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Abstract

If reinforcement learning (RL) techniques are to be used for “real world”
dynamic system control, the problems of noise and plant disturbance will have
to be addressed. This study investigates the effects of noise/disturbance on five
different RL algorithms: Watkins’ Q-Learning (QL); Barto, Sutton and Ander-
son’s Adaptive Heuristic Critic (AHC); Sammut and Law’s modern variant of
Michie and Chamber’s BOXES algorithm; and two new algorithms developed
during the course of this study. Both these new algorithms are conceptually re-
lated to QL; both algorithms, called P-Trace and Q-Trace respectively, provide
for substantially faster learning than straight QL overall, and for dramatically
faster learning (by up to a factor of 200) in the special case of learning in a noisy
environment for the dynamic system studied here (a pole-and-cart simulation).

As well as speeding learning, both the P-Trace and Q-Trace algorithms
have been designed to preserve the “convergence with probability 17 formal
properties of standard QL, i.e. that they be provably “correct” algorithms for
Markovian domains for the same conditions that QL is guaranteed to be correct.
We present both arguments and experimental evidence that “trace” methods
may prove to be both faster and more powerful in general than TD (Temporal
Difference) methods. The potential performance improvements using trace over
pure TD methods may turn out to be particularly important when learning is
to occur in noisy or stochastic environments, and in the case where the domain
is not well-modelled by Markovian processes.

A surprising result to emerge from this study is evidence for hitherto un-
suspected chaotic behaviour with respect to learning rates exhibited by the
well-studied AHC algorithm. The effect becomes more pronounced as noise
increases.



1 Introduction

Reinforcement learning techniques are currently being investigated for suitabil-
ity of use in a wide variety of environments. These range from game playing
environments such as backgammon, where these machine learning techniques
have been successfully applied to develop systems capable of Master-level play
(Tesauro 1992), to noisy and possibly non-Markovian robotic environments
(Mahadevan 1994, Mataric 1994, Tham & Prager 1994).

The central thesis presented in this report is that for many domains, we
can expect that a non-TD method we call “trace learning” to be much more
effective a method of credit assignment for reinforcement learning than pure
TD methods. Analytical and experimental results suggest that “trace” learners
may prove to be both faster and more powerful learners in general than their
TD counterparts.

The experimental evidence is primarily based on a series of studies involv-
ing the well-known benchmark pole-and-cart (or inverted pendulum) control
problem. The pole-and-cart learning task is set out in Michie and Chambers
(1968), and Barto, Sutton and Anderson (1983). For those readers unfamiliar
with this control problem, Appendix A provides a detailed description. The
only new dimension that has been added for the purposes of the experiments
described here has been to make the model less deterministic by simulating a
degree of noise or disturbance in the system. At each recalculation of the simu-
lated systems next state, the four state variables were “fuzzed” by the addition
of a degree of white noise.

The motivation for this study was to investigate the performance of various
credit-assignment algorithms in noisy domains, as a preliminary study evalu-
ating candidates for a reinforcement learning controller for a flight simulator
and possibly other up-scale systems. In any realistic dynamic system’s control
environment, noise and disturbance will be inevitable; only the degree to which
they will be encountered will vary. There has been no such comparative study
of this aspect of reinforcement learning algorithms published previously, to the
best knowledge of the author.

Two different noise models were used in the trials. These are detailed in
section 3.2.

It should be pointed out that neither noise model is probably very realistic
with respect to the actual noise/disturbance effects that might be expected to
be encountered with a real pole-and-cart rig. However, they serve sufficiently
well for a first study investigating the effects of moving progressively from a
deterministic to increasingly stochastic environment on the learning rates and
quality of learning for the five different algorithms studied. The use of two
different noise models was motivated by the concern that any effects observed
could conceivably be specific to the noise model chosen. However, the results
do not suggest any such dependencies. The results for the two different noise
models tell essentially the same story with respect to learning rates and learning
quality for each of the algorithms studied.

Five reinforcement learning algorithms have been studied, three of which
(BOXES, AHC and QL) have been written about extensively; the others, P-



Trace and Q-Trace, are new.

It turns out that these new algorithms, which use “trace learning”, learn
much faster than the pure TD algorithm studied (Q-learning) in this domain.
The relative difference in learning rate increases as the noise level of the learning
environment is raised. Analysis suggests the potentially important result that
trace learning is a strictly more powerful technique than single or multi-step TD
learning in non-Markovian domains. It is proposed that trace learning could
be used as a replacement for TD methods for better learning in non-Markovian
domains, and could be used (possibly in conjunction with TD methods) to
speed-up learning in Markovian domains.

2 Methods

The methods and terminology used borrow heavily from Sammut (1988). A
complete series of independent experiments as described below was performed
for each noise model.

Basic terminology: A “trial” consists of starting the pole-and-cart system
and letting the controller run until either the system fails (the pole falls over
or the cart hits an end of the track) or the success criterion of n control steps
without failure is reached. A “run” consists of many trials and concludes with
a successful trial (i.e. the control task has been successfully learnt). Learning
is cumulative over trials within a run; learning for the controller at the start
of the k + 1th trial within a run picks up where it finished at the end of the
kth trial. The “policy” action for the controller is the action that is currently
most-favoured for a particular state; this may change over the course of learning.

An experimental series is as follows: For each of the five algorithms, and
for nine different noise levels (0-8% in 1% intervals), we do 20 different runs
learning to balance the pole. Each run within a noise level for a learning
algorithm starts with a different seed for the random number generator. The
differences between the runs are related to the initial conditions of the pole-and-
cart system at the beginning of each trial (from randomly set but recoverable
starting positions), and any other allowably random factors if applicable (e.g.
the initial “policy” actions for BOXES, or the action of the “stochastic action
selectors” within AHC, QL, Q-Trace and P-Trace; refer Lin (1992) and the next
section for discussion on the style of stochastic action selectors used.)

The number of trials it takes to successfully balance the pole for each run is
recorded; balancing the pole within a trial for 10,000 sequential control actions
without failure (corresponding to 3m 20s in real time) is considered to be “suc-
cessfully balanced”. The average number of trials required to learn the task for
an algorithm at a certain noise level is interpreted as a measure of learning rate
for that noise level.

At the end of each run, once the pole has been successfully balanced within
a trial for the requisite number of time-steps, a further 20 trials with the policy
control actions fixed from the end of the last learning run are performed to
try to assess the quality or “robustness” of the learnt control actions. Each of
these trials are judged successful if from a randomised initial starting position



the control rules can again keep the pole balanced for 10,000 time steps, and
unsuccessful otherwise. A “robustness” or “quality of learning” score (out of
20) is thus generated for each algorithm at each noise level.

So, for each run, two numbers are extracted: The number of trials required
to learn the control task for this particular run as a measure of learning rate,
and a score (out of 20) measuring the quality or robustness of the learnt control
policy. Twenty of these number pairs are generated for each noise level to
achieve a degree of smoothing through averaging, and to get a measure of the
variance of these values within a noise level for a particular algorithm.

The results of these experiments are presented in section 5. Sections 3 and
4 describe the learning algorithms and environment. Section 6 provides discus-
sion of these results, and section 7 presents the results of a simple experiment
motivated by some of the theoretical issues raised in this discussion.

3 The algorithms

3.1 Pole-and-cart simulation

For the sake of consistency, exactly the same pole-and-cart simulation code
was used for all algorithms. The code is based on code from Claude Sammut’s
implementation of BOXES, which was in turn based on equations originally
derived by Charles Anderson and used in Barto, Sutton and Anderson (1983)
and Anderson (1989). The equations of motion along with other details of the
simulation can be found in Appendix A.

3.2 The noise models

The first noise model simply scaled the range of the random noise value to the
absolute value of the state variable to be fuzzed. So, if the state values at time-
step n were calculated to be z, , 0,9 by the pole-and-cart model’s “noise-free”
calculations, and the noise level was set to 5%, then the actual state values the
simulation would see at the next time step would be & 4+ random(—x x0.05, z *
0.05), etc. In addition to this, a small absolute value of random disturbance
in the range +0.0001 was added to ensure that the system did not become
noise-free even for zero state variable values.

The second noise model applies a more even level of noise over the state-
space than does the first. Instead of scaling the noise levels to the current state
variable values, which has the effect of the noise increasing away from the zero
states, the noise is scaled to the measured standard deviations of each state
variable as measured over several trials. In this model, a 5% noise level means
that the random additive fuzz value for each state variable is generated in the
range of +£5% of two standard deviations for the state variable.

The measured values for the respective standard deviations were as follows:

z : 0.287055
z : 0.436060



¢ :0.041905
6 :0.575032

3.3 BOXES

The version of BOXES used is the Sammut and Law variant as described in
Sammut (in press). The parameter settings were left unchanged from those that
had been selected after tuning for the noise free version of the pole-and-cart
balancer.! Claude Sammut provided his implementation in C of the algorithm
for the experiments that were conducted.

3.4 AHC

The version of AHC is the one described in Barto, Sutton and Anderson (1983).
The C source code for AHC used for these experiments was supplied by Richard
Sutton of GTE, which he has generously made available by anonymous ftp.
The parameter settings were left unchanged from the values set in the anon ftp
source distribution.?

3.5 Q-Learning

The one-step QL algorithm was implemented from descriptions in Watkins
(1989), Watkins & Dayan (1992) and Sutton, Barto & Williams (1992). For
these experiments, the discount factor was set to 0.99 and the learning rate
series set to a constant 0.5. The “stochastic action selector” (SAS) used is
based on one in Lin (1992). One difference in implementing the SAS is that
for every second trial in a run, the SAS is turned off, and the action selected
is always policy (according to the current Q-value). This allowed for an inter-
leaving of “exploration” and “exploitation” trials, which was found to improve
performance for QL on this task. (In fact, it was moderately difficult to find a
version of Lin’s simple action selector to learn to balance the pole reliably at
all, even in the absence of noise.)

As the formal convergence properties of the QL algorithm in Markovian
domains is independent of the action selection strategy (as long as it is guar-
anteed that every action will potentially be tried an infinite number of times)>
(Watkins & Dayan 1992, Sutton, Barto & Williams 1992), this action selec-
tion strategy is entirely compatible with QL, and fits quite naturally with the
structure of the learning task. Indeed, it is a generalisable approach to the
exploration problem that should fit well with any learning task where the goal
is failure avoidance, and failure results in a new learning trial being initiated.
For more detail refer to section 3.7 “Stochastic Action Selection (QL, Q-Trace
and P-Trace)”.

DK =098, K =17, CO= 0.0, C1 =1.0
2ALPHA = 1000, BETA = 0.5, GAMMA = 0.95, LAMBDAw = 0.9, LAMBDAv = 0.8
Peng & Williams (1994) refer to this property of QL as “experimentation insensitivity”.



3.6 The new algorithms: P-Trace and Q-Trace

The new “P-Trace” algorithm reintroduces a direct credit assignment “memory
trace”? that is used to assign credit more heavily for the actions most recently
tried prior to a reinforcement signal being received. It is like BOXES and AHC
in this respect, but different from QL and other pure TD credit assignment
algorithms.

Also newly developed for the purposes of this study is the “Q-Trace” algo-
rithm. Like AHC, it is a hybrid that also incorporates TD learning. The TD
method is that of QL, hence the “Q” in the name. The trace mechanism is that
of P-Trace; the trace mechanism of P-Trace has been specially designed to be
compatible with QL in this hybrid form.?

Both algorithms have been introduced into this study for comparative pur-
poses as examples of other “pure” and hybrid trace learners, to help settle
some speculation raised in the analysis of the performance of the other algo-
rithms tested. They have also been designed to be “clean” and mathematicially
tractable algorithms to facilitate reasoning about the underlying principles in-
volved. Pseudo-code for these algorithms is in Appendix B; section 4 describes
the new algorithms in detail.

3.7 Stochastic Action Selection (QL, Q-Trace and P-Trace)

The “stochastic action selector” (SAS) used in in conjunction with the QL,
Q-Trace and P-Trace algorithms in these experiments is based on that used in
Lin (1992). To actively explore different actions in similar situations, action are
chosen randomly according to a Boltzmann probability distribution:

Prob(ai):eq"/T/ Z et/ T

kE€actions

where ¢; is the current estimate of the Q-value of action a;, and the temperature
T adjusts the randomness of action selection.

In practice, the action selector was turned off every second learning trial
within a run to exploit fully the learning that had occurred up to that point;
if the trial ended in failure, the next trial would invoke the stochastic action
selector to reinitiate exploration. This was done because QL seemed to have
much more trouble learning the task without “interleaving” exploration and
exploitation trials in this way.

“The term “trace” is adopted from Barto, Sutton & Anderson (1983).

SAt first glance, these new algorithms might seem conceptually similar to Peng and
Williams’ @(A)-learning algorithm (Peng & Williams 1994) because of the presence of an
“activity trace”. However, the resemblance is superficial. The purpose and use of the trace in
Q(M)-learning and P-Trace are very different.

In Q(X)-learning, the purpose of the trace is to generalise from one-step to multi-step
temporal differencing as a means of credit assignment, directly analogous to the approach
taken by Sutton’s TD(X) (Sutton 1988). In P-Trace, the purpose of introducing the trace
is not to generalise but rather to replace the TD credit assignment mechanism with a non-
TD method. There is no TD learning occuring in P-Trace; further, the TD learning which
is occurring in the TD/trace hybrid Q-Trace (which shares the same trace mechanism as
P-Trace) is one-step TD, and is operating entirely without recourse to the trace mechanism.



It is worth noting that the performance of both P-Trace and Q-Trace may
well have been assisted by this method as well. Reflecting upon how the trace
mechanism is implemented (see section 4 and Appendix B for details), a “policy
only” trial should allow for the greatest credit assignment, as the traces are
effectively reset to zero upon a non-policy action being selected.

For the trials where the SAS was active, the temperature T was selected
randomly from the range 0.0-0.1 each time the SAS was invoked. This meant
that the randomness or “boldness” of exploration varied within a range at each
step. Again, this was motivated by trial and error tuning to get QL to learn
the task reliably, rather than by theoretical concerns.

For the sake of consistency, QL, Q-Trace and P-Trace all used the same SAS
set-up throughout these experiments.

3.8 P-Trace

Conceptually, P-Trace is very simple; like QL it is trying to estimate the ex-
pected future discounted reward for an action a from state s, with respect to
the current policy actions of the controller. Unlike QL, it does not rely on
improving the estimate for ()(s,a) by comparing it to the sum of the imme-
diate reward received and the maximal estimated Q-value of all actions in the
next state; rather, it waits for a terminal state to be reached, and then uses
the sum of all time discounted reinforcement signals received since state/action
pair (s,a) was tried to update the estimate for Q(s, a).

The one trick involved is that all active “traces” are zeroed whenever a non-
policy action is selected for the sake of active exploration. This means that a
state/action pair only receives payoff information if policy has been followed all
the way thereafter up to the terminal state being reached; otherwise, it would be
learning the expected future discounted reward for a state/action with respect
to a mix of the current policy and non-policy actions of the controller, which is
not what is wanted.

In the simple case where no state/action pair is applied more than once
prior to a terminal state being reached, we could apply the QL-like update rule

Q(s,a) := (1= B)Q(s,a) + By (1)

where, for P-Trace

y=>_7"r (2)
=1

where 3 is the learning factor, v < 1 is the discount factor, k; is the number of
time-steps between the time state/action pair (s,a) was visited and reinforce-
ment signal r; was received, and n is the total number of reinforcement signals
received.

In the case where state/action pair (s,a) might have been visited several
times before a terminal state is reached, things are slightly more complicated.



What we do conceptually is to keep a separate “trace” going for each time
state/action pair (s, a) is visited. When the terminal state is reached, we update
the Q(s, a) estimate in a way that is equivalent to applying the update rule (1)
n times, where n is the number of times state/action pair (s, a) was visited. For
each application of the update rule to Q(s, a) the value of y reflects the time
since state/action pair (s,a) was visited for that trace.

In practice, keeping track of each separate trace in this way would lead to
an unwieldy and ineflicient implementation. We can simplify the update of the
Q (s, a) estimate to a one step application of rule (3)

Qs,a):=(1-0)"Q(s,a)+y (3)

if y is defined as

y=> (1-p)"" ZﬁZv Yp; (4)
=1

where n is the number of times the state/action pair has been visited prior to
the terminal state being reached, and £;; is defined as the number of time-steps
between the " visit and the j** visit. p; is defined as the total discounted
reward received between the j* visit and the (j 4 1)™ visit (or termination if
Jj=mn).

The sum y can be calculated incrementally each time the state/action pair
is visited. Applying the “visit rules” in the pseudo-code in fig. 1 will do the job.

To show that (3) is equivalent to applying (1) n times for a separate trace
value kept for each visit, we suppose Q(s,a)o is the value before the update
procedure, and Q(s, a),, is the value after the n'* application of (1):

Qs,a)y = (1=PB)Q(s;a)o+ Py

Q(s,a)2 = (1=p3)Q(s,a)1 + fya

Q(s,a)s = (1=B)((1=5)Q(s,a)o+ By1) + Bya
Q(s,a)s = (1-8)Q(s,a)o+ (1 - B)By1 + Bya
Qs,a)3 = (1—pB)Q(s,a)2+ Bys

(
Q(s,a)s = (1-8)°Q(s,a)o+ (1= B)*Byr + (1 — B)Byz + Bys

and so on. The above expansion generalises to

n

Q(s,a)n = (1=0)"Q(s,a)o+ D (L 5)" "By

=1



while not terminal state do

get current state s

select action a (* stochastic action selection *)

if non-policy action selected then (* zero traces *)
for all (7, j) such that VisitCount;; > 0 do
VisitCount;; =0

endfor
endif
if VisitCount,, = 0 then (* first visit *)
Sumg, =0
Tsa ‘= 6
else (* subsequent visits *)

Sumgq 1= (1 - 6)Sum5a + Ts5apPsa
k = GlobalClock — StepCounts,  (* steps since last visit *)

Tsq = (1— ﬁ)xm'yk + 4

endif

Psa = 0

VisitCount,y := VisitCounty, + 1

StepCounts, = GlobalClock (* “time-stamp” visit *)

take action a

if reinforcement signal r received then
for all (7, j) such that VisitCount;; > 0 do
k = GlobalClock — StepCount;;
pij = pij + 17
endfor

endif

GlobalClock = GlobalClock + 1

endwhile

for all (s, a) such that VisitCounts, > 0 do

(* terminal state reached *)
n = VisitCount,,

Sumgq = (1 - 6)Sum5a + ZsapPsa

Qsa = (1 = 0)"Qsq + Sumg, (* update rule (3) *)

endfor

Fig 1: Pseudo-code for the “visit rules” to calculate (3) incrementally.

is mainly for illustrative purposes.

6The variables Sum, z, p, StepCount and VisitCount are kept separately for each
state/action pair, as they are associated with a particular Q-value.
tify to which state/action pair the variable belongs. Also note that the pseudo-code in fig.1

pseudo-code in Appendix B may be more useful.

The subscripts iden-

For the basis of an implementation the more extensive



Now, since y; is the total discounted reward received between the i visit and
termination, we can write the expression

Yyi = Z Sy
j=1

for all y; in a series of updates. k;; is defined as the number of time-steps
between the " visit and the j* visit. p; is defined as the total discounted
reward received between the j* visit and the (j 4 1)™ visit (or termination if

Jj=mn).

We can recast the above as

Q(Sva)n = (1 - ﬁ)nQ(Sva)O +y

where y is defined as
y=> (1=8)""83 7",
=1 7=t

which is (3) and (4) as required.

Next, we show that the “visit rules” above do indeed calculate the value of y
in equation (4). Since k;; is defined as the number of time-steps between the
ith visit and the j** visit, we can write the expression

J
kij= Y tm
m=1+1

where t,, is the number of time-steps between the (m — 1) visit and the m'*

visit. This is useful because it allows us to expand (4) to

(1L=8)""" B + By%p2 + pYT8)py 4 - Pyliatetiy )
(1=8)"2 | Bpz  + Byps o+ gyt
(=52 ( Bps  + e+ Byl
(1=5) ( Bpn-1 + By i)

( Bpn)

Rearranging the above sum by column rather than by row, we get

=" By = (L= 8)"18) +
p2((1=B)" "By + (1-8)"28) +

pa((1= )" By ) 4 (1= 3)" 25y + (1 - )" 28) +

pr((1=B)" Byttt 4t )

+ 4+ +



which can be compactly written as

n

Y (1=8)" 8y =Y piwi
=1

=1
where z; is defined as
v= (1= By gy

i=1

As n increases, we note that the sum > 7", p;z; can be incrementally recalcu-
lated as

Sum := (1 — p)Sum + p,x

whereupon z is then incrementally recalculated according to the rule

(1—B)ay"" + 5

T .

with Sum = 0 and z = /3 as the initial values. These incremental recalculation
rules translate directly to the “visit rules” specified in Fig 1.

Finally, to address an implementation consideration: With the update rules
in their simplest form as described above, the worst-case size of a list to keep
track of all the visited state/action pairs up until a terminal state is reached
is the entire number of states in the system. If this is implementationally
unfeasable or otherwise unacceptable, the worst-case size can be set to a smaller
fixed value n, where ¢ = 4" is predecided to be small enough that the total
discounted reward for any state/action pair last visited more than n time-steps
ago will be so close to zero that the difference doesn’t matter.”

In this case, the algorithm need only to be modified slightly; a list is kept of
state/action pairs visited up until a terminal state is reached. If a state/action
pair upon being visited is not currently on the list, it is put on the end of the
list. If a state/action pair upon being visited is already on the list, it is moved
to the end of the list. If the list grows to the length n + 1, the state/action
pair at the head of the list is removed, and update rule (3) is applied to it with
y equal to the partial discounted reward accumulated so far, without waiting
for a terminal state to be reached. In this way the list will be maintained to a
maximum preset fixed length, and as long as € = 4™ is chosen to be sufficiently
small, there should be no significant effect on the convergence properties of the
trace method.

3.9 Q-Trace

Q-Trace is the same as P-Trace except that it also performs a TD update to
the Q-value of the most recently tried state/action pair using the standard QL
update procedure

Qs,a):=(1-0)Q(s,a)+y (5)

"Peng & Williams (1994) propose an analogous modification for their Q())-learning
algorithm.

10



where, for QL
y = B(r+ymaxQ(s', b)) (6)

where s’ is the state immediately following action a from state s, § is the
learning factor, v < 1 is the discount factor and r is the reinforcement signal
received (if any) immediately following action @ from state s.

Q-Trace is therefore supplied with two separate channels of information
to provide updates for its Q-table: A series of direct values from the trace
mechanism, and a series of indirectly derived values via the QL TD method.
It should also be clearer why the trace mechanism described above has been
carefully set-up to only allow “policy action” feedback; in the case of Q-Trace,
it is important the two channels of information “agree” in the sense that they
are actually estimates of the same thing.

To help clarify the relationship between the algorithms: Q-Trace with the
TD described above disabled becomes P-Trace; Q-Trace with the trace mecha-
nism disabled is QL. The source code in Appendix B may be helpful in making
the above more explicit.

4 Results

The results of the experiments comparing the performance of five learning al-
gorithms in the noisy pole-and-cart domain are presented in both tabular and
graphical formats.

4.1 Noise model 1:

Below are the tables of results for noise model 1. The left-most column indicates
the noise level as a percentage value; each row holds the results for a noise level
within a noise model. “BX” denotes BOXES, “AH” stands for AHC, “QL” is
Q-Learning and “QT” is for Q-Trace. “PT” is for P-Trace.

The columns in table 1a hold the mean robustness scores for each algorithm
averaged over 20 learning runs conducted at each noise level. It should be in-
terpreted as a score out of 20, as there are twenty “robustness trials” conducted
at the end of each run to test the quality of the learnt control rules.

The remaining tables 1b — 1d show the median, mean and standard deviation
for learning rate for each algorithm at each noise level. We include the median
as well as the arithmetic mean because of the skewing effects of a relative
handful of runs, particularly in the case of AHC. It is a good idea to compare
the mean and the median in conjunction with the standard deviation to build
up a reasonable picture of what is going on with respect to a measure of central
tendency; comparing mean learning times alone can be misleading.

Using the methodology and terminology of Sammut (1988), learning rate is
measured by the number of trials required to learn the control task for a run.®

8This makes more sense in the case of BOXES, where learning only occurs at the end of
each trial, whereas for a TD learner it might make more sense to measure learning rate in
terms of the total number of time steps, since learning is a more incremental process. However,
we use this measure for the sake of consistency with earlier studies.
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A trial commences with the pole and cart in a randomised (but recoverable)
position in the state space, and continues until either the system is deemed
to have failed (state values exceed certain predefined limits) or the system has
been successfully controlled without failure for a specified amount of (simulated)
time. A trial that ends in success marks the end of the learning phase of a run;
the control rules are “frozen” at this point and the robustness trials mentioned
above commence. A “robustness trial” is scored 0 if it ends in system failure
(as described above), or 1 if it ends with the system having avoided failure for
the specified amount of time.

Tabular results for noise model 1:

Noise Mean Robustness Score
(%) BX AH PT QT QL
0 2.9 9.6 12.7 11.2 10.1
1 4.8 9.7 10.7 12.0 8.1
2 4.3 8.1 9.6 10.6 11.9
3 3.8 7.0 7.2 8.6 10.1
4 3.3 4.9 8.1 9.9 6.8
5 4.3 4.7 4.5 4.3 6.3
6 2.2 2.8 2.4 5.1 2.0
7 1.1 1.6 1.6 1.6 1.0
8 0.4 0.4 0.7 1.1 0.4
Table la
Noise Median Trials
(%) BX AH PT QT QL
0 75 49 100 143 329
1 99 54 101 155 415
2 77 57 161 149 513
3 95 69 153 235 735
4 126 73 178 348 1549
5 183 92 437 443 2697
6 179 81 631 1039 12535
7 351 236 1002 2843 51509
8 834 360 16630 6131 436857
Table 1b
Noise Mean Trials
(%) BX AH PT QT QL
0 76.6 56.3 160.1 166.5 403.6
1 114.2 61.5 186.8 185.1 503.0
2 100.2 57.9 238.0 183.6 690.9
3 127.8 137.2 314.3 240.5 1080.6
4 142.9 100.9 400.6 360.0 1905.0
5 209.1 473.3 1143.6 636.2 7949.3
6 218.1 125.5 1462.0 1101.5 22937.5
7 456.2  58001.6 1802.7 3228.4 97301.6
8 1374.0 1900.9 27161.2 14757.1 867567.4

Table 1c
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Noise Std dev Trials

(%) BX AH PT QT QL
0 24.2 20.6 123.9 82.7 184.3
1 59.4 36.4 152.8 83.5 267.3
2 55.7 16.3 163.8 76.0 504.6
3 88.4 252.0 394.7 117.8 688.9
4 63.0 79.7 469.1 133.8 1484.3
5 103.7 857.5 1400.4 377.6 8576.8
6 126.2 111.4 1479.0 548.0 18037.4
7 285.8  251354.0 1562.9 1762.3 95836.6
8 1114.0 5970.7 28100.1 15792.5 845976.0

Table 1d

Next, we present the values in this table in a graphical format as a series
of plots. (For some of these values, we have included a second plot involving
only four algorithms, omitting the values for QL where problems of differing
orders of magnitude saw the QL learning rates “swamp” the plot, obscuring the
relationships between the other algorithms.)

Noise model 1: Mean robustness (out of 20) wrt to increasing noise factor (%):

robustness wrt increasing noise

20 T T | | | |
18 - BOXES —
16 - PTRACE — 7|
14 - QTRACE ---- |
QL —
12
10
8
6
4
2
0
0 1 2 3 4 5 6 7 8
noise factor
Plot 1.1
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Noise model 1: Median learning time (trials) wrt to increasing noise factor (%):

learning time wrt increasing noise
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Noise model 1: Median learning time (trials) wrt to increasing noise factor (%):

learning time wrt increasing noise
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Plot 1.3 (same as plot 1.2 above, but without showing QL. Note different
orders of magnitude on y-scale.)
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Noise model 1: Mean learning time (trials) wrt to increasing noise factor (%):
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Noise model 1: Mean learning time (trials) wrt to increasing noise factor (%):
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Plot 1.5 (same as plot 1.4 above, but without showing QL. Note different
orders of magnitude on y-scale.)
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4.2 Noise model 2:

The format of the presentation of results for noise model 2 is the same as for
noise model 1 (see above).

Tabular results for noise model 2:

Noise Mean Robustness Score
(%) BX AH PT QT QL
0 3.7 7.9 13.3 11.8 11.9
1 3.9 81 105 13.3 11.9
2 5.4 9.6 10.0 104 10.0
3 3.8 10.9 6.3 10.9 9.6
4 2.8 7.6 6.3 7.3 10.2
5 3.4 5.5 8.0 6.9 8.9
6 3.6 3.4 3.6 5.6 5.2
7 2.7 1.9 3.3 5.2 3.3
8 2.8 1.5 2.5 4.2 2.7
Table 2a
Noise Median Trials
(%) BX AH PT QT QL
0 74 47 99 129 359
1 77 48 107 180 395
2 85 65 118 180 743
3 100 83 169 246 1135
4 108 70 180 254 1837
5 111 91 308 340 5713
6 149 103 565 525 13651
7 183 149 1763 1016 102683
8 187 255 3447 3709 753183
Table 2b
Noise Mean Trials
(%) BX AH PT QT QL
0 75.6 48.3 182.9 159.1 416.9
1 101.9 51.6 252.2 222.7 495.3
2 86.3 75.3 201.7 178.7 715.0
3 107.9 123.6 212.4 262.9 1537.8
4 110.1 87.3 377.1 302.5 3205.5
5 128.1 94.7 373.5 385.4 10484.5
6 191.9 113.4 1129.9 677.4 26978.5
7 172.9 3781.0 3209.7 1432.1 185714.3
8 235.5  2550.8 5800.7 4860.8 927381.4

Table 2c
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Noise Std dev Trials
(%) BX AH PT QT QL
0 28.0 17.1 198.8 110.7 297.5
1 75.2 13.3 331.8 104.5 298.1
2 48.2 40.4 178.6 83.9 287.6
3 51.2 139.1 141.1 101.7 1636.3
4 39.9 52.7 364.2 176.1 2634.4
5 77.3 32.1 335.4 230.4 12121.8
6 134.3 55.5 1103.8 446.4 27129.3
7 81.8 15551.4 2961.2 1353.0 144506.9
8 157.5 9372.7 5268.8 3615.1 747734.5

Table 2d

Noise model 2: Mean robustness (out of 20) wrt to increasing noise factor (%):

robustness wrt increasing noise
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Noise model 2: Median learning time (trials) wrt to increasing noise factor (%):

learning time wrt increasing noise
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Noise model 2: Median learning time (trials) wrt to increasing noise factor (%):

learning time wrt increasing noise
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Plot 2.3 (same as plot 2.2 above, but without showing QL. Note different
orders of magnitude on y-scale.)
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Noise model 2: Mean learning time (trials) wrt to increasing noise factor (%):
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5 Discussion

5.1 Experimental Results

First, it is noteworthy that for all 1800 runs performed (20 runs x 9 noise levels
x 5 algorithms x 2 noise models) the balancing task was learnt eventually in
every case; that is, there are no “missing values” in the data above. It was
certainly far from obvious while running the experiments that this would turn
out to be the case; in the case of QL and some runs of AHC, a single run would
take millions of trials to learn the task, corresponding to days of CPU time on
a workstation class machine. In some respects, the fact that the runs resulted
finally in learning the task is more puzzling than if they had showed signs of
getting stuck in local minima. It would appear that Minsky’s “mesa-effect”
(Minsky 1961) is perhaps a better explanation than that of local minima, to
touch on an old debate.

The results for noise model 1 and noise model 2 share many consistent
features. For both models, we observe that QL and Q-Trace share similar
robustness characteristics, with mean scores starting off in the range 10.1-
11.9 at the low noise levels, and generally steadily decreasing to values in the
range 0.4-1.1 (noise model 1) and 2.7-4.2 (noise model 2) by the time the 8%
noise level is reached. In general, the control actions learnt by BOXES were
shown to be relatively the least robust, particularly at the lower noise levels
< 5%. Overall AHC and P-Trace fell between BOXES and the Q-Learners
in robustness performance, although it is noteworthy that P-Trace did return
the highest scores at the 0 noise level for both noise models, and was closer in
general to the performance of the Q-Learners than to that of AHC. Notice that
at the higher noise levels, however, there is a general convergence towards zero
with respect to robustness scores over all algorithms.

It should be commented upon that runs past 8% were not practical because
of the very long learning times for some runs of QL and AHC as mentioned
above; although some runs in this range completed relatively quickly (taking
perhaps only a few minutes of computing time), other runs would take days to
complete on a fast workstation class machine, and both AHC and QL seemed
to “hit a brick wall” so to speak on some runs after the 8% level. In contrast,
BOXES, P-Trace and Q-Trace were much more consistent and predictable learn-
ers in this respect, as can be seen by looking at the respective variances in the
tables above.

This extreme sensitivity to initial conditions with respect to learning times,
particularly in the case of AHC, is quite surprising; and, as far as the au-
thor knows has been hitherto largely unsuspected.” Whether this is genuinely
chaotic behaviour, or there is a more mundane explanation, deserves further
investigation. It would seem fair to suggest that this behaviour could be a se-
rious potential problem if predictability and reliability of learning times were
considered to be at all important factors in choosing either of these algorithms
for noisy domains.

As regards learning rates, QL is clearly the overall big loser, and increasingly

®The only hint of this sort of behaviour might be found in the results of Sammut (1988).
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s0 as noise level increased. At the 8% noise level, QL was about 30x slower on
average than P-Trace and 60x slower than Q-Trace for noise model 1, and
about 200x slower than both for noise model 2. QL was in general three orders
of magnitude slower than BOXES at this noise level. BOXES was shown to be
a very consistent learner as noise levels increased. AHC, although its median
learning rates were very comparable to BOXES as noise level increased, had
large differences in mean learning rates, as the means were wildly skewed by a
handful of runs that took inordinate learning times. From a descriptive statistics
point of view, this could almost be viewed as a “two population” effect, although
there would seem to be no justifiable methodological reason to treat these as
outliers and not include them in the averages.

Of the algorithms above, the most similar to QL is Q-Trace, and yet their
performance, particularly under noisy conditions, are quite distinct. Q-Trace
exhibits both faster and more predictable learning rates, and equal or perhaps
marginally better quality of learning judging from the results of the “robust-
ness” trials. Why?

Before we attempt to answer this, some insight into the motivation for the
design of the P-Trace and Q-Trace algorithms may be helpful. In the first
version of these experiments, only the BOXES, AHC and QL algorithms were
trialled. What quickly became apparent were different weaknesses for each of
these algorithms, resulting in no clear winner:

a) The extreme slowness in learning and sensitivity with respect to noise
QL exhibited in contrast to the other algorithms.

b) The relatively poor quality of learning or “robustness” scores exhibited
by BOXES.

¢) The wildly varying learning rates exhibited by AHC for different initial
conditions, particularly as noise levels increased.

Additionally, formal convergence results for either AHC or BOXES to date
have not been forthcoming, in contrast to the situation with QL. This made
QL’s poor practical showing even more disappointing, particularly as the con-
ventional wisdom is that QL should be particularly well suited to stochastic or
noisy environments.

Being both TD algorithms, prima facie it would appear that AHC and
QL are closer cousins than AHC and BOXES, yet the performance of AHC
and BOXES with respect to learning rates are much closer. The one thing
that AHC and BOXES do have in common that is absent in QL is a direct
trace mechanism for credit assignment. AHC is a hybrid in this respect; it
incorporates both the direct trace mechanism of a “pure” trace learner, such
as BOXES, and a TD mechanism of a “pure” TD learner, such as QL. We
hypothesised that the absence of a direct trace mechanism in QL was part
of the reason why QL was performing so badly with respect to learning rate,
particularly under noisy conditions.

The quality of learning or “robustness” scores for BOXES left much to be
desired when compared toits TD rivals, however. The design of a new algorithm
was motivated by the idea that a direct trace mechanism be reintroduced to
QL to possibly improve learning rate, particularly under noisy conditions, but
to preserve the relatively good quality of learning that could be associated with
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the TD learners. An additional design goal was to introduce the trace in such
a way that will also preserve the “provably correct” properties associated with
pure QL, if possible. Three plausible strategies were considered: a) adding TD
to BOXES, b) simplifying the already hybrid AHC in such a way to make it
mathematically more tractable and at the same time perhaps sorting out some
of its unpredictability, ¢) adding a trace mechanism to QL. Upon consideration,
this last approach was deemed the most straightforward, and the result is Q-
Trace.

Two things became immediately apparent with Q-Trace; firstly, that learn-
ing times were vastly improved over “pure” QL, and secondly that this did
not seem to be at the expense of learning quality (if anything learning quality
might be slightly better.) However, the learning rates were still significantly
slower for Q-Trace than for BOXES or (median) AHC rates, particularly at
the higher noise levels. This led to the speculation that perhaps in general a
“pure” trace learner might learn faster than a hybrid or pure TD learner, but
with reduced quality of learning (analogous to a too fast annealing process).
P-Trace (which is simply Q-Trace with the TD learning disabled, making it a
“pure” trace learner) was introduced into the experiments to help investigate
this possibility.

Interestingly, the speculation above appears to be only half right, at best.
The prediction was that P-Trace would show faster learning times at the expense
of a decrease in learning quality, with respect to Q-Trace. In practice, the
learning quality did decrease slightly (although P-Trace was still exhibiting far
superior robustness scores over BOXES), but the learning rates overall remained
very similar to those of Q-Trace.

So it would seem that to explain the differences in learning rates and robust-
ness scores of BOXES in comparison to the other algorithms, an explanation
besides TD learning in itself must be proposed. So what is left? Scrutiny of
P-Trace and BOXES might suggest that the exploration/exploitation action se-
lection heuristics, which are quite different for both algorithms, might possibly
be the critical factor. This remains speculation for the moment, however.!?

Returning now to the question of why should there be such a discrepancy
between QL and Q-Trace in their learning rates, we can see why it might make
more sense to phrase this in a more general way: Why is there such a discrep-
ancy between the learning rates of the trace learners as opposed to a pure TD
learner in this domain? Why does it appear that trace learning is so much
more effective a method of credit assignment? We attempt to at least partially
answer this question in the discussion in the following subsection.

5.2 Theoretical Issues

There are several possible reasons that may help to explain the discrepancy in
learning rates between the pure TD learner (QL) and the algorithms employing
trace mechanisms for credit assignment. Firstly, and most obviously, a trace

107 in (1992) makes the comment that in his experience the “Boltzmann distribution”
stochastic action selectors we have been using here for QL, Q-Trace and P-Trace are not
particularly good performers in terms of effectively trading off exploration and exploitation.
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mechanism provides for more immediate propagation of the reinforcement signal
information, assigning credit in various degrees to possibly many more than
the one state/action pair that is immediately affected in one-step QL. The slow
backwards propagation of credit that is associated with QL is thus potentially
accelerated. It is worth remembering that in TD learning in general, there is
potentially much “churning” of estimate values with little or zero information
content in the earlier stages of learning. Trace learning gets some information
to all visited states in one step.!!

Other, subtler reasons may also help to explain these results. One possibility
is that we are witnessing what might be called a TD “chinese whisper” effect.!?
Since information is potentially propagated through a long series of intermedi-
aries to a state/action pair that is temporally distant from direct reinforcement
signals, we may be seeing a TD analogue of this phenomenon. Information
that is passed through many intermediaries in a noisy environment may be
prone to a cumulative noise effect. Eventually, the signal may be swamped by
noise. Although there has not been a rigorous mathematical investigation of
this possibility at this stage, it would seem to be an idea worth following up.
If this speculation has any merit, the implications for TD learning in a noisy
environment could be quite important.

There may be yet another possible contributing factor to the observed ef-
fects. QL is designed to work in a “Markovian” environment, where the
expected value of the payofl from choosing a particular action from a particular
state is independent of which states were antecedent. In the case of the pole-
and-cart system with the particular input representation under consideration, a
“state” is a discretised chunk of the state-space, and the payoff from an action
selected from one of these states could conceivably be quite influenced by which
immediately preceding states have been visited, particularly if the chunks are
large.!® That is to say, selecting action n from box k being fed from box 7 might

"1t is worth noting that Lin’s technique of “experience replay” (Lin 1992) is significantly
less effective in speeding learning for QL if the reinforcement signals are negative in sign. This,
of course, is the case for the pole-and-cart problem, but the reason applies quite generally; the
back-propagation of the effect of a reinforcement signal must stop once the Q-max value for
a state 1s unchanged, and negative values will in general have less influence in causing change
to the Q-max values.

To illustrate the effect, consider the following special case: If all Q-values are initially set to
zero, as is the case in QL (Watkins 1989), what is the effect of the first reinforcement signal
if Lin’s replay method is applied? If the reinforcement is positive in sign, the effect of the
signal will be propagated in some degree all the way back down the line to every state/action
pair that led up to the reinforcement signal. This is fine; Lin’s method in this case has the
equivalent action of a trace mechanism. But if the reinforcement signal is negative in sign,
“experience replay” accomplishes nothing; the Q-max value will remain unchanged at zero for
the penultimate state, and the back-propagation stalls at this point.

Overall, for the purposes of speeding QL., we should expect Lin’s “experience replay” method
be less effective than a trace mechanism. Certainly this is not contradicted by trying his
method with the pole-and-cart problem, which not surprisingly (in hindsight) proved to be
almost totally ineffective.

12The (almost certainly apocryphal) WWI story of the message “send reinforcements; we
are going to advance” being garbled to “send three and fourpence; we’re going to a dance” by
the time the message was relayed to headquarters is commonly used to exemplify the effect.

13Watkins (1989) agrees with this analysis of the pole-and-cart problem.
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exhibit quite different payoff characteristics than selection the same action from
box k being fed from box j.

This is the behaviour of a non-Markovian domain. We might now consider
why P-Trace and Q-Trace (and trace learning algorithms generally) might be
expected to cope better with credit assignment in such a domain. Consider the
simple case of a hypothetical state in a non-Markovian system we will call state
k, which has two possible antecedent states, states ¢ and j. The policy for state
k is currently action n.

state ¢ state

NS

state k

Now, because our domain is non-Markovian, the expected payoff for action
n from state k may be different if the immediately preceding state is ¢ or j. If
the antecedent state is 7, let the expected payoff for action n from state k be
0.95; if the antecedent state is j, let the expected payoff be —0.95.14

Let us also suppose that the state transition : — k occurs more frequently
than the state transition 7 — k; say a ratio of about 10:1.

So, the Q-value estimate of action n from state & would be expected to
converge to something in the order of 0.85. State j might well be artificially
“encouraged” whenever it made a state transition 7 — k, thinking it was doing
well, when in fact this would on average lead to a relatively poor outcome if
action n is policy for state k.

If credit assignment was done via a direct trace mechanism, however, state
j would soon learn that a transition to state k is generally less rewarding than a
TD derived Q-value would suggest. Thus, it should be clear from this example
the important general advantage the trace learner has in non-Markovian do-
mains: it can take into account biasing effects of preceding states in assigning
credit if necessary.

QL and other pure TD methods cannot do this without resorting to explic-
itly re-representing the original states and their preceding state histories in a
combinatorial explosion of new states.!®> This would be potentially disastrous
both in terms of representation space requirements and the resulting slow-down
in learning due to the many more states that have to be explored for effective
credit assignment to occur. Realistically, although theoretically possible, this

M A similar construction is used for didactic purposes in Singh, Jaakkola and Jordan (1994).
Their analysis of the limitations of TD(0) learning is essentially the same.

15 Although TD algorithms that learn from more than one subsequent estimate such as
TD(X) (Sutton 1988) with A > 0 would be expected to cope with non-Markovian domains
progressively better as A — 1, it should be clear that for all A < 1, TD(A) should not be
expected to perform as well as a pure trace learner in a non-Markovian domain. The above
argument generalises fairly straightforwardly to include these cases.
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approach would be out of the question for almost all conceivable non-trivial
practical applications. We can conclude that if the domain is not at least rea-
sonably well-modelled by Markovian processes, we should have little reason to
expect QL and related pure TD learners to perform well.'® The next section
introduces some empirical support for this claim.

6 Some experimental results comparing four RL al-
gorithms in a non-Markovian domain.

To empirically test some of the theoretical ideas introduced in the previous
section, we perform a simple experiment involving an artificially constructed
non-Markovian domain.

Consider the following four state non-Markovian domain:

state A state B
state C state D

States A and B are are the two possible starting states, which are non-
terminating, in the sense that actions taken from A or B will always lead to
a state transition to another state rather than to termination. States C and
D are terminating states, as the actions from these states will always lead to
immediate termination. There is always a reinforcement signal associated with
termination in this domain.

There are two possible actions available to choose from in each state; the
state transition rules as follows:

Action 0 from state A always leads to state C

Action 1 from state A always leads to state D

Action 0 from state B always leads to state C

Action 1 from state B always leads to state D

Any action taken from state C or D immediately terminates with a reinforce-
ment signal.

Because the domain is non-Markovian, the reinforcement received from an
action made in state C or D may depend not only upon what is the current
state, but also upon what the previous states were (that is, we cannot assume
the Markov property.) The reinforcement schedule is set as follows:

16 Watkins (1989) mentions that a Markov learner devised by Barto, Sutton & Anderson
(1983) to compare with AHC returned “disappointing results” when applied to the cart-and-
pole problem.
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Action 0 from state C
if the previous state was A: 1.0
if the previous state was B: —2.0

Action 1 from state C
if the previous state was A: 0.0
if the previous state was B: 0.0

Action 0 from state D
if the previous state was A: —2.0
if the previous state was B: 1.0

Action 1 from state D
if the previous state was A: 0.1
if the previous state was B: —0.1

The goal of a learning agent in this domain is to learn a policy that max-
imises its rewards over time. For a trial, the agent is started in state A or B
(0.5 probability of starting in one over the other). Learning takes place over
10,000 trials.

Results. For QL, Q-Trace and P-Trace a simple “Boltzmann distribution”
SAS as described in Lin (1992) was used with temperature 7" set to 1.0. The
average payolff per trial for four algorithms!” is shown below (each row represents
a separate run of 10,000 trials for each algorithm using a different seed for the
pseudo-random number generator).

Seed P-Trace Q-Trace AHC QL
0 0.50485 -0.06154 0.45525 -0.18734
1 0.54315 -0.06873 -0.05042 -0.18507
2 0.50122 -0.07032 0.49490 -0.19266
3 0.47765 -0.06264 -0.05010 -0.20189
4 0.47525 -0.10331 0.99979 -0.18651
5 0.47968 -0.04491 0.50139 -0.18248
6 0.49644 -0.05691 0.49479 -0.18019
7 0.47288 -0.02905 -0.04943 -0.20071
8 0.51468 -0.06949 0.50419 -0.18603
9 0.49213 -0.06065 -0.05110 -0.18373

Discussion. The domain was so constructed that the actual optimal policy
of A (action 0), B (action 1), C (action 0), D (action 0) is immediately apparent
by inspection; also that the average per-trial payoff for an agent that strictly
adhered to this policy would be 1.0. It was also constructed so that any agent

"BOXES was not included in the experiment because in its present form it does not learn
from mixed sign reinforcement signals.
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that would be making an either/or overall judgement about the potential payoff
from state C or D regardless of the preceding state (i.e. a TD learner) would
prefer the mediocre but relatively safe policy of selecting action 1 from states
C and D.

If we add the additional constraint that state A and state B must agree on
their action (and hence next state) choice, then the best policy that could be
settled upon would be A (action 0), B (action 0), C (action 1), D (don’t care),
which has a per-trial payofl of 0. This is the best a pure TD learner could be
expected to do. The next best policy of A (action 0), B (action 0), C (don’t
care), D (action 1), has a slightly worse per-trial payoff of —0.1.

Of course, as the learning agents have less than perfect information about
the domain and exploration is necessary, the actual average per-trial payoff we
would expect to be less than for strategies based on perfect information. This
is observed in the data tabled above.

Consistent with the analysis in the discussion section 6.2 of this paper, of
the algorithms trialled, P-Trace, the pure trace learner, was able to cope with
this non-Markovian domain best, while QL, the pure TD learner fared worst.

Q-Trace and AHC, as hybrid trace/TD learners, were expected to fall be-
tween the pure trace and pure TD learners in their performance, which they
did; but interestingly AHC’s performance was close to P-Trace 60% of the time,
while for the other 40% the performance closely resembled that of Q-Trace.
Again, a “two population” effect emerges. Also note the anomalous result for
AHC with the random seed set at 4. The number 0.999790 indicates that AHC
did not try any other than the theoretical optimal policy more than 21 times
out of 10,000 trials. This would indicate that little exploration was occurring.
Why it settled so quickly into the optimal policy in this one case is unclear.
At the very least we can conclude that AHC shows itself again to be the least
predictable in terms of its performance.

The performance of all the algorithms might be contrasted with the ex-
pected outcome for a purely random agent as a baseline result; since all eight
reinforcement outcomes are equally likely with random action selection, the
expected per-trial outcome for a purely random agent should be simply the
average value of all possible reinforcement outcomes, which is —0.725. All do
significantly better than a random agent would. The worst-case per-trial av-
erage reward for a policy in this domain is —2.0, which provides a theoretical
lower bound for the results.

7 Conclusions

Several important issues have been brought to light in the course of these ex-
periments, not the least of which is the fact that some of the best-known credit-
assignment algorithms currently in use in reinforcement learning research have
exhibited potentially serious problems in coping with noise. QL in particular
becomes a disastrously slow learner when faced with noise.

While BOXES is a fast learner and proved to be relatively resilient to noise
at the levels tested, its learning quality was shown to be generally inferior to
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that of the other algorithms tested.

AHC exhibits a strange, almost chaotic unpredictability with respect to
learning rate that seems to be more pronounced in the presence of noise. So
while the median learning rates for this algorithm are very good, better even
than BOXES, the mean learning rates tell a quite different story. Whether
further tuning of the various algorithmic parameters could settle this behaviour
down remains speculation at this point. This highlights a practical problem
generally associated with a complex algorithm that is heavily dependent upon
heuristic methods; if such an algorithm is difficult to understand even when it
appears to be working well, it can be difficult to know where to start to fix it
when it appears to be not working so well.

This issue has been the driving force behind the work into “provably cor-
rect” learning algorithms, of which QL is one of the most intensively studied
at the moment. It is suggested that Q-Trace and P-Trace provide a general
improvement on this algorithm by reintroducing the old concept of the “learn-
ing trace”, a concept that became unfashionable as TD learning became the
principal focus of research of the RL community in general. In the light of
the foregoing results, it is argued that it is entirely premature to abandon the
concept just yet.

What distinguishes Q-Trace and P-Trace from other trace learners is that
the trace is designed in such a way as to preserve the convergence results that
apply to QL for the special case of learning in a pure Markovian environment.
Thus, in this special sense, “correctness” should be preserved, which of course
is one of the major appeals of QL over both AHC and BOXES, for which no
known equivalent theoretical results exist.

Q-Trace and P-Trace also achieve their significant performance increases in
learning rate without having to trade-off quality of learning. In these experi-
ments, the quality of Q-Trace’s learning is not significantly different to that of
QL’s, perhaps it is even marginally superior, whereas its average learning rate
ranges from 2-3x faster on average in the absence of noise to approximately 200x
faster in the case of 8% noise for noise model 2. P-Trace has similar learning
rates to Q-Trace, and only marginally poorer learning quality for this domain
overall.

Analysis also suggests that there are advantages inherent in P-Trace and
Q-Trace (and in “memory trace” algorithms for credit assignment generally)
over pure TD algorithms when learning is to take place in environments that
are not well-modelled by Markovian processes. This last point is potentially the
most important of all. If this is true, and we also now have some preliminary
experimental work which strongly supports this analysis, then we have the
situation where the trace algorithms are not simply better performers within the
class of problems that TD learners can learn, but they are strictly more powerful
learners than the TD learners, in that they can learn a class of problems which
is a strict superset of the class of problems TD learners can learn.

In summary, key issues relating to reinforcement learning in noisy environ-
ments remain open questions, and extensive further investigation in this area is
required. However, we now have arguments and evidence that “trace” learners
may prove to be both faster and more powerful learners in general than their
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TD counterparts. The potential performance improvements using trace over
pure TD methods may turn out to be particularly important when learning is
to occur in noisy or stochastic environments, and in the case where the domain
is not well-modelled by Markovian processes.
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10 Appendices

A The pole-and-cart problem.

A four dimensional state space is partitioned into 162 discretised states or
“boxes” (from which the Michie & Chambers algorithm derives its name). The
state variables are comprised of the position of a cart on a fixed length track,
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the cart’s velocity, the angle (from the vertical) of a pole hinged to the cart,
and the pole’s angular velocity.

For each of these discretised state regions the pole-and-cart system has to
decide upon a policy control action, which is to apply an impulse force of 10N to
the cart in one of the two possible directions in the direction of the track. The
goal is to learn a control strategy to avoid system failure; failure is defined by the
cart hitting the ends of the track or the angle of the pole exceeding 12 degrees
from the vertical. A fixed reinforcement signal (-1.0) is made available to the
system upon a failure state being reached; no other information is available
directly from the problem environment.

1 Ll — —

The specifications for the simulated pole-and-cart system are as follows:

length of track: 4.8m

mass of cart: 1.0 kg

mass of cart+pole: 1.1 kg

length of pole: 1m

distance of pole’s centre of mass from pivot: 0.5 m

The partitioning points for the state space are as follows:
position on track (m): £0.8 (3 partitions)
velocity of cart on track (m/s): £0.5 (3 partitions)
angle of pole from vertical (degrees): 0,£1.0,46.0 (6 partitions)
angular velocity of pole (degrees/s): £50.0 (3 partitions)
The equations of motion used are those derived by Anderson (1988).

mgsin @ — cos (1 4+ mp192 sin )
(4/3)ml — mylcos? §

i o= [F—I—mpl(ézsinO—écosO)]/m

where 6 is the pole angle in radians, z is the cart’s position on the track (—2.4 <
x < 2.4), m is the mass of the cart and pole (1.1kg), ¢ is the acceleration due
to gravity (9.8m/s/s), I’ is the applied control force (£10.0N), m,, is the mass
of the pole (0.1kg), [ is the distance from the pivot to the pole’s centre of mass
(0.5m).

The simulation uses the Euler method of integration. The sampling rate of
the pole-and-cart’s state and the rate at which control actions are applied are
the same as the basic simulation rate, 50Hz.
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In these experiments, the criterion for a successful control strategy was that
the system could perform 10,000 consecutive control actions starting from a
randomised (but not unrecoverable) initial state without encountering a failure
state. This translates to the equivalent of keeping the pole balanced for three
minutes and twenty seconds in real time.

B P-Trace and Q-Trace: Pseudo-code.

/* P-Trace and Q-Trace C-like pseudo-code. Mark Pendrith, May 1994.

For each state/action pair we keep a set of the following
variables: Q, x, Sum, Rho, StepCount and VisitCount, all
initialised to zero. The indexing form x[i][j] identifies
the x variable belonging to state 1 and action j, etc.

*/

list StateActionsList = nil;
long GlobalClock = 0;

StartSystem(); /* reset dynamic system to initial state */

while (not halting criteria) {

[©2]
1

= get_state();
get_action(s); /* Stochastic Action Selector */

1Y)
1l

if (!policy(s,a))
zero_traces(StateActionsList);

if ('inlist(StateActionslList,s,a))
add2list(StateActionslList,s,a);
/* add state/action pair s,a to end of list if not already in list */

if (VisitCount[s][a] == 0) { /* first visit */
Sum[s] [a] = 0;
x[s][a] = BETA;

+
else { /* subsequent visit */
Sum[s] [a] *= (1-BETA);
Sum[s][a] += x[s][a] * Rhol[s][al;
k = GlobalClock - StepCount[s][a]l; /* steps since last visit */
x[s][a] *= pow(GAMMA,k);
x[s][a] *= (1-BETA);
x[s][a] += BETA;
+
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Rho[s][a] = 0;
VisitCount[s] [a]++;
StepCount[s][a] = GlobalClock;

r = TakeAction(a); /* take action; return immediate reinforcement */

if (r '=0) {
for all (i,j) in StateActionsList {
k = GlobalClock - StepCount[i][j];
Rho[i][j] += r * pow(GAMMA,k);
+
+

if (failed) { /#* terminal state reached */
for all (i,j) in StateActionsList {
n = VisitCount[i][j];
Sum[i] [j1 *= (1-BETA);
Sum[i] [j] += x[i]l[j] * Rhol[il[j];
QLil[j] = pow((1-BETA) ,n)*Q[il[j] + Sum[il[j];

}
zero_traces(StateActionsList);
StartSystem() ;
}
#if QTRACE /* do QL TD update for Q-Trace, but not for P-Trace */
else {
s’ = get_state();
Qls][al = (1-BETA)*Q[s][a] + BETA*(r + GAMMA*Q[s’] [max]);
}

/* note that ‘‘trace’’ has already effectively performed this update if */
/* a terminal state has just been reached, so no need to duplicate. */
#endif

GlobalClock++;
}

‘‘zero’’ traces */

/* procedure to
void zero_traces(StateActionsList)
list StateActionsList;
{

for all (i,j) in StateActionslist

VisitCount[i][j] = O;

StateActionsList = nil;
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