
SCS�E Report ����

March� ����

Time Constrained Bu�er Speci�cations in CSP�T and

Timed CSP

John J� Zic

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING

THE UNIVERSITY OF NEW SOUTH WALES



Abstract

A �nite bu�er with time constraints on the rate of accepting inputs� pro�

ducing outputs and message latency is speci�ed using both Timed CSP and

a new real�time speci�cation language� CSP�T� CSP�T adds expressive

power to some of the sequential aspects of CSP and allows the description

of complex event timings from within a single sequential process� On the

other hand� Timed CSP encourages event timing descriptions to be built

up in a constraint�oriented manner with the parallel composition of several

processes� Although these represent two complementary speci�cation styles�

both provide valuable insights into speci�cation of complex event timings�

E�mail�

johnz�cse�unsw�edu�au



� Introduction

There has been considerable e�ort recently in extending Hoare�s CSP ��� and Milner�s CCS ��� ��
to allow formal reasoning about real�time systems	 Examples of such systems are commonly
found in communication protocols where the response to a message is required before the
message becomes obsolete� or where message outputs need to be spaced so as to avoid over
ow
conditions at the receiving end	

The author proposed some informal time �and probability� extensions to CSP in �
�� where
a special DELAY process allowed temporal separation between any two successive events	 At
approximately the same time� Reed and Roscoe �

� introduced a similar special processWAIT

into CSP and provided a complete semantics �based on Timed Failures� for their Timed CSP
language	 Gerber� Lee and Zwarico ��� introduced a timed action operation �e�ectively� a time
was associated with each pre�x operation� to temporally separate adjacent events into their
extended CSP and provided an Timed Acceptance semantics for the language	 Quemada and
Fernandez �
�� proposed an extension to the LOTOS speci�cation language ��� by associating an
enabling interval with each event	 This time interval represents the time over which a process
may engage the event	

There are di�culties in describing and specifying complex system timings using this type of
construction �where an event timing is de�ned solely by its immediate predecessor�	 Complex
timings and the ability to de�ne the future behaviour of a system will inevitably rely on a set
�with more than one element� of preceding events in the process� execution	 Furthermore� these
events may have occurred a long time in the past execution of the process	 To address these
problems� the author in �
�� proposed an extended CSP �called CSP�T� which associated an
enabling interval with each event� and also allowed this interval to be expressed as a function
of one or more marker events�

It will be seen that the CSP�T approach di�ers fundamentally from the Timed CSP solu�
tion	 Timed CSP captures timing constraints by the parallel composition of a set of processes�
each of which describes a speci�c timing constraint	 These timing constraints are viewed as rep�
resenting timed re�nements of the system� and facilitate the speci�cation and proof of system
timings	 However� the algebraic manipulation of complex timing requirements from a parallel
composed system into �essentially� a simpler sequential system may� in some cases� be impos�
sible without extending Timed CSP to allow a way of recording and using the time at which
speci�c events occurred in the system�s execution	

On the other hand� CSP�T describes timing constraints of sequential processes in sequential
terms as much as possible� reducing the need for the addition of any parallel processes to express
timing constraints	 Further� the additional expressive power of the language now allows some
complex parallel systems to be rendered as sequential processes which could not be done with
only interevent timing constructs such as DELAY 	

This paper is organised as follows	 First� we present the problem� which is the modelling of
a store�and�forward communication system with speci�c quality of service requirements	 This
is done by representing the system as a �nite length bu�er with appropriate input� transit and
output timing requirements	 Second� the CSP extensions for CSP�T are presented	 Third� we
develop a solution in terms of the existing Timed CSP algebra	 Finally� an alternative solution
using the CSP�T notation is presented	

� The problem

A store�and�forward communication network may be abstractly represented by a �nite length
message bu�er 	 Messages injected into the network at a particular node appear some time later
at another node in the same order as they were sent	

Besides this most abstract functionality of order preservation� a communication system may
also need to provide end users with some real�time performance	 For example� maximum and






average message delays� throughput� reliability� probability of loss of a message� and other client
requirements may be important �
� ��	

This paper attempts to describe a communication system with the following characteristics
given by a �somewhat� naive client�

� up to ��� messages in transit at any time�

� message latency in the range �� � � � time units�

� message input rate set to � message per time unit� and

� message output rate of � message per two time units	

As these timing constraints stand� there will be problems with any implementation	 Firstly�
the fact that the output message rate is half that of the message input rate means that the
any �nite sized bu�er will eventually either over
ow or not meet the message transit delay
requirements	 Secondly� the output must simultaneously satisfy the transit delay requirements
as well as the output timing requirement for a given ��xed� input timing	 Eventually all of
these conditions cannot be simultaneously satis�ed� and the system fails �in some manner�	

� A brief description of the extensions

The CSP�T syntax is a superset of the basic untimed deterministic CSP syntax presented by
Hoare ���	 The fundamental changes to the untimed algebra are that�

� A new event� �� is introduced to denote process instantiation into both the algebra and
traces models	

� A new event operator � is introduced� which is used in conjunction with a variable to
record the time at which an event occurs	 These times are taken from the set of positive
Real numbers� with successive event times forming a monotonic nondecreasing sequence	
We allow any number of successive events in a single process trace to have the same time	
It is the designer�s responsibility to explicitly mention any limitations on the number of
computations done over any particular time period �including zero�	

� Each event now has a time interval associated with it	 This time interval represents a
choice at which times the event must occur	 These intervals are continuous� and are
usually expressed relative to a set of events	

� Only deterministic timed processes can be described in the algebra to date	 A semantics
for processes making internal or nondeterministic choice is currently being formulated	

The major change to the traces model is that events are now pairs� t �e� where t is the global
absolute time at which event e is observed	 This is the same as Timed CSP traces model with
the addition of the new instantiation event	

We consider each of the above items in turn	

��� Process instantiation event

Each system of process de�nitions requires that it is instantiated before it can execute	 As
such� a special process instantiation event denoted by ��� is introduced into the algebra �and
in the corresponding traces model�	 This event is unique� in that it must be associated with a
unique� global time	 It represents the global time at which the system of processes may start	

Consider a process which engages in a single a event and then breaks	 This process may be
de�ned in untimed CSP by P � a �� Stop	 The traces set of this process is

fhi� haig�

�



In CSP�T� we pre�x this process with the instantiation event in order to allow it to execute	
If the timed version of P �called P ��� is instantiated at time � � then we have

P � � � �� �� a �� Stop�

and the �timed� traces set of P � is

fhi� h� ��i� h� ��� s �aig

where s � �� ���	 Notice that the a event occurs only once in the interval �� ��� for any
particular process execution	 Secondly� the times in traces descriptions are absolute� whereas
the time intervals in the process description are relative	

��� Time capture operator

A new event operator � is introduced so that writing ev � v means that the time at which
the event ev is observed in a process execution is recorded in the variable v 	 So� for example�
if we have a process instantiated at time � which behaves as � �� �� a � v �� Stop then the
variable v holds the global time at which the a event occurs	 In this case� the time at which the
a event occurs �and hence� the time recorded in the variable v� is going to be greater than or
equal to the process instantiation time of � 	

All variables associated with the time capture operator �marker variables� are available as
process global quantities� provided that the associated event is also globally observable	 If the
event is the subject of a restriction or abstraction operation� then the marker variable scope is
similarly restricted	

Finally� marker variables may be initialised by using the time capture operator on any
event which has a well de�ned� global time associated with it	 Typically� this is the process
instantiation event	 For example�

� �� � fu� v � x � yg �� a � v �� Stop

initialises variables u� v � x and y to the process instantiation time of � 	 The variable v is then
used to reference the time at which the a event occurs	 The reference to the instantiation event
�as it is initialised� is replaced by the reference to the time at which the a event is observed	

��� Event enabling interval

Each event in CSP�T is associated with a time interval� whether or not it is explicitly used	 This
represents the time over which the current event is regarded as being available to the process
and its environment� relative to some preceding event from its current execution	 In e�ect� the
event enabling interval may be regarded as equivalent to a deterministic choice construction�
with event labels drawn from the dense �Real number� interval de�ning the times at which the
event may occur	 Further� if the event has not occurred by the end of its enabling interval� the
process e�ectively withdraws its o�er to engage in that event	 The process behaves as Stop if
it cannot engage in an alternative event �after the �expiration� of the current event�	

For example� an event a which has an enabling time interval of �� � � � is written as �� � � ��a
and must occur only once in the speci�ed time interval �between � and � time units after a�s
preceding event�	 Another event �� � � ��b must occur precisely at one time unit immediately
after its preceding event	 An example process which uses event enabling intervals is � �� ��
�� � � ��a �� Stop	 This is a process which will engage in a single a event only between � and
� time units since it was instantiated �at time � �� and then break	

If a time interval is not explicitly mentioned with an event� the least de�ned interval �� ���
is assumed	 That is� the event associated with this interval is allowed to occur at any time since
the immediately preceding event	

�



These intervals are de�ned in terms of functions over a set �including the empty set� of
marker variables	 When there are no marker variables referenced� then the enabling interval is
de�ned for the immediately preceding event �as above�	 More typically� however� the expression
is given in terms of one or more marker variables	 For example� a clock which is instantiated
at time � and then ticks once every time unit after that may be de�ned by

RealClk b� � �� � v �� TimedClk

TimedClk � �X � E �tick � v �� X

where E � fs js � rel�� � v�g and the rel function is de�ned as follows	 If the preceding �reference
or marker� event occurs at time t� then rel�x � v� denotes x � v � t� 	 This convention allows us
to combine conditions expressed relative to several di�erent marker events in the de�nition of
a single enabling interval	

The use of these enabling intervals presents two major sets of questions under parallel and
sequential composition	 For example� how processes that use these enabling intervals may be
composed with each other �in parallel�	 Related to this� what other in
uences may determine
when an event occurs within its enabling interval�

We consider each of the above points in the following discussion	

����� Process synchronisation

Consider the two simple processes P � E� �a �� P and Q � E� �a �� Q � with identical
untimed alphabets	 Now suppose we compose these two in parallel as � �� �� P k Q � The
semantics of this composition are dependent on whether the values taken by E� and E� are
identical� partially overlapping� or disjoint	 If two intervals are identical� the composite process
engages in a single synchronised a event within the interval	 There are two possible behaviours
for the parallel composition when the intervals become partially overlapping	 We may choose
to have the processes engage independently on events in the events outside of the intersection
of the intervals E� and E� � and synchronised within the intersection	 Alternatively� we could
completely disallow any events to be engaged that lie outside the intersection of the two enabling
intervals	 This latter case was selected in the original language design because it o�ers a simpler
semantics	

Summarising�

� If E� � E� the processes synchronise on the a event once during this interval	

� If E� �� E� � E� � E� �� fg then the processes only synchronise during the interval
E� � E� 	 The system withdraws o�ers of engaging in events outside of this time	

� E� � E� � fg then there are no times at which the processes may synchronise� and the
composition behaves as Stop	

Additionally� we observe the following about synchronisation between processes�

� If the process� untimed alphabets are disjoint� the event enabling intervals play no direct
role except to note that the resulting interleavings must be ordered so that the sequence
of times in any timed trace are monotonic non�decreasing	 For convenience� call this
property mndt	

� If the untimed alphabets are partially disjoint� synchronisation depends both on the set
of events which are in the intersection of the untimed alphabets and consideration of the
event enabling intervals	 Events outside of the intersection set �of the untimed alphabet�
lead to interleavings possessing the mndt property	

�



� Explicit communication between processes via a channel may occur only if the sender and
receiver processes have enabling intervals which intersect	 For example�

�E� �c�v �� P� k �E� �c�x �� Q�x ��

will lead to a communication event c�v in the interval de�ned by E� � E� 	 If E� and
E� are disjoint� and there are no other events o�ered� then the communication fails and
the system stops	 By setting the enabling interval on reception to �� ��� and the sending
process to E � then the system timing behaviour is set by the sending process and the
communication occurs during E 	

����� Sequential concerns

Pre�x Consider the process

P � a � v �� b �� E �c �� Stop�

where E � ft jrel�� � v� � t � rel�� � v�g	 Since the c event must occur at any time from � time
units to � time units since the occurance of the a event� the time at which the b event occurs
must also be less than or equal to the maximum of c�s enabling interval	 If this is not the case�
then the process breaks immediately after engaging the b� since there is no way that c could be
engaged by the process	 Hence this process has two separate behaviours which are dependent
upon the time at which the b event occurs relative to the c event�s enabling interval	 Let dI e
represent the upper bound of an interval I � then process P may be rewritten as�

P � a � v �� �� � dEe��b �� E �c �� Stop

�

�dEe����b �� Stop

Although it is possible to transform the generalisations of this case� such constructions
should be avoided	 As a general design principle� the timing intervals of a purely sequential
process �consisting of pre�x and choice operations� should be such that the entire expression
does not abort due to enabling intervals alone	 Any deliberate expression abortion will be due
to other causes �such as parallel composed processes or explicitly designed timing exceptions�	

Choice The pre�x operation is regarded as a base case of the more general deterministic
choice �or menu choice� operation	 Choice in the CSP�T algebra selects from a �nite subset
of events from the untimed alphabet	 However� as each event is associated with an enabling
interval� this choice is between a possibly in�nite set of timed events	

Choice between a set of events with disjoint enabling intervals is made according to the
natural time order	 That is� a given choice set at one point in time reduces to a smaller subset
as time progresses	 Events �expire� and are removed from the choice set	 For example� assume
that the original choice set �at time � � is f�� � � ��a� �� � � ��b� �� � � ��cg	 If the process does not
engage in the a event at time � � then the choice set is reduced to f�� � � ��b� �� � � ��cg	 If the
process then does not engage in the b event� then the choice set is reduced to f�� � � ��cg	 If time
progresses and the process fails to engage in the c event during the speci�ed time interval� no
further choices may be made and the process behaves as Stop from that point on	 This should
be regarded as a mistaken construction	 Deterministic timed choice requires that at least one
of the choices is taken during any process execution	

Furthermore� each of the choices should be distinct� paralleling the untimed CSP model	
Distinct timed events either have disjoint enabling intervals� or disjoint untimed events� or
both	

�



��� Deterministic process descriptions

CSP�T at present can only describe deterministic processes� and describing nondeterministic
process behaviours is part of ongoing work	

The lack of nondeterminism means that the current language is limited as a speci	cation

technique� but not as an implementation technique	 It is well known that nondeterministic
process descriptions may be viewed as a way of underspecifying process behaviours �whether
they be timed or untimed�	 Implementations on the other hand are seldom nondeterministic�

�Of course� u is not intended as a useful operator for implementing a process	
� � � The main advantage of nondeterminism is in specifying a process	��� last par	
Section �	���

� Describing the system using Timed CSP

Consider a simple one�place bu�er �with input channel in and output channel out� which has
no timing constraints	 The simplest implementation possible is given by

�X � in�x �� out �x �� X �
�

where an input is immediately output before allowing a further input	
If we introduce time into the above process� then it is possible to interpret the lack of any

explicit temporal separation in Equation �
� between two successive events �such as in then
out communications� in at least two ways	

In the �rst view� the lack of explicit timing may be interpreted as allowing successive events
to occur at the same time while maintaining any sequencing order	 For example� a sequence
such as a �� b �� � � � is di�erentiated from the sequence b �� a �� � � �� despite both events
being observed at the same global time �according to the observer�s watch� say�	 If both a and
b are observed at time 
� the former �a �� b �� � � �� has a trace h� �a� � �b� � � �i while the latter
has a trace h� �b� � �a� � � �i	

In the second view� the lack of explicit timing is interpreted as allowing events to occur at
any time� again provided that any sequencing is preserved	 A sequence such as a �� b �� � � �

where the a occurs at time � for example would allow the b event to follow at any time
taken from the half�open interval �� ��� after the a� such as h� �a� � �bi or h� �a� �� �bi or even
h� �a� �� 	 �� ��� ��bi	

The proposed extended CSP �CSP�T� as well as Reed and Roscoe�s Timed CSP use this
latter view	 Other algebras adopt the former view� and use a temporal operation or process to
provide the required interevent delay	

We start� then� with the Timed CSP model �rst proposed by Reed and Roscoe �

�� which
has been subsequently modi�ed to eliminate the system delay constant ��� so that any event
timing must be explicitly described using a WAIT process	

Producing a bu�er which delays each message by the required delay is straightforward in
this model�

SPB � �X � in�x ��WAIT I � out �x �� X ���

with the interval I � �� � � �	 This bu�er accepts an input� then delays by an amount taken from
the interval I � and then outputs the message	 Notice that there is an asymmetry in this process	
Despite ensuring that the input to output timing is correctly de�ned� the spacing between an
output and a following input is de�ned to occur at any time in the interval �� ���	 Timing
between input to input� output to output and input to output timings are dependent on each

other�

The timings between inputs may be de�ned by constraining the above process by composing
SPB in parallel with

IN � �X � in�x ��WAIT � � IN ���

�



and similarly� the output may be constrained by the parallel composition of SPB with

OUT � �X � out �x ��WAIT � �OUT � ���

Note that each of the bu�ers expressed in Equations ���� ���� and ��� implement only a
single part of the required behaviour	 Further� there is no message storage�only one single
message is ever �in transit�	 Achieving the three goals simultaneously �speci�c message transit
delay� di�ering input and output rates� cannot be done with a single process which is based
on �
�	 Instead� we use a �nite size bu�er as a starting point	 The bu�er presented �Bu�� � is
based on the in�nite bu�er of example X� in ��� p
���	 �

Bu�� b� Whi

where
Whi � in�x ��Whxi

WS � if �S � ���

then
�
in�x ��WS

ahxi � out �S� ��WS �

�
else out �S� ��WS �

�

���

This bu�er� like any other implementation� must resolve what actions to take under �error�
conditions such as the bu�er �lling or messages arriving at the incorrect rate	 The original
naive speci�cation did not point out what bu�er behaviour and event timings are acceptable
when the bu�er is encounters these error conditions� and any correct implementation would
resolve these issues at the speci�cation stage	

In view of the above discussion� let us modify the behaviour of the above bu�er so that once
it �lls� it engages in a Full event �presumably signalled to the bu�er�s environment�� and then
breaks	

Bu�� b� Xhi

where
Xhi � in�x �� Xhxi

XS � if �S � ���

then
�
in�x �� XS

ahxi � out �S� �� XS �

�
else Full �� Stop

�

���

The input and output timing requirements for this bu�er using Timed CSP are captured by
using the parallel composition of processes de�ned in Equations ��� and ���	 The transit delay
constraint may be met by introducing a another process into the parallel composition with the
Bu�� process� which spaces inputs to outputs using the parallel composition�

TD � in�x �� �WAIT �� � � � � out �x �� Stop� jjj TD ���

with the parallel composition done using an interleaving to prevent the system from deadlocking
at the very �rst recursive call	

Therefore� the system of processes

Bu�� k IN k OUT k TD

gives the required timing characteristics for the bu�er provided that the bu�er is not full�

�This paper adopts the conventional notation if b then P else Q � for the CSP conditional P �j b �j Q

where b is a boolean value� P and Q processes�

�



��� Discussion

This speci�cation style is commonly referred to as constraint
oriented� and is used extensively
in both timed and untimed Formal Description Methods	 Each constraint may be regarded as
representing a re�nement step in moving from an untimed model to a timed model	 Although
this method is attractive in simple timing descriptions� it is the author�s experience that the
use of the WAIT construct may lead to awkward and unnatural formulations of complex timing
relationships	

Furthermore� the analysis of parallel composed systems �both timed and untimed� may
require them to be reduced to equivalent sequential systems	 However� processes such as

�a �� P� k �WAIT n � b �� Q� ���

cannot be reduced to a unique sequential process from within a model which de�nes timing
properties solely using aWAIT �like operation	 Rewriting the above system to a sequential form
requires the introduction of a way of specifying the future behaviour of a process by the times
at which preceding events occurred	 In the above case� the process behaviour is determined
by the time at which the �rst event occurs� and so recording this time in some manner is
important in the �serialisation� of the system	 This is identi�ed both by Schneider �
�� and
Fidge ���	 Schneider proposes a new operator to do this� and creates a pre�normal form for a
Timed CSP language	 Fidge de�nes a way of labelling events such that causal relationships
may be expressed as directed graphs which leads to a true concurrency semantics for a real�time
process calculus based on CCS	

The approach taken in CSP�T di�ers from these	 Rather than attempting to reduce a
set of concurrent processes to some simpler sequential forms� the proposed extensions provide
more expressive power to the sequential aspect of CSP	 This reduces the need for introducing
additional parallel constraining processes which may be di�cult to analyse and also allows some
algebraic manipulation of processes	 Thus Equation ��� may be rewritten as�

a � u �� �P k �E� �u��b �� Q��
�

b � v �� ��E� �v��a �� P� k Q� �

Note that the enabling intervals E� and E� have not been speci�ed in this example� as it is
meant to illustrate that the future behaviour of the system depends upon speci�c events in the
system�s execution	 Of course� this is only one of many interpretations that may be expressed
by this notation	 The enabling intervals may also be de�ned solely in terms of a single marker
variable� or alternatively� they may both be functions of both marker variables	

We now move back to the description of the store and forward communication system	

� Describing the system using CSP�T

Recall that we are trying to describe a �nite bu�er with speci�c input� output and transit delay
requirements	 Since we do require that the bu�er hold more than one item� we start again
using the bu�er given by Equation ���� and consider the speci�cation of the input and output
timings	

The bu�er engages in only two events	 Either it inputs a value and places it at the end of
the queue� or it outputs the head of the queue	 We therefore associate a marker variable with
the input and output to capture their respective event enabling intervals	 The enabling interval
function for input is solely a function of the input marker variable	 The enabling interval for
output is similarly expressed in terms of the output marker variable	 Let us assume again that
the bu�er engages in a �nal Full action before stopping once it is full	

�



Let Ei represent the input enabling interval� and Eo represent the output enabling interval	
Then we set

Ei � fs js � rel�� � vi �g

Eo � ft jt � rel�� � vo�g�

The bu�er stores input events as a queue of time�stamped events of the form �ti �x �� where ti
represents the time at which a message contained in x was received	 Let eventof be a function
which strips out the time component of any such message	

A bu�er which implements the appropriate input and output timings is

Bu�� b� Yhi ���

where
Yhi � Ei �in�x � vi �� Yhvi �xi

YS � if �S � ���

then Ei �in�x � vi �� YS
ahvi �x�i

�

Eo �out �eventof �S� � � vo �� YS �

else Full �� Stop

�

The transit delay constraint means that all of the messages held in the bu�er di�er between
two and �ve time units since the time that they were input to the time they are output� relative
to the current time	 We now add in this constraint to Bu�� 	 De�ne age to be a function which
returns the age of the message at the head of the queue �by comparing the message time with
the current time�	

Bu�� b� Zhi

where

Zhi � Ei �in�x � vi �� Zhvi �xi

ZS � if �S � ���

then if age�S � � �

then Ei �in�x � vi �� ZSahvi �xi

else if � � age�S � � �

then Ei �in�x � vi �� ZSahvi �xi

�

Eo �out �eventof �S� � � vo �� ZS �

else if age�S � � �

then �� � � ��out �eventof �S� � � vo �� ZS �

else Stop

�

�

�

else Full �� Stop

�

Notice that this description is more prescriptive and sequential in nature than the previously
given Timed CSP speci�cation	 Timed CSP speci�cations tend to be presented as a parallel
composition of component processes� with each component represents a separate timing con�
straint	 It describes the bu�er�s operation for the cases when the message age in the bu�er is
outside of the transit delay requirements in addition to the case when bu�er over
ow occurs	

�



An alternative� more descriptive or abstract speci�cation in CSP�T could have used the
transit delay constraint given in Equation ��� in parallel with the Bu�� process given in Equa�
tion ����

Bu�� � Bu�� k TD �

In this system� we use the marker events and enabling intervals in specifying the input and
output timing� and the transit delay requirement is speci�ed as a constraining process on the
Bu�� process	

� Conclusions

Timed CSP and similar related speci�cation techniques de�ne system timing within a sequential
process by the use of a speci�c interevent delay	 More complex timing relationships are described
by using processes using such delays and composing them in parallel with each other� thereby
producing a set of independent timing constraints	

However� there are some systems which cannot be described in this way� since the timing
relationships are not independent of each other and preceding events	 Such systems of processes
cannot be converted into equivalent sequential forms �e	g	 Equation ����	 To deal with such
systems� we need to increase the expressiveness of the speci�cation language	

This paper has introduced a new real�time description language� CSP�T� which addresses
these problems	 CSP�T extends the untimed CSP language in two ways	 First� all events have
an enabling time interval� over which the event is expected to be observed only once during
any particular execution	 The second extension is that these time intervals may be expressed
in terms of a set of arbitrary marker events within a process� execution	

In order to focus the discussion� a �naively de�ned� time�constrained bu�er was speci�ed�
�rst in Timed CSP� then in CSP�T	 As was observed in this example� there is a di�erence in
the two speci�cation styles	 Timed CSP encourages the use of parallel composed constraining
processes to de�ne event timing relationships� whereas CSP�T encourages the use of a single�
sequential process to de�ne event timing	

It is felt that although these styles are complementary� careful use of both approaches will
prove to be bene�cial in specifying complex system timings	

Acknowledgements I wish to thank Colin Fidge� Steve Schneider� Asis Goswami� Jacek
Olszewski� and the anonymous referees for providing useful comments and insights on earlier
drafts of this paper	

References

�
� ISO TC �� SC 
� WG �	 Information Processing Systems ! Open Systems Intercon�
nection ! Transport Service De�nition ! Connectionless mode transmission	 Standard
ISO������
����Addendum
� ISO� 
���	

��� Ed	 Brinksma	 An Introduction to LOTOS	 In H	 Rudin and C	H	 West� editors� Protocol
Speci	cation� Testing� and Veri	cation� VII	 Elsevier Science Publishers B	V	� Amsterdam�
May 
���	

��� Jim Davies and Steve Schneider	 A brief history of Timed CSP	 Technical report� Pro�
gramming Research Group� Oxford University� Oxford OX
 �QD UK� 
���	

��� D	 Ferrari	 Client requirements for real�time communication services	 Internet RFC� 
���
November	


�



��� C	J	 Fidge	 A constraint�oriented real�time process calculus	 In M	 Diaz and R	 Groz�
editors� Formal Description Techniques V� pages ���!���	 North�Holland� 
���	

��� R	 Gerber� I	 Lee� and A	 Zwarico	 A complete axiomatization of real�time processes	
Technical Report MS�CIS������� Dept	 of Computer and Information Science� School of
Engineering and Applied Sciences� Uni	 of Pennsylvania PA 
�
��� November 
���	

��� C	A	R	 Hoare	 Communicating Sequential Processes	 International Series in Computer
Science	 Prentice�Hall International �UK� Ltd� �� Wood Lane End� Hemel Hempstead�
Hertfordshire HP� �RG UK� 
���	

��� R	 Milner	 A Calculus of Communicating Systems� volume �� of Lecture Notes in Computer

Science	 Springer�Verlag� Berlin!Heidelberg!New York� 
���	

��� Robin Milner	 Communication and Concurrency	 International Series in Computer Science	
Prentice�Hall International �UK� Ltd� �� Wood Lane End� Hemel Hempstead� Hertford�
shire HP� �RG UK� 
���	

�
�� Juan Quemada and Angel Fernandez	 Introduction of quantitative relative time into LO�
TOS	 In H	 Rudin and C	H	 West� editors� Protocol Speci	cation� Testing� and Veri	cation�
VII� pages 
��!
�
	 Elsevier Science Publishers B	V	� 
���	

�

� G	M	 Reed and A	W	 Roscoe	 A Timed Model for Communicating Sequential Processes	
In Automata� Languages� and Programming � ��th Intl� Colloqium Proceedings� Lecture

Notes in Computer Science� Berlin!Heidelberg!New York� 
���	 Springer�Verlag	

�
�� Steve Schneider	 Unbounded Nondeterminism for Real�Time Processes	 Technical Report
TR�
�� Programming Research Group� Oxford University� UK� ��

 Keble Rd Oxford OX

�QD� July 
���	

�
�� J	J	 Zic	 A New Communication Protocol Speci�cation and Analysis Technique	 Technical
Report TR���� Basser Department of Computer Science� July 
���	

�
�� John J	 Zic	 CSP�T
 a formalism for describing real
time systems	 PhD thesis� Basser
Department of Computer Science� University of Sydney� NSW ����� July 
��
	






