
Forced Simulation� A Formal Approach to

Component�Based Synthesis

Partha S� Roop A� Sowmya

School of Computer Science and Engineering

The University of New South Wales

Sydney� NSW ����� AUSTRALIA

Fax� �����	
�������

proop�sowmyacse�unsw�edu�au

S� Ramesh

Department of Computer Science and Engineering

Indian Institute of Technology

Bombay� India � ��� ���

rameshcse�iitb�ernet�in

UNSW�CSE�TR������March ����

March ��� ����

Contents

� Introduction �

��� Overview �

� Forced Simulation �

��� Formal De�nitions �

� Component Identi�cation Algorithm ��

� Prior Research ��

��� Review of Simulation Techniques � � � � � � � � � � � � � � � � �	
����� Bisimulation �	
����� Re�nement ��

��� Forced Simulation versus Interface Process Generation � � � � �

� Conclusions ��

�

List of Figures

��� Multi�functional Device and simple forcing � � � � � � � � � � � �

��� Forced Simulation via Bu�ered Interface � � � � � � � � � � � � �
��� fsimulation example � 	
��
 fsimulation with bu�ered interface � � � � � � � � � � � � � � � ��
��� Unfolding of bu�ered forced simulation de�nition � � � � � � � ��

�� the main program for forced simulation using bu�ered interface ��

�� the distinguish�� and determineSucc�� functions � � � � � � � ��

�
 The buffSimulation�� function � � � � � � � � � � � � � � � � � ��

�� The subtree isomorphic�� and internally terminal�� functions ��

��� Example of Strongly Bisimilar Processes � � � � � � � � � � � � ��
��� Example of Weakly Bisimilar Processes � � � � � � � � � � � � ��
��
 Example of Global Hiding ��

Abstract

Embedded systems are application�speci�c digital systems which are nor�
mally designed using a microprocessor along with a set of programmable
hardware and software components� Component�based synthesis of these
systems will lead to the reuse of a vast library of hardware and software
components and also facilitate rapid prototyping� However component based
synthesis is still low key� a primary reason being the lack of any systematic
attempt at the development of automatic component identi�cation algo�
rithms�

In ���� an algorithm to map a design function to a device from a library
of system�level components was proposed� However� it was not based on a
formal setting and no proof of correctness was presented� In this paper� we
propose a novel notion of simulation called forced simulation to formalize
the correspondence between a function and a device� What distinguishes
forced simulation from other techniques is the idea of forcing via an external
interface� which can be automatically synthesized� and is useful for adapting
the system level component to the given design functionality� We have
proposed two di�erent types of forced simulation depending on the handling
of internal events�

Chapter �

Introduction

Embedded systems are application�speci�c digital systems having wide rang�
ing usage from small home appliances such as automatic ovens and washing
machines to very sophisticated controllers for aircrafts and submarines� The
core of these systems is a micro�controller or a microprocessor which is suit�
ably interfaced to a set of programmable hardware and software components
to achieve a speci�c task� Considering their widespread usage� automatic
synthesis of these systems has been a focus of research ��� 	� ����

Current synthesis tools for embedded systems partition the speci�ca�
tion into primitive hardware and software functionalities� Following this�
the hardware functions are realized as ASICs using logic synthesis and the
software functions by software synthesis� Current approaches to synthesis
thus completely ignore a huge set of programmable hardware as well as soft�
ware components available in this domain� These include components such
as ports� timers� I�O controllers� Analog to Digital Converters�ADCs� and
Digital to Analog Converters�DACs� which have been designed� developed
and tested by various vendors� Also� recently there has been a trend within
software engineering towards component�based software development �����
So� there is vast potential for the reuse of both programmable hardware as
well as predesigned software programs� Component�based design� though
well known in other engineering domains ����� is still very low key in embed�
ded system synthesis� Component�based synthesis has not been uncommon�
however� for lower level components such as ALUs �����

A major reason for the lack of component reuse during synthesis is the
paucity of a systematic attempt towards the development of suitable algo�
rithms that can map a design function �F� to a suitable device �D� from a
library of such components� Recently� Mitra et� al ���� proposed an algo�

�

rithm for such a mapping� They proposed an automata�based language for
describing the behaviours of F and D and a mapping algorithm based on
language containment� However� this work su�ers from several limitations�
Firstly� it is not based on a formal setting and hence lacks any means of
proving the correctness of the mapping algorithm� Secondly� the use of au�
tomata with terminal states to model nonterminating reactive behaviour is
inappropriate and hence the corresponding choice of language containment
as the basis of the mapping algorithm is also inappropriate� Finally� this
algorithm completely ignores possible divergence via transitions triggered
by internal events�

In this paper we formalize the problem of mapping F to D by a new
simulation relation called forced simulation and propose a new component
identi�cation algorithm based on forced simulation� Formalization provides
a theoretical handle for studying the problem in a much more general and
complex setting involving internal as well as nondeterministic behaviours
and also helps in establishing that the transformation from F to D is correct
since the proposed algorithm exactly mimics a mathematical relation�

Several simulation techniques ��	� ��� �� ��� �� have been proposed in the
past to check if a low level implementation I is a simulation of a high�level
speci�cation S� Though they have been widely applied to the veri�cation
of both hardware ���� as well as software ��
� ��� protocol veri�cation ����
�� and also to check process equivalence in process algebras ��	� ���� they
are not directly applicable to our problem� since the implementation I is a
re�nement of the speci�cation S� and is not arrived from adapting a general
implementation to a given speci�cation� which is the essence of reuse�

Adaptation is a major requirement since the device may not correspond
exactly to the speci�cation� We propose an adaptation step to be performed
on the device� and call it forcing� Forcing occurs� when the device has extra
control signals compared to the function and these control signals need to be
generated externally at appropriate points by an external interface� or when
the device is multi�functional and an interface has to guide the device along
the appropriate path that matches the speci�cation� Both these cases are
quite frequent because often the speci�cation is under�speci�ed compared
to the device �since it is not expected that the speci�er knows all internal
details of the device and only gives an abstract speci�cation�� also� many
system components are programmable and� by appropriate mode selection�
may be programmed to behave di�erently� We now give an example that
illustrates the idea of forcing�

�

��� Overview

In this section� we shall give a brief overview of our approach� We also
motivate forcing with external labels alone via the following example�
Example ��

Let us consider a multi functional component which can behave as a
down counter� a rate generator or a square wave generator� This device�
after initialisation� can be programmed to behave in one of the three modes
by loading an appropriate mode word� An abstract behavioural description
of such a device is shown in Figure ��� where we have the full behaviour of
the down counter� A practical device very similar to the one described here
is the Intel programmable interval timer ������� Also note that all signals
involved in this example are assumed to be external� Note that we have
used a labelled transition system �LTS� to represent the behaviours� The
LTS is de�ned formally in the subsequent chapter� We shall use F and D
to denote abstract behaviours of the function and the device and F and D

to denote their respective LTSs�
Suppose� F is a down counter whose behaviour F is as shown in Figure

���� F decrements the value of a counter register val with every clock �clk�
input until it receives a stop command to output the count value�

Since dev�init and in�mode� in D are external signals� the interface can
generate them to place the device in state �� A di�erence between F and the
down counter in D is that the latter requires an extra control signal called
gate to be set to low� This is an example where F is under speci�ed �which
occurs frequently as the speci�er is not expected to know every internal
detail of the device�� Hence� for F to be simulated by D the interface must
force all transitions of D from state � through to state
� Once the interface
has placed the device in state
� simulation of F is guaranteed� A typical
interface for the above example is also illustrated in Figure ���� The interface
is a state�based interface and moves in lock�step with the function and device
states and performs forcing when required�

To capture the correspondence between F and D none of the existing
simulation relations such as Milner�s bisimulation ��	�� Lynch and Vaan�
drager�s forward and backward simulations ����� Abadi and Lamport�s re�
�nement ��� or the more recent ones such as ��� su�ces� Hence� we propose a
novel notion called forced simulation to capture the correspondence between
F and D� Two di�erent types of forced simulations have been proposed in
this paper� One of the relations assumes that both F and D are capable
only of external actions and proposes a state�based interface which moves
in lock�step with the states of F and D to perform forcing as well as signal

0 1

2

rate generator

square wave generator

dev-init

in-mode0

in-mode1

in-mode2

f0,do fo,d1
dev-init in-mode0

(a down counter)

0 1 2

3

4

3 4 5

6

7

8

9

gate

start clk

val--stop

start clk

val--
stop

val

val

f0,d2
f0,d3

gate

interface:

F:

D:

Figure ���� Multi�functional Device and simple forcing

mappings� The second one is a more general forced simulation that can
handle both internal ��	� as well as nondeterministic transitions in F and D

in addition to the usual externally triggered transitions� Internal transitions
are common in system level components since they are capable of various
types of data operations which may trigger internal events such as over	ow

under	ow
 divide�by�zero error
 time�outs� An external interface cannot di�
rectly observe these events and thus has no control over them� Thus in the
second and more general type of forced simulation� the interface proposed
is a bu�ered interface that is based on the idea of observational equivalence
��	�� to be explained in the next chapter�

We �rst give the formal de�nitions for both these types of forced simu�
lations� Then we propose an automatic component identi�cation algorithm
based on the second more general type of forced simulation� This algorithm�
given the function speci�cation F and device speci�cation D� can say if a
forced simulation relation exists between them� If such a forced simulation

�

relation exists� then an interface can be automatically synthesized such that
the device� together with the interface� simulates the function speci�cation�

This report is organized as follows� in Chapter ��we shall give the mo�
tivation behind forced simulation via another example and then formally
de�ne two types of forced simulation relations� In Chapter
 we present
an algorithm based on the more general forced simulation de�nition� which
can be used for automatic component identi�cation�The fourth Chapter re�
views related literature and the �nal Chapter is devoted to some concluding
remarks�

�

Chapter �

Forced Simulation

This chapter is devoted to the presentation of two forced simulation rela�
tions� starting from a very simple one that de�nes simulation in the presence
of external inputs only to the more general one where forced simulation is
possible in the presence of arbitrary internal inputs of the device� In the pre�
vious section� we motivated forcing in the presence of external labels alone�
At the outset� before presenting the de�nitions� we give an example with a
more general notion of forcing in the presence of extra internal transitions�
Example� � This example illustrates a more complex type of forcing using
a bu�ered interface in the presence of internal symbols� Let us now revisit
the previous example with additional internal events in the down counter
component as shown in Figure ���� The previous example ignored any un�
der	ow occurring as the count down progressed� In Figure ��� both the
function and the device can have internal under	ow when the counter un�
der�ows while decrementing its data register� However� this internal signal
causes no problem to the simulation as it is common to both the function
and the device�

Note also that while a mode word is being loaded inD� an internalmode�
err might occur� So� at device state �� there are two possibilities� either the
mode word formode� is loaded successfully and the device makes a transition
to state � or an error is detected by the device� leading to the internal mode�
err event happening� However� since from either of these states namely �
and � there are paths triggered by the same sequence of external actions
in�mode�
gate �a single forcing sequence� leading to states
 and �� of the
device� simulation of F is guaranteed�

Nondeterministic transitions add another level of complexity to the sim�
ulation algorithm when they are triggered by a forced signal� In such a

�

situation� the simulation algorithm must check to see that all the desti�
nation states out of any such transitions lead to convergent states where
simulation is guaranteed� A detailed example later explains the handling of
both internal and nondeterministic transitions�

The interface introduced in this example is a bu�ered interface� which
has no knowledge of the triggering of internal or nondeterministic events�
It has knowledge only of the current function state and the corresponding
forcing sequence as a bu�ered input�

0 1

2

dev-init

in-mode0

(a down counter)

3

gate

start clk

val--
stop

val

undr-flow

undr-flow-err

0 1 2
start clk

val--stop

val

undr-flow

undr-flow-err

start clk

val--stop

val

undr-flow

undr-flow-err

5 4

6
4 5

6 7

109

11 12 13

1415

16

17

mode-err

gatein-mode0

8

18

7

F:

D:

Figure ���� Forced Simulation via Bu�ered Interface

��� Formal De�nitions

So far the notion of forced simulation� henceforth called fsimulation� has been
presented informally� In this section� fsimulation will be formally developed�

We assume that all behaviours are represented as labelled transition
systems similar to ��	�� In our LTS� we assume that there are a set of

�

internal inputs� in contrast to a single � in CCS�
De�nition ��

A labelled transition system �LTS� is de�ned to be a tuple �S�L� f
l
��

l � Lg�� where�

�� S is a set of states�

�� L is a set of transition labels� where L � eL � lL� where eL denotes
a set of external labels and lL denotes a set of local �internal� labels�

�
l
�� S � S for each l � L�

We shall use symbols a
 b
 c �� to range over external labels and symbols
i�� i�� �� to range over internal labels� Also� states will be denoted by s�� s��
In general� le will be used to denote any external label and li will indicate
internal labels� We add the subscripts f and d to any of these symbols� if
necessary� to make the context clear �of device D or function F��
Problem De�nition

Given LTSs F of a design function � a speci�cation� F and D of a
device D� we wish to de�ne a fsimulation relation F v� D� when F can
be implemented by D using the notion of forcing� If an fsimulation relation
exists between F and D� then we say that D can implement F �

Informally� an fsimulation relation exists if for each function state there
is a corresponding device state such that the device state fsimulates �denoted
as v�� the function state� A device state fsimulates a function state if there
is a successor convergent device state where the same behaviour as the given
function state is elicited� A given successor device state is a convergent state
of the current state if it can be reached from the device state by a path
triggered by external labels alone� This is the simplest type of fsimulation�
as formally de�ned below�
Simple fsimulation

In this de�nition we assume the following�

�� F and D have only external labels�

�� F and D are also deterministic

� the interface that performs forcing is a state dependent interface� i�e�
has knowledge of the current device as well as the function state�

�

De�nition ��

sf v� sd
def
� �k � � � sf v

k
� sd

sf v
�
� sd

def
� subtree isomorphic�sf � sd�

sf v
k��
�

sd
def
� �a � eLd��s

�

d � sd �a s
�

d � sf v
k
� s�d

subtree isomorphic�sf � sd�
def
� �a� s�f � �sf �a s�f � �s�d � sd �a s�d 	 s�f v� s�d�

Intuitively� this inductive de�nition says that a state sd of D simulates a
state sf of F in k�� steps provided there exists a transition via an external
label from state sd to state s�d � the forced transition� of D such that s�d
simulates sf in k steps� The base case is when k is zero and the simulation
occurs in zero steps� when the subtrees of sf and sd are isomorphic� Thus�
in this de�nition� the iteration index k indicates the maximum number of
forcing steps required to reach the isomorphic state of the device� where the
simulation of the function state happens directly�

The following example illustrates the idea�
Example ��

Consider F and D as shown in Figure ���� In this example the state sd
converges to the state sd� via path sd
� sd�
� sd�
� sd�
� sd� such
that at the state sd� of the device� the same behaviour as the function state
sf may be reproduced� Hence� an fsimulation relation exists between F and
D� In Figure ���� the transitions marked with dotted lines� in parallel to
normal transitions� indicate forced transitions�

y

y

s f
s d

s

s

s
d3

s
d’

a

b

a

b

b

a

a

c

d1

d2

b c

b c

F: D:

Figure ���� fsimulation example

	

Also note that the simulation relation unfolds in the following manner
for the above example� sf v

�
� sd � sf v

�
� sd� � sf v

�
� sd� � sf v

�
�

sd
 � sf v
�
� s�d � subtree isomorphic�sf � s

�

d��
fsimulation via Bu	ered Interface This de�nition is a generalisation of
the previous de�nition to incorporate the following�

�� F and D may be non�deterministic

�� F and D are capable of performing internal actions� Each has a set of
internal actions and each internal action represents a di�erent internal
operation�

� The interface is based on the concept of observational equivalence ��	�
i�e� the interface has no knowledge of the triggering of internal and
nondeterministic transitions�

In this restricted scenario� fsimulation is possible if there exists a single
sequence of external labels � such that irrespective of the internal transi�
tions or non�deterministic transitions of the device� the interface can place
the device in a convergent state by using the symbols in �� We thus obtain
a bu�ered interface a la Example �� The device can simulate the current
function state in any one of these convergent device states� To distinguish
between the two di�erent types of fsimulation�the De�nition � and the cur�
rent one� we shall use the symbol sf v�b

since the interface assumed with
this de�nition is a bu�ered interface�
Example ��

Consider the example of F and D in Figure ��
� By use of a single
forcing sequence � which is aab� the interface will place the device in one of
the convergent states �� ��� ��� or �� where the same behaviour as sf can
be guaranteed�
De�nition ��

sf v�b
sd

def
� �� � eL�

d��k � � � sf v
��k
�b

sd

sf v
a���k��
�b

sd
def
� ��s�d � sd �a s�d�	

��s�d � sd �a s�d � sf v
��k
�b

s�d�	

��b � lLd��s
�

d � sd �b s
�

d � sf v
a���k
�b

s�d�

sf v
��k
�b

sd
def
� subtree isomorphic�sf � sd� 	 internally terminal�sd� sf �

subtree isomorphic�sf � sd�
def
� �a� s�f � �sf �a s�f � �s�d � sd �a s�d 	 s�f v�b

s�d�

	 ��s��d � sd �a s
��

d � s
�

f v�b
s��d�

��

s f sd

a

i1 i2

a

b

a

b

a

a

b

a

b

0

1

2

6

3 4 5

7

8 9

11 12

10

F: D:
0

1 2

3

a b

c

a

b
c

a b

c

a
b

c

a

b

c

13

14

15 16 17
18

19
20

21

22 23

24

Figure ��
� fsimulation with bu�ered interface

internally terminal�sd� sf �
def
� the only internal transitions allowed out of sd

are common internal transitions of sf

In the above de�nition� a device state fsimulates a function state� pro�
vided there is a sequence of external actions� �� and an iteration index� k
such that the simulation is possible in at most k steps by using the sym�
bols in � as the forcing sequence� The base case of this inductive de�niton
happens when all the symbols in � are consumed while iterating �i�e� when
� � ��� The base case is satis�ed when the subtrees under the function and
device states are isomorphic and also there are no extra internal transitions
from the device state �by which it could possibly diverge�� The inductive

step of this de�nition �sf v
a���k��
�b

sd� says that the simulation is possible in
k�� steps using symbols in sequence a�� provided there exists a transition
from the device state via the symbol a �this is necessary since there is no
guarantee of the triggering of internal transitions from this node and this
transition denotes a forced transition�� Also for all transitions labelled by
a� the pre�x of �� the destination states must simulate the function state
using all symbols in � �since the pre�x a has been already consumed by the
current transition� in at most k steps �note that this also handles nonde�
terministic transitions via a�� Finally� if the device state has any internal
transitions out of it� it must be the case that the destination states of all

��

such transitions must simulate the function state using all symbols in a��

�since the pre�x has not been consumed yet� in at most k steps�
Note that the length of the forcing sequence � is always � k since k

indicates the maximum path length from sd to any one of the successor
states which satisfy the base case� In the best case� this path is labelled
by all the symbols in �� and k�k � k� However� this path can also be
interleaved with internal labels�

The unfolding of the iteration tree for the example in Figure ��
 is shown
in Figure ���� Note that in this �gure each node is a four�tuple �sf � sd� �� k��
where sf is the function state� sd is the device state� � denotes the forcing
sequence and k denotes the iteration index�

(s_f, s_d0, a.a.b, 4)

(s_f, s_d1, a.b, 3) (s_f, s_d2, a.b, 2)

(s_f, s_d3, b, 2) (s_f, s_d4, a.b, 2) (s_f, s_d5, a.b, 2) (s_f, s_d6, b, 1)

(s_f, s_d7, (s_f, s_d8, b, 1) (s_f, s_d9, b, 1)ε, 1) ε, 0)

subtree-isomorphic (s_f, s_d11, ε, 0) (s_f, s_d12, ε, 0) subtree-isomorphic
&& internally-terminal&& internally terinal

subtree-isomorphic subtree-isomorphic
&& internally terinal && internally terinal

(s_f, s_d10,

Figure ���� Unfolding of bu�ered forced simulation de�nition

��

Chapter �

Component Identi�cation

Algorithm

In the previous chapter we proposed two de�nitions of fsimulation� In this
chapter we present a component identi�cation algorithm based on bu�ered
fsimulation �De�nition
�� The algorithm for simple fsimulation is a special
case of this algorithm�

Given F and D as input� the main�� program in Figure
�� checks if a
fsimulation relation exists� The algorithm starts with an universal simula�
tion relation R which is the product of the state space of F and D� It then
successively re�nes this relation until a �xed point is reached� The re�ne�
ment process is performed via a function called distinguish�sf � sd��Figure

��� that checks to see if this pair �sf � sd� cannot be distinguished� A pair
cannot be distinguished� if a path � exists from the device state sd such
that all successors of sd via this path simulate sf � This task of determining
a correct � is performed by traversing F by the determineSucc�� function
�Figure
���� The actual checking of the simulation of sf by all successors of
sd reached via a � path is done by the buffSimulation�� function �Figure

�
� which exactly mimics De�nition
� When this function reches the base
case� it tests if the device state is isomorphic to the function state �in Figure

��� and is also internally terminal with respect to this state �in Figure
����

If a pair of states �sf � sd� can be distinguished� then such a pair is re�
moved from R and the repeat loop is reentered with the new R� Otherwise�
the next pair in R is checked� This process is repeated until no pair in R can
be distinguished� The �nal R is the desired simulation relation� provided an
entry exists in R for each function state� Note that this algorithm is similar
to the computation of bisimulation relations by using partition re�nement

�

Main Program
main�F�D�
��F and D are the LTSs of the function and device respectively
��sf�� sd� denotes the start states of F and D respectively
��the main program starts with an initial partition equal to the
��product of the state spece of F and D and successively re�nes
��this partition until the GFP is reached�
R � statef � stated
��cross product of the states of F and D

repeat

change�false�
for each state �sf � sd� in R do

change�distinguish�sf � sd��
if change then
R�R�f�sf � sd�g
exit the for loop�
�� to reevaluate the pairs in R

endif

endfor

until change�false
if �sf�� sd�� � R then

return TRUE�
else

return FALSE
endif

Figure
��� the main program for forced simulation using bu�ered interface

strategy ��	� ��� and thus e�ectively handles cycles in LTSs�
Let NSf and NSd denote the number of states of F and D respectively�

Also� let m denote the larger of the number of states and the number of
arcs in D� The worst case complexity of the distinguish�� function is of the
order of m since it performs complete traversal of D in the worst case� The
repeat loop in main�� can iterate upto a maximum of NSf �NSd� During
each such iteration� the inner for loop can also iterate upto a maximum
of NSf � NSd� Hence� in the worst case the complexity of our simulation
algorithm is of the order of NS�f �NS�d �m�

The complexity of the interface �its size� is another issue to be studied�
We found that in the worst case the interface will also be of the order of

��

distinguish distinguish�sf � sd�
��sf denotes a function state
��sd denotes a device state
��this function returns true when the pair �sf � sd� should not belong to R
s�d�null�
prev � sd
repeat

s�d � determineSucc�sd� prev�
if s�d��null then
� � all external labelsInPath�sd� s

�

d�
k � maxPathLength�D�
if buffSimulation�sf � sd� �� k� then
return FALSE�

else

prev � s�d�
endif

endif

until s�d��null
return TRUE�
determineSucc�devNode� SearchPoint�
��tries to determine a successor of devNode

�� that possibly satis�es the base case
��SearchPoint is the device node from which search has to be continued�
��since determineSucc�� may be called a number of times
perform depth �rst traversal of D with back tracking beginning with
SearchPoint

to determine a successor to rootD that matches rootF
a match occurs if the successor node can match every transition in rootF

if no successor found satisfying above criteria then
return null�

else

return the successor node found�
endif

Figure
��� the distinguish�� and determineSucc�� functions

��

Bu�ered Forced Simulation
buffSimulation�sf � sd� �� k�
��k is an integer and � is the forcing sequence of external labels
if ���� then
��base case
if subtree isomorphic�sf � sd� 	 internally terminal�sd� sf � then

return TRUE�
else

return FALSE�
endif

else

��base case not yet reached� iterate further
��a denotes the �rst symbol of the forcing sequence
���� is the sequence of remaining symbols
a�head�sigma��
���tail����
if � �sd �a s�d then

��no forcing path from sd via a� return failure
return FALSE�

endif

for �s�d � sd �a s�d do

��check that all destination states reached via a

�� simulate in k�� steps
if buffSimulation�sf � s

�

d� ��� k
 �� then
continue�

else

return FALSE�
endif

endfor

for �i � lLd��s
�

d � sd �a s
�

d do

��check that all internal transitions out of sd eventually
�� converge to a state where simulation is possible
if buffSimulation�sf � s

�

d� �� k
 �� then
continue�

else

return FALSE�
endif

endfor

return TRUE�
endif

Figure
�
� The buffSimulation�� function��

subtree�isomorphic subtree isomorphic�sf � sd�
for each sf �a s�f do

�nd sd �a s�d�
if found then
for all s��d � sd �a s

��

d do

if �s�f � s
��

d� � R then

continue�
else

return FALSE�
endif

endfor

else

return FALSE�
endif

endfor

return TRUE�
internally terminal�sd� sf � for each sd �i s

�

d � i � lLd do

�nd sf �i s
�

f

if �found then
return FALSE�

else

continue�
endif

endfor

return TRUE�

Figure
��� The subtree isomorphic�� and internally terminal�� functions

��

the product of the number of function and the device states� Less com�
plex interfaces can be designed� which will be specialisations of the above
interface� We can think of several types of specialisations ranging from a
device state dependent interface to state independent ones� The former is
employed when forcing is necessary and is not deployed every time any two
states need to be made equivalent� The latter is a specialisation� when no
forcing is required to achieve the simulation�

��

Chapter �

Prior Research

In this chapter� we review some related research from simulation literature
and interface synthesis literature�

��� Review of Simulation Techniques

����� Bisimulation

One of the earliest notions of simulations� called Bisimulation� was proposed
by Milner ��	� for checking process equivalence� CCS �Calculus of Commu�
nicating Systems�� a very neat algebraic formalism� was proposed by him for
representing process communication and concurrency formally� It has a set
of algebraic combinators to capture choice� parallel composition� pre�x and
hiding �also termed as restriction�� which may be used to de�ne complex
processes in a bottom�up manner� The notion of bisimulation was devel�
oped to automatically check process equivalence� A major assumption was
that process communication occurs by asynchronous handshake mechanism�
However� in the algebra� such communication between two CCS processes
was considered to be an internal action called � � The usage of this single �
action as the only internal action led to the simplicity of the calculus� CSP�
another algebraic formalism by Hoare was also proposed around the same
time as CCS �����

In CCS� two notions of bisimulation were proposed based on whether the
internal action � could be observed or not� In the �rst and more stronger
notion� the internal action � was treated identically to any other action
and this lead to the notion of strong bisimulation� Informally speaking� two
processes P and Q are strongly bisimilar if each action of the former could be
matched by an identical action of the latter and the resultant states are also

�	

strongly bisimilar and conversely� Here� the internal action � is observable
and has also to be matched in both processes� Figure ��� depicts an example
of two strongly bisimilar processes�

c

a b

c c

a b a b

τ
τ τ

P:

Q:

Figure ���� Example of Strongly Bisimilar Processes

In weak bisimulation� the restriction that each � action of the processes
have to be matched and that they are also observable is relaxed by the
requirement that each � action be matched by zero or more � actions� This
notion is thus based on the idea of observational equivalence where the
internal action � is unobservable� Figure ��� is an example of processes that
are not strongly bisimilar but are weakly bisimilar�

Though CCS and bisimulation are interesting from the point of view
of our application� they fail to capture two important requirements of our
problem domain� Firstly� the components in our domain are capable of
performing a set of data operations� each with a di�erent semantics� Each of
these operations is essentially an internal action� For example� the operation
of incrementing a data register� or loading a register with a value or storing
the value in a data input line in a given register represent di�erent data
operations and each is essentially an internal action of the device� Hence�
a single � can not be used to represent all of them� The second important
lacuna of bisimulation and CCS is the lack of any operator using which
forcing could be performed�

CCS has a hiding operator which provides global hiding of a given input

��

c

a b

c

a

b

τ

τ

P:
Q:

Figure ���� Example of Weakly Bisimilar Processes

symbol� Considering our informal example again �Example ��� using either
the hiding operator or any other operator of CCS we can not make the two
processes equivalent� For example� hiding of the symbol b in D will lead
to the process as shown in Figure ��
�The closest analogue of the forcing
operator will be an operator that can provide state�based hiding and not
the global hiding operator of CCS�

a

a

D \b:

Figure ��
� Example of Global Hiding

��

����� Re�nement

The notion of re�nement was �rst proposed by Abadi and Lamport ��� to
prove that a lower level speci�cation correctly implements a higher level one�
The basic notion adopted was that of trace inclusion�

In ���� the above notion of re�nement was extended to automata� A
re�nement from an automaton A to another automaton B is de�ned as a
mapping from states of A to states of B such that�

�� image of every start state of A is also a start state of B and�

�� every transition in A has a corresponding sequence of transitions in B
�including internal transition �� that begins and ends with the images
of the respective beginning and ending states of the given transition�
and that has the same external actions�

Forward and backward simulations were later de�ned in ���� by Lynch
and Vaandrager which are generalizations of re�nement to incorporate more
behaviours into the proof system� A primary di�erence between re�nement
and simulation is that re�nement is a function from the states of the imple�
mentation to the states of the speci�cation� whereas simulation is a relation�
So� every re�nement is a simulation but not conversely� Forward and back�
ward simulations have been shown to provide a sound and complete proof
method for checking trace inclusion between automata� A primary di�erence
between the approach of Abadi and Lamport ��� and the approach taken by
Lynch and Vaandrager ���� is that the former is based on the state�based
approach where as the latter is based on the action based approach�

In all these approaches� auxiliary variables similar to those proposed
by Owicki and Gries ��
�� often called history and prophecy variables� are
introduced into the speci�cation when simulation is trivially not possible to
induce simulation in presence of these variables�

More recently� a new type of simulation� called normed simulation ���
has been introduced by Gri�oen and Vaandrager by introduction of a norm
function� In a normed simulation� each transition of a low level system may
be simulated by at most one transition in the high level system� for any
related pair of states� By introducing norm functions� the authors have
proved that the checking for the existence of a normed simulation is decid�
able� which was not the case for checking the existing simulation relations�
A norm function introduces a bound on the maximum number of � transi�
tions that the high level speci�cation can take before it is forced to take a
branch identical to that of the low level implementation�

��

All the above simulation relations discussed here are unsuitable for our
application due to the same basic reasons that bisimulation can not be used
directly� lack of multiple types of internal actions and the lack of forcing�
both of which are essential to our application�

��� Forced Simulation versus Interface Process Gen�

eration

Interface process generation also referred to as interface synthesis is the task
of automatically generating an interface process between incompatible pro�
tocols� There have been several attempts for the automatic generation of
interface processes �
� �
� �� ��� �� �� the starting point being the pioneer�
ing work by Borriello for automatic transducer synthesis ���� In this work�
timing diagrams of the two custom hardware was presented as input and
the system produced the logic speci�cation of the required glue logic auto�
matically� However this approach did not handle data width mismatches
between the two incompatible hardware� This limitation was overcome in
a later work by Narayan and Gajski ����� In this work the behaviours of
the two incompatible blocks were represented in a hardware description lan�
guage ���� ��� and then the algorithm veri�ed if the two protocols were duals
of each other� If they were not exact duals of each other then necessary ex�
tra control signals on either side were appropriately generated and the data
width mismatches were also bridged by latching data values within local
memory of the interface protocol and supplying the combined data values
appropriately�

However� interface synthesis has several di�erences compared to our ap�
proach� as detailed below�

 We concentrate on device identi�cation by a new simulation relation�
where as interface process generation seeks to make communication
possible between incompatible protocols of mapped or already iden�
ti�ed system components �by the system designer�� Protocols are in�
compatible if they are not exact duals of each other� In contrast� we
are seeking to simulate equivalence �by forcing�� So� the tasks are
being applied to two di�erent design steps� component identi�cation
versus component interconnection�

 In interface synthesis internal signals are of no signi�cance since it is
the external communication protocols that are being made compatible�
In contrast� internal signals are signi�cant in our application and for

�

each internal operation performed by the function� the device must be
capable of performing identical internal operations�

 There is no formal way of determining if in a given situation an inter�
face process can be simulated� In contrast� F can be implemented by
D whenever a forced simulation relation exists between the two�

 Just as in forcing� in interface synthesis also� extra control signals
of any protocol are generated at appropriate times by the interface
process� In addition� in the work in ���� data width mismatches can
be handled by latching within the interface process� This task is not
currently done by our algorithm�

��

Chapter �

Conclusions

In this paper� we have proposed new simulation relations and developed
algorithms based on them� which can be used for automatic component
identi�cation during embedded system synthesis� The proposed theory as
well as the algorithm are novel from the perspective of simulation literature
as well as in CAD literature�

Forced simulation gives rise to an external interface which together with
the appropriate device� can simulate the given function� This is a very im�
portant development over existing simulation techniques� considering that
many system level devices are multi�functional and hence the interface has
to guide the device along its appropriate functionality to match the speci�ca�
tion� Also the interface plays a vital role in generating extra control signals
present in the device that are missing in the speci�cation� The proposed
component identi�cation algorithm in this paper is based on the notion of
observational equivalence of Milner ��	� which requires that the interface
has no knowledge of either internal or nondeterministic transitions of D�
We have also developed more powerful algorithms by removing this restric�
tion and assuming that the modi�ed interface has complete state knowledge
of both F and D� This new interface is similar to Milner�s idea of strong
bisimulation where even internal actions are considered observable� This
algorithm has been developed and is being communicated separately�

The current algorithm� though a major starting point� has some limi�
tations� Firstly it is based on a LTS setting� However� to test on real�life
examples we must consider more powerful languages for modelling F and
D since in practice these devices can be very complex being capable of per�
forming many data and control transformations� We have recently proposed
a language speci�cally tailored to component�based embedded systems �����

��

Currently we are working on extending our algorithm to handle behavioural
level descriptions in this language� Also� the interface synthesis algorithm�
not presented in this paper� is being worked out� Finally� a proof of cor�
rectness of the approach is being developed based on the idea that when an
fsimulation relation holds between F and D� there exists an interface I such
that� F exhibits the same behaviour as �I k D�� where I k D represents
synchronous parallel composition of I and D�

The proposed techniques may also be applied to several other interesting
problems such as re�engineering control software� veri�cation and design
adaptation� We have already implemented the above algorithms� Testing
them on real life examples is a task to be performed� Also� extension of
forced simulation to real�time systems will be considered in future�

��

Bibliography

��� M� Abadi and L� Lamport� The existence of re�nement mappings�
Theoretical Computer science� ��������
����� �		��

��� J� Akella� InputOutput performance modelling and Interface Synthesis
in concurrently communicating systems� PhD thesis� Carnegie Mellon
University� �		��

�
� A� Basu� R� S� Mitra� and P� Marwedel� Interface synthesis for embed�
ded applications in a co�design environment� In ��th IEEE Interna�
tional conference on VLSI design� pages ���	�� C� �		��

��� G� Borriello� A new interface speci�cation methodology and its appli�
cation to transducer synthesis� PhD thesis� University of California�
Berkeley� �	���

��� P� Chou� R� Ortega� and G� Borriello� Synthesis of hardware�software
interface in microcontroller based systems� In ICCAD���� pages ����
�	�� �		��

��� P� Chou� R� B� Ortega� and G� Borriello� Interface co�synthesis tech�
niques for embedded systems� In ICCAD� pages �������� �		��

��� R� Gerth� Foundations of compositional program re�nement�safety
properties� In Stepwise re�nement of distributed systems� number �
�
in LNCS� pages �������� �	�	�

��� D� Gri�oen and F� Vaandrager� Normed simulations� In Computer
Aided Veri�cation
 CAV� pages

��
��� �		��

�	� R� K� Gupta� Co�Synthesis of Hardware and Software for Digital Em�
bedded Systems� PhD thesis� Department of Electrical Engineering�
Stanford University� �		
�

��

���� L� Helmink� M� P� A� Sellink� and F� W� Vaandrager� Proof�checking
a data link protocol� In TYPES� volume ��� of LNCS� pages ��������
�		
�

���� C� A� R� Hoare� Communicating Sequential Processes� Prentice�Hall
International� �	���

���� IEEE� IEEE Standard VHDL Language Reference Manual� �	���

��
� T� B� Ismail� J� M� Daveau� K� O�Brien� and A� A� Jerraya� A system
level communication approach for hardware�software systems� Micro�
processors and Microsystems� ���
����	����� �		��

���� P� K� Jha and N� D� Dutt� High�level library mapping for arithmetic
components� IEEE Tr� on VLSI systems� ����� �		��

���� P� C� Kanellakis and S� C� Smolka� CCS expressions� �nite state pro�
cesses� and three problems of equivalence� Information and Computa�
tion� ����
���� �		��

���� H� Kopetz� Component�based design of large distributed real�time sys�
tems� In ��th IFAC Workshop on Distributed Computer Control Sys�
tems �DCCS����� pages �������� Seoul� Korea� �		��

���� D� Krieger and R� Adler� Emergence of distributed component plat�
forms� Computer�
��
�� �		��

���� N� Lynch and F� Vaandrager� Forward and backward simulations part
i� Untimed systems� Information and Computation� ������������

�
Sept� �		��

��	� R� Milner� Communication and Concurrency� Prentice Hall Interna�
tional� �	�	�

���� R� S� Mitra� P� S� Roop� and A� Basu� An overview of mickey � a knowl�
edge based hardware�software codesign framework for microprocessor�
based systems� Sadhana�Academy proceedings in Engineering Sciences�
�		��

���� R� S� Mitra� P� S Roop� and A� Basu� A new algorithm for implemen�
tation of design functions by available devices� IEEE Transactions on
very large scale integration �vlsi� systems� ������������� June �		��

��

���� S� Narayan and D� d� Gajski� Interfacing incompatible protocols using
interface process generation� In ��nd Design automation conference�
pages ������
� �		��

��
� S� Owicki and D� Gries� An axiomatic proof technique for parallel
programs� Acta Informatica� �����
�	�
��� �	���

���� Partha S Roop and A� Sowmya� Hidden time model for speci�cation
and veri�cation of embedded systems� In ��th Euromicro Workshop
on Real�Time Systems� pages 	������ IEEE Computer Society Press�
�		��

���� D� E� Thomas and P� Moorby� The Verilog Hardware Description Lan�
guage� Kluwer Academic� �		��

���� P� J� Windley� Verifying pipelined microprocessors� Technical report�
Laboratory of applied logic� Brigham Young University� �		��

�	

