
Guarded Page Tables on the MIPS R����

Jochen Liedtke

GMD � German National Research
Center for Information Technology

GMD SET�RS� Schlo� Birlinghoven�
����� Sankt Augustin� Germany

email� jochen�liedtke	gmd�de

Kevin Elphinstone

School of Computer Science and Engineering
The University of New South Wales

Sydney
��
� NSW� Australia

email� kevine	vast�unsw�edu�au

UNSW�CSE�TR����� � �� NOVEMBER ����

Communicated by Jayasooriah

Abstract

The introduction of ��bit microprocessors has increased demands placed
on virtual memory systems� The availability of large address spaces has led
to a �urry of new applications and operating systems that further stress
virtual memory systems� Consequently� much interest has recently focussed
on translation lookaside bu�er �TLB� performance and page table e�ciency�
Guarded Page Tables are a mechanism for overcoming some of the problems
associated with conventional page tables�

Guarded Page Tables are tree structured like conventional page tables�
Also like conventional pages tables� they have the advantages of supporting
hierarchical operations and sharing of sub�trees� Unlike conventional page
tables� guarded page tables implement huge sparsely occupied address spaces
e�ciently�

We describe guarded page tables and the associated parsing algorithm�
R��� processor dependent micro�optimisation is undertaken and presented�
R��� TLB re�ll is discussed in detail� including a comparison of guarded
page tables with more convention page tables� A software second level TLB
is introduced and analysed as a way of increasing guarded page table per�
formance�

� Rationale

The advent of generally available ��bit machines like the R������ and
DEC Alpha��� has led to researchers proposing new ways to use virtual
memory that previously was restricted by virtual address space size� Single
address space systems such as Angel��
�� Mungi���� Nemisis��� and Opal�
�
and persistent operating systems such as Grasshopper ��� resulted from wide
address space availability�

These systems� other proposals���� and large UNIX style address spaces
have increased VM demands in comparison to the traditional UNIX virtual
memory model modern processors are designed to support� This has gener�
ated much interest in how to best support ��bit address spaces���� ��� ��
��� ���� This technical report explores the implementation of one proposed
mechanism�Guarded Page Tables�

This work was originated as part of the Mungi ��� project at UNSW�
Since it makes heavy use of a sparsely�occupied address space� the VM
system must be targeted to support sparsity e�ciently� We selected the
Guarded Page Table mechanism �see section
� which combines the advan�
tages of multi�level and inverted page tables�

The critical point was whether the GPT mechanism could be imple�
mented e�ciently on the R��� processor� Therefore� we developed R����
speci�c GPT parsing algorithms �section �� and complemented them with a
second�level software TLB �section ��� How to best combine the elements�
depends on both the concrete memory system �cache and memory timing�
and the TLB�miss characteristics of the OS and applications� Therefore� we
include a detailed performance discussion and make the software available
as a tool box�
The purpose of this technical report is threefold�

�� It o�ers a tool box for experimenting with Guarded Page Tables on
the R��� processor�

� It can be used as a guide for implementing Guarded Page Tables on
other processors that support software�controlled TLBs�

�� Independent of the concrete problem� section � can serve as an example
of architecture�dependent micro optimisation� An interesting result
is that about
�� of the optimisation process � though architecture�
dependent � can be made in terms of a high�level language and are
based on algorithmic and data structure optimisations� The example
shows that substantial performance gains �factors of
�� or more� are
achievable by combining this method with speci�c assembler�level op�
timisations where general automatic code optimisation techniques do
not help�

�

� Guarded Page Tables

Guarded Page Tables have been described in ��� ���� They combine the ad�
vantages of tree�structured multi�level page tables and hashed page tables�
unlimited sparsity �
 page table entries per mapped page are always su��
cient�� tree structure �subtree sharing� hierarchical operations� and multiple
page sizes� These properties are described in more detail in ��� ���� Here we
give only a short sketch of the basic mechanism�

The main problem with multilevel page tables is sparsity� we need huge
amounts of page table entries for non�mapped pages� In the following exam�
ple� the mapping of page �� �� �� �� in a sparsely occupied address space is
shown� �For demonstration purposes we use very small addresses and small
page tables� Nil pointers are marked by ����� The second� and third�level
page table are extremely sparse page tables� each contains one single non�nil
entry� Consequently� there is only one valid path through these two tables�
when the leftmost two bits are ����� the subsequent address bits must be
��� ���� all other addresses lead to page faults� As shown in Figure ��
we can omit the two page tables and skip the associated translation steps�

v � ���� �� ��xxx

Q
QQs
� � �

�
� � �

Q
QQs

data page

�
���

�

�

�� �� �

Figure �� Guarded Page Tables�

Whenever entry � of the top�level page table is reached� we have to check
whether ��� ��� is a pre�x of the remaining address� If so� this pre�x can be
stripped o�� and the translation process can directly continue at the level�
page table�

Therefore� each entry is augmented with a bit string g of variable length�
which is referred to as a guard� This is the key idea of guarded page tables�

The translation process works as follows� �rst� a page table entry is
selected by the highest part of the virtual address upon each transformation
step in the same way as in the conventional multi�level page table method�
The selected entry however contains not only a pointer �and perhaps an
access attribute� but also the guard g� If g is a pre�x of the remaining
virtual address� the translation process either continues with the remaining
post�x or terminates with the post�x as page o�set� As an example� Figure

presents the transformation of
� address bits by � page tables� Note that

v � � j ������� ������������ � �

�
���

q� g ��������

v� � �� j ���� ������ �� �� �� ��

B
B
BN

q� g �����

v�� � � j � ���� � �

B
BBN

q� g ��

o�set � ���� data page

Figure
� Guarded Page Table Tree

the length of the guards may vary from entry to entry� Furthermore� page
table sizes can be mixed� all powers of
 are admissible� The same holds
for data pages� i�e�� a mixture of
�� �� � � ���
�� � � �entry page tables and
pages can be used�

Guarded page tables contain conventional tables as a special case� if a
guard has length zero� a translation step works exactly like in the conven�
tional mechanism� However in all cases conventionally requiring a table with
only one valid entry� a guard can be used instead� It can even replace a se�
quence of such �single�entry� page tables� This saves both memory capacity
and transformation steps� i�e�� guards act as a shortcut�

� GPT Parser

At �rst� we describe a GPT translation step in general� independent of
concrete hardware �see Figure ��� Here� v is the part of the original virtual
address that is still subject to translation� and the pair �p� s� determines the
page table �p� physical address� s� log� of table size� that has to be used
for the current translation step� The result of this step is either a new page
table �p�� s�� and a post�x v� of v� or the data page �p�� s�� and o�set v��

The translations step starts by extracting u� the uppermost s bits of v�
u is used for indexing the page table� The addressed entry speci�es a guard
g of variable size� i�e� possibly empty� which is checked against the remaining
bits of the virtual address �w � g�� When equal� the remaining v� is either
used for the next level translation� or as the o�set part� This operates as
a shortcut� since not only u� but both u and w are stripped o� the virtual
address in one step� no table is necessary to decode w�

Note that the width of u� �determined by the page table size�� may vary
from step to step and that the size of w may di�er from entry to entry�

�

p� s� � v� u w v�

��
p�� s� g

�

�
��
��
g � w�

�
�

Figure �� Guarded Translation Step

In the following� we use jxj to denote the bit length of a �exible bit string
x� For improved clarity� we always use x� for an item that belongs to next
translation step �i�e�� refers to the next lower level page table� and x for an
item belonging to the current level�

Assuming at �rst �
�byte page table entries �later this is reduced to ��
bytes�� one GPT translation step is�

u �� v � �jvj � s� �
g �� �p� �
u��guard �

if g � ��v � �jvj � s� jgj�� AND �
jgj � ��

then v� �� v AND
jvj�s�jgj � � �
s� �� �p � �
u��size� �
p� �� �p� �
u��table� �

else page fault
� �

This algorithm cannot be implemented as is!� because the R��� processor
does not support variable length bit strings as a basic data type� Therefore�
we have to hold jvj and jgj in additional variables vlen and glen�

u �� v � �vlen � s� �
g �� �p� �
u��guard �
glen �� �p � �
u��guard len �
if g � �v � �vlen � s � glen�� AND �
glen � ��

then v�len �� vlen � s � glen �

v� �� v AND
v
�

len � � �
s� �� �p � �
u��size� �
p� �� �p� �
u��table� �

else page fault
� �

After eliminating common subexpressions� this algorithm requires �� arith�
metic and load operations�

��� From �� To �� Operations

Note that although v is an input variable of the translation process� the
length jvj is a constant which is determined by the depth of the table in the
GPT tree� Furthermore� the table size s and the guard length jgj are �xed
per page table entry� So the values

s� � vlen � s

s� � vlen � s � glen

gmask �
glen � �

meaning

v � u g v�

s�

z �� �

� �z �

s�

v� � u� g�

v��

s
�

�

z �� �

� �z �

s
�

�

can be computed when constructing a GPT entry and can be stored per
entry� Note that we have to store the present level�s s� and the next level�s
s�� in a page table entry�

guard s� s�

� table�

Fortunately� s�� can be as easily determined as s�� as s�� � v�len � s� �
vlen � s � glen � s� � s� � s�� The improved algorithm

u �� v � s� �
g �� �p� �
u��guard �
gmask �� �p� �
u��gmask �
s� �� �p� �
u��s� �
if g � �v � s�� AND gmask

then v� �� v AND
s� � � �
s�� �� �p � �
u��s�� �
p� �� �p� �
u��table� �

else page fault
� �

requires only � arithmetic�load operations and no longer needs the variable
vlen�

The next optimisation is based on the idea of adjusting the guard bits
in the GPT entry variable and extending it by the number u of this entry

� u g �

�

so that XORing v with this �eld removes u and g in one step and avoids one
shift and one add operation� More precisely� we store the extended guard

G � ��u� jgj� � g� � �jvj � s � jgj�

in each page table entry instead of the guard g� The resulting algorithm

u �� v � s� �
G �� �p � �
u��extended guard �
s� �� �p� �
u��s� �
if �v XOR G� � s� � �

then v� �� v XOR G �
s�� �� �p � �
u��s�� �
p� �� �p� �
u��table �

else page fault
� �

requires only �� arithmetic�load operations and avoids the per entry �eld
gmask�

Up to this point� we have looked at only one translation step� For a
complete translation� a loop is required� To approximate an until�loop� we
�rst move the then�part statements before the if statement� This is possible
because these three statements do not destroy data required later�

u �� v � s� �
G �� �p � �
u��extended guard �
s�� �� �p� �
u��s�� �
s� �� �p� �
u��s� �
p� �� �p � �
u��table �
v� �� v XOR G �
if v� � s� �� �

then page fault
� �

Unifying p�� v� and s�� with p� v and s�� we get a very simple loop�

�

do

u �� v � s� �
G �� �p � �
u��extended guard �
s� �� �p� �
u��s�� �
s� �� �p� �
u��s� �
p �� �p� �
u��table �
v �� v XOR G �

until v � s� �� � od �

The loop terminates when a page fault� i�e� a guard mismatch� is detected� Of
course� the translation process must also terminate in the positive case� i�e�
if the translation �nishes without page fault� Adding a further termination
condition to the loop would increase our costs per translation step�

A better solution is to introduce a pseudo mismatch at leaf page table
entries� We need an extended guard G� which includes the matching guard g�
which in all cases leads to a mismatch� i�e� �v XOR G� � s� �� �� Now recall
that the extended guard of the uth entry of a page table always contains
the index u� Therefore� we can achieve a pseudo mismatch by using an
�incorrect� u for building the extended guard� G � ��"u � jgj� � g� � s�
with "u �� u always leads to a mismatch�

v � � u g v�

G � � �u g �

�vXORG�� s� � � �� � �

The loop terminates either due to detecting a page fault or a leaf entry� In
the case of

�v � s�� � ��� jgj� � � �

we have a pseudo mismatch� i�e� a successful translation� For the mentioned
check� we need a �eld holding the value �� jgj� In leaf entries� the s����eld
is free and can be used for this purpose� Then� �v � s�� � s�� di�erentiates
between true mismatch and pseudo mismatch� if the current entry is a leaf
entry� We have to check� whether a mismatch at an higher level entry �which
does not hold � � jgj in its s����eld� is also classi�ed as a true mismatch�
Fortunately� �v � s�� � s�� evaluates always to non zero in this case� since
s�� is always less than s��

v � � u g v�

s�

z �� �

v� � � u� g�

v��

� �z �

s
�

�

�

Concluding� the loop can be complemented by

if �v � s�� � s� � �
then page frame addr �� p �

page frame size �� s�
else page fault

� �

so that in the case of successful termination� s� determines the size and p
the physical address of the page�

��� R���� Implementation

Before presenting an actual implementation of GPT parsing� a brief R���
introduction is necessary� The R��� is a member of the MIPS R��� fam�
ily of processors which feature ��bit integer and �oating point operations�
They have thirty�two general purpose ��bit registers of which two are spe�
cial� Register r� ignores writes and always returns zero when read� Register
r�� is used to store the return address of Jump And Link �JAL� instructions�

The R��� has a primary ��KB instruction cache and a ��KB data cache
on chip� Both caches are two�way set associative� use a �
 byte line size� and
FIFO replacement within a set� Secondary cache is external and optional�

A four ���bit� word write bu�er is used to bu�er writes to external
memory arising from cache write�back� cache write�through� and un�cached
stores� This enables the processor to proceed in parallel while external
memory is updated�

The R��� has a �ve stage pipeline which has a one cycle latency for com�
putational instructions� Computational instructions perform arithmetic�
logical� and shifting operations using register operands or a register operand
and a ���bit signed immediate�

Load instructions do not allow the instruction immediately following�
termed the load delay slot� to use the result of the load� thus giving a load
latency of two cycles� Scheduling of instructions in the delay slot is desirable
for increased throughput� though not strictly required� as the pipeline will
slip one cycle in the case of a dependent instruction in the delay slot�

All jump and branch instructions have a latency of
 cycles� The in�
struction in the delay slot following the jump is executed while the target of
the jump is being fetched� The exception being if a conditional branch likely
instruction is not taken� in which case the delay slot instruction is nulli�ed�

��� From �� To � Instructions

For the R��� implementation� four ��bit registers are needed� We name
them r�� r
� v and P� A �rst compilation of the algorithm leads to �� in�

�

structions per translation step�

do�

shr r��v�r� u �� v � s�
shl r��� �
u
add P�r� p � �
u
ld r���P��ext guard

ld r���P��s�

xor v�r� v �� v XOR G
ld r���P��s�

ld P��P��table

shr r��v�r� v � s�
bz r��do

shl r��r� �v � s�� � s��
bnz r��page fault

Note that all load delay slots in this �and the following� versions are �lled
with useful operations� i�e� do not cost additional cycles� By using appro�
priate coding�� the same holds for the branch delay slot�

Further optimising� we use the fact that the R���!s minimal page size
is K and the range of s�� and s� is always �� � ���� Therefore
� � � �
 bits
are su�cient for s�� and s� and since the �
 least signi�cant bits of G are
never used� we combine these three �elds in one ��bit word�

G s�

�
s�

�� � �

The second ��bit word is used for pointing to the next level table �or data
page�� By this� we avoid load instructions and reduce the page table entry
size to �� bytes� The resulting code

�Use the bzl instruction which nulli�es the immediately following instruction if the
branch is not taken�

shr r��v�r�

do� shl r���

� � �

bzl r��do

shr r��v�r�

�

do� shr r��v�r� u �� v � s�
shl r��	 ��u
add P�r� p � ��u
ld r���P� r� �� �G� s��� s��
ld p��P��table

xor� v�r� v �� v XOR G
shr r��r��
 r� �� s��
shr r��v�r� v � s�
bz r��do

requires only � instructions per translation step�
The instruction shl r��	! is somehow annoying� because it is only used

for setting the lowest bits to zero� Without this requirement� we could have
stored s��� instead of s�� in the s����elds so that the previous shr instruction
already includes the multiplication with ��� Indeed� it is not necessary that
the lowest bits are zero� It is su�cient that the lowest bits of p after the
addition have a �xed value which does not depend on the value of the actual
v� This can be achieved by

or p�r�

instead of adding� provided that the lowest bits of p are always �����
Therefore� we store p � �� instead of p in the table��elds and always use
P��� instead of P for addressing a table or table entry�

do� shr r��v�r� r� �� v � �s� � �
or P�r� p � ��u � ��
ld r���P���� r� �� �G� s�� � � s��
ld P��P�����table

xor v�r� v �� v XOR G
shr r��r��
 r� �� s��
shr r��v�r� v � s�
bz r��do

The �nal code requires only � instructions per translation step�

��� Timing

Since no instruction interlocks are e�ective in the algorithm� i�e� since all
delay slots are �lled with useful instructions� for an n�step guarded page
table walk� the single�issue R��� processor needs

�Note that although �xor v�r�� destroys the 	
 lowest bits of v �the 	
 lowest bits of
r� contain s�

� and s��� it does not a�ect the algorithm� since these bits certainly belong
to the o�set part of the virtual address and are not required for translation

��

�n � � � �� � p�n cycles�

where p is the penalty of accessing a page table entry which is not in the
primary data cache� If the table walking code is not in the instruction cache�
another
p penalty cycles may occur�

Since� within one address space� the R��� supports ��bit addresses
and the smallest page is K� no more than ����
�� � � translation steps
should be necessary ��� per translation� Recall that the required steps can
vary from page to page� Less than � steps are required in very sparse or in
contiguous regions� It seems reasonable to expect � to � steps� depending
on OS strategy and type of application� Assuming cycles penalty for a
cache miss� this corresponds to costs of �
 � � ���� �� steps� up to ��� � � ���
�� steps� cycles per GPT walk�

��	 Adding Access Rights

So far� the algorithms presented are not sensitive to page�level access rights�
Typical access rights are write permit! and user permit!� Without write
permit!� a page is mapped read only� without user permit!� it can only
be accessed by the kernel� For including access rights into the guarded
translation mechanism� we developed di�erent scenarios�

Stable page access rights� We assume that access rights may di�er
from page to page but are changed infrequently� typically upon initial page
mapping and copy on write� i�e� once or twice in the life of a mapped page�

Holding access rights only in leaf entries and checking them at the end
of each table walk is su�cient in this case� This solution is very cheap
�
 cycles� no additional per�step cycles�� However� short term �transient�
changing access rights of large regions �read�write � read only� is not pos�
sible� although short term locking �present � not present � present� is
possible�

Cheap space If space is cheap enough and there are only few di�erent
access types� we can use one GPT tree per access type� Assume that read

and write are the only access types and that read only and read�write are
the possible access rights� Then we use two GPT trees� any read access is
translated by the read tree� any write access by the write tree� The read
tree holds all present pages� i�e� read only and read�write mapped ones� and
the write tree only the read�write mapped pages� If ��# of the accessible
pages are mapped read�write� we need about ��� times as much space as in
the case of a single GPT� i�e� � GPT entries per mapped page instead of
�
The translation process is not explicitly slowed down by access right checks�

��

but the working set used for GPT parsing increases� Dependent on OS and
application characteristics� this may or may not lead to a higher cache miss
rate�

In many systems� we have to di�erentiate between more than two access
types and to deal with more access right values� Common access types are�

user read
user write

kernel read
kernel write

Correspondingly� the access right values are

user�kernel read only
user�kernel read�write
kernel only read only
kernel only read�write

In this case� we need GPT trees� Provided that ��# of the pages are
mapped read�write and �# kernel only accessible� we need about
�� times
as much space as for a single GPT�

Cheap cycles If execution cycles are cheap enough to permit one
additional cycle per GPT translation step� we can do access right
checking per translation step� For this purpose� we slightly restrict
the address space size and use the uppermost bits of the guard
word G for the access right� In the above example� we need
 bits�
bit �� write deny � � read only

� � read�write permitted

bit �
 user deny � � kernel only accessible
� � user�kernel accessible

Correspondingly� the actual access type is held in an access register a�
bit �� write � � write access

� � read access

bit �
 user � � user access
� � kernel access

bit �� � �
��� � � reserved� all �!s

bit � � �
Per translation step� the guard word G is anded by the access register a�

�

do� shr r��v�r� r� �� v � �s� � �
or P�r� p � ��u � ��
ld r���P���� r� �� �G� s�� � � s��
ld P��P�����table

and r��a

xor v�r� v �� v XOR G
shr r��r��
 r� �� s��
shr r��v�r� v � s�
bz r��do

Any access right violation now leads to pseudo guard mismatch� ter�
minates the translation process and can further analysed in the page fault
branch� The additional costs are � cycle per translation step�

� R���� Memory Management

An introduction to R��� memory management is needed before presenting
further details of GPT implementation� The R��� architecture has a ��bit
virtual address space� however the R��� only implements a �TB ���bit�
user mode virtual address space together with a � GB physical address
space� It uses a joint translation look�aside bu�er �JTLB� to translate in�
struction and data virtual memory references to physical memory references�

The JTLB is a � entry fully associative memory� Each entry maps an
even�odd pair of virtual pages to their corresponding physical addresses�
giving a potential of �� mapped virtual pages� Page size is per entry con�g�
urable from KB to ��MB in multiples of �

An � bit address space identi�er �ASID� is associated with each entry
in the JTLB� The ASID is used together with the virtual address when
checking for a match� thus allowing multiple address spaces in the JTLB
simultaneously� which reduces the need for JTLB �ushing during context
switching�

The R��� also contains a
 entry instruction TLB �ITLB� and a
entry data TLB �DTLB�� with each entry mapping a KB page� ITLB and
DTLB misses are automatically re�lled from the JTLB making operation of
the ITLB and DTLB transparent to users�

The handling of JTLB misses is via a TLB Re�ll exception and a software
routine to load a new entry into the JTLB� Other TLB related exceptions are
handled by the processor general exception mechanism� alleviating the TLB
re�ll routine from determining the exception involved� and thus allowing
it to be optimised solely for re�ll� Re�ll software can overwrite selected
TLB entries or use a hardware provided mechanism to overwrite a randomly
selected entry�

��

��� TLB Re
ll in Detail

TLB re�ll has been measured contributing up to �# of total execution
time��� in some applications� While such high contributions are not normal�
it is none the less important to minimise TLB re�ll costs as much as possible�

Before presenting or analysing any TLB re�ll routines� the basic cost of
taking a null exception �Cexcpt� needs to be determined� This is the cost
of taking an exception that simply performs an exception return �eret�
instruction� An exception generating instruction causes execution to begin�
at the appropriate exception vector� when it reaches the �fth stage of the
pipeline���� cost cycles� Assuming eret has a delay slot similar to a branch
or jump� it costs
 cycles� Thus Cexcpt � � cycles�

Re�ll�Virtual Array To serve as a reference� the best case TLB re�ll is
presented� However before presentation� four coprocessor � �CP�� registers
need introducing�

MIPS designers provide limited hardware support to speed up the soft�
ware re�ll process via the Context or XContext registers� The Context reg�
ister is a �
 bit version of the � bit XContext register� which is described
below�

The XContext register illustrated in Figure � contains an operating sys�
tem set�able Page Table Entry Base �PTEBase� �eld which is used to store
the base of a page table array� Upon a TLB miss� the BadVPN
 �eld is set
to the virtual page�pair number that misses� For K pages� the register can
simply be used as the address of a page table entry pair to be loaded into the
TLB� The format of page table entries are the same as EntryLo registers�

0R BadVPN2PTEBase
2731 2 4

Figure � XContext Register Format

EntryLo� and EntryLo� are identical registers used for reading and writ�
ing the physical page numbers into and out of the TLB� including TLB
misses� EntryLo contains the physical frame number �PFN�� cache coherency
attributes �C�� dirty bit �D�� valid bit �V� and global bit �G� as illustrated
in Figure ��
The best case TLB re�ll routine is�

�

GVDC
111324

PFN0
34

Figure �� EntryLo� and EntryLo� Register Format

dmfc� k�� XContext

nop

ld k���k��

ld k���k���

dmtc� k��EntryLo�

dmtc� k��EntryLo�

nop

tlbwr � � cycle slip���
Assuming the ideal situation� no cache misses and no second level TLB
misses on the virtual array� the timing of the routine is � cycles� Hence the
cost of the best case TLB re�ll �Cbest� is�

Cbest � Cexcpt � �

� ��

Re�ll�Skeleton Before presenting more complicated re�ll routines� the
following TLB re�ll skeleton is factored out as it is common in all routines
presented later�

The skeleton loads the miss address from a CP� register and frees an
extra register� After page table entries are loaded it� loads the page entries
into EntryLo registers� writes the TLB� and restores the freed register�

dmfc� k��CP� reg

lui k���x���

sd at��k���save offset
���

dmtc� k��EntryLo�

dmtc� k��EntryLo�

lui k���x���

tlbwr � � cycle slip

ld at��k���save offset

The timing of the skeleton�Cskel� is � cycles� If extra registers are needed
for page table lookup� it costs
 cycles per register �Cxreg��

��

Re�ll�GPT Firstly� GPT translation is modi�ed slightly� Instead of
translation terminating with P pointing to the physical address� it �nishes
with P pointing to and even�odd pair of page table entries suitable for direct
loading into EntryLo�

Using the skeleton above� with BadVAddr as the CP� reg �which contains
the address at which the TLB miss occured�� the GPT re�ll routine is�

���

ld P��r���gpt base
���

� cycle GPT loop
���

shr r��r�

bnz r��page fault

ld r���P�

ld r���P��

The timing of GPT re�ll �Cgpt�� where n is the number of levels traversed
in the page table� is�

Cgpt � Cexcpt � Cskel � Cxreg � � � �n

� � � � �
 � � � �n

�

 � �n

For the � level lookup Cgpt� � � cycles� for a � level lookup Cgpt	 � ��
cycles�

Cache E�ects So far it has been assumed that all data and instructions
are in cache� Instruction cache misses will have similar e�ects on all re�ll
routines with the penalty being proportional to the length of the routine�
However� data cache misses have the potential to show large di�erences
between any two re�ll routines as the amount of data accessed can vary
markedly�

Given a data cache penalty of � cycles for a single double�word� plus

cycles for each extra double word� up to �
 cycles for an entire cache line� �
data access can be expensive�

�These numbers represent the pipeline cycles wasted while running minimum external
bus cycles to a secondary cache The actual miss penalty due to a cache re�ll my be lower
due to parallelism between re�ll and instruction execution� or much higher if no second
level cache exists

��

The best case routine assuming cache misses is Cbest�m � Cbest � �� For
the GPT routine Cgpt�m � Cgpt � ��n � �� � �� Table � shows the cost for
the re�ll routines presented so far� assuming all data cache hits and then
assuming all data cache misses�

Routine Cache Hit Cache Miss

Cbest ��
�
Cgpt� � �
Cgpt	 �� ��

Table �� TLB re�ll routine cost �cycles��

Re�ll Comparison Direct comparison between Cbest and Cgpt is fairly
irrelevant as it does not take into account the frequency of TLB misses� In
the extreme� it does not matter how long re�ll takes if the TLB never misses�
To facilitate a more revealing comparison� we use the metric of percentage
of cycles due to TLB re�ll �#tlb� compared to total cycles� which we aim to
minimize� Distinguishing cycles due to TLB re�ll �Ctlb�� and grouping other
cycles �Cother� not related to TLB re�ll�

#tlb �
Ctlb

Ctlb � Cother

� ���

Given a miss rate per Cother �rmiss� and TLB re�ll cost �Crefill��

Ctlb � rmissCotherCrefill

#tlb �
rmissCotherCrefill

rmissCotherCrefill � Cother

� ���

�
rmissCrefill

rmissCrefill � �
� ���

Figure � illustrates the TLB overhead associated with the six routines tab�
ulated above� for various miss rates�

It can be seen that with miss rates less than ������� it is largely irrele�
vant which routine is chosen for TLB re�ll� as re�ll!s contribution to overall
runtime is negligible�

In the case of high miss rates� for example ����� TLB overheads are
signi�cantly di�erent� The best case routine overhead is expected to vary
between ��# and ��#� however GPT overhead varies between �
and ��#�

��

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1

T
LB

 o
ve

rh
ea

d
%

TLB Miss Rate

best
best.m

gpt3
gpt7

gpt3.m
gpt7.m

Figure �� TLB overhead for TLB re�ll routines

Or to look at it di�erently� given a tolerable overhead of ��#� the best case
routine can tolerate miss rates
��� times higher than GPT re�ll�

Thus it appears GPTs are unsuitable for TLB re�ll where it is expected
that TLB miss rates may be high� especially if cache miss costs are also
high�

� The Second Level TLB

Ideally� a robust mechanism is needed that supports address space sparsity�
fast lookup� hierarchical operations� and graceful performance degradation
when faced with increasing TLB miss rates� A second level TLB in combi�
nation with GPTs should be the answer� The second level TLB �TLB
� is
a software cache of page table entries used to re�ll the hardware TLB�

	�� TLB� Design Issues

����� Tagged or Per�Process

The �rst design decision to be made is whether TLB
 should be a per�process
cache or a global� address space tagged� cache� A per�process cache slows the
context switch time as the cache base address needs to be changed� though
this may be insigni�cant when compared to other switching overheads�

A single tagged cache is more space e�cient� A per�process cache takes n
times the space for n processes for the same potential per�process cache ca�
pacity� A single tagged cache will adapt to the workload� caching only active
TLB entries� whereas a per�process cache may itself be entirely inactive�

��

A single tagged cache is small enough to use unmapped physical memory�
A per�process cache is more suited to implementation in virtual memory as
the number of processes is unknown and potentially large� Virtual memory
implementation requires handling of complex nested TLB misses which are
avoided in the physical implementation�

Flushing all cache entries associated with a physical frame is simpler and
faster with a single tagged cache� than with n per�process caches of similar
size�

For these reasons� we choose to use a single tagged cache for TLB
�

����� Size

Performance dictates the size of TLB
� While a large TLB
 will reduce
TLB
 miss rate� the following factors make it desirable to keep TLB
 small�
TLB
 uses unmapped physical memory which is a limited resource� though
it is expected that TLB
 will be small enough to e�ectively ignore this
limitation�

TLB
 �ushing becomes more expensive as size increases� Flushing can
be on a per physical page frame basis� or on a per address space tag basis�
These events occur� for example� on page frame swap�out and address space
destruction respectively� These are expected to be infrequent operations
when compared to TLB
 lookup� though they should be kept in mind when
sizing TLB
�

The R��� has ���bit immediate operands� This gives a ���bit mask
operation or a load operation from a �KB address space� in a single in�
struction� Larger masks or load o�sets require multiple instructions� This
needs to be kept in mind as TLB
 lookup is time critical� The performance
gained by having a large cache may be o�set by the extra time taken to
access it�

����� Associativity

High associativity is desirable in a cache to decrease the likelihood of con�ict
misses� In a hardware cache implementation� n associativity requires n com�
parisons in parallel to determine a hit� In software� n associativity requires
n comparisons in sequence� Sequential comparisons need to be minimised as
TLB
 lookup is time critical� The tradeo� between increased lookup time
due to sequential comparisons and decreased miss rate due to associativity
needs to be carefully balanced�

	�� A Direct�Mapped TLB�

Before describing a direct mapped TLB
� another CP� register needs intro�
ducing� The EntryHi register is used to set the hardware lookup tag in a
TLB entry when adding a new TLB entry or probing for an existing one�

��

It contains a virtual page number of a page�pair �VPN
� and an associated
address space identi�er �ASID� as illustrated in Figure �� EntryHi is set
on TLB miss to a value appropriate for adding a new entry into the TLB�
It can also be set by the operating system when adding a TLB entry not
associated with a TLB exception�

R FILL VPN2 0 ASID
222 27 5 8

Figure �� EntryHi Register Format

The structure of a TLB
 cache entry needs to contain the tag for match�
ing with the EntryHi register� and an even�odd pair of page table entries
for loading into EntryLo� and EntryLo�� A naive implementation would use
three ��bit words which makes indexing awkward�

This can be optimised by making use of the fact that the upper � bits
of the page table entries are always zero� This allows two �
�bit page table
entries to be stored in a single ��bit word� giving a block size of two ��bit
words which is easily indexed in TLB
�

This optimisation costs nothing in terms of speed� The two ��bit page
table entries would be loaded using two �load double� instructions� The
optimised �
�bit entries are loaded using two �load word� instructions which
sign extend the values to ��bit for free once loaded� By having two TLB

blocks within a single �
 byte data cache line instead of one� the compact
structure may indeed be faster as it reduces the chance of a data cache miss
on load�

The re�ll routine to implement a �
�K direct mapped TLB
 is�

���

shl at�k��		

shr at���

add at�k�

ld k���at�TLB��

nop

bne k��k��miss

lw k���at��TLB��

lw k���at����TLB��
���

The timing for a hit is Cexcpt � Cskel � � �
� cycles� A miss is a little
more complicated as it includes a GPT lookup� and replacing the missed
TLB
 entry �Crepl� � The cost is Cexcpt�Cskel ���Cgpt�Crepl� The TLB

�

miss routine is�

miss�

sd k���at�TLB��

dmfc� k��BadVAddr

lui k���x���

sd P��k���save P

ld P��k���gpt base

sd r���k���save r�
���

� cycle GPT loop
���

shr k��r�

bnz k��page fault

lw k���P�

lw r���P�	�

sw k���at��TLB��

sw r���at����TLB��
���

ld P��k���save P

ld r���k���save r�

The timing for the miss routine is � � �n� The complete timing for a
reload that misses TLB
 is ����n� The same timing assuming a cache miss
on every load is �� � ��n�

GPT level Cache hits Cache misses
hit miss hit miss

�
� �� �� ��
�
� �
 �� ���

Table
� Direct mapped TLB
 costs

Now� assuming TLB
 is sized such that it has� on average� a ��# miss
rate� The average timing for the case of a � level GPT translation assuming
data cache hits is ��� �
� � ��� � �� �
���� The worst case average timing
assuming � level translation with cache misses is ��� � �� � ��� � ��� � ���

With the assumption of ��# TLB
 miss rate� Figure � shows the TLB
overhead for� best case re�ll �for comparison purposes�� � level GPT re�ll
using TLB
 and assuming cache hits� � level GPT re�ll using TLB
 with all
cache misses� � level GPT re�ll assuming cache hits� and � level GPT re�ll
assuming cache misses�

�

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1

T
LB

 O
ve

rh
ea

d
%

TLB Miss Rate

best
TLB2-gpt3

TLB2-gpt7.m
gpt3

gpt7.m

Figure �� Direct mapped TLB
 overhead

It can be seen that the addition of TLB
 reduces the overhead of a ��
level re�ll from �
to
�# at a miss rate of ����� This is a signi�cant step
towards the idealised best case re�ll which� in practice� is expected to be
above the ��# illustrated� TLB
 also reduces the overhead associated with
the worst case �all cache misses� � level re�ll from ��# to ��# at miss rate
of �����

Hence� TLB
 introduction has the desirable e�ects of increasing perfor�
mance of expected normal case GPT re�ll� and limiting the e�ect of the
worst case re�ll to a reasonable level�

����� The Sharing Problem

The ASID is used as part of the tag used in matching TLB
 entries allowing
the same virtual page with di�erent ASIDs to exist in TLB
 at any one time�
However the ASID is not used as part of the indexing of TLB
� meaning that
virtual pages with di�ering ASIDs will hash to the same entry� If TLB
 is
direct mapped as in this case� the indexing precludes entries with the same
virtual page number� even though they have di�ering ASIDs�

As a consequence� if the same address is shared between di�erent address
spaces� the potential for many con�ict misses in TLB
 exists� The solution
to this is obviously including the ASID in index formation at the expense of
executing � extra instructions upon each re�ll�

Instead of directly indexing TLB
 using some masked region of the vir�
tual address� we use a hash function which xors the ASID and virtual address
as illustrated below�

shl at�k��		

shl k��k����

xor at�k��at

shr at���

lui k���x���

	�� ��way Associative TLB�

The speed advantage of the direct mapped TLB
 relies on a low miss rate�
A low miss rate coupled with small TLB
 size may not be achievable with
��way associativity� It may prove better to use a slightly slower �way asso�
ciative structure to achieve a lower miss rate�

A �way TLB
 is similar to the direct mapped case in structure� except
the basic block used above is grouped into sets of four� Indexing is done on
a set basis� and each of the four blocks in the set is checked sequentially for
a match�

Ignoring the extra comparisons needed� the basic routine is � cycles
slower than the direct mapped case�
 extra cycles are needed to dump and
reload an extra register needed for the interleaved compare� the remaining
extra cycle is due to a branch delay slot being unable to be �lled with a
useful operation�

The comparison operation is interleaved such that the load delay slot of
one tag is used to load or compare another tag� This is illustrated in the
assembly routine which follows�

�

���

shr at�k���

and at��xffc�

add at�k�

ld k���at�TLB��

ld t���at��
�TLB��

beq k��k��hit�

ld k���at����TLB��

beq t��k��hit�

ld t���at�	�TLB��

beq k��k��hit�

lw k���at��
�TLB��

bne t��k��miss

lw k���at�
��TLB��
���

hit��

lw k���at��TLB��

lw k���at����TLB��
���

Timing for a hit is Cexcpt � Cskel � Cxreg � �� ��� ��� �� �
��
�� ��� ��
cycles� Assuming equal likelihood of hit��
� � � and � the average timing
is
��� cycles� For a miss� cost is ��� miss routine�

The miss routine is similar to the direct mapped case� except selection
of which entry in the set to replace is required� Pseudo�random replacement
can be achieved by using the Count register� which simply increments at half
the pipeline rate� The assembly to generate an appropriate o�set follows�

dmfc� k�� Count
���

andi k���x����

add at�k��at

This extra work is o�set slightly by the fact the �way comparison has
freed one extra register requiring only one further register to be freed in the
miss routine� instead of two� which was the case for a direct mapped miss�
Timing for the miss routine is �� � �n� The complete timing for a reload
that misses TLB
� � � �n� The same timing assuming a cache miss on
every load is �� � ��n�

Again assuming a ��# TLB
 miss rate the average re�ll cost is �
���
cycles best case �� level GPT translation� no cache misses� and ����� worst
case �� level GPT with all cache misses��

GPT level Cache hits Cache misses
hit miss hit miss

�
��� �� �� �
�
�
��� ��� �� ���

Table �� �way TLB
 costs

Figure � illustrates the TLB overheads for� best case re�ll� TLB
 best
case re�ll� TLB
 worst case re�ll� � level GPT re�ll with no cache misses�
and � level GPT re�ll with all cache misses�

The �way TLB
 in the best case does perform better than the straight �
level GPT re�ll� and only slightly worse in the worse case� When compared
to a direct mapped TLB
� the �way TLB
 is slightly poorer performing
assuming the same miss rate� however the �way TLB
 is� in reality� likely
to have a lower miss rate giving better performance in the case where con�ict
misses tend to dominate direct mapped TLB
 behaviour�

0

10

20

30

40

50

60

70

80

90

100

0.0001 0.001 0.01 0.1

T
LB

 O
ve

rh
ea

d
%

TLB Miss Rate

best
TLB2 best

TLB2 worst
gpt3

gpt7.m

Figure �� �way TLB
 overhead

Like in the direct�mapped case� there is potential for many con�ict misses
in the case where several address spaces share the same virtual address� as
indexing does not include the ASID� The problem is less severe due to the
higher associativity� however still exists� The solution is similar to the direct�
mapped case� ie use a hashed index instead of a direct index� except that a
spare register reduces the penalty per re�ll to
 extra instructions�

�

shr t�� k�� �

shl at� k��

xor at� at� t�

and at��xffc�

	�� Summary

Table summarizes the best case lookup times for TLB
s with various
degrees of associativity and the two di�erent indexing schemes� It assumes
all cache hits�

Associativity Direct Index Hashed Index

�
�
�

�
�

��� ����
� �
��� ����

Table � TLB
 lookup times

The directly indexed� ��way TLB
 is the fastest and thus the TLB
 of
choice assuming it satis�es sizing constraints and low sharing occurs�

In the case of sharing causing an unsatisfactory amount of con�ict misses�
then a hash indexed TLB
 of ��way or
�way associativity is the TLB
 of
choice� Given that
�way is only slightly slower than the ��way TLB
� and
has a signi�cantly higher stochastic capacity� the
�way is favoured�

It appears unlikely that a �way or ��way TLB
 will outperform the
��way or
�way given that sizing contraints are unlikely to be restrictive�
and hence a larger low associativity TLB
 is favourable to a smaller high
associativity TLB
�

� Concluding Remarks

This exploration of GPT implementation has shown them to be a viable
alternative to conventional page tables on the R����

The presented software is available through the WorldWideWeb under

http	��www
vast
unsw
edu
au�Mungi�Mungi
html�

References

�	� Alberto Bartoli� Sape J Mullender� and Martijn van der Valk Wide�address spaces
� eploring the design space Technical Report Pegasus paper �
��� University of
Cambridge Computer Laboratory� 	��

�

�
� J S Chase� H M Levy� M J Freely� and E D Lazowska Sharing and protection in
a single address space operating system ACM Transactions on Computer Systems�
November 	���

��� A Dearle� R di Bona� J Farrow� F Henskens� A Lindstrom� J Rosenberg� and
F Vaughan Grasshopper� An othogobnally persistent operating system Technical
Report GH���� Basser Dept Computer Science� University of Sydney� 	���

��� Robin Fairbairns Pegasus summary report� kernel work package Technical Report
Pegasus paper ���	� University of Cambridge Computer Laboratory� 	���

��� G Heiser� K Elphinstone� S Russell� and G R Hellestrand A distributed single
address�space operating system supporting persistence SCS�E Report ���
� Univ
of New South Wales� School of Computer Science� Kensington� Australia� March
	���

��� Jerry Huck and Jim Hays Architectural Support for Translation Table Management
in Large Address Space Machines In Proceedings of the ��th International Symposium
on Computer Architecture� May 	���

��� Integrated Device Technology� Inc IDT��R���� ORION Hardware User�s Manual�
October 	���

��� J Liedtke Some theorems about guarded page tables Arbeitspapiere der GMD
No ��
� German National Research Center for Computer Science �GMD�� Sankt
Augustin� 	���

��� J Liedtke Address space sparsity and �ne granularity In �th SIGOPS European
Workshop� pages ����	� Schlo� Dagstuhl� Germany� September 	��� also in Oper�
ating Systems Review ��� 	 �Jan 	����� �����

�	�� J Liedtke Page table structures for �ne�grain virtual memory IEEE Technical Com�
mittee on Computer Architecture Newsletter� pages xx�xx� xx 	��� also published
as Arbeitspapier der GMD No ��
� German National Research Center for Computer
Science �GMD�� Sankt Augustin� 	���

�		� J Liedtke Some theorems about restricted guarded page tables Arbeitspapiere
der GMD No ���� German National Research Center for Computer Science �GMD��
Sankt Augustin� 	���

�	
� Kevin Murray� Tim Wilkinson� Peter Osmon� Ashley Saulsbury� Tom Stiemerling�
and Paul Kelly Design and Implementation of an Object�Oriented ���bit Single
Address Space Microkernel Technical Report �� SARC� Dept Computer Science�
City University� London� 	���

�	�� D Nagle� R Uhlig� T Stanley� S Sechrest� T Mudge� and R Brown Design tradeo�s
for software managed TLBs In ��th Annual International Symposium on Computer
Architecture �ISCA	� pages
����� San Diego� CA� May 	���

�	�� R L Sites� editor Alpha Architecture Reference Manual Digital Equipment Corpo�
ration� Maynard� MA� 	��

�	�� M Talluri� S Kong� M D Hill� and D A Patterson Tradeo�s in supporting two page
sizes In
�th Annual International Symposium on Computer Architecture �ISCA	�
pages �	���
�� Gold Coast� Australia� May 	��

�	�� Madhusudhan Talluri and Mark D Hill Surpassing the TLB performance of su�
perpages with less operating system support In Sixth Int�l Conf� on Architectural
Support for Programming Languages and Operating Systems� October 	���

�	�� Madhusudhan Talluri� Mark D Hill� and Yousef A Khalidi A new page table for
���bit address spaces In Proc� SOSP���� 	���

�

