Guarded Page Tables on the MIPS R4600

Jochen Liedtke

GMD — German National Research

Center for Information Technology

GMD SET-RS, Schlof§ Birlinghoven,
53757 Sankt Augustin, Germany

email: jochen.liedtke@gmd.de

Kevin Elphinstone

School of Computer Science and Engineering
The University of New South Wales
Sydney 2052, NSW, Australia

email: kevine@vast.unsw.edu.au
UNSW-CSE-TR-9503 — 23 NOVEMBER 1995

Communicated by Jayasooriah

Abstract

The introduction of 64-bit microprocessors has increased demands placed
on virtual memory systems. The availability of large address spaces has led
to a flurry of new applications and operating systems that further stress
virtual memory systems. Consequently, much interest has recently focussed
on translation lookaside buffer (TLB) performance and page table efficiency.
Guarded Page Tables are a mechanism for overcoming some of the problems
associated with conventional page tables.

Guarded Page Tables are tree structured like conventional page tables.
Also like conventional pages tables, they have the advantages of supporting
hierarchical operations and sharing of sub-trees. Unlike conventional page
tables, guarded page tables implement huge sparsely occupied address spaces
efficiently.

We describe guarded page tables and the associated parsing algorithm.
R4600 processor dependent micro-optimisation is undertaken and presented.
R4600 TLB refill is discussed in detail, including a comparison of guarded
page tables with more convention page tables. A software second level TLB
is introduced and analysed as a way of increasing guarded page table per-
formance.

1 Rationale

The advent of generally available 64-bit machines like the R4600[7] and
DEC Alpha[l14] has led to researchers proposing new ways to use virtual
memory that previously was restricted by virtual address space size. Single
address space systems such as Angel[12], Mungi[5], Nemisis[4], and Opal[2]
and persistent operating systems such as Grasshopper [3] resulted from wide
address space availability.

These systems, other proposals[l], and large UNIX style address spaces
have increased VM demands in comparison to the traditional UNIX virtual
memory model modern processors are designed to support. This has gener-
ated much interest in how to best support 64-bit address spaces[17, 16, 6,
15, 13]. This technical report explores the implementation of one proposed
mechanism—Guarded Page Tables.

This work was originated as part of the Mungi [5] project at UNSW.
Since it makes heavy use of a sparsely-occupied address space, the VM
system must be targeted to support sparsity efficiently. We selected the
Guarded Page Table mechanism (see section 2) which combines the advan-
tages of multi-level and inverted page tables.

The critical point was whether the GPT mechanism could be imple-
mented efficiently on the R4600 processor. Therefore, we developed R4600-
specific GPT parsing algorithms (section 3) and complemented them with a
second-level software TLB (section 5). How to best combine the elements,
depends on both the concrete memory system (cache and memory timing)
and the TLB-miss characteristics of the OS and applications. Therefore, we
include a detailed performance discussion and make the software available
as a tool box.

The purpose of this technical report is threefold:

1. It offers a tool box for experimenting with Guarded Page Tables on
the R4600 processor.

2. 1t can be used as a guide for implementing Guarded Page Tables on
other processors that support software-controlled TLBs.

3. Independent of the concrete problem, section 3 can serve as an example
of architecture-dependent micro optimisation. An interesting result
is that about 2/3 of the optimisation process — though architecture-
dependent — can be made in terms of a high-level language and are
based on algorithmic and data structure optimisations. The example
shows that substantial performance gains (factors of 2.5 or more) are
achievable by combining this method with specific assembler-level op-
timisations where general automatic code optimisation techniques do
not help.

2 Guarded Page Tables

Guarded Page Tables have been described in [9, 10]. They combine the ad-
vantages of tree-structured multi-level page tables and hashed page tables:
unlimited sparsity (2 page table entries per mapped page are always suffi-
cient), tree structure (subtree sharing, hierarchical operations) and multiple
page sizes. These properties are described in more detail in [8, 11]. Here we
give only a short sketch of the basic mechanism.

The main problem with multilevel page tables is sparsity: we need huge
amounts of page table entries for non-mapped pages. In the following exam-
ple, the mapping of page 11101100 in a sparsely occupied address space is
shown. (For demonstration purposes we use very small addresses and small
page tables. Nil pointers are marked by “e”.) The second- and third-level
page table are extremely sparse page tables: each contains one single non-nil
entry. Consequently, there is only one valid path through these two tables:
when the leftmost two bits are “11”7, the subsequent address bits must be
“10 117; all other addresses lead to page faults. As shown in Figure 1,
we can omit the two page tables and skip the associated translation steps.

v =11101100xxx

e

data page

Figure 1: Guarded Page Tables.

Whenever entry 3 of the top-level page table is reached, we have to check
whether “10 117 is a prefix of the remaining address. If so, this prefix can be
stripped off, and the translation process can directly continue at the level-4
page table.

Therefore, each entry is augmented with a bit string ¢ of variable length,
which is referred to as a guard. This is the key idea of guarded page tables.

The translation process works as follows: first, a page table entry is
selected by the highest part of the virtual address upon each transformation
step in the same way as in the conventional multi-level page table method.
The selected entry however contains not only a pointer (and perhaps an
access attribute) but also the guard ¢g. If ¢ is a prefix of the remaining
virtual address, the translation process either continues with the remaining
postfix or terminates with the postfix as page offset. As an example, Figure 2

[\

presents the transformation of 20 address bits by 3 page tables. Note that

v=0]1100101 100101100111 [0,.] 1 |

/ g =1100101

v/ =10 | 0107 100111 [00 | o1 | 10,] 11 |

g =0101

v =1]00111
\1 B

offset = 0111 data page

Figure 2: Guarded Page Table Tree

the length of the guards may vary from entry to entry. Furthermore, page
table sizes can be mixed; all powers of 2 are admissible. The same holds
for data pages, i.e., a mixture of 2-, 4-, ...1024-, ...entry page tables and
pages can be used.

Guarded page tables contain conventional tables as a special case: if a
guard has length zero, a translation step works exactly like in the conven-
tional mechanism. However in all cases conventionally requiring a table with
only one valid entry, a guard can be used instead. It can even replace a se-
quence of such “single-entry” page tables. This saves both memory capacity
and transformation steps, i.e., guards act as a shortcut.

3 GPT Parser

At first, we describe a GPT translation step in general, independent of
concrete hardware (see Figure 3). Here, v is the part of the original virtual
address that is still subject to translation, and the pair (p, s) determines the
page table (p: physical address, s: log, of table size) that has to be used
for the current translation step. The result of this step is either a new page
table (p/, ') and a postfix v’ of v, or the data page (p', s’) and offset v'.

The translations step starts by extracting u, the uppermost s bits of v.
u is used for indexing the page table. The addressed entry specifies a guard
g of variable size, i.e. possibly empty, which is checked against the remaining
bits of the virtual address (w = ¢g). When equal, the remaining v’ is either
used for the next level translation, or as the offset part. This operates as
a shortcut, since not only u, but both u and w are stripped off the virtual
address in one step; no table is necessary to decode w.

Note that the width of u, (determined by the page table size), may vary
from step to step and that the size of w may differ from entry to entry.

D, 5 v | u I

S ’ 10 |
G

Figure 3: Guarded Translation Step

~

In the following, we use |z| to denote the bit length of a flexible bit string
x. For improved clarity, we always use 2’ for an item that belongs to next
translation step (i.e., refers to the next lower level page table) and x for an
item belonging to the current level.

Assuming at first 32-byte page table entries (later this is reduced to 16
bytes), one GPT translation step is:

u=0v> (Jv] - s);
g = [p+ 32u].guard ;
if g = ((v> (Jv] —s—g])) AND (2o — 1)
then o' :=uv AND 2vl=s=lsl _ 1 :
s = [p + 32u].size’ ;
P = [p+ 32u].table’ ;
else page fault
fi.

This algorithm cannot be implemented ‘as is’, because the R4600 processor
does not support variable length bit strings as a basic data type. Therefore,
we have to hold |v| and |g| in additional variables v, and g,:

U:i=0>> (Ven — 9) 3
g := [p+ 32u].guard ;
Jien = [p+ 32u].guard len ;
ifg = (v> (Ven — 5 — Gien)) AND (291en — 1)
then v, = Vien — S — Gien ;
v = v AND 2Y%en — 1 ;
s = [p+ 32u].size’ ;
p = [p+ 32u].table ;
else page fault
fi.

After eliminating common subexpressions, this algorithm requires 17 arith-
metic and load operations.

3.1 From 17 To 10 Operations

Note that although v is an input variable of the translation process, the
length |v] is a constant which is determined by the depth of the table in the
GPT tree. Furthermore, the table size s and the guard length |¢| are fixed
per page table entry. So the values

S0 = UVen — S
51 = UVlen — 8 = flen
Imask = 20ten —]
meaning
so
v | u | g o’
s1
”
v’] ¢ [o]

can be computed when constructing a GPT entry and can be stored per
entry. Note that we have to store the present level’s s1 and the next level’s
s(in a page table entry:

| guard | 51 | 84 | table’ |

Fortunately, s{, can be as easily determined as sq, as sy = v, — § =
Vien — 8 — §ien — 8 = 81 — §'. The improved algorithm

U =0 > Sy,
g := [p+ 32u].guard ;
Gmask = [P—I— 32u].gmask ;
s1 = [p+ 32ul.s1 ;
ifg = (U > 81) AND Gmask
then v’ :=v AND 2% — 1 ;
s = [p+ 32u].s]) ;
p = [p+ 32u].table ;
else page fault
fi.

requires only 14 arithmetic/load operations and no longer needs the variable
Vien -

The next optimisation is based on the idea of adjusting the guard bits
in the GPT entry variable and extending it by the number u of this entry

[0o Julog [o |

so that XORing v with this field removes u and ¢ in one step and avoids one
shift and one add operation. More precisely, we store the extended guard

G = (u<|g)+9) < (v]—s—lg)

in each page table entry instead of the guard g. The resulting algorithm

U =0 > Sy,
G := [p+ 32u].extended guard ;
s1 = [p+ 32ul.s1 ;
1f(UXORG)>>81 =0
then v :=v XOR & ;
s = [p+ 32u].s]) ;
p = [p+ 32u].table ;
else page fault
fi.

requires only 10 arithmetic/load operations and avoids the per entry field
Imask-

Up to this point, we have looked at only one translation step. For a
complete translation, a loop is required. To approximate an until-loop, we
first move the then-part statements before the if statement. This is possible
because these three statements do not destroy data required later:

U =0 > Sy,
G := [p+ 32u].extended guard ;
s = [p+ 32u].sj ;
sy = [p+ 32u].sq ;
p = [p+ 32u].table ;
v :=v XOR G ;
ifv'>s # 0
then page fault
fi.

Unifying p', v" and sj, with p, v and sg, we get a very simple loop:

do
U =0 > Sy,
G := [p + 32u].extended guard ;
sp = [p+ 32u].sf ;
sy = [p+ 32u].sq ;
p = [p+ 32u].table ;
v:=v XOR G ;
until v > s; # 0od ;

The loop terminates when a page fault, i.e. a guard mismatch, is detected. Of
course, the translation process must also terminate in the positive case, i.e.
if the translation finishes without page fault. Adding a further termination
condition to the loop would increase our costs per translation step.

A better solution is to introduce a pseudo mismatch at leaf page table
entries. We need an extended guard ¢, which includes the matching guard g,
which in all cases leads to a mismatch, i.e. (v XOR &) > s1 # 0. Now recall
that the extended guard of the u'® entry of a page table always contains
the index u. Therefore, we can achieve a pseudo mismatch by using an
“incorrect” u for building the extended guard. G = ((2 < |g|) +9) < 51
with @ # u always leads to a mismatch:

v [0 Tl s T v]
G:[o TJal] 9] 0 |
(vXORG) > s : | 0 |7é 0| 0 |

The loop terminates either due to detecting a page fault or a leaf entry. In
the case of

(0> 1) < (64— 1g]) = 0,

we have a pseudo mismatch, i.e. a successful translation. For the mentioned
check, we need a field holding the value 64 — |g|. In leaf entries, the s{-field
is free and can be used for this purpose. Then, (v > s1) < s, differentiates
between true mismatch and pseudo mismatch, if the current entry is a leaf
entry. We have to check, whether a mismatch at an higher level entry (which
does not hold 64 — |g| in its s{-field) is also classified as a true mismatch.
Fortunately, (v >> s1) < s, evaluates always to non zero in this case, since
sq is always less than sp:

Concluding, the loop can be complemented by

if (v>s5)<s=0
then page frame_addr :=p ;
page_frame size := s;
else page_fault
fi.

so that in the case of successful termination, s1 determines the size and p
the physical address of the page.

3.2 R4600 Implementation

Before presenting an actual implementation of GPT parsing, a brief R4600
introduction is necessary. The R4600 is a member of the MIPS R4000 fam-
ily of processors which feature 64-bit integer and floating point operations.
They have thirty-two general purpose 64-bit registers of which two are spe-
cial. Register r0ignores writes and always returns zero when read. Register
r31 is used to store the return address of Jump And Link (JAL) instructions.

The R4600 has a primary 16 KB instruction cache and a 16 KB data cache
on chip. Both caches are two-way set associative, use a 32 byte line size, and
FIFO replacement within a set. Secondary cache is external and optional.

A four (64-bit) word write buffer is used to buffer writes to external
memory arising from cache write-back, cache write-through, and un-cached
stores. This enables the processor to proceed in parallel while external
memory is updated.

The R4600 has a five stage pipeline which has a one cycle latency for com-
putational instructions. Computational instructions perform arithmetic,
logical, and shifting operations using register operands or a register operand
and a 16-bit signed immediate.

Load instructions do not allow the instruction immediately following,
termed the load delay slot, to use the result of the load, thus giving a load
latency of two cycles. Scheduling of instructions in the delay slot is desirable
for increased throughput, though not strictly required, as the pipeline will
slip one cycle in the case of a dependent instruction in the delay slot.

All jump and branch instructions have a latency of 2 cycles. The in-
struction in the delay slot following the jump is executed while the target of
the jump is being fetched. The exception being if a conditional branch likely
instruction is not taken, in which case the delay slot instruction is nullified.

3.3 From 11 To 8 Instructions

For the R4600 implementation, four 64-bit registers are needed. We name
them rl, r2, v and P. A first compilation of the algorithm leads to 11 in-

structions per translation step:

do:
shr r2,v,r2 U=V > So
shl r2,5 32u
add P,r2 p+ 32u
14 r1,[P].ext_guard
1d r2,[P].s0
xor v,rl v:=v XOR G
1d ri,[P].s1
1d P, [P].table
shr ri,v,rl v > 8
bz ri,do
shl ri,r2 (v>s1) < s,

bnz rl,page fault

Note that all load delay slots in this (and the following) versions are filled
with useful operations, i.e. do not cost additional cycles. By using appro-
priate coding!, the same holds for the branch delay slot.

Further optimising, we use the fact that the R4600’s minimal page size
is 4K and the range of sj, and s; is always 0...63. Therefore 2 X 6 = 12 bits
are sufficient for sj, and sy and since the 12 least significant bits of G are
never used, we combine these three fields in one 64-bit word:

| G [so]s1]
52 6

The second 64-bit word is used for pointing to the next level table (or data
page). By this, we avoid load instructions and reduce the page table entry
size to 16 bytes. The resulting code

!Use the bzl instruction which nullifies the immediately following instruction if the
branch is not taken:

shr r2,v,r2
do: shl r2,5

bzl ri1,do
shr r2,v,r2

do: shr r2,v,r2 U=V > So

shl r2,4 16u

add P,r2 p+ 16u

1d ri, [P] ry = (G, 0, 51)
14 p,[P].table

xor? v,rl v:=v XOR G
shr r2,r1,6 ro = 8

shr ri,v,rl v > S

bz ri,do

requires only 9 instructions per translation step.

The instruction ‘shl r2,4’ is somehow annoying, because it is only used
for setting the 4 lowest bits to zero. Without this requirement, we could have
stored s{,—4 instead of s{, in the s{-fields so that the previous shr instruction
already includes the multiplication with 16. Indeed, it is not necessary that
the 4 lowest bits are zero. It is sufficient that the 4 lowest bits of p after the
addition have a fized value which does not depend on the value of the actual
v. This can be achieved by

or p,r2

instead of adding, provided that the 4 lowest bits of p are always 1111.
Therefore, we store p + 15 instead of p in the table-fields and always use
P-15 instead of P for addressing a table or table entry.

do: shr r2,v,r2 ro =0 > (so — 4)
or P,r2 p+ 16u+ 15
1d ri, [P-15] r = (G,) — 4, 51)
1d P,[P-15] .table
xor v,rl v:=v XOR G
shr r2,r1,6 ro = 8
shr ri,v,rl v > 8
bz ri,do

The final code requires only 8 instructions per translation step.

3.4 Timing

Since no instruction interlocks are effective in the algorithm, i.e. since all
delay slots are filled with useful instructions, for an n-step guarded page
table walk, the single-issue R4600 processor needs

*Note that although ‘xor v,r1’ destroys the 12 lowest bits of v (the 12 lowest bits of
rl contain sj and s1), it does not affect the algorithm, since these bits certainly belong
to the offset part of the virtual address and are not required for translation.

10

8n ... (8+p)n cycles,

where p is the penalty of accessing a page table entry which is not in the
primary data cache. If the table walking code is not in the instruction cache,
another 2p penalty cycles may occur.

Since, within one address space, the R4600 supports 40-bit addresses
and the smallest page is 4K, no more than (40—12)/4 = 7 translation steps
should be necessary [8] per translation. Recall that the required steps can
vary from page to page. Less than 7 steps are required in very sparse or in
contiguous regions. It seems reasonable to expect 3 to 7 steps, depending
on OS strategy and type of application. Assuming 4 cycles penalty for a
cache miss, this corresponds to costs of [24...36] (3 steps) up to [56...84]
(7 steps) cycles per GPT walk.

3.5 Adding Access Rights

So far, the algorithms presented are not sensitive to page-level access rights.
Typical access rights are ‘write permit’ and ‘user permit’. Without ‘write
permit’, a page is mapped read only; without ‘user permit’, it can only
be accessed by the kernel. For including access rights into the guarded
translation mechanism, we developed 4 different scenarios.

Stable page access rights. We assume that access rights may differ
from page to page but are changed infrequently, typically upon initial page
mapping and copy on write, i.e. once or twice in the life of a mapped page.

Holding access rights only in leaf entries and checking them at the end
of each table walk is sufficient in this case. This solution is very cheap
(2 cycles, no additional per-step cycles). However, short term (transient)
changing access rights of large regions (read/write — read only) is not pos-
sible, although short term locking (present — not present — present) is
possible.

Cheap space If space is cheap enough and there are only few different
access types, we can use one GPT tree per access type. Assume that read
and write are the only access types and that read only and read/write are
the possible access rights. Then we use two GPT trees: any read access is
translated by the read tree, any write access by the write tree. The read
tree holds all present pages, i.e. read only and read/write mapped ones, and
the write tree only the read/write mapped pages. If 50% of the accessible
pages are mapped read /write, we need about 1.5 times as much space as in
the case of a single GPT, i.e. 3 GPT entries per mapped page instead of 2.
The translation process is not explicitly slowed down by access right checks,

11

but the working set used for GPT parsing increases. Dependent on OS and
application characteristics, this may or may not lead to a higher cache miss
rate.

In many systems, we have to differentiate between more than two access
types and to deal with more access right values. Common access types are:

user read

user write
kernel read
kernel write

Correspondingly, the access right values are

user/kernel read only
user/kernel read/write
kernel only read only
kernel only read/write

In this case, we need 4 GPT trees. Provided that 50% of the pages are
mapped read /write and 5% kernel only accessible, we need about 2.9 times
as much space as for a single GPT.

Cheap cycles If execution cycles are cheap enough to permit one
additional cycle per GPT translation step, we can do access right
checking per translation step. For this purpose, we slightly restrict
the address space size and wuse the uppermost bits of the guard
word G for the access right. In the above example, we need 2 bits:
bit 63 write deny =1 read only

=0 read/write permitted

bit 62 user deny =1 kernel only accessible
= 0 user/kernel accessible
Correspondingly, the actual access type is held in an access register a:
bit 63 write =1 write access

=0 read access

bit 62 user =1 user access
=0 kernel access

bit 61 =1

: =1 reserved, all 1’s
bit 0 =1
Per translation step, the guard word GG is anded by the access register a:

12

do: shr r2,v,r2 ro =0 > (so — 4)

or P,r2 p+ 16u+ 15

1d ri, [P-15] r = (G,) — 4, 51)
1d P,[P-15] .table

and rl,a

xor v,rl v:=v XOR G
shr r2,r1,6 ro = 8

shr ri,v,rl v > S

bz ri,do

Any access right violation now leads to pseudo guard mismatch, ter-
minates the translation process and can further analysed in the page fault
branch. The additional costs are 1 cycle per translation step.

4 R4600 Memory Management

An introduction to R4600 memory management is needed before presenting
further details of GPT implementation. The R4000 architecture has a 64-bit
virtual address space, however the R4600 only implements a 1TB (40-bit)
user mode virtual address space together with a 64 GB physical address
space. It uses a joint translation look-aside buffer (JTLB) to translate in-
struction and data virtual memory references to physical memory references.

The JTLB is a 48 entry fully associative memory. Each entry maps an
even-odd pair of virtual pages to their corresponding physical addresses,
giving a potential of 96 mapped virtual pages. Page size is per entry config-
urable from 4KB to 16MB in multiples of 4.

An 8 bit address space identifier (ASID) is associated with each entry
in the JTLB. The ASID is used together with the virtual address when
checking for a match, thus allowing multiple address spaces in the JTLB
simultaneously, which reduces the need for JTLB flushing during context
switching.

The R4600 also contains a 2 entry instruction TLB (ITLB) and a 4
entry data TLB (DTLB), with each entry mapping a 4KB page. ITLB and
DTLB misses are automatically refilled from the JTLB making operation of
the ITLB and DTLB transparent to users.

The handling of JTLB misses is via a TLB Refill exception and a software
routine to load a new entry into the JTLB. Other TLB related exceptions are
handled by the processor general exception mechanism, alleviating the TLB
refill routine from determining the exception involved, and thus allowing
it to be optimised solely for refill. Refill software can overwrite selected
TLB entries or use a hardware provided mechanism to overwrite a randomly
selected entry.

13

4.1 TLB Refill in Detail

TLB refill has been measured contributing up to 40% of total execution
time[6] in some applications. While such high contributions are not normal,
it is none the less important to minimise TLB refill costs as much as possible.

Before presenting or analysing any TLB refill routines, the basic cost of
taking a null exception (Cepepe) needs to be determined. This is the cost
of taking an exception that simply performs an exception return (eret)
instruction. An exception generating instruction causes execution to begin,
at the appropriate exception vector, when it reaches the fifth stage of the
pipeline[7]: cost 4 cycles. Assuming eret has a delay slot similar to a branch
or jump, it costs 2 cycles. Thus Cepepe = 6 cycles.

Refill—Virtual Array To serve as a reference, the best case TLB refill is
presented. However before presentation, four coprocessor 0 (CP0) registers
need introducing.

MIPS designers provide limited hardware support to speed up the soft-
ware refill process via the Context or XContext registers. The Context reg-
ister is a 32 bit version of the 64 bit XContext register, which is described
below.

The XContext register illustrated in Figure 4, contains an operating sys-
tem set-able Page Table Entry Base (PTEBase) field which is used to store
the base of a page table array. Upon a TLB miss, the BadVPN2 field is set
to the virtual page-pair number that misses. For 4K pages, the register can
simply be used as the address of a page table entry pair to be loaded into the
TLB. The format of page table entries are the same as EntrylLo registers.

| PTEBase | R| BadvPN2| 0]
31 2 27 4

Figure 4: XContext Register Format

EntrylLo0and EntrylLol are identical registers used for reading and writ-
ing the physical page numbers into and out of the TLB, including TLB
misses. FntryLocontains the physical frame number (PFN), cache coherency
attributes (C), dirty bit (D), valid bit (V) and global bit (G) as illustrated
in Figure 5.

The best case TLB refill routine is:

14

Figure 5: EntryLo0 and EntryLol Register Format

dmfcO kO, XContext

nop
1d k1, [kO]
1d kO, [k0+8]

dmtcO ki1,EntryLoO

dmtcO kO,Entrylol

nop

tlbwr ; 1 cycle slip[7]
Assuming the ideal situation, no cache misses and no second level TLB
misses on the virtual array, the timing of the routine is 9 cycles. Hence the
cost of the best case TLB refill (Cheq) is:

Cbest = Cexcpt‘l’g
= 15

Refill—Skeleton Before presenting more complicated refill routines, the
following TLB refill skeleton is factored out as it is common in all routines
presented later.

The skeleton loads the miss address from a CPO register and frees an
extra register. After page table entries are loaded it: loads the page entries
into FntrylLo registers, writes the TLB, and restores the freed register.

dmfcO kO,CPO_reg
lui k1,0x8000
sd at,[kl] .save offset

dmtcO ki1,EntryLoO

dmtcO kO,Entrylol

lui k1,0x8000

tlbwr ; 1 cycle slip
1d at,[kl] .save offset

The timing of the skeleton(Cyer) is 9 cycles. If extra registers are needed
for page table lookup, it costs 2 cycles per register (Cyrey).

15

Refill—GPT Firstly, GPT translation is modified slightly. Instead of
translation terminating with P pointing to the physical address, it finishes
with P pointing to and even-odd pair of page table entries suitable for direct
loading into EntrylLo.

Using the skeleton above, with Bad VAddr as the CPO_reg (which contains
the address at which the TLB miss occured), the GPT refill routine is:

14 P,[r1].gpt_base
8 cycle GPT loop

shr ri,r2

bnz rl,page fault
1d ri, [P]
1d r2, [P+8]

The timing of GPT refill (C},), where n is the number of levels traversed
in the page table, is:

Cgpt = Cexcpt + Cskel + ereg +548n
= 64+94+2+5+8n
= 22+ 8n

For the 3 level lookup Cy,i3 = 46 cycles, for a 7 level lookup Cy,r = 78
cycles.

Cache Effects So far it has been assumed that all data and instructions
are in cache. Instruction cache misses will have similar effects on all refill
routines with the penalty being proportional to the length of the routine.
However, data cache misses have the potential to show large differences
between any two refill routines as the amount of data accessed can vary
markedly.

Given a data cache penalty of 6 cycles for a single double-word, plus 2
cycles for each extra double word, up to 12 cycles for an entire cache line?®,
data access can be expensive.

®These numbers represent the pipeline cycles wasted while running minimum external
bus cycles to a secondary cache. The actual miss penalty due to a cache refill my be lower
due to parallelism between refill and instruction execution, or much higher if no second
level cache exists.

16

The best case routine assuming cache misses is Chpestm = Chest + 8. For
the GPT routine Cyps = Cypr + 8(n+ 1) + 6. Table 1 shows the cost for
the refill routines presented so far, assuming all data cache hits and then
assuming all data cache misses.

Routine | Cache Hit | Cache Miss
Chest 15 23
Cypt3 46 84
Cloptr 78 148

Table 1: TLB refill routine cost (cycles).

Refill Comparison Direct comparison between Ch.s; and Clypy is fairly
irrelevant as it does not take into account the frequency of TLB misses. In
the extreme, it does not matter how long refill takes if the TLB never misses.
To facilitate a more revealing comparison, we use the metric of percentage
of cycles due to TLB refill (%ouy) compared to total cycles, which we aim to
minimize. Distinguishing cycles due to TLB refill (Cy3), and grouping other
cycles (Coiper) not related to TLB refill,

Cup
Yo1p = =—————— x 100
o Ctlb + Cother

Given a miss rate per Coprer (Fmiss) and TLB refill cost (Chrerin):

Ctlb = rmissCotherCrefill
rmissCotherCrefill
Youp = x 100
rmissCotherCrefill + Cother
rmisscrefill

= x 100
rmisscrefill +1

Figure 6 illustrates the TLB overhead associated with the six routines tab-
ulated above, for various miss rates.

It can be seen that with miss rates less than 0.0001, it is largely irrele-
vant which routine is chosen for TLB refill, as refill’s contribution to overall
runtime is negligible.

In the case of high miss rates, for example 0.01, TLB overheads are
significantly different. The best case routine overhead is expected to vary
between 13% and 19%, however GPT overhead varies between 32% and 59%.

17

100 T — T
90 - best — A
80 best.m j*" - v
o 70
3\3 gpt3.m ——
I 60 - gpt7.m ---
2
5 50 |-
3
P 40
-
[30
20
10 _
0;;;;';5*:‘—'7: === L
0.0001 0.001 0.01 0.1

TLB Miss Rate

Figure 6: TLB overhead for TLB refill routines

Or to look at it differently, given a tolerable overhead of 10%, the best case
routine can tolerate miss rates 2-10 times higher than GPT refill.

Thus it appears GPTs are unsuitable for TLB refill where it is expected
that TLB miss rates may be high, especially if cache miss costs are also

high.

5 The Second Level TLB

Ideally, a robust mechanism is needed that supports address space sparsity,
fast lookup, hierarchical operations, and graceful performance degradation
when faced with increasing TLB miss rates. A second level TLB in combi-
nation with GPTs should be the answer. The second level TLB (TLB2) is
a software cache of page table entries used to refill the hardware TLB.

5.1 TLB2 Design Issues
5.1.1 Tagged or Per-Process

The first design decision to be made is whether TLB2 should be a per-process
cache or a global, address space tagged, cache. A per-process cache slows the
context switch time as the cache base address needs to be changed, though
this may be insignificant when compared to other switching overheads.

A single tagged cache is more space efficient. A per-process cache takes n
times the space for n processes for the same potential per-process cache ca-
pacity. A single tagged cache will adapt to the workload, caching only active
TLB entries, whereas a per-process cache may itself be entirely inactive.

18

A single tagged cache is small enough to use unmapped physical memory.
A per-process cache is more suited to implementation in virtual memory as
the number of processes is unknown and potentially large. Virtual memory
implementation requires handling of complex nested TLB misses which are
avoided in the physical implementation.

Flushing all cache entries associated with a physical frame is simpler and
faster with a single tagged cache, than with n per-process caches of similar
size.

For these reasons, we choose to use a single tagged cache for TLB2.

5.1.2 Size

Performance dictates the size of TLB2. While a large TLB2 will reduce
TLB2 miss rate, the following factors make it desirable to keep TLB2 small.
TLB2 uses unmapped physical memory which is a limited resource, though
it is expected that TLB2 will be small enough to effectively ignore this
limitation.

TLB2 flushing becomes more expensive as size increases. Flushing can
be on a per physical page frame basis, or on a per address space tag basis.
These events occur, for example, on page frame swap-out and address space
destruction respectively. These are expected to be infrequent operations
when compared to TLB2 lookup, though they should be kept in mind when
sizing TLB2.

The R4600 has 16-bit immediate operands. This gives a 16-bit mask
operation or a load operation from a 64KB address space, in a single in-
struction. Larger masks or load offsets require multiple instructions. This
needs to be kept in mind as TLB2 lookup is time critical. The performance
gained by having a large cache may be offset by the extra time taken to
access it.

5.1.3 Associativity

High associativity is desirable in a cache to decrease the likelihood of conflict
misses. In a hardware cache implementation, n associativity requires n com-
parisons in parallel to determine a hit. In software, n associativity requires
n comparisons in sequence. Sequential comparisons need to be minimised as
TLB2 lookup is time critical. The tradeoff between increased lookup time
due to sequential comparisons and decreased miss rate due to associativity
needs to be carefully balanced.

5.2 A Direct-Mapped TLB2

Before describing a direct mapped TLB2, another CPO0 register needs intro-
ducing. The EntryHi register is used to set the hardware lookup tag in a
TLB entry when adding a new TLB entry or probing for an existing one.

19

It contains a virtual page number of a page-pair (VPN2) and an associated
address space identifier (ASID) as illustrated in Figure 7. EntryHiis set
on TLB miss to a value appropriate for adding a new entry into the TLB.
It can also be set by the operating system when adding a TLB entry not
associated with a TLB exception.

IR|FLL] ven2 | o] AsiD)
2 2 27 5 8

Figure 7: EntryHi Register Format

The structure of a TLB2 cache entry needs to contain the tag for match-
ing with the EntryHi register, and an even-odd pair of page table entries
for loading into EntryLo0 and EntryLol. A naive implementation would use
three 64-bit words which makes indexing awkward.

This can be optimised by making use of the fact that the upper 34 bits
of the page table entries are always zero. This allows two 32-bit page table
entries to be stored in a single 64-bit word, giving a block size of two 64-bit
words which is easily indexed in TLB2.

This optimisation costs nothing in terms of speed. The two 64-bit page
table entries would be loaded using two “load double” instructions. The
optimised 32-bit entries are loaded using two “load word” instructions which
sign extend the values to 64-bit for free once loaded. By having two TLB2
blocks within a single 32 byte data cache line instead of one, the compact
structure may indeed be faster as it reduces the chance of a data cache miss
on load.

The refill routine to implement a 128K direct mapped TLB2 is:

shl at,k0,44
shr at,53
add at,ki

1d ki, [at+TLB2]
nop

bne k1,k0,miss

1w k1, [at+8+TLB2]

1w k0, [at+12+TLB2]

The timing for a hit is Cepepr + Cper + 8 = 23 cycles. A miss is a little
more complicated as it includes a GPT lookup, and replacing the missed

TLB2 entry (Crept) - The cost is Cepept + Csker + 7+ Cypt + Crepr. The TLB2

20

miss routine is:

miss:
sd kO, [at+TLB2]
dmfcO kO,BadVAddr
lui k1,0x8000

sd P,[k1] .save P
14 P, [k1].gpt_base

sd r2,[k1] .save._r2
8 cycle GPT loop

shr k1,r2
bnz k1,page fault

1w k1, [P]

1w r2, [P+4]

sW k1, [at+8+TLB2]
sW r2,[at+12+TLB2]
1d P,[k1] .save P
1d r2,[k1] .save._r2

The timing for the miss routine is 14 + 8n. The complete timing for a
reload that misses TLB2 is 36 +8n. The same timing assuming a cache miss
on every load is 56 4 16mn.

GPT level | Cache hits | Cache misses
hit | miss | hit miss
3 23 60 31 104
7 23 92 31 168

Table 2: Direct mapped TLB2 costs

Now, assuming TLB2 is sized such that it has, on average, a 10% miss
rate. The average timing for the case of a 3 level GPT translation assuming
data cache hits is 0.9 % 23 4+ 0.1 % 60 = 26.7. The worst case average timing
assuming 7 level translation with cache misses is 0.9 %314 0.1 % 168 = 44.7.

With the assumption of 10% TLB2 miss rate, Figure 8 shows the TLB
overhead for: best case refill (for comparison purposes), 3 level GPT refill
using TLB2 and assuming cache hits, 7 level GPT refill using TLB2 with all
cache misses, 3 level GPT refill assuming cache hits, and 7 level GPT refill
assuming cache misses.

21

100 —

best —
70 kb TLB2-gpt3 ———- / P
TLB2-gpt7.m ----- K S

TLB Overhead %
(o)
o
T

0.0001 0.001 0.01 0.1
TLB Miss Rate

Figure 8: Direct mapped TLB2 overhead

It can be seen that the addition of TLB2 reduces the overhead of a 3-
level refill from 32% to 21% at a miss rate of 0.01. This is a significant step
towards the idealised best case refill which, in practice, is expected to be
above the 13% illustrated. TLB2 also reduces the overhead associated with
the worst case (all cache misses) 7 level refill from 60% to 31% at miss rate
of 0.01.

Hence, TLB2 introduction has the desirable effects of increasing perfor-
mance of expected normal case GPT refill, and limiting the effect of the
worst case refill to a reasonable level.

5.2.1 The Sharing Problem

The ASID is used as part of the tag used in matching TLB2 entries allowing
the same virtual page with different ASIDs to exist in TLB2 at any one time.
However the ASID is not used as part of the indexing of TLB2, meaning that
virtual pages with differing ASIDs will hash to the same entry. If TLB2 is
direct mapped as in this case, the indexing precludes entries with the same
virtual page number, even though they have differing ASIDs.

As a consequence, if the same address is shared between different address
spaces, the potential for many conflict misses in TLB2 exists. The solution
to this is obviously including the ASID in index formation at the expense of
executing 3 extra instructions upon each refill.

Instead of directly indexing TLB2 using some masked region of the vir-
tual address, we use a hash function which zors the ASID and virtual address
as illustrated below:

22

shl at,k0,44

shl k1,k0,57

Xor at,kl,at

shr at,53

lui k1,0x8000

5.3 4-way Associative TLB2

The speed advantage of the direct mapped TLB2 relies on a low miss rate.
A low miss rate coupled with small TLB2 size may not be achievable with
1-way associativity. It may prove better to use a slightly slower 4-way asso-
ciative structure to achieve a lower miss rate.

A 4-way TLB2 is similar to the direct mapped case in structure, except
the basic block used above is grouped into sets of four. Indexing is done on
a set basis, and each of the four blocks in the set is checked sequentially for
a match.

Ignoring the extra comparisons needed, the basic routine is 3 cycles
slower than the direct mapped case. 2 extra cycles are needed to dump and
reload an extra register needed for the interleaved compare, the remaining
extra cycle is due to a branch delay slot being unable to be filled with a
useful operation.

The comparison operation is interleaved such that the load delay slot of
one tag is used to load or compare another tag. This is illustrated in the
assembly routine which follows.

23

shr at,k0,9
and at,0xffcO
add at,ki

1d ki, [at+TLB2]

1d t0, [at+16+TLB2]

beq k1,k0,hitl

1d k1, [at+32+TLB2]

beq t0,k0,hit2

1d t0, [at+48+TLB2]

beq k1,k0,hit3

1w k1, [at+56+TLB2]

bne t0,k0,miss

1w kO, [at+60+TLB2]
hiti:

1w k1, [at+8+TLB2]

1w k0, [at+12+TLB2]

Timing for a hit is Cepepr + Csker + Crreg + 9,11, 13,13 = 26, 28, 30, 30
cycles. Assuming equal likelihood of hitl, 2, 3 | and 4; the average timing
is 28.5 cycles. For a miss, cost is 304+ miss routine.

The miss routine is similar to the direct mapped case, except selection
of which entry in the set to replace is required. Pseudo-random replacement
can be achieved by using the Count register, which simply increments at half
the pipeline rate. The assembly to generate an appropriate offset follows.

dmfcO ki1, Count

andi k1,0x0030
add at,kl,at

This extra work is offset slightly by the fact the 4-way comparison has
freed one extra register requiring only one further register to be freed in the
miss routine, instead of two, which was the case for a direct mapped miss.
Timing for the miss routine is 15 + 8n. The complete timing for a reload
that misses TLB2, 45 4+ 8n. The same timing assuming a cache miss on
every load is 81 + 16n.

Again assuming a 10% TLB2 miss rate the average refill cost is 32.55
cycles best case (3 level GPT translation, no cache misses) and 59.35 worst
case (7 level GPT with all cache misses)

24

GPT level | Cache hits | Cache misses
hit | miss | hit miss
3 285 | 69 | 44.5 129
7 28.5 | 101 | 44.5 193

Table 3: 4-way TLB2 costs

Figure 9 illustrates the TLB overheads for: best case refill, TLB2 best
case refill, TLB2 worst case refill, 3 level GPT refill with no cache misses,
and 7 level GPT refill with all cache misses.

The 4-way TLB2 in the best case does perform better than the straight 3
level GPT refill, and only slightly worse in the worse case. When compared
to a direct mapped TLB2, the 4-way TLB2 is slightly poorer performing
assuming the same miss rate, however the 4-way TLB2 is, in reality, likely
to have a lower miss rate giving better performance in the case where conflict
misses tend to dominate direct mapped TLB2 behaviour.

100 — T — T
90 - best —
80 TLB2 best ----
TLB2 worst -----
N 70 gpt3 -
bl gpt7.m —-—-
g 60 -
ey
5] 50
3
a 40
-
= 30
20
10
0 iz — L
0.0001 0.001 0.01 0.1

TLB Miss Rate

Figure 9: 4-way TLB2 overhead

Like in the direct-mapped case, there is potential for many conflict misses
in the case where several address spaces share the same virtual address, as
indexing does not include the ASID. The problem is less severe due to the
higher associativity, however still exists. The solution is similar to the direct-
mapped case, ie use a hashed index instead of a direct index, except that a
spare register reduces the penalty per refill to 2 extra instructions.

25

shr t0, kO, 7
shl at, kO, 6
Xor at, at, toO
and at,0xffcO

5.4 Summary

Table 4 summarizes the best case lookup times for TLB2s with various
degrees of associativity and the two different indexing schemes. It assumes
all cache hits.

Associativity | Direct Index | Hashed Index
1 23 26
2 26 28
4 28.5 30.5
8 32.75 34.75

Table 4: TLB2 lookup times

The directly indexed, 1-way TLB2 is the fastest and thus the TLB2 of
choice assuming it satisfies sizing constraints and low sharing occurs.

In the case of sharing causing an unsatisfactory amount of conflict misses,
then a hash indexed TLB2 of 1-way or 2-way associativity is the TLB2 of
choice. Given that 2-way is only slightly slower than the 1-way TLB2, and
has a significantly higher stochastic capacity, the 2-way is favoured.

It appears unlikely that a 4-way or 8-way TLB2 will outperform the
1-way or 2-way given that sizing contraints are unlikely to be restrictive,
and hence a larger low associativity TLB2 is favourable to a smaller high
associativity TLB2.

6 Concluding Remarks

This exploration of GPT implementation has shown them to be a viable
alternative to conventional page tables on the R4600.
The presented software is available through the WorldWideWeb under

http://www.vast.unsw.edu.au/Mungi/Mungi.html.

References

[1] Alberto Bartoli, Sape J. Mullender, and Martijn van der Valk. Wide-address spaces
— eploring the design space. Technical Report Pegasus paper 92-3, University of
Cambridge Computer Laboratory, 1992.

26

(2]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

J. S. Chase, H. M. Levy, M. J. Freely, and E. D. Lazowska. Sharing and protection in
a single address space operating system. ACM Transactions on Computer Systems,
November 1994.

A. Dearle, R. di Bona, J. Farrow, F. Henskens, A. Lindstrom, J. Rosenberg, and
F. Vaughan. Grasshopper: An othogobnally persistent operating system. Technical
Report GH-03, Basser Dept. Computer Science, University of Sydney, 1994.

Robin Fairbairns. Pegasus summary report, kernel work package. Technical Report
Pegasus paper 93-1, University of Cambridge Computer Laboratory, 1993.

G. Heiser, K. Elphinstone, S. Russell, and G. R. Hellestrand. A distributed single
address-space operating system supporting persistence. SCS&E Report 9302, Univ.
of New South Wales, School of Computer Science, Kensington, Australia, March
1993.

Jerry Huck and Jim Hays. Architectural Support for Translation Table Management
in Large Address Space Machines. In Proceedings of the 20th International Symposium
on Computer Architecture, May 1993.

Integrated Device Technology, Inc. IDT79R4600 ORION Hardware User’s Manual,
October 1993.

J. Liedtke. Some theorems about guarded page tables. Arbeitspapiere der GMD
No. 792, German National Research Center for Computer Science (GMD), Sankt
Augustin, 1993.

J. Liedtke. Address space sparsity and fine granularity. In 6th SIGOPS FEuropean
Workshop, pages 7881, Schlo3 Dagstuhl, Germany, September 1994. also in Oper-
ating Systems Review 29, 1 (Jan. 1995), 87-90.

J. Liedtke. Page table structures for fine-grain virtual memory. IEFE Technical Com-
mittee on Computer Architecture Newsletter, pages xx—xx, xx 1994. also published
as Arbeitspapier der GMD No. 872, German National Research Center for Computer
Science (GMD), Sankt Augustin, 1993.

J. Liedtke. Some theorems about restricted guarded page tables. Arbeitspapiere
der GMD No. 834, German National Research Center for Computer Science (GMD),
Sankt Augustin, 1994.

Kevin Murray, Tim Wilkinson, Peter Osmon, Ashley Saulsbury, Tom Stiemerling,
and Paul Kelly. Design and Implementation of an Object-Oriented 64-bit Single
Address Space Microkernel. Technical Report 9, SARC, Dept. Computer Science,
City University, London, 1993.

D. Nagle, R. Uhlig, T. Stanley, S. Sechrest, T. Mudge, and R. Brown. Design tradeoffs
for software managed TLBs. In 20th Annual International Symposium on Computer
Architecture (ISCA), pages 27-38, San Diego, CA, May 1993.

R. L. Sites, editor. Alpha Architecture Reference Manual. Digital Equipment Corpo-
ration, Maynard, M.A., 1992.

M Talluri, S. Kong, M. D. Hill, and D. A. Patterson. Tradeoffs in supporting two page
sizes. In 19th Annual International Symposium on Computer Architecture (ISCA),
pages 415-424, Gold Coast, Australia, May 1992.

Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of su-
perpages with less operating system support. In Sixth Int’l Conf. on Architectural
Support for Programming Languages and Operating Systems, October 1994.

Madhusudhan Talluri, Mark D. Hill, and Yousef A. Khalidi. A new page table for
64-bit address spaces. In Proc. SOSP’95, 1995.

27

