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Abstract. Low level data-races in multi-threaded software are hard to
detect, especially when requiring exhaustiveness, speed and precision. In
this work, we combine ideas from run-time verification, static analysis
and model checking to balance the above requirements. In particular, we
adopt a well-known dynamic race detection algorithm based on calculat-
ing lock sets to static program analysis for achieving exhaustiveness. The
resulting data race candidates are in a further step investigated by model
checking with respect to a formal threading model to achieve precision.
Moreover, we demonstrate the e↵ectiveness of the combined approach by
a case study on the open-source TFTP server OpenTFTP, which shows
the trade-o↵ between speed and precision in our two-stage analysis.

Keywords: Software verification, static analysis, concurrency, lock sets

1 Introduction

Modern processors commonly feature multi-core architectures. To fully use such
hardware, software for multi-core processors often manages threads in the appli-
cation code. Such concurrency carries the risk of introducing subtle but serious
defects that might show up only sporadically and are extremely hard to debug.
Common programming languages such as C provide only basic primitives for
concurrency in terms of threading, while at the same time o↵ering only limited
tool support for debugging and bug prevention.

In this work we present a new way of detecting data races in embedded
source code. We combine ideas from run-time verification, static analysis and
software model checking by balancing their strengths and weaknesses. Run-time
verification provides a good means to detect certain race conditions, but can
only reason over program executions that have actually been observed, limiting
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2 Jakob Mund, Ralf Huuck, Ansgar Fehnker, and Cyrille Artho

1 int shared var = 0; 7

2 8 void *writer() {
3 void *reader() { 9 for(;;) {
4 for(;;) { 10 shared var = compute();

5 t = shared var; 11 } }
6 } }

Fig. 1. Data Race Example

coverage. Static analysis is strong in covering all potential execution paths, but
is prone to (over-)approximations leading to false positives. On the other hand,
software model checking o↵ers a precise analysis of the program semantics, but
with limitations regarding scalability to larger code bases.

We propose a layered approach: In a first step we use a path-sensitive static
implementation of the well-known Eraser algorithm [15]. Our static version is
able to detect data races in C programs with a complete path coverage. While the
algorithm is applicable to large-scale software, it is also prone to false positives.
Therefore, in a second step we take those data races as candidates for a deeper
model checking approach. The model checking phase abstracts from non-essential
data and instructions and takes the threading model into account.

In this way we avoid to apply traditional software model checking to the full
multi-threaded source code, but rather treat its application as a false-positive
elimination step on selected code parts only. As a result we obtain a solution
that can deal with real software systems, has a higher degree of coverage than
run-time verification, but is more precise than traditional static analysis.

This paper is organized as follows: In Section 2 introduces to data races and
the objectives of this work, together with related work. We present our two-
step analysis approach in Section 3, covering the Eraser lock set analysis and its
combination with software model checking. Experimental evaluation is presented
in Section 4, followed by our conclusions in Section 5.

2 Data Races in Multi-threaded Programs

Threads are concurrent streams of program execution that can be created,
merged and deleted at run-time. Threads might have access to shared resources.
A data race occurs if two or more threads can simultaneously and non-atomically
access a shared resource with at least one access being a write operation.

An example data race is given in Figure 1. A reader thread reads a shared
variable (lines 3–6); a writer thread writes to it (lines 8–11). If these accesses are
not synchronized using locks or other coordination mechanisms, then their e↵ects
are not well-defined. The update of the writer thread may become visible to other
threads immediately or at any time after it has been issued, due to memory
caches and other optimizations in modern hardware. Reading shared var may
thus yield di↵erent results depending on thread scheduling and hardware, which
is why it is desirable to avoid data races in concurrent software.
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As threads can be created dynamically, the number of threads may be large.
The e↵ect of data races may only be visible under a particular interleaving of
thread actions at run-time; this makes the detection of data races di�cult.

2.1 Scope and Contribution

Like the Eraser algorithm [15] used in run-time verification, we detect low-level
data races by finding inconsistent or absent locking of variables shared across
threads. Eraser monitors the lock set that protects a shared variable during read
and write accesses to it. On every access, Eraser computes the intersection of the
lock set protecting that variable. If the intersection becomes empty, i. e., there
is no single lock consistently protecting a variable, a warning is issued.

Static Eraser Implementation. In this work we introduce a path-sensitive static
implementation of Eraser. Unlike run-time verification we consider all paths stat-
ically, possibly over-approximating the set of feasible interleavings, but ensuring
full coverage. This approach finds all data races but may issue spurious warnings.

Model-checking Thread-Interleaving. We also propose another analysis that is
more precise and can reduce false positives from the previous step. The sec-
ond analysis creates the thread-interleaving graph of the program (with limited
depth) that captures the call structure of the threads and their termination, as
well as the read and write accesses to shared variables. Since the interleaving
graph grows exponentially with the number of threads in the program, we re-
strict it to the data-race candidates as identified in the static Eraser approach.
We then model-check the thread-interleaving graph for feasible data races. This
approach is sound up for a bounded number of threads. Using abstraction we are
able to apply this methods to real code as shown in the evaluation in Section 4.

Our approach is based on a thread-interleaving semantics as defined in [12].
This semantics takes into account thread creation, join and cancellation as well as
the acquisition and releases of locks. Moreover, it includes the advanced concepts
of waiting and signaling that require a view of the global program state and is
thus not covered by Eraser or other thread-modular approaches.

2.2 Related Work

Eraser [15] is the classical lock-set based algorithm that approximates potential
data races very well, while not having the overhead of more precise but heavy-
weight approaches based on the happens-before relation [16].

Goldilocks is a newer algorithm that computes data races precisely [7]. To be
more accurate than Eraser, Goldilocks requires more elaborate data structures.
Furthermore, the precision of Goldilocks depends on its ability to recognize over-
lapping data of multiple software transactions. That data is readily available and
precise when using run-time verification, but is di�cult to approximate precisely
enough in static analysis, which is why our analysis is based on Eraser.
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Other concurrency errors may still exist even in the absence of data races
(called low-level data races to compare them with similar concurrency problems).
High-level data races [3] and atomicity violations [2, 9] are two types of such
problems. High-level data races cover non-atomic accesses to sets of dependent
variables (multiple memory locations). Atomicity violations concern the scope
during which a lock is held, and thus the use of the data rather than its direct
access. These two types of problems have recently been subsumed by the notion
of causality in data flow, which can cover both accesses to data and its use [6].

Static analysis of such concurrency properties has been attempted in other
work, in a static analyzer where the rules are hard-coded in the program [1], and
in a framework that is specialized for concurrency properties [11]. In contrast to
that tool, we build on top of a general static analysis framework, Goanna [8],
that allows flexible rules to express a wide range of di↵erent properties.

The second part of our work is closely related to other software model check-
ers, e. g., Java PathFinder [18] for Java bytecode and Inspect for C source
code [19]. The key di↵erence is that these software model checkers execute the
full software at run time and explore alternative interleavings by rolling back
the system to a previously stored state. This dynamic analysis is much more
expensive than our approach, which works on an abstract model of the program.

Software model checkers working on a higher level of abstraction exist as
well, such as SLAM, which analyzes device drivers against a given environ-
ment model [4], or SATABS, which can analyze programs using a subset of the
Pthreads library [5]. In comparison, our work is not limited to certain domains
(such as device drivers) and covers the full Pthreads library.

3 A Layered Approach for Static Race Detection

Our layered approach to detect data races first applies static analysis to obtain
data race candidates and then applies model checking on those candidates.

3.1 Static Data Race Analysis

A common way to prevent data races is to impose a locking discipline that
requires any shared (write) variable to be protected by at least one distinct lock
among all threads. Since each lock can only be held by one thread, data races
are e↵ectively prevented.

Eraser [15] monitors the dynamic execution paths of each tread and records
for each variable the lock set being held. If the intersection of those lock sets
across threads for the same variable is empty, we assume a potential data race.

To achieve the same statically, we propose to check all program paths for
each thread and then build the same intersection over all threads. Obviously, the
static approach is an over-approximation as not all paths might be executable.
We use the definition of a lock set [15, 14] as the mapping of shared variables
to its potential set of locks, i. e., Lockset : Variables? ! }(Locks?). In the
following, we show how to compute and check for emptiness of the Lockset.
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Algorithm 1: Static implementation of the lock set algorithm.

begin

Lockset(v) Locks?;
isReadOnlyv  tt ;
foreach ⇡i 2 Threads? do

lockstate  � MFP(Nodes⇡i , is locked);
foreach n 2 Nodes⇡i do

if n accesses v then

LocalLockset⇡i(v) LocalLockset⇡i(v) \ lockstate(n) ;
isReadOnlyv  isReadOnlyv _ (v is modified in n);

Lockset(v) Lockset(v) \ LocalLockset⇡i(v);

Path-Sensitive Lock Set Computation. A thread (procedure) ⇡ is defined as
a procedure with name pn that occurs in a thread-creation action denoted
create(✓, pn). Nodes in the control flow graph of ⇡ are denoted by Nodes⇡.
For a given thread ⇡ we define a function is locked : Nodes⇡ ⇥ Locks? ! B
that returns for each node n in ⇡ and each lock l whether l is held along all
paths leading to n by

is locked(n, l) =

8
<

:

tt if n = Lock l,
↵ if n = Unlock l,
8m 2 pred(n)

V
is locked(m, l) otherwise.

Here pred denotes the predecessors of a node; the conjunction ensures cover-
age of all potential paths. This notion captures a standard path-sensitive static
program analysis to compute the must-hold locks for each node in a thread.5

Based on the information about the held locks, the thread-local lock set for each
shared variable v 2 Variables? and thread ⇡i 2 Threads? is computed by

LocalLockset(v,⇡i) =

⇢T
n2Nv

{l0 | is locked(n, l0)} if Nv 6= ; in ⇡i,
Locks? otherwise.

where Nv denotes the set of all nodes of ⇡i which access variable v. The second
case accounts for variables which are not accessed in ⇡i, mapping them to the
set of all locks. Finally, the lock set for a program is the intersection of the lock
sets for each thread occurring in a given program, i. e.,

Lockset(v) :=
\

⇡i2Threads?

LocalLockset(v,⇡i)

Our algorithm [12] calculates the lock set using the maximal-fix-point work-
list algorithm MFP [10] (see Algorithm 1). If Lockset(v) is non-empty for any
shared variable v, the program is free of data-races.

5 Modern programming languages like Java support synchronized blocks that acquire
(resp. release) a lock when entering (resp. exiting) the critical section, enabling path-
insensitive approaches [13].
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Fig. 2. A labeled transition system generated by applying the threading model. Colored
vertices designate states with an imminent data race.

Soundness and Completeness Under the assumption that shared variables
(as well as locks and signals) do not alias, the static lock set algorithm for low-
level data race detection presented here is sound, hence false negatives (i. e.,
missed races) are not possible due to the locking discipline.

However, the analysis is incomplete as false positives (i. e., spurious warn-
ings) are possible, because the analysis does not consider the temporal (also
called happens-before) relation among events in di↵erent threads. Furthermore,
warnings may be spurious if data races are avoided by other synchronization
primitives like signals, or other more fine-grained accesses of variables [17].

3.2 Model-Checking of the Threading Semantics

While the approach presented in the previous section uses a fast thread-modular
analysis, it is also prone to potential false-positives. An alternative precise ap-
proach is to use formal semantics for the multi-threading constructs and variable
accesses and apply model-checking on the imposed model.

Semantics of Multi-Threaded Programs For model-checking we formalize
the essence of multi-threaded program constructs [12], e. g., thread management
and lock synchronization, according to structural operational semantics. This
results in a labeled transition system, in which a data race happens if for a
global state � there are two threads ✓

1

, ✓
2

and at least one of the threads is
write-enabled on a shared variable v, while the other one can read or write to v:

datarace(✓) = enabled(writev, ✓1,�) ^ (enabled(writev, ✓2,�) _ enabled(readv, ✓2,�))

Using this predicate low-level data races can be detected by checking (on-
the-fly) whether there is a path such that a data race can be reached.

An example of such a transition system is shown in Figure 2. Global config-
urations are numbered nodes; the transition system considers program actions
relating to shared variable myglobal . Procedure TERM denotes successful termi-
nation; the number in a label represents the global transition relation (see [12]).
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Algorithm 2: On-the-fly reachability checking using BFS.

begin

⌃worklist  {h{✓main 7! ⇧(main)},;,�l.?i};
⌃visited  ;;
while ⌃worklist 6= ; do

�current  dequeue(⌃worklist);
if �current ✏ � then

WARN(�current);
return true

foreach �0 2 {�0 | �current
✓,a��!G �0 ^ �0 /2 ⌃visited} do

enqueue(�0,⌃worklist);

enqueue(�current,⌃visited);

return false

Global states 8 and 9 represent locations at which data races happen, because
the two preceding actions in both states are unsynchronized write accesses.

On real systems, model construction potentially results in an exponential
blow-up both in the numbers of threads and the number of thread operations.
Moreover, thread creation in an (unbounded) loop may yield a possibly un-
bounded number of threads. In practice, model-checking would use a k-bound
to restrict the number of threads that a single thread can create per local state.

Our interleaving semantics is a faithful abstraction of the real program by
only considering thread-specific concepts and read/writes to shared variables.
Mapping a threaded program to this abstraction is a non-trivial task when con-
sidering function calls and some subtleties of the POSIX standard.

Implementation Algorithm 2 checks whether a configuration satisfying a given
predicate � : ⌃ ! B is reachable, and warns if a configuration satisfying �
(� ✏ �) is found. In this algorithm, the reachable states of the model are not
generated a priori but during the analysis itself, i. e., on the fly. This happens at
the foreach-loop where solely the immediate successors of �current are explored.

Unlike Algorithm 1, model checking yields precise diagnostic information.
Line numbers shown by WARN substantially facilitate tracking down defects.

The use of a breadth-first-search was motivated by how thread interleav-
ing influences the model. Di↵erent interleavings for the termination of threads
constitute a large part of the model but are of less interest for race detection.

Soundness and Completeness Under the assumptions given above, our ap-
proach is sound and complete up to the fixed thread bound k, i. e., if each pro-
gram instruction that instantiates a thread is successfully executed at most k
times. Imprecision is introduced whenever thread instantiation is nested within
loops that exceed the thread bound during execution. In those cases the analysis
is neither sound nor complete. Fortunately, such bugs manifest rarely in practice.
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Table 1. Evaluation results on OpenTFTP.

Analysis # Races Correct/Incorrect T
MTA

T
total

T
MTA

T
total

T
MTA

#V ars
T
MTA

kLOC

Lock set 15 4/11 (27%) 7.58 s 38.63 s 19.6% 0.47 s 3.03 s
Combined 0 n.a. 131.49 s 153.86 s 85.4% 8.21 s 51.94 s
Combined* 4 4/0 (100%) 2176.85 s 2194.36 s 99.2% 136.05 s 869.69 s

3.3 Combining Both Analyses: The Layered Approach

The lock set algorithm is designed for performance, at the cost of possible spuri-
ous warnings. Since it is sound, each variable for which the analysis yields a non-
empty set of distinct locks protecting it, is regarded as safe. On the other hand,
model-checking yields precise results. However, the state-explosion problem often
renders (detailed) models of concurrent programs too large for model-checking.

A natural consequence is to use a combined layered approach:

1. The lock set algorithm yields a (global) lock set for each shared variable.
Variables with a non-empty lock set are safe.

2. We apply model-checking to the remaining shared variables in isolation. If a
data race is reachable, we report that data race.

Step 2 can be thought of as a false-positive elimination for step 1. Note that
the lock-set analysis does not worsen the precision of model-checking. It can be
formally shown that if a non-empty lock set is found, a data race cannot be
detected using the model-checking approach [12].

4 Case Study OpenTFTP

The core ideas of our layered approach have been implemented on top of the
industrial-strength analysis tool Goanna [8]. Goanna analyzes C/C++ code us-
ing static analysis and model checking to detect bugs in large scale code. For
our purposes we made use of the fact that the tool can readily produce con-
trol flow graphs, allows model generation with custom labels based on syntactic
abstraction, and supports a summary-based interprocedural analysis.

However, a number of simplifications were made: The maximum thread cre-
ation bound was set to two, a pre-processing heuristics was used to detect the
shared variables, and potential aliases as well as dynamic memory allocations
were ignored. Moreover, for handling the threading semantics we inlined function
calls, which is clearly not scalable, but su�cient for experiments.

The case study was executed on a Mobile Core2Duo Processor (clock freq.
1.83 Ghz, 4 GB of memory) running on Ubuntu Linux 9.10. We measured both
the runtime of the multi-threading analyses presented in this paper (T

MTA

) as
well as the complete tool runtime including computation by Goanna (T

total

).
The TFTP server software OpenTFTP was used as a real-world software

example. The size of the program is about 2.5 KLOC, and it features high
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functional complexity coupled with many multi-threading and synchronization-
related constructs. Worker threads handle incoming requests, and shared re-
sources like sockets are protected using mutexes. Furthermore, structured data
types (structs) are used, whose impact on the precision can be evaluated. Obvi-
ously, analysis required an interprocedural setting to obtain meaningful results.

Out of 23 globally defined variables, 16 were identified as potentially shared
and written to by at least on concurrent thread. Two distinct threads were
identified, one being the main thread while the other is the processRequest

worker-thread which is started for each incoming request; hence, thread creation
is nested inside a loop. The initial run reported a multi-threaded control-flow
graph with 2,339 distinct control-states and 3,766 transitions, and data races
on 15 out of 16 shared variables.6 Inspection revealed that the software was not
programmed with respect to the POSIX standard, but with respect to some
hidden assumptions on Linux, exploiting the fact that concurrently executing
threads can release any lock held by any thread. We adjusted our model for this;
the modified approach is denoted Combined*, yielding precise results. Table 1
shows the results for the data race analysis using the lock set algorithm, the
combined approach based on the POSIX standard, and the modified model based
on the specific implementation on Linux exploited by the software.

5 Conclusion and Future Work

We propose a static implementation of the Eraser lock-set algorithm to detect
possible data races in software. This analysis is sound but may result in false
warnings. We add a second analysis step that model checks if potential data races
detected by the lock-set analysis, can ever occur during program execution. Our
two-step analysis takes into account the semantics of the Pthreads library, and
is precise at the cost of a higher analysis overhead.

In future work, the performance of the second step could be improved further:
As we consider only reachability properties, we could apply a strong partial-order
reduction by abstracting from all concrete sequences of actions and considering
only all possible global states. Moreover, instead of inlining procedures, some
enriched summary information should be su�cient.

Other future work includes the analysis of other concurrency properties, such
as deadlocks or high-level data races. Finally, the layered approach presented in
this work may be applicable to other properties where fast over-approximations
exist, making it be possible to balance speed and precision in a similar way.

Acknowledgments. NICTA is funded by the Australian Government (Depart-
ment of Broadband, Communications and the Digital Economy) and the Aus-
tralian Research Council through the ICT Centre of Excellence program.

6 A multi-threaded control-flow graph embeds subgraphs of child threads into calls
to pthread create. The states and transitions thus correspond to local states; the
number of global states is exponential in the number of local states and threads.
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