
Counterexample Guided Path Reduction for
Static Program Analysis

Ansgar Fehnker, Ralf Huuck, and Sean Seefried

National ICT Australia Ltd. (NICTA)?

Locked Bag 6016
University of New South Wales
Sydney NSW 1466, Australia

Abstract. In this work we introduce counterexample guided path re-
duction based on interval constraint solving for static program analysis.
The aim of this technique is to reduce the number of false positives by re-
ducing the number of feasible paths in the abstraction iteratively. Given
a counterexample, a set of observers is computed which exclude infea-
sible paths in the next iteration. This approach combines ideas from
counterexample guided abstraction refinement for software verification
with static analysis techniques that employ interval constraint solving.
The advantage is that the analysis becomes less conservative than static
analysis, while it benefits from the fact that interval constraint solving
deals naturally with loops. We demonstrate that the proposed approach
is effective in reducing the number of false positives, and compare it to
other static checkers for C/C++ program analysis.

1 Introduction

Static program analysis and software model checking are two automatic analysis
techniques to ensure (limited) correctness of software or at least to find as many
bugs in the software as possible. In contrast to software model checking, static
program analysis typically works on a more abstract level, such as the control
flow graph (CFG) without any data abstraction. As such a syntactic model of a
program is a very coarse abstraction, and reported error traces can be spurious,
i.e. they may correspond to no actual run in the concrete program. The result
of such infeasible paths are false positives in the program analysis.

This work presents counterexample guided path reduction to remove infea-
sible paths. To do so semantic information in the form of interval equations is
added to a previously purely syntactic model. This is similar to abstract inter-
pretation based interval analysis, e.g., used for buffer overflow detection. That
approach transforms the entire programm into a set of interval equations, and
characterizes its behavior by the precise least solution [1].
? National ICT Australia is funded by the Australian Government’s Department of

Communications, Information Technology and the Arts and the Australian Research
Council through Backing Australia’s Ability and the ICT Research Centre of Excel-
lence programs.

Our approach, in contrast, constructs this kind of equation system only for
a given path through the program. This is not only computationally cheaper,
but it has the advantage that the analysis becomes less conservative. The main
reason for this improvement is that a path has fewer transitions and fewer join-
operators, the main source for over-approximation errors, than the entire pro-
gram. The paths themselves are determined by potential counterexamples. A
counterexample path is spurious if the least solution of a corresponding equa-
tion system is empty. The subset of equations responsible for an empty solution
is called a conflict. In a second step we refine our syntactic model by a finite
observer which excludes all paths that generate the same conflict. These steps
are applied iteratively, until either no new counterexample can be found, or until
a counterexample is found that cannot be proven to be spurious.

This approach is obviously inspired by counterexample guided abstraction
refinement (CEGAR), as used in [2, 3]. A main difference is the use of the pre-
cise least solution for interval equations [1] in the place of SAT-solving. This
technique deals directly with loops, without the need to discover additional
loop-predicates [3, 4], or successive unrolling of the transition relation [5]. An
alternative to SAT-based CEGAR in the context of static analysis, using poly-
hedral approximations, was proposed in [6, 7]. Pre-image computations along
the counterexamples are used to improve the accuracy of the polyhedral approx-
imation. Our approach in contrast uses an precise least solution of an interval
equation system, which is computationally faster, at the expense of precision.
Our proposed approach combines nicely with the static analysis approach put
forward in [8] and implemented in the tool Goanna. It defines, in contrast to se-
mantic software model checking, syntactic properties on a syntactic abstraction
of the program.

The experimental results confirm that the proposed path reduction technique
situates our tool in-between software model checking and static analysis tools.
False positives are effectively reduced while interval solving converges quickly,
even in the presence of loops.

The next section introduces preliminaries of labeled transition systems, in-
terval solving and model checking for static properties. Section 3 introduces In-
terval Automata, the model we use to capture the program semantics. Section 4
presents the details of our approach. Implementation details and a comparison
with other tools are given in Section 5.

2 Preliminaries

2.1 Labeled Transition Systems

In this work we use labeled transition systems (LTS) to describe the semantics
of our abstract programs. An LTS is defined by (S, S0, A, R, F) where S is a
set of states, S0 ⊆ S is a sub-set of initial states, A is a set of actions and
R ⊆ S × A× S is a transition relation where each transition is labeled with an
action a ∈ A, and F ⊆ S is a set of final states. We call an LTS deterministic if

2

for every state s ∈ S and action a ∈ A there is at most one successor state such
that (s, a, s′) ∈ R.

The finite sequence ρ = s0a0s1a1 . . . an−1sn is an execution of an LTS P =
(S, S0, A, R, F), if s0 ∈ So and (si, ai, si+1) ∈ R for all i ≥ 0. An execution is
accepting if sn ∈ F . We say w = a0 . . . an−1 ∈ A∗ is a word in P , if there exist
si, i ≥ 0, such that s0a0s1a1 . . . an−1sn form an execution in P . The language of
P is defined by the set of all words for which there exists an accepting execution.
We denote this language as LP .

The product of two labeled transition systems P1 = (S1, S10 , A,R1, F1) and
P2 = (S2, S20 , A,R2, F2), denoted as P× = P1 × P2, is defined as P× = (S1 ×
S2, S10 × S10 , A,R×, F1 × F2) where ((s1, s2), a, (s′1, s

′
2)) ∈ R× if and only if

(s1, a, s′1) ∈ R1 and (s2, a, s′2) ∈ R2. The language of P× is the intersection of
the language defined by P1 and P2.

2.2 Interval Equation Systems

We define an interval lattice I = (I,⊆) by the set I = {∅} ∪ {[z1, z2]|z1 ∈ Z ∪
{−∞}, z2 ∈ Z∪{∞}, z1 ≤ z2} with the partial order implied by the contained in
relation “⊆”, where a non-empty interval [a, b] is contained in [c, d], if a ≥ c and
b ≤ d. The empty element is the bottom element of this lattice, and [−∞, +∞]
the top element. For dealing with interval boundaries, we assume that ≤, ≥, +,
∗ as well as min and max are extended in the usual way to the infinite range.
Moreover, we consider the following operators on intervals: intersection u, union
t, addition (+) and multiplication (·) with the usual semantics [[.]]for intersection
and

[[[l1, u1] t [l2, u2]]] = [min{l1, l2}, max{u1, u2}]
[[[l1, u1] + [l2, u2]]] = [l1 + l2, u1 + u2]
[[[l1, u1] · [l2, u2]]] = [min(product), max(product)]

where product = {l1 ∗ l2, l1 ∗ u2, l2 ∗ u1, u1 ∗ u2}.
For a given finite set of variables X = {x0, . . . , xn} over I we define an

interval expression φ as follows:

φ
.= a | x | φ t φ | φ u φ | φ + φ | φ · φ

where x ∈ X, and a ∈ I. The set of all expression over X is denoted as C(X).
For all operation we have that [[φ ◦ ϕ]] is [[φ]] ◦ [[ϕ]], where ◦ can be any of

t,u, +, ·. A valuation is a mapping v : X → I from an interval variable to an
interval. Given an interval expression φ ∈ C(X), and a valuation v, the [[φ]]v
denoted the expression φ evaluated in v, i.e. it is defined to be the interval
[[φ[v(x0)/x0, . . . , v(xn)/xn]]], which is obtained by substituting each variable xi

with the corresponding interval v(xi).

3

An interval equation system is a mapping IE : X → C(X) from interval
variables to interval expressions. We also denote this by xi = φi where i ∈
1, . . . , n. The solution of such an interval equation system is a valuation satisfying
all equations, i.e., [[xi]] = [[φi]]v for all i ∈ 1, . . . , n. As shown in [1] there always
is a precise least solution which can be efficiently computed. By precise we mean
precise with respect to the interval operators’s semantics and without the use of
additional widening techniques. Of course, from a program analysis point of view
over-approximations are introduced, e.g., when joining two intervals [1, 2]t [4, 5]
results in [1, 5]. This, however, is due to the domain we have chosen.

2.3 Static Analysis by Model Checking

This work is based on an automata based static analysis framework as described
in [8], which is related to [9–11]. The basic idea of this approach is to map a
C/C++ program to its CFG, and to label this CFG with occurrences of syntactic
constructs of interest. The CFG together with the labels can easily be mapped to
the input language of a model checker, in our case NuSMV, or directly translated
into a Kripke structure for model checking.

A simple example of this approach is shown in Fig. 1. Consider the contrived
program foo which is allocating some memory, copying it a number of times to
a, and freeing the memory in the last loop iteration.

One example of a property to check is whether after freeing some resource,
it still might be used. In our automata based approach we syntactically identify
program locations that allocate, use, and free resource p. We automatically label
the program’s CFG with this information as shown on the right hand side of
Fig. 1. This property can then be checked by the CTL property

AG (mallocp ⇒ AG (freep ⇒ ¬EF usedp)),

which means that whenever there is free after malloc for a resource p, there is
no path such that p is used later on. Obviously, neglecting any further semantic
information will lead to a false alarm in this example.

3 Interval Automata

This section introduces interval automata (IA) which abstract programs and
capture their operational semantics on the domain of intervals. We define an
IA as an extended state machine where the control structure is a finite state
machine, extended by a mapping from interval variables to interval expressions.
We will show later how to translate a C/C++ program to an IA.

Definition 1 (Syntax). An interval automaton is a tuple (L, l0, X, E, update),
with

– a finite set of locations L,
– an initial location l0,

4

1 void foo() {

2 int x, *a;

3 int *p=malloc(sizeof(int));

4 for(x = 10; x > 0; x--) {

5 a = p;

6 if(x == 1)

7 free(p)

8 }

9 }

l0

l1 mallocp

l2

l3 usedp

l4

l6

l5

freep

l7

Fig. 1. Example program and labeled CFG for use-after-free check.

– a set of interval variables X,
– a finite set of edges E ⊆ L× L, and
– an effect function update : E → (X × C(X)).

The effect update assigns to each edge a pair of an interval variable and an
interval expression. We will refer to the (left-hand side) variable part update|X
as lhs, and to the (right-hand side) expression part update|C(X) as rhsexpr. The
set of all variables that appear in rhsexpr will be denoted by rhsvars. Note,
that only one variable is updated on each edge. This restriction is made for the
sake of simplicity, but does does not restrict the expressivity of an IA. Fig. 2
shows an example of an IA.

Definition 2 (Semantics). The semantics of an IA P = (L, l0, X, E, update)
is defined by a labeled transition system LTS(P) = (S, S0, A,R, F) where

– S is the set of states (l, v) with location l and an interval valuation v.
– S0 is the set of initial states s0 = (l0, v0), with v0 ≡ [−∞,∞].
– A is the alphabet consisting of the set of edges E.
– R ⊆ S × A × S is the transition relation of triples ((l, v), (l, l′), (l′, v′)), i.e,

transitions from state (l, v) to (l′, v′) labeled by (l, l′), if there exists a (l, l′)
in E, such that v′ = v[lhs(e) ← [[rhsexpr(e)]]v] and [[rhsexpr(e)]]v′ 6= ∅.

– F = S is the set of final states, i.e., all states are final states.

It might seem a bit awkward that the transitions in the LTS are labeled with
the edges of the IA, but this will be used later to define the synchronous compo-
sition with an observer. Since each transition is labeled with its corresponding
edge we obtain a deterministic system, i.e., for a given word there exists only one
possible run. We identify a word ((l0, l1), (l1, l2), . . . , (lm−1, lm)) in the remainder
by the sequence of locations (l0, . . . , lm).

5

Given an IA P . Its language LP contains all sequences (l0, . . . , ln) which
satisfy the following:

l0 = l0 (1)
∧ ∀i = 0, . . . , n− 1. (li, li+1) ∈ E (2)
∧ v0 ≡ [−∞, +∞] ∧ ∃v1, . . . , vn.([[rhsexpr(li, li+1)]]vi 6= ∅

∧ vi+1 = vi[lhs(li, li+1) ← [[rhsexpr(li, li+1)]]vi
])

(3)

This mean that a word (1) starts in the initial location, (2) respects the edge
relation E, and (3) there exists a sequence of non-empty valuations that satisfies
the updates associated with each edge. We use this characterization of words
as a satisfiability problem to generate systems of interval equations that have a
non-empty solution only if a sequence (l0, . . . , ln) is a word. We will define for
a given IA P and sequence w a conflict as an interval equation system with an
empty least solution, which proves that w cannot be a word of the IA P .

4 Path Reduction

The labeled CFG as defined in Section 2.3 is a coarse abstraction of the actual
program. Like most static analysis techniques this approach suffers from false
positives. In the context of this paper we define a property as a regular language,
and satisfaction of a property as language inclusion. The program itself will be
defined by an Interval Automaton P and its behavior is defined by the language
of the corresponding LTS(P). Since interval automata are infinite state systems,
we do not check the IA itself but an abstraction P̂ . This abstraction is initially
an annotated CFG as depicted in Fig. 1.

A positive is a word in the abstraction P̂ that does not satisfy the property.
A false positive is a positive that is not in the actual behavior of the program,
i.e. it is not in the language of the LTS(P). Path reduction is then defined as the
iterative process that restricts the language of the abstraction, until either a true
positive has been found, or until the reduced language satisfies the property.

4.1 Path Reduction Loop

Given an IA P = (L, l0, E, X, update) we define its finite abstraction P̂ as follows:
P̂ = (L, l0, E, E′, L) is a labeled transition system with states L, initial state l0,
alphabet E, transition relation E′ = {(l, (l, l′), l′)|(l, l′) ∈ E}, and the entire set
L as final states. The LTS P̂ is an abstraction of the LTS(P), and it represents
the finite control structure of P . The language of P̂ will be denoted by LP̂ . Each
word of P̂ is by construction a word of LTS(P). Let Lφ be the language defined
by the specification.

We assume to have a procedure that checks if the language of LTS LP̂ is
a subset of Lφ, and produces a counterexample if this is not the case (cf. Sec-
tion 4.5). If this procedure finds a word in LP̂ that is not in Lφ, we have to check
whether this word is in LP , i.e. we have to check whether it satisfies equation

6

(1) to (3). Every word w = (l0, . . . , lm) in LP̂ satisfies by construction (1) and
(2). A word w = (l0, . . . , lm) such that there exists no solution for (3) cannot be
a word of LP . In this case we call the word spurious.

In Section 4.2) we introduce a procedure to check whether a word is spurious.
We will use it in an iterative loop to check if the infinite LTS of IA P satisfies the
property, by checking a finite product of abstraction the P̂ with the observers
instead. This loop is structured as follows:

1. Let P̂0 := P̂ , and i = 0.
2. Check if w ∈ LP̂i

\ Lφ exists. If such a w exists got to step 3, otherwise exit
with “property satisfied”.

3. Check if w ∈ LP . If w 6∈ LP build observer Obsw, otherwise exit with
“property not satisfied”. The observer satisfies the following
(a) it accepts w, and
(b) all accepted words w′ 6∈ LP .

4. Let P̂i+1 := P̂i ×ObswC

, with . P̂i ×ObcwC

is the synchronous composition
of P̂i and the complement of Obsw. Increment i and goto step 3.

The role of the observers is to rule out spurious counterexamples from the
accepted language. They serve a similar purpose as predicates in counterexample
guided abstraction refinements that abstract the C program as Boolean program
[3]. Since we abstract the program as an interval automaton, we use observer
automata instead of additional predicates to achieve the refinement. This is is
necessary since there is no useful equivalent of Boolean predicates in the interval
domain. The remainder of this section explains how to check if a word is in LP ,
how to build a suitable observer, and how to combine it in a framework that
uses NuSMV to model check the finite abstraction P̂i.

Example. The initial coarse abstraction as a CFG is shown in Fig. 1 loses the
information that p cannot be used after it was freed. The shortest counterex-
ample based on the CFG is to initialize x to 10 in line 4, enter the for-loop,
take the if-branch, free p in line 7, decrement x, return to the beginning of the
for-loop, and then to use p in line 5. This counterexample is obviously spurious.
Firstly, because the if-branch with condition x == 1 at line 7 is not reachable
while x = 10. Secondly, because if the programm enters the if-branch, it implies
x == 1, and it will be impossible to reenter the loop, given the decrement x--
and the loop condition x > 0.

4.2 Checking for Spurious Words

Every word w = (l0, . . . , lm) in LP̂ satisfies by construction (1) and (2). It
remains to be checked if condition (3) can be satisfied. A straightforward ap-
proach is to execute the trace on LTS(P). However this can only determine if
that particular word is spurious. Our proposed approach builds an equation sys-
tem instead, which allows us to find a set of conflicting interval equations that
can in turn be used to show that an entire class of words is spurious. Another

7

1 void foo() {

2 int x, *a;

3 int* p=malloc(sizeof(int));

4 for(x = 10; x > 0; x--) {

5 a = p;

6 if(x == 1)

7 free(p)

8 }

9 }

l0

l1

l2

l3

l4

l6

l5

l7

x′ = (x u [−∞, 0])

t(x u [2,∞])

a′ = p

x′ = x u [1,∞]

x′ = [10, 10]

p′ = [1,∞]

x′ = x u [1, 1]

p′ = [−∞,∞]

x
′
=

x
+

[−
1
,−

1
]

x′ = x u [−∞, 0]

Fig. 2. Abstraction of the program as IA. Analysis of the syntactic properties of the
annotated CFG in Fig.1 is combined with an analysis of the IA to the right.

straightforward approach to build such an equation system is to introduce for
each variable and edge in w an interval equation, and to use an interval solver
to check if a solution to this system of interval equations exists. A drawback of
this approach is that it introduces (m + 1) × n variables and m × n equations.
In the following we present an approach to construct an equation system with
at most one equation and one variable for each edge in w.

Interval Equation System for a Sequence of Transitions. We describe
how to obtain an equation system for a word w ∈ LP̂ , such that it has a non-
empty least solution only if w ∈ LP . This system is generated in three steps:

I. Tracking variables. For each variable X of the program P we will track its
use. Let XL be a set of fresh variables xl, one for each variable and occurrence
where it can be used. We add to XL a special element >, which will be used as
default.

Given an IA P over variables X, its abstraction P̂ , and a word w = (l0, . . . , ln)
of P̂ we denote the location of the last update of x before the i-th transition of
word w as xw

(i). It is recursively defined as follows:

xw
(i+1) =

{
xw

li+1
if x = lhs(li, li+1)

x(i) otherwise

for i > 0, and with xw
(0) = > as base case. The function is parameterized in w,

but the superscript will be omitted if it is clear from the context.

II. Generating equations. For each edge in w we generate an interval expression
over XL. We define exprw : {0, . . . ,m} → C(XL) as follows:

exprw(i) 7→ rhsexpr(li−1, li)[x(i−1)/x]x∈rhsvars(li−1,li) (4)

8

w

(l0, l1)

(l1, l2)

(l2, l3)

(l3, l4)

(l4, l5)

(l5, l6)

(l6, l2)

(l2, l3)

(l3, l4)

var

pl1
xl2
xl3
al4
xl5
pl6
xl2
xl3
al4

exprw(i)

[1,∞]

[10, 10]

xl2 u [1,∞]

p1

xl3 u [1, 1]

[−∞,∞]

xl5 + [−1,−1]

xl2 u [1,∞]

pl6

IEw




pl1 = [1,∞]
xl2 = [10, 10]t

(xl5 + [−1,−1])
xl3 = (xl2 u [1,∞])
al4 = pl1 t pl6
xl5 = xl3 u [1, 1]
pl6 = [−∞,∞]

Reduced conflicts

c
o
n
fl
ic

t
1





xl2 = [10, 10]
xl3 = xl2 u [1,∞]
xl5 = xl3 u [1, 1]

c
o
n
fl
ic

t
2





xl5 = [−∞,∞] u [1, 1]
xl2 = xl5 + [−1,−1]
xl3 = xl2 u [1,∞]

Fig. 3. Equations for counterexample w of the IA depicted in Fig. 2

An expression exprw(i) is the right-hand side expression of the update on (li−1, li),
where all occurring variables are substituted by variables in XL. We will use
varw

(i) to denote the function from rhsvars(li−1, li) to XL, that assigns x 7→ x(i).
One might think of this as a partial function over X, restricted to the variables
that are actually used on the right-hand side. We use ∅ to denote the functions
that have the empty set as domain.

III. Generating equation system. Locations may occur more than once in a
word, and variables maybe updated by multiple edges. Let writesw ⊆ XL the
set {xl|∃i s.t.x = lhs(li−1, li)}, and indicesw be a mapping, that assigns to each
xl ∈ writesw the set {i|x = lhs(li−1, li)∧ li = l}. The system IEw : XL → C(XL)
is defined as follows:

xl 7→
{ ⊔

i∈indicesw(xl)
exprw(i) if xl ∈ writesw

[−∞,∞] otherwise
(5)

System IEw assigns each variable xl ∈ writesw to a union of expressions; one
expression for each element in indicesw(xl). The default value > is mapped to
[−∞,∞], since by construction > 6∈ writesw.

Example. Fig. 3 depicts for word w = (l0, l1, , l2, l3, l4, l5, l6, l2, l3, l4) how to
generate IEw. The first column gives the transitions in w. The second column
gives the variable in writesw. The variable pl1 , for example, refers to the update
of p on the first transition (l0, l1) of the IA in Fig. 2. We have that x(5) = xl3 ,
since the last update of x before (l4, l5) was on edge (l2, l3).

The third column gives the equations exprw(i). For example, the right-hand
side rhsexpr(l4, l5) is x′ = x u [1, 1]. Since x(4) = xl3 , we get that exprw(5) is
xl3 u [1, 1]. The fourth column shows the equation system IEw derived from the
equations. We have, for example, that x is updated on (l1, l2), the second edge in
w, and (l6, l2), the 8th edge. Hence, indicesw(xl2) = {2, 8}. Equation IEw(xl2)
is then defined as the union of exprw(2), which is [10, 10], and exprw(8), which
is xl5 + [−1,−1]. The least solution of the equation system IEw is pl1 = [1,∞],

9

xl2 = [10, 10], xl3 = [10, 10], al4 = [−∞,∞], xl5 = ∅, and pl6 = [−∞,∞]. Since
xl5 = ∅, there exists no solution, and w is spurious. ¤

Lemma 1. Given a word w ∈ LP̂ . Then there exist a sequence of non-empty
valuations v1, . . . , vm such that (3) holds for w only if IEw has a non-empty least
solution.

Proof. Given a solution to (3) we can construct a non-empty solution of IEw,
which must be included in the least solution of IEw. ¤

One advantage of the interval equations framework is that it reasons natu-
rally over loops. A third or fourth repetition does not introduce new variable in
writesw, and neither new expressions. This means that the equation system for a
word that is a concatenation αβββγ has an empty solution, if the concatenation
αββγ has. This is captured by the following lemma:

Lemma 2. Given a word w ∈ LP̂ , with w being a concatenation αββγ of
sequences α = (lα0 , . . . , lαmα

), β = (lβ1 , . . . , lβmβ
), and γ = (lγ1 , . . . , lγmγ

). Let
w′ = αβββγ. Then w′ ∈ LP̂ , writesw = writesw′ and the solution of IEw is
also the solution of IEw′ .

Proof: (i) Given w ∈ LP̂ , w = (l0, . . . , lmα+2 mβ+mγ we have that (li, li+1) ∈ E.
This implies that also all edges of w′ are in E, and hence, w′ ∈ LP̂ .
(ii) Observe, that the second and third repetition of β in w′ add no fresh variables
xl to writesw, hence writesw = writesw′ .
(iii) Let x ∈ rhsvars(li−1, li), with (li−1, li) in the second iteration of β, i.e., i ∈
mα +mβ +1, . . . , mα +2mβ . Then x(i−1) refers either to xlj , with j ∈ 0, . . . ,mα

or j ∈ mα + 1, . . . , 2 mα. In either case we can show that x(i−1+mβ
) = x(i−1).

Henceforth, the third iteration of the loop will lead to the same expressions
rhsexpr(li−1, li)[xx(i−1)/x]. Taking the union of more of the same expressions
will not change the solution. ¤

4.3 Conflict Discovery

The previous subsection described how to check if a given word w ∈ LP̂ is
spurious. Interval solving, however, leads to an over-approximation, mostly due
to the t-operation. This subsection describes how to reduce the numbers of (non-
trivial) equations in a conflict and at the same time the over-approximation error,
by restricting conflicts to fragments and the cone-of-influence.

Conceptually, a conflict is an equation system IEw that has no non-empty
solution. For matter of convenience we introduce an alternative representa-
tion of the equation system; each variable xl in Xl is mapped to a set of
pairs. Each of these pairs consists of an edge (li−i, li) and mapping var (i) from
rhsvars(li−i, li) to XL. Each pair represents an expression exprw(i) as defined
in (4); it records the edge, and the relevant variable substitutions. The conflict
for a word w = (l0, . . . , lm) is thus alternatively represented by confw(xl) =
{((li−1, li), var (i−1)) | x = lhs(li−1, li) ∧ l = li}. We refer to this mapping as the
representation confw of the conflict.

10

For the equation system of the example we have confw(pl1) = {((l0, l1), ∅)},
confw(xl2) = {((l1, l2), ∅), {((l6, l2), (x 7→ xl5)}, confw(xl3) = {((l2, l3), (x 7→
xl2))}}, confw(al4) = {((l3, l4), (a 7→ pl1)), ((l3, l4), (a 7→ pl6))}, confw(xl5) =
{((l4, l5), (x 7→ xl3)}, and confw(pl6) = {((l5, l6), ∅)}. The empty set occurs in a
pair when the right-hand side of the update has no variables.

Fragments. For CEGAR approaches for infinite-state systems it has been ob-
served that it is sufficient and often more efficient to find a spurious fragments of
a counterexample, rather than a spurious counterexample [12, 13]. The effect is
similar to small or minimal predicates in SAT-based approaches. The difference
between a word and a fragment in our context is that a fragment may start in
any location.

Given a word w = (l0, . . . , lm) a fragment w′ = (l′0, . . . , l
′
m′) is a subsequence

of w. A fragment of LTS(P) is defined as a sequence of edges that satisfies (2)
and (3). A fragment of P̂ is a sequence of edges satisfying the edge relation E,
i.e., satisfying (2). Given a fragment w′ we can construct a system of interval
equations IEw′ as described for words earlier.

For subsequence w′ of a word w we can show the analog of Lemma 1. If the
solution of IEw′ is empty, i.e., if the fragment w′ is spurious, then the word w
is spurious as well. If there exists a sequence of non-empty valuations v1, . . . , vm

for w, then they also define a non-empty subsequence of valuations for w′.
Rather than checking all m2/2 fragments, the analysis focusses on promising

candidates, based on the following two observation: (1) For an update in (3)
to result in an empty solution, there must at least exist an element in I that
can be mapped by update to the empty set. An example of such updates are
intersections with constants such as x′ = xu [1,∞]. For any x = [a, b], with b < 1
the next state can only satisfy x′ = ∅. Updates that map only the empty set to
the empty set can be omitted from the tail of a fragment. (2) Initially all variables
are unconstrained, i.e. we start in valuation v ≡ [−∞,∞]. Consequently updates
that map valuation v ≡ [−∞,∞] to [−∞,∞] can be omitted from the beginning
of a fragment. The full fragment can only have an empty solution if the reduced
has, without updates at the end that map only empty sets to empty sets, and
without updates at the beginning that map [−∞,∞] to [−∞,∞].

Cone-of-influence. Let IEw be a conflict for fragment w = (l0, . . . , lm). We
further reduce the conflict by restricting it to the cone-of-influence of xlm .

The cone-of-influence of xlm is defined as the least fixpoint µC.{yl|∃yl′ ∈
C. yl ∈ rhsvars(IEw(yl′))} ∪ {xlm}). We denote this set as writesw. We then
define the reduced conflict IEw as

xl 7→
{ ⊔

i∈indicesw(xl)
exprw(i) if xl ∈ writesw

[−∞,∞] otherwise.
(6)

This reduction ensures that IEw has an empty least solution if IEw has. In
the remainder we will refer to IEw as the reduced conflict, which is uniquely
determined by the fragment w.

11

The cone-of-influence reduction starts with the last edge (lm−1, lm) and the
variable x that is written to, and then backtracks to all variables that it depends
on. All other variables are ignored, i.e. assumed to be [−∞,+∞], and all edges
that do not contain at least one variable in writesw are omitted. The correspond-
ing reduced representation of the reduced conflict is conf

w , confw|writesw
.

Example. There are two conflicts among the candidate fragments in Fig. 3.
Conflict 1, for fragment (l1, l2, l3, l4, l5), has as least solution xl2 = [10, 10], xl3 =
[10, 10], xl5 = ∅. Conflict 2, for fragment (l4, l5, l6, l2, l3), has as least solution
xl5 = [1, 1], xl2 = [0, 0], xl3 = ∅. The equation was pl6 was not included in the
second conflict, as it is not in the cone-of-influence of xl3 .

Table 3 shows the conflicts as equation system. The alternative represen-
tation of the reduced conflict for fragment w = (l4, l5, l6, l2, l3) is conf

w
(xl5) =

{((l4, l5), (x 7→ >))}, conf
w
(xl2) = {((l6, l2), (x 7→ xl5))}, and finally conf

w
(xl5) =

{((l2, l3), (x 7→ xl2))}. Note, that (x 7→ >) is in the first set, since initially xi = >
for all x ∈ X. When the corresponding equation was generated, > was replaced
by [−∞,∞] in IEw(xl5).

4.4 Conflict Observer

Given a reduced conflict IEw for a fragment w = (l0, . . . , lm), we construct an
observer such that if a word w′ ∈ LP̂ is accepted, then w′ /∈ LP . The observer
is an LTS over the same alphabet E as LTS(P) and P̂ .

Definition 3. Given an IA P = (L, l0, E, X, update) and reduced conflict IEw,
with representation conf

w
, for a fragment w = (l0, . . . , lm), define Xw as the

set of all variables x ∈ X such that xli ∈ writesw, for some edge li in w. The
observer Obsw is a LTS with the

– set SObs of states (current, eqn, conflict) with valuation current : Xw →
(writesw∪>), valuation eqn : writesw → {unsat, sat} , and location conflict ∈
{all, some, none},

– initial state (current0, eqn0, conflict0) with current0 ≡ >, eqn0 ≡ unsat, and
conflict0 = none,

– alphabet E,
– transition relation T ⊆ SObs × E × SObs (see Def. 4 below), and
– a set final states F . A state is final if conflict = all.

Before we define the transition relation formally, we give a brief overview of the
role the different variables have.

– Variable current is used to records for each variable the location of the last
update. It mimics x(i) in the previous section.

– Variable eqn represents IEw(xl), or alternatively conf
w
(xl), for xl ∈ writesw.

This variable records if IEw(xl) is satisfied.
– Variable conflict has value all, some, none, if eqn′(xl) = sat for all, some or

no xl ∈ writesw, respectively. It records if all, some or none of IEw(xl) is
currently satisfied.

12

The transitions can be informally characterized as follows:

– To update current, the observer needs to check if the observed edge (λ, λ′)
has an update that modifies any variable in x ∈ Xw. In this case current
takes the value xλ′ .

– To update eqn for xl, the observer needs to check if the update on the
observed edge (λ, λ′) creates an expression that appears in IEw(xl), i.e. it
needs to check if the transition label and the state of current matches a pair
in conf

w
(xl). If it does, then eqn(xl) becomes sat.

– To update conflict, we check if eqn is sat in the next state for all xl ∈ writesw.

For each of these three variables there are a few exceptions:

– The next state of current will be > for all variables, if none of eqn is sat, i.e.
if conflict = none.

– Variables eqn(xl) will be reset to their initial state >, if the edge (λ, λ′)
writes to a variable in x′l ∈ Xw, while neither (λ, λ′) nor the current match
any pair in conf

w
(x′l). In this case eqn(xl) will be set to its initial state unsat.

– Once conflict is in all, it remains there forever.

All the different variables depend on each other, but there is no circular
dependency. The next state of current depends on the next state of conflict. The
next state of conflict the depends on the next state of eqn. But the next state
of eqn depends on the current state of current.

Before we define the transition relation, we give two Boolean predicates.
Given an edge (λ, λ′) and a variable xλ′ ∈ writesw predicate match(λ, λ′, xλ′)
is true if the update on (λ, λ′) in the current state matches some expression
in IEw(xλ′). Recall that the observer is defined with respect to some fragment
w = (l0, . . . , lm).

match(λ, λ′, xλ′) , ∃((li−1, li), var (i)) ∈ conf
w
(xλ′) s.t. (li−1, li) = (λ, λ′) and

∀y ∈ rhsvars(λ, λ′). var (i)(y) = > ∨ var (i)(y) = current(y)

Related to the match is the following predicate reset(λ, λ′, xλ′), which is true
when there is no suitable match.

reset(λ, λ′, xλ′) , ∀((li−1, li), var (i)) ∈ conf
w
(xλ′) s.t. (li−1, li) = (λ, λ′) and

∃y ∈ rhsvars(λ, λ′). var (i)(y) 6= > ∧ var (i)(y) 6= current(y)

The state of the observer will also be reset when (λ, λ′) is not equal to any edge
appearing in conf

w
, while xλ′ ∈ writesw and x = lhs(λ, λ′). The update (λ, λ′)

writes to x and we conservatively assume that it matches none of the expressions
in IEw(xλ′).

The transition relation for the observer is then defined as follows:

Definition 4 (Transition relation). Transitions from (current, eqn, conflict)
to (current′, eqn′, conflict′) labeled (λ, λ′) for the observer Obsw are defined as
follows:

13

conflict
if conflict = all

conflict′ = all
else if ∀xl ∈ writesw. eqn′(xl) = sat

conflict′ = all
else if ∃xl ∈ writesw. eqn′(xl) = sat

conflict′ = some
otherwise

conflict′ = none
eqn(xλ′)

if x = lhs(λ, λ′) ∧ ∀((li−1, li), var (i)) ∈ conf
w
(xλ′). (li−1 6= λ ∧ λ′ = l))

eqn′(xλ′) = unsat
else if x = lhs(λ, λ′) ∧ ∃yl ∈ writesw. reset(λ, λ′, yl)

eqn′(xλ′) = unsat
else if x = lhs(λ, λ′) ∧match(λ, λ′, xl)

eqn′(xλ′) = sat
otherwise

eqn′(xλ′) = eqn(xλ′)
current(x)

if conflict’= none
write′(x) = >

else
if x = lhs(λ, λ′)

write′(x) = λ′

otherwise
write′(x) = write(x)

The interaction between current, eqn, and conflict is somewhat subtle. The
idea is that the observer is initially in conflict = none. If an edge is observed,
which generates an expression expr(i) that appears in IEw(xl) (see Eq. (5)),
then conflict′ = some, and the corresponding eqn(xl) = sat. It can be deduced
IEw(xl) is satisfied, unless another expression is encountered that might enlarge
the fixed point. This is the case when an expression for xl will generated, that
does not appear in IEw(xl). It is conservatively assumed that this expression
increases the fixed point solution.

If conflict = all it can be deduced that the observed edges produce an equa-
tion system IEw′ that has a non-empty solution only if IEw has a non-empty
solution. And from the assumption we know that IEw has an empty-solution,
and thus also IEw′ . Which implies that the currently observed run is infeasible
and cannot satisfy Eq. 3.

Example. The observer for the first conflict in Fig. 3 accepts a word if a fragment
generates a conflict xl2 7→ [10, 10], xl3 7→ xl2 u [1,∞], xl5 7→ xl3 u [1, 1]. This is
the case if it observes edge (l1, l2), edge (l2, l3) with a last write to x at l2, and
edge (l4, l5) with a last write to x at l3. All other edges are irrelevant, as long
as they do not write to x2, x3 or x5, and change the solution. For example, this

14

would be the case for (l2, l3) if current(x) 6= l2. It creates an expression different
from xl2 u [1,∞], and thus potentially enlarges the solution set. The NuSMV
model of this observer can be found in the Appendix A.

The observer for the other conflicts is constructed similarly. The complement
of these observers are obtained by labeling all states in S \ F as final. The
product of the complemented observers together with the annotated CFG in
Fig.1 removes all potential counterexamples. The observer for the first conflict
prunes all runs that enter the for-loop once, and then immediately enter the
if-branch. The observer for the second conflict prunes all words that enter the
if-branch and return into the loop.

Lemma 3. Given a reduced conflict IEw and its representation conf
w

for a
fragment w = (l0, . . . , lm), the observer Obsw satisfies the following:

– If a word w′ ∈ LP̂ contains fragment w′′, such that IEw′′ has non non-empty

solution, and such that conf
w′′

= conf
w
, then w′ is accepted by Obsw.

– If a word w′ ∈ LP̂ is accepted by Obsw, then w 6∈ LP .

Proof. (i) Let w′′ be the first occurrence of a fragment such that that IEw′′

has non non-empty solution, and such that conf
w′′

= conf
w
. If conflict is in all

at the beginning of the fragment, the word is trivially accepted. Assume that
conflict is in some or none at the beginning of the fragment. By assumption
conf

w′′
= conf

w
, we know that none of the edges in w′′ will satisfy reset. It is

also guaranteed that if an edge writes to a variable x in location l it satisfies
match. By assumption we also know that at the end of the fragment conflict
will be in all. (ii) If a word is accepted, it means that there exists a fragment
w′′ = (l0, . . . , lm) such that conflict will be in state none at l0, in state some for
l1 . . . , lm−1 at the beginning, and in state all at lm. This fragment will generate
for each variable xl ∈ writesw′ an equation IEw′′(xl) that is at least as restrictive
as IEw′(xl). Consequently, if IEw′(xl) has no non-empty solution, then neither
can IEw′′(xl) have. Hence w′ which contain w′′ as fragment, cannot be in LP .
¤

The second property ensures that each observer is only constructed once. This
is needed to guarantee termination. Each observer is uniquely determined by the
finite set expressions that appear in it, and since XL and E are finite, there exists
only a finite set of possible expressions that may appear in conf. Consequently,
there can only exist a finite set of conflicts. The second first property states that
the language of P̂ ′ = P̂ ×ObswC contains LP .

4.5 Path Reduction with NuSMV

The previous subsections assumed a checker for language inclusion for LTS.
In practice we use however the CTL model checker NuSMV. The product of P̂
with the complement of the observers is by construction a proper abstractions of
LTS(P). The results for language inclusion therefore extend to invariant check-
ing, path inclusion, LTL and ACTL model checking. For pragmatic reasons we

15

do not restrict ourselves to any of these, but use full CTL and LTL1. Whenever
NuSMV produces a counterexample path, we use interval solving as described
before to determine if this path is spurious.

Note, that path reduction can also be used to check witnesses, for example
for reachability properties. In this case path reduction will check if a property
which is true on the level of abstraction is indeed satisfied by the program.

The abstraction P̂ and the observers are composed synchronously in NuSMV.
The observer synchronizes on the current and next location of P̂ . The property is
defined as a CTL property of P̂ . The acceptance condition of the complements of
observers is modeled as LTL fairness condition G¬(conflict = all). The NuSMV
code can be found in Appendix A.

5 Implementation and Experiments

5.1 C to Interval Equations

This section describes how to abstract a C/C++ program to a set of interval
equations, and covers briefly expression statements, condition statements as well
as the control structures.

Expressions statements involving simple operations such as addition and mul-
tiplication are directly mapped to interval equations. E.g., an expression
statement x=(x+y)*5 is represented as xi+1 = (xi + yi) ∗ [5, 5]. Subtraction
such as x = x− y can be easily expressed as xi+1 = xi + ([−1,−1] ∗ yi).

Condition statements occur in constructs such as if-then-else, for-loops, while-
loops etc. For every condition such as x<5 we introduce two equations, one
for the true-case and one for the false-case. Condition x<5 has two possible
outcomes xtt = x u [−∞, 4] and xff = x u [5,∞]. More complex conditions
involving more than one variable can also be approximated and we refer the
interested reader to [14].

Joins are introduced were control from two different branches can merge. For
instance, let xi be the last lhs-variable in the if-branch of an if-then-else,
and let xj be the last lhs-variables in the else-branch. The values after the
if-then-else is then the union of both possible values, i.e., xk = xi t xj .

For all other operations that we cannot accurately cover we simply over-approxi-
mate their possible effect. Function calls, for example, are handled as conserva-
tively as possible, i.e., x=foo() is abstracted as xi = [−∞, +∞]. The same holds
for most of pointer arithmetic, floating point operations and division.

It should be noted that infeasible paths mostly depend on combinations of
conditions that cannot be satisfied. Typically, condition expressions and the
operations having an effect on them are rather simple. Therefore, it is a sufficient
first approach to over-approximate most but the aforementioned constructs.

1 NuSMV 2.x supports LTL as well.

16

no violation violation
P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

Splint + + - - - - - + + +
UNO (-) (-) (-) (-) - (+) (+) + + +
com. tool + + + + - - - + + +
Goanna + + + + - + + + + +

Table 1. For each tool the table shows if the tool found a true positive/negative “+”
or a false positive/negative “-”. Entries “(-)” and “(+)” refer to warnings that there
may be an error.

5.2 Comparison

To evaluate our path reduction approach we added it to our static checker
Goanna and compare its results with three other static analysis tools. One of the
static analyzers is a commercial tool. We applied these tools to five programs.2

– The first program is the one discussed throughout the paper. It is similar to
the example discussed in [4].

– The second program is identical, except that the loop is initialized to x=50.
– The third program tests how different tools deal with unrelated clutter. The

correctness depends on two if-conditions: the first sets a flag, and the second
assigns a value to a variable only if the first is set. In between the two if-blocks
is some unrelated code, in this case a simple if-then-else.

– The fourth program is similar to the third, except that a for-loop counting
up to 10 was inserted in-between the two relevant if-blocks .

– The last one is similar to the first program. This program uses however two
counter-variables x and y. The correctness of the programm depends on the
loop-invariant x = y. It is similar to the examples presented in [15].

For each of the programs we constructed one instance with a bug, and one
without. For the first program, e.g. the loop condition was changed to x>=0.
Since not all tools check for the same, we introduced different bugs for the
different tools, which however all depended on the same paths.

The results in Table 1 show that static analysis tools often fail to produce
correct warnings. Splint, for example, produces for the instances with and with-
out a bug the same warnings, which is only correct in half of the cases. Our
proposed path reduction produces one false positive for the last program. The
least solution of the interval equation shows that both variables take values in
the same interval, but it cannot infer the stronger invariant x = y.

The experiments were performed on a DELL PowerEdge SC1425 server, with
an Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache and 1.5 GiB DDR-2
400 MHz ECC memory. The following table gives the maximal, minimal, mean
and median run-times in seconds:

2 These programs be found at http://www.cse.unsw.edu.au/∼ansgar/fpe/

17

max min mean median

Splint 0.012 0.011 0.012 0.012
UNO 0.032 0.025 0.028 0.025
com. tool 0.003 0.002 0.003 0.003
Goanna 0.272 0.143 0.217 0.226

All static analysis tools are overall fast, and their run times are almost in-
dependent of the example program. For test programs as small at these the
run-time reflect mostly the time for overhead and setup. While being more pre-
cise the Goanna run-time is still negligibly short for these examples and path
reduction is independent of the loop counter value, as expected. Goanna benefits
from the fact that interval solving deals efficiently with loops without unrolling
[1].

6 Conclusions

In this work we presented an approach to enhance static program analysis with
counterexample guided path reduction to eliminate false positives. While by de-
fault we investigate programs on a purely syntactic level, once we find a potential
counterexample, it is mapped to an interval equation system. In case that the
least solution of this system is empty, we know that the counterexample is spu-
rious and identify a subset of equations which caused the conflict. We create an
observer for the conflict, augment our syntactic model with this observer, re-run
the analysis with the new model and keep repeating this iterative process until
no more counterexamples occur or none can be ruled out anymore.

One of the advantages of our approach is that we do not require to unroll
loops or to detect loop predicates as done in some CEGAR approaches. In fact,
path-based interval solving is insensitive to loop bounds, and handles loops just
like any other construct. However, path-based interval solving adds precision to
standard abstract interpretation interval analysis. Moreover, we only use one
data abstraction, namely a simple interval semantics for C/C++ programs.

We implemented our approach in our static analysis tool Goanna and com-
pared it for a set of examples to existing static program analyzers. This demon-
strated that Goanna is typically more precise than standard program analyzers.

Future work is to evaluate our approach further on real life software to iden-
tify a typical false alarm reduction ratio. Given that static analysis typically
turns up a few bugs per 1000 lines of code, this will require some extensive test-
ing. Moreover, we like to explore if slightly richer domains can be used to get
additional precision without a signification increase in computation time and,
most importantly, if this makes any significant difference for real life software.
And finally, we plan to compare our static checker to existing software model
checkers that by design should be more precise than Goanna, but also require
typically much longer run-times.

18

References

1. Gawlitza, T., Seidl, H.: Precise fixpoint computation through strategy iteration.
In: ESOP. LNCS 4421, Springer Verlag (2007) 300–315

2. Henzinger, T., Jhala, R., Majumdar, R., SUTRE, G.: Software verification with
BLAST. In: Proc. SPIN2003. LNCS 2648 (2003) 235–239

3. Clarke, E., Kroening, D., Sharygina, N., Yorav, K.: SATABS: SAT-based predicate
abstraction for ANSI-C. In: Proc. TACAS 2005. LNCS 3440 (2005) 570–574

4. Kroening, D., Weissenbacher, G.: Counterexamples with loops for predicate ab-
straction. In: CAV. LNCS 4144 (2006)

5. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Proc. TACAS 2004. LNCS 2988 (2004) 168–176

6. Gulavani, B., Rajamani, S.: Counterexample driven refinement for abstract inter-
pretation. In: TACAS 2006. LNCS 3920 (2006)

7. Wang, C., Yang, Z., Gupta, A., Ivancic, F.: Using counterexamples for improving
the precision of reachability computation with polyhedra. In: CAV 207. LNCS
4590 (2007)

8. Fehnker, A., Huuck, R., Jayet, P., Lussenburg, M., Rauch, F.: Model checking
software at compile time. In: Proc. TASE 2007, IEEE Computer Society (2007)

9. Holzmann, G.: Static source code checking for user-defined properties. In: Proc.
IDPT 2002, Pasadena, CA, USA (June 2002)

10. Dams, D.R., Namjoshi, K.S.: Orion: High-precision methods for static error anal-
ysis of C and C++ programs. In: Formal Methods for Components and Objects.
Volume 4111 of LNCS., Berlin Heidelberg, Springer (2006) 138–160

11. Schmidt, D.A., Steffen, B.: Program analysis as model checking of abstract inter-
pretations. In: Proc. SAS ’98, Springer-Verlag (1998) 351–380

12. Fehnker, A., Clarke, E., Jha, S., Krogh, B.: Refining abstractions of hybrid systems
using counterexample fragments. In: Proc. HSCC 2005. LNCS 3414 (2005) 242–257

13. Jha, S.K., Krogh, B., Clarke, E., Weimer, J., Palkar, A.: Iterative relaxation ab-
straction for linear hybrid automata. In: Proc. HSCC 2007. LNCS (2007)

14. Ermedahl, A., Sjödin, M.: Interval analysis of C-variables using abstract interpre-
tation. Technical report, Uppsala University (December 1996)

15. Jhala, R., McMillan, K.L.: A practical and complete approach to predicate refine-
ment. In: Proc TACAS. LNCS 3920 (2006) 459–473

A Appendix

19

MODULE conflict1(pc)
VAR
current_x: {l0,l1,l2,l3,l4,l5,l6};
eqn_x_l2, eqn_x_l3, eqn_x_l5: boolean;
conflict:{some, none,all};

ASSIGN
init(current_x):=l0;
init(eqn_x_l2):=0;
init(eqn_x_l3):=0;
init(eqn_x_l5):=0;
init(loc):=none;

next(conflict):=
case
loc=all:all;
next(eqn_x_l2) & next(eqn_x_l3) & next(eqn_x_l5): all;
next(eqn_x_l2) | next(eqn_x_l3) | next(eqn_x_l5): some;
1:none;

esac;

next(eqn_x_l2) :=
case

((pc=l6 & next(pc) = l2) | (pc = l2 & next(pc) = l3 & current_x != l2)
| (pc = l4 & next(pc) = l5 & current_x != l3)): 0;
pc = l1 & next(pc) = l2: 1;
1: eqn_x_l2;

esac;

next(eqn_x_l3) :=
case
((pc=l6 & next(pc) = l2) | (pc = l2 & next(pc) = l3 & current_x != l2)
| (pc = l4 & next(pc) = l5 & current_x != l3)): 0;
pc = l2 & next(pc) = l3 & current_x=l2:1;
1: eqn_x_l3;

esac;

next(eqn_x_l5) :=
case
((pc=l6 & next(pc) = l2) | (pc = l2 & next(pc) = l3 & current_x != l2)
| (pc = l4 & next(pc) = l5 & current_x != l3)): 0;
pc = l4& next(pc) = l5& current_x=l3:1;
1: eqn_x_l5;

esac;

next(current_x):=
case

next(conflict)=none:l0;
pc = l1 & next(pc) = l2:l2;
pc = l2 & next(pc) = l3:l3;
pc = l4 & next(pc) = l5:l5;
pc = l4 & next(pc) = l6:l4;
pc = l6 & next(pc) = l2:l2;
1:current_x;

esac;

FAIRNESS ! (conflict=all)

Table 2. NuSMV model of the observer for conflict 1. Input pc is the location
of abstraction P̂ .

20

