Utilizing Static Analysis for Programmable Logic Controllers*

Sébastien Bornot - Ralf Huuck - Ben Lukoschus

Lehrstuhl fiir Softwaretechnologie
Universitdt Kiel
Preuferstrafie 1-9, D-24105 Kiel, Germany
{seb|rhu|bls} @informatik.uni-kiel.de

Abstract

Yassine Lakhnech
Verimag
Centre Equation
2 av. de Vignate, F-38610 Gieres, France
lakhnech@imag fr

Programmable logic controllers (PLCs) occupy a big share in automation control. However, hardly any validation
tools for their software are available. In this work we present a lightweight verification technique for PLC programs.
In particular, static analysis is applied to programs written in Instruction List, a standardized language commonly used
for PLC programming. We illustrate how these programs are annotated automatically by an abstract interpretation
algorithm which is guaranteed to terminate and is applicable to large-scale programs. The resulting annotations allow
static checking for possible run-time errors and provide information about the program structure, like existence of
dead code or infinite loops, which in combination contributes to more reliable PLC systems.

Keywords:

1 INTRODUCTION

Programmable logic controllers (PLCs) are increas-
ingly used in many automation projects. While in the
past mainly simple tasks had to be performed by PLCs,
nowadays, more and more PLCs are taking over exten-
sive controlling aspects. This holds in particular for
industries as power generation, steel production, wa-
ter, chemical and petrochemical [6]. By nature these
systems are in general hybrid, i.e., a discrete control
interacts with continuous signals which often leads to
a complex controlling software. Therefore, it is much
more likely that there are flaws or errors with respect
to the specification in it. However, safety is a crucial
requirement for these systems and, thus, the applica-
tion of formal methods seems to be a promising way
to increase the reliability of PLCs and systems utilizing
them.

The IEC 1131-3 standard [5] defines and describes
a number of programming languages for PLCs. In this
work, we focus on one of these languages called In-
struction List (IL) which is widely used in the industry.
Our efforts are directed towards the development of a
verification tool for IL programs which can handle in-
dustrial size programs and is also easy to use for non-
computer scientists, i.e., people working with PLCs.

Hence, we focus on a “push button” tool where the
required user-interaction is minimal. Therefore, the
properties to be checked are of generic nature, like di-
vision by zero, infinite loops, dead code, whether array
boundaries are exceeded etc. Our methodology is based

*This work was partially supported by the European Community
in the Esprit Long-Term Research Project 26270 — VHS (Verification
of Hybrid Systems) and by the DFG (Deutsche Forschungsgemein-
schaft) in the research program “Software Specification” under grant
LA 1012/6-1.

Tauthor to whom correspondence should be addressed

programmable logic controllers, instruction list, static analysis, abstract interpretation

on static analysis techniques, in particular abstract in-
terpretation and and data flow analysis. Static analysis
allows to detect possible run-time errors a priori with-
out actually executing or simulating these programs. Of
course, in general these properties can only be checked
approximatively, but nonetheless provide valuable in-
formation to the correctness of a system.

In this work we focus on a crucial part, namely
the abstract interpretation of Instruction List programs.
This work is organized as follows: In Section 2 we give
a brief introduction to the programming language IL
as well as to static analysis and abstract interpretation.
Subsequently, in Section 3 we present how the abstract
interpretation is applied to IL programs and incorpo-
rated in our prototype tool. Finally, we conclude with
a discussion on this technique and future improvements
in Section 4.

2 FRAMEWORK
2.1 The Instruction List Language

One of the reasons in 1993 to install the IEC 1131-3
standard [5] was to unify different programming lan-
guages for programmable logic controllers. Basically,
five languages were standardized which have similar
expressiveness but differ in notation and concept. One
of the languages that is used most throughout Europe
by PLC vendors is Instruction List.

Instruction List is a low level language similar to as-
sembler code. Basically, a program is a list of instruc-
tions where each instruction consists of an operator and
one or more operands. These operations use or change
the value stored in a single register called current re-
sult (CR). The current result can be read, modified or
stored to a variable. The standard provides a number of
operators. These range from addition or comparison to

I Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, Ben Lukoschus

VAR
X,Y : INT;
END_VAR
CR unknown
LD 1
CR € [1,1]
ST X
CRe [1,1]
ST Y
CR€ [1,1]
label
CR unknown
LD X
CRE [1,+x)
ADD X
CR € [2,+x]
ST X
CR € [2,+x)
MUL Y
CR € [2,+%)
ST Y
CR € 2, +%)
LD X
CR € [2,+%)
LE 10
CR=_1
JMPC label

if jump taken: ~ CR = true
if jump not taken: CR :false
LD Y
CR € [2,+%)

CR € [0, +]

DIV X

X € [0, +0] Y€ [—o0,+o0]
X €[00, +®] Y€ [—0,+o]
Xe[l,1] Y € [—o0, 4]
Xel,1] Y€ [1,1]

X €[1,+x] Y€ [l,+x]

X €[1,+) Y €[1,+]
X €[l,+x] Y €[1,+]
X €[2,+x] Y € [1,+]

X €[2,+%] Y€ [l,+%]

X €[2,+%] Y€ [2,+%]
X €[2,+%] Y€ [2,+%]
X €[2,+x] Y €[2,+x]

X €[2,+x) Y€ [2,+w)

X € [2,+] Y € [2,+)

Figure 1: An IL program annotated with the abstract interpretation results.

the calls of timer functions or floating point operations.
Moreover, various kinds of jump operations to specified
labels are available.

An example for an IL program is shown in the left-
most column of Figure 1. The command LD loads a
value to the CR. ST stores the current result to a vari-
able, ADD means addition, and LE compares the CR to
a constant or variable and stores the result, a Boolean
value, in the current result. The conditional jump JUPC
depends on the Boolean value of the CR. If CR equals
true control will jump to the specified label, otherwise,
the next instruction is executed.

2.2 Static Analysis

Static analysis [3] is a technique to identify properties
of programs that hold for all executions, called invari-
ants, without actually executing these programs. This
contrasts to festing which generates and checks some
executions of the system, and model checking which
builds a complete transition structure and thus checks
all executions of the system. While testing samples just
some behavior of the program, static analysis folds, i.e.,
over-approximates, the behavior. Hence, the analysis is
pessimistic in the sense that it might lead to inconclu-
sive results. However, static analysis is applicable to
large-scale systems like industrial size IL programs and
can provide valuable information for the system devel-
opment process.

Static analysis can be used for array bound checking,

infinite loop and dead code detection or to reveal di-
visions by zero, type inconsistencies, redundant code,
etc.

2.3 Abstract Interpretation

One static analysis technique often used is abstract in-
terpretation [4]. Basically, abstract interpretation as-
signs abstract values of an abstract domain to program
variables. Abstract value means that in contrast to one
concrete value of a variable (e.g., an integer obtained by
one execution of the program), we only give an over-
approximation for each variable (e.g., by an interval
comprising all possible integer values) valid for all ex-
ecutions [3].

The advantage of such a pessimistic model is that an
abstract interpretation algorithm can be designed such
that it terminates for any given program, whereas sim-
ulation or execution of the program can never be guar-
anteed to terminate. This means, in any case we obtain
some result.

The disadvantage of such a pessimistic model is that
we usually obtain more possible behaviors than there
actually exist in all concrete executions of the program.
Depending on the choice of the abstract domain and
how sophisticated methods for determining the abstract
values are used, this leads to a higher or lower impreci-
sion of the results. However, with a safe interpretation
of the abstract values, program properties will never
claimed to be satisfied if they actually are not. On the

Utilizing Static Analysis for Programmable Logic Controllers

L

Figure 2: Flow graph of the IL program.

other hand it is possible that properties are interpreted
as being unsatisfied although on the concrete level they
are.

3 STATIC ANALYSIS OF IL PROGRAMS

In this section we present abstract interpretation on In-
struction List programs. The general idea is to deter-
mine for each program variable in each line of code an
approximation for their value range, i.e., their abstract
value. Therefore, by following the control flow, we suc-
cessively investigate each operation in each line and its
effect to the program variables until some fixed point
is reached. Since the numbers of repetitions in loops
are generally undecidable, they have to be treated in a
special way in order to guarantee termination of this al-
gorithm. An acceleration technique called widening is
used.

The algorithm we use here is adapted from [3]. For
the sake of simplicity we do not give the full algorithm,
but illustrate its effect by an example.

First of all, let us consider the IL program of Figure 1.
In this example we have integer and Boolean variables.
The integer values are abstracted by intervals includ-
ing those with limits 4+ and —oo and the Booleans are
abstracted by elements of {srue,false, L}, where L de-
notes the fact that the concrete value is unknown. There
are also special considerations due to the fact that CR is
dynamically typed and can be of several types during an
execution. This is the reason for the ‘unknown’ value
at some places in the example.

The algorithm works as follows: initially, the abstract
value for each occurrence of a variable is unknown.
Following the control flow we successively determine
their possible, i.e., abstract values. Consider the vari-
able X. Before the first instruction (LD 1) we do not
know anything about the possible values of X, hence,
we assign the abstract value [—o0, 4] to it, which de-
notes its value can be anything. The first instruction
does not provide further information on X, but the sec-
ond one (ST X) assigns the value one to X. Hence, it
can precisely be abstracted by the interval [1,1].

The algorithm determines statically for each line of
code the new values of the program variables depending
on the previous line or set of previous lines if the current

I

line is a junction node in the flow graph (cf. Figure 2)
and the previous abstract values.

By following the control flow one might encounter
loops like the one in the example between label and
JMPC label. Generally, it is a priori undecidable how
many times the loop will be taken, but we can observe
that variables will increase. By merging the abstract
values we know that at the junction (1abel), X and Y
will be in an interval of the form [1,a] where a is a value
which will grow each time the loop is taken. To enforce
termination of the algorithm, we use a technique called
“widening” to determine in finite time a safe approxi-
mation of the abstract values corresponding to an infi-
nite number of loop executions. In general widening is
an over-approximation in order to terminate some iter-
ating process. In the above case, we set the upper limit
of the growing variables X and Y to +o% by choosing
[1,+00] as abstract value.

Finally, we can deduce from the abstract value of X
that X will never be equal to O at the division (DIV X)
operation.

This example shows that our abstraction is very
rough: at the end we are not able to ascertain that X is
greater than 10 which is determined by the conditional
jump. This is due to the fact we cannot connect infor-
mations given by conditional jumps to variables, except
the current result CR.

Thus, a specific part of our algorithm concerns CR
(see Figure 3). We connect it to the other variables by
representing it as an expression involving constants and
variables. After each step, the expression of CR is up-
dated. If it is an operation, we change the expression
according to this operation. If it is a load (LD) or store
(ST) instruction, we know that the value of CR is the
value of the corresponding variable. Moreover, for each
ST instruction, before updating CR we update the corre-
sponding variable.

Its abstract value can easily be computed by replac-
ing occurrences of variables by their abstract values and
performing the operations on these. In the example
(see Figure 3), after MUL Y, we know that CR =X-Y,
X €[2,20] and Y € [1,+o], hence, CR € [2,+].

For conditional jumps, we can infer the value of CR
by observing if the jump is taken or not. This leads to
constraints on variables. In the example, if the jump is
taken, then CR equals frue, and thus, X < 10, and since
X € [2,20], we know that X € [2,10]. When the expres-
sion involves too many operations or variables, this ad-
ditional information might not be useful for constrain-
ing abstract values. But this is rarely the case since
Instruction List programs often use few operations be-
tween LD and ST.

In the example, the conditional jump was taken only
when X was less or equal to 10. Since it is this branch
which caused the widening, we can safely apply this
information after the widening and thus get the interval
[2,10] as abstract value for X.

1A% Sébastien Bornot, Ralf Huuck, Yassine Lakhnech, Ben Lukoschus

VAR
X,Y : INT;
END_VAR
CR unknown
LD
CR=1
ST X
CR=X
ST Y
CR=Y
label
CR unknown
LD X
CR=X
ADD X
CR=X+X
ST X
CR=X
MUL Y
CR=X-Y
ST Y
CR=Y
LD X
CR=X
LE 10
CR= (X < 10)
JMPC label

if jump taken: ~ CR = true
if jump not taken: ~ CR :false
LD Y
CR=Y

CR=Y/X

DIV X

X€[-o,+®] Y€ [—oo, +ox]
X €[00, 4] Y€ [0,
Xe[l,1] Y € [—o0, 4]
Xel,1] Ye[l,1]

X €[1,10] Y€ [l,+x]
X €[1,10] Y €[1,+)
X €[1,10] Y € [1,+]
X € [2,20] Y €[1,+x]

X € [2,20] Y €[1,+x)
X € [2,20] Y € [2,+x]

X € [2,20] Y € [2,+%]

X €[2,20] Y€ [2,+00]

X €[2,10] Y €[2,+%)
X €[11,20] Y €[2,+x)

X €[11,20] Y € [2,+x]
X €[11,20] Y € [2,+w]

Figure 3: Abstract interpretation results using expressions for CR.

Our prototype tool is currently able to perform this
abstract interpretation on IL programs, with the re-
striction that we do not yet deduce anything from the
fact that conditional jumps are taken or not. Despite
of the fact that we have not yet implemented the full
range of algorithms performing static analysis, we can
gather enough information from abstract interpretation
to identify certain properties. For example, we can find
conditional jumps which either always or never jump,
leading to dead code or infinite loops. Moreover, the
tool performs types checking of the variables and the
CR register.

4 DISCUSSION

In this paper we presented an approach for abstract in-
terpretation on Instruction List programs in order to
perform static analysis. The abstract interpretation can
be performed automatically by our prototype tool to
check some properties (e.g., division by zero). The ad-
vantage of this approach in comparison to other formal
techniques, e.g., model checking [9, 2], is that it allows
easier handling of large-scale programs. However, this
results partly from over-approximating and, hence, loss
of information.

Therefore, future work consists of two parts. First,
we will extend the power of the tool by completing the
abstract interpretation algorithm and adding other prop-
erties to be checked. Moreover, the efficiency of differ-
ent abstract domains as well different abstraction tech-

niques have to be investigated.

Second, we plan to incorporate IL into the PLC
structuring language called Sequential Function Charts
(SFC). These are hierarchical automata whose transi-
tions are labeled by guards (conditions defining en-
abledness of transitions) and whose states are labeled
by actions to be performed. These actions can be other
SFCs as well as programs, e.g., IL. We want to analyze
SFCs where all actions which are not SFCs itself are
IL programs. From the structure of the SFC and the
analysis of previous programs, we will find more pre-
cise approximations of the variables and thus more pre-
cise diagnostics. Moreover, in [1] we present an auto-
matic way to verify properties for SFCs using the model
checking tool SMV [7, 8]. Our aim is thus to combine
the different techniques and languages: we will use ab-
stract interpretation to help model checking, since we
need abstraction anyway to cope with systems of prac-
tical size.

REFERENCES

[1] Sébastien Bornot, Ralf Huuck, Yassine Lakhnech,
and Ben Lukoschus. Verification of sequential
function charts using SMV. Accepted for the
special session “Formal Verification and Formal
Methodologies in the Industrial Validation Flow”
of PDPTA 2000, Las Vegas, USA, June 2000.

Utilizing Static Analysis for Programmable Logic Controllers

[2] EM. Clarke, E.A. Emerson, and E. Sistla. Auto-
matic verification of finite state concurrent systems
using temporal logic specifications: A practical ap-
proach. In 10th ACM symposium of Programming
Languages. ACM Press, 1983.

[3] P. Cousot and R. Cousot. Static determination of
dynamic properties of programs. In Proceedings of
the Second International Symposium on Program-
ming, Paris, France, April 13-15, 1976, pages 106—
130, Paris, France, 1976. Dunod.

[4] P. Cousot and R. Cousot. Abstract interpretation:
a unified lattice model for static analysis of pro-
grams by construction or approximation of fix-
points. In Conference Record of the Fourth Annual
ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, Los Angeles, Califor-
nia, pages 238-252, New York, NY, 1977. ACM
Press.

—_
()]
—_

International Electrotechnical Commission, Tech-
nical Committee No. 65. Programmable Con-
trollers — Programming Languages, IEC 61131-3,
second edition, November 1998. Committee draft.

[6] R.W. Lewis. Programming industrial control sys-
tems using IEC 1131-3, volume 50 of Control En-
gineering Series. The Institution of Electrical En-
gineers, revised edition, 1998.

[71 K.L.McMillan. The SMV system. Carnegie-Mellon
University, February 1992. Draft manual describ-
ing SMV revision 2.2.

[8

—

K.L.McMillan. Symbolic Model Checking. Kluwer
Academic Publishers, 1993.

[9

—

J.P. Queille and J. Sifakis. Specification and ver-
ification of concurrent systems in CESAR. In 5th
International Symposium on Programming,volume
137 of Lecture Notes in Computer Science, pages
337-351. Springer-Verlag, 1982.

