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Abstract

Concept drift due to hidden changes in context complicates learning
in many domains including �nancial prediction� medical diagnosis� and
network performance� Existing machine learning approaches to this
problem use an incremental learning� on�line paradigm� Batch� o��
line learners tend to be ine�ective in domains with hidden changes in
context as they assume that the training set is homogeneous� An o��
line� meta�learning approach for the identi�cation of hidden context is
presented� The new approach uses an existing batch learner and the
process of contextual clustering to identify stable hidden contexts and
the associated context speci�c� locally stable concepts� The approach
is broadly applicable to the extraction of context re�ected in time and
spacial attributes� Several algorithms for the approach are presented
and evaluated� A successful application of the approach to a complex
control task is also presented�
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� Introduction

Prediction in real world domains is complicated by potentially unstable un	
derlying phenomena� Financial market behaviour� for instance� can change
dramatically with changes in contract prices� interest rates� in�ation rates�
budget announcements� and political and world events� Thus� concept de�	
nitions that may have been learned in one context become invalid in a new
context� This concept drift can be due to changes in context� and is often
directly re�ected by one or more attributes� When changes in context are
not re�ected by any attribute they can be said to be hidden� Hidden changes
in context cause problems for any predictive approach that assumes concept
stability�

Machine learning approaches can be broadly categorised as either batch
or incremental� Batch systems learn o
	line by examining a large collection
of instances en masse and form a single concept� Incremental systems evolve
and change a concept de�nition as new observations are processed �����

The most common approach to learning in domains with hidden changes
in context has been to use an incremental learning approach in which the im	
portance of older items is progressively decayed� A popular implementation
of this� originally presented in ����� is to use a window of recent instances
from which concept updates are derived� Other examples of this approach
include ����� ����� ����� and ����� Swift adaption to changes in context can
be achieved by dynamically varying the window size in response to changes
in accuracy and concept complexity �����

There are many domains in which the context can be expected not only
to change but for earlier contexts to hold again at some time in the future�
That is� contexts can repeat in domains such as �nancial prediction� dy	
namic control� and under represented data mining tasks� In these domains�
prediction accuracy can be improved by storing knowledge about past con	
texts for re	use� FLORA� ���� addresses domains in which contexts recur by
storing and retrieving concepts that appear stable as the learner traverses
the series of input data�

In many situations� there is no constraint to learn incrementally� For ex	
ample� many organisations maintain large data bases of historical data that
are prime targets for data mining� These data bases may hold instances
that belong to a number of contexts but do not have this context explicitly
recorded� Many of these data bases incorporate time as an essential at	
tribute� for example� �nancial records and stock market price data� Interest
in mining datasets of this nature suggests the need for systems that can learn
global concepts and are sensitive to changing and hidden contexts� Systems
such as FLORA� also show that an o
	line recognition of stable concepts
would be useful for on	line prediction� The use of batch �o
	line� learning in
domains with hidden changes in context has not been extensively explored�

An alternative to on	line learning for domains with hidden changes in
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context is to examine the data en masse in an attempt to directly identify
concepts associated with stable� hidden contexts� Some potential bene�ts
of such an approach are listed below�

� Context speci�c �known as local� concepts could be used as part of a
multiple model on	line predictive system�

� Local concepts could be veri�ed by experts� or used to improve domain
understanding�

� The identi�ed hidden contexts could be reasoned about� allowing a
global concept to be augmented with expectations of hidden context
duration� order� and stability�

� The identi�ed hidden contexts could provide target characteristics for
selecting additional attributes from the outside world as part of an
iterative data mining process�

This article presents Splice� a meta	learning system that implements a
context sensitive batch learning approach� Splice is designed to identify
intervals with stable hidden context� and to induce and re�ne local concepts
associated with these hidden contexts�

We proceed by describing the use of existing machine learners for detect	
ing changes in context� The �rst implementation of Splice is then presented
and evaluated� Some shortcomings of the method are discussed and a new
method� Splice	�� designed to improve upon these shortcomings� is presented
and evaluated� An application of Splice	� to a complex task ���� is also pre	
sented�

��� Identifying Context Change

In many domains with hidden changes in context� time can be used to dif	
ferentiate hidden contexts� Existing machine learning approaches to these
domains do not explicitly represent time as they assume that current con	
text can be captured by focusing on recent examples� The implication is
that hidden context will be re�ected in contiguous intervals of time� For ex	
ample� an attempt to build a system to predict changes in the stock market
could produce the following decision tree�

Year � ����

Year � ����

Attribute A � true� Market Rising

Attribute A � false� Market Falling

Year �� ����

Attribute B � true� Market Rising

Attribute B � false� Market Falling
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This tree contains embedded knowledge about two intervals of time� in
one of these� ���� to ���
� attribute A is predictive� in the other� ����
onward� attribute B is predictive� As time �in this case� Year� is a monoton	
ically increasing attribute� future classi�cation using this decision tree will
only use attribute B� If this domain can be expected to have recurring hidden
context� information about the prior interval of time could be valuable�

The decision tree in the example above contains information about changes
in context� We de�ne context as�

Context is any attribute whose values tend to be stable over
contiguous intervals of another attribute known as the environ	
mental attribute�

The ability of decision trees to capture context is associated with the fact
that decision tree algorithms use a form of context	sensitive feature selection
�CSFS� �
�� A number of machine learning algorithms can be regarded as
using CSFS including decision tree algorithms ����� rule induction algorithms
��� and ILP systems ����� All of these systems produce concepts containing
local information about context�

When contiguous intervals of time re�ect a hidden attribute or context�
we call time the environmental attribute� The environmental attribute is
not restricted to time alone as it could be any ordinal attribute over which
instances of a hidden context are liable to be contiguous� There is also no
restriction� in principle� to one dimension� Some alternatives to time as envi	
ronmental attributes are dimensions of space� and space	time combinations�

Given an environmental attribute� we can utilise a CSFS machine learn	
ing algorithm to gain information on likely hidden changes in context� The
accuracy of the change points found will be dependent upon at least hidden
context duration� the number of di
erent contexts� the complexity of each
local concept� and noise�

The CSFS identi�ed context change points can be expected to contain
errors of the following types�

� Noise or serial correlation errors� taking the form of additional incor	
rect change points�

� Errors due to the repetition of tests on time in di
erent parts of the
concept� These would take the form of a group of values clustered
around the hidden changes in context�

� Errors of omission� changes in context missed altogether�

The initial set of identi�ed context changes can be re�ned by contextual
clustering� Contextual clustering combines similar intervals of the dataset�
where the similarity of two intervals is based upon the degree to which a
partial model is accurate on both intervals�
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� Splice��

Splice	� ��� is designed to recognise stable context and extract local con	
cepts from domains with hidden changes in context� Splice	� can use any
ordinal attribute as the environmental attribute� in order to preserve clarity
in the following discussion we have substituted Time for the broader term
environmental attribute�

Splice	� is a meta	level algorithm that incorporates an existing batch
learner� In this study the underlying learner is the decision tree learner�
C
�� ����� with no modi�cations� The underlying learner for Splice	� could�
in principle� be replaced by any other CSFS machine learner able to provide
splits on time� As we expect the underlying learner to deal with noise�
Splice	� does not have �or need� a mechanism to deal with noise directly�

The Splice	� algorithm is detailed in Figure �� It consists of three stages�

�� Partition Dataset

�� Perform Contextual Clustering

�� Learn Local Concepts

We examine each of these in turn�

Partition Dataset�

Splice	� �rst uses the underlying CSFS learner to build an initial concept
from the whole data set� As Splice	� uses C
�� the initial concept is a deci	
sion tree� By learning a concept description of the whole domain including
time� we can identify splits in time that were important for concept descrip	
tion� Each of these splits is interpreted as a possible change in context� Each
split on time is extracted from the initial concept and used to de�ne both
intervals of the dataset and the associated fragments of the initial concept�
termed partial concepts� Each partial concept consists of the rules embed	
ded in the leaves of the original decision tree that would act upon examples
in the same interval of the environmental attribute�

Perform Contextual Clustering�

In this stage� we attempt to cluster the intervals identi�ed above�
Splice	� determines the accuracy of each partial concept on the examples

in each interval�� The error rate for each combination of partial concept and
interval is recorded in a Local Accuracy Matrix�

A partial concept is considered to cover an interval of the data set if
the error rate �as a percentage� when classifying that interval is less than

�The initial concept is reused by shifting the data series associated with each interval
into the relevant time values for each partial concept�
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Input required�

� Data set with an environmental attribute�

� Threshold accuracy parameter � with a possible range of � to ����

Algorithm�

� Stage �� Partition Dataset

� Use batch learner to classify the initial data set and produce an initial
concept�

� Extract tests on the time identi�ed in the initial concept�

� Tests on time are used to partition the dataset into intervals�

� Tests on time also used to partition the initial concept into partial
concepts� Partial concepts are fragments of the the initial concept as�
sociated with a particular interval of time�

� Stage 	� Perform Contextual Clustering

� Evaluate the accuracy of each partial concept on each interval of data�

� Rate each partial concept by coverage of the data set� Coverage is the
total number of examples in intervals classi�ed by the partial concept
at better than the threshold accuracy ��

� Create an ordered set X of partial concepts�

� While X is not empty�

� Select best partial concept from X�

� Create a new cluster from covered intervals�

� For all intervals used in the cluster� remove the associated partial
concept from X�

� Stage 
� Learn Local Concepts

� Apply the batch learner to each contextual cluster in order to learn a
new local concept� Context is delineated in time by the boundaries of
the cluster�

The Splice�� output consists of all local concepts produced�

Figure �� The Splice	� Algorithm
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the accuracy threshold parameter �� The default setting for � is ���� Each
partial concept is rated in terms of data set coverage� This is the number of
instances in all the intervals of the data set that it covers� An ordered set
X of partial concepts is created�

The clustering procedure operates as follows� The partial concept with
the highest coverage is selected from the set X� All the intervals that it
covers are used to form a new cluster� The partial concepts associated with
these intervals are removed from the set X� This step is then repeated with
the next best candidate concept until set X is empty�

Learn Local Concepts�

The underlying learner� C
��� is used to learn a local concept from each
contextual cluster from the previous stage� It is important to note that at
this stage the environmental attribute� time� is not included in the attribute
set�

Splice	� is able to exploit recurring contexts for improved local concept
quality by building larger combined data sets�

� Splice�� Performance

This section �rst provides an introduction to the arti�cial domain upon
which Splice has been evaluated� It continues with a walk through of the
Splice	� algorithm on a problem drawn from the sample domain� then de	
scribes investigations into Splice	� performance in a prediction task and
Splice	� accuracy in local concept identi�cation�

��� STAGGER Data Set

The data sets used in the following experiments are based on those used
in evaluating STAGGER ���� and subsequently used by ����� While our
approach and underlying philosophy are substantially di
erent� this allows
some comparison of results�

The domain chosen is arti�cial and a program was used to generate the
data� This program allows us to control recurrence of contexts and other
factors such as noise� and duration� The domain has four attributes� time�
size� colour and shape� Time is treated as a continuous attribute� Size has
three possible values� small� medium and large� Colour has three possible
values� red� green and blue� Shape also has three possible values� circular�
triangular� and square�

�In the following experiments� n� noise implies that the class was randomly selected
with a probability of n�� This method for generating noise was chosen to be consistent
with 	
���
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Table �� Local Accuracy Matrix� Partial concept error on individual inter�
vals ����

Interval Range Partial concepts

� � � � � � � � � 	 �� ��

� �
�� � �� �� �� �� �� �� � �� �� �� ��

� �	
�	 � � � ��� ��� ��� ��� � � � ��� ���

� ��
�� �� �� � � �	 �� �� �� �� � �� ��

� ��
�� �� �� �� � �� �� �� �� �� �� � ��

� ��
	� �� �	 �� �� � � �� �� �� �� �� �

� 	�
��	 �� 	� �� �� � � �� �� �� �� �� �

� ���
��� � �� �� �� ��� �� � � �� �� �� ��

� ���
��� � �� �� �� �� �� � � �	 �� �� ��

� ��	
��	 � � � � � � � � � � � �

	 ���
��� �	 �� �� �� �� �� �	 �	 �� � �� ��

�� ��	
��� �� �� �	 � �� �� �	 �� �	 �	 � ��

�� ���
��	 �� �� �� �� �� � �� �� �� �� �� �

The program randomly generates a series of examples from the above
attribute space� Each example is given a unique time stamp and a boolean
classi�cation based upon one of three target concepts� The target concepts
are�

�� �size � small� � �colour � red�

�� �colour � green� � �shape � circular�

�� �size � medium� � �size � large�

Arti�cial contexts were created by �xing the target concepts to one of
the above STAGGER concepts for preset intervals of the data series�

��� Splice�� Walk through

Splice	� is applied to a simple dataset with recurring concepts� The training
set consists of STAGGER concepts ��� for 
� instances� ��� for 
� instances�
��� for 
� instances� and repeating ��� for 
� instances� ��� for 
� instances�
and ��� for 
� instances� No noise was applied to the data set�

Partition Dataset�

The initial concept decision tree in Figure �� as generated by C
��� is not
succinct nor is it easy to interpret� It does� however� contain a substantial
amount of information on past contexts and changes in context� Splits iden	
ti�ed on time in the initial concept are used to de�ne both partial concepts
and intervals of the data set�
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Size � small�

� Time � �		 � no 
����
����

� Time �� �		 �

� � Colour � blue� no 
����
����

� � Colour � red�

� � � Time �� �� � yes 
���
����

� � � Time � �� �

� � � � Time �� ��� � no 
	��
����

� � � � Time � ��� � yes 
���
����

� � Colour � green�

� � � Time � ��� � yes 
���
����

� � � Time �� ��� �

� � � � Shape � square� no 
���
����

� � � � Shape in �circular�triangular��

� � � � � Time � �� � no 
���
����

� � � � � Time �� �� �

� � � � � � Time �� �	 � no 
���
����

� � � � � � Time � �	 � yes 
���
����

Size in �medium�large��

� Time �� �� � no 
����
����

� Time � �� �

� � Time � ��� � yes 
����
����

� � Time �� ��� �

� � � Time �� ��� �

� � � � Colour � green� yes 
����
����

� � � � Colour in �red�blue��

� � � � � Time � �� � yes 
����
����

� � � � � Time �� �� �

� � � � � � Shape in �square�triangular�� no 
����
����

� � � � � � Shape � circular� yes 
���
����

� � � Time � ��� �

� � � � Time �� ��	 � no 
����
����

� � � � Time � ��	 �

� � � � � Colour � green� yes 
����
����

� � � � � Colour in �red�blue��

� � � � � � Shape in �square�triangular�� no 
����
����

� � � � � � Shape � circular� yes 
���
����

Figure �� C
�� decision tree �using time�
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Current best partial concept is � with 	� data items covered

context � ���	

context � �����

context � �������

context � ������	

context 	 �������

Local concept learnt�

Colour in �green�blue�� no 
�����

Colour � red�

� Size � small� yes 
�����

� Size in �medium�large�� no 
�����

���� equals target concept �� 
size � small� � 
colour � red�

Current best partial concept is � with 	� data items covered

context � �	���

context � ������

context 	 �������

context �� �������

Local concept learnt�

Size � small� no 
����
����

Size in �medium�large�� yes 
�����

���� equals target concept �� 
size � medium� � 
size � large�

Current best partial concept is � with �� data items covered

context � �����

context � �����

context 	 �������

context �� �	�����

Local concept learnt�

Colour � green� yes 
�����

Colour in �red�blue��

� Shape in �square�triangular�� no 
�����

� Shape � circular�

� � Size � small� no 
���
����

� � Size in �medium�large�� yes 
����

���� close to target concept � but not correct

Current best partial concept is � with �� data items covered

context � �����

context � �����

context 	 �������

context � �����		

Local concept learnt�

Colour � green� yes 
�����

Colour in �red�blue��

� Shape in �square�triangular�� no 
����
����

� Shape � circular� yes 
���
����

���� equals target concept �� 
colour � green� � 
shape � circular�

Figure �� Annotated extract from splice log



� SPLICE�� PERFORMANCE ��

Contextual Clustering�

Each partial concept is evaluated on all intervals of the data set� Table
�� the Local Accuracy Matrix �LAM�� shows the error rate achieved by
each partial concept upon instances drawn from each interval� For instance�
partial concept � had an error rate of 

� on the data set drawn from
interval � and an error rate of �� on the data set drawn from interval ��
Some of the intervals shown in the LAM have a very brief duration� shown
in the range column� and are the result of spurious splits on time in the
initial concept� The LAM is used as input for the clustering operation��

Local Concepts�

The contextual clusters are then used to produce local concepts� shown in
Figure �� For the �rst two local concepts generated� Splice	� was able to
successfully identify and combine all non	contiguous intervals of the same
context� The results for this run were that all target concepts were success	
fully identi�ed and that one additional incorrect local concept was identi�ed�

Splice	� must both correctly identify target concepts and minimise the
number of incorrectly identi�ed concepts� On the same task� Splice	� cor	
rectly identi�ed concept one �� times out of ��� trials� concept two �� times
out of ��� trials� and concept three ��� times out of ��� trials� Splice	� also
identi�ed� on average� ��� incorrect or spurious concepts per trial�

The identi�cation of local concepts alone does not provide much utility�
A more pressing question is the application of local concepts in a prediction
task�

��� Prediction� Splice�� �vs� C���

Splice	� local concepts can be e
ectively used for on	line prediction in a
domain with hidden changes in context� This experiment compares the
accuracy of Splice	� to C
�� when trained on a data set containing changes
in a hidden context� After training� the resulting concepts were used for
prediction on a similar data set� C
�� is provides a baseline performance for
this task and was trained without the attribute time� This comparison is
not altogether fair on C
��� as it was not designed for use in domains with
hidden changes in context�

The training set consisted of concepts ��� for �� instances� ��� for ��
instances� and ��� for �� instances� The test set consisted of concepts ���
for �� instances� ��� for �� instances� ��� for �� instances� and repeated ���
for �� instances� ��� for �� instances� and ��� for �� instances�

�In all experiments reported Splice�� was run with the threshold accuracy parameter
� set to a default of ���� Unless otherwise noted� the underlying learner� C
��� was run
with default pruning parameters and with sub�setting�



� SPLICE�� PERFORMANCE ��

0

20

40

60

80

100

0 50 100 150 200 250 300

%
 c

or
re

ct

test series

Splice
C4.5

Figure 
� Splice	�� C
�� comparison� trained with no noise

To apply the local concepts identi�ed by Splice	� for prediction purposes�
it was necessary to devise a method for selecting relevant local concepts�
This is not a trivial problem� hence� for the purposes of this experiment
we arbitrarily chose a simple method� The classi�cation accuracy of each
local concept over the last �ve examples was recorded� The most accurate
concept was used in predicting the class of the next example� Any ties in
accuracy were solved by randomly selecting between local concepts� The
�rst case was classi�ed by a randomly selected local concept�

Results

Figures 
 and � show the average classi�cation success rates at several levels
of noise for both Splice	� and C
�� over ��� randomly generated training
and test sets� Noise was generated only in the training set�

Figure 
 shows that Splice	� successfully identi�ed the local concepts
from the training set and that the correct local concept can be successfully
selected for prediction purposes in better than ��� of cases� The extreme
dips in accuracy when contexts change are an e
ect of the local concept se	
lection method� C
�� performs relatively well on concept � with an accuracy
of approximately ���� C
�� on concepts � and � correctly classi�es between
��� and ��� of cases�

As noise increases� the performance of Splice	� gradually declines� Fig	
ure � shows that at ��� noise� the worst result achieved by Splice	� is an
��� classi�cation accuracy on concept �� C
�� on the other hand is still
classifying with approximately the same accuracy as it achieved in �gure

� C
�� predictive stability over a range of noise of between � and ��� is
testament to its stability in adverse situations�
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Figure �� Splice	�� C
�� comparison� trained with ��� noise

This task is similar to the on	line learning task tackled by both FLORA
���� and STAGGER ����� The combination of Splice	� with a simple strategy
for selection of the current local concept is e
ective on a simple context
sensitive prediction task� As the selection mechanism assumes that at least
one of the local concepts will be correct� Splice	� almost immediately moves
to its maximum accuracy on each new local concept� On a similar domain
the FLORA family ���� �in particular FLORA�� the learner designed to
exploit recurring context� appear to reach much the same level of accuracy
as Splice	�� although as an on	line learning method� FLORA requires some
time to fully re�ect changes in context�

This comparison is problematic for a number of reasons� Splice	� has
the advantage of �rst seeing a training set containing �� instances of each
context before beginning to classify and of being correct in the assumption
that all possible contexts had at least been seen� The iterative learners have
the advantage of continuous feedback with an unconstrained updating of
concepts� Splice	� does have feedback� but is constrained to its current local
concepts in adaptation to the feedback� When Splice	� has not learnt a local
concept� there is no second chance� For more complex� real world domains� it
could be bene�cial to use a combination of Splice	� and an adaptive� on	line
learner�

This experiment looked at prediction given a single concept duration�
How well does Splice	� perform on di
erent levels of noise and concept du	
ration�
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Figure �� Splice	� identi�cation of concept �

��� The E	ects of Noise and Duration on Splice��

Splice	� is able to correctly induce the three STAGGER concepts over a
range of noise and context duration conditions� Splice	� exploits longer
concept durations to o
set the negative e
ects of additional noise� Splice	
� was trained on a randomly generated training set containing examples of
each of the STAGGER concepts� The set of local concepts learnt by Splice	�
were then assessed for correctness against each target concept� The results
show the proportion of correct local concept identi�cations achieved� and
the average number of incorrect local concepts identi�ed�

Training sets were generated using a range of concept duration and noise�
Concept duration corresponds to the number of instances for which a con	
cept is active� Duration ranges from �� instances to ��� instances� Noise
ranges from �� to ���� Each training set consists of concept ��� for D
instances� concept ��� for D instances� and concept ��� for D instances� for
some duration D� Each combination of noise level and concept duration was
repeated ��� times�

Results

Figures �� � and � show the accuracy of Splice	� in correctly identifying each
target concept under varying levels of both concept duration and noise�
In this domain� Splice	� is well behaved� with a graceful degradation of
performance as noise levels increase� Concept duration reduces the negative
e
ect of noise� Figure � shows the number of incorrect concepts learnt
by Splice	� for di
erent levels of noise and training concept duration� In
this too� Splice	� is well behaved� showing both graceful degradation of
performance with increased noise� and well bounded numbers of incorrect
concepts learnt�

These results show that on this domain� Splice	� is well behaved with
changing levels of noise and duration of target concept� Splice	� was able
to take advantage of additional concept duration in order to minimise the
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e
ect of noise� At all noise levels� the number of spurious concepts identi�ed
fell within reasonable bounds�

While the results for Splice	� are promising� the quality of context recog	
nition by Splice	� is largely dependent upon the accuracy of partitions found
by the CSFS partitioning� In other words� Splice	� is restricted to domains
upon which the CSFS partitioning is e
ective� An alternate algorithm�
Splice	�� is designed for domains with high levels of noise and context repe	
tition�

� Splice��

Splice	� is dependent for initial partitioning upon the ability of the under	
lying CSFS algorithm to correctly detect changes in context� The di�culty
of inducing the correct classi�er has been related to the number of regions
���� or peaks ���� that must be described� Another measure of domain dif	
�culty is the average information entropy in the concept over all relevant
attributes ����� Drawing upon these de�nitions for domain di�culty� we an	
ticipate that the CSFS algorithm will be more likely to miss context changes
as the following domain characteristics increase�

� Context repetition�

� Irrelevant attributes�

� Noise�

Splice	� is designed to minimise the impact of poor initial partitioning�
The Splice	� algorithm is detailed in Figure ��� Splice	� begins by parti	

tioning the data set using either the CSFS algorithm� a random split or do	
main knowledge� We denote the version of Splice	� using random partition	
ing as Splice	�R� Splice	�R has no restriction that the underlying machine
learning algorithm use CSFS� These partitions form the initial contextual
clusters �CCs�� C
�� is then used on each CC� to create the initial interim
concepts�

The next stage� contextual clustering� clusters individual items on the
basis of interim concept accuracy on a �xed size window surrounding each
original data item� �This replaces Splice	� contextual clustering� which clus	
ters only intervals created in the partitioning stage�� New CCs are created
by clustering initial dataset items according to similarity of context� as rep	
resented by the interim concepts� The new CCs are then used as training
sets for the creation of new interim concepts�

The contextual clustering stage can be iterated for further contextual
context re�nement� The �nal set of interim concepts form the output local
concepts� The boundaries between the �nal seed sets form context bound	
aries� We now examine contextual clustering in more detail�
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Splice�	 algorithm� �Input� Environmental attribute ordered data set��

� Stage �� Partition Dataset

� Partition the dataset over the environmental attribute using either�

� C��� as per Splice���

� A pre�set number of random splits�

� Prior domain knowledge�

� The identi�ed partitions form the initial contextual clusters 
CCs� and
are in turn used to create the initial interim concepts�

� Stage 	� Contextual Clustering

� Each combination of interim concept and item in the original data set is
allocated a score based upon the total accuracy of that concept on items
in a �xed size window over the environmental attribute surrounding the
item�

� Cluster the original data set items that share maximum scores with the
same interim concept� These clusters form the new set of CCs�

� Create a new set of interim concepts from the new CCs�

� Stage 	 is repeated until the interim concepts do not change or until a
�xed number of iterations are completed�

� Stage 
� Create Local Concepts

� The �nal set of interim concepts form the output local concepts�

Figure ��� The Splice	� Algorithm
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��� Contextual Clustering

This stage clusters on similarity of context where context is represented by
each current interim concept� This similarity of context is based on a shared
interim concept classi�cation accuracy on a window surrounding each data
item� We de�ne a simple measure Wij to represent the similarity of context
between an interim concept j and example i�

Wij �

i�w��X
m�i�w��

Correctjm ���

where�

Correctjm �

�
� if interim concept j misclassi�es example m
� if interim concept j correctly classi�es example m

w � the window size

New CCs are built by allocating each example i to a contextual cluster
with other examples whose maximum weightWij is associated with the same
interim concept j� A new set of interim concepts is then created by applying
C
�� to the new CCs� Contextual clustering is halted after a given number
of iterations�

� Splice�� Performance

This section shows two experiments with Splice	�� The �rst is a direct
comparison with Splice	� on the recognition of STAGGER concepts in a
domain with a range of noise and duration and a �xed number of hidden
changes in context� The second compares the concept recognition abilities
of Splice	�� Splice	�� and Splice	�R on a range of noise and context change
levels with a �xed duration�

��� Concept Recognition� Splice�� 
vs� Splice��

Splice	� is shown to be superior to Splice	� on a series of STAGGER concept
recognition task with many changes in context�

The basic STAGGER concept recognition problem presented in Section
��
 was altered by repeating the training set �ve times giving a total of �

changes in context� Both versions of Splice were trained on datasets with a
range of noise and context duration� The sets of local concepts learnt were
assessed against each target concept� The results show the average number
of correct local concept identi�cations achieved� and the average number of
incorrect local concepts identi�ed�
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Figure ��� Number of concepts correctly recognised by Splice	� and Splice	�

Training sets were generated using a range of context duration and noise�
Context duration corresponds to the number of instances for which a concept
is active� Each training set consists of random examples classi�ed according
to the following pattern of contexts� � repetitions of the following structure
�concept ��� for D instances� concept ��� for D instances� and concept ���
for D instances�� Where the duration D ranges from �� instances to ���
instances and noise ranges from �� to ���� Results are an average of ���
repetitions of each combination of noise and duration�

Results

Figure �� shows the average number of STAGGER concepts correctly recog	
nised by Splice	� and Splice	��� for each context duration and noise level�
Both versions of Splice converge upon the recognition of all concepts at
higher context durations� Splice	� converges upon the recognition of all
three local concepts more quickly for all levels of noise�

Figure �� shows the number of incorrect local concepts induced by Splice	
� and Splice	�� These charts show the number of incorrect concepts induced
for each context duration and noise level� For all levels of noise� Splice	�
induces more incorrect concepts than Splice	�� The number of incorrect
concepts is similar only for �� noise and high context duration�

On this task� both versions of Splice respond well to a range of training
set noise and context duration� Both versions exploit increased context du	
rations to minimise the e
ect of noise� Splice	� consistently induces more
correct and less incorrect local concepts than Splice	�� These results sug	
gests that the Splice	� clustering mechanism is better able to overcome the
e
ects of frequent context changes and high levels of noise� In the next ex	
periment we further investigate this result by �xing context duration and

�In all experiments reported� Splice�� was run with three contextual clustering itera�
tions� Unless otherwise noted� the underlying learner� C
�� was run with default parame�
ters and with sub�setting�
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Figure ��� Incorrect concepts found by both Splice	� and Splice	�

testing di
erent levels of context change�

��� Splice��� Splice��� and Random Seeding

This experiment shows that high levels of context repetition can lead to a re	
duction in the recognition accuracy of Splice	�� Splice	� is shown to improve
with high levels of context repetition� Splice	� with random partitioning is
also shown to be e
ective on these domains�

The previous experiment looked at the e
ects of di
erent context dura	
tions on local concept recognition by both Splice	� and Splice	�� While this
demonstrated that Splice	� has a superior accuracy on a �xed number of
context changes� it provided little insight into the e
ect of di
erent levels of
context change� This experiment investigates the e
ects of di
erent levels
of context repetition and noise� We �rst compare the concept recognition
accuracy of Splice	� with that of Splice	�� The Splice	� results are subse	
quently compared with the accuracy achieved by Splice	�R �Splice	� with
random partitioning��

Each algorithm was evaluated on its ability to correctly induce the
STAGGER local concepts from a training set containing hidden changes
in context� The training set consisted of randomly generated STAGGER
instances classi�ed according to the following pattern of contexts� R rep	
etitions of the structure �concept ��� for �� instances� concept ��� for ��
instances� concept ��� for �� instances� where R varies from one to �ve�
The e
ects of noise were also evaluated with a range of noise from �� to

��� The results shown are an average based upon ��� iterations of each
combination of R and noise� Splice	�R used �� random partitions�

Results

Figure �� shows the number of STAGGER concepts correctly induced by
both Splice	� and Splice	� for each combination of context repetition and
noise�
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Figure ��� Splice	� and Splice	� concept recognition

The primary feature of the Splice	� chart is an initial rise and subsequent
decline in concept recognition as the number of repetitions increases� The
only exception from this is at �� noise� for which Splice	� does not decline
in accuracy� The Splice	� chart shows increasing concept recognition �up to
a maximum of three concepts� with increases in repetition�

Splice	� and Splice	� achieve similar levels of concept recognition for a
single iteration of the contexts �repetition � ��� Splice	� recognises more
concepts for all levels of repetition greater than one� The exception is at
�� noise� for which both versions recognise all three concepts for repetition
levels of three and more�

Splice	� is not competitive on more than one context repetition� In fact�
greater numbers of context change have a negative e
ect on the accuracy
achieved� This is due to the failure of the partitioning method on domains
with many changes in context� Splice	� is still interesting� as it does sub	
stantially less work than Splice	�� and can be e
ective on domains with
relatively few context changes� We anticipate that a stronger partitioning
method would make Splice	� more resilient to frequent changes in context�

The Splice	� algorithm� on the other hand� improves concept recognition
as context repetition increases� Splice	� is not e
ected by poor initial par	
titioning as it re	builds context boundaries at each iteration of contextual
clustering� Hence� a poor initial partition has a minimal e
ect and Splice	�
is able to take advantage of increases in context examples�

Figure �
 shows the number of correct STAGGER concepts induced by
Splice	�R with �� random partitions� This chart shows a rise in recognition
accuracy as repetitions increase �up to the maximum of � concepts recog	
nised� for all noise levels� The number of concepts recognised is similar to
those in Figure �� for Splice	��

The similarity of results for Splice	� and Splice	�R shows that� for this
domain� CSFS partitioning provides no bene�t over the use of random par	
titioning for Splice	�� On more complex domains the bias provided by the
initial partitioning can e
ect Splice	� accuracy� The results attained by
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Figure �
� Splice	�R concept recognition

Splice	�R provide another indication of the power of the Splice	� clustering
method�

� Learning to Fly

To test the Splice	� methodology� we wished to apply it to a substantially
more complex domain than than the arti�cial data described above� We
had available� data collected from �ight simulation experiments used in be	
havioural cloning ����� Previous work on this domain found it necessary
to explicitly divide the domain into a series of individual learning tasks or
stages� Splice	� was able to induce an e
ective pilot for a substantial pro	
portion of the original �ight plan with no explicitly provided stages� In the
following sections we brie�y describe the problem domain and the applica	
tion of Splice	��

��� Domain

The �Learning to Fly� experiments ���� were intended to demonstrate that it
is possible to build controllers for complex dynamic systems by recording the
actions of a skilled operator in response to the current state of the system� A
�ight simulator was chosen as the dynamic system because it was a complex
system that requires a high degree of skill to operate successfully and yet is
well understood� The experimental setup was to collect data from several
human subjects �ying a predetermined �ight plan� These data would then
be input to an induction program� C
���

The �ight plan provided to the human subjects was�

�� Take o
 and �y to an altitude of ����� feet�

�� Level out and �y to a distance of ������ feet from the starting point

�� Turn right to a compass heading of approximately ��� degrees�
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� At a North�South distance of 
����� feet� turn left to head back to	
wards the runway� ����� The turn is considered complete when the
azimuth is between �
� degrees and ��� degrees�

�� Line up on the runway�

�� Descend to the runway� keeping in line�

�� Land on the runway�

The log includes �� attributes showing position and motion and 
 con	
trol attributes� The position and motion attributes were� on ground� g limit�
wing stall� twist� elevation� azimuth� roll speed� elevation speed� azimuth speed�
airspeed� climbspeed� E�W distance� altitude� N�S distance� fuel� The con	
trol attributes were� rollers� elevator� thrust and �aps� �The rudder was not
used as its implementation was unrealistic�� Decision trees induced from the
logged data were tested by compiling the trees into the autopilot code of the
simulator and then ��ying� the simulator�

In the original experiments� three subjects �ew the above �ight plan
�� times each� In all� a data set of about ������ records was produced�
Originally� it was thought that the combined data could be submitted to
the learning program� This proved too complex a task for the learning
systems that were available� The problems were largely due to mixing data
from di
erent contexts�

The �rst� and most critical type of context� was the pilot� Di
erent pilots
have di
erent �ying styles� so their responses to the same situation could
di
er� Hence� the �ights were separated according to pilot� Furthermore�
the actions of a given pilot di
er according to the stage of the �ight� That is�
the pilot adopts di
erent strategies depending on whether he or she is turn	
ing the aircraft� climbing� landing� etc� To succeed� an induction program
would have to be able to distinguish these di
erent cases� The classi�cation
learning programs available� could not do this� so further manual separation
of the data into �ight stages was required� Since the pilots were given in	
termediate �ight goals� the division into stages was not too onerous� Not
all divisions were immediately obvious� In the initial division� for example�
lining up and descending were not separated into two di
erent stages� How	
ever� without this separation� the decision trees generated by C
�� would
miss the runway� It was not until the �line	up� stage was introduced that a
successful �behavioural clone� could be produced�

Until now� the stages used in behavioural cloning could only be found
through human intervention which often included quite a lot of trial	and	
error experimentation� The work described below suggests that �ight stages
can be treated as di
erent contexts and that the Splice	� approach can
automate the separate of �ight data into appropriate contexts for learning�
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��� Flying with Splice��

This domain introduces an additional di�culty� Since there are four con	
trol actions available to the pilot� previous behavioural cloning experiments
built decisions trees for each of the four actions in each of the seven stages�
resulting in �� decision trees that are switched in depending on the current
stage�

When Splice	� is applied to the four learning tasks� viz� building a con	
troller for elevators� another for rollers� for thrust and �aps� there is no
guarantee that exactly the same context divisions will be found� This causes
problems when two or more actions must be coordinated� For example� to
turn the aircraft� rollers and elevators must be used together� If the con	
texts for these two actions do not coincide then a new roller action� say� may
be commenced� but the corresponding elevator action may not start at the
same time� thus causing a lack of coordination and a failure to execute the
correct manoeuvre�

This problem was avoided by combining rollers and elevators into a single
attribute� corresponding to the stick position� Since the rollers can take one
of �� discrete values and elevators can take one of �� discrete values� the
combined attribute has ��� possible values� Of these� �� are represented�

Switching between the local concepts during the �ight is not trivial as
no �immediate� feedback on classi�cation accuracy is available� With the
previous experiments reported in this paper� a voting mechanism was used
to select the current context and local concept� For this domain� we chose to
use a decision tree for context selection� All examples from each �nal local
concept were labelled with the relevant local concept� A decision tree was
induced using the same attributes as provided for learning the individual
local concepts and subsequently used to select the current context for each
instant of the �ight�

We also found that the original Splice	� Wij formula using only classi	
�cation accuracy did not perform well when class frequencies were wildly
di
erent� We found that well represented classes were dominating the con	
textual clustering process leading to clusters with similar classi�cation over
well represented classes and dissimilar classi�cation over poorly represented
classes� This was problematic as successful �ights depend upon the cor	
rect classi�cation of rare classes� The problem was reduced by altering the
weighting formulaWij to give an equal importance to accuracy on all classes
in a given window while ignoring the relative representations of the di
erent
classes� The Wij� formula is�

Wij � �
CX
c��

Pi�w��
m�i�w���cm � c��CorrectjmPi�w��

m�i�w���cm � c�
���

where�



� LEARNING TO FLY ��

C is the number of classes
cm is the class number of example m

Correctjm �

�
� if interim concept j misclassi�es example m
� if interim concept j correctly classi�es example m

w � the window size

Splice	� was also augmented to recognise domain discontinuities such
as the end of one �ight and the beginning of the other by altering Wij �
such that no predictions from a �ight other than the �ight of example i are
incorporated in any Wij��

Results

We were able to successfully �y the �rst four stages of the �ight by training
on data extracted from only these stages for �� �ights� It should be noted
that even with the changes in the domain �combining rollers and elevator�
C
�� is unable to make the �rst turn without the explicit division of the
domain into stages�

Figure �� shows three �ights�

� The successful Splice	� �ight on stages � to 
�

� The best C
�� �ight�

� A sample complete �ight�

The settings used in Splice	� were�

� A window size of �� instances�

� C
�� post pruning turned o
 �	c �����

� Three iterations of the clustering stage�

� Initial partitioning was set to four equal divisions of the �rst �ight�

At present� the addition of further stages of the �ight causes catastrophic
interference between the �rst two stages and the last � stages� Splice	� is�
as yet� unable to completely distinguish these parts of the �ight� However�
the use of Splice	� in synthesising controllers for stages � 	 
 is the �rst time
that any automated procedure has been successful for identifying contexts
in this very complex domain�

The use of a decision tree to select the current context was reasonably
e
ective but inelegant� The �learning to �y� problem combines a complex�
well understood domain with a poorly represented task� This combination
would make a good test bed for extending context selection methods by
reasoning about context�
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� Related Work

Splice is most closely related to the FLORA ���� family of on	line learners
designed to adapt to hidden changes in context by drawing changes to the
concept from a window of recent instances� Rapid adaption to changes in
context is assured by altering the window size in response to changes in
prediction accuracy and concept complexity� One version� FLORA�� ����
was adapted for domains with recurring hidden context by storing stable
concepts for possible re	use when a context change is suspected� In order
to guard against a concept drift� genuinely new concepts� and mistaken
selection of a prior stable concept� the resurrected stable concept is updated
to match examples in the current window� Splice extends the concept of
storing stable concepts as an adjunct to on	line learning to be the primary
focus of an o
	line batch learning approach�

Most on	line learning methods that deal with concept drift decay the im	
portance of older instances� STAGGER ��
� ���� for instance� was probably
the �rst machine learning system dealing with concept drift� As the sys	
tem moves forward over the data series� a search frontier of conjunctive and
disjunctive features is altered according to changes in statistics measuring
logical su�ciency �LS� and logical necessity �LN�� The goal is to converge
upon a succinct concept description� The system allows for concept drift by
backtracking on the search frontier when the statistics for a current charac	
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terisation fall beneath a threshold� The failed characterisation is removed
from the search frontier and replaced by alternate characterisations� Dis	
carding characterisations that are no longer e
ective provides a decay in the
importance of older information�

Many other on	line learners use an explicit window heuristic similar to
that used in FLORA ���� ���� ���� ����� Batch learners can also be used for
on	line learning on domains with concept drift by repeatedly learning from
a window of recent instances ��� ���� The window update mechanism need
not use a �rst in� �rst out� organisation� ���� discards older examples only
when a new item appears in a similar region of attribute space�

On	line learners for domains with hidden changes in context assume
that context will tend to be contiguous over time� Splice broadens this
assumption by allowing context to be contiguous over any environmental
attribute� usually time or space� Splice would need only minor changes to
deal with an environmental attribute with several dimensions�

There is very little in the literature on dealing with hidden changes
in context using a batch approach� This is probably because most batch
learning methods assume that all available information will be directly rep	
resented in the attributes provided� hence� hidden changes in context will
be treated as noise� We suspect that in domains where an unseen context
is important for classi�cation accuracy� reported work tends to focus upon
successful representations �including an explicit representation of the previ	
ously hidden context�� Such a process is rarely made explicit� One paper
that does explicitly refer to an augmentation of the domain representation
with a previously hidden context is ���� in which the task of learning to �y
could not be achieved until the domain representation was augmented by
splitting the learning task into sub	tasks�

There has been substantial work on dealing with known changes in con	
text� One approach to a known context is to divide the domain into a
series of di
erent learning tasks� induce di
erent classi�ers for each task�
then switch between these classi�ers according to the current context� This
method has been applied to the learning to �y domain ���� and to target
recognition ���� The application of local concepts for prediction and classi	
�cation in this article used a similar model switching approach�

The transfer of knowledge learnt in one context to a new� previously
unseen� context is similar to an on	line adaption to a hidden change of
context� Knowledge embedded in a decision tree can be transfered to a new
context ��
� by applying a two tiered structure� The �xed decision tree is
used as the �rst tier� The second tier� providing soft matching and weights
for each leaf of the decision tree� is trained on the second context� This
is similar to the two tiered structure originally proposed ���� for dealing
with �exible contexts� Knowledge from an existing network can be used
to signi�cantly increase the speed of learning in a new context ���� ��� by
using weights from the existing network to initialise the new neural network�
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Methods for the transfer of knowledge from one context to another could be
used to adapt Splice local concepts on	line in a manner analogous to that
used by FLORA��

Context has thus far been de�ned as any attribute whose values tend to
be stable over contiguous intervals of the environmental attribute� Context
can also be interpreted as the e
ect of one �contextual� attribute on the in	
terpretation of another �context	sensitive� attribute� Classi�er accuracy can
be improved when context	sensitive attributes are present for both instance
based learning ��� and multivariate regression by the methods of contextual
normalisation� contextual expansion and contextual weighting ���� ��� ����
Instance based learning could be used as the Splice	�R underlying learner�
any hidden contexts thereby recognised by Splice	�R could then be utilised
with these techniques for on	line prediction�

A somewhat di
erent on	line method designed to detect and exploit con	
textual attributes is MetaL�B� ����� In this case� contextual attributes are
considered to be predictive of the relevance of other attributes� MetaL�B�
works by using the detected contextual attributes to trigger changes to the
set of features presented to the classi�er� While this approach and context
de�nition is quite di
erent to that used by Splice� the overall philosophy is
similar� Widmer concludes by stating that

�� � � the identi�cation of contextual features is a �rst step towards
naming� and thus being able to reason about� contexts��

One long term goal for the Splice approach is precisely this�
To summarise� Splice begins to build a bridge between on	line methods

for dealing with hidden changes in context and batch methods for dealing
with known change in context� Splice applies the on	line assumption that
contexts are liable to be contiguous over an environmental attribute to the
broader problem of detecting and extracting hidden context and the associ	
ated concepts�

� Conclusion

This article has presented a new o
	line paradigm for recognising and dealing
with hidden changes in context� Hidden changes in context can occur in any
domain where the prediction task is poorly understood or where context is
di�cult to isolate as an attribute� Some domains with hidden context are
data mining problems� �nancial market prediction� and behavioural cloning�
Most previous work with hidden changes in context has used an on	line
learning approach�

The new approach� Splice� uses o
	line� batch� meta	learning to extract
hidden context and induce the associated local concepts� It incorporates
existing machine learning systems �in this article� C
�� ������ Two imple	
mentations of Splice were presented� The evaluation of the Splice approach
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included an on	line prediction task� a series of hidden context recognition
tasks� and a complex control task�

Splice	� uses a context sensitive feature selection �CSFS� algorithm to
divide a data series by likely changes of context� A process called contextual
clustering is then applied to these intervals to group intervals that appear
to be from the same context� This process uses the semantics of concepts
induced from each interval as a measure of the similarity of context� The
resulting clusters are used to create context speci�c concepts and to specify
context boundaries�

Splice	� di
ers from Splice	� primarily in the method used for contextual
clustering� Splice	� clusters on the basis of individual members of the data
series� Hence� context boundaries are not restricted to the boundaries found
in the partitioning stage and context boundaries can be re�ned� Splice	� is
much more robust to the quality of the initial partitioning�

Splice	� successfully detected and dealt with hidden context in a complex
control task� �Learning to Fly� is a behavioral cloning domain based upon
learning an autopilot given a series of sample �ights with a �xed �ight plan�
Previous work on this domain required the user to specify stages of the �ight�
Splice	� was able to successfully �y a substantial fragment of the initial �ight
plan without these stages �or contexts� being speci�ed� This is the �rst time
that any automated procedure has been successful for identifying context in
this very complex domain�

A number of improvements could be made to the Splice algorithms pre	
sented� The partitioning method used was shown to be problematic for
Splice	� at high levels of noise and hidden changes in context� While the
use of an existing CSFS machine learning system to provide partitioning is
elegant� a better solution may be to implement a specialised method de	
signed to deal with additional complexity on environmental attributes� One
approach to this is to augment a decision tree algorithm to allow many splits
��� on selected attributes�

Neither Splice	� or Splice	� provide a direct comparison of the relative
advantage of dividing the domain into one set of contexts over another� One
comparison method that could be used is the minimum description length
�MDL� ���� heuristic� The MDL principle is that the best theory for a given
concept will minimise the amount of information that need be sent from
a sender to a receiver so that the receiver can correctly classify items in
a shared dataset� In this case� the information to be sent must contain
any local concepts� a context switching method and a list of exceptions�
At the very least� this would allow a direct comparison of a given context	
sensitive global concept �using local concepts and context switching� with a
context	insensitive global concept� Further� a contextual clustering method
could use an MDL heuristic to guide a search through the possible context
divisions�

The approaches used here for selecting the current context were an on	
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line voting method for domains with immediate feedback and a decision tree
for a domain without immediate feedback� More sophisticated approaches
would use a model of the hidden context� Such a model could use knowl	
edge about the expected context duration� order and stability� It could also
incorporate other existing attributes and domain feedback� The decision
tree used for context switching in the learning to �y task is a primitive im	
plementation of such a model using only existing attributes to select the
context�

An exciting possibility is to use the characteristics of contexts identi�ed
by Splice to guide a search of the external world for an attribute with similar
characteristics� Any such attributes could then be incorporated with the
current attribute set allowing a bootstrapping of the domain representation�
This could be used within the Knowledge Discovery in Databases �KDD�
approach ��� which includes the notion that analysts can reiterate the data
selection and learning �data mining� tasks� Perhaps too� this method could
provide a way for an automated agent to select potentially useful attributes
from the outside world� with which to extend its existing domain knowledge�
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