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Abstract

This paper describes and proves a simple transformation of CCS composi-
tions into Petri nets. Under certain conditions, additional to the CCS syntax
rules, the resulting Petri nets are finite, and firing of their transitions cor-
responds to handshakes in CCS compositions. Such correspondence also holds
between simultaneous firing of several transitions and multiple handshakes. The
transformation has proved useful in a fast deadlock detection tool developed for
CCS specifications.



1 Introduction

Pure Petri nets [10], i.e. without coloured tokens, labelled edges, inhibitor
edges, etc., have been proven inadequate as representations of CCS programs
(cf. for example [8, 12]). Semantics of such Petri nets is not as powerful as that
of CCS. However, they may adequately serve certain purposes whose scope
is less than modeling full semantics of CCS. For instance, they may be used
to investigate possible sequences of handshakes in certain CCS compositions,
or even sequences of sets of handshakes that can be performed together. In
particular, they may help in analysis of closed systems for presence or absence of
deadlocks. Closed means that the specification includes both the composition of
concurrent processes and their environment. The environment may also consist
of concurrent processes. In such a system, all interactions between processes
are modeled as handshakes. If the system as a whole becomes ready for an
action and waits for it, it is a deadlock. On the other hand, if handshakes are
always possible, the system is deadlock free.

Petri nets are not the only modeling tool for CCS compositions. Another
such tool is automata that have been used for a wider range of analysis than
just deadlock detection (see for instance the Concurrency Workbench [1]). How-
ever, automata seem inferior to Petri nets with respect to one important aspect.
Namely, they cannot model possible simultaneity of actions within the system.
Because of their single locum of control, they necessarily represent so-called
interleaving model of concurrency. Petri nets may be used to model concurrent
actions within the system by simultaneous firing of more than one transition
at the same time (see for instance [13, 2]). Hence, they may represent a non-
interleaving model of concurrency. If a set of actions that may happen together
replaces all of their possible interleavings, the system state space may be re-
duced considerably, thus leading to more efficient analysis tools. For instance,
replacement of 2 possible interleavings of two actions by one double action
reduces the number of possible states by half.

The rest of the paper is organized as follows. The next section describes
syntax and transitional semantics of CCS. It also presents conditions upon CCS
specifications, under which they can be modeled by pure Petri nets. Section
3 shows how a Petri net is constructed for a given CCS composition, and how
handshakes between processes are modeled by firing transitions of the net. Sec-
tion 4 presents a deadlock detection tool for CCS compositions, based on the
reachability analysis of their Petri net models. Section 5 concludes the paper.

2 CCS

The notation for CCS specifications and its transitional semantics is taken di-
rectly from [6]. Let A be a set of actions, and A a set of co-actions. Also, let
Act = AUAU{7}, where 7 is a so-called silent action (handshake). Further, let
{FE; : i € I} be a family of expressions indexed by I. Such expressions can be
combined into specifications of concurrent systems by means of the following



operators:

1. a.E, a Prefix (a € Act)

\]

.y Aa.E; i €I}, a Summation (a € A)

w

. [I{E; : ¢ € I}, a Composition (£, |E;,|...)
4. F\L, a Restriction (L C Act)

5. E[f], a Relabelling (f a relabelling function)

Generally, actions represent input to be performed by processes, while co-
actions — output. To denote a process incapable of any actions or co-actions, a
special identifier 0 is used.

Milner [6] explains why (2) has to be the sum of all expressions F;. Here,
for reasons explained further, (2) allows only choices guarded by input actions
(c.f. Assumption 1 below).

The transition rules are as follows:

Act P

Sum; Z{E?%IE}J/&E]’ (jel)
Coml %

Com?2 %
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Com4 states that if there are more than one pair of components capable
of the silent action 7, all of such pairs can engage in 7, and for the whole
composition it is still the same silent action.

What is actually represented by 7 may be denoted by an index attached to
7. For instance, let 7, denote a handshake between a.F; and @.F;, and 7, —
handshakes between a.F; and @.E;, and b.F} and b.F.



As an example, let us consider
D = (F1|Ez|Es|Es\ L

where

F, = abal,
FEy = aa.a.Fy
Fs = babFs
E, = b.Ey4

L = {a,b}

Behaviour of D may depend on the required degree of parallelism. In the
case of its maximum, it is the following cycle:

Ta,b

D — (b.E.El|E.a.E2|a.b.E3|E4)\L
D% (@ Fy|a.Eylb.Es|Ex)\ L
=t p

However, with less than the maximum degree of parallelism, the following se-
quence is also possible:

Tb

D — E1|E2|abE3|E4)\L
E1 |EQE2|I)E3|E4)\L

E1 |6.Q.E2|E3|E4)\L
Tb

(
(
(
T (Ey[@.a.Bsab. B3| E)\L
(
(
(

Ta

Tb

T (Ey|a.Ealb. B3| E\ L
E1|Q.E2|E3|E4)\L
Frla.Fsla.b.Es|Ey)\L =0 (deadlock)

Th
—

Tb
—

To formulate conditions imposed upon CCS specifications and their trans-
formation into Petri nets, the following notation is used:

.. P —a process whose first and further actions or co-actions are irrelevant at
the moment,

a...P —a process whose first action is a, and whose second and further actions
are irrelevant at the moment,

Ta — a single handshake over a,

Tay,as,...an — & multiple handshake over ay,aq, ..., ay.

The conditions can be formulated as follows:



Assumption 1 Choices are guarded by input actions'.

In other words, only choices of the form a.£; 4+ b.F; are allowed. Choices of
the forms a.F; + E.Ej, a.l; +0.F;, a.lF; + E.Ej are considered syntactically
incorrect.

Assumption 2 Fach pair of action — co-action names occurs only in two pro-
cesses.

In other words, in a composition a.£;|@.E;| R, the names a and @ can occur only
in F; and E;, not in R. This assumption effectively rules out compositions of
processes that are defined recursively as compositions themselves. A process
defined as follows:

P=a...Ph..Q

violates the assumption because each substitution of its definition for its name
in the composition creates new components in which the same action — co-action
names occur.

Notice that the constraints exclude specifications like the example D above.

It is easy to see that Assumptions 1 and 2 constrain any CCS specification to
a composition whose components are single processes or action guarded choices
of processes; they are not compositions themselves:

E = E{|Ey|...|E,

where each of F;,i = 1,2,...,n, has the syntax P (here | is a meta-symbol
that denotes a choice of syntax terms):

p=ar|Yar|ry|o

As we will see in the next section, compositions that satisfy Assumptions 1
and 2 can easily be represented by finite Petri nets where firing of transitions
corresponds to handshakes, and where multiple transition firing corresponds to
a multiple handshake. However, to make use of the latter in a deadlock detection
tool, we have to constrain compositions even further. They are assumed to
satisfy also the following:

Assumption 3 Fach component of the composition is a cyclic process.

It effectively excludes components defined as, eg. P = a.Q), where ) = ...Q.

It has been proved in [9] that for compositions satisfying all 3 assumptions,
it is possible to prove the following theorems:

LA similar constraint can be found in Ada or Occam where choices are allowed between
input actions only (cf. [11, 4])



e A multiple handshake 74, 4,.... 4, is equivalent to single handshakes 7, , 7,
...,y Ty, performed in any order.

o If there is a sequence of single handshakes that leads to deadlock, there
is also a sequence of multiple handshakes at the maximum degree of par-
allelism, that leads to deadlock as well.

Without Assumption 3, it is necessary to consider all possible sequences of
single handshakes, and consequently, of single transition firings.

3 Petri nets

Petri net is a quadruple:
N = (P, Tr, Ar, M)

where Pl is a set of places, Tr — of transitions, Ar — of arcs between places and
transitions, and between transitions and places, My C Pl — initial marking.
Marking M is a multiset (bag) of places that hold tokens. Each place can hold
a number tokens (0 or more), and it is included in M that number of times.
Ar is denoted by a set of subsets of Pl, defined for elements of T'r. For each
t € T'r, there are two subsets of Pl:

-t — input places for transition t,
t- — output places for transition t.

Actions that can be represented by such a net take the form of changes
of its marking M. An elementary change is called firing of a transition which
means that tokens are taken from the transition input places, and put into its
output places. Firing of t € T'r is denoted by M; BA M; where M; and M; are
markings before and after firing of ¢ correspondingly. Such firing is possible if
the input places hold tokens, i.e. -t C M;. The effect of firing of ¢ € T'r can be
presented as

where — and Ul denote difference and sum of multisets respectively.

Transformation of a given CCS composition F into a Petri net can be pre-
sented as the following function;

Pn(E) = (Plg, Trg, Arg, {E})

where F € Pl is a starting place of the net, i.e. My = {FE}, and where
Plg,Trg, Arg are defined by another function Nt. The identifier £ plays a
double role; it denotes the CCS composition and it is also a name of a place in
the Petri net. Generally, certain places of the net are named after corresponding
parts of the CCS specification.



The definition of Nt is given case by case as follows:

Composition
For a composition F = Fy|Fs|...|F,,

Ni(E) = ({Eli=1,2,....n}u ] P,

1=1,2,...,n

{t} U U Tr;,

1=1,2,...,n
{t.t3u |J An)
1=1,2,...,n

where
1 {E}
- = {E17E27"'7En}
(PlivTTivAri) = Nt(EZ), 1= 1,2,. ., N

In other words, n + 1 places and 1 transition ¢ are created, firing of which
means that the places Fy, Fs, ..., F, become marked. Fig. 1 illustrates the
corresponding fragment of the net, where places are drawn as circles, and tran-
sitions as bars.

E
O

1,
04- \o

Fig. 1 Composition

Process definition

Suppose that for some index i, F; = P where P is defined separately as
P = Def. In that case, the corresponding place in the net has the name
P, and

Nt(P)I({Def}UPlDSf, {t}UTTDef, {-t,t-}UATDef)

where

T
t = {Def)
(PlDefvTTDefaATDef) = Nt(Def)



The process P may be used (called) by more than one component of the com-
position. However, the corresponding fragment of the net is created once — Nt
is applied to P once — and the place named after P is the same in all such cases.

Action

For a process with an input prefix, £ = a.F,

NUE) = ({F,pa,qa} U Plp, {t}UTrp, {tate}UArp)
where

g = {pavE}

legw = {QavF}

(PZF,TTF,ATF) = Nt(F)
Places p, and ¢, do not belong to any process thread. They are related to

input/output actions performed by processes. Further explanations follow the
next case of Nt.

Co-action
For a process with an output prefix, £ = a.F,

Nt(E) = ({vam(Zan-F} U PlF7 {uavwa} U TTFv {-ua,ua-, 'wavwa'} U ATF)

where
u, = {F}
Ug: = {me-F}
Wy = {Qavﬁ-F}
Wy = {F}

(PZF,TTF, ATF) = Nt(F)

Places p, and ¢, are the same as for the process that has an input prefix a.
Since the set union U is used in the formula for NVt, there are only as many pairs
of places p,,,qq, in the net, as there are different actions/co-actions a; in the
composition. Other places, a.F, F', and transitions, u,, w,, are unique, i.e. they
are not repeated in transformation of any other CCS processes. The symbol
a.F does not come from CCS. It used here just to name the place between the
transitions «, and w,.

Communication represented by fragments of a Petri net created by Nt is
illustrated in Fig 2. There, the composition a.D|a@.F is transformed by Nt into
2 threads of the net, and the places p,, g, between the threads. The handshake
T, 18 interpreted as firing a sequence of 3 transitions: ¢ — beginning of output,
w — input, and u — end of output.



lq

AW
AN

a
ua wa

a.D O

OF

Fig. 2 Communication

Choice
For a choice of processes, £ = a1.F1 + as.Fo + ...+ a,.FE,,

NUE) = ({pay-ta- Eili=1,2,...,030 | J PL,

1=1,2,...,n
{ta;]1 =1,2,...,n}U U Tr;,
1=1,2,...,n
{ta;sta;- 1 =1,2,...,n} U U Ary)
1=1,2,...,n
where
te, = {F,pa}, 1=1,2,....n
tai' = {Qa“E’i}v i21,2,...,n

(PlL;,Tr, Ar;) = Ni(l;), 1=1,2,...,n

Fig. 3 illustrates transformation of a choice into the corresponding fragment of
a Petri net. It shows how the actual choice depends on communication. It is
non-deterministic, if more than one of the places p,, is marked (there is choice
of handshakes with such a process).

Relabeling
For a process defined as a relabeling of another process, F' = F[f],

Nt(F)= Nt(E")

where F’ stands for the definition of F to which the relabeling function f has
been applied, i.e. corresponding actions and/or co-actions have been relabeled,
and all occurrences of E have been replaced by E'.
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Fig 3 Choice

As mentioned in the introduction, CCS compositions that are considered
here are closed, i.e. restricted by their entire alphabets. If such a composition
becomes ready for an action, and waits for it, it is a deadlock. If, however,
handshakes can be performed ad infinitum, the composition is deadlock free.
Restriction of every composition by its entire alphabet makes it unnecessary to
define Nt for the restriction case — it will not be used.

For the proposed transformation T'n, the following lemma is not difficult to
prove.

Lemma 1 If a handshake 7, is possible for a given composition E, so is the
firing sequence g, t,, w, for Tn(E).

Proof
The proof examines markings of T'n(F) and shows that the transition sequence
can be fired.

Assume 7, to be the first handshake of E. Its possibility means that either
E=aD|aF|...
or
E=aD|aF+bG+..)...

Consider the latter alternative as more general. From the definition of T'n we
have:

Tn(E) = (Plp,Trp, Arp,{E})

where

Pl = {F.,puqu.aD,a.D,D,a.F+bG+....F,G,...}
Treg = {t,ug, we,tq,...}

t = {L}

t- = {aD,aF+bG+...,...}



u, = {a.D}

g = {pa,a.D}

Wy = {ga,a.D}

w,e = {D}

te = {aF4+bGH+....p.}
tow = {qu, I}

Since M LN M1 where My = (Mg — -t;) Utg-, it is easy to see that the
sequence of firings

(B} & {@D,aF+b.G+......}
2o {a D pa,a P+ 0G4 ..., )
Lo, {a.D,q,, F,...}
e {D,F,..}

can be performed.

If the given handshake is not the first, but occurs after a sequence of hand-
shakes 7,,,74,, ..., T4, , the proofis carried out as above for 7,,. Then, it remains
to prove that the firing sequence

uagvtangagv .. '7uak7tak7wak7ua7tavwa

is possible for Tn(D|F|...). Since 7,, is the next handshake performed by the
composition, we have:

D|F|...=a3.Glay.H| ...
or
DIF|...=a@.Gllag.H +cl+..)]...

Notice that proving w,,, ta,, w,, for az.G|(ag.H + ¢.I 4 ...)| ... is analogous to
proving g, tq, w, for @.D|(a.F'+ b.G + ...)|... above. The same can be shown
for the rest of the sequence, i.e. for 74,,74,,. .., 74, and for 7,.

O

Lemma 1 states only that for any handshake sequence of the composition
FE there is a corresponding firing sequence of the Petri net Tn(F). To use
Tn(FE) as an analysis tool for £, we need a reverse — a theorem stating that
every possible firing sequence of Tn(£) has a defined interpretation in terms
of handshake sequences of . Before such a theorem is formulated and proven,
we shall try to reduce the number of possible firings that have to be taken into
the consideration. Without any reduction, firing of the transitions u,, t,, w, in
that order may be understood as representing a single handshake 7,. Moreover,
each of the following firing sequences:

(Uastas Was Uy Ly, WhY,s (Uas Ly Wby Wa, Ly, Wh) s (Uay b, Loy Wa, Ly, Wh),
(Uas Uty gy by, Way WhY, (Uas Wby Ly Loy Way Wh), (b, Ug, Ly, Lo, Way Wh),

<ubv tbv Ugq, tav Wy, wb>

10



may be understood as representing the same handshake sequence 7,,7,. Re-
duction of the number of firings can be achieved by firing certain transitions
invisibly (automatically), i.e. as soon as they become enabled, thus leaving
them out of the consideration.

A transition can be left out of the consideration if it is not involved in any
choices, i.e. its firing does not exclude firing of any other transitions. If two or
more such transitions are enabled, the order in which they are fired is irrelevant
to the subsequent firing possibilities of the net. Furthermore, they may be
fired simultaneously. The following lemma serves as a formal statement of the
observation just made.

Lemma 2 If 2 transitions of a Petri net can be fired in any order, both firing
orders give the same marking.

Proof
Let x,y be the two enabled transitions. The premise can formalized as follows:

1. -x,-y C M, i.e. both are enabled,

2. -z N -y =10, i.e. they do not exclude one another.
Firing 2, then y gives a new marking;:
M= (M =) Ua-—y) Uy

Since -z and -y are both disjoint subsets of M (points 1 and 2 above), we can
perform subtractions first, and then additions:

M=(M--z—-y)Uz-Uy-

We can also change the order of subtractions, and the order of additions:
M=(M-y—--2)Uy Uz

M’ does not change if we first add y-, and then subtract -a:
M'=(M--y)uy - -a)Uaz

The last formula is that of firing y, then 2z, thus proving the lemma.
O

For any CCS composition F, transitions of Tn(F) can be classified as fol-
lows:

1. single input transitions (composition, beginning of co-action),

2. double input-output transitions (action),

11



3. single output transitions (call of a process, end of co-action).

From the definition of T'n above, it follows that input sets of every tran-
sition of class 1 are disjoint with input sets of all other transitions of the net.
Therefore, transitions of that class can be reduced by invisible firing (as soon as
they are enabled). Transitions of class 2, obviously, cannot be reduced because
they may be involved in choices, i.e. their input sets may not be disjoint (cf.
the choice case of Nt and Fig. 3 above). For transitions of class 3 we have
to prove or disprove their involvement in choices. Those that represent calls
of processes are involved in no choices because of Assumption 1 above (choices
in CCS specifications are guarded by input actions). The question whether
transitions representing end of output, w,, can be reduced is a little more com-
plicated. A choice between such transitions, say w’ and w?, can occur if both
are enabled, i.e. -w!,-w) C M, -w! N-w] = {q,}. For both to be enabled, the
transitions !, u’ ¥ must have been fired. Assumption 2 above (each pair of

a’”a
action — co-action names occurs only in two processes) excludes the possibility
of the 3 fired transitions belonging to 3 different threads of the net. Hence, we
may assume, for instance, k = j. Therefore, the order of the transition firing

must have been u,#, u! because:

Loul -0 -th = {p,},i.e. t] is preceded by u?,

2. ui-Neud = wul-n-ud =0, ie. neither can u’ be followed immediately by
ul, nor u/ by u!; t/ must be fired between u! and u/.

The firing order v, ], ] for Tn(FE) means that E includes components of the

following form:

e a.F;, transformed by T'n into thread 1,

e a.a.F;, transformed by T'n into thread j,

A corresponding fragment of T'n(@.F;|a.@.l2;) may be shown as:

Ply = {al;al; Eea b al;,al;, E p.,q,...}
Try = {ué,wé,té,ué,wﬁ,...}
u?l = {a.F;}
up = {aFi,pa}
wy = {a.biqa}
wyr = {E}
-tZL = {aa.E;, p.}
té- = {a.F;,q}
ufl = {a.E;}
wl- = {a.Ej,p.}
wl = {a.Ej,q.}
wi- = {E;}

12



Now we can see that the choice between w’ and w] is "false”. It must not

be considered a choice at all. w! should be fired as soon as it is enabled,

thus finishing the first handshake 7, between the two components. The second
handshake 7,, already begun as firing of v/, may be finished by firing of w’ only

after t! (representing input by F;, not shown in the formulae above) is fired.

Another, simpler solution to the problem would be to require that com-
munication between components of £ be one way only, i.e. the use of both «a
and @ in the definition of any single component would be regarded as a syntax
error?. Then, the situation presented above could not occur. However, a slight
complication of proofs and implementation seems to be a small price for less
restrictive notation.

Having solved the ”false” choice problem, we can apply invisible firing to
the net, thus leaving transitions of class 1 and 3 out of the consideration. Notice
that such transitions may enable one another. For instance, firing of a tran-
sition representing a composition may enable a number of those representing
the beginning of output. If more than one are enabled, they may be fired in an
arbitrary order — c¢f. Lemma 2 above. They should be fired repeatedly until the
only enabled transitions in the net are those of class 2. ”False” choices can be
eliminated practically as follows: after firing of #* (class 2), do not fire w' (class
3) despite the fact that it may be enabled. The superscript ¢ indicates the same
thread of the net. Some other transition of class 3 of a different thread, w’, will
get fired invisibly instead.

Rules of invisible firing for a composition F of m components and n actions/co-
actions can be formalized as follows (arrows are intentionally shown with no

labels):

(B} — {Eli=1,2,...,m} (1)

{@G.Vi,...} — Ha;Fipay,--}, 1=1,2,...,m, j=1,2,...,n (2)

(0, Fivgay -} — {Ei.. )y i=1,2 k= 1k+1,...,m, (3)
7=1,2,...,n

(P,..} — IDef,..} (4)

where k in (3) indicates the visible transition

ta
{aj-Ekvpajv o } — {Ekv Qa5 - - }

fired prior to (3). To avoid a "false” choice, for ¢ = k, (3) is not fired.

With invisible firing, the only transitions to be considered are those of class
2. Their firings may well represent corresponding handshakes, as the following
theorems state below. In the proof of Theorem 1, we shall use a notion of
reverse firing, denoted by «:

M;. & Mip_1 where Mp_1 = (Mk — t-) Ll -2

2Such a restriction can be found in the original version of CSP [3].

13



For all 4 theorems, the rules of invisible firing are assumed to be in force,
applied to the Petri net Tn(F).

Theorem 1 [f firing of t, is possible for Tn(FE), so is the handshake 1, for E.

Proof
Let My be the marking of Tn( F) after ¢, is fired.

1. to€Trg ={a.E, Epa,qay C PlgAN(E =a. B .. VE = a.Fi4b.F+. . ),
from the input or choice case of the definition of Nt,

2. My ={Fi, q,...} Lo {a.E;,pa,...} = Mp_q, reverse firing of ¢,,
3. py € Mr_1 = u, € Trg, a token may be placed in p, only by firing of u,,

4. uy € Trg > {a{a.E;,{a.l;, L, p,,qu} C PlgAN(E =a.Ej|a By .. VE =
all; +b.F + ...|a.l;|...), from the output case of the definition of Nt,
and from 1,

5. for either of a.l;|@.E;| ... and a.; + b.F + .. .|a.E;| ..., 7, is possible.

a

Theorem 2 If no visible transition of Tn(E) is enabled, no handshake is pos-
stble for E either.

Proof

Assume the contrary, eg. 7, is possible for . Hence, from Lemma 1 we have
that the firing sequence w,,t,, w, is possible for Tn(F). wu, is an invisible
transition, fired as soon as enabled. So, we have to show that w, is never
enabled. Lemma 1 and the rules of invisible firing preclude the case of 7, to be
the first handshake of F, because u, is enabled either immediately, or after t is
fired, where

1= (B

t- = {abB;+bF+...,ak;. ..}

M = {E}
and where t is also invisible. Therefore, there has to be some sequence of
handshakes, 7,,,7,,,...,7,, performed by E prior to 7,. From the rules of
invisible firing and Theorem 1 we know that such a sequence corresponds to
the visible firing sequence t,,,%,,,...,1,,, accompanied by invisible firings of
all transitions u,;, w,,,t = 1,2,..., k. According to Lemma 1, after all transi-
tions g, tq;, Wq, 0 = 1,2,..., k are fired, the next firing sequence is u,, ¢, w,.
Therefore, u, is enabled.
O

14



Theorem 3 If a handshake 7,4 is possible for E, so is firing of t, and 1,
stmultaneously in Tn(FV).

Proof

7., means that 7, and 7, are performed together. Therefore, Lemma 1 can be
applied to both of them, i.e. the firing sequences u,,t,, 1, and up,tp, up are
possible together. In other words, the transitions u, and u; are both enabled,
and they do not exclude one another. Since they are invisible, they are fired,
thus enabling ¢, and ;.

O

Theorem 4 If two visible transitions of Tn(FE), t, and t,, can be fired to-
gether, then the handshake 7,4 1s possible for E.

Proof

Applying Theorem 1 to both transitions ¢, and t;, we conclude that the hand-
shakes 7, and 7, are possible. From Lemma 1 we know that they correspond to
the sequences uy, ty, wy, and up, tp, wp. According to the rules of invisible firing,
the transitions u, and u; can be fired simultaneously. So can w, and w;. Since
t, and ?; can also be fired simultaneously, 7,5 is possible.

O

Theorems 3 and 4 can easily be extended to cover possibilities of more than
2 simultaneous firings and, respectively, multiple handshakes of more than 2
single handshakes. To consider, for instance, 3 simultaneous firings t,, #, {., we
can take them as two pairs, ?,,?; and ¢, ¢.. Correspondingly, a handshake 7, .
can be taken as 7,5 and 7.

Summary of this section

Every closed (restricted by its entire alphabet) CCS composition satisfying
Assumptions 1 and 2 can be transformed into a Petri net T'n(F) whose visible
transitions model handshakes of F. Firing of ¢, corresponds to the handshake

7,. Firing t4,,%4,,...,tq, simultaneously corresponds to 74, a5,....4,-

4 Deadlock detection

Equivalence between handshakes of a closed CCS system F and firing of visible
transitions of its transformation into a Petri net T'n(£) makes it possible to use
established Petri nets techniques to analyse the system. One such technique
is generation of so-called reachability tree of the net (cf. [10]). The tree gives
information on possible firing sequences, including their loops and dead ends.
In cases of so-called safe nets (the number of tokens in any place never exceeds
1), the tree represents the net language, i.e. all possible firing sequences.

Construction of the reachability tree may be described as follows. Markings
of the net are placed in the tree nodes, its initial marking — in the root. Children
of the root are generated by firing transitions that are enabled under the initial
marking. Every child is labelled by the corresponding transition name, and
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contains the new marking. Then, it becomes a parent of other nodes the same
way. However, if the new marking is the same as some other marking already
present in the tree, the new node is marked as a repetition of the other node.
Instead of its children, a pointer to the other node is attached to it. If marking
in some node does not allow any firing, the node becomes a leaf of the tree,
representing deadlock. If markings along some path from the root "grow”, i.e.
token numbers in certain places are larger, and in other places not fewer than
in previous markings along the path, the larger numbers are replaced by the
symbol w (may be understood as infinity). This causes some loss of information
about possible firing sequences, but allows the tree to be kept finite.

For our purposes, the tree generation algorithm summarized above has been
modified in two ways. First — only visible transitions are taken into the con-
sideration. Practically, it means that at the very beginning, and after firing of
a visible transition, all invisible transitions are repeatedly fired for as long as
possible (cf. the rules of invisible firing of the previous section). Only then, the
new marking is recorded in the new node. Second — not single, but multiple
firings are considered, i.e. for a given marking, instead of single transitions,
sets of simultaneously fireable transitions are fired, and become labels of the
corresponding nodes. An order in which transitions of such a set are fired is
arbitrary (cf. Lemma 2 of the previous section).

The second modification is not new (eg. [7, 13]). In [7], bags of transitions
are fired. They are bags rather than sets because of so-called autoconcurrency,
i.e. assumption that one transition may be fired as many times in one multiple
firing as marking of its input places allows. In our case, however, bags of net-
transitions would make rather little sense. Assuming that one communication
action between two processes takes a finite time, and one process can engage
in one such action at a time, we have to exclude any possibility of one process
engaging in more than one communication action at the same time. Thus, sets
of transitions, instead of bags, are objects of our analysis.

Upon completion, the reachability tree may be traversed from its root along
various paths. A sequence of label sets along each path is interpreted as a
sequence of multiple handshakes possible for the CCS composition.

The transformation T'n and the reachability tree construction have been
implemented as Gofer [5] programs that are included in a package ccsdd.tar.gz
available by anonymous ftp from ftp.cse.unsw.edu.au:pub/users/jacek. The
package facilitates:

syntax checks and conversion of CCS specifications into Petri nets,
e conformance checks of CCS specifications with Assumptions 1, 2, and 3,

e construction of reachability trees with multiple firings, for CCS specifica-
tions satisfying all 3 assumptions,

e construction of reachability trees with single firings, for CCS specifications
satisfying Assumptions 1 and 2 only.
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Construction of reachability trees finishes as soon as deadlock is detected. In
cases of no deadlock, complete trees are produced.

The package also includes four examples — CCS specifications and log files
of the program runs.

Example 1 specifies the problem of five philosophers (eg. [3]) as a composi-
tion of 10 processes — 5 philosophers each behaving the same way, and 5 forks.
Its analysis is completed very quickly. The program finishes after the first step
of the algorithm, when a set of five transitions is fired. The set corresponds to
a multiple handshake between philosophers and forks — each philosopher picks
up the left fork. Then, they wait for the other fork forever.

Example 2 is a modification of the same problem, in which one of the philoso-
phers behaves in a different way to the others. He picks up his right fork first.
Such a composition is always in progress (no deadlock). The reachability tree
constructed for this example has 55 nodes, and represents all possible sequences
of multiple handshakes under the maximum degree of parallelism (at every step,
as many single handshakes together as possible). Such a degree of parallelism
may be understood as the most crowded situations at the philosophers table,
i.e. when they get into the way of one another in the most obstructive manner.

Examples 3 and 4 are two different versions of a scheduler (cf. [6] p. 113,
Specification of a Simple Scheduler). The purpose of the scheduler is to allow
a number of tasks to run in parallel, but to ensure that they are started in a
certain order. They may finish in any order, and then, restarted, but again in
the same order as before. The scheduler has also been subject to analysis with
the use of Concurrency Workbench [1]. The maximum number of tasks with
which Concurrency Workbench could cope was 7. Our Example 3 is such a
scheduler for 4 tasks. Its specification satisfies Assumptions 1 and 2 only, thus
precluding the use of multiple firings in the reachability tree construction. The
tree has 239 nodes, i.e. the scheduler has 239 possible states.

Example 4 is a modification of Example 3. The modified scheduler satisfies
all 3 Assumptions, and consequently, allows for multiple transition firing in
the reachability tree construction. It also allows 9 tasks to be run in parallel
(beyond possibilities offered by Concurrency Workbench). The tree has only 47
nodes, far from the number of possible states of the scheduler. Nevertheless, it
proves that the scheduler is deadlock free.

5 Conclusion

The scheduler example of the previous section illustrates well how crucial, in
verification of CCS compositions for deadlocks, the question of single versus
multiple handshakes may be. If we can use multiple handshakes, in other words,
if a given CCS composition F satisfies Assumptions 1, 2 and 3 of section 2, then:

e the composition £ can be transformed into a finite pure Petri net Tn(£)
where transition firing models a handshake, and where multiple transition
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firing models a multiple handshake,

o deadlocks can be detected by an attempt to generate a reachability tree
of Tn(F) with multiple transition firings (the attempt can be abandoned
as soon as deadlock is detected),

e deadlocks can be disproved by construction of a complete reachability tree
of Tn(F) with multiple transition firings.

If the composition E satisfies Assumptions 1 and 2, but not 3, it can still
be transformed into a Petri net Tn(F), and analysed by reachability tree con-
struction for T'n(#). However, no multiple transition firing can be used for that
purpose. That nullifies the advantage of Petri nets over other tools of analysis,
eg. automata, of being able to model possible simultaneity of handshakes in F.
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