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Abstract

If reinforcement learning �RL� techniques are to be used for �real world�
dynamic system control� the problems of noise and plant disturbance will have
to be addressed� This study investigates the e�ects of noise�disturbance on �ve
di�erent RL algorithms	 Watkins
 Q�Learning �QL�� Barto� Sutton and Ander�
son
s Adaptive Heuristic Critic �AHC�� Sammut and Law
s modern variant of
Michie and Chamber
s BOXES algorithm� and two new algorithms developed
during the course of this study� Both these new algorithms are conceptually re�
lated to QL� both algorithms� called P�Trace and Q�Trace respectively� provide
for substantially faster learning than straight QL overall� and for dramatically
faster learning �by up to a factor of 
��� in the special case of learning in a noisy
environment for the dynamic system studied here �a pole�and�cart simulation��

As well as speeding learning� both the P�Trace and Q�Trace algorithms
have been designed to preserve the �convergence with probability �� formal
properties of standard QL� i�e� that they be provably �correct� algorithms for
Markovian domains for the same conditions that QL is guaranteed to be correct�
We present both arguments and experimental evidence that �trace� methods
may prove to be both faster and more powerful in general than TD �Temporal
Di�erence� methods� The potential performance improvements using trace over
pure TD methods may turn out to be particularly important when learning is
to occur in noisy or stochastic environments� and in the case where the domain
is not well�modelled by Markovian processes�

A surprising result to emerge from this study is evidence for hitherto un�
suspected chaotic behaviour with respect to learning rates exhibited by the
well�studied AHC algorithm� The e�ect becomes more pronounced as noise
increases�



� Introduction

Reinforcement learning techniques are currently being investigated for suitabil�
ity of use in a wide variety of environments� These range from game playing
environments such as backgammon� where these machine learning techniques
have been successfully applied to develop systems capable of Master�level play
�Tesauro ���
�� to noisy and possibly non�Markovian robotic environments
�Mahadevan ����� Mataric ����� Tham � Prager ������

The central thesis presented in this report is that for many domains� we
can expect that a non�TD method we call �trace learning� to be much more
e�ective a method of credit assignment for reinforcement learning than pure
TD methods� Analytical and experimental results suggest that �trace� learners
may prove to be both faster and more powerful learners in general than their
TD counterparts�

The experimental evidence is primarily based on a series of studies involv�
ing the well�known benchmark pole�and�cart �or inverted pendulum� control
problem� The pole�and�cart learning task is set out in Michie and Chambers
������� and Barto� Sutton and Anderson ������� For those readers unfamiliar
with this control problem� Appendix A provides a detailed description� The
only new dimension that has been added for the purposes of the experiments
described here has been to make the model less deterministic by simulating a
degree of noise or disturbance in the system� At each recalculation of the simu�
lated systems next state� the four state variables were �fuzzed� by the addition
of a degree of white noise�

The motivation for this study was to investigate the performance of various
credit�assignment algorithms in noisy domains� as a preliminary study evalu�
ating candidates for a reinforcement learning controller for a �ight simulator
and possibly other up�scale systems� In any realistic dynamic system
s control
environment� noise and disturbance will be inevitable� only the degree to which
they will be encountered will vary� There has been no such comparative study
of this aspect of reinforcement learning algorithms published previously� to the
best knowledge of the author�

Two di�erent noise models were used in the trials� These are detailed in
section ��
�

It should be pointed out that neither noise model is probably very realistic
with respect to the actual noise�disturbance e�ects that might be expected to
be encountered with a real pole�and�cart rig� However� they serve su�ciently
well for a �rst study investigating the e�ects of moving progressively from a
deterministic to increasingly stochastic environment on the learning rates and
quality of learning for the �ve di�erent algorithms studied� The use of two
di�erent noise models was motivated by the concern that any e�ects observed
could conceivably be speci�c to the noise model chosen� However� the results
do not suggest any such dependencies� The results for the two di�erent noise
models tell essentially the same story with respect to learning rates and learning
quality for each of the algorithms studied�

Five reinforcement learning algorithms have been studied� three of which
�BOXES� AHC and QL� have been written about extensively� the others� P�
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Trace and Q�Trace� are new�
It turns out that these new algorithms� which use �trace learning�� learn

much faster than the pure TD algorithm studied �Q�learning� in this domain�
The relative di�erence in learning rate increases as the noise level of the learning
environment is raised� Analysis suggests the potentially important result that
trace learning is a strictly more powerful technique than single or multi�step TD
learning in non�Markovian domains� It is proposed that trace learning could
be used as a replacement for TD methods for better learning in non�Markovian
domains� and could be used �possibly in conjunction with TD methods� to
speed�up learning in Markovian domains�

� Methods

The methods and terminology used borrow heavily from Sammut ������� A
complete series of independent experiments as described below was performed
for each noise model�

Basic terminology	 A �trial� consists of starting the pole�and�cart system
and letting the controller run until either the system fails �the pole falls over
or the cart hits an end of the track� or the success criterion of n control steps
without failure is reached� A �run� consists of many trials and concludes with
a successful trial �i�e� the control task has been successfully learnt�� Learning
is cumulative over trials within a run� learning for the controller at the start
of the k � �th trial within a run picks up where it �nished at the end of the
kth trial� The �policy� action for the controller is the action that is currently
most�favoured for a particular state� this may change over the course of learning�

An experimental series is as follows	 For each of the �ve algorithms� and
for nine di�erent noise levels ����� in �� intervals�� we do 
� di�erent runs
learning to balance the pole� Each run within a noise level for a learning
algorithm starts with a di�erent seed for the random number generator� The
di�erences between the runs are related to the initial conditions of the pole�and�
cart system at the beginning of each trial �from randomly set but recoverable
starting positions�� and any other allowably random factors if applicable �e�g�
the initial �policy� actions for BOXES� or the action of the �stochastic action
selectors� within AHC� QL� Q�Trace and P�Trace� refer Lin ����
� and the next
section for discussion on the style of stochastic action selectors used��

The number of trials it takes to successfully balance the pole for each run is
recorded� balancing the pole within a trial for ������ sequential control actions
without failure �corresponding to �m 
�s in real time� is considered to be �suc�
cessfully balanced�� The average number of trials required to learn the task for
an algorithm at a certain noise level is interpreted as a measure of learning rate
for that noise level�

At the end of each run� once the pole has been successfully balanced within
a trial for the requisite number of time�steps� a further 
� trials with the policy
control actions �xed from the end of the last learning run are performed to
try to assess the quality or �robustness� of the learnt control actions� Each of
these trials are judged successful if from a randomised initial starting position






the control rules can again keep the pole balanced for ������ time steps� and
unsuccessful otherwise� A �robustness� or �quality of learning� score �out of

�� is thus generated for each algorithm at each noise level�

So� for each run� two numbers are extracted	 The number of trials required
to learn the control task for this particular run as a measure of learning rate�
and a score �out of 
�� measuring the quality or robustness of the learnt control
policy� Twenty of these number pairs are generated for each noise level to
achieve a degree of smoothing through averaging� and to get a measure of the
variance of these values within a noise level for a particular algorithm�

The results of these experiments are presented in section �� Sections � and
� describe the learning algorithms and environment� Section � provides discus�
sion of these results� and section � presents the results of a simple experiment
motivated by some of the theoretical issues raised in this discussion�

� The algorithms

��� Pole�and�cart simulation

For the sake of consistency� exactly the same pole�and�cart simulation code
was used for all algorithms� The code is based on code from Claude Sammut
s
implementation of BOXES� which was in turn based on equations originally
derived by Charles Anderson and used in Barto� Sutton and Anderson ������
and Anderson ������� The equations of motion along with other details of the
simulation can be found in Appendix A�

��� The noise models

The �rst noise model simply scaled the range of the random noise value to the
absolute value of the state variable to be fuzzed� So� if the state values at time�
step n were calculated to be x� �x� �� �� by the pole�and�cart model
s �noise�free�
calculations� and the noise level was set to ��� then the actual state values the
simulation would see at the next time step would be x� random��x � ����� x�
������ etc� In addition to this� a small absolute value of random disturbance
in the range ������� was added to ensure that the system did not become
noise�free even for zero state variable values�

The second noise model applies a more even level of noise over the state�
space than does the �rst� Instead of scaling the noise levels to the current state
variable values� which has the e�ect of the noise increasing away from the zero
states� the noise is scaled to the measured standard deviations of each state
variable as measured over several trials� In this model� a �� noise level means
that the random additive fuzz value for each state variable is generated in the
range of ��� of two standard deviations for the state variable�

The measured values for the respective standard deviations were as follows	

x 	 ��
�����
�x 	 ��������
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��� BOXES

The version of BOXES used is the Sammut and Law variant as described in
Sammut �in press�� The parameter settings were left unchanged from those that
had been selected after tuning for the noise free version of the pole�and�cart
balancer�� Claude Sammut provided his implementation in C of the algorithm
for the experiments that were conducted�

��� AHC

The version of AHC is the one described in Barto� Sutton and Anderson �������
The C source code for AHC used for these experiments was supplied by Richard
Sutton of GTE� which he has generously made available by anonymous ftp�
The parameter settings were left unchanged from the values set in the anon ftp
source distribution��

��� Q�Learning

The one�step QL algorithm was implemented from descriptions in Watkins
������� Watkins � Dayan ����
� and Sutton� Barto � Williams ����
�� For
these experiments� the discount factor was set to ���� and the learning rate
series set to a constant ���� The �stochastic action selector� �SAS� used is
based on one in Lin ����
�� One di�erence in implementing the SAS is that
for every second trial in a run� the SAS is turned o�� and the action selected
is always policy �according to the current Q�value�� This allowed for an inter�
leaving of �exploration� and �exploitation� trials� which was found to improve
performance for QL on this task� �In fact� it was moderately di�cult to �nd a
version of Lin
s simple action selector to learn to balance the pole reliably at
all� even in the absence of noise��

As the formal convergence properties of the QL algorithm in Markovian
domains is independent of the action selection strategy �as long as it is guar�
anteed that every action will potentially be tried an in�nite number of times��

�Watkins � Dayan ���
� Sutton� Barto � Williams ���
�� this action selec�
tion strategy is entirely compatible with QL� and �ts quite naturally with the
structure of the learning task� Indeed� it is a generalisable approach to the
exploration problem that should �t well with any learning task where the goal
is failure avoidance� and failure results in a new learning trial being initiated�
For more detail refer to section ��� �Stochastic Action Selection �QL� Q�Trace
and P�Trace���

�DK � ����� K � ���� C� � ���� C� ����
�ALPHA � ����� BETA � ���� GAMMA � ����� LAMBDAw � ���� LAMBDAv � ���
�Peng 	 Williams 
����� refer to this property of QL as 
experimentation insensitivity��

�



��� The new algorithms� P�Trace and Q�Trace

The new �P�Trace� algorithm reintroduces a direct credit assignment �memory
trace�� that is used to assign credit more heavily for the actions most recently
tried prior to a reinforcement signal being received� It is like BOXES and AHC
in this respect� but di�erent from QL and other pure TD credit assignment
algorithms�

Also newly developed for the purposes of this study is the �Q�Trace� algo�
rithm� Like AHC� it is a hybrid that also incorporates TD learning� The TD
method is that of QL� hence the �Q� in the name� The trace mechanism is that
of P�Trace� the trace mechanism of P�Trace has been specially designed to be
compatible with QL in this hybrid form��

Both algorithms have been introduced into this study for comparative pur�
poses as examples of other �pure� and hybrid trace learners� to help settle
some speculation raised in the analysis of the performance of the other algo�
rithms tested� They have also been designed to be �clean� and mathematicially
tractable algorithms to facilitate reasoning about the underlying principles in�
volved� Pseudo�code for these algorithms is in Appendix B� section � describes
the new algorithms in detail�

��	 Stochastic Action Selection 
QL� Q�Trace and P�Trace�

The �stochastic action selector� �SAS� used in in conjunction with the QL�
Q�Trace and P�Trace algorithms in these experiments is based on that used in
Lin ����
�� To actively explore di�erent actions in similar situations� action are
chosen randomly according to a Boltzmann probability distribution	

Prob�ai� � eqi�T�
X

k�actions

eqk�T

where qi is the current estimate of the Q�value of action ai� and the temperature
T adjusts the randomness of action selection�

In practice� the action selector was turned o� every second learning trial
within a run to exploit fully the learning that had occurred up to that point�
if the trial ended in failure� the next trial would invoke the stochastic action
selector to reinitiate exploration� This was done because QL seemed to have
much more trouble learning the task without �interleaving� exploration and
exploitation trials in this way�

�The term 
trace� is adopted from Barto� Sutton 	 Anderson 
������
�At �rst glance� these new algorithms might seem conceptually similar to Peng and

Williams� Q
���learning algorithm 
Peng 	 Williams ����� because of the presence of an

activity trace�� However� the resemblance is super�cial� The purpose and use of the trace in
Q
���learning and P�Trace are very di�erent�
In Q
���learning� the purpose of the trace is to generalise from one�step to multi�step

temporal di�erencing as a means of credit assignment� directly analogous to the approach
taken by Sutton�s TD
�� 
Sutton ������ In P�Trace� the purpose of introducing the trace
is not to generalise but rather to replace the TD credit assignment mechanism with a non�
TD method� There is no TD learning occuring in P�Trace� further� the TD learning which
is occurring in the TD�trace hybrid Q�Trace 
which shares the same trace mechanism as
P�Trace� is one�step TD� and is operating entirely without recourse to the trace mechanism�
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It is worth noting that the performance of both P�Trace and Q�Trace may
well have been assisted by this method as well� Re�ecting upon how the trace
mechanism is implemented �see section � and Appendix B for details�� a �policy
only� trial should allow for the greatest credit assignment� as the traces are
e�ectively reset to zero upon a non�policy action being selected�

For the trials where the SAS was active� the temperature T was selected
randomly from the range ������� each time the SAS was invoked� This meant
that the randomness or �boldness� of exploration varied within a range at each
step� Again� this was motivated by trial and error tuning to get QL to learn
the task reliably� rather than by theoretical concerns�

For the sake of consistency� QL� Q�Trace and P�Trace all used the same SAS
set�up throughout these experiments�

��
 P�Trace

Conceptually� P�Trace is very simple� like QL it is trying to estimate the ex�
pected future discounted reward for an action a from state s� with respect to
the current policy actions of the controller� Unlike QL� it does not rely on
improving the estimate for Q�s� a� by comparing it to the sum of the imme�
diate reward received and the maximal estimated Q�value of all actions in the
next state� rather� it waits for a terminal state to be reached� and then uses
the sum of all time discounted reinforcement signals received since state�action
pair �s� a� was tried to update the estimate for Q�s� a��

The one trick involved is that all active �traces� are zeroed whenever a non�
policy action is selected for the sake of active exploration� This means that a
state�action pair only receives payo� information if policy has been followed all
the way thereafter up to the terminal state being reached� otherwise� it would be
learning the expected future discounted reward for a state�action with respect
to a mix of the current policy and non�policy actions of the controller� which is
not what is wanted�

In the simple case where no state�action pair is applied more than once
prior to a terminal state being reached� we could apply the QL�like update rule

Q�s� a� 	� ��� ��Q�s� a� � �y ���

where� for P�Trace

y �
nX

i��

��iri �
�

where � is the learning factor� � � � is the discount factor� �i is the number of
time�steps between the time state�action pair �s� a� was visited and reinforce�
ment signal ri was received� and n is the total number of reinforcement signals
received�

In the case where state�action pair �s� a� might have been visited several
times before a terminal state is reached� things are slightly more complicated�
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What we do conceptually is to keep a separate �trace� going for each time
state�action pair �s� a� is visited� When the terminal state is reached� we update
the Q�s� a� estimate in a way that is equivalent to applying the update rule ���
n times� where n is the number of times state�action pair �s� a� was visited� For
each application of the update rule to Q�s� a� the value of y re�ects the time
since state�action pair �s� a� was visited for that trace�

In practice� keeping track of each separate trace in this way would lead to
an unwieldy and ine�cient implementation� We can simplify the update of the
Q�s� a� estimate to a one step application of rule ���

Q�s� a� 	� ��� ��nQ�s� a� � y ���

if y is de�ned as

y �
nX

i��

��� ��n�i�
nX

j�i

�kij�j ���

where n is the number of times the state�action pair has been visited prior to
the terminal state being reached� and kij is de�ned as the number of time�steps
between the ith visit and the jth visit� �j is de�ned as the total discounted
reward received between the jth visit and the �j � ��th visit �or termination if
j � n��

The sum y can be calculated incrementally each time the state�action pair
is visited� Applying the �visit rules� in the pseudo�code in �g� � will do the job�

To show that ��� is equivalent to applying ��� n times for a separate trace
value kept for each visit� we suppose Q�s� a�� is the value before the update
procedure� and Q�s� a�n is the value after the nth application of ���	

Q�s� a�� � ��� ��Q�s� a�� � �y�

Q�s� a�� � ��� ��Q�s� a�� � �y�

Q�s� a�� � ��� ������ ��Q�s� a��� �y�� � �y�

Q�s� a�� � ��� ���Q�s� a�� � ��� ���y� � �y�

Q�s� a�� � ��� ��Q�s� a�� � �y�

Q�s� a�� � ��� ���Q�s� a�� � ��� ����y� � ��� ���y� � �y�

and so on� The above expansion generalises to

Q�s� a�n � ��� ��nQ�s� a���
nX

i��

��� ��n�i�yi
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while not terminal state do

get current state s
select action a �� stochastic action selection ��

if non�policy action selected then �� zero traces ��
for all �i� j� such that V isitCountij � � do

V isitCountij �� �
endfor

endif

if V isitCountsa � � then �� �rst visit ��
Sumsa �� �
xsa �� �

else �� subsequent visits ��
Sumsa �� ��� ��Sumsa 	 xsa�sa
k �� GlobalClock � StepCountsa �� steps since last visit ��
xsa �� ��� ��xsa�

k 	 �

endif

�sa �� �
V isitCountsa �� V isitCountsa 	 �
StepCountsa �� GlobalClock �� 
time�stamp� visit ��

take action a

if reinforcement signal r received then

for all �i� j� such that V isitCountij � � do

k �� GlobalClock � StepCountij
�ij �� �ij 	 r�k

endfor

endif

GlobalClock �� GlobalClock 	 �

endwhile

for all �s� a� such that V isitCountsa � � do �� terminal state reached ��
n �� V isitCountsa
Sumsa �� ��� ��Sumsa 	 xsa�sa
Qsa �� ��� ��nQsa 	 Sumsa �� update rule ��� ��

endfor

Fig �� Pseudo�code for the 
visit rules� to calculate ��� incrementally
�

�The variables Sum� x� �� StepCount and V isitCount are kept separately for each
state�action pair� as they are associated with a particular Q�value� The subscripts iden�
tify to which state�action pair the variable belongs� Also note that the pseudo�code in �g��
is mainly for illustrative purposes� For the basis of an implementation the more extensive
pseudo�code in Appendix B may be more useful�
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Now� since yi is the total discounted reward received between the ith visit and
termination� we can write the expression

yi �
nX

j�i

�kij�j

for all yi in a series of updates� kij is de�ned as the number of time�steps
between the ith visit and the jth visit� �j is de�ned as the total discounted
reward received between the jth visit and the �j � ��th visit �or termination if
j � n��

We can recast the above as

Q�s� a�n � ��� ��nQ�s� a�� � y

where y is de�ned as

y �
nX

i��

��� ��n�i�
nX

j�i

�kij�j

which is ��� and ��� as required�

Next� we show that the �visit rules� above do indeed calculate the value of y
in equation ���� Since kij is de�ned as the number of time�steps between the
ith visit and the jth visit� we can write the expression

kij �
jX

m�i��

tm

where tm is the number of time�steps between the �m� ��th visit and the mth

visit� This is useful because it allows us to expand ��� to

��� ��n�� ���� � ��t��� � ���t��t�	�� � � � � � ���t������tn	�n� �

��� ��n�� � ��� � ��t��� � � � � � ���t������tn	�n� �

��� ��n�� � ��� � � � � � ���t������tn	�n� �
���

��� �� � ��n�� � ��tn�n� �
� ��n�

Rearranging the above sum by column rather than by row� we get

nX

i��

�i � ��n�i�yi � ������ ��n���� �

������ ��n����t� � ��� ��n���� �

������ ��n�����t��t�	 � ��� ��n����t� � ��� ��n���� �

���

�n���� ��n�����t������tn	 � � � �� ��

�



which can be compactly written as

nX

i��

��� ��n�i�yi �
nX

i��

�ixi

where xi is de�ned as

xi �
iX

j��

��� ��n�j��
Pi

m�j��
tm

As n increases� we note that the sum
Pn

i�� �ixi can be incrementally recalcu�
lated as

Sum 	� ��� ��Sum� �nx

whereupon x is then incrementally recalculated according to the rule

x 	� ��� ��x�tn � �

with Sum � � and x � � as the initial values� These incremental recalculation
rules translate directly to the �visit rules� speci�ed in Fig ��

Finally� to address an implementation consideration	 With the update rules
in their simplest form as described above� the worst�case size of a list to keep
track of all the visited state�action pairs up until a terminal state is reached
is the entire number of states in the system� If this is implementationally
unfeasable or otherwise unacceptable� the worst�case size can be set to a smaller
�xed value n� where 	 � �n is predecided to be small enough that the total
discounted reward for any state�action pair last visited more than n time�steps
ago will be so close to zero that the di�erence doesn
t matter�


In this case� the algorithm need only to be modi�ed slightly� a list is kept of
state�action pairs visited up until a terminal state is reached� If a state�action
pair upon being visited is not currently on the list� it is put on the end of the
list� If a state�action pair upon being visited is already on the list� it is moved
to the end of the list� If the list grows to the length n � �� the state�action
pair at the head of the list is removed� and update rule ��� is applied to it with
y equal to the partial discounted reward accumulated so far� without waiting
for a terminal state to be reached� In this way the list will be maintained to a
maximum preset �xed length� and as long as 	 � �n is chosen to be su�ciently
small� there should be no signi�cant e�ect on the convergence properties of the
trace method�

��� Q�Trace

Q�Trace is the same as P�Trace except that it also performs a TD update to
the Q�value of the most recently tried state�action pair using the standard QL
update procedure

Q�s� a� 	� ��� ��Q�s� a� � y ���

�Peng 	 Williams 
����� propose an analogous modi�cation for their Q
���learning
algorithm�

��



where� for QL
y � ��r � �max

b
Q�s�� b�� ���

where s� is the state immediately following action a from state s� � is the
learning factor� � � � is the discount factor and r is the reinforcement signal
received �if any� immediately following action a from state s�

Q�Trace is therefore supplied with two separate channels of information
to provide updates for its Q�table	 A series of direct values from the trace
mechanism� and a series of indirectly derived values via the QL TD method�
It should also be clearer why the trace mechanism described above has been
carefully set�up to only allow �policy action� feedback� in the case of Q�Trace�
it is important the two channels of information �agree� in the sense that they
are actually estimates of the same thing�

To help clarify the relationship between the algorithms	 Q�Trace with the
TD described above disabled becomes P�Trace� Q�Trace with the trace mecha�
nism disabled is QL� The source code in Appendix B may be helpful in making
the above more explicit�

� Results

The results of the experiments comparing the performance of �ve learning al�
gorithms in the noisy pole�and�cart domain are presented in both tabular and
graphical formats�

��� Noise model ��

Below are the tables of results for noise model �� The left�most column indicates
the noise level as a percentage value� each row holds the results for a noise level
within a noise model� �BX� denotes BOXES� �AH� stands for AHC� �QL� is
Q�Learning and �QT� is for Q�Trace� �PT� is for P�Trace�

The columns in table �a hold the mean robustness scores for each algorithm
averaged over 
� learning runs conducted at each noise level� It should be in�
terpreted as a score out of 
�� as there are twenty �robustness trials� conducted
at the end of each run to test the quality of the learnt control rules�

The remaining tables �b � �d show the median� mean and standard deviation
for learning rate for each algorithm at each noise level� We include the median
as well as the arithmetic mean because of the skewing e�ects of a relative
handful of runs� particularly in the case of AHC� It is a good idea to compare
the mean and the median in conjunction with the standard deviation to build
up a reasonable picture of what is going on with respect to a measure of central
tendency� comparing mean learning times alone can be misleading�

Using the methodology and terminology of Sammut ������� learning rate is
measured by the number of trials required to learn the control task for a run��

	This makes more sense in the case of BOXES� where learning only occurs at the end of
each trial� whereas for a TD learner it might make more sense to measure learning rate in
terms of the total number of time steps� since learning is a more incremental process� However�
we use this measure for the sake of consistency with earlier studies�
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A trial commences with the pole and cart in a randomised �but recoverable�
position in the state space� and continues until either the system is deemed
to have failed �state values exceed certain prede�ned limits� or the system has
been successfully controlled without failure for a speci�ed amount of �simulated�
time� A trial that ends in success marks the end of the learning phase of a run�
the control rules are �frozen� at this point and the robustness trials mentioned
above commence� A �robustness trial� is scored � if it ends in system failure
�as described above�� or � if it ends with the system having avoided failure for
the speci�ed amount of time�

Tabular results for noise model �	

Noise Mean Robustness Score

�� BX AH PT QT QL

� ��� ��� ���� ���� ����
� ��� ��� ���� ���� ���
� ��� ��� ��� ���� ����
� ��� ��� ��� ��� ����
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���

Table �a

Noise Median Trials

�� BX AH PT QT QL

� �� �� ��� ��� ���
� �� �� ��� ��� ���
� �� �� ��� ��� ���
� �� �� ��� ��� ���
� ��� �� ��� ��� ����
� ��� �� ��� ��� ����
� ��� �� ��� ���� �����
� ��� ��� ���� ���� �����
� ��� ��� ����� ���� ������

Table �b

Noise Mean Trials

�� BX AH PT QT QL
� ���� ���� ����� ����� �����
� ����� ���� ����� ����� �����
� ����� ���� ����� ����� �����
� ����� ����� ����� ����� ������
� ����� ����� ����� ����� ������
� ����� ����� ������ ����� ������
� ����� ����� ������ ������ �������
� ����� ������� ������ ������ �������
� ������ ������ ������� ������� ��������

Table �c
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Noise Std dev Trials

�� BX AH PT QT QL

� ���� ���� ����� ���� �����
� ���� ���� ����� ���� �����
� ���� ���� ����� ���� �����
� ���� ����� ����� ����� �����
� ���� ���� ����� ����� ������
� ����� ����� ������ ����� ������
� ����� ����� ������ ����� �������
� ����� �������� ������ ������ �������
� ������ ������ ������� ������� ��������

Table �d

Next� we present the values in this table in a graphical format as a series
of plots� �For some of these values� we have included a second plot involving
only four algorithms� omitting the values for QL where problems of di�ering
orders of magnitude saw the QL learning rates �swamp� the plot� obscuring the
relationships between the other algorithms��
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Noise model �	 Median learning time �trials� wrt to increasing noise factor ���	
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Noise model �	 Mean learning time �trials� wrt to increasing noise factor ���	
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��� Noise model ��

The format of the presentation of results for noise model 
 is the same as for
noise model � �see above��

Tabular results for noise model 
	

Noise Mean Robustness Score

�� BX AH PT QT QL
� ��� ��� ���� ���� ����
� ��� ��� ���� ���� ����
� ��� ��� ���� ���� ����
� ��� ���� ��� ���� ���
� ��� ��� ��� ��� ����
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���
� ��� ��� ��� ��� ���

Table �a

Noise Median Trials

�� BX AH PT QT QL
� �� �� �� ��� ���
� �� �� ��� ��� ���
� �� �� ��� ��� ���
� ��� �� ��� ��� ����
� ��� �� ��� ��� ����
� ��� �� ��� ��� ����
� ��� ��� ��� ��� �����
� ��� ��� ���� ���� ������
� ��� ��� ���� ���� ������

Table �b

Noise Mean Trials

�� BX AH PT QT QL

� ���� ���� ����� ����� �����
� ����� ���� ����� ����� �����
� ���� ���� ����� ����� �����
� ����� ����� ����� ����� ������
� ����� ���� ����� ����� ������
� ����� ���� ����� ����� �������
� ����� ����� ������ ����� �������
� ����� ������ ������ ������ ��������
� ����� ������ ������ ������ ��������

Table �c
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Noise Std dev Trials

�� BX AH PT QT QL

� ���� ���� ����� ����� �����
� ���� ���� ����� ����� �����
� ���� ���� ����� ���� �����
� ���� ����� ����� ����� ������
� ���� ���� ����� ����� ������
� ���� ���� ����� ����� �������
� ����� ���� ������ ����� �������
� ���� ������� ������ ������ ��������
� ����� ������ ������ ������ ��������

Table �d
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� Discussion

��� Experimental Results

First� it is noteworthy that for all ���� runs performed �
� runs x � noise levels
x � algorithms x 
 noise models� the balancing task was learnt eventually in
every case� that is� there are no �missing values� in the data above� It was
certainly far from obvious while running the experiments that this would turn
out to be the case� in the case of QL and some runs of AHC� a single run would
take millions of trials to learn the task� corresponding to days of CPU time on
a workstation class machine� In some respects� the fact that the runs resulted
�nally in learning the task is more puzzling than if they had showed signs of
getting stuck in local minima� It would appear that Minsky
s �mesa�e�ect�
�Minsky ����� is perhaps a better explanation than that of local minima� to
touch on an old debate�

The results for noise model � and noise model 
 share many consistent
features� For both models� we observe that QL and Q�Trace share similar
robustness characteristics� with mean scores starting o� in the range �����
���� at the low noise levels� and generally steadily decreasing to values in the
range ������� �noise model �� and 
�����
 �noise model 
� by the time the ��
noise level is reached� In general� the control actions learnt by BOXES were
shown to be relatively the least robust� particularly at the lower noise levels
� ��� Overall AHC and P�Trace fell between BOXES and the Q�Learners
in robustness performance� although it is noteworthy that P�Trace did return
the highest scores at the � noise level for both noise models� and was closer in
general to the performance of the Q�Learners than to that of AHC� Notice that
at the higher noise levels� however� there is a general convergence towards zero
with respect to robustness scores over all algorithms�

It should be commented upon that runs past �� were not practical because
of the very long learning times for some runs of QL and AHC as mentioned
above� although some runs in this range completed relatively quickly �taking
perhaps only a few minutes of computing time�� other runs would take days to
complete on a fast workstation class machine� and both AHC and QL seemed
to �hit a brick wall� so to speak on some runs after the �� level� In contrast�
BOXES� P�Trace and Q�Trace were much more consistent and predictable learn�
ers in this respect� as can be seen by looking at the respective variances in the
tables above�

This extreme sensitivity to initial conditions with respect to learning times�
particularly in the case of AHC� is quite surprising� and� as far as the au�
thor knows has been hitherto largely unsuspected�� Whether this is genuinely
chaotic behaviour� or there is a more mundane explanation� deserves further
investigation� It would seem fair to suggest that this behaviour could be a se�
rious potential problem if predictability and reliability of learning times were
considered to be at all important factors in choosing either of these algorithms
for noisy domains�

As regards learning rates� QL is clearly the overall big loser� and increasingly


The only hint of this sort of behaviour might be found in the results of Sammut 
������
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so as noise level increased� At the �� noise level� QL was about ��x slower on
average than P�Trace and ��x slower than Q�Trace for noise model �� and
about 
��x slower than both for noise model 
� QL was in general three orders
of magnitude slower than BOXES at this noise level� BOXES was shown to be
a very consistent learner as noise levels increased� AHC� although its median
learning rates were very comparable to BOXES as noise level increased� had
large di�erences in mean learning rates� as the means were wildly skewed by a
handful of runs that took inordinate learning times� From a descriptive statistics
point of view� this could almost be viewed as a �two population� e�ect� although
there would seem to be no justi�able methodological reason to treat these as
outliers and not include them in the averages�

Of the algorithms above� the most similar to QL is Q�Trace� and yet their
performance� particularly under noisy conditions� are quite distinct� Q�Trace
exhibits both faster and more predictable learning rates� and equal or perhaps
marginally better quality of learning judging from the results of the �robust�
ness� trials� Why�

Before we attempt to answer this� some insight into the motivation for the
design of the P�Trace and Q�Trace algorithms may be helpful� In the �rst
version of these experiments� only the BOXES� AHC and QL algorithms were
trialled� What quickly became apparent were di�erent weaknesses for each of
these algorithms� resulting in no clear winner	

a� The extreme slowness in learning and sensitivity with respect to noise
QL exhibited in contrast to the other algorithms�

b� The relatively poor quality of learning or �robustness� scores exhibited
by BOXES�

c� The wildly varying learning rates exhibited by AHC for di�erent initial
conditions� particularly as noise levels increased�

Additionally� formal convergence results for either AHC or BOXES to date
have not been forthcoming� in contrast to the situation with QL� This made
QL
s poor practical showing even more disappointing� particularly as the con�
ventional wisdom is that QL should be particularly well suited to stochastic or
noisy environments�

Being both TD algorithms� prima facie it would appear that AHC and
QL are closer cousins than AHC and BOXES� yet the performance of AHC
and BOXES with respect to learning rates are much closer� The one thing
that AHC and BOXES do have in common that is absent in QL is a direct
trace mechanism for credit assignment� AHC is a hybrid in this respect� it
incorporates both the direct trace mechanism of a �pure� trace learner� such
as BOXES� and a TD mechanism of a �pure� TD learner� such as QL� We
hypothesised that the absence of a direct trace mechanism in QL was part
of the reason why QL was performing so badly with respect to learning rate�
particularly under noisy conditions�

The quality of learning or �robustness� scores for BOXES left much to be
desired when compared to its TD rivals� however� The design of a new algorithm
was motivated by the idea that a direct trace mechanism be reintroduced to
QL to possibly improve learning rate� particularly under noisy conditions� but
to preserve the relatively good quality of learning that could be associated with
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the TD learners� An additional design goal was to introduce the trace in such
a way that will also preserve the �provably correct� properties associated with
pure QL� if possible� Three plausible strategies were considered	 a� adding TD
to BOXES� b� simplifying the already hybrid AHC in such a way to make it
mathematically more tractable and at the same time perhaps sorting out some
of its unpredictability� c� adding a trace mechanism to QL� Upon consideration�
this last approach was deemed the most straightforward� and the result is Q�
Trace�

Two things became immediately apparent with Q�Trace� �rstly� that learn�
ing times were vastly improved over �pure� QL� and secondly that this did
not seem to be at the expense of learning quality �if anything learning quality
might be slightly better�� However� the learning rates were still signi�cantly
slower for Q�Trace than for BOXES or �median� AHC rates� particularly at
the higher noise levels� This led to the speculation that perhaps in general a
�pure� trace learner might learn faster than a hybrid or pure TD learner� but
with reduced quality of learning �analogous to a too fast annealing process��
P�Trace �which is simply Q�Trace with the TD learning disabled� making it a
�pure� trace learner� was introduced into the experiments to help investigate
this possibility�

Interestingly� the speculation above appears to be only half right� at best�
The prediction was that P�Trace would show faster learning times at the expense
of a decrease in learning quality� with respect to Q�Trace� In practice� the
learning quality did decrease slightly �although P�Trace was still exhibiting far
superior robustness scores over BOXES�� but the learning rates overall remained
very similar to those of Q�Trace�

So it would seem that to explain the di�erences in learning rates and robust�
ness scores of BOXES in comparison to the other algorithms� an explanation
besides TD learning in itself must be proposed� So what is left� Scrutiny of
P�Trace and BOXES might suggest that the exploration�exploitation action se�
lection heuristics� which are quite di�erent for both algorithms� might possibly
be the critical factor� This remains speculation for the moment� however���

Returning now to the question of why should there be such a discrepancy
between QL and Q�Trace in their learning rates� we can see why it might make
more sense to phrase this in a more general way	 Why is there such a discrep�
ancy between the learning rates of the trace learners as opposed to a pure TD
learner in this domain� Why does it appear that trace learning is so much
more e�ective a method of credit assignment� We attempt to at least partially
answer this question in the discussion in the following subsection�

��� Theoretical Issues

There are several possible reasons that may help to explain the discrepancy in
learning rates between the pure TD learner �QL� and the algorithms employing
trace mechanisms for credit assignment� Firstly� and most obviously� a trace

��Lin 
����� makes the comment that in his experience the 
Boltzmann distribution�
stochastic action selectors we have been using here for QL� Q�Trace and P�Trace are not
particularly good performers in terms of e�ectively trading o� exploration and exploitation�







mechanism provides for more immediate propagation of the reinforcement signal
information� assigning credit in various degrees to possibly many more than
the one state�action pair that is immediately a�ected in one�step QL� The slow
backwards propagation of credit that is associated with QL is thus potentially
accelerated� It is worth remembering that in TD learning in general� there is
potentially much �churning� of estimate values with little or zero information
content in the earlier stages of learning� Trace learning gets some information
to all visited states in one step���

Other� subtler reasons may also help to explain these results� One possibility
is that we are witnessing what might be called a TD �chinese whisper� e�ect���

Since information is potentially propagated through a long series of intermedi�
aries to a state�action pair that is temporally distant from direct reinforcement
signals� we may be seeing a TD analogue of this phenomenon� Information
that is passed through many intermediaries in a noisy environment may be
prone to a cumulative noise e�ect� Eventually� the signal may be swamped by
noise� Although there has not been a rigorous mathematical investigation of
this possibility at this stage� it would seem to be an idea worth following up�
If this speculation has any merit� the implications for TD learning in a noisy
environment could be quite important�

There may be yet another possible contributing factor to the observed ef�
fects� QL is designed to work in a �Markovian� environment� where the
expected value of the payo� from choosing a particular action from a particular
state is independent of which states were antecedent� In the case of the pole�
and�cart system with the particular input representation under consideration� a
�state� is a discretised chunk of the state�space� and the payo� from an action
selected from one of these states could conceivably be quite in�uenced by which
immediately preceding states have been visited� particularly if the chunks are
large��� That is to say� selecting action n from box k being fed from box i might

��It is worth noting that Lin�s technique of 
experience replay� 
Lin ����� is signi�cantly
less e�ective in speeding learning for QL if the reinforcement signals are negative in sign� This�
of course� is the case for the pole�and�cart problem� but the reason applies quite generally� the
back�propagation of the e�ect of a reinforcement signal must stop once the Q�max value for
a state is unchanged� and negative values will in general have less in�uence in causing change
to the Q�max values�
To illustrate the e�ect� consider the following special case� If all Q�values are initially set to

zero� as is the case in QL 
Watkins ������ what is the e�ect of the �rst reinforcement signal
if Lin�s replay method is applied� If the reinforcement is positive in sign� the e�ect of the
signal will be propagated in some degree all the way back down the line to every state�action
pair that led up to the reinforcement signal� This is �ne� Lin�s method in this case has the
equivalent action of a trace mechanism� But if the reinforcement signal is negative in sign�

experience replay� accomplishes nothing� the Q�max value will remain unchanged at zero for
the penultimate state� and the back�propagation stalls at this point�
Overall� for the purposes of speeding QL� we should expect Lin�s 
experience replay� method

be less e�ective than a trace mechanism� Certainly this is not contradicted by trying his
method with the pole�and�cart problem� which not surprisingly 
in hindsight� proved to be
almost totally ine�ective�

��The 
almost certainly apocryphal� WWI story of the message 
send reinforcements� we
are going to advance� being garbled to 
send three and fourpence� we�re going to a dance� by
the time the message was relayed to headquarters is commonly used to exemplify the e�ect�

��Watkins 
����� agrees with this analysis of the pole�and�cart problem�
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exhibit quite di�erent payo� characteristics than selection the same action from
box k being fed from box j�

This is the behaviour of a non�Markovian domain� We might now consider
why P�Trace and Q�Trace �and trace learning algorithms generally� might be
expected to cope better with credit assignment in such a domain� Consider the
simple case of a hypothetical state in a non�Markovian system we will call state
k� which has two possible antecedent states� states i and j� The policy for state
k is currently action n�

state i state j

state k

�
�
�R

�
�
��

Now� because our domain is non�Markovian� the expected payo� for action
n from state k may be di�erent if the immediately preceding state is i or j� If
the antecedent state is i� let the expected payo� for action n from state k be
����� if the antecedent state is j� let the expected payo� be ��������

Let us also suppose that the state transition i � k occurs more frequently
than the state transition j � k� say a ratio of about ��	��

So� the Q�value estimate of action n from state k would be expected to
converge to something in the order of ����� State j might well be arti�cially
�encouraged� whenever it made a state transition j � k� thinking it was doing
well� when in fact this would on average lead to a relatively poor outcome if
action n is policy for state k�

If credit assignment was done via a direct trace mechanism� however� state
j would soon learn that a transition to state k is generally less rewarding than a
TD derived Q�value would suggest� Thus� it should be clear from this example
the important general advantage the trace learner has in non�Markovian do�
mains	 it can take into account biasing e�ects of preceding states in assigning
credit if necessary�

QL and other pure TD methods cannot do this without resorting to explic�
itly re�representing the original states and their preceding state histories in a
combinatorial explosion of new states��� This would be potentially disastrous
both in terms of representation space requirements and the resulting slow�down
in learning due to the many more states that have to be explored for e�ective
credit assignment to occur� Realistically� although theoretically possible� this

��A similar construction is used for didactic purposes in Singh� Jaakkola and Jordan 
������
Their analysis of the limitations of TD
�� learning is essentially the same�

��Although TD algorithms that learn from more than one subsequent estimate such as
TD
�� 
Sutton ����� with � � � would be expected to cope with non�Markovian domains
progressively better as � � �� it should be clear that for all � � �� TD
�� should not be
expected to perform as well as a pure trace learner in a non�Markovian domain� The above
argument generalises fairly straightforwardly to include these cases�
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approach would be out of the question for almost all conceivable non�trivial
practical applications� We can conclude that if the domain is not at least rea�
sonably well�modelled by Markovian processes� we should have little reason to
expect QL and related pure TD learners to perform well��
 The next section
introduces some empirical support for this claim�

� Some experimental results comparing four RL al�

gorithms in a non�Markovian domain�

To empirically test some of the theoretical ideas introduced in the previous
section� we perform a simple experiment involving an arti�cially constructed
non�Markovian domain�

Consider the following four state non�Markovian domain	

state A state B

state C state D

�

PPPPPPPPPq

���������� �

States A and B are are the two possible starting states� which are non�
terminating� in the sense that actions taken from A or B will always lead to
a state transition to another state rather than to termination� States C and
D are terminating states� as the actions from these states will always lead to
immediate termination� There is always a reinforcement signal associated with
termination in this domain�

There are two possible actions available to choose from in each state� the
state transition rules as follows	

Action � from state A always leads to state C
Action � from state A always leads to state D
Action � from state B always leads to state C
Action � from state B always leads to state D
Any action taken from state C or D immediately terminates with a reinforce�
ment signal�

Because the domain is non�Markovian� the reinforcement received from an
action made in state C or D may depend not only upon what is the current
state� but also upon what the previous states were �that is� we cannot assume
the Markov property�� The reinforcement schedule is set as follows	

��Watkins 
����� mentions that a Markov learner devised by Barto� Sutton 	 Anderson

����� to compare with AHC returned 
disappointing results� when applied to the cart�and�
pole problem�
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Action � from state C
if the previous state was A	 ���
if the previous state was B	 �
��

Action � from state C
if the previous state was A	 ���
if the previous state was B	 ���

Action � from state D
if the previous state was A	 �
��
if the previous state was B	 ���

Action � from state D
if the previous state was A	 ����
if the previous state was B	 ����

The goal of a learning agent in this domain is to learn a policy that max�
imises its rewards over time� For a trial� the agent is started in state A or B
���� probability of starting in one over the other�� Learning takes place over
������ trials�

Results� For QL� Q�Trace and P�Trace a simple �Boltzmann distribution�
SAS as described in Lin ����
� was used with temperature T set to ���� The
average payo� per trial for four algorithms�
 is shown below �each row represents
a separate run of ������ trials for each algorithm using a di�erent seed for the
pseudo�random number generator��

Seed P�Trace Q�Trace AHC QL

���� ������� ������� ������� ��������

� ������� �������� ������� �����	
�

� ����
�� ������	
 �������� �������	

� ������� ����	�
� ������� ��������


 ���		�� �������� �������� ��������

� ���	��� �����

� �����	� ��������

� ���	��� �������� �����
� ��������

� ������� �������� �����	� ��������

	 ���	��� �������� �������
 ������	�

� ������� �������� ������� �������


� ������
 �������� �������� �����
	


Discussion� The domain was so constructed that the actual optimal policy
of A �action ��� B �action ��� C �action ��� D �action �� is immediately apparent
by inspection� also that the average per�trial payo� for an agent that strictly
adhered to this policy would be ���� It was also constructed so that any agent

��BOXES was not included in the experiment because in its present form it does not learn
from mixed sign reinforcement signals�
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that would be making an either�or overall judgement about the potential payo�
from state C or D regardless of the preceding state �i�e� a TD learner� would
prefer the mediocre but relatively safe policy of selecting action � from states
C and D�

If we add the additional constraint that state A and state B must agree on
their action �and hence next state� choice� then the best policy that could be
settled upon would be A �action ��� B �action ��� C �action ��� D �don
t care��
which has a per�trial payo� of �� This is the best a pure TD learner could be
expected to do� The next best policy of A �action ��� B �action ��� C �don
t
care�� D �action ��� has a slightly worse per�trial payo� of �����

Of course� as the learning agents have less than perfect information about
the domain and exploration is necessary� the actual average per�trial payo� we
would expect to be less than for strategies based on perfect information� This
is observed in the data tabled above�

Consistent with the analysis in the discussion section ��
 of this paper� of
the algorithms trialled� P�Trace� the pure trace learner� was able to cope with
this non�Markovian domain best� while QL� the pure TD learner fared worst�

Q�Trace and AHC� as hybrid trace�TD learners� were expected to fall be�
tween the pure trace and pure TD learners in their performance� which they
did� but interestingly AHC
s performance was close to P�Trace ��� of the time�
while for the other ��� the performance closely resembled that of Q�Trace�
Again� a �two population� e�ect emerges� Also note the anomalous result for
AHC with the random seed set at �� The number �������� indicates that AHC
did not try any other than the theoretical optimal policy more than 
� times
out of ������ trials� This would indicate that little exploration was occurring�
Why it settled so quickly into the optimal policy in this one case is unclear�
At the very least we can conclude that AHC shows itself again to be the least
predictable in terms of its performance�

The performance of all the algorithms might be contrasted with the ex�
pected outcome for a purely random agent as a baseline result� since all eight
reinforcement outcomes are equally likely with random action selection� the
expected per�trial outcome for a purely random agent should be simply the
average value of all possible reinforcement outcomes� which is ����
�� All do
signi�cantly better than a random agent would� The worst�case per�trial av�
erage reward for a policy in this domain is �
��� which provides a theoretical
lower bound for the results�

� Conclusions

Several important issues have been brought to light in the course of these ex�
periments� not the least of which is the fact that some of the best�known credit�
assignment algorithms currently in use in reinforcement learning research have
exhibited potentially serious problems in coping with noise� QL in particular
becomes a disastrously slow learner when faced with noise�

While BOXES is a fast learner and proved to be relatively resilient to noise
at the levels tested� its learning quality was shown to be generally inferior to
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that of the other algorithms tested�
AHC exhibits a strange� almost chaotic unpredictability with respect to

learning rate that seems to be more pronounced in the presence of noise� So
while the median learning rates for this algorithm are very good� better even
than BOXES� the mean learning rates tell a quite di�erent story� Whether
further tuning of the various algorithmic parameters could settle this behaviour
down remains speculation at this point� This highlights a practical problem
generally associated with a complex algorithm that is heavily dependent upon
heuristic methods� if such an algorithm is di�cult to understand even when it
appears to be working well� it can be di�cult to know where to start to �x it
when it appears to be not working so well�

This issue has been the driving force behind the work into �provably cor�
rect� learning algorithms� of which QL is one of the most intensively studied
at the moment� It is suggested that Q�Trace and P�Trace provide a general
improvement on this algorithm by reintroducing the old concept of the �learn�
ing trace�� a concept that became unfashionable as TD learning became the
principal focus of research of the RL community in general� In the light of
the foregoing results� it is argued that it is entirely premature to abandon the
concept just yet�

What distinguishes Q�Trace and P�Trace from other trace learners is that
the trace is designed in such a way as to preserve the convergence results that
apply to QL for the special case of learning in a pure Markovian environment�
Thus� in this special sense� �correctness� should be preserved� which of course
is one of the major appeals of QL over both AHC and BOXES� for which no
known equivalent theoretical results exist�

Q�Trace and P�Trace also achieve their signi�cant performance increases in
learning rate without having to trade�o� quality of learning� In these experi�
ments� the quality of Q�Trace
s learning is not signi�cantly di�erent to that of
QL
s� perhaps it is even marginally superior� whereas its average learning rate
ranges from 
��x faster on average in the absence of noise to approximately 
��x
faster in the case of �� noise for noise model 
� P�Trace has similar learning
rates to Q�Trace� and only marginally poorer learning quality for this domain
overall�

Analysis also suggests that there are advantages inherent in P�Trace and
Q�Trace �and in �memory trace� algorithms for credit assignment generally�
over pure TD algorithms when learning is to take place in environments that
are not well�modelled by Markovian processes� This last point is potentially the
most important of all� If this is true� and we also now have some preliminary
experimental work which strongly supports this analysis� then we have the
situation where the trace algorithms are not simply better performers within the
class of problems that TD learners can learn� but they are strictly more powerful

learners than the TD learners� in that they can learn a class of problems which
is a strict superset of the class of problems TD learners can learn�

In summary� key issues relating to reinforcement learning in noisy environ�
ments remain open questions� and extensive further investigation in this area is
required� However� we now have arguments and evidence that �trace� learners
may prove to be both faster and more powerful learners in general than their
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TD counterparts� The potential performance improvements using trace over
pure TD methods may turn out to be particularly important when learning is
to occur in noisy or stochastic environments� and in the case where the domain
is not well�modelled by Markovian processes�
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�� Appendices

A The pole�and�cart problem�

A four dimensional state space is partitioned into ��
 discretised states or
�boxes� �from which the Michie � Chambers algorithm derives its name�� The
state variables are comprised of the position of a cart on a �xed length track�

��



the cart
s velocity� the angle �from the vertical� of a pole hinged to the cart�
and the pole
s angular velocity�

For each of these discretised state regions the pole�and�cart system has to
decide upon a policy control action� which is to apply an impulse force of ��N to
the cart in one of the two possible directions in the direction of the track� The
goal is to learn a control strategy to avoid system failure� failure is de�ned by the
cart hitting the ends of the track or the angle of the pole exceeding �
 degrees
from the vertical� A �xed reinforcement signal ������ is made available to the
system upon a failure state being reached� no other information is available
directly from the problem environment�

r r

�
�
�
��

� �

The speci�cations for the simulated pole�and�cart system are as follows	

length of track	 ���m
mass of cart	 ��� kg
mass of cart�pole	 ��� kg
length of pole	 �m
distance of pole
s centre of mass from pivot	 ��� m

The partitioning points for the state space are as follows	

position on track �m�	 ���� �� partitions�
velocity of cart on track �m�s�	 ���� �� partitions�
angle of pole from vertical �degrees�	 ����������� �� partitions�
angular velocity of pole �degrees�s�	 ����� �� partitions�

The equations of motion used are those derived by Anderson �������

 � �
mg sin � � cos ��F �mpl ��� sin ��

�����ml�mpl cos� �

 x � !F �mpl� ��� sin � �  � cos ��"�m

where � is the pole angle in radians� x is the cart
s position on the track ��
�� �
x � 
���� m is the mass of the cart and pole ����kg�� g is the acceleration due
to gravity ����m�s�s�� F is the applied control force ������N�� mp is the mass
of the pole ����kg�� l is the distance from the pivot to the pole
s centre of mass
����m��

The simulation uses the Euler method of integration� The sampling rate of
the pole�and�cart
s state and the rate at which control actions are applied are
the same as the basic simulation rate� ��Hz�

��



In these experiments� the criterion for a successful control strategy was that
the system could perform ������ consecutive control actions starting from a
randomised �but not unrecoverable� initial state without encountering a failure
state� This translates to the equivalent of keeping the pole balanced for three
minutes and twenty seconds in real time�

B P�Trace and Q�Trace� Pseudo�code�

�
 P�Trace and Q�Trace C�like pseudo�code� Mark Pendrith� May �����

For each state�action pair we keep a set of the following

variables� Q� x� Sum� Rho� StepCount and VisitCount� all

initialised to zero� The indexing form x�i��j� identifies

the x variable belonging to state i and action j� etc�


�

list StateActionsList � nil�

long GlobalClock � ��

StartSystem��� �
 reset dynamic system to initial state 
�

while �not halting criteria� �

s � get�state���

a � get�action�s�� �
 Stochastic Action Selector 
�

if ��policy�s�a��

zero�traces�StateActionsList��

if ��inlist�StateActionsList�s�a��

add�list�StateActionsList�s�a��

�
 add state�action pair s�a to end of list if not already in list 
�

if �VisitCount�s��a� �� �� � �
 first visit 
�

Sum�s��a� � ��

x�s��a� � BETA�

�

else � �
 subsequent visit 
�

Sum�s��a� 
� ���BETA��

Sum�s��a� �� x�s��a� 
 Rho�s��a��

k � GlobalClock � StepCount�s��a�� �
 steps since last visit 
�

x�s��a� 
� pow�GAMMA�k��

x�s��a� 
� ���BETA��

x�s��a� �� BETA�

�

�




Rho�s��a� � ��

VisitCount�s��a����

StepCount�s��a� � GlobalClock�

r � TakeAction�a�� �
 take action� return immediate reinforcement 
�

if �r �� �� �

for all �i�j� in StateActionsList �

k � GlobalClock � StepCount�i��j��

Rho�i��j� �� r 
 pow�GAMMA�k��

�

�

if �failed� � �
 terminal state reached 
�

for all �i�j� in StateActionsList �

n � VisitCount�i��j��

Sum�i��j� 
� ���BETA��

Sum�i��j� �� x�i��j� 
 Rho�i��j��

Q�i��j� � pow����BETA��n�
Q�i��j� � Sum�i��j��

�

zero�traces�StateActionsList��

StartSystem���

�

�if QTRACE �
 do QL TD update for Q�Trace� but not for P�Trace 
�

else �

s� � get�state���

Q�s��a� � ���BETA�
Q�s��a� � BETA
�r � GAMMA
Q�s���max���

�

�
 note that ��trace�� has already effectively performed this update if 
�

�
 a terminal state has just been reached� so no need to duplicate� 
�

�endif

GlobalClock���

�

�
 procedure to ��zero�� traces 
�

void zero�traces�StateActionsList�

list StateActionsList�

�

for all �i�j� in StateActionsList

VisitCount�i��j� � ��

StateActionsList � nil�

�

��


