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Abstract

In this work we report on our experiences on developing and commercializing Goanna, a source code
analyzer for detecting software bugs and security vulnerabilities in C/C++ code. Goanna is based on formal
software analysis techniques such as model checking, static analysis and SMT solving. The commercial
version of Goanna is currently deployed in a wide range of organizations around the world. Moreover, the
underlying technology is licensed to an independent software vendor with tens of thousands of customers,
making it possibly one of the largest deployments of automated formal methods technology. This paper
explains some of the challenges as well as the positive results that we encountered in the technology transfer
process. In particular, we provide some background on the design decisions and techniques to deal with large
industrial code bases, we highlight engineering challenges and efforts that are typically outside of a more
academic setting, and we address core aspects of the bigger picture for transferring formal techniques into
commercial products, namely, the adoption of such technology and the value for purchasing organizations.

While we provide a particular focus on Goanna and our experience with that underlying technology, we
believe that many of those aspects hold true for the wider field of formal analysis and verification technology
and its adoption in industry.
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1. Introduction

Formal methods have come a long way from being a niche domain for mathematicians and logicians to an
accepted practice, at least in academia, and to being a subject frequently taught in undergraduate courses.
Moreover, starting out from a pen-and-paper approach, a range of supporting software tools have been
developed over time, including specification tools for (semi-)formal languages such as UML, Z or various
process algebrae, interactive theorem-provers for formal specification, proof-generation and verification, as
well as a large number of algorithmic software tools for model checking, run-time verification, static analysis
and SMT solving, to name a few [14].

Despite all the effort, however, there has been only limited penetration of formal analysis tools into
industrial environments, mostly confined to the R&D laboratories of larger corporations, defense projects
or selected avionics applications. The use of verification tools by the average software engineer is rare and
typically stops at formal techniques built into the compiler or debugger.

In this work we present our experiences from developing the formal-methods-based source code analyzer
Goanna [17, 16] and the technology transfer of moving the tool from a research prototype to a fully fledged
commercial product that is used by large organizations around the globe. In particular, we report on bringing
verification techniques such as model checking [28, 8], abstract interpretation [9] and SMT solving [12] to
professional software engineers.
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We explain why creating a successful software tool is far more than good technology and good bug
detection, why engineering challenges need to be addressed realistically and why technology only plays a
partial role in business decisions.

The goal of the work is to give some realistic insights into the opportunities and challenges of delivering
software tools out of academia to some industrial setting and to explain what formal verification technology
can deliver to end users, who are not experts in the field.

The remainder of this paper is structured as follows: In Section 2 we give a short introduction to our
static analysis tool Goanna and some of the key design decisions that have been driving its development.
Next, we give a high-level overview of Goanna’s underlying technology in Section 3. This includes some of
the tools and techniques used as well as their capabilities and limitations. In Section 4 we highlight a range
of engineering challenges faced in creating an industrial strength tool. These are often rather different from
the challenges in a more academic setting and can essentially prevent the adoption of any new technology.
On top of this, and most importantly, any successful technology transfer requires a good value proposition
to the end user. This means that purchasing a new software tool needs to solve a particular need and pay off.
We explain some of the key underlying factors that drive these decisions in Section 5. Finally, in Section 6
we close our observations with some lessons we learned in the process.

2. The Tool: Goanna

Goanna is an automated software analysis tool for detecting software bugs, code anomalies and security
vulnerabilities in C/C++ source code. Goanna has been developed at NICTA, first as an internal tool for
research purposes and for support of internal mission-critical projects, and later as a commercial product that
is available through the technology spin-off Red Lizard Software1. The tool is in continuous development and
is used by many large corporations such as LG-Ericsson, Alstom or Siemens on a daily basis. Additionally,
the underlying technology is OEM licensed to a major independent software vendor for programming of
processors in embedded systems.

One of the original goals of the earlier project was to make verification technology applicable to large-
scale industrial systems comprising millions of lines of source code. As such, there were a few general
guidelines: First of all, any analysis tool has to be simple enough to use that it does not require much or
any learning from users outside the formal methods domain. Secondly, the application of the tool has to
match the typical workflow of the end-user. This means that if the end-user is accustomed to doing things
in a particular order, those steps should remain largely the same. Moreover, run-time performance of any
analysis should be similar to existing processes, which in terms of software development is often driven by
compilation or build time. Finally, and most importantly, a new analysis tool should provide real value to
an end-user. This means that it should deliver information or a degree of reliability that was previously not
available, making the adoption of the tool worthwhile.

Goanna is designed to be run at compile-time and does not require any annotations, code modifications
or user interaction. Moreover, the tool can directly be integrated into common development environments
such as Eclipse, Visual Studio or build systems based on, e. g., Makefiles. To achieve acceptance in industry,
all formal techniques are hidden behind a typical programmer’s interface, all of C/C++ is accepted as input
(even, e. g., Microsoft specific compiler extensions) and scalability to tens of millions of lines of code is
ensured.

To achieve this, some of trade-offs had to be made:

Verification vs Bug Detection. While using a range of formal verification techniques, Goanna is not
a verification tool as such, but rather a bug detection tool. This means that it does not guarantee
the absence of errors, but the tool does its best to find certain classes of bugs. This means that
while the techniques and algorithms developed are correct, the abstraction they are working on is not
necessarily safe, i. e., the abstraction is not guaranteed to be a safe (over/under-)approximations at

1http://redlizards.com
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all times. However, this also means that not all bugs are necessarily found, i.e., there might be false
negatives, and some of the bugs found can be spurious, i.e., there can be false positives. In particular,
unlike in verification we do not give a guarantee that there are no more bugs in a program after a
successful run nor that every bug is a real one.

This approach is based on practical reasons. For instance, function pointers in C/C++ are notoriously
hard to deal with. Any analysis that safely over-approximates function pointers’ behavior quickly will
warn that something is unsafe, i. e., can possibly go wrong. Warning that possibly anything could have
happened after a manipulation of a function pointer is unrealistic and will create unacceptable noise
for the user of such a tool. Allowing to miss certain instances of violations, i. e., giving up soundness
is common [10, 24, 11]. Another option would be to keep soundness, but limit the accepted C/C++
constructs and usages [13, 3]. The latter, however, is often unrealistic in an industrial context.

Checks and Check Tuning. Goanna comes by default with a fixed set of pre-defined checks for errors
such as buffer overruns, memory leaks, NULL-pointer dereferences, arithmetic errors, or C++ copy
control mistakes as well as with support for certain safety-critical coding standards such as MISRA [27]
or CERT [31], totaling over 200 individual checks. Finding the right balance between precision, speed
and the number of supported checks is very much an engineering art supported by verification and
abstraction techniques. We spent a lot of time and effort tuning the analysis to software bugs we have
seen in the field and that represent a realistic class of issues. Moreover, we also tune the abstraction
to avoid both false positives as well as false negatives as much as possible. However, this is a complex
topic and while we present some technical approaches to false positive elimination in Section 3, a much
deeper discussion on false positives and how to address them is presented in earlier work [18, 23].

An emphasis on the practical application of source code analysis by sacrificing soundness and instead
focusing on the best possible results is also highlighted by Engler et al. [15]. At the same time this underlying
philosophy is at the core of a range of commercial products that originated from various universities and
research labs [10, 24, 22] .

3. Technology

This section explains some of the underlying technologies of the Goanna tool. The specific details and
formal definitions can be found in earlier publications on our core model checking approach [17], the details
on inter-procedural analysis [4], and the formal treatment of counterexample-guided trace refinement using
SMT solvers [23].

3.1. Core Idea

Central to our approach is to treat static analysis as a model checking problem. This idea was inspired
by Schmidt [30, 29], where the connection between µ-calculus and static program analysis is explored. Our
basic ideas are illustrated in Figure 1: On the left there is a simple C program and on the right there is its
corresponding initial coarse abstraction. The abstraction consists of the program’s structure as extracted in
a control flow graph (CFG) and atomic proposition, which are essentially labels of points of interest. The
CFG and the labels are computed automatically based on predefined check patterns.

In the example in Figure 1, the points of interest are the control locations where memory is allocated,
where it is used and where it is freed. Those locations can be determined by pattern matching on the parsed
code. Once the abstraction has been automatically built it is possible to state typical static analysis queries
as temporal logic formulas. For instance, consider the following Computation Tree Logic (CTL) formula:

AG(mallocp ⇒ AG(freep ⇒ AG¬usedp))

This formula means: for every allocated memory (malloc) we ensure that after a path to a matching
freeing of memory (used) we do not encounter the use of a pointer to that memory (free). The CTL
operator A refers to all paths and G to globally, meaning all states. Variances of the same check can easily
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void foo() {

l0 : int x, *a;

l1 : int* p = malloc(sizeof(int));

for(l2 : x = 10; l3 : x > 0; l7 : x--) {

l4 : a = p;

l5 : if(x == 1)

l6 : free(p);

}

}

l0

l1 mallocp

l2

l3

l4 usedp

l5

l6freep
l7

l8

Figure 1: Example of an annotated CFG for a function foo. The locations are also annotated in the listing.

be achieved by switching to existential quantifiers, stating for instance that usage should not happen on at
least one path, otherwise we can deduce that there is a violation on every path.

All the elements above can be predefined as templates. The labeling to generate the atomic propositions
is predefined as search queries on the abstract syntax tree (AST) of the parsed code in the form of (tree)
pattern matches. The individual checks are CTL templates where the results from the atomic proposition
generation are filled in, and the transition system is defined by the structure of the CFG.

The Goanna analyzer ships with a large library of predefined checks containing around 200 different CTL
properties to identify various classes of potential C/C++ software bugs, including NULL-pointer derefer-
ences, copy constructor problems, concurrency locking issues, memory leaks and security vulnerabilities.
The full list can be found online2.

3.2. Advantages

Using CTL model checking for static analysis might be unusual to a certain degree as the worst case
complexity is higher than in traditional static analysis using flow equation solving. In practice, however,
there a number of factors that indicate that this approach is favorable:

• The initial coarse abstraction consists of the control flow graph and atomic propositions representing
points of interest. This means that the state space is typically very small as there are no concurrent
components nor detailed data structures that might lead to state explosion. A single CTL check on
this abstraction typically only takes a tiny fraction of a second in analysis time.

• Unlike traditional static analysis little effort is required to write a new check. It is sufficient to define
the pattern matching rules for points of interest and the CTL property. There is no need to define
transfer functions and join operations, or to manage a fix-point iteration algorithm.

• The current approach is amenable to additional software model checking techniques such as abstrac-
tion/refinement. Since we are already in the model checking world we can use the current abstraction
as a starting point to add more semantic information whenever needed. This is explained in Section 3.3.

• The analysis is by default flow-sensitive, i. e., the CTL model checking algorithm by its very nature
considers every possible path without merging information at joins as in classical static analysis. This
is done efficiently without enumerating each path individually.

2http://redlizards.com/resources/user-manuals/
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Figure 2: SMT-based trace refinement loop

• Several CTL model checking queries can make use of each others’ results. By looking up sub-formulas
it is possible to reuse information across different CTL formulas on the same structure. More details
on this are given in Section 4.

The idea of using an automata-based approach to static analysis is also followed in the Uno tool [21] and
its later development in Orion [11].

3.3. Path-based Abstraction/Refinement using SMT

One of the drawbacks of the abstraction presented above is that it is often too coarse, leading to false
positives. This can be seen for instance in the example in Figure 1: The actual program semantics only frees
the memory in the last loop iteration. This means that the memory is no longer used after the free-operation.
This fact is lost in the abstraction, leading to a false positive using the naive approach outlined earlier.

To remedy this situation we use a language refinement approach, whenever we encounter a potential bug,
i. e., obtain a counterexample from the CTL model checking phase. The details of the refinement approach
are published earlier [23]. Here we give the core ideas:

1. Whenever we get a counterexample we examine if this counterexample is real or spurious by subjecting
it to a detailed analysis in an SMT solver. In the SMT solver we closely model the C semantics and
investigate if the constraints on the counterexample path are satisfiable.

2. If the path cannot be satisfied, we know the counterexample is spurious. We compute the unsatisfiable
core of the counterexample, which relates to the actual cause of the unsatisfiablility, and create an
excluding observer automaton that is ruling out the set of paths with the same cause.

3. We run the original model with the observer automata in parallel and repeat the process until we
either do not find a new counterexample or we cannot refute it.

The idea of this abstraction/refinement approach is depicted in Figure 2. The advantage is that the
refinement happens on-demand, i. e., whenever a potential bug is found. Moreover, the refinement only
adds observers ruling out infeasible traces, keeping the original model the same and the overall state space
relatively small. Most importantly, the refinement approach is something that is not easily possible in a
classical static analysis setting and provides a real advantage in delivering better results. Recent approaches
using interpolants for verification go into the same direction and are a field of future research [19].

Apart from these core techniques involving model checking and SMT solving we use a range of other
methods that we briefly touch on in the next section.

3.4. Other Techniques

While the core techniques are good to find deep bugs in an efficient manner, there are limitations when
it comes to data range checking for buffer overflows and alike, for pointer handling and dealing with millions
of lines of C/C++ code at a time. This is addressed as follows:
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Figure 3: High-level Goanna Architecture

Abstract interpretation. We use a classical abstract interpretation framework to approximate data
ranges for integers and pointers. The abstractions are based on an interval semantics and are computed
in a separate phase before the results are integrated into subsequent analyses. While there are more
precise domains for abstract interpretation, including octagons and (convex) polyhedra, in practice it
appears that intervals are quite sufficient, especially in conjunction with our abstraction/refinement
approach. Most importantly though, interval abstractions are easy and cheap to compute.

Pointer Aliasing. The tool contains a pointer alias analysis to improve the analysis results both in terms
of minimizing false negatives as well as false positives. To achieve this, we are building heap graphs
that for each location in the program approximate the actual pointer structure, i. e., which pointers
are currently aliases of each other and point to the same memory location. This enables us to detect
dangling pointers as well as for instance double-free operations, where free is called twice on different
pointer names, but addressing the same memory [2]. The analysis is done separately and the pointer
aliasing structures are kept in memory for other analysis steps.

Modular Analysis. In order to scale to millions of lines of code, Goanna uses a function-modular approach
to handle inter-procedural information. This means that for each function we compute an input/output
summary and only propagate that summary information along the call-graph for future computations.
For instance, we track which pointers related to parameters dereferencing a pointer, or which variables
require an incoming pointer to be non-NULL. Typically, the summary is in the form of a classical
lattice, i. e., a pointer is in {null, not null, maybe null, unknown} with the usual ordering on it.

Incremental Analysis. An incremental analysis is used to avoid re-analysis of a whole project if only some
code parts changed between two runs. Instead, Goanna analyses the changed code and related depen-
dencies only. Additionally, there is support for parallel analysis and running Goanna on distributed
servers, if such a setup exists.

Figure 3 depicts the high-level architecture of our software analysis tool. At the core are the different
analysis engines for abstract interpretation, model checking, SMT solving and pattern matching. As input
the tool takes C/C++ projects and a set of specifications that are written in our own domain-specific
language and predefined for standard users. Goanna can be run on the command line, integrated with IDEs
and can be embedded in the build system. It outputs warning messages classified by severity, displays error
traces based on counterexamples, and can create summary reports.
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Overall, the integration of various formal verification techniques into Goanna makes the tool rather
different from other static analysis tools. At the same time it is also different from traditional software
model checking tools by sacrificing some of the latter’s semantic depth and focusing on more generic bug
detecting capabilities. We believe that Goanna provides some realistic middle ground to address deep
software issues in a practical manner.

4. Engineering

In the previous section we explained some of the underlying formal verification techniques used and the
overall approach to static analysis as implemented in Goanna. There are, however, a range of challenges
that go beyond the actual core technology to create an industrial strength product.

Our earliest implementation was a typical academic prototype that was in fact more a proof of concept
than a complete tool. For that we extracted some intermediate format out of the gcc compiler, we parsed
that format, built the necessary data structures and transformed them into the input language of the NuSMV
model checker [7]. Finally, we used to call NuSMV and parse the output back. There has been a whole
range of problems with this approach that became apparent with early industrial adopters:

Parsing. Key to analyzing C/C++ is the ability to parse the code, which is already a substantial barrier.
Our original approach using gcc had several issues: gcc’s internal format was neither well documented,
nor consistent or even stable over various version numbers. A better choice would have been LLVM [25]
with a cleaner interface, but LLVM was still in its infancy at the time. But more importantly, industrial
projects often do not use gcc (and do not compile with gcc), but have their own compiler variants
such as the Microsoft compiler, the ARM compiler, the IAR compiler and so on. Each compiler has
its own interpretation of C/C++ and its own non-standard extensions. For those reasons we decided
to go with the commercial EDG compiler3 that supports various dialects to a high degree. Still, being
able to parse all language aspects including compiler extensions and C++ templates does not mean
that it is straightforward to handle those constructs correctly. It takes significant effort to deal with
them in the underlying implementation.

Build Integration. Being able to parse code is one challenge, being able to integrate into existing build
infrastructures is a different issue. Large commercial build systems have two major obstacles: Hardly
anyone is allowed to touch them and hardly anyone still fully understands their inner workings. Often
build systems have been growing over time. They might have started out as standard makefiles, but
then got patched by calling Perl scripts or other shell scripts, include special feature builds for various
target environments, call different compilers and they might not even build completely if legacy code
and third party libraries are involved.

As a tool vendor it is almost impossible to require a change to the build system, and managers are
understandably highly sensitive about any process changes. As a solution we developed a non-invasive
build wrapping that channels calls to the compiler through our build recording mechanism, which can
be used to run with the actual analyzer at a later time. This also includes some auto-configuration for
different compilers and target environments on the fly to detect the right settings, right include files
and so on. This in itself is a major piece of work and support.

IDE Integration. Similar to build integration we also provide a Goanna variant to integrate with common
IDEs to make the uptake of the tool as simple and straightforward as possible, and to enable a seamless
adoption by software developers, who are not experts in formal techniques and are also not experts in
build system integration.

As above, the integration effort is non-trivial. Starting out with support for Eclipse and Microsoft
Visual Studio we branched out into various embedded compiler IDEs. Each have their own slightly

3http://www.edg.com
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different concept that require a lot of time of engineering, re-engineering, debugging and testing. Often
this also requires to accommodate minor changes between different versions, where certain APIs are
no longer available or have changed.

The above challenges present a rather high entry hurdle to the industrial application of software analysis.
While not all of those items need to be addressed simultaneously, they certainly impact uptake and support
requirements. Often these issues prevent a successful application of the core analysis.

The next set of issues are related around performance and scalability to large code bases. While academic
prototypes are often good enough if they can demonstrate the underlying techniques on some example code
bases, industrial projects quickly require to deal efficiently with many millions of lines of code. For instance,
in the telecom industry, Android is now a popular platform that gets included in the build process, pulling
into every nightly build around 6 million lines of pure C/C++ code, which translates to 43 million lines of
code after preprocessing. This number does not even include the applications on top of it.

Commercial requirements often dictate that the analysis finishes “in time”, which means at least over
night for such large code bases. In general, this will require analysis time that is similar to compile time or
a close multiple of it. Below we report on our experience of scaling our basic analysis technologies to those
requirements.

Pattern Matching. As mentioned earlier, our CTL model checking approach uses pattern matching to
detect points of interest that get translated into atomic proposition for the CTL formulas. This
pattern matching is done on the parsed program’s abstract syntax tree (AST). For finding patterns
in the AST we use an XPath-based query language [20], which was originally designed to efficiently
describe queries in XML documents.

However, since we have a wide range of different CTL properties and each CTL property might depend
on atomic proposition described as complex XPath queries, the number of queries might be fairly high.
While each individual query might only take tenths of a second or milliseconds the sheer number of
queries can add up. For instance, for the Android code base Goanna evaluates close to 500 million
XPath queries. As are result, the queries have a non-trivial performance impact taking up to 20% of
the overall runtime.

To deal with this, we implemented a range of caching stages to avoid re-computation of sub-expressions
and hardcoded some of the most critical expressions. Still, performance optimization is ongoing and
often it is not immediately clear if some new optimization brings a performance improvement or might
hit the garbage collector in our implementation language OCaml and decreases performance.

Model Checking. The models that are generated in Goanna are very atypical for the model checking
problems encountered in academia. In our case the state space is mostly small with a few hundred or
a few thousand control flow locations, but there are a large number of CTL formulas to check on the
same structure. Large means that it is not too unusual to check for several thousand CTL formulas
on a single file. The reason is that in the worst case every class of checks applies to each variable. For
instance, checking for uninitialized pointers there will be one CTL formula for each pointer variable.
Many checks and many variables lead to many short model checking queries, but those add up to
overall excessive runtimes.

Our initial approach using NuSMV did not scale well across many CTL formulas as it appears that each
CTL formula gets checked from scratch. Moreover, NuSMV symbolically encodes models as binary
decision diagrams (BDDs) [5]. This encoding computation in itself appears to take some significant
time. In the end, we implemented our own explicit-state model checker that was optimized for re-
using sub-formulas already evaluated by a different CTL formula on the same model and also lazily
evaluating operations such as negations when needed. As a result we get around 60% of cache hits
and have seen cases where we were 500x faster than NuSMV. But most importantly, and somewhat
surprisingly, we were able to reduce run-time especially for larger models where NuSMV originally
performed relatively poorly.
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Positive Surprises. On the upside, using our own model checker and our abstraction refinement approach
works very well in terms of performance. In the end, what we used to believe is the core bottleneck
only consumes around 10-20% of the overall runtime, often being faster than the actual parsing and
preprocessing, which as mentioned earlier is the baseline for measuring the overhead. This makes us
particularly hopeful that we can add more sophisticated techniques further down the road without too
much of a runtime impact.

Also, the notion of model checking and the value it might deliver through a rigorous analysis is
something that is highly welcome in many organizations. Depending on their level of expertise these
days there is some understanding of these techniques within companies and there is a desire to apply
them, if the overall overhead both in runtime and required expertise is manageable.

Having mentioned key integration and analysis challenges, there are a range of engineering tasks that are
typically not addressed in a more academic environment. This includes: extensive regression testing, nightly
automated testing (we analyze tens of millions of lines of code every night), build and release management
with different development branches and quality gates, support for different hardware platforms and OS
versions, support for a range of embedded compiler dialects and ensuring a management-friendly reporting
mechanism. Many of these tasks are not directly related to the core algorithms, but to common engineering
tasks and best practices.

Overall the development effort and investment in getting a software tool to almost fool-proof industrial
level is immense. It is fair to say that the amount of time and effort from a prototype, to an alpha version
to the first commercial release is exponential. For instance, we spend around five times more resources on
productization than the inital whole research and prototyping phase.

5. Business Value

Sections 3 and 4 explained our underlying technology and some of the engineering challenges we faced
that are outside a typical academic setting. In this section we go one step further and report on the
experiences from a business perspective as a vendor of code analysis tools.

One lesson we quickly learned embarking on a commercial journey is that the technology and even the
product only plays a limited role in the overall success. As already highlighted in Section 4 there can be
engineering hurdles that can easily prevent the use of any underlying technology. Moreover, there are basic
factors such as market positioning, competition, licensing model, sales channels and support capabilities
that all contribute to the business outcome. In the following we address some of those aspects that are likely
of specific interest from a technology transfer point of view and that might be worthwhile considering for
similar projects.

Software Bug Reporting. The value of a product and in turn technology is often closely related to the
value it provides to the business deploying that product. The value of detecting a software bug is
hard to quantify. There are often mundane bugs that do not exhibit fatal crashes, but for instance
manifest as a higher memory consumption or performance degradation that might not be noticeable
to a service or product. On the other hand there can be so called showstoppers that are detrimental
to business. Often it is not easy to exactly pinpoint the severity of an issue.

However, knowing the existence of various potential issues in a product is of value to a software
developing organization. It assists risk management by reducing the number of previously unknown
quality and security issues in a system. While not every bug might be fixed (and often is not), the
overall numbers and metrics are of interest especially to team leaders and management.

For this reason bug reporting is often deemed important. This includes trending information as well as
facilities to drill down into certain areas of code as well as classes of bugs. From a business perspective
this high level overview and quality control is often critical for making decisions around where to spend
time and effort, for defining release gating criteria or for meeting compliance according to industry
standards.
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Value of Reduced Development Time. Another core aspect of using automated analysis techniques is
to cut down on development and test cycles. In larger organizations there are separate teams for
development and testing. Both can profit from automated tools:

Value for Test Engineers. Unlike traditional software testing, the use of static analysis tools re-
quires little manual work as there are no test cases to set up or interpret. Moreover, static analysis
is complementary to traditional testing, this means that bugs such as crashes or memory leaks
are a different focus than incorrect functional behavior. Therefore, these types of tools can pro-
vide a good incentive to the test engineer and the quality assurance group. The value is mostly
quantified in time saved and effort reduced, which depends on the specific organization.

Value for Developers. As an alternative or as an addition, providing automated software analysis
tool to the developers themselves opens up new capabilities for detecting bugs during the devel-
opment rather than in a later test cycle. This is valuable, since even if a bug was detected by the
test team a day later and reported back to the developer, it still creates a significant overhead
and distraction from the developer’s ongoing work. Bringing this forward not only cuts down on
costs, but to a certain extent can help in job satisfaction or at least reduces interruptions.

Value of Precision. In all of the above cases the value is closely correlated to the precision of a tool,
meaning the number of false positives and false negatives. While a certain number of false positives
is acceptable, because it is still relatively quick to investigate a few warnings that might be spurious,
it is only acceptable if the majority of issues are real. This means that the better the underlying
technology is in being precise or automatically removing false positives, the higher is the acceptance
of a tool and its value. Moreover, in our experience it is at the same time important to provide the
end user with some mechanism to suppress issues in future analysis runs once they are classified as
false or as not serious enough to consider fixing.

Cost of Integration. A new product not only brings value, but naturally comes with costs. License fees are
often only a small fraction of the overall costs to an organization which includes: Costs of procurement,
costs of training or induction required to staff members, costs of integration with existing tools and
processes or, most significantly, cost of changes in workflow and infrastructures. Some additional
questions around costs that might arise are about who will be responsible for ongoing maintenance
and configuration: the build manager, the quality assurance manager or each individual developer?

In our experience it appears to be important to provide open interfaces to integrate with existing tools
and processes. Moreover, it is highly important that a software analysis tool minimizes the need to
modify core critical infrastructure such as the software development build system.

Lastly, we would like to highlight some of the complexities not necessarily in the application of the tools,
but more on the soft side, including communication and selling processes. Even with a very specific software
analysis tool there can be various levels of company hierarchy involved in making a buying decision. This
includes the developer, but also the test engineers, the quality assurance or security team manager, the
product manager or even top-level management.

While in smaller organizations these buying decisions might be made by an individual developer, in our
experience this is unusual. Typically, decisions are made by higher levels in the management hierarchy
who take advise from other technical staff in the organization. However, this also means that a product is
viewed as much more than just a technology, it is the solution to a specific need. The problem might be
poor product quality, missed release deadlines, low confidence in a code base or even lack of skilled staff.
Software bugs are a manifestation of those problems. Software tools provide assistance to quality assurance,
quality tracking, high-quality release management and alike, where software bugs are only one component
in a larger picture that gets tracked in dashboards and reports. From that perspective, it is important to
understand that difference and to provide the necessary tools that fit into the enterprise workflow, that
deliver reports, and that provide some level of management view into the results.
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6. Lessons

Our experiences are to a degree similar to those who have been involved in moving academic tools to
commercial products. Prime examples are Coverity [10], Astrée [3] and its precursor Polyspace, as well as
Fortify [6]. The Coverity team has highlighted some of their challenges regarding false positives and build
system integration [1]. These are similar to ours. Moreover, Gary McGraw described his technology transfer
experience from a venture capital injection point of view [26] emphasizing the chasm between sophisticated
research technology and the realities of business needs.

Interestingly, software analysis plays only a limited role in the overall software development lifecycle
and general product development process. Bugs are of course a concern if they lead to critical failures
and therefore a loss in business. However, a bug that never or very rarely manifests might often not be
of primary concern. Nonetheless, being able to track the overall software quality and observe trending is
generally considered to be important and worthwhile. This leads to the interesting constellation where the
people making purchasing decisions are typically different from the software developers and motivated by
quite different reasons. To produce a solution that makes all sides happy is not straightforward.

In our experience there are some key reasons to use formal methods based tools: There is a notable
benefit when designing such tools by the intrinsic rigor that comes with the field, i. e., limitations and
corner cases are typically considered and the overall internal architecture can be better designed. Moreover,
the analysis can often be deeper and produce better results than comparable technology based purely on
heuristics. And finally, also from the customer side it is well understood that verification-based tools are
built on solid frameworks, which in turn can create a positive impression.

While creating a product required a large investment both in engineering and business development,
we were quite pleased to notice, and to a certain degree surprised, how well our formal analysis techniques
performed on large industrial applications. This encourages us to believe that continuous development in
core analysis technologies such as SMT solvers will play a much larger role in industrial software assurance.

Of course, not many universities and research organizations have the desire, need or capacity to lift this
often costly technology transfer. But even so, we see some level of acceptance of more academic style tools
into commercial environments. In our experience there is a willingness to accept tools with rough edges
if the licensing conditions are unproblematic, if tools are well documented with a certain user base, and
the tool can deliver a degree of reliability that is good enough for most cases. Combined with delivering
something unique a software has a good potential to get at least some uptake in industrial applications.

Looking forward, we see growing challenges that are in our opinion not yet well addressed in the formal
analysis community. These are mainly related to the huge source code bases in industry that continue to
grow rapidly. For instance, the requirement to handle 30+ millions of lines of code will soon be a reality.
Moreover, these large systems are under constant development with short product development cycles. Being
able to handle massive data in an efficient manner that finds just the right software issues is one of the core
open issues that might require a more inter-disciplinary approach combining for instance data analytics,
machine learning and other big data approaches with formal methods.
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