σ#, C(instr(l′)))
JMPCff

instr(l) = JMPC l′ ∈ Succ(l)cr#(σ#) = true ∨ cr#(σ#) = > instr(l′) = LABEL

(l, σ#, C(instr(l))) →# (l′, σ#, C(instr(l′)))
JMPCtt

instr(l) = LD σ#′
= σ#[op(l)# 7→

cr#] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

LD

instr(l) = ST σ#′
= σ#[cr#

7→
op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

ST

instr(l) = ADD σ#′
= σ#[cr#

7→
cr#+#op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

ADD

instr(l) = MUL σ#′
= σ#[cr#

7→
cr##

∗op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

MUL

instr(l) = NOT σ#′
= σ#[cr#

7→
#

¬
#cr#] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

NOT

instr(l) = AND σ#′
= σ#[cr#

7→
cr#

∧
#op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

AND

instr(l) = LT σ#′
= σ#[cr#

7→
cr#

<
#op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

LT

instr(l) = EQ σ#′
= σ#[cr#

7→
cr#=#op#(l)] l′ ∈ Succ(l)

(l, σ#, C(instr(l))) →# (l′, σ#′
,C(instr(l′)))

EQ

Fig. 3. Abstract operational semantics

tions, it uses the abstract semantics as introduced in the previous section and
just adds an acceleration as described in [Huu03]. Due to space limitations
we do not go into detail here.

Instead, consider the example of Figure 4. It shows an IL program with
a single input variable x. It works as follows: In the beginning x is set to 1
and, then, within a loop successively incremented to 10. Once it reaches 10
the loop is left and the program terminated.

10

Huuck

The two columns to the very right show the abstract interpretation result
for the abstract values of cr and x. Note, since we do not have any informa-
tion about the initial input value the possible value of x at line 0 is within
[−∞, +∞]. At lines 7 and 8 the value of x is compared to 10. If strictly less
than the loop is entered once more. Therefore, at line 3 we have the informa-
tion that the value of x can be anywhere between [1, 9]. Moreover, we know
at line 9 that x must have the value 10 and the cr is equal to false.

This is a simple example without any over-approximation. However, if we
increment x by 2 instead of 1 within the loop, our analysis would not be able
to reveal that even numbers never occur. Further over-approximations occur
when the jump condition cannot be used to give an upper approximation of
the variable values.

location program cr# x#

VAR INPUT

x:INT;

END VAR

0 〈>, [−∞,+∞]〉

1 LD 1 〈[1, 1], [−∞,+∞]〉

2 ST x 〈[1, 1], [1, 1]〉

3 label: 〈⊥, [1, 9]〉

4 LD x 〈[1, 9], [1, 9]〉

5 ADD 1 〈[2, 10], [1, 9]〉

6 ST x 〈[2, 10], [2, 10]〉

7 LT 10 〈>, [2, 10]〉

8 JMPC label 〈>, [2, 10]〉

9 RET 〈false, [10, 10]〉

Fig. 4. IL example with abstract interpretation result

4 Homer – a Checker for IL Programs

We implemented the abstract interpretation framework for IL into a prototype
tool called Homer. The abstract domains are as introduced and the used
abstract semantics is as described before. In this section we present a number
of generic properties that can be checked for IL programs. If not otherwise
mentioned the checking is done on the abstract interpretation results.

Range violation

Homer checks whether an operation violates maximal integer bounds. Vi-
olating means that, e.g., a subtraction with a positive value takes place on
variables already approximated by −∞ to their lower bound or addition to an
upper bound of +∞. Such an error would occur at the first ADD in Figure 4 if
the input variable would not be set to 1 in the beginning.

11

Huuck

Invariant conditional jumps

A conditional jump is called invariant if its jump condition is either always
true or always false. This means, one alternative is never taken which might
exhibit a flaw in the program. Replacing LT 10 by GE 1 in Figure 4 would
provoke this error.

Unreachable code

Code is unreachable if there is no program execution ever executing it. In
terms of IL language, this means, there are (conditional) jumps that prevent
the control flow reaching every line of code and instead always skip some lines.
Hence, these code fragments will never be executed.

There are two possibilities for unreachable code: One, there is simply a
combination of JMP operators such that some lines are excluded from program
execution and two, there are some invariant JMPC or JMPCN operations produc-
ing the same effect. This can be uncovered by a simple reachability analysis
once the abstract interpretation is completed.

Replacing LT 10 with GE 1 in Figure 4 makes line 9 unreachable, since
control would loop forever. This example is also a particular instance of the
next property.

Infinite loops

To detect infinite loops it is helpful to analyze the topological structure of
loops in the program. If we take into account the results of the abstract
interpretation process, we have to search for strongly connected components
which cannot be left.

Type mismatched

Type checking IL programs is a special case of abstract interpretation where
the abstract domain is given by the possible types and abstract operations
describe the changes.

Redundant jumps

A jump statement (JMP, JMPC, JMPCN) is redundant if the jump target is the
next statement in the control flow.

Redundant statements

There are various combinations of redundant statements. In particular, each
load statement (LD, LDN) should be preceded by a store statement (ST, STN,
S, R) or a conditional jump (JMPC, JMPCN); if it is not, the code before the
load statement is unused, since the old value of cr is discarded without hav-
ing influenced variables or the program flow. Moreover, between two store
statements to the same variable there should be some operations modifying
cr .

12

Huuck

These are just some examples of properties that can be checked automat-
ically modulo some abstraction. It is part of future work to investigate on
further ones.

The prototype is implemented in OCaml [CMP02] and primarily aims at
testing the proposed methods and analyses. It is not optimized for speed,
and memory consumption is high, since every program location still stores the
information of all abstract values at that location. However, a case study of
roughly 2000 lines of code with about 100 variables takes nearly 20 seconds
to be analyzed, which is promising when having the potential for speed-up in
mind.

While speed for interval abstraction appears to be a minor issue, a high
number of false alarms due to over-approximation is more a concern. To reduce
false alarms we suggested a solution based on selective constraint solving in
[Huu03], this is, however, not yet implemented.

5 Conclusions

In this work we presented a formal operational semantics for IL programs.
Moreover, we developed an abstract counterpart of this semantics which al-
lows approximating program simulation for possibly infinite sets of inputs
within one simulation run. We also extended this framework to an abstract
interpretation analysis, as implemented in our tool Homer. The advantage
of the proposed methods is that they can be used by PLC programmers not
familiar with formal methods.

One direction for future work is to develop a tool for guided abstract
simulation. Up to now we explore path non-deterministicly whenever there
is more than one branching possibility. However, often it is of interest in
following particular paths and exploiting jump conditions to constrain variable
values for these paths.

Moreover, more work should be put in exploring different abstract domains
for the analysis of IL code. The interval based abstraction proposed and
implemented right now is good for range checking, but lacks precision for other
common error such as division by zero. Moreover, the current abstraction
does not take any relations between different variables into account. On the
other hand, structures such as octagons or, more general, polyhedra [CH78]
approximate the concrete space incorporating relationships between variables.
Sophisticated methods take also linear [Gra91] or trapezoid linear congruences
[Mas92] into account. It remains to explore which is the most suitable one
for IL analysis. Moreover, this effort should be driven by the investigation on
further generic properties. Hopefully this will also lead to advances in static
analysis methods.

13

Huuck

References

[Bau98] N. Bauer. Übersetzung von Steuerungsprogrammen in formale Modelle.
Master’s thesis, University of Dortmund, 1998.

[Bou92] François Bourdoncle. Sémantiques des Langages Impératifs d’Ordre
Supérieur et Interprétation Abstraite. PhD thesis, École Polytechnique,
1992.

[Bri67] G. Brinkhoff. Lattice Theory. American Mathematics Society,
Providence, RI, 3rd edition, 1967.

[CC79] P. Cousot and R. Cousot. Systematic design of program analysis
frameworks. In Conference Record of the Sixth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages
269–282, San Antonio, Texas, 1979. ACM Press, New York, NY.

[CCL+00] G. Canet, S. Couffin, J.-J. Lesage, A. Petit, and Ph. Schnoebelen.
Towards the automatic verification of PLC programs written in
Instruction List. In Proc. IEEE Int. Conf. Systems, Man and
Cybernetics (SMC’2000), pages 2449–2454, 2000.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints
among variables of a program. In Conference Record of the Fifth Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 84–97, Tucson, Arizona, 1978. ACM Press, New York,
NY.

[CMP02] Emmanuel Chailloux, Pascal Manoury,
and Bruno Pagano. Développement d’applications avec Objective Caml.
O’Reilly, Paris, April 2002.

[Cou78] Patrick Cousot. Méthodes itératives de construction et d’approximation
de points fixes d’opérateurs monotones sur un treillis, analyse
sémantique de programmes. PhD thesis, Université scientifique et
médicale de Grenoble, France, 1978.

[Gra91] Philippe Granger. Static analysis of linear congruence equalities
among variables of a program. In TAPSOFT ’91: Proceedings of the
International Joint Conference on Theory and Practice of Software
Development, volume 493 of LNCS, pages 169–192, 1991.

[HHWT97] T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: a model checker
for hybrid systems. International Journal on Software Tools for
Technology Transfer, 1:110–122, 1997.

[HM98] M. Heiner and T. Menzel. A Petri net semantics for the PLC language
Instruction List. In Proceedings of the International Workshop on
Discrete Event Systems (WoDES), pages 161–166. IEE Control, 1998.

14

Huuck

[HTLW97] H.-M. Hanisch, J. Thieme, A. Lüder, and O. Wienhold. Modeling of
PLC behaviour by means of timed net condition/event systems. In
Proc. of IEEE Int. Symposium on Emerging Technologies and Factory
Automation (EFTA ’97), pages 361–369, 1997.

[Huu03] Ralf Huuck. Software Verification for Programmable Logic Controllers.
PhD thesis, University of Kiel, April 2003.

[IEC98] International Electrotechnical Commission, Technical Committee No.
65. Programmable Controllers – Programming Languages, IEC 61131-
3, second edition, November 1998. Committee draft.

[KBP+99] S. Kowalewski, N. Bauer, J. Preußig, O. Stursberg, and H. Treseler. An
environment for model-checking of logic control systems with hybrid
dynamics. In Proc. IEEE Int. Symp. On Computer Aided Control
System Design, 1999.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi. Uppaal in a nutshell.
International Journal on Software Tools for Technology Transfer, 1(1–
2):134–152, October 1997.

[Mas92] François Masdupuy. Array abstractions using semantic analysis of
trapezoid congruences. In ICS ’92: Proceedings of the 6th ACM
International Conference on Supercomputing, ACM, pages 226–235,
1992.

[McM00] Kenneth L. McMillan. The SMV system. Carnegie Mellon University,
November 2000. Manual for SMV version 2.5.4.

[MW99] A. Mader and H. Wupper. Timed automaton models for simple
programmable logic controllers. In Proceedings of the 11th Euromicro
Conference on Real Time Systems, pages 114–122. IEEE Computer
Society, 1999.

[OY93] A. Olivero and S. Yovine. KRONOS: A Tool for Verifying Real-Time
Systems. User’s Guide and Reference Manual. Verimag, Grenoble,
France, 1993.

[RK98] M. Rausch and B. Krogh. Formal verification of PLC programs. In
American Control Conference, pages 234–238, June 1998.

[Sch95] Erik Schön. On the computation of fixpoints in static program analysis
with an application to analysis of AKL. Master’s thesis, School of
Engineering Physics, Royal Institut of Technology, Stockholm, October
1995.

[Wil99] H.X. Willems. Compact timed automata for PLC programs.
Technical Report CSI-R9925, University of Nijmegen, Computing
Science Institute, 1999.

15

	Introduction
	Syntax and Semantics of IL Programs
	Basics
	Syntax
	Semantics

	Analysis
	Abstract Domains
	Abstract Semantic Operations
	Abstract Simulation
	Abstract Interpretation

	Homer -- a Checker for IL Programs
	Conclusions
	References

