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Abstract

It has previously been established that for Markov learning automata games�
the game equilibria are exactly the optimal strategies �Witten� ����� Wheeler �
Narendra� ����	
 In this paper� we extend the game theoretic view of reinforce�
ment learning to consider the implications for �group rationality �Wheeler �
Narendra� ����	 in the more general situation of learning when the Markov
property cannot be assumed
 We show that for a general class of non�Markov
decision processes� if actual return �Monte Carlo	 credit assignment is used with
undiscounted returns� we are still guaranteed the optimal observation�based
policies will be game equilibria when using the standard �direct reinforcement
learning approaches� but if either discounted rewards or a temporal di�erences
style of credit assignment method is used� this is not the case




� Introduction

Reinforcement learning �RL	 is a set of techniques that have been developed to
e�ect unsupervised learning in agents interacting with a initially unknown and
possibly changing environment
 It is classically formulated in a table lookup
form� where the agent can be in one of a �nite number states at any time�
and has the choice of �nite number of actions to take from within each state

For this representation� powerful convergence and optimality results have been
proven for a number of algorithms designed with the simplifying assumption
that the environment is Markov� e
g
 ��step Q�learning �Watkins� ����	
 With
this assumption� the problem of learning can be cast into the form of �nding an
optimal policy for a Markov decision process �MDP	� and methods like ��step
Q�learning �QL	 can be shown to be a form of on�line asynchronous dynamic
programming


A Markov decision process consists of a set of states and a set of possible
actions for the agent to choose from in each state
 After the selection and
execution of an action by the agent� a state transition occurs and the agent
receives an immediate payo� �or reward	
 By Markov� it is meant that a deci�
sion process has state transition probabilities and immediate payo� �or reward	
expectations dependent only upon the action taken within each state� and in
particular is therefore independent of the history prior to arriving in that state


In practice� however� RL techniques are routinely applied to many problem
domains for which the Markov property does not hold
 This might be because
the environment is non�stationary� or is only partially observable� often the
side�e�ects of state�space representation can lead to the domain appearing as
non�Markov to a reinforcement learning agent


In this paper� we examine various issues arising from applying standard RL
algorithms to non�Markov decision processes �NMDPs	
 In particular� we are
interested in the implications of using a �direct or observation�based method
of RL for a non�Markov problem� i
e
 where the problem is known to be non�
Markov but partial or noisy state observations are presented directly to the RL
algorithm without any attempt to identify a �true Markov state


The analytic approach we take is to revisit the classic formulation of RL
as as n�player learning automata game �Witten� ����� Wheeler � Narendra�
����	


� Learning Automata Games

Wheeler � Narendra �����	 describe the learning automata game scenario as
one of �myopic local agents� unaware of the surrounding world� not even know�
ing that other agents exist
 Each local agent� in attempting to maximise its own
local payo�� simply chooses an action� waits for a response� and then updates its
strategy on the basis of information accumulated to date
 In this formulation�
there is no explicit synchronisation of decision makers


We can conceptually decompose a classic lookup�table representation RL
system into such an automata game� with one automaton �player	 for each
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system state� the policy action for state i becoming the local strategy for the ith

learning automaton
 Indeed� this game theoretic view dates back to the earliest
work in RL� �rstly in the motivation for the BOXES algorithm �Michie �
Chambers� ����	� and later more explicitly in Witten�s analysis of his adaptive
optimal controller for discrete�time Markov environments �Witten� ����	


Casting RL into an n�player game� it is convenient at times to translate
the familiar MDP terminology into equivalent game theoretic terms
 Instead of
policy � we might refer to group or global strategy �
 Instead of a determin�
istic policy� we refer to a pure strategy� and the term mixed strategy replaces
stochastic policy
 Finally� the optimality properties of standard RL methods
like Q�learning for Markov systems �nd correspondence in the notion of �group
rationality as described by Wheeler � Narendra �����	


Fundamental to a game theoretic analysis is the notion of a game equilib�
rium
 A Nash equilibrium is a global strategy that has the property that each
component local strategy for a player is the best available play for that player
assuming the other players play their local strategies consistent with that global
strategy �Fudenberg � Tirole� ����	


In dynamic programming �DP	 terms� a Nash equilibrium corresponds to
a policy that is stable under policy iteration
 It is well known �e
g
 Puterman
�����		 that for an MDP all suboptimal policies are unstable under policy
iteration i
e
 one step of the policy iteration process will result in a di�erent
policy
 Moreover� the new policy will be a better policy� and so the process
of policy iteration can be viewed as a hill�climbing process through the policy
space of stationary policies� i
e
 the result of each step in policy iteration results
in a monotonic improvement in policy until an optimal policy is reached


The special properties of a Markov domain ensure the strategy�policy space
to be well�suited to a hill�climbing strategy� there are no �local maxima or
suboptimal equilibrium points to contend with� and all the global maxima form
a single connected �maxima plateau that can be reached by starting a hill�
climbing process from any point in the space


It is also the case that a �partial policy iteration� where only a subset
of the states that would have policy changes under a full policy iteration step
have their policy actions changed� will also monotonically improve the policy�
and therefore result in e�ective hill�climbing
 This is the key property that
makes MDPs susceptible to RL techniques� it has become the convention to
characterise RL in Markov domains as an asynchronous form of dynamic pro�
gramming �Watkins� ����	
 If the RL method is a ��step temporal di�erences
�TD	 method� like Watkins� ��step Q�learning� the method resembles an on�line�
asynchronous form of value iteration
 If the RL method is an actual return or
Monte Carlo based method� like P�Trace �Pendrith � Ryan� ����	 the method
more closely resembles an on�line� asynchronous form of policy iteration


So� for a Markov learning automata game� the optimal group strategies cor�
respond to the equilibria for the game �Witten� ����� Wheeler � Narendra�
����	
 By way of contrast� for NMDPs and their corresponding learning au�
tomata games� it is straightforward to demonstrate that suboptimal equilibria
are possible� and subsequently that policy iteration methods can fail by getting
�stuck in local maxima
 Consider the NMDP in Figure �
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State BState A
Action 0

Action 1

(Start) Terminal State

Action 0

Action 1

Figure �� An NMDP with two actions available from starting state A� and two actions
available from the successor state B� Both action � and action � from state A immediately lead
to state B with no immediate reward� Action � and action � from state B both immediately
lead to termination and a reward� the decision process is non�Markovian because the reward
depends not only on the action selected form state B� but also on what action was previously
selected from state A�

Figure � shows an NMDP with two actions available from starting state
A� and two actions available from the successor state B
 Both action � and
action � from state A immediately lead to state B with no immediate reward

Action � and action � from state B both immediately lead to termination and
a reward� the decision process is non�Markovian because the reward depends
on what action was previously selected from state A� according to the schedule
in Table �


A action B action reward

�� � � �
�� � � ��
�� � � �
�� � � �

Table �� Reward schedule for NMDP in Figure �


In the policy �strategy	 space for this NMDP� the policy �� is clearly optimal�
with a total reward of �
 Further� it is a game equilibrium� if states �players	 A
or B independently change policy �strategy	� the total reward becomes �� and
� respectively
 Notice that policy ��� although clearly sub�optimal with a total
reward of �� is also a game equilibrium� if states �players	 A or B independently
change policy �strategy	� the total reward becomes � and �� respectively


Although we have only explicitly considered deterministic policies �pure
strategies	 in the above discussion� we note that the result generalises straight�
forwardly to stochastic policies �mixed strategies	


In the case of the example above the optimal strategy was also a pure
strategy
 However� it is known that in general for games corresponding to
NMDPs there may be be no pure strategy among the optimal group strategies�
as will always be the case for MDPs �Singh� Jaakkola� � Jordan� ����	


Further� we show in this paper that if a TD method of credit assignment
is used� or the rewards are discounted� the optimal global strategies may not
be equilibrium points in the strategy space� even if an optimal pure strategy
exists
 This means that even if the problems of local maxima are overcome� the
optimal policies may not be attractive under some standard RL techniques


It turns out the key property of optimal policies being stable under RL is
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only preserved if the additional restrictions of using undiscounted rewards and
using actual return credit assignment methods are imposed


� Learning Equilibria

For the analysis of standard RL algorithms for NMDPs� it is useful for us to
introduce the notion of a learning equilibrium� a type of Nash equilibrium which
is relative to a particular learning method


So just as we can talk about a policy that is stable under policy�iteration� we
might talk about a policy that is stable under ��step Q�learning� for example


A learning equilibrium has the property that if you replace the current state
�or state�action	 value estimates with the expected value of the those estimates
given the current policy and the learning method being used� then the policy
remains unchanged


For any MDP with a total discounted reward optimality criterion� the only
learning equilibria for any of the RL or DP methods discussed so far will be
policy maxima
 A policy that is stable under policy�iteration is also stable
under value�iteration� or under ��step Q�learning according to our de�nition
above


Clearly� having a global maximum in policy space which is also a learning
equilibrium is a necessary condition for convergence to an optimal policy under
a given learning method


This basic idea provides the motivation for the form of analysis that follows


� hPOMDPs

The essence of an NMDP is that the history of states and actions leading to
the present state may in some way in�uence the expected outcome of taking
an action within that state
 When applying a standard RL method like ��step
Q�learning to an NMDP� the history is not used even if available � this is
what Singh et al
�����	 call direct RL for NMDPs
 Therefore� one potentially
useful approach to modelling a general class of NMDPs is by considering a
process that becomes Markov when the full history of states and actions leading
to the present state is known� but only partially observable if this history is
not available or only partially available� i
e
 the history provides the missing
state information
 This property de�nes a class of partially observable Markov
decision process �POMDP	 we will call hPOMDPs �with h for history	


Before we proceed further� a technical change in terminology used up to this
point is called for
 Although we have been referring to �states of a NMDP�
hereafter we will generally be referring to the observations of an hPOMDP

This brings our terminology into line with the POMDP literature� and thereby
avoids a possible source of confusion


hPOMDPs capture nicely the sort of non�Markovianness that is encountered
when state aggregation due to state�space representation or other forms of state�
aliasing occur� usually� in cases like these� history can make the observation less
ambiguous to some extent� and the more history you have the more precisely
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you can determine the true state
 In control theory� this coincides with the
important notion of an observable system


� A Discounted Reward Framework for NMDPs

Because we are interested in what happens when applying standard discounted
reward RL methods like QL to NMDPs� we restrict our attention to the class
of �nite hPOMDPs �i
e
� a hPOMDP such that the observation�action space
S � A is �nite	
� This e�ectively models the RL table�lookup representation
for which all the strong convergence results have been proven in the context of
MDPs


��� Summing Over Histories

We consider a total path or trace through a �nite hPOMDP which can be written
as a sequence of observation�action pairs

�hs�� a�i� hs�� a�i� � � � � hsi� aii� � � �	

where hsi� aii is the pair associated with the ith time�step of this path through
the system
 For any �nite or in�nite horizon total path � there is an associated
total discounted reward R��	


In measure theoretic terms� we can express the probability P �
s of a particular

observation s being visited under policy � as

P �
s � P ��Ts	 ��	

where the set Ts is the set of possible traces that includes s� and P
� is a suitably

de�ned probability measure over the space of all possible traces T with respect
to policy �
 We can also write

P �
s � ��� P �

s 	 � P ��Ts	

where P �
s is the complementary probability of state s not being visited� Ts being

the set of traces that do not include s

We note that in general� e
g
 if the process is non�absorbing� a trace may

be of in�nite length� and therefore the associated probability of it occurring
may be in�nitesimal� and the set Ts uncountable� these considerations motivate
introducing the techniques of measure theory
�

We also note that executing a trace that involves one or more visits to s
is logically equivalent to executing a trace that involves a �rst visit to s� and
therefore

P �
s �

X
h�Hs

p�h� �	 ��	

�Note that this does not imply there are only a �nite number of states in the underlying
MDP�

�In Appendix A is a brief review of the essential measure theory concepts used in this
paper� also see e�g� Billingsley ���	
��
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where Hs is the set of �nite length �rst�visit histories� which are the possible
chains of observation�action pairs leading to a �rst visit to observation s� and
p�h� �	 is the associated probability of a �rst visit occurring by that history
under policy �
 Because h � Hs are of �nite length� p�h� �	 is �nite and Hs

is countable�� and therefore we can express the value as a sum rather than an
integral


The technical issue of de�ning an appropriate probability measure P � con�
sistent with the value of this sum to enable working with Lebesgue integrals is
dealt with in detail in Appendix A� where the equivalence of ��	 and ��	 is used
as a starting point
 However� it is not necessary to immediately consider these
details to follow the development of this paper


��� De�ning Analogs of Q�value and State Value for hPOMDPs

We denote the utility of taking action a from observation s with history h and
following � thereafter as

U��s� a� h	

and is well�de�ned by the de�nition of an hPOMDP� this value can be consid�
ered the �Q�value of the underlying �possibly in�nite state	 MDP where the
action a is taken from �true state s� h


If we were to consider a to be a probabilistic action� which would be the
case for stochastic policies� we can generalise the above de�nition as follows�

U��s� a� h	 �
X
b�A

Pr�bja	U��s� b� h	

where A is the set of available primitive actions in observation s� and Pr�bja	
is the probability of primitive action b � A being executed under probabilistic
action a


A value that is of interest if we are considering what can be learned by
applying standard RL methods directly to hPOMDPs is the following weighted
average of the above de�ned utilities

Q��s� a	 �

� P
h�Hs

p�h���
P�
s

U��s� a� h	 if P �
s � �

unde�ned if P �
s � �

Q��s� a	 is what might be called the �observation �rst�visit Q�value� we observe
it is the value a �rst�visit Monte Carlo method will associate with taking action
a from observation s in the hPOMDP
 Using this value� we de�ne the value of
an observation to be

V ��s	 � Q��s� �s	

where �s is the policy action for observation s under policy �


�Consider that the histories could be arranged into classes by length� and could be sorted
by some arbitrary lexicographic ordering within each length class� to enable a mapping onto
the natural numbers� Note that each length class would have to be �nite since we are dealing
with �nite observations and �nite actions within each observation� therefore we can start
counting in the zero length class �which contains only the null history ��� moving on to classes
of length ���� ��� in turn�
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We note that the values of both Q��s� a	 and V ��s	 are unde�ned for s if
P �
s � � �i
e
� s is unreachable under �	
 This is because� unlike the case for

MDPs� it is di�cult to assign a sensible meaning to the notion of the value of
taking an action from an unreachable observation
 For an MDP� even if the state
is not reachable under policy �� it is still possible to consider what the expected
reward would be arti�cially starting the MDP from that state� but this idea
doesn�t work for hPOMDPs� precisely because the path by which it arrived at
the observation potentially a�ects the value �i
e
 the Markov assumption does
not hold
	 In short� the notion of an �observation �rst�visit Q�value is fairly
empty if a �rst visit simply isn�t possible


��� Policy Values for hPOMDPs

A direct analog of the MDP de�nition for the value of a policy using a general
discounted reward structure would be

J��	 �
X
s�S

�sU
��s� �s� �	 ��	

where �s is the probability of starting in observation s� and � is the trivial his�
tory of no observations or actions preceding observation s
 From the de�nition
of U above� J��	 is well�de�ned� we de�ne an optimal observation�based policy
�� simply by

J���	 � max
�

J��	 ��	

Expressing the same expectation in terms of a Lebesgue integral� we can
write the policy value for an hPOMDP as

J��	 �

Z
��T

R��	 dP ���	 ��	

integrating over total paths
 We can further decompose the total expecta�
tion into a conditional expectation component that involves observation s and
another that is independent of change to the policy for observation s in the
following expression�

J��	 �

Z
��Ts

R��	 dP ���	 �

Z
��Ts

R��	 dP ���	 ��	

Note that for a general discounted reward structure we can writeZ
��Ts

R��	 dP ���	 �
X
h�Hs

p�h� �	�R�h	 � �lhU��s� �s� h	� ��	

where � � � � � is the discount factor� lh is the length of history h� and R�h	
is the value of the truncated return associated with history h
 �The LHS and
RHS of this identity are di�erent expressions for the conditional expectation
assuming a visit to observation s
	

These de�nitions provide a framework for analysing hPOMDPs using a total
future discounted reward criterion which applies equally well to both ergodic
and non�ergodic systems
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� Analysis of Observation�Based Policy Learning Meth�

ods for hPOMDPs

The �rst results we present are two lemmas useful in the proof of Theorem ��
and in discussion of Theorem �


Lemma � If two observation�based policies � and
s
� for a hPOMDP di�er only

in policy for one observation s� then the di�erence in values between the policies

� and
s
� can be expressed as

J�
s
�	� J��	 �

X
h�Hs

p�h� �	�lh �U
s

��s�
s
�s� h	� U��s� �s� h	� ��	

where � is the discount factor and lh is the length of history h�

Proof From equation ��	 we can write the di�erence in value between policies
s
� and � as

J�
s
�	� J��	 �

Z
��Ts

R��	 dP
s

���	 �

Z
��Ts

R��	 dP
s

���	�Z
��Ts

R��	 dP ���	�
Z
��Ts

R��	 dP ���	

which simpli�es to

J�
s
�	� J��	 �

Z
��Ts

R��	 dP
s

���	�
Z
��Ts

R��	 dP ���	

considering that
R
��Ts

R��	 dP
s
���	 must be equal to

R
��Ts

R��	 dP ���	 as the
policies are only di�erent in s� and the traces � � Ts by de�nition do not involve

s
 Similarly we note that P
s
�
s � P �

s � and therefore P
s
�
s � P �

s 
 Using equation
��	� we can rewrite the above as

J�
s
�	� J��	 �

X
h�Hs

p�h�
s
�	�R�h	 � �lhU

s
��s�

s
�s� h	��

X
h�Hs

p�h� �	�R�h	 � �lhU��s� �s� h	�

Since
s
� is only di�erent to � in observation s� the distribution of histories

leading to the �rst visit to s are not a�ected
 Therefore� p�h�
s
�	 � p�h� �	 for

all h � Hs� and we can write

J�
s
�	� J��	 �

X
h�Hs

p�h� �	�R�h	 � �lhU
s

��s�
s
�s� h	��

X
h�Hs

p�h� �	�R�h	 � �lhU��s� �s� h	�

�
X
h�Hs

p�h� �	�lh �U
s

��s�
s
�s� h	� U��s� �s� h	�
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Lemma � If two observation�based policies � and
s
� for an undiscounted hPOMDP

di�er only in policy for one observation s� then the di�erence in values between

the policies � and
s
� can be expressed as

J�
s
�	� J��	 � P �

s �V
s

��s	� V ��s	� ��	

Proof Using equation ��	 from Lemma � �omitting the �lh factor since � � �
for an undiscounted hPOMDP	� we can derive the di�erence in policy values
as follows �note that stepping from the second to the third line assumes the

equivalence of p�h� �	 and p�h�
s
�	� and also of P �

s and P
s

�
s � as discussed in the

proof of Lemma �	�

J�
s
�	� J��	 �

X
h�Hs

p�h� �	�U
s

��s�
s
�s� h	� U��s� �s� h	�

� P �
s

�
� X
h�Hs

p�h� �	

P �
s

U
s

��s�
s
�s� h	�

X
h�Hs

p�h� �	

P �
s

U��s� �s� h	

�
�

� P �
s

�
� X
h�Hs

p�h�
s
�	

P
s
�
s

U
s

��s�
s
�s� h	�

X
h�Hs

p�h� �	

P �
s

U��s� �s� h	

�
�

� P �
s �Q

s
��s�

s
�s	�Q��s� �s	�

� P �
s �V

s

��s	� V ��s	�

Lemma � has a strong intuitive basis� suggesting its applicability to a very gen�
eral class of decision processes including but not limited to hPOMDPs
 Equa�
tion ��	 corresponds to the straightforward observation that for an undiscounted
reward process� by changing policy in exactly one reachable state under policy
�� the change in value of the expected total reward for the new policy is equal
to the change in �rst�visit expected value for the changed state multiplied by
the a priori probability that state will have a �rst�visit under policy �


We emphasize the generality of the result because otherwise it might be mis�
construed that the next result we prove �Theorem �	 is somehow tied strongly
to the hPOMDP formalisation� when in fact the result is quite general
 The
proof of Theorem � is a simple and generalisable argument which indicates
an analogue of Theorem � is true for any class of decision process for which
Equation ��	 holds true


Theorem � If a �rst�visit Monte Carlo method of credit assignment is used

for a hPOMDP where � � �� then the optimal observation�based policies will be

learning equilibria�

Proof Suppose an optimal observation�based policy � is not a learning equi�
librium under a �rst�visit Monte Carlo credit assignment method� then there

must exist an observation s such that V
s

��s	 � V ��s	 for some policy
s
� that

�



Action 0(Start)

State B

State C

State D
Action 0

Action 1

Terminal State

Action 0State A
(Start)

Action 0

Figure �� An NMDP with one action available from the two equiprobable starting states A
and B� one action available and from intermediate state C� and two actions available from the
penultimate state D� An action from state A leads to state C without reward� actions from
states B and C lead to state D without reward� Both action � and action � from state D
immediately lead to termination and a reward� the decision process is non�Markovian because
the reward depends not only on the action taken from state D� but also on the starting state�

is di�erent to � only in observation s
 By Lemma �� the di�erence in policy
values is

J�
s
�	� J��	 � P �

s �V
s

��s	� V ��s	�

Since V
s
��s	 � V ��s	 and P �

s � � �i
e
 observation s is reachable under �	��

then J�
s
�	 � J��	
 But this is not possible since � is an optimal policy� hence

an optimal policy is a learning equilibrium


Theorem � is a positive result� it shows that� at least under certain restricted
conditions� an optimal observation�based policy is also guaranteed to represent
a game equilibrium for a direct RL style learner


The next question is whether we can generalise the result
 Does the result
hold for general �� Does the result hold for TD returns instead of Monte Carlo
style �roll�outs�

The next result addresses the issue of using discounted returns for general
��

Theorem � Theorem � does not generalise to � � ��� �	�

Proof We prove this by providing a counter�example
 We consider the NMDP
in Figure �


We assume that � � � for this discounted reward decision process� suppose
the reward schedule is as follows�

�Note that observation s must be reachable under both � and
s

� otherwise both V ��s� and

V

s

��s� would be unde�ned� which is incompatible with the hypothesis V
s

��s� � V
��s��

��



Start state action D reward

A � r�
A � r�
B � r�
B � r�

Let �� and �� be the group strategies �policies	 that correspond to � and �
being the policy action from D
 We set r� � � � r� such that Q��D� �	 � Q��D� �	
for arbitrary � �i
e
 �r� � r�		� � �r� � r�		�	� but also so that J���	 � J���	
�i
e
 ��r� � r�		� � ��r� � r�		�	
 For example� let r� � �� r� � �� r� � �� and
select r� such that �r� � � � r�


In such a case� D will see action � as preferable� which appears locally
optimal even though the choice results in sub�optimal group strategy ��
 Thus
the sole optimal group strategy �� does not represent a learning equilibrium for
this game


The basis of the problems for discounted returns with � � � can be seen in
Lemma �� the �lh weights are visible to the total discounted return� but not
to the observation �rst�visit estimator
 This is why �group rationality in this
instance breaks down� in the special case of � � �� however� the individual and
the group interests suddenly become aligned� as shown in Theorem �


Next we examine the case where TD style returns are used� we used ��step
Q�learning in the example that follows�

Theorem � If a ��step Q�learning method of credit assignment is used for di�

rect RL of a NMDP� then it is not guaranteed there exists an optimal observation�

based policy representing a learning equilibrium�

Proof We prove this by providing an example of an NMDP where the optimal
policy is not a learning equilibrium under ��step Q�learning
 In this case we
can consider the NMDP in Figure � and associated reward schedule in Table �


The key to our analysis is to note that a TD�based method like ��step Q�
learning which estimates Q��A� �	 and Q��A� �	 for any policy � will evaluate
these actions as of equal utility� therefore� a stochastic action selector will tend
to select these actions with equal probability in the limit


If hA� �i and hA� �i are being selected with nearly equal probability� then
State B will favour action � with an expected reward value of ����		� � ��� over
action � with an expected reward value of �����		� � �
 This implies policies
�� and �� are both unstable in the limit since they both require that hB� �i to
be the local strategy for state B� but for the reasons given above hB� �i will
always become inevitably more attractive as state A becomes agnostic about
hA� �i versus hA� �i
 Even if ��step Q�learning is initially set with the optimal
policy� it will eventually diverge away from it to a situation where it �uctuates
between �� and �� as the learning equilibria


Finally� we note the above analysis holds true for arbitrary discount factor
� � ��� ���

In the above analysis� we have represented ��step Q�learning as a consensus
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Action 0(Start)

State B
State C Terminal State

Action 0State A
(Start)

Action 1

Action 0

Figure �� An NMDP with two equiprobable starting states A and B� There are two actions
available from state A� but only one action available from B and C� Action � from state A
leads to state C without reward� as does action � from state B� Action � from both states A
and C immediately leads to termination and a reward� the decision process is non�Markovian
because the reward received by C depends not only on the immediate action taken� but also
on the starting state�

or distributed learner� behaving more like an economy of sel�sh agents rather
than a single learning agent
 The easy and natural reasoning suggests the
power of the game theoretic analytic framework
 We note Theorem � also
settles a conjecture in �Singh et al
� ����	 regarding the optimality of QL for
observation�based policies of POMDPs
 The authors of that paper conjectured
that QL in general might not be able to �nd the best deterministic memoryless
�i
e
 observation�based	 policy for POMDPs� this result follows directly from
the proof of Theorem �


Finally� we note that the proof of Theorem � can be extended straightfor�
wardly from ��step to multi�step corrected truncated returns �CTRs	
 For the
case of n�step CTRs� we simply have to add an extra n�� states between state
A and state B in Figure �


Corollary � Theorem � can be generalised to n�step corrected truncated return

methods for general n�

While the proof of Theorem � also directly pertains to TD�
	 returns �Sut�
ton� ����	 for the special case where 
 � �� to generalise the result for � � 
 � �
we take a slightly di�erent approach�

Theorem � If a TD�
	 credit�assignment method is used for direct RL of a

NMDP� then for 
 � � it is not guaranteed there exists an optimal observation�

based policy representing a learning equilibrium�

Proof Consider the NMDP is Figure �
 States A and B are the equiprobable
starting states
 We note all the transitions are deterministic� and that state
A has two actions to select from while states B and C have one
 Action �
from state C leads directly to termination with an immediate reward� if the
starting state is A� the immediate reward is �� but if the starting state is B� the
immediate reward will be zero
 Action � from state A also has a termination
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and a non�zero immediate reward associated with it� the exact value of which
we will discuss in a moment
 All other transitions have a zero immediate reward
associated with them


The expected value of hC� �i for an observation based policy � depends
upon the relative frequency of the transitions A � C and B � C� this in
turn depends upon how often state A selects action � for the sake of active
exploration
 We only assume the relative frequencies of action � and action �
selections from state A are both non�zero� hence Q��C� �	 � ��� ���	


Assuming � � ��� ��� from the rules of TD updates we can derive that
Q��A� �	 � ��
������
	Q��C� �		
 This interests us� because Q��A� �	 would
equal � under a Monte Carlo method of credit assignment� but for TD�
	
returns Q��A� �	 � � for all 
 � �


Therefore� if the value of the immediate reward for hA� �i is such that
Q��A� �	 � Q��A� �	 � �� then state A would prefer action � over action ��
even though the global optimal strategy corresponds to selecting action �
 In
such a case� the global strategy for this NMDP does not represent a learning
equilibrium if TD�
	 returns are used with 
 � �


Taken together� these results show that the key property of optimal observation�
based policies being stable in non�Markov domains for direct RL methods is only
preserved if the additional restrictions of using undiscounted rewards and using
actual return credit assignment methods are imposed


� Related work

The analyses of Markov learning automata games byWitten �����	 andWheeler
� Narendra �����	 has already been discussed in the early sections of this paper


The paper by Singh et al
 �����	 also contains important related work
 In
that paper is proposed a framework for the analysis of direct RL for NMDPs� it
is built around a class of POMDPs conceptually similar to hPOMDPs in several
important respects


The authors of that paper felt it was di�cult in their approach to give a
meaningful de�nition of optimality using a discounted reward framework in the
context of POMDPs
 The stated di�culty was that it is not guaranteed for
a POMDP that there exists an observation�based policy that simultaneously
maximises the value of each observation
 For MDPs� an optimal policy has the
property that all state values are maximal


In the framework we propose� we avoid this problem by adopting an alter�
native ��rst principles de�nition of optimality for observation�based policies
�refer to Equation ��		
 Using this de�nition� the criterion of optimality used
in �Singh et al
� ����	 becomes merely a property of optimal policies for MDPs
� one that just happens not to generalise to NMDPs


The other important di�erence is that Singh et al
 limited their formal
analysis and results to ergodic systems and gain�optimal average reward RL

The framework proposed here extends to non�ergodic as well as to discounted
reward systems� leading to a more direct understanding of the full implications
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of applying standard discounted reward RL methods like ��step Q�learning to
the sort of non�Markov environments that are commonly encountered


The POMDP theoretical framework was originally formulated in the con�
text of a set of operations research �OR	 problems� the wider RL literature
re�ects an important line of research that is bringing OR methods to bear
on the general problem of discovering e�ective policies in partially observable
stochastic domains �Kaelbling� Littman� � Cassandra� ����	
 In contrast to
�direct methods of RL for POMDPs� however� these methods generally rely
on state�estimation techniques that attempt to disambiguate observations into
true Markov states


Although an analysis of direct RL for POMDPs as presented in this paper
might prima facie seem to have little bearing on such approaches� this is not nec�
essarily the case
 We consider that even if we are using active state�estimation
techniques in a POMDP setting� the problem will remain non�Markov to some
degree or another while the state�estimation is imperfect� and� in general� the
problem of state�disambiguation has been shown to be di�cult
 By way of indi�
cation� even state�of�the�art techniques are still practically limited to problems
of modest size �POMDPs in the order of ���� states and dozens of observations
�Littman� Cassandra� � Kaelbling� ����	
	

� Future Work

A move from discounted to undiscounted rewards naturally suggests a closer
look at average reward RL methods for equilibrium properties in non�Markov
environments
 Some steps in this direction have already been made in �Singh
et al
� ����	 and �Jaakkola� Singh� � Jordan� ����	� the results presented above
add weight to arguments that this is indeed the right direction to be heading


In moving to average reward criteria for NMDPs� an interesting set of open
questions remain for future investigation
 In particular� Theorem � may point to
subtle problems translating �transient reward optimality metrics �Mahadevan�
����	 from MDPs to NMDPs
 Investigations are continuing in this direction


	 Conclusions

A game theoretic approach has proven to be an aid to understanding the the�
oretical implications of applying standard discounted reward RL methods to
non�Markov environments
 Complementary to earlier work� the framework we
present extends to non�ergodic as well as discounted reward NMDPs� facilitat�
ing a more direct understanding of the issues involved


Our analysis starts with the simple observation that having a global maxi�
mum in policy space which is also a learning equilibrium is a necessary condition
for convergence to an optimal policy under a given learning method
 We dis�
cover that for an important general class of non�Markov domains� undiscounted�
actual return methods have signi�cant theoretical advantages over discounted
returns and TD methods of credit�assignment
 This potentially has major im�
plications for RL as it is currently practiced
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A Set Integration Over Total Paths

In the main part of this paper� we use the notationZ
��A

R��	 dP ���	

where A is a set of traces or total paths and R��	 is a total �discounted	 reward
function mapping a trace � into the reals
 The slightly non�standard subscript
on the integral sign is used to emphasize that we are integrating over a set

To put this into the more conventional notation for the Lebesgue integral of
measure theory� we would simply writeZ

A
R��	 dP ���	

The next section brie�y recounts the essential points relating to the de�ni�
tion of the Lebesgue integral


A�� Lebesgue integrals and measure theory

The Lebesgue integral is de�ned for measurable sets� i
e
 point sets of a space
that together form an algebraic structure called a ���eld �or Borel �eld� or
��algebra	� for which there is a corresponding de�ned measure


A���� Fields and ���elds

In general� a class F of point sets of a space ! is a �eld if

�
 The whole space ! is an element of F 


�
 The complement !�A of any element of F is also an element of F 


�
 Finite unions of elements of F are also elements of F 


If we change the last condition from ��nite to ��nite and countably in�nite�
the �eld is also a ���eld


A���� Measures and measurable sets

A measure is a real� non�negative set function ��A	 for which

�
 the domain of de�nition is a ���eld of sets

�
 for any �nite or countably in�nite number of disjoint sets An� the measure
of their union is the sum of their measures i
e
 ��

S
An	 �

P
��An	


The sets belonging to the domain of de�nition are called measurable sets


A���� Measure spaces

A measure space� denoted by the triple �!�F � �	� is formed by a space !� a
���eld F of measurable sets in this space� and a measure � de�ned on F 
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A���� Probability measures and probability spaces� Expectations as

Lebesgue integrals

If a measure P �A	 additionally satis�es the Kolmogorov normalisation condition
P �!	 � �� then P �A	 is a probability measure� and �!�F � P 	 is a probability
space


In such a case� a random variable �or variate	 x��	 is an assignment of a
real number to each sample point � �also called an elementary event	 in the
sample space !
 The expectation� or mean value� E�x	 of the variate x is given
by the integral

E�x	 �

Z
�
x��	 dP ��	

when the integral exists
 Additionally� the conditional expectation of the variate
x is given by

E�xjA	 �
Z
A
x��	 dP ��	

where A is a measurable subset of !
 A measurable subset of ! is also called a
random event


There are conditions for the existence of the Lebesgue integral for functions
of mixed sign
 For an arbitrary sign function f � ! � IR we set f���	 � f��	
if f��	 � � and f���	 � � otherwise
 We also set f���	 � �f��	 if f��	 � �
and f���	 � � otherwise
 Then� the integralZ

A
f��	 d���	 �

Z
A
f���	 d���	 �

Z
A
f���	 d���	

exists if one or both parts of the RHS are �nite
 If both parts are �nite� f
is said to be ���	integrable
 If only one part is �nite� then f is said to be
quasi�integrable


A�� De�ning a Probability Space over a space of Total Paths

In our treatment in the main part of this paper� we are concerned with the
point sets of the kind Ts and Ts from a space of traces T 
 We therefore wish to
develop a ���eld of measurable sets that have sets like these as members


In de�ning a probability space it is common to start with a class of point
sets that in themselves may not constitute a ���eld� or even a �eld� and enlarge
this to become a ���eld with a corresponding probability measure
 In this case�
we start with the class H of what we call the history sets


A history set is a set of traces that start with a common �nite length history
h � �hs�� a�i� hs�� a�i� � � � � hsk� aki	
 The entire space T is itself a history set since
we allow the null history � to de�ne a history set


As mentioned earlier in the paper� there are countably many histories h � H
if S�A is �nite� and therefore� there are also countably many history sets in the
class H
 Further� for each history h � H we can calculate a �nite probability
p�h� �	 with respect to a policy �� and this is the value of the probability
measure P � we would like to associate with the corresponding history set in H

To extend H to a �eld H�� we add the complements of the history sets� and the
�nite unions of these sets
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We note that if we know the probabilities associated with each history set�
we can straightforwardly deduce the probability associated with each set inH�


	

We can extend this �eldH� to a ���eld by generating its Borel closure ��H�	

Further� by the extension theorem �see Billingsley �����		 there exists a unique
probability measure P � for ��H�	 consistent with the probabilities associated
with the sets in H�


Therefore� the probability space �T� ��H�	� P
�	 is well�de�ned� and since

we can consider the return R��	 associated with a trace � as a variate� the
Lebesgue integral Z

A
R��	 dP ���	

is also well�de�ned for any set A in ��H�	

Finally we show ��H�	 contains the set Ts �and therefore Ts	 for an arbitrary

observation s as follows�
First we note that what we might term the ��rst visit to s on step k sets are

in both H� and ��H�	
 Such a set is the union of all history sets corresponding
to histories of length k that have a �rst visit to observation s on step k
 For
any �nite length k there can only be a �nite number of such history sets �since
we assume the observation�action space S�A is �nite	� so these sets are in H��
and therefore also in ��H�	
 We denote such a set Tsk 
 The set Ts is the result
of the countably in�nite union

Ts �
��
k
�

Tsk

and is therefore in ��H�	
 And since Ts is in ��H�	� then so must its complement
Ts


�Since any two history sets have the property that a� they are disjoint or b� one is a subset
of the other� then a �nite union of history sets and their complements can be represented by
a Venn diagram where the resulting regions can be directly labeled in terms of the component
sets� i�e� there are no �overlapping� regions�
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