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Abstract

Goanna is an industrial-strength static analysis tool used in academia and industry alike to find bugs in
C/C++ programs. Unlike existing approaches, Goanna uses the off-the-shelf model checker NuSMV as
its core analysis engine on a syntactic flow-sensitive program abstraction. The CTL-based model checking
approach enables a high degree of flexibility in writing checks and scales to large code bases. In this paper,
a new approach to pointer analysis for C is described. It is detailed how this technique is integrated into
the model checking approach in order to perform interprocedural analysis. The performance and precision
of this approach are demonstrated using a case study.
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1 Introduction

Automatic tools support software developers in detecting bugs as early as possible
in the development process, and thus, help minimizing cost of development and
testing. Static analysis [19] tools identify syntactically correct but semantically
incorrect programs without executing or simulating the analyzed program. Static
analyzers typically do not guarantee the absence of defects. In recent years, much
effort has been put into the development of static analyzers and some tools have
become widely used in industry [11].

Model checking [6] is an automatic technique used in the field of formal ver-
ification, which allows verifying specifications for a given system by exploring its
complete state space. Goanna [16] is a static analyzer for C and C++ programs,
which differs from other static analyzers in that it uses model checking techniques to
perform static analysis [12,21,20]. Using model checking to conduct static analysis
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allows a straightforward specification of desired program properties in Computation
Tree Logic (CTL) [2]. Furthermore, if a specification is violated, a counterexam-
ple leading to the error is automatically generated, which is a valuable support for
locating and fixing the defect.

Many static analyzers perform intraprocedural analyses without taking the ef-
fects of procedure invocations into account. Even though many defects can be found
using intraprocedural analyses, other failures occur through the use of procedures
in the wrong program context. A procedure may expose a correct local behavior
but may still lead to a false program execution due to unexpected input values, for
example. This paper describes an approach to interprocedural analysis of pointers
for C based procedure summaries. Using procedure summaries allows to capture the
influence of a procedure call on the program state and reuse these results whenever
the corresponding procedure is called. In our approach, summaries are computed
based on an intraprocedural pointer analysis.

2 Program Analysis in Goanna

Goanna is a static analyzer for C and C++ programs. This section first describes
the general approach of Goanna, before the construction of models and the trans-
lation into the input language of NuSMV are detailed. NuSMV is used as the
core analysis engine. A more thorough description of Goanna and the underlying
intraprocedural analysis framework is given by Fehnker et al. [12].

2.1 Overview

The basic idea of the approach implemented in Goanna is to map a C/C++ pro-
gram to its control flow graph (CFG) and to automatically label nodes in the CFG
with syntactic constructs of interest such as declarations of variables. The CFG
together with the labels can be seen as a Kripke structure [6], which can be eas-
ily mapped to the input language of a model checker. Goanna uses an interval
constraint solving approach based on the work of Gawlitza and Seidl [14] to detect
buffer overruns. This approach is also used to perform false path elimination [13],
a technique related to counterexample guided abstraction refinement [5].

2.2 Model Construction

An abstract syntax tree (AST) of a C/C++ function over alphabets of attributes
ΣL, ΣE can be seen as an attributed tree (L, E, µL, µE) with nodes L, edges E,
and labeling functions µL : L → ΣL and µE : E → ΣE . The labeling functions
assign attributes to nodes and edges, respectively. Nodes are labeled with program
statements and expressions, while edges are attributed with the role of a branch.
For instance, the edges leaving an if-then-else statement are labeled with then

and else, or the edges leaving a node representing a binary operator are labeled with
rhs and lhs to indicate right-hand side and left-hand side operands.

From an AST, a CFG can be constructed in a straightfordward manner. A
CFG is a directed graph with a single root node. Note that a CFG does not
contain all information available in the AST, only the control structure down to
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1 fibonacci( n) {
2 x = 0, y = 1, q, i = 0;
3 {
4 oldy = y;
5 y = x;
6 q = x + oldy;
7 x = q;
8 i++;
9 } (i < n);

10 q;
11 }

Fig. 1. Example C program.

the level of statements is contained. No information about expressions or types is
present. Given the set of atomic propositions AP , a triple (Lf , Ef , µf ) with nodes
Lf representing statements, an edge relation Ef ⊆ Lf × Lf , and an additional
labeling function µf : Lf → 2AP defines a CFG. The labeling function µf defines
the set of atomic propositions holding in a program location.

The CFG of the function fibonacci() from Fig. 1 is depicted in Fig. 2. The
node labels in the CFG correspond to line numbers. The CFG is annoted with
atomic propositions for the use of variable q. The variable q is declared in line 2
and then assigned a value in line 6. Its value is read in lines 7 and 10.

decl q

1

2

3 5 6 74 8 9 10

assign q read q read q

Fig. 2. CFG of the function fibonacci() in Fig. 1.

2.3 Translation to NuSMV

In order to automatically check the generated model with respect to defined proper-
ties, it is translated into a NuSMV model. For a C/C++ function f , we translate
the corresponding labeled CFG (Lf , Ef , µf ) and a set of specifications CTLf over
AP into a NuSMV model NuSMV f = (varf ,∆f ,Def f ,CTLNuSMV

f ), where:
• varf is an enumerated type variable over the set of nodes Lf .
• ∆f ⊆ Lf × Lf is the transition relation defined as ∆f := {(l, succ(l))|l ∈ Lf ∧

succ(l) = {l�|(l, l�) ∈ Ef}}. The target of each transition is the set of reachable
locations.

• Def f = {define(p) = {l|µf (l) = p ∧ l ∈ Lf}|p ∈ Σf}, where every define(p) is a
DEFINE declaration, which indicates that an atomic proposition p ∈ AP holds in
a particular set of locations.
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• CTLNuSMV
f is the set of CTL specifications CTLf in NuSMV syntax.

This model is automatically generated and used as the input for NuSMV. If

one of the specifications in CTLNuSMV
f is violated, a counterexample trace is gen-

erated and mapped to the corresponding C statements, which helps users to un-

derstand how the defect emerged. Consider the CTL specification AG (declq ⇒
(A ¬readq W writeq)). This formula expresses that whenever variable q has been

declared, no path exists such that q is read before it is assigned a value. The CFG

in Fig. 2 satisfies this formula.

3 Intraprocedural Pointer Analysis

This section details our approach to intraprocedural pointer analysis for C, which

serves as a basis for both the generation of procedure summaries and the actual

detection of bugs (see Sect. 4). This is achieved by augmenting the NuSMV model

with additional interprocedural information.

In presence of aliasing, a memory location can be accessed through different

variables. In combination with structured types, this leads to complex problems to

be tackled when analyzing pointer dependencies. Our underlying memory model

abstracts from the physical representation to a coarse symbolic model but does not

handle complex pointer arithmetic. The presented algorithm computes for each

variable and each program location the sets of memory locations a variable can

alias, its so-called points-to sets. The approach comprises the following steps:

(i) An intraprocedural abstraction of the physical memory is generated from the

analyzed procedure.

(ii) Based on this representation, a static memory ownership model is established.

(iii) An equation system that represents dependencies between pointers in all pro-

gram locations is generated.

(iv) A reduction pass that resolves aliasing dependencies is conducted.

(v) The least solution of the reduced equation system is computed.

These steps are resembled by the structure of this section and detailed in the

following. In the end, an example is presented. Given a procedure f , the following

notations are introduced: Let Lf be the set of all program statements in f , and let

Vf be the set of all variables under the scope of f . For the following computations,

each procedure is converted into canonical static single assignment form [7]. This

means, a unique instance of each variable is introduced for each program location.

In this representation, a variable is a pair (v, l) ∈ Vf × Lf , which we denote by vl.

We denote the initial statement in Lf by 0, that is, the initial values of v under the

scope of a procedure are denoted by v0.

3.1 Abstract Memory Model

In the memory abstraction used, memory locations are represented by symbolic

values, which are induced through a number of constructs in C. A call of malloc(),
for instance, allocates memory and returns an address, or memory locations may
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be introduced by parameters. Two special purpose labels are introduced: one for

the address NULL, which is typically assigned to uninitialized pointers, and � to

denote addresses resulting from operations not modeled in our abstraction. Nested

pointers such as int** are currently not supported. The set of all memory locations

in a procedure f is denoted by Mf
. The number of labels in f is finite and the

corresponding powerset 2
Mf

forms a complete lattice with the common operations

on sets, ⊥ = ∅, and � = Mf
. Furthermore, we define Mf

+ := Mf \ {�, NULL}.

3.2 Memory Ownership

A static ownership model for each symbolic memory value is computed. This means,

for every memory label in Mf
+ it is detected which variable it is first assigned to.

This model is used both for the generation of intraprocedural alias information and

interprocedural summaries (cp. Sect. 4). A variable vl owns a memory location

m ∈ Mf
+ iff v is assigned m in l, and l is the first occurence of m. The ownership

relation defines a mapping θ : Mf
+ → Vf ×Lf

, which is used to distribute effects of

operations on memory locations to all corresponding aliases in the following steps.

3.3 Encoding of Memory Aliasing

In data flow analysis, a standard approach to express and to solve relations of

variables in different program locations is to encode these in terms of equation

systems [19], which allows to resolve cyclic dependencies. In case of pointer analysis,

a variable represents a subset of Mf
. For each variable v ∈ Vf

and each program

location l ∈ Lf
, we introduce an equation. These equations have one of the following

two forms:

• vl
∼= x: Here, x is a variable or a memory location, x is assigned to variable v in

program location l.

• vl
∼= {φ(vk)|k is predecessor of l}: This equation unites values of v coming from

predecessors of l in the CFG if vl is not changed in l. The function φ : Vf →
Vf

transforms the incoming values according to the encoding described in the

following. That is, it maps variables to variables in order to handle aliasing.

In case a complex expression is assigned to vl, we set vl
∼= �. That is, the

lattice element representing unknown is assigned to vl. Intuitively speaking, the

equation system assigns to each vl either a value assigned in l or propagates incoming

information along the CFG if vl is not changed. The challenge with modeling

aliasing in structures is that assignments to a field of a structure influence its own

children and the children of all respective aliases. To model this, we cover four

different situations during the generation of an equation for a variable v ∈ V f
in a

program location l ∈ Lf
.

(i) For v ∈ V f
such that v0 �= θ(m) for all m ∈ Mf

, set v0
∼= ⊥. That is, all

variables that are not initialized in the first program location, for instance,

through a function parameter, are set to ⊥.

(ii) There exists m ∈ Mf
such that vl = θ(m). In this case, the equation vl

∼= m
is generated. This is the case if a fresh memory label is introduced at location
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l and assigned to variable v, for instance by a C statement such as int *q =
(int*)malloc(sizeof(int)).

(iii) vl is an alias created in the C program in location l, for instance, through an

assignment of the form int *v = w. The value assigned to v is the value of

w coming from a predecessor of l in the CFG. The source variable w in the

assignment is marked as a reference, denoted by vl
∼= −→wl. The explicit notation

of references is used to denote variables that alias a memory location owned

by another variable. References are used to track transitive dependencies be-

tween owning and non-owning variables. If v is of structured type, the same

procedure is applied to all children of v. That is, we set v->pl
∼= −−−→w->pl. Oth-

erwise, assignments made to children of a non-owning alias would not affect

the children of the owning alias.

(iv) If the value of vl is not changed by the statement in l, then we set vl
∼=

{φ(vk)|k is a predecessor of l} where φ replaces all references
−→wk� in vk with

updated references
−→wl, which expresses that vl corresponds to wl. If there

exists l� ∈ Lf and m ∈ Mf such that vl� = θ(m), then vk is replaced with m.

The other values remain unchanged by φ.

Step (iv) transforms references in incoming variables to express that the refer-

ences in the equation correspond to the variables in the current program location

l. References – denoted by
−→wl – are a syntactic means used to model that v corre-

sponds to w in the same program location. If the equations are generated following

the rules described above, a unidirectional syntactic dependency between owners

and non-owners of a memory location is established in the equation system. As

these rules explicitly tackle aliasing, they are only applied to pointer variables.

3.4 Reduction

During the reduction phase, all references in the equation system are eliminated to

perform a unification of owning and non-owning aliases. The modeling of aliasing

in the previous section has introduced references on the right-hand sides of the

equation system such as, for instance, vl
∼= −−→wl− . These references were introduced

to track aliasing dependencies.

In the reduction step, references are resolved to distribute information from ac-

tions applied to non-owning variables to other aliases. Without this step, the effects

would only be visible to the owning variable. As a result, all aliases correspond to

the same memory labels. If we write v->v� in a structure, then v and v� may be

structured variables themselves. Using this notation, the described reduction can

easily be applied to nested structures. The equation system is reduced by applying

the following actions:

Phase 1 The first phase reduces references in structures. If v->v
�
l owns a memory

location m ∈ Mf and the direct predecessor vl− of vl contains a reference
−−→wl− ,

then the following four actions are conducted:

(i) The existing equation for w->v
�
l is removed from the equation system.

(ii) The value m is assigned to w->v
�
l , all variables referenced in the original

equation of w->v
�
l , and all variables referencing w->v

�
l . This operation can be
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implemented efficiently by storing all references while the equation system is

generated in the first place.

(iii) The reference
−−→wl− in the equation of vl− is replaced by wl− .

(iv) For all attributes w�
of the structure w, we set w->w�

l = ⊥.

These steps are repeated for all variables owning memory locations. If vl− contains

a reference
−−→wl− , this means that in a statement preceeding the current statement,

the variable vl− is an alias of a memory location owned by the variable w in some

program location.

Phase 2 All references that still exist in the equation systems are replaced with

the corresponding values, for instance, a reference
−→wl is replaced with wl.

In the resulting equation system, all dependencies caused by aliasing between

structures are resolved and replaced by assignments of values.

3.5 Resolving Dependencies

The points-to sets are then generated by computing the least fixed point of the

equation system, which is implemented using the worklist algorithm [19]. The least

fixed point of the equation system defines the points-to set of each variable in each

program location. The existence of least fixed point is guaranteed by the finiteness

of Mf
and the monotonicity of the operations.

3.6 Example

This section describes the intraprocedural pointer analysis for the example function

perform() depicted in Fig. 3. Here, memory for two structures of types dev t and

cont t is allocated. An alias q for the field s->p is created, and using this alias,

memory for the field q->v is allocated. That means, that q->v and s->p->v alias

the same memory location.

1 cont_t { *v; };
2 dev_t { cont_t *p };
3

4 perform () {
5 dev_t *s = ( dev_t*) malloc( (dev_t ));
6 s->p = ( cont_t *) malloc( (cont_t ));
7 cont_t *q = s->p ;
8 q->v = ( *) malloc( ( ));
9 }

Fig. 3. Example program for nested aliasing of structures in C.

The structure of the stack and the heap as well as the points-to dependencies of

this program after execution of the corresponding line numbers is depicted in Fig. 4.

Encoding the nested aliasing using the algorithm described in Sect. 3.3 leads to

the equation system depicted in Fig. 5 for the procedure perform(). For clarity,

variables as well as memory locations introduced in a statement are annotated with

their corresponding line numbers. The equation s5
∼= m5 is generated by applying
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Fig. 4. Structure of stack and heap during execution perform().

condition (ii) from Sect. 3.3. In contrast, the updated reference in the equation
q8
∼= −−−→s->p8 is generated due to the application of condition (iv). Note, that at this

stage no connection between s->p->v and q->v exists, and hence, no information
can be passed from q->v to s->p->v. This implies that the allocation of memory
using q->v is not passed to s->p->v, although they alias the same memory location.

s4
∼= ⊥ s->p4

∼= ⊥ s->p->v4
∼= ⊥ q4

∼= ⊥ q->v4
∼= ⊥

5
∼= m5 s->p5

∼= s->p4 s->p->v5
∼= s->p->v4 q5

∼= q4 q->v5
∼= q->v4

s6
∼= s5 s->p6

∼= m6 s->p->v6
∼= s->p->v5 q6

∼= q5 q->v6
∼= q->v5

s7
∼= s6 s->p7

∼= s->p6 s->p->v7
∼= s->p->v6 q7

∼= −−−→s->p7 q->v7
∼= −−−−−−→s->p->v7

s8
∼= s7 s->p8

∼= s->p7 s->p->v8
∼= s->p->v7 8

∼= −−−→8 q->v8
∼= m8

Fig. 5. Equation system generated from procedure perform() in Fig. 3 before reduction.

Reducing the equation system shown in Fig. 5 produces the equation system
given in Fig. 6. The equations for the variables s and s->p remain unchanged by the
reduction algorithm, and hence, they are omitted here. The reference in the equation
q->v7

∼= −−−−−−→s->p->v7 causes the memory location m8 to be passed to s->p->v8. The
least fixed point at the end of the analyzed procedure perform() produces the exact
points-to sets, namely s8 = {m5}, s->p8 = {m6}, s->p->v8 = {m8}, q8 = {m6},
and q->v8 = {m8}.

s->p->v4
∼= ⊥ q4

∼= ⊥ q->v4
∼= ⊥

s->p->v5
∼= s->p->v4 q5

∼= q4 q->v5
∼= q->v4

s->p->v6
∼= s->p->v5 q6

∼= q5 q->v6
∼= q->v5

s->p->v7
∼= s->p->v6 q7

∼= s->p7 7
∼= 7

8
∼= m8 q8

∼= s->p8 q->v8
∼= m8

Fig. 6. Reduced equation system generated from Fig. 5.
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4 Interprocedural Analysis

This section details how to capture the behavior of functions with respect to pointer
analysis using procedure summaries based on the intraprocedural points-to sets.
Moreover, it describes our approach of combining aliasing information with proce-
dure summaries in the intraprocedural analysis framework of Goanna. This allows
us to detect invalid memory accesses that result from procedure calls by extending
the existing intraprocedural model described in Sect. 2.

4.1 Procedure Summaries

In Goanna, procedure summaries are represented as sets of variables. Each pro-
cedure summary describes a single property of interest and contains variables for
which the respective property is fulfilled after termination of the procedure. Due
to the call-by-value semantics of C, three kinds of summaries are required to detect
invalid memory accesses across boundaries of procedure scopes. These summaries
for a function f state whether a parameter is dereferenced, validated, or invalidated.

An invalid pointer directly passed to a function cannot be validated by the callee
because a copy of the aliased address is passed and not the address of the pointer
itself. This is only true in the absence of nested pointers such as int**. In contrast,
uninitialized fields in a structure can be validated because their addresses may be
accessed through the structure stored on the heap. The set of parameters does not
only contain explicitly declared formal parameters, but also parameters hidden in
structures. This is called a transitive attribute closure. Given a parameter p in f
and m ∈ Mf with p0 := θ(m), we have the following summaries:

Memory Dereference p ∈ Df iff m is dereferenced in f or passed to a procedure
called from f , where it is dereferenced.

Memory Invalidation p ∈ If iff m is invalidated in f , for instance, by calling
free(), or passed to a procedure g called by f and invalidated in g.

Memory Validation p �∈ Vf if p is of simple type for the reasons described before.
That is, pointers passed by value cannot be validated in a called function. Memory
for fields in structures, however, can be validated. Detection of validation is based
on the intraprocedural points-to sets.

A call graph is a directed graph where each node represents one procedure in
the analyzed program. It contains an edge (f, g) if g is called by f . Procedure
summaries describe the behavior of f . Moreover, the summaries depend on all
summaries of functions called from f . If the call graph is acyclic, the summaries
are generated by visiting all procedures in reverse topological order. In contrast,
recursive dependencies between procedures require computing the least fixed point
in all strongly connected components.

4.2 Model Generation

In this section, we describe how a NuSMV model for the interprocedural analy-
sis of pointers is generated based on procedure summaries and the intraprocedu-
ral pointer analysis. The underlying model is an extension of the intraprocedu-
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ral model given in Sect. 2.3. Given a procedure f and its intraprocedural model

NuSMV f
= (varf ,∆f ,Def f ,CTLf

), the interprocedural model for pointer analysis

is a quadruple NuSMV f
PA = (varf

PA,∆f
PA,Def f

PA,CTLf
PA) consisting of:

Variables varf
PA For each memory location m ∈ Mf

+, we introduce a state variable

with possible values valid and invalid to track state changes during the execution

of f . Note that memory allocations indicated by the validation summary Vf

increase the size of Mf
+, and hence, the number of state variables. The coarse

memory abstraction leads to a symbolic memory address � for unknown memory

locations. To avoid producing a multitude of spurious warnings, we exclude this

label, which leads to an under-approximation. Hence, it is varf
PA = varf ∪Mf

+.

Transitions ∆f
PA Each m ∈ Mf

+ is initialized with valid . Furthermore, for each

invocation of a function g in a statement l ∈ Lf
to which m is potentially passed,

the effect of the function call is encoded based on the memory invalidation sum-

mary Ig
. Hence, we add a transition (statement = l∧m = valid)→ m = invalid

to the model if we have m ∈ Ig
. That is, if the corresponding summary states

that m may be invalidated by g, then the status of m is changed to invalid .

Labels Def f
PA For each dereference of a memory location m ∈ Mf

in a program

location l ∈ Lf
based on the dereference summary, a label deref m is added to the

state representing l.

Specifications CTLf
PA For each memory location m ∈ Mf

+, we add an invariant

specification AG(deref m ⇒ m = valid). That is, if a variable aliasing m is

derefenced, then m is required to be valid.

In the memory abstraction used, memory locations are introduced through pa-

rameters or return values of functions such as malloc(). Pointers accessed in f
may be invalid in both cases: A programmer may pass an invalid pointer to f or

malloc() may fail. In the first case, the defect in f is detected during the analysis

of the caller of f . The second case is dealt with by an intraprocedural check that

requires all allocated memory to be checked before it is dereferenced. To detect

dereferences of NULL pointers, a specification AG(¬deref NULL) is added.

The encoding of the pointer analysis in the NuSMV model could be conducted

in a different manner. It would, for instance, also be possible to distribute the

detected memory statuses to all program locations using a forward data flow analysis

and label the corresponding locations with atomic propositions. In this case, an

invariant specification of the form AG¬(deref m ∧ invalidm) would be sufficient and

state variables are not required.

4.3 Example

This section describes the application of the analysis to parts of the Linux 2.6 kernel,

namely the sound module. The code contains a defect caused by false pointer deallo-

cation nested in two function calls. The procedure snd hwdep release() in Fig. 7 is

implemented in sound/core/hwdep.c. In line 10, it calls snd card file remove()
(see Fig. 8) and passes hw->card, which is then dereferenced in line 12.

The function snd card file remove() calls snd card do free(), which inval-

idates the parameter hw->card by calling kfree(). This means, when hw->card is
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1 snd_hwdep_release( inode *inode ,

2 file *file) {

3 err = -ENXIO;

4 snd_hwdep *hw = file ->private_data;

5 mutex_lock (&hw->open_mutex );

6 (hw->ops.release) {

7 err = hw ->ops.release(hw , file);

8 hw ->used --;

9 }

10 snd_card_file_remove(hw ->card , file); // free

11 mutex_unlock (&hw ->open_mutex );

12 module_put(hw->card ->module ); // deref

13 err;

14 }

Fig. 7. Function snd hwdep release from Linux 2.6 kernel.

dereferenced in line 12 of snd hwdep release(), it has possibly been freed. The
summaries generated for snd card file remove() are:

Dsnd card file remove = {card}
Isnd card file remove = {card}

In the model of snd hwdep release(), the variable hw->card is mapped to card

in snd card file remove() and the invalidation summary is applied. This means,
the state of hw->card in the NuSMV model is set to invalid when the function
snd card file remove() is called. NuSMV reports a violation of the specification
AG(derefhw->card ⇒ hw->card = valid) in line 12.

1 snd_card_do_free( snd_card *card ,

2 file *file) {

3 ...

4 (last_close) {

5 wake_up (&card ->shutdown_sleep );

6 (card ->free_on_last_close)

7 snd_card_do_free(card);

8 }

9 }

Fig. 8. Functions snd card file remove() and snd card do free() from Linux 2.6 kernel.

5 Case Study

We have evaluated the performance of the intraprocedural pointer analysis and the
summary-based interprocedural analysis by analyzing some source directories of
OpenSSL 0.9.8d. These directories contain between 1,633 and 28,916 lines of C
code. This section first describes the applied checks and then presents the analysis
results.
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5.1 Evaluation Principles

The hardware platform used for the experiments is a DELL PowerEdge SC1425

server, with an Intel Xeon processor running at 3.4 GHz, 2 MiB L2 cache and

1.5 GiB DDR-2 400 Mhz ECC memory. We compare the performance of Goanna

running with the following three configurations: (i) intraprocedural analysis with

all standard checks enabled, but array bounds checking and false path elimination

disabled, (ii) with intraprocedural pointer analysis, and (iii) with summary-based

interprocedural analysis. The standard checks include checks for uninitialized vari-

ables, unused values, unreachable code and simple memory checks, which do not

consider aliasing. For the other configurations, these checks are performed as well.

Moreover, the runtimes also include the time required for parsing the respective

programs. For completeness, we compare the results with the time needed by GCC

required for compiling these source directories.

5.2 Analysis Performance

The analysis performance is depicted in Tab. 1. The intraprocedural pointer analysis

usually requires 3 to 6 times more time than the analysis with standard checks.

The runtimes show that the interprocedural analysis scales with the code size. The

modeling of implicit aliasing through the transitive attribute closure introduces large

numbers of auxiliary variables in the equation system, and in consequence, slows

down the pointer analysis.

Table 1
Analysis performance of Goanna for OpenSSL 0.9.8d.

Directory LoC GCC intra intra+pointer inter+pointer

crypto/des 6,112 4.204 14.166 52.961 53.294

crypto/engine 4,991 3.618 11.253 80.449 82.841

crypto/pkcs12 1,633 1.476 4.237 17.673 18.934

engine 7,244 5.152 16.913 56.796 60.371

ssl 28,916 22.733 58.372 242.149 253.313

About 90% of the slowdown caused by the pointer analysis is spent on the

generation of the equation system. Fehnker et al. [12] already noticed that one

particular performance bottleneck of Goanna is the currently used tree matching

algorithm for the AST, which is based on an XML representation and XPath in order

to detect statements and expressions of interest. This mechanism is extensively used

when the equation system is generated and causes most of the slowdown. The fixed

point iteration for computing the points-to sets themselves is barely noticeable in

terms of runtime. The same applies for model checking the extended interprocedural

model. During the evaluation, we found some files for which the poor performance

results was caused by extensive use of preprocessor macros, which introduced large

numbers of auxiliary variables. The analysis of the files in the crypto/engine
directory, for instance, was slowed down by one file eng padlock.c, on which 70%

of the overall runtime was spent.
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Despite these downsides, we showed that the developed approach can be success-
fully applied to large code bases. We have also applied the approach to parts of the
Firefox codebase, for which the slowdown was also linear. Applying Goanna to
the complete source code of Firefox did not produce meaningful results due to the
extensive use of C++ features such as templates. The performance drawback could
be minimized by optimizing the XPath algorithm, which would lead to competitive
runtimes. In practice, runtimes can be significantly decreased using incremental
analysis. Only those program fragments affected by a modified summary have to
be reanalyzed. Typically, this involves only small parts of the program.

6 Related Work

In Steensgard’s flow-insensitive algorithm based on unification [23], the pointer anal-
ysis problem is reduced to finding a well-typed environment using set constraints,
which allows a points-to analysis in almost linear time. Andersen’s subtyping-based
approach [1] relies on constraint solving over inclusion constraints. The algorithm
is slower than Steengard’s approach, but produces more precise results. The ap-
proach by Das [8] is an extension of Steensgard’s algorithm based on a restricted
form of subtyping. Unification of symbols at top levels of pointer chains in the
points-to graph is avoided. Shapiro and Horwitz [22] developed an extension of
Steensgard’s algorithm in which the points-to set of a variable is partitioned into
multiple categories. All approaches described so far are flow-insensitive.

Flow-sensitive analyses produce more precise results than flow-insensitive ap-
proaches. In practice, however, Hind and Pioli [15] observed little benefit on most
benchmarks. Nevertheless, a flow-sensitive approach promises a lower rate of spuri-
ous warnings. An interprocedural algorithm for conditional may-aliasing based on
abstract interpretation was described by Landi and Ryder [17]. Choi et al. [4] pre-
sented an interprocedural algorithm, which combines flow-sensitive and -insensitive
techniques. A similar approach was described by Emami et al. [10], who proposed a
technique for context-sensitive analysis of stack-allocated data structures, which is
specifically suitable in the presence of function pointers. In contrast, our approach
focuses on heap-allocated data. An interprocedural analysis algorithm for recursive
data structures was described by Deutsch [9]. Another context-sensitive points-to
analysis, which uses partial transfer functions for procedure summaries, was devel-
oped by Wilson and Lam [24]. Incomplete transfer functions are used, which only
cover input conditions that exist in a program. Their points-to analysis uses an
iterative data flow approach to find potential pointer values. Cheng and Hwu [3]
described an approach using accesses paths for interprocedural pointer analysis of
C programs based on context-sensitive transfer functions. Access paths are used to
distinguish non-recursive heap structures.

Closely related to our approach is the context-insensitive but flow-sensitive
points-to analysis for Java programs described by Ma and Foster [18]. Their ab-
straction of physical memory using memory labels is similar to our approach. In
contrast to our algorithm, their approach lacks support for nested data structures.
While most approaches rely on equation solving in order to resolve points-to infor-
mation, Ma and Foster use constraint solving.
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7 Conclusion and Future Work

Many defects found in real software are related to false handling of pointers. This
is especially true for languages such as C, which allow arbitrary pointer arithmetic
and have no built-in mechanisms for pointer safety. It turned out that static anal-
ysis based on purely syntactic properties of a program allows an efficient analysis
but also generates large numbers of false warnings. We have combined the syntactic
analysis framework in Goanna with a memory abstraction. This paper describes
an approach to interprocedural pointer analysis that is integrated into the intrapro-
cedural analysis framework. This approach consists of a two-pass algorithm. First,
an intraprocedural pointer analysis is performed, based on fixed point iteration
over an equation system. The obtained intraprocedural points-to information is
then integrated into a NuSMV model for interprocedural analysis, which is used
by Goanna to conduct static analysis.

The implementation smoothly integrates into the existing framework. The in-
traprocedural analysis alone improves the existing intraprocedural analysis frame-
work. It integrates well with incremental analyses. The interprocedural NuSMV
model is an extension of the original model. One of the advantages of using model
checking for static analysis is the automatic generation of counterexamples. With
interprocedural analysis using summaries, this cannot be achieved easily. During
the analysis of a function, no information about the intrinsics of called functions is
present. Hence, different techniques have to be developed to tackle this problem.

The pointer analysis is based on a coarse abstraction of the physical memory,
which has proven to be powerful enough to detect bugs in real software. The
discussed approach has some disadvantages. One obvious flaw of the current imple-
mentation is the assumption that parameters passed to a function are separated,
that is, they do not alias the same memory locations. This can be fixed with minor
extensions of the described algorithm. Only the results of the points-to analysis have
to be updated, that is, aliasing of parameters can be expressed by replacing mem-
ory labels introduced through two parameters by a single one. The corresponding
procedure does not have to be reanalyzed.

Another improvement would be to integrate of the interval solving techniques
and the memory model to gain further precision. A challenge for static code checkers
is to detect inobvious defects while not producing vast amounts of spurious warnings,
which is sometimes contradictory. The average defect density in Goanna is around
0.3 to 2 bugs per 1,000 lines of code, which is comparable with commercial static
analyzers [11]. The number of false warnings strongly depends on the analyzed
code. Function pointers, for instance, often cause spurious warnings. Combining
different techniques promises the detection of more classes of defects while at the
same time reducing the number of false warnings.
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