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Abstract

We describe a new �real�time� process algebra with simple semantics but consider�
able expressive power� It exhibits the advantages of both the �constraint�oriented�
and �marker variable� speci�cation styles� The de�nition extends Milner�s CCS�
�rstly with a simple notion of absolute time added to actions� and then with
relative timing expressions which may refer to time markers�



� Introduction

Process algebras such as CSP� CCS and LOTOS are popular formalisms for spec�
ifying concurrent systems� but they lack a model for real time� Although many
proposals for real�time process algebras been made� they generally su�er from
overly complex semantics� especially where the concurrency operators are con�
cerned� or rely on counter�intuitive priority�based concepts in order to achieve
expressibility�

We de�ne a new real�time process algebra which combines simple semantics
with good expressive power� To do this we have combined the best features of two
previously separate streams of real�time research� the �constraint�oriented� and
�marker variable� approaches� As a concrete illustration we describe an extended
version of Milner�s Calculus of Communicating Systems �CCS��

This paper de�nes the new language and illustrates its application with a
small case study� Some familiarity with CCS is assumed�

� Motivation

Numerous real�time extensions to the process algebraic speci�cation languages
have been proposed in the last 	
� years� yet none has emerged as dominant�
We believe this is because their semantic de�nitions have been too complex� or
they have been based on concepts and operators that are counter�intuitive or ill�
de�ned at the user level� We therefore seek to develop a real�time process algebra
with simple semantics� that supports a natural style of speci�cation�

In order to do this we are combining two previously distinct streams of re�
search� Firstly� the �constraint�oriented�� or �well�caused�� approach takes advan�
tage of true concurrency semantics in order to de�ne a real�time model that does
not su�er from the problematic inter�dependence of processes usually found when
time is added to process algebra concurrency operators� This model was origi�
nally suggested by Fidge ��� and then independently by Aceto and Murphy ��
who explored its implications in depth� Secondly� the �marker variable� model was
suggested by �Zic ���� ��� as an intuitively appealing way of expressing real�time
requirements in process algebraic speci�cations relative to preceding events�

To illustrate the combined approach this paper describes how it can be em�
bedded in CCS ���� The resulting language has the following aims and charac�
teristics�

� No new operators or transition rules are needed� Syntactically time is in�
troduced by adding extra annotations to the existing pre�x operator� Se�
mantically time introduces extra information to the transition labels� but
no new rules are added�





� The meaning of existing operators is not changed� In particular� we reject
the notion of �time�determinism� in which choices can be �decided� by the
passage of time� The times attached to alternatives do not alter the ability
to select any �enabled� action� Similarly� we aim to retain the good com�
positional properties that have made the process algebras so popular for
de�ning concurrent behaviours� The combined behaviours of two processes
are merely a subset of their separate behaviours�

� Logically independent behaviours evolve independently � Non�interleaving
semantics are used so that parallel behaviours are dependent on one an�
other only at explicit interaction points� This greatly simpli�es the in�
troduction of time to the parallel composition operators� and means that
parallel behaviours can be analysed separately�

� The passage of time is not forced� In particular� we reject the concept of �tick
events� or �aging� functions to make time progress� Such models are overly
constructive and troublesome in the context of parallel composition because
otherwise independent behaviours are required to agree on the passage of
time�

� Generalised timing expressions are allowed� Marker variables are used to
express relative timing requirements by holding the time at which signi�cant
actions occurred� These variables may then appear in timing expressions�
Sets of absolute times form the basis of the timing model because they are
more powerful than time intervals� They can express non�contiguous ranges
of times� e�g�� for when there are two distinct ways to achieve a behaviour
with widely di�ering execution times� Also set logic is well understood so
a separate �interval algebra� does not need to be de�ned�

� Speci�cations are non�constructive� They say what happens and when�
but not how � Actions are dimensionless in time and zero�time separation
of actions is allowed� Since process algebras are speci�cation� not imple�
mentation� languages their actions merely denote the moments at which
signi�cant events �state changes� must be observed� Such denotations have
no execution�time overheads in themselves� and the number of �names� we
may choose to give to a particular moment in time is unbounded�

� Language de�nition

This section formally de�nes the real�time process algebra� An example of its use
can be found in Section ��

The language de�nition extends both the �basic� and �full� CCS languages� In
the former case a simple de�nition of time is introduced via a single absolute time
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associated with all actions� Although conceptually adequate for expressing any
desired real�time behaviour� this notation is too inconvenient for general use� We
therefore then introduce marker variables and set�valued timing expressions to
the full language so that concise and relative timing requirements can be stated�

��� Basic language

The basic language is identical to standard CCS ��� x���� with extra annotations
on the pre�x operator�

Let A be a set of action names� A a set of co�names� L � A � A the labels�
Act � L � f�g the set of all possible actions including the silent action � � f a
relabelling function on actions� I an indexing set with fEi j i � Ig a family of
expressions indexed by I�

Also let T be a set of absolute time values� If a discrete time model is desired
T can be the set of natural numbers� For a continuous time model it is the non�
negative reals� The following rules are independent of the time model adopted�

Let E be the set of agent expressions� It is de�ned as follows� where E� Ei

are already in E �

� �
t c� E� a Pre�x �� � Act� t� c � T �

��
P

i�I Ei� a Summation

�� E� jE�� a Composition

�� E n L� a Restriction �L � L�

�� E�f �� a Relabelling

We also assume the existence of a set of agent constants K each of which can be
de�ned as follows� where G is the set of agents� i�e�� agent expressions without
free variables�

	� A
def
� G� agent constant De�nition �A � K� G � G�

As usual we allow the �nil� agent � to be de�ned as a choice between no
alternatives ��� p�����

�
def
�
P

i�fgEi �

The only unusual features are the absolute time t associated with each action�
and the �context� c associated with each pre�x operator� The absolute time t is
supplied by the speci�er� It states that action � can occur at exactly time t only�
Obviously this is very restrictive�in the full language far more powerful timing
speci�cation mechanisms are built from this simple basis� however�

The context c is used to support the de�nitions only� It de�nes the time at
which the causally preceding action �if any� occurred and is used to ensure that
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�� P �

�A
def
� P �

Figure � Transition rules�

time does not go backwards� It is not intended to be seen by the speci�er� The
context may therefore always be omitted in speci�cations� in which case a default
value is assumed�

�
t � E � �
t �� E �

����� Transitional semantics

The transitional semantics is closely based on standard CCS ��� x���� except
that transition labels carry the absolute time at which each action occurred and
the transition rule for pre�x is extended�

A labelled transition system �S� T� f
a
��j a � Tg� consists of a set S of states

�taken to be E�� a set T of transition labels and a set of transitions
a
�� � S�S

for each a � T �

Each transition label a � T is a pair ��� t� consisting of an action name
� � Act� and an absolute time t � T recording when the transition occurred�
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a
� � b
� � c
� � �

b
� �� c
� � �

c
� �� �

�a� ��

�b� ��

Figure �� Derivation tree showing that time cannot go backwards in pre�xes�

Transition rules for all basic CCS operators are shown in Figure � where
� � Act � t� c � T � a � T � E� F � E � G � G� l � L� L � L�

The signi�cant change is in Act� It states that action �� speci�ed to occur
at absolute time t� can do so only if t is greater than or equal to the context
time c� Since c denotes the time at which the causally preceding action occurred�
this ensures that time cannot go backwards� In Figure �� for instance� action c
is speci�ed to occur at time � but it cannot because its context states that the
previous action occurred at time ��

After an action is performed the subsequent behaviour E is updated in Act

to record the fact that the most recent action occurred at time t� This is denoted
�E�t and is de�ned easily by induction on agent expressions as follows�

� ��
u c� E�t � �
u t� E

�� �
P

i�I Ei�
t �
P

i�I�Ei�
t

�� �E� jE��
t � �E��

t j �E��
t

�� �E n L�t � �E�t n L

�� �E�f ��t � �E�t�f �

	� �A�t � �G�t� �A
def
� G�

�E�t thus replaces the �context� of the next pre�x�es� in E with t� �This is
su�cient because action pre�x is the only operator that can directly perform an
action��

We can think of the absolute times in the transition rules as part of the action
name� Thus� in Figure �� action a performed at time � is distinct from action a
at time ��
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�a� �� �b� ���a� ��

a
� � � � a
� � �� b
� � �

� � �

Figure �� Derivation tree showing distinctness of timed actions and time�
independent choice�

Rule Sum tells us that time does not in�uence choices� This is because we
view an agent expression as a non�constructive speci�cation� not an executable
implementation� Expression

a
� � �� b
� � �

thus speci�es a system that either performs a at time � or action b at time �� It
does not state that only the earlier alternative is allowed� as illustrated by the
three possible behaviours in Figure ��

Rules Com� and Com� tell us that parallel agents do not interact when
performing independent actions� In Figure �� therefore� actions a and c occur
entirely separately� in either order� If viewed as an interleaving of actions it thus
appears that time goes backwards on the right�hand derivation� In fact� the
times on these two transitions are incomparable in the partial ordering de�ned
by causality� An anomaly arises only if we attempt to impose an arbitrary total
order on independent actions ���� As noted by Fidge ���� the true� partial causal
ordering never contradicts the temporal one or� as succinctly stated by Aceto and
Murphy ��� such traces are �ill�timed but well�caused��

Furthermore� rule Com� states that agents can interact only if they agree
on the time at which the shared action occurs� Thus� in Figure �� the shared
action can occur at time 	 only� even though the �rst agent is also prepared to
perform it at time �� If there is no time at which two agents agree to interact
then the action is not possible� Clearly the semantics linking timing behaviour
and concurrency is very simple in this model� Furthermore� the approach accords
well with the abstract �constraint�oriented� speci�cation style ����

����� Bisimulations and equivalence

The bisimulation semantics of our language is very simple� As shown in Sec�
tion ���� the �labels� in our transition system consist of action name�absolute
time pairs� rather than just action names� The only change that is needed to
standard CCS semantics is thus to replace the occurrences of action names with
name�time pairs in the de�nitions�

	



�a
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� � �� b
	 � �� j c
� � b
	 � �� n fbg

�a� �� �c� ��

� �

��b
� �� �� b
	 �� �� �a
� � �b
� � �� b
	 � ��

��b
� �� �� b
	 �� �� ��b
� �� �� b
	 �� ��

j c
� � b
	 � �� n fbg

j b
	 �� �� n fbg

j b
	 �� �� n fbg

j b
	 �� �� n fbg

�c� ��

��� 	�

�a� ��

��� 	�

Figure �� Derivation tree showing independence of parallel actions and the need
to agree on times to interact�

Strong bisimulation ��� x���� is de�ned as follows�

De�nition �� A binary relation S � P � P over agents is a strong bisim�

ulation if �P�Q� � S implies� for all ��� t� � Act � T �

� whenever P
���t�
�� P � then� for some Q�� Q

���t�
�� Q� and �P �� Q�� � S� and

�� whenever Q
���t�
�� Q� then� for some P �� P

���t�
�� P � and �P �� Q�� � S�

For two agents to be strongly bisimilar� denoted P 	 Q� they must therefore be
able to do the same actions� including � � at the same times� Thus the following
two agents are not bisimilar

a
� � b
� � � �	 a
� � b
� � � �

even though they can both perform the same actions� because they do action b
at di�erent times�

The de�nition of weak equivalence ��� x��� is extended similarly� Let s �
�Act � T �� be a sequence of �timed� transition labels� and  s � �L � T �� be the

�



sequence gained by deleting all pairs in s whose �rst element is � � Also de�ne
a new transition system� denoted E

s
�
 E �� stating that E can be transformed

to E � by performing the sequence of timed actions in s� with zero or more timed
� actions before and after each action in s� Since this new transition system is
de�ned using the old one ���� ��� p����� then in order for a ��
� transition to
be valid the times in the action sequence between E and E � cannot go backwards�

De�nition �� A binary relation S � P � P over agents is a �weak�
bisimulation if �P�Q� � S implies� for all ��� t� � Act � T �

� whenever P
���t�
�� P � then� for some Q�� Q

����t�
�
 Q� and �P �� Q�� � S� and

�� whenever Q
���t�
�� Q� then� for some P �� P

����t�
�
 P � and �P �� Q�� � S�

Like the usual CCS semantics for bisimilarity� denoted P � Q� the number of
silent � actions performed between observable ones is not relevant� For instance�

a
� � �
� � b
� � E � a
� � �
� � �
� � b
� � E �

However� unlike the usual semantics� � actions can still have an e�ect via their
in�uence on subsequent timing �contexts�� For instance�

a
� � �
� � b
� � E �� a
� � �
! � b
� � E

because on the left�hand side the b action is possible� but on the right it is not�
since it would require time to go backwards�

Finally� the de�nition of fully�substitutive equality ��� x���� is again a straight�
forward extension�

De�nition �� P and Q are equal or �observation��congruent � written P �
Q� if for all ��� t��

� whenever P
���t�
�� P � then� for some Q�� Q

���t�
�
 Q� and P � � Q�� and

�� whenever Q
���t�
�� Q� then� for some P �� P

���t�
�
 P � and P � � Q��

As usual this de�nition serves to cover the case where a � action is the �rst one
in a choice� It makes an initial timed � signi�cant� even when it takes zero time�
For example� given some initial context c � ��

�
c � E �� �E�c �

even though E has the same �starting time� in both cases� because the two agents
are not necessarily equivalent when used as operands in a choice�

�



����� Equational laws

The equational laws of our revised language di�er signi�cantly from those of
standard CCS ��� ch��� in only two respects�

Most of the laws are unchanged� Propositions  ��� p�	��� � ��� p�	��� ��
!� � ��� p���� and Corollary  ��� p��� are not altered in any way� and
Corollary � ��� p���� requires only a minor syntactic extension due to our new
pre�x operator� Thus our language continues to obey natural properties such as

�� P �Q � Q � P

���� ��
t � Q��f � � f���
t � Q�f �

���� P j �Q jR� � �P jQ� jR

!��� P nK n L � P n �K � L�

and so on�
A signi�cant di�erence occurs in the handling of � actions in pre�xes� however�

Proposition � and Corollary � ��� pp�	���� are revised as follows�

Proposition �� � laws

�� �
t � �
u � P � �
t � �P �u� if t � u

��� �P �t � �
t � P � �P �t

��� �
t � �P � �
u � Q� � �
t � �Q�u � �
t � �P � �
u � Q�� if t � u

Corollary � �P �t � �
t � �P �Q� � �
t � �P �Q�

Apart from the obvious syntactic change of adding times to the actions� the
main extension is the use of our auxiliary �context changing� function to ensure
that agent expressions that are intended to be equivalent have the same initial
contexts� In Proposition ���� for instance� we use �P �u rather than P on the
right�hand side because the occurrence of P on the left can perform actions at
only time u or later� �In general some agent �P ��� is di�erent than �P ��� because
the former may be able to perform an action at time �� whereas the latter
cannot��

The new side�conditions on Propositions ��� and ���� are an unfortunate
complication� They are needed to ensure that the � actions can indeed occur
and are a necessary consequence of the Act rule� Consider the situation on
the left�hand side of Proposition ��� if t was greater than u� After action � was

performed the state would be �
ut�P which is equivalent to the nil agent � because
the � action is �blocked�� This is di�erent than the corresponding expression from
the right�hand side� i�e�� �P �u� which may still perform any actions from P as long
as they occur after time u� �Indeed all of the laws involving pre�x become much
more complicated if we allow arbitrary contexts to be supplied� rather than the
default of �� because these could block any action�� Also see Section ��
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The second major di�erence is that the �expansion law�� as de�ned by Propo�
sition � and Corollary 	 ��� p�	!�� does not apply to our language �except in the
degenerate case where all actions occur at the same time�� This is a natural con�
sequence of our decision to use true concurrency semantics�the expansion law is
applicable only to interleaving models� We do not see this as a serious problem�
however� The loss of this law is more than compensated for by the simplicity of
our real�time semantics� It has long been recognised that this law is at odds with
the requirements of modelling distributed� real�time systems ��� !��

Nevertheless� Aceto and Murphy �� show how a form of expansion theorem
can be de�ned for a timed� non�interleaving model by using the transition� rather
than pre�x� structure of agents as the basis� To achieve this they de�ne a new
pre�x�like operator which models not the ability of an action to precede an agent�
but the ability of an action label to lead to an agent expression via a transition�
In our case we could de�ne such an operator� denoted ��� as follows�

�
t
c
E

���t�
�� �E�t

This transition rule is exactly the same as Act� except that it does not constrain
time to go forwards� It can thus model the apparent reversal of time created by
interleaving independently timed transitions� Proposition � and Corollary 	 can
then be trivially modi�ed as follows�

Proposition �� the expansion law

Let P � �P��f�� j � � � j Pn�fn�� n L� with n � � Then

P �
X
ffi���
t  �P��f�� j � � � j P

�
i �fi� j � � � j Pn�fn�� n L �

Pi

���t�
�� P �

i � fi��� �� L � Lg

�
X
f�
t  �P��f�� j � � � j P

�
i �fi� j � � � j P

�
j�fj� j � � � j Pn�fn�� n L �

Pi

�l��t�
�� P �

i � Pj

�l� �t�
�� P �

j� fi�l�� � fj�l��� i � jg

Corollary �

Let P � �P� j � � � j Pn� n L� with n � � Then

P �
X
f�
t  �P� j � � � j P

�
i j � � � j Pn� n L � Pi

���t�
�� P �

i � � �� L � Lg

�
X
f�
t  �P� j � � � j P

�
i j � � � j P

�
j j � � � j Pn� n L �

Pi

�l��t�
�� P �

i � Pj

�l��t�
�� P �

j� i � jg

��� The full language

Just as Milner extends basic CCS with a more expressive �value�passing� notation�
itself de�ned in terms of the basic language� we extend the primitive timing notion
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presented above with a much more expressive notation using marker variables and
time sets�

Our full real�time language is an extension to Milner�s value�passing calcu�
lus ��� x����� and can thus take advantage of CCS variables in timing expressions�
Let V denote the set of CCS value variable names� We introduce a distinct set
M of marker variable names which are used to hold absolute times� We also
introduce R as the set of non�empty sets of absolute times from T �

Let C be the �nite functions from marker variables to absolute times� Thus
some function C � C de�nes a mapping from zero or more marker variable names
to absolute times� Such functions are denoted fm �� � n �� �� � � �g when variable
mmaps to � nmaps to �� etc� Where our basic language had �contexts� consisting
of a single time value c� the full language has contexts consisting of pairs �c� C� �
T � C� i�e�� an absolute time and a marker variable mapping� The absolute time
de�nes when the causally preceding action occurred� as before� The mapping
de�nes the values associated with previously encountered marker variables� if
any�

Syntactically the major di�erence between the basic and full languages is a
further extension to the pre�x operator�

� �
T �M
�c�C�� E� a Pre�x �� � Act� �c� C� � T � C� T � R� M �M�

Its context is extended as explained above� It also allows the action to be fol�
lowed by a time�set�valued expression T � R� thus stating that this action may
occur at any one of the times in T � T can be expressed using conventional set�
comprehension notation� with free variables drawn from M and V as long as
they are de�ned in C and the surrounding CCS variable scope� respectively� The
current language limits the scope of marker variables to strictly sequential agent
expressions� Furthermore the action can be followed by a set of marker variable
names M � When �and if� the action occurs each of the variables in M will be
assigned the value of the absolute time at which the action occurred� for use in
subsequent timing expressions� �We also assume� but have not shown above� that
action names in pre�xes can be followed with message�passing parameters� as in
value�passing CCS ��� p������

A number of syntactic conveniences are used� As in the basic language� the
contexts are not usually explicitly supplied by the user� so a simple default is
assumed�

�
T �M � E � �
T �M
���fg�� E �

We omit the set brackets for singleton sets� i�e��

�
t�m
�c�C�� E � �
ftg� fmg

�c�C�� E �

where t � T and m � M� Also empty marker variable sets may be omitted�

�
T � fg
�c�C�� E � �
T

�c�C�� E �





F bF

� a
T �M
�c�C�� E

d
a
Tf�x��vg�M

�c�C�� E

�� a
ft� � � � tng�M
�c�C�� E

P
ft�t����tnjt�cg

d
a
t�M

�c�C�� E

�� a
t�M
�c�C�� E a
t c� d�E��t�C�fm�M �m��tg�

Figure �� Translations from full to basic pre�x operators�

Finally� timing expressions are made optional by assuming the least�de�ned de�
fault�

��M
�c�C�� E � �
ft � T jt � cg�M

�c�C�� E

�the earliest time at which � can occur is c because this is the time at which the
preceding action happened��

Milner lets agents F in the value�passing calculus be rewritten in basic CCS
via a simple translation function� denoted bF ��� p��	�� We extend this translation
function further� as shown by the rules in Figure � for the new pre�x operator�
where a � Act � T � R� M � M� �c� C� � T � C� t� t�� � � � � tn � T � �x � V �M�
�v � T � It allows expressions in the full language� with marker variables and
arbitrary timing expressions� to be routinely re�expressed in the basic language�
with simple absolute times only� thus formally de�ning their meaning�

Rule  allows timing expressions to be eliminated� replacing them with the
sets of absolute times they denote� It assumes that all elements of the set of
free variables �x in timing expression T are either de�ned CCS value variables
from V� or are marker variables from M that have a value de�ned in the current
context C� Notation Tf�x��vg then represents replacement of all free occurences
of elements of �x in T by the corresponding CCS �value� or marker variable values�
respectively� In the third node of Figure 	� for instance� the value of free variable
m in expression fm� � � �m��g is bound by its appearance as a marker variable
de�ned in context ��� fm �� �g�� so it is replaced in the set expression to yield
the simple set of absolute times f�� �� �g �of which only the second two times are
possible since the preceding action occurred at time ���

Rule � then allows simple sets of absolute times to be eliminated by re�
expressing them as a choice between the action occurring at each time in the set�
This is a very powerful property� not enjoyed by other real�time process algebras�
It is made possible only by our rejection of �time�deterministic� choices ��� and
is a major contributor to the simplicity of our semantics� Thus the third node in
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Figure 	� Derivation tree showing the use of a marker variable to de�ne relative
timing and time�based choices�

Figure 	� once reduced to

c
f�� �� �g
�	�fm���g�� � �

can be re�expressed as

c
�
�	�fm���g�� �� c
�

�	�fm���g�� �� c
�
�	�fm���g�� � �

Rule � allows marker variable declarations to be removed� thus completing the
translation of full pre�x operators to basic ones� When a pre�x has been reduced
to a singleton timing speci�cation t any marker variables m �M declared in the
pre�x will be mapped to this time if the action occurs� Thus the context of the
subsequent action E is updated so that it records the occurrence of a at time t�
and inherits context C updated to re�ect the mapping of all markers in M to t�
This is denoted using function �over�riding� as C � fm � M �m �� tg which will
add a new mapping for any m not in C or replace the existing mapping for an m
already in C�

Importantly� the extended contexts are still maintained separately for causally
independent actions� In Figure � the two parallel agents both initially inherit the
value of markerm� Following their �rst actions they set n to � and �� respectively�
These two �instances� of n belong to di�erent marker name spaces and are thus
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Figure �� Partial derivation tree showing inherited and independent marker name
spaces�

distinct� Therefore� even though actions c and e both occur at relative time
�m� n�� they actually happen at absolute times 	 and !� respectively� due to the
di�erent contexts� The current language does not allow interacting parallel agents
to exchange marker information� If this marker exchange mechanism is allowed�
the speci�er must be aware that direct use of time readings is not straightforward�
This is because time readings in this manner are not� in general� comparable ����

Simple rules for operators other than pre�x allow the translation function to
be recursively applied through an entire agent expression� in exactly the same
way as the standard CCS model ��� p��	��
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� Case study� repeater system

To illustrate the use of the full language this section shows how a particular
software requirement can be speci�ed�

Consider a �repeater� that must read numbers from a memory�mapped i�o
location without missing� duplicating or mis�reading them� Numbers appear
periodically� every �� time units� but are reliably readable for only �� time units�
There is a � time unit transition between each number� during which the value
in the memory location is ill�de�ned� Thus the �rst value can be read reliably
from time � to ��� inclusive� the second from �� to !�� the third from �� to ���
and so on�

Firstly we de�ne a source S of such numbers as follows� It is an agent that
represents the situation where an increasing series of numbers� starting at ��
appears at �location� s� with timing as outlined above� It does not constrain how
the numbers are �read�� however� It allows each number to be read several times�
or not at all� Furthermore� it allows reads to occur during the transition period�
in which case the error value ��� is sent�

S � S�

Sn �
X

i�n����

�s�i�
ftji � �� � t � i � �� � ��g � Si

� s���
ftji � �� � �� � t � �i� � � ��g � Si�

Agent Sn represents the situation where the last value read was in the nth period�
The next �read� may then occur in the ith period� where i is at least as great as
n� Thus a number of periods may go by with no read occurring� or a number of
reads may occur in the same period� When the next read does occur there are
two possibilities� Either the read occurs at the correct time� i�e�� within �� time
units of the beginning of period i� in which case the number of this period is sent
on channel s� or the read occurs at the wrong time� in the last � time units of
period i� in which case the error value � is sent�

Our goal is to de�ne a repeater agent R which� when placed in such an envi�
ronment� i�e��

�S jR� n fsg

will read and repeat values from S� on some channel r� so that the sequence
�� � �� � � � is correctly produced� with no duplicated� missing or �error� values�

As a �rst attempt consider the following agent�

R � s�x� � r�x� � R �

It reads values from s into variable x and repeats them on channel r� However
it may read at any time� and thus may miss values entirely or read error values�
Also r may occur any time after the preceding s� since no timing requirement is
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speci�ed� so even if a value is correctly read it may take so long to repeat it that
subsequent values are missed�

Let us use a marker variable m to correct the second of these problems�

R� � s�x��m � r�x�
ftjt � m � �g � R� �

This agent guarantees that r will occur within � time units of the preceding action
s� Thus� if the read was successful� i�e�� occurred within the �rst �� time units of
the period� the value will be repeated before the next number becomes available�
�In fact this timing requirement is much stricter than necessary�� R� may still
fail to read the values correctly� however� It can still miss� duplicate or mis�read
numbers�

As a further improvement we take advantage of the constraint�oriented spec�
i�cation style to ensure that s actions never occur �between� values�

R� � s�x�
ftj�n � � � n � �� � t � n � �� � ��g�m � r�x�
ftjt � m� �g � R� �

This ensures that s actions can occur only when a �good� value is available� It
thus constrains agent S so that its second alternative is never possible� But�
although R� will never read the error value� it can still skip numbers or read
them more than once�

To complete the example we further constrain the repeater so that it will
perform a read exactly once in each period�

R� � R��

R�n � s�x�
ftjn � �� � t � n � �� � ��g�m � r�x�
ftjt � m � �g � R�n�� �

Here the CCS value�passing variable n acts like a counter for time periods� It is
incremented after each �successful� read so that the next read must occur in the
subsequent period� R� thus further constrains S�

We have now fully speci�ed a solution to the repeater problem� It is still far
from being an implementation� however� As a �nal illustration of the way timed
agents can constrain one another we re�ne our solution to a closer approximation
of a particular implementation� A key feature of agent R� is its ability to decide
when to perform a s action� In practice this would be implemented via a hardware
clock� Therefore� let us de�ne a satisfactory �implementation� T � which derives
its timing information from a clock C�

R� � �C j T � n fag

C � a
��n � C

C � a
�n � ����n � C

T � a�m � s�x�
�m� �� � r�x�
�m � �� � T �

Agent C represents a clock whose �alarm� action a occurs every �� time units�
starting at time �� Action a in agent C is de�ned to occur �� time units since

	



its causal predecessor� via marker n� and also de�nes a new value for marker n�
which will be used in the next iteration� The repeater is then easily implemented
as T by just waiting for each alarm� and reading and repeating the value in s�
We have assumed that each of these actions takes exactly � time units in the
actual implementation� �Again we have overspeci�ed the solution� for the sake of
brevity��

At this level of abstraction we have still made a powerful assumption that C
is precisely synchronised with the incoming data stream� Indeed� it is interesting
to note that C can also be thought of as implementing a �data ready� signal
associated with the availability of each character� merely by taking advantage of
the associativity of the composition operator� i�e��

��S j C� j T � n fa� sg �

Thus this abstract model describes the behaviour of two distinct implementations�

� Discussion

The constraint�oriented approach advocated above cannot directly express no�
tions of �priority� or �urgency�� used in some other timed process algebras ��� 	� ���
Indeed we do not feel that it is appropriate to do so� Being allowed to express
a �priority� between two actions carries with it subtle consequences for causal�
ity� It can make two otherwise independent actions indirectly dependent on one
another ��� �� in a manner not re�ected by the communications pattern of the
network� How one would be expected to implement a priority order between
two geographically�separated actions is very unclear�in the real�time systems
community it has been suggested that the concept of priority is �awed and quite
meaningless across processor boundaries �!� �� ��� Furthermore� it appears that
the notions of �priority� and �true concurrency� are so closely related ��� that no
single language needs to support both�

Similarly� we have made no attempt to model the concept of assigning prob�
abilities to nondeterministic choices ��� �� because we see this as a concept
entirely orthogonal to that of �time��

The main disadvantage with our de�nitions is the clumsy algebraic laws for
�absolutely�timed� � actions �see Section ������ Indeed� it is telling to note that
Toetenel� when de�ning his own real�time CCS�based process algebra� states that
�there is no syntactic � action� but only that �an internal action with very similar

semantics is speci�able �emphasis added�� ����� Similarly� Aceto and Murphy ��
provide a new operator �wait� to achieve the e�ect of a timed � � where this new
operator is de�ned using relative� rather than absolute� timing� The problem
seems to be a universal one�

Although we could also have de�ned such a new operator ourselves we have
not done so because adding new real�time operators increases the complexity
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of the semantics and can have subtle� unanticipated side�e�ects� For instance�
when a �delay� operator is added to an algebra like LOTOS �	�� we note that
it can interact with other operators in unfortunate ways� If such a delay is used
as the second operand to the LOTOS �disabling� operator then the combined
behaviour no longer enjoys the simple recursive de�nition normally possible by
�unwinding� the disabling operator as a choice between the initial actions of its
two operands ���� because the remaining delay period must change each time an
�uninterrupted� action occurs� In e�ect� the �delay� operator changes the seman�
tics of surrounding operators"

� Conclusion

We have de�ned� and demonstrated the application of� a new real�time process
algebra� based on CCS� It o�ers the advantages of simple semantics� but still
has good expressive power� This was achieved by combining the best features of
two previous streams of research� the �constraint�oriented� and �marker variable�
approaches�

Future work will see the application of our approach to Milner�s new ��
calculus ���� Interestingly� this will sidestep the problem with � actions men�
tioned above� because �syntactic �s� are not part of the language� More impor�
tantly� it also o�ers the potential to treat marker variable names as �rst class� like
other ��calculus names� This will increase the expressive power of the language
even further because it will be possible for parallel agents to exchange markers�
Whereas marker variables can only be used within a single agent at present� this
extension will make �inter�process� timing expressions possible�
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