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Abstract

We describe a new ‘real-time’ process algebra with simple semantics but consider-
able expressive power. It exhibits the advantages of both the ‘constraint-oriented’
and ‘marker variable’ specification styles. The definition extends Milner’s CCS,
firstly with a simple notion of absolute time added to actions, and then with
relative timing expressions which may refer to time markers.



1 Introduction

Process algebras such as CSP, CCS and LOTOS are popular formalisms for spec-
ifying concurrent systems, but they lack a model for real time. Although many
proposals for real-time process algebras been made, they generally suffer from
overly complex semantics, especially where the concurrency operators are con-
cerned, or rely on counter-intuitive priority-based concepts in order to achieve
expressibility.

We define a new real-time process algebra which combines simple semantics
with good expressive power. To do this we have combined the best features of two
previously separate streams of real-time research, the ‘constraint-oriented’ and
‘marker variable’ approaches. As a concrete illustration we describe an extended
version of Milner’s Calculus of Communicating Systems (CCS).

This paper defines the new language and illustrates its application with a
small case study. Some familiarity with CCS is assumed.

2 Motivation

Numerous real-time extensions to the process algebraic specification languages
have been proposed in the last 6-7 years, yet none has emerged as dominant.
We believe this is because their semantic definitions have been too complex, or
they have been based on concepts and operators that are counter-intuitive or ill-
defined at the user level. We therefore seek to develop a real-time process algebra
with simple semantics, that supports a natural style of specification.

In order to do this we are combining two previously distinct streams of re-
search. Firstly, the ‘constraint-oriented’, or ‘well-caused’, approach takes advan-
tage of true concurrency semantics in order to define a real-time model that does
not suffer from the problematic inter-dependence of processes usually found when
time is added to process algebra concurrency operators. This model was origi-
nally suggested by Fidge [10] and then independently by Aceto and Murphy [1]
who explored its implications in depth. Secondly, the ‘marker variable’ model was
suggested by Zic [22, 23] as an intuitively appealing way of expressing real-time
requirements in process algebraic specifications relative to preceding events.

To illustrate the combined approach this paper describes how it can be em-
bedded in CCS [17]. The resulting language has the following aims and charac-
teristics.

e No new operators or transition rules are needed. Syntactically time is in-
troduced by adding extra annotations to the existing prefix operator. Se-
mantically time introduces extra information to the transition labels, but
no new rules are added.
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The meaning of existing operators is not changed. In particular, we reject
the notion of ‘time-determinism’ in which choices can be ‘decided’ by the
passage of time. The times attached to alternatives do not alter the ability
to select any ‘enabled’ action. Similarly, we aim to retain the good com-
positional properties that have made the process algebras so popular for
defining concurrent behaviours. The combined behaviours of two processes
are merely a subset of their separate behaviours.

Logically independent behaviours evolve independently. Non-interleaving
semantics are used so that parallel behaviours are dependent on one an-
other only at explicit interaction points. This greatly simplifies the in-
troduction of time to the parallel composition operators, and means that
parallel behaviours can be analysed separately.

The passage of time is not forced. In particular, we reject the concept of ‘tick
events’ or ‘aging’ functions to make time progress. Such models are overly
constructive and troublesome in the context of parallel composition because
otherwise independent behaviours are required to agree on the passage of
time.

Generalised timing expressions are allowed. Marker variables are used to
express relative timing requirements by holding the time at which significant
actions occurred. These variables may then appear in timing expressions.
Sets of absolute times form the basis of the timing model because they are
more powerful than time intervals. They can express non-contiguous ranges
of times, e.g., for when there are two distinct ways to achieve a behaviour
with widely differing execution times. Also set logic is well understood so
a separate ‘interval algebra’ does not need to be defined.

Specifications are non-constructive. They say what happens and when,
but not how. Actions are dimensionless in time and zero-time separation
of actions is allowed. Since process algebras are specification, not imple-
mentation, languages their actions merely denote the moments at which
significant events (state changes) must be observed. Such denotations have
no execution-time overheads in themselves, and the number of ‘names’ we
may choose to give to a particular moment in time is unbounded.

Language definition

This section formally defines the real-time process algebra. An example of its use
can be found in Section 4.

The language definition extends both the ‘basic’ and ‘full’ CCS languages. In

the former case a simple definition of time is introduced via a single absolute time



associated with all actions. Although conceptually adequate for expressing any
desired real-time behaviour, this notation is too inconvenient for general use. We
therefore then introduce marker variables and set-valued timing expressions to
the full language so that concise and relative timing requirements can be stated.

3.1 Basic language

The basic language is identical to standard CCS [17, §2.4] with extra annotations
on the prefix operator.

Let A be a set of action names; A a set of co-names; L = AU A the labels;
Act = LU {7} the set of all possible actions including the silent action 7; f a
relabelling function on actions; I an indexing set with {E; | ¢ € I} a family of
expressions indexed by I.

Also let T be a set of absolute time values. If a discrete time model is desired
T can be the set of natural numbers. For a continuous time model it is the non-
negative reals. The following rules are independent of the time model adopted.

Let £ be the set of agent expressions. It is defined as follows, where E, F;
are already in &.

1. a@t“E, a Prefix (o € Act; t,c€T)
2. Yier By, a Summation

3. Ei | Fy, a Composition

4. E\ L, a Restriction (L C L)

5. E[f], a Relabelling

We also assume the existence of a set of agent constants K each of which can be
defined as follows, where G is the set of agents, i.e., agent expressions without
free variables.

6. AL G, agent constant Definition (A € KC,G € G)

As usual we allow the ‘nil” agent 0 to be defined as a choice between no

alternatives [17, p.44]:
def

0= ey &i -

The only unusual features are the absolute time ¢ associated with each action,
and the ‘context’ ¢ associated with each prefix operator. The absolute time ¢ is
supplied by the specifier. It states that action o can occur at exactly time ¢ only.
Obviously this is very restrictive—in the full language far more powerful timing
specification mechanisms are built from this simple basis, however.

The context ¢ is used to support the definitions only. It defines the time at
which the causally preceding action (if any) occurred and is used to ensure that
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Figure 1: Transition rules.

time does not go backwards. It is not intended to be seen by the specifier. The
context may therefore always be omitted in specifications, in which case a default
value is assumed:

a@t-F =aat?FE .

3.1.1 Transitional semantics

The transitional semantics is closely based on standard CCS [17, §2.5] except
that transition labels carry the absolute time at which each action occurred and
the transition rule for prefix is extended.

A labelled transition system (S,T,{—| a € T'}) consists of a set S of states
(taken to be £), a set T of transition labels and a set of transitions — C S x S
for each a € T'.

Each transition label a € T is a pair (a,t) consisting of an action name
a € Act, and an absolute time ¢t € T recording when the transition occurred.

4



a@Q2 - p@5-cQ4 -0
(a,2)

b@5 % c@4 - 0

(b,5)

c@4°0

Figure 2: Derivation tree showing that time cannot go backwards in prefixes.

Transition rules for all basic CCS operators are shown in Figure 1, where
a€ Act;t,ceT,a€eT, E,Fe&; GeqG;leLl; LCL.

The significant change is in Act. It states that action «, specified to occur
at absolute time ¢, can do so only if ¢ is greater than or equal to the context
time c. Since ¢ denotes the time at which the causally preceding action occurred,
this ensures that time cannot go backwards. In Figure 2, for instance, action ¢
is specified to occur at time 4 but it cannot because its context states that the
previous action occurred at time 5.

After an action is performed the subsequent behaviour E is updated in Act
to record the fact that the most recent action occurred at time ¢. This is denoted
(E)! and is defined easily by induction on agent expressions as follows.

1. (cQu¢E) =aQ@u‘E
2. (Zier Bi)' = Lier(B)'
3. (En| E2)' = (En)' | (E2)'
4. (BE\L) = (E)'\ L

5. (E[f)" = (B)f]

6. (A)' = (G)Y, (AZG)

(E)! thus replaces the ‘context’ of the nmext prefix(es) in E with ¢. (This is
sufficient because action prefix is the only operator that can directly perform an
action.)

We can think of the absolute times in the transition rules as part of the action
name. Thus, in Figure 3, action a performed at time 2 is distinct from action a
at time 5.



a@2 -0+ a@5-0+ b@4 -0

(a,2) | (a,b) (b, 4)

0 0 0

Figure 3: Derivation tree showing distinctness of timed actions and time-
independent choice.

Rule Sum tells us that time does not influence choices. This is because we
view an agent expression as a non-constructive specification, not an executable
implementation. Expression

a@5-0+0@4-0

thus specifies a system that either performs a at time 5 or action b at time 4. It
does not state that only the earlier alternative is allowed, as illustrated by the
three possible behaviours in Figure 3.

Rules Com; and Coms; tell us that parallel agents do not interact when
performing independent actions. In Figure 4, therefore, actions a and ¢ occur
entirely separately, in either order. If viewed as an interleaving of actions it thus
appears that time goes backwards on the right-hand derivation. In fact, the
times on these two transitions are incomparable in the partial ordering defined
by causality. An anomaly arises only if we attempt to impose an arbitrary total
order on independent actions [12]. As noted by Fidge [10], the true, partial causal
ordering never contradicts the temporal one or, as succinctly stated by Aceto and
Murphy [1], such traces are “ill-timed but well-caused”.

Furthermore, rule Comgj states that agents can interact only if they agree
on the time at which the shared action occurs. Thus, in Figure 4, the shared
action can occur at time 6 only, even though the first agent is also prepared to
perform it at time 7. If there is no time at which two agents agree to interact
then the action is not possible. Clearly the semantics linking timing behaviour
and concurrency is very simple in this model. Furthermore, the approach accords
well with the abstract ‘constraint-oriented’ specification style [8].

3.1.2 Bisimulations and equivalence

The bisimulation semantics of our language is very simple. As shown in Sec-
tion 3.1.1, the ‘labels’ in our transition system consist of action name/absolute
time pairs, rather than just action names. The only change that is needed to
standard CCS semantics is thus to replace the occurrences of action names with
name/time pairs in the definitions.



(a@2 - (b@Q7 - 0 + bQ6 - 0) | c@3 - Q6 - 0) \ {b}

(a,2) (¢,3)
((b@7 %0 + b@6  0) (a@2 - (bQT - 0 + bQG - 0)
| c@3 - ba6 - 0) \ {b} | b@6 % 0) \ {b}
(c,3) (a,2)
((b@QT7 7% 0 + bQ@6 * 0) ((bQ7 % 0 + b@6 * 0)
| b@6 ? 0) \ {b} | b@6 ? 0) \ {b}
(1,6) (1,6)
0 0

Figure 4: Derivation tree showing independence of parallel actions and the need
to agree on times to interact.
Strong bisimulation [17, §4.2] is defined as follows.

Definition 1. A binary relation § C P x P over agents is a strong bisim-
ulation if (P, Q) € S implies, for all («,t) € Act X T,

1. whenever P 4 p’ then, for some @', Q () Q' and (P',Q') € S, and
2. whenever Q () Q' then, for some P', P @4 prand (P',Q') €S.

For two agents to be strongly bisimilar, denoted P ~ (), they must therefore be
able to do the same actions, including 7, at the same times. Thus the following
two agents are not bisimilar

a@3 - b@5 - 0 o4 a@3 - b@4 - 0,

even though they can both perform the same actions, because they do action b
at different times.

The definition of weak equivalence [17, §5.1] is extended similarly. Let s €
(Act x T)* be a sequence of ‘timed’ transition labels, and § € (£ x T)* be the
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sequence gained by deleting all pairs in s whose first element is 7. Also define
a new transition system, denoted E == E', stating that £ can be transformed
to E' by performing the sequence of timed actions in s, with zero or more timed
7 actions before and after each action in s. Since this new transition system is
defined using the old one ‘—’ [17, p.107], then in order for a ‘=" transition to
be valid the times in the action sequence between E and E’ cannot go backwards.

Definition 2. A binary relation & C P x P over agents is a (weak)
bisimulation if (P, Q) € S implies, for all (a,t) € Act X T,

1. whenever P % p’ then, for some @', @ oy Q' and (P',Q') € S, and
M / / (O‘:t) / 1oy
2. whenever @) @' then, for some P', P =% P" and (P',Q’) € S.

Like the usual CCS semantics for bisimilarity, denoted P = (), the number of
silent 7 actions performed between observable ones is not relevant. For instance,

a@3 - 7@5 - QR - F ~ q@3 - 7@Q4 - TQT - p@R - F' .

However, unlike the usual semantics, 7 actions can still have an effect via their
influence on subsequent timing ‘contexts’. For instance,

a@3 - 7@5 - b@Y - F % a@3 - T@Q9 - hQS - F

because on the left-hand side the b action is possible, but on the right it is not,
since it would require time to go backwards.

Finally, the definition of fully-substitutive equality [17, §7.2] is again a straight-
forward extension.

Definition 3. P and () are equal or (observation-)congruent, written P =
Q, if for all (a, 1),

1. whenever P % pr then, for some @', Q ) Q' and P' ~ (), and
2. whenever ) () Q@' then, for some P’, P gﬁ P and PP~ (@Q'.

As usual this definition serves to cover the case where a 7 action is the first one
in a choice. It makes an nitial timed 7 significant, even when it takes zero time.
For example, given some initial context ¢ > 0,

T@Qc- E # (E)°,

even though E has the same ‘starting time’ in both cases, because the two agents
are not necessarily equivalent when used as operands in a choice.



3.1.3 Equational laws

The equational laws of our revised language differ significantly from those of
standard CCS [17, ch.3] in only two respects.

Most of the laws are unchanged. Propositions 1 [17, p.62], 4 [17, p.65], 8,
9, 10 [17, p.80] and Corollary 11 [17, p.81] are not altered in any way, and
Corollary 7 [17, p.70] requires only a minor syntactic extension due to our new
prefix operator. Thus our language continues to obey natural properties such as

1(1) P+Q=Q+P
7(2) (e@t-Q)[f] = fla)at-Q[f]
8(2) PI(QIR)=(P|Q)|R
(2)

9(2) P\K\L=P\(KUL)

and so on.
A significant difference occurs in the handling of 7 actions in prefixes, however.
Proposition 2 and Corollary 3 [17, pp.62-3] are revised as follows.

Proposition 2: 7 laws

(1) a@t-7@Qu- P =ca@t-(P)", ift<u
(2) (P)+7@t-P=(P)*
(3) a@t- (P +71@Qu-Q)+ @t (Q)" =@t (P+7Qu-Q), ift<u

Corollary 3 (P)'+r@t- (P+ Q) =7at- (P + Q)

Apart from the obvious syntactic change of adding times to the actions, the
main extension is the use of our auxiliary ‘context changing’ function to ensure
that agent expressions that are intended to be equivalent have the same initial
contexts. In Proposition 2(1), for instance, we use (P)" rather than P on the
right-hand side because the occurrence of P on the left can perform actions at
only time v or later. (In general some agent (P)' is different than (P)%° because
the former may be able to perform an action at time 15, whereas the latter
cannot. )

The new side-conditions on Propositions 2(1) and 2(3) are an unfortunate
complication. They are needed to ensure that the 7 actions can indeed occur
and are a necessary consequence of the Act rule. Consider the situation on
the left-hand side of Proposition 2(1) if ¢t was greater than u. After action a was
performed the state would be 7@u!P which is equivalent to the nil agent 0 because
the 7 action is ‘blocked’. This is different than the corresponding expression from
the right-hand side, i.e., (P)%, which may still perform any actions from P as long
as they occur after time u. (Indeed all of the laws involving prefix become much
more complicated if we allow arbitrary contexts to be supplied, rather than the
default of 0, because these could block any action.) Also see Section 5.
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The second major difference is that the ‘expansion law’, as defined by Propo-
sition 5 and Corollary 6 [17, p.69], does not apply to our language (except in the
degenerate case where all actions occur at the same time). This is a natural con-
sequence of our decision to use true concurrency semantics—the expansion law is
applicable only to interleaving models. We do not see this as a serious problem,
however. The loss of this law is more than compensated for by the simplicity of
our real-time semantics. It has long been recognised that this law is at odds with
the requirements of modelling distributed, real-time systems [13, 9].

Nevertheless, Aceto and Murphy [1] show how a form of expansion theorem
can be defined for a timed, non-interleaving model by using the transition, rather
than prefix, structure of agents as the basis. To achieve this they define a new
prefix-like operator which models not the ability of an action to precede an agent,
but the ability of an action label to lead to an agent expression via a transition.
In our case we could define such an operator, denoted ‘¢’, as follows.

aat§ BN (p)

This transition rule is exactly the same as Act, except that it does not constrain
time to go forwards. It can thus model the apparent reversal of time created by
interleaving independently timed transitions. Proposition 5 and Corollary 6 can
then be trivially modified as follows.

Proposition 5: the expansion law

Let P = (Py[fi]]...| Pulfa]) \ L, with n > 1. Then
S {fil@ato (AP Plfa) \ L
P Pl fi(a) ¢ LUT}
+ S {rato( Plfl]|---|P-'[fz~]|---|P}[fj]|---|Pn[fn])\L

P P p Y P ) = Fi) i< g}

Corollary 6
Let P= (P |...|P,)\ L, with n > 1. Then

P = SHeeto(P|...|P|.. . |P)\L:P, "% P a¢LUT}
+ S A{rato (P | |P|...|P|...| P\ L:

PP 8 P <}

3.2 The full language

Just as Milner extends basic CCS with a more expressive ‘value-passing’ notation,
itself defined in terms of the basic language, we extend the primitive timing notion

10



presented above with a much more expressive notation using marker variables and
time sets.

Our full real-time language is an extension to Milner’s value-passing calcu-
lus [17, §2.8], and can thus take advantage of CCS variables in timing expressions.
Let V denote the set of CCS walue variable names. We introduce a distinct set
M of marker variable names which are used to hold absolute times. We also
introduce R as the set of non-empty sets of absolute times from 7.

Let C be the finite functions from marker variables to absolute times. Thus
some function C' € C defines a mapping from zero or more marker variable names
to absolute times. Such functions are denoted {m +— 1,n + 4,...} when variable
m maps to 1, n maps to 4, etc. Where our basic language had ‘contexts’ consisting
of a single time value ¢, the full language has contexts consisting of pairs (¢, C') €
T x C, i.e., an absolute time and a marker variable mapping. The absolute time
defines when the causally preceding action occurred, as before. The mapping
defines the values associated with previously encountered marker variables, if
any.

Syntactically the major difference between the basic and full languages is a
further extension to the prefix operator.

1. a@T: M ©“Y E, aPrefix (o« € Act; (¢,C) €T xC; TER; M C M)

Its context is extended as explained above. It also allows the action to be fol-
lowed by a time-set-valued expression 7" € R, thus stating that this action may
occur at any one of the times in 7. T can be expressed using conventional set-
comprehension notation, with free variables drawn from M and V as long as
they are defined in C' and the surrounding CCS variable scope, respectively. The
current language limits the scope of marker variables to strictly sequential agent
expressions. Furthermore the action can be followed by a set of marker variable
names M. When (and if) the action occurs each of the variables in M will be
assigned the value of the absolute time at which the action occurred, for use in
subsequent timing expressions. (We also assume, but have not shown above, that
action names in prefixes can be followed with message-passing parameters, as in
value-passing CCS [17, p.55].)

A number of syntactic conveniences are used. As in the basic language, the
contexts are not usually explicitly supplied by the user, so a simple default is
assumed:

a@T: M- E = aaT: M"Y E .

We omit the set brackets for singleton sets, i.e.,

D E = aa{ty: {m} VB,

a@Qt:m
where t € T and m € M. Also empty marker variable sets may be omitted:

a@T: {} D E = a@r 9 E .

11
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9 p a@T{z/5}: M “ E

1. a@QT: M

2. a@{t1 - -tn}: M ) E E{t;tl...tnltzc} a@t: M o) E

(e,0)

3. aQt: M E a@t ¢ (E) (t,C@{m:M -m—t})

Figure 5: Translations from full to basic prefix operators.

Finally, timing expressions are made optional by assuming the least-defined de-
fault:

D p= a@{t:Tit>ch M 9 p

a: M
(the earliest time at which « can occur is ¢ because this is the time at which the
preceding action happened).

Milner lets agents F' in the value-passing calculus be rewritten in basic CCS
via a simple translation function, denoted F [17, p.56]. We extend this translation
function further, as shown by the rules in Figure 5 for the new prefix operator,
where a € Act; T € R; M C M; (¢,C) € T xC; t,ty,...,t, € T; £ C VUM,
v C T. It allows expressions in the full language, with marker variables and
arbitrary timing expressions, to be routinely re-expressed in the basic language,
with simple absolute times only, thus formally defining their meaning.

Rule 1 allows timing expressions to be eliminated, replacing them with the
sets of absolute times they denote. It assumes that all elements of the set of
free variables & in timing expression 7' are either defined CCS value variables
from V), or are marker variables from M that have a value defined in the current
context C. Notation T{Z/v} then represents replacement of all free occurences
of elements of & in T by the corresponding CCS ‘value’ or marker variable values,
respectively. In the third node of Figure 6, for instance, the value of free variable
m in expression {m+1...m+3} is bound by its appearance as a marker variable
defined in context (4, {m +— 2}), so it is replaced in the set expression to yield
the simple set of absolute times {3,4,5} (of which only the second two times are
possible since the preceding action occurred at time 4).

Rule 2 then allows simple sets of absolute times to be eliminated by re-
expressing them as a choice between the action occurring at each time in the set.
This is a very powerful property, not enjoyed by other real-time process algebras.
It is made possible only by our rejection of ‘time-deterministic’ choices [10] and
is a major contributor to the simplicity of our semantics. Thus the third node in

12



a@2:m - b@4 - c@{m+1...m+3}-0

(a,2)
pad 7 cafm +1.. .m+3}-0
(b,4)
ca{m+1...m+3} "o

Figure 6: Derivation tree showing the use of a marker variable to define relative
timing and time-based choices.

Figure 6, once reduced to
c@{3,4,5) Mo

can be re-expressed as

(4.{m2}) (4.{m2}) (4.{m2})

cQ3 0+ c@4 0 + c@b 0.

Rule 3 allows marker variable declarations to be removed, thus completing the
translation of full prefix operators to basic ones. When a prefix has been reduced
to a singleton timing specification ¢t any marker variables m € M declared in the
prefix will be mapped to this time if the action occurs. Thus the context of the
subsequent action E is updated so that it records the occurrence of a at time ¢,
and inherits context C' updated to reflect the mapping of all markers in M to t.
This is denoted using function ‘over-riding’ as C' @ {m : M - m + t} which will
add a new mapping for any m not in C' or replace the existing mapping for an m
already in C.

Importantly, the extended contexts are still maintained separately for causally
independent actions. In Figure 7 the two parallel agents both initially inherit the
value of marker m. Following their first actions they set n to 4 and 7, respectively.
These two ‘instances’ of n belong to different marker name spaces and are thus

13



a@2:m - (b@4:n - c@m +n-0|dQ7:n-e@m +n - 0)

(a,2)
(b@4d:n =2 cam +n -0
| da7:n P17 cam + n - 0)
/ (d.7)
(c@m +n (L tm=2eodh) g (b@4:n 2D cam +n -0
| dQT:n 2D cam +n - 0) | e@m +n (3 {m—2n07h) 0)

(b,4)
(C@m +n (4, {mr—>2 nH4} c@m +n (2,{m»—>.2,m—>4}) 0
| e@m +n (2,{m—2, nH?} e@m +n (2,{m—2,n—T7}) 0)

(0| da7:n P eam +n - 0) (b@d:in P cam +n-0]0)

Figure 7: Partial derivation tree showing inherited and independent marker name
spaces.

distinct. Therefore, even though actions ¢ and e both occur at relative time
‘m +n’, they actually happen at absolute times 6 and 9, respectively, due to the
different contexts. The current language does not allow interacting parallel agents
to exchange marker information. If this marker exchange mechanism is allowed,
the specifier must be aware that direct use of time readings is not straightforward.
This is because time readings in this manner are not, in general, comparable [12].

Simple rules for operators other than prefix allow the translation function to
be recursively applied through an entire agent expression, in exactly the same

way as the standard CCS model [17, p.56].
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4 Case study: repeater system

To illustrate the use of the full language this section shows how a particular
software requirement can be specified.

Consider a ‘repeater’ that must read numbers from a memory-mapped i/o
location without missing, duplicating or mis-reading them. Numbers appear
periodically, every 50 time units, but are reliably readable for only 45 time units.
There is a 5 time unit transition between each number, during which the value
in the memory location is ill-defined. Thus the first value can be read reliably
from time 0 to 45, inclusive, the second from 50 to 95, the third from 100 to 145,
and so on.

Firstly we define a source S of such numbers as follows. It is an agent that
represents the situation where an increasing series of numbers, starting at 0,
appears at ‘location’ s, with timing as outlined above. It does not constrain how
the numbers are ‘read’, however. It allows each number to be read several times,
or not at all. Furthermore, it allows reads to occur during the transition period,
in which case the error value ‘—1’ is sent.

S = S
S, = S (s()@ft]i*50 <t <ix50+45}- S,
1EN...00

+5(—1)@{t)i %50 +45 <t < (i +1) %50} - S;)

Agent S,, represents the situation where the last value read was in the n'® period.
The next ‘read’ may then occur in the i*" period, where 7 is at least as great as
n. Thus a number of periods may go by with no read occurring, or a number of
reads may occur in the same period. When the next read does occur there are
two possibilities. Either the read occurs at the correct time, i.e., within 45 time
units of the beginning of period 7, in which case the number of this period is sent
on channel s, or the read occurs at the wrong time, in the last 5 time units of
period 7, in which case the error value —1 is sent.

Our goal is to define a repeater agent R which, when placed in such an envi-

ronment, i.e.,
(STR)\{s}

will read and repeat values from S, on some channel r, so that the sequence
0,1,2,...1is correctly produced, with no duplicated, missing or ‘error’ values.
As a first attempt consider the following agent:

Rl = s(x) -7(z) - R1 .

It reads values from s into variable  and repeats them on channel r. However
it may read at any time, and thus may miss values entirely or read error values.
Also 7 may occur any time after the preceding s, since no timing requirement is
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specified, so even if a value is correctly read it may take so long to repeat it that
subsequent values are missed.
Let us use a marker variable m to correct the second of these problems:

R2 = s(z):m -T(x)@{t|t <m +5}- R2.

This agent guarantees that 7 will occur within 5 time units of the preceding action
s. Thus, if the read was successful, i.e., occurred within the first 45 time units of
the period, the value will be repeated before the next number becomes available.
(In fact this timing requirement is much stricter than necessary.) R2 may still
fail to read the values correctly, however. It can still miss, duplicate or mis-read
numbers.

As a further improvement we take advantage of the constraint-oriented spec-
ification style to ensure that s actions never occur ‘between’ values:

R3 =s(x)@{t|In > 0-n x50 <t <nx50+45}:m - -T(x)@{t|t <m+ 5} - R3.

This ensures that s actions can occur only when a ‘good’ value is available. It
thus constrains agent S so that its second alternative is never possible. But,
although R3 will never read the error value, it can still skip numbers or read
them more than once.

To complete the example we further constrain the repeater so that it will
perform a read exactly once in each period:

R4 = R4
R4, = s(x)@{tlnx50 <t <nx50+45}:m -T(x)Q{t|t <m+5} - Rdpy .

Here the CCS value-passing variable n acts like a counter for time periods. It is
incremented after each (successful) read so that the next read must occur in the
subsequent period. R4 thus further constrains S.

We have now fully specified a solution to the repeater problem. It is still far
from being an implementation, however. As a final illustration of the way timed
agents can constrain one another we refine our solution to a closer approximation
of a particular implementation. A key feature of agent R4 is its ability to decide
when to perform a s action. In practice this would be implemented via a hardware
clock. Therefore, let us define a satisfactory ‘implementation’ T', which derives
its timing information from a clock C:

R = (C|T)\{a}

C = @al:n-C1

Cl = @aQ@(n+50):n-C1

T = am-s(x)@(m+2) -Flx)@(m+4)-T.

Agent C' represents a clock whose ‘alarm’ action a occurs every 50 time units,
starting at time 0. Action @ in agent C1 is defined to occur 50 time units since
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its causal predecessor, via marker n, and also defines a new value for marker n,
which will be used in the nezt iteration. The repeater is then easily implemented
as T' by just waiting for each alarm, and reading and repeating the value in s.
We have assumed that each of these actions takes exactly 2 time units in the
actual implementation. (Again we have overspecified the solution, for the sake of
brevity.)

At this level of abstraction we have still made a powerful assumption that C
is precisely synchronised with the incoming data stream. Indeed, it is interesting
to note that C' can also be thought of as implementing a ‘data ready’ signal
associated with the availability of each character, merely by taking advantage of
the associativity of the composition operator, i.e.,

(S1C) 1 T)\ {a, s} -

Thus this abstract model describes the behaviour of two distinct implementations.

5 Discussion

The constraint-oriented approach advocated above cannot directly express no-
tions of ‘priority’ or ‘urgency’, used in some other timed process algebras [3, 6, 4].
Indeed we do not feel that it is appropriate to do so. Being allowed to express
a ‘priority’ between two actions carries with it subtle consequences for causal-
ity. It can make two otherwise independent actions indirectly dependent on one
another [7, 11], in a manner not reflected by the communications pattern of the
network. How one would be expected to implement a priority order between
two geographically-separated actions is very unclear—in the real-time systems
community it has been suggested that the concept of priority is flawed and quite
meaningless across processor boundaries [19, 5, 15]. Furthermore, it appears that
the notions of ‘priority’ and ‘true concurrency’ are so closely related [7] that no
single language needs to support both.

Similarly, we have made no attempt to model the concept of assigning prob-
abilities to nondeterministic choices [14, 21| because we see this as a concept
entirely orthogonal to that of ‘time’.

The main disadvantage with our definitions is the clumsy algebraic laws for
‘absolutely-timed’ 7 actions (see Section 3.1.3). Indeed, it is telling to note that
Toetenel, when defining his own real-time CCS-based process algebra, states that
“there is no syntactic 7 action” but only that “an internal action with very similar
semantics is specifiable [emphasis added]” [20]. Similarly, Aceto and Murphy [1]
provide a new operator ‘WAIT’ to achieve the effect of a timed 7, where this new
operator is defined using relative, rather than absolute, timing. The problem
seems to be a universal one.

Although we could also have defined such a new operator ourselves we have
not done so because adding new real-time operators increases the complexity
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of the semantics and can have subtle, unanticipated side-effects. For instance,
when a ‘delay’ operator is added to an algebra like LOTOS [16], we note that
it can interact with other operators in unfortunate ways. If such a delay is used
as the second operand to the LOTOS ‘disabling’ operator then the combined
behaviour no longer enjoys the simple recursive definition normally possible by
‘unwinding’ the disabling operator as a choice between the initial actions of its
two operands [2], because the remaining delay period must change each time an
‘uninterrupted’ action occurs. In effect, the ‘delay’ operator changes the seman-
tics of surrounding operators!

6 Conclusion

We have defined, and demonstrated the application of, a new real-time process
algebra, based on CCS. It offers the advantages of simple semantics, but still
has good expressive power. This was achieved by combining the best features of
two previous streams of research, the ‘constraint-oriented’ and ‘marker variable’
approaches.

Future work will see the application of our approach to Milner’'s new -
calculus [18]. Interestingly, this will sidestep the problem with 7 actions men-
tioned above, because ‘syntactic 7s’ are not part of the language. More impor-
tantly, it also offers the potential to treat marker variable names as first class, like
other m-calculus names. This will increase the expressive power of the language
even further because it will be possible for parallel agents to exchange markers.
Whereas marker variables can only be used within a single agent at present, this
extension will make ‘inter-process’ timing expressions possible.
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