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Abstract

In reinforcement learning� as in many on�line search techniques� a
large number of estimation parameters �e�g� Q�value estimates for
��step Q�learning� are maintained and dynamically updated as in�
formation comes to hand during the learning process� Excessive
variance of these estimators can be problematic� resulting in uneven
or unstable learning� or even making e�ective learning impossible�
Estimator variance is usually managed only indirectly� by selecting
global learning algorithm parameters �e�g� � for TD��� based meth�
ods� that are a compromise between an acceptable level of estimator
perturbation and other desirable system attributes� such as reduced
estimator bias� In this paper� we argue that this approach may
not always be adequate� particularly for noisy and non�Markovian
domains� and present a direct approach to managing estimator vari�
ance� the new ccBeta algorithm� Empirical results in an autonomous
robotics domain are also presented showing improved performance
using the ccBeta method�



� Introduction

Many domains of interest in AI are too large to be searched exhaustively in rea�
sonable time� One approach has been to employ on�line search techniques� such
as reinforcement learning �RL�� In RL� as in many on�line search techniques�
a large number of estimation parameters �e�g� Q�value estimates for ��step Q�
learning� are maintained and dynamically updated as information comes to
hand during the learning process� Excessive variance of these estimators dur�
ing the learning process can be problematic� resulting in uneven or unstable
learning� or even making e�ective learning impossible�

Normally� estimator variance is managed only indirectly� by selecting global
learning algorithm parameters �e�g� � for TD��� based methods� that trade�
o� the level of estimator perturbation against other system attributes� such
as estimator bias or rate of adaptation� In this paper� we give reasons why
this approach may sometimes run into problems� particularly for noisy and
non�Markovian domains� and present a direct approach to managing estimator
variance� the ccBeta algorithm�

� RL as On�line Dynamic Programming

RL has been characterised as an form of asynchronous� on�line form of Dynamic
Programming �DP� �Watkins� ����	 Sutton� Barto� 
 Williams� ������ This
characterisation works well if the domain is well�modelled by aMarkov Decision

Process �MDP� �Puterman� ������
Formally� an MDP can be described as a quintuple hS�A� �� T� �i� S is the

set of process states� which may include a special terminal state� From any non�
terminal state� an action can be selected from the set of actions A� although
not all actions may be available from all states�

At time�step t  � the process starts at random in one of the states accord�
ing to a starting probability distribution function �� At any time�step t � �
the process is in exactly one state� and selecting an action from within state st
results in a transition to a successor state st�� according to a transition prob�
ability function T � Also� an immediate scalar payo� �or reward� rt is received�
the expected value of which is determined by �� a �possibly stochastic� mapping
of S�A into the reals� Once started� the process continues inde�nitely or until
a terminal state is reached�

By a Markov process� we mean that both the state transition probability
function T and the payo� expectation � is dependent only upon the action se�
lected and the current state� In particular� the history of states�actions�rewards
of the process leading to the current state does not in�uence T or �� We will also
consider non�Markov Decision Processes �NMDPs� which are formally identical
except that the Markov assumption is relaxed	 for a variety of reasons NMDPs
often better model complex real�world RL domains than do MDPs �Pendrith

 Ryan� ������

Generally when faced with a decision process the problem is to discover a
mapping S � A �or policy� that maximises the expected total future discounted

�



reward R� 
P
�

t�� �
trt for some discount factor � � ��� ��� If �  �� then

the total future discounted reward is just the total reward R 
P
�

t�� rt where
all future rewards are weighted equally	 otherwise� rewards received sooner are
weighted more heavily than those received later�

��� Q�learning as on�line value iteration

If an RL method like ��step Q�learning �QL� �Watkins� ����� is used to �nd
the optimal policy for an MDP� the method resembles an asynchronous� on�
line form of the DP value iteration method� QL can be viewed as a relaxation
method that successively approximates the so�called Q�values of the process�
the value Q��st� at� being the expected value of the return by taking a action
at from state st and following a policy � from that point on�

We note that if an RL agent has access to Q�values for an optimal policy for
the system it is controlling� it is easy to act optimally without planning	 simply
selecting the action from each state with the highest Q�value will su�ce� The
QL algorithm has been shown to converge� under suitable conditions�� to just
these Q�values� The algorithm is brie�y recounted below�

At each step� QL updates an entry in its table of Q�value estimates according
to the following rule �presented here in a �delta rule� form��

Q�st� at�� Q�st� at� � ��t ���

where � is a step�size parameter� and

�t  r
���
t �Q�st� at� ���

where r
���
t is the ��step corrected truncated return �CTR��

r
���
t  rt � �max

a
Q�st��� a� ���

The ��step CTR is a special case of the n�step CTR� Using Watkins� ������
notation

r
�n�
t  r

�n�
t � �nmax

a
Q�st�n� a� ���

where r
�n�
t is the simple uncorrected n�step truncated return �UTR�

r
�n�
t 

n��X

i��

�irt�i ���

As n��� both r
�n�
t and r

�n�
t approach the in�nite horizon or actual return

rt 
�X

i��

�irt�i ���

�Perhaps most fundamentally the Markov assumption must hold� it is known �e�g� Pendrith
� Ryan� ����� that the optimality properties of QL do not generalise to non	Markov systems�
The original proof of QL convergence and optimality properties can be found in an expanded
form in �Watkins � Dayan� ���
��

�



as a limiting case�

We note that if in ��� r
���
t were replaced with the actual return� then this

would form the update rule for a Monte Carlo estimation procedure� How�
ever� rather than waiting for the completed actual return� QL instead employs
a �virtual return� that is an estimate of the actual return� This makes the
estimation process resemble an on�line value iteration method� One view of the
n�step CTR is that it bridges at its two extremes value iteration and Monte
Carlo methods� One could also make the observation that such a Monte Carlo
method would be an on�line� asynchronous analog of policy iteration� another
important DP technique�

The central conceptual importance of the CTR to RL techniques is that
virtually all RL algorithms estimate the value function of the state�action pairs
of the system using either single or multi�step CTRs directly� as in the case of
QL or the C�Trace algorithm �Pendrith 
 Ryan� ������ or as returns that are
equivalent to weighted sums of varying length n�step CTRs� such as the TD���
return �Sutton� ����	 Watkins� ������

� CTR Bias and Variance

For RL in Markovian domains� the choice of length of CTR is usually viewed as
a trade�o� between bias and variance of the sample returns to the estimation
parameters� and hence of the estimation parameters themselves �e�g� Watkins
������

The idea is that shorter CTRs should exhibit less variance but more bias
than longer CTRs� The increased bias will be due to the increased weight in the
return values of estimators that will� in general� be inaccurate while learning is
still taking place� The expected reduction in estimator variance is due to the
fact that for a UTR the variance of the return will be strictly non�decreasing
as n increases�

Applying this reasoning uncritically to CTRs is problematic� however� In the
case of CTRs� we note that initial estimator inaccuracies that are responsible
for return bias may also result in high return variance in the early stages of
learning� Thus� in the early stages of learning� shorter CTRs may actually
result in the worst of both worlds � high bias and high variance�

By way of illustration� consider the simple MDP depicted in Figure �� The
expected variance of the sampled returns for action � from state A will be
arbitrarily high depending upon the di�erence between the initial estimator
values for actions from states B and C� In this case� the estimator for hA� �i
would experience both high bias and high variance if ��step CTRs were to be
used� On the other hand� using CTRs of length � or greater would result in
unbiased estimator returns with zero variance at all stages of learning for this
MDP�

In general� as estimators globally converge to their correct values� the vari�
ance of an n�step CTR for an MDP will become dominated by the variance
in the terms comprising the UTR component of the return value� and so the
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Terminal State

State C

State B

State A Action 0

Action 0

Action 0

P = 0.5

P = 0.5

(Start)

Figure �� A ��state�� action MDP� State A is the starting state� states B and C are
equiprobable successor states after taking action �� Actions from B and C immediately
lead to termination� The immediate reward at each step is zero� If ��step CTRs are
used� the variance as well as bias of the estimator returns for State A�action � depends
on the di�erence of the initial estimator values for states B and C� On the other hand�
if CTRs of length � or greater are used� the estimator returns will be unbiased and
have zero variance�

relation
i � j � var�r

�i�
t � � var�r

�j�
t � ���

will be true in the limit� However� the point we wish to make here is that a
bias�variance tradeo� involving n for CTRs is not as clear cut as may be often
assumed� particularly in the early stages of learning� or at any stage of learning
if the domain is noisy�� even if the domain is Markovian�

��� CTR Bias and Variance in NMDPs

Perhaps more importantly� if the domain is not Markovian� then the relation
expressed in ��� is not guaranteed to hold for any stage of the learning� To
demonstrate this possibly surprising fact� we consider the simple ��state non�
Markov Decision Process �NMDP� depicted in Figure ��

For this NMDP� the expected immediate reward from taking the action �
in state B depends upon which action was taken from state A� Suppose the
�deterministic� reward function � is as follows�

��A� ��  �
��A� ��  �
��B� ��  � �if the action from state A was ��
��B� ��  � �if the action from state A was ��

If Monte Carlo returns are used �or� equivalently in this case� n�step CTRs
where n � ��� the estimator returns for state�action pairs hA� �i and hA� �i will

�The argument here is that for noisy domains� estimator bias is continually being reintro	
duced� taking the process �backwards� towards the conditions of early learning�
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State BState A
Action 0

Action 0

Action 1

(Start) Terminal State

Figure �� A 	�state NMDP� with two available actions from starting state A� and
one available from the successor state B� The action from state B immediately leads
to termination and a reward
 the decision process is non�Markov because the reward
depends on what action was previously selected from state A�

exhibit zero variance at all stages of learning� and the corresponding estimators
should rapidly converge to their correct values of � and � respectively�

On the other hand� if ��step CTRs are used� the variance of the hA� �i and
hA� �i estimators will be non�zero while the variance of the estimator for hB� �i
is non�zero� The estimator for hB� �i will exhibit non�zero variance as long as
both actions continue to be tried from state A� which would normally be for
all stages of learning for the sake of active exploration� Finally� note that the
variance for hB� �i will the same in this case for all n�step CTRs n � �� Hence�
the overall estimator variance for this NMDP is strictly greater at all stages of

learning for ��step CTRs than for any n�step CTRs n � ��
In previously published work studying RL in noisy and non�Markovian do�

mains �Pendrith 
 Ryan� ������ excessive estimator variance appeared to be
causing problems for ��step QL in domains where using Monte Carlo style re�
turns improved matters� These unexpected experimental results did not �and
still do not� �t well with the �folk wisdom� concerning estimator bias and vari�
ance in RL� We present these analyses �rstly as a tentative partial explanation
for the unexpected results in these experiments�

Secondly� the foregoing analysis is intended to provide some theoretical mo�
tivation for an entirely di�erent approach to managing estimator variance in
RL� in which attention is shifted away from CTR length and is instead focused
on the step�size parameter �� In the next part of this paper� we discuss a new
algorithm �perhaps more accurately a family of algorithms� we call ccBeta�
which results from taking such an approach�

� �� Variance versus Adaptability

In RL� �nding a good value for the step�size parameter � for a particular al�
gorithm for a particular domain is usually in a trial�and�error process for the
experimenter� which can be time consuming� The resulting choice is usually a
trade�o� between fast adaptation �large �� and low estimator variance �small ���
In RL� and in adaptive parameter estimation systems generally� there emerges
a natural tension between the issues of convergence and adaptability�

Stochastic convergence theory �Kushner 
 Clark� ����� suggests that a

�



reducing � series �such as �i  �	i� with the properties

�X

i��

�i �� and
�X

i��

��i �� ���

may be used to adjust an estimator�s value for successive returns	 this will guar�
antee in�limit convergence under suitable conditions� However� this is in general
not a suitable strategy for use non�stationary environments i�e� environments
in which the schedule of payo�s may vary over time� While convergence prop�
erties for stationary environments are good using this technique� re�adaptation
to changing environmental conditions can be far too slow�

In practice� a constant value for the � series is usually chosen� This has the
the advantage of being constantly sensitive to environment changes� but has
poorer convergence properties� particularly in noisy or stochastic environments�
It appears the relatively poor convergence properties of a constant � series can
lead to instabilities in learning in some situations� making an e�ective trade�o�
between learning rate and variance di�cult�

A method for automatically varying the step�size � parameter by a simple
on�line statistical analysis of the estimate error is presented here� The result�
ing � series will be neither constant nor strictly decreasing� but will vary as
conditions indicate�

��� The ccBeta Algorithm

At each update step for the parameter estimate� we assume we are using a
�delta�rule� or on�line LMS style update rule along the lines of

�i � zi �Qi��

Qi � Qi�� � �i�i

where zi is the i
th returned value in the series we are trying to estimate and �i

is the ith value of the step�size schedule series used� Qi is the ith estimate of
this series� and �i is the i

th value of the error series�
The idea behind ccBeta is quite straightforward� If the series of estimate

errors for a parameter is positively auto�correlated� this indicates a persistent
over� or under�estimation of the underlying value to be estimated is occurring�
and suggests � should be increased to facilitate rapid adaptation� If� on the
other hand� the estimate errors are serially uncorrelated� then this may be taken
as an indication that there is no systematic error occurring� and � can be safely
decreased to minimise variance while these conditions exist�

So� for each parameter we are trying to estimate� we keep a separate set of
autocorrelation statistics for its error series as follows� where cci is derived as
an exponentially weighted autocorrelation coe�cient�

sum square erri � K
sum square erri�� ���
i ���

sum producti � K
sum producti�� ��i
�i�� ����

cci � sum productip
sum square erri
sum square erri��

����
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At the start of learning� the sum square err and sum product variables are
initialised to zero	 but this potentially leads to a divide�by�zero problem on the
RHS of ����� We explicitly check for this situation� and when detected� cci is
set to ��	

We note that if in ��� and ���� the exponential decay parameter K �
��� �� is less than �� two desirable properties emerge� �rstly� the values of the
sum square err and sum product series are �nitely bounded� and secondly the
correlation coe�cients are biased with respect to recency� While the �rst prop�
erty is convenient for practical implementation considerations with regards to
possible �oating point representation over�ow conditions etc�� the second prop�
erty is essential for e�ective adaptive behaviour in non�stationary environments�
SettingK to a value of ��� has been found to be e�ective in all domains tested so
far	 experimentally this does not seem to be a particularly sensitive parameter�

It is also possible to derive an autocorrelation coe�cient not of the error
series directly� but instead of the sign of the the error series� i�e� replacing the
�i and �i�� terms in ��� and ���� with sgn��i� and sgn��i���� This variant
may prove to be generally more robust in very noisy environments�

In such a situation an error series may be so noisy that� even if the error
signs are consistent� a good linear regression is not possible� and so � will be
small even when there is evidence of persistent over� or under�estimation� This
approach proved to be successful when applied to the extremely noisy real robot
domain described in the next section� Based on our results to date� this version
could be recommended as a good �general purpose� version of ccBeta�

Once an autocorrelation coe�cient is derived� �i is set as follows�

if �cci � ��
�i � cci 	MAX BETA

else �i � �

if ��i � MIN BETA�
�i �MIN BETA

First� we note that in the above pseudo�code� negative and zero auto�
correlations are treated the same for the purposes of weighting �i� A strongly
negative autocorrelation indicates alternating error signs� suggesting �uctua�
tions around a mean value� Variance minimisation is also desirable in this
situation� motivating a small �i�

On the other hand� a strongly positive cci results from a series of estima�
tion errors of the same sign� indicating a persistent over� or under�estimation�
suggesting a large �i is appropriate to rapidly adapt to changed conditions�

Setting the scaling parameters MIN BETA to ���� and MAX BETA to ���
has been found to be e�ective� and these values are used in the experiments
that follow� Although values of � and � respectively might be more �natural��
as this corresponds to the automatic scaling of the correlation coe�cient� in

�This may seem arbitrary� but the reasoning is simply that if you have exactly one sam	
ple from a population to work with� the best estimate you can make for the mean of that
population is the value of that sample�
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Simulation experiment � �noisy zero fn�
T�S�E� Std� Dev�

ccBeta ����� �����
beta  ��� ����� �����
beta  ��� ����� �����
beta  ��� ����� �����
beta  ��� ����� �����
reducing beta ���� �����

Table �� Results for simulation experiment ��

practice a small non�zero MIN BETA value was observed to have the e�ect of
making an estimate series less discontinuous �although whether this o�ers any
real advantages has not been fully determined at this stage��

Finally� we note that prima facie it would be reasonable to use cc�i rather
than cci to weight �t� Arguably� cc�i is the more natural choice� since from
statistical theory it is the square of the correlation coe�cient that indicates the
proportion of the variance that can be attributed to the change in a correlated
variable�s value�

Both the cci and cc�i variations have been tried� and while in simulations
marginally better results both in terms of total square error �TSE� and variance
were obtained by using cc�i � a corresponding practical advantage was not evident
when applied to the robot experiments�

� Experimental Results

In all the experiments that follow we use the same variant of ccBeta	 this has aK
parameter of ���� and uses sgn��� normalisation to calculate cci� For weighting
�i� we use cci rather than cc�i � and have MIN BETA and MAX BETA set to
���� and ��� respectively�

��� Simulation experiment �

In this section� we describe some simulation studies comparing the variance and
re�adaptation sensitivity characteristics of the ccBeta method for generating a
� step�size series against standard regimes of �xed � and reducing �� where
�i  �	i�

The learning system for these experiments was a single�unit on�line LMS
estimator which was set up to track an input signal for ������ time steps� In
the �rst experiment� the signal was stochastic but with stationary mean� a zero
function perturbed by uniform random noise in the range ���
�����
���� The
purpose of this experiment was to assess asymptotic convergence properties� in
particular estimator error and variance�

As can be seen from Table �� the reducing beta schedule of �i  �	i was
superior to �xed beta and ccBeta in terms of both total square error �TSE�
and estimator variance for this experiment� As we would expect� variance
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Simulation experiment � �noisy step fn�
T�S�E� Steps to Crossing

ccBeta ����� ��
beta  ��� ����� ��
beta  ��� ����� ��
beta  ��� ����� �
beta  ��� ����� �
reducing beta ������ ������

Table �� Results for simulation experiment ��

�normalised to standard deviation in the tabled results� increased directly with
the magnitude of beta for the �xed beta series� In this experiment ccBeta
performed at a level between �xed beta set at ��� and ����

��� Simulation experiment �

In the second experiment� a non�stationary stochastic signal was used to assess
re�adaption performance� The signal was identical to that used in the �rst
experiment� except that after the �rst ��� time steps the mean changed from �
to ���� resulting in a noisy step function� The adaption response for the various
beta series over �� time steps around the time of the change in mean are plotted
in �gures � and ��

To get an index of responsiveness to the changed mean using the di�erent
beta series� we have measured the number of time steps from the time the mean
level was changed to the time the estimator values �rst crossed the new mean
level� i�e� when the estimator �rst reaches a value � ��

As can be seen from Table �� the reducing beta schedule of �i  �	i was
far worse than than for either �xed beta or ccBeta in terms of TSE and re�
adaptation performance ��Steps to Crossing�� column ��� Indeed� the extreme
sluggishness of the reducing beta series was such that the estimator level had
risen to only about ���� after a further ����� time steps past the end of the time�
step window shown in �gure �� The relatively very high TSE for the reducing
beta series was also almost entirely due to this very long re�adaptation time�
The inherent unsuitability of such a regime for learning in a non�stationary
environment is clearly illustrated in this experiment� Despite having �nice�
theoretical properties� it represents an impractical extreme in the choice be�
tween good in�limit convergence properties and adaptability�

In the �gure � plots� the trade�o� of responsiveness versus estimator variance
for a �xed beta series is clearly visible� We note however that the re�adaptation
response curve for ccBeta ��gure �� resembles that of the higher values of �xed
beta� while its TSE �table �� corresponds to lower values� which gives some
indication the algorithm is working as intended�
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Figure �� The robot learning to walk�

��� Experiment �� Learning to Walk

For the next set of experiments we have scaled up to a real robot�learning
problem� the gait coordination of a six�legged insectoid walking robot�

The robot �a�ectionately referred to as �Stumpy� in the UNSW AI lab� is
faced with the problem of learning to walk with a forward motion� minimising
backward and lateral movements� In this domain� ccBeta was compared to
using hand tuned �xed beta step�size constants for two di�erent versions of the
C�Trace RL algorithm�

Stumpy is� by robotics standards� built to an inexpensive design� Each
leg has two degrees of freedom� powered by two hobbyist servo motors �see
Figure ��� A ��HC�� Miniboard converts instructions from a ��� PC sent via a
RS�����C serial port connection into the pulses that �re the servo motors� The
primary motion sensor is a cradle�mounted PC mouse dragged along behind the
robot� This provides for very noisy sensory input� as might be appreciated� The
quality of the signal has been found to vary quite markedly with the surface
the robot is traversing�

As well as being noisy� this domain was non�Markovian by virtue of the com�
pact but coarse discretized state�space representation� This compact representation


meant learning was fast� but favoured an RL algorithm that did not rely heavily
on the Markov assumption	 in earlier work �Pendrith 
 Ryan� ����� C�Trace
had been shown to be well�suited for this domain�

The robot was given a set of primitive �re�exes� in the spirit of Rodney
Brooks� �subsumption� architecture �Brooks� ������ A leg that is triggered
will incrementally move to lift up if on the ground and forward if already lifted�

��
� �boxes� in � dimensions� alpha and beta motor positions for each leg group ��
continuous variables each discretized into � ranges�� plus 
 boolean variables indicating the
triggered or untriggered state of each leg group at the last control action�

��
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Figure �� Grouping the legs into two tripods�

A leg that does not receive activation will tend to drop down if lifted and
backwards if already on the ground� In this way a basic stepping motion was
encoded in the robots �re�exes��

The legs were grouped to move in two groups of three to form two tripods
�Figure ��� The learning problem was to discover an e�cient walking policy by
triggering or not triggering each of the tripod groups from each state� Thus the
action set to choose from in each discretized state consisted of four possibilities�


 Trigger both groups of legs


 Trigger group A only


 Trigger group B only


 Do not trigger either group

The robot received positive reinforcement for forward motion as detected by
the PC mouse� and negative reinforcement for backward and lateral movements�

Although quite a restricted learning problem� interesting non�trivial be�
haviours and strategies have been seen to emerge�

��� The RL algorithms

As mentioned earlier� C�Trace is an RL algorithm that uses multi�step CTRs to
estimate the state�action value function� While one C�Trace variant� multiple�

visit C�Trace� has been described in earlier work �Pendrith 
 Ryan� ����� in
application to this domain� the other� �rst�visit C�Trace� is a variant that has
not been previously described �refer to �gure � for pseudo�code��

It is easiest understand the di�erence between multiple�visit and �rst�visit
C�Trace� in terms of the di�erence between a multiple�visit and a �rst�visit
Monte Carlo algorithm� Brie�y� a �rst�visit Monte Carlo algorithm will se�
lectively ignore some returns for the purposes of learning in order to get a
more truly independent sample set� In Singh 
 Sutton ������� �rst�visit versus
multiple�visit returns are discussed in conjunction with with a new ��rst�visit�
version of the TD��� algorithm� and signi�cant improvements in learning per�
formance are reported for a variety of domains using the new algorithm�
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while not terminal state do

get current state s
select action a � stochastic action selection  �

if non�policy action selected then

for all �i� j� such that V isitCountij � � do

c� maxmQim � truncated return correction  �
k � GlobalClock � StepCountij
�ij � �ij � c�k

Qij � ��� ��Qij � ��ij � apply CTR update  �
V isitCountij � � � zero traces  �

endfor

endif

if V isitCountsa  � then � �rst visit  �
�sa � �
V isitCountsa � �
StepCountsa � GlobalClock � �time�stamp� visit  �

endif

take action a

if reinforcement signal r received then

for all �i� j� such that V isitCountij � � do

k � GlobalClock � StepCountij
�ij � �ij � r�k

endfor

endif

GlobalClock � GlobalClock � �

endwhile

for all �s� a� such that V isitCountsa � � do � terminal state reached  �
Qsa � ��� ��Qsa � ��sa � terminal update rule  �

endfor

Figure �� Pseudo�code for �rst�visit C�Trace� The variables �� StepCount and
V isitCount are kept separately for each state�action pair� as they are associated with
a particular Q�value� The subscripts identify to which state�action pair the variable
belongs� This C�Trace variant is ��rst�visit in the sense that returns corresponding to
subsequent visits of state�action pairs are ignored if a return is currently being traced�
This approach makes the returns a more truly independent sample set� Once a trace
is cleared� either by a CTR update or a terminal update� a state�action pair is once
again eligible for another �rst�visit sample return�
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Figure �� The robot experiment using RL algorithm � �multiple�visit C�Trace��

For these reasons� a �rst�visit version of C�Trace seemed likely to be particu�
larly well�suited for a ccBeta implementation� as the �purer� sampling method�
ology for the returns should �in theory� enhance the sensitivity of the on�line
statistical tests�

��� Discussion of results

The average forward walking speed over the �rst hour of learning for two ver�
sions of C�Trace using both ccBeta and �xed step�size parameters are presented
in the plots in �gures � and ��

In the case of multiple�visit C�Trace ��gure ��� we notice immediately that
the learning performance is much more stable using ccBeta than with the �xed
beta series� This shows up as obviously reduced variance in the average forward
speed	 signi�cantly� the overall learning rate doesn�t seem to have been adversely
a�ected� which is encouraging� It would not be unreasonable to expect some
trade�o� between learning stability and raw learning rate� but such a trade�o�
is not apparent in these results�

Interestingly� the e�ects of estimator variance seem to manifest themselves
in a subtly di�erent way in the �rst�visit C�Trace experiments ��gure ��� We
notice that �rst�visit C�Trace even without ccBeta seems to have had a marked
e�ect on reducing the step�to�step variance in performance as seen in multiple�
visit C�Trace� This is very interesting in itself� and calls for further theoretical
and experimental investigation��

�At this point� we will make the following brief observations on this e�ect� a� The reduction
in variance theoretically makes sense inasmuch as the variance of the sum of several random
variables is equal to the sum of the variances of the variables if the variables are not correlated�
but will be greater than than this if they are positively correlated� In multiple	visit returns�
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Figure �� The robot experiment using RL algorithm � ��rst�visit C�Trace��

However� we also notice that at around time�step ���� in the �rst�visit
�xed�beta plot there is the start of a sharp decline in performance� where the
learning seems to have become suddenly unstable�

These results were averaged over several �n  �� runs for each plot� so this
appears to be a real e�ect� If so� it is conspicuous by its absence in the �rst�visit
ccBeta plot� ccBeta would appear to have e�ectively recti�ed the problem�

Overall� the combination of �rst�visit C�Trace and ccBeta seems to be the
winning combination for these experiments� which is encouragingly in agree�
ment with prediction�

� Conclusions

Excessive estimator variance during on�line learning can be a problem� resulting
in learning instabilities of the sort we have seen in the experiments described
here�

In RL� estimator variance is traditionally dealt with only indirectly via the
general process of tuning various learning parameters� which can be a time
consuming trial�and�error process� Additionally� theoretical results presented
here indicate some of the pervasive ideas regarding the trade�o�s involved in the
tuning process need to be critically examined� In particular� the relationship
between CTR length and estimator variance needs reassessment� particularly
in the case of learning in a non�Markov domain�

the positive correlation between returns is what prevents them being statistically independent�
b� This raises the interesting possibility that the observed improved performance of �replacing
traces� owes as much if not more to a reduction in estimator variance than to reduced estimator
bias� which is the explanation proposed by �Singh � Sutton� ������

��



The ccBeta algorithm has been presented as a practical example of an alter�
native approach to managing estimator variance in RL� This algorithm has been
designed to actively minimise estimator variance while avoiding the degrada�
tion in re�adaptation response times characteristic of passive methods� ccBeta
has been shown to perform well both in simulation and in real�world learning
domains�

A possible advantage of this algorithm is that since it is not particularly
closely tied in its design or assumptions to RL algorithms� Markov or otherwise�
it may turn out be usable with a fairly broad class of on�line search methods�
Basically� any method that uses some form of �delta rule� for parameter updates
might potentially bene�t from using a ccBeta�style approach to managing on�
line estimator variance�
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