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Abstract

A rapid increase in the transmission bandwidth of optical networks has cre�

ated a bottleneck in protocol processing at the end systems� This has resulted

in the inability of applications and network protocols to exploit the full band�

width of a high�speed network� This paper presents a parallel architecture

that is designed to support high�speed protocol processing� The advent of

the T���� transputer and C��� router technology has provided a platform

that is suitable for the construction of a highly parallel and scalable protocol

processing architecture based on packet and functional parallelism� A sim�

ulation of the architecture has been implemented and has demonstrated the

advantage of exploiting a parallel architecture for protocol processing�
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1. INTRODUCTION

Technological advancements in transmission speeds of optical fibre media have
resulted in much research and development into high-speed networks. More recently,
effort has been directed into developing a high-speed wide area network known as the
broadband integrated services digital network (B-ISDN) that is able to provide a diverse
range of services, ranging from data communication to transportation of video data.
Although the processing speed of communication processors has risen steadily over the
past years, they are still not able to match the transmission speed of optical media. This
has resulted in the inability of applications and network protocols to exploit the full
bandwidth of a high-speed network.

Consequently, several approaches to solve this communication bottleneck have
been proposed. The first approach concerns with the optimal implementation of existing
protocols, such as TCP and TP4. It has been shown in [1] that efficient implementations
of TCP for Berkeley BSD Unix can still achieve a relatively high throughput
performance. Although this is a feasible approach, careful examination reveals that
several mechanisms employed in TCP to ensure reliable transport of data are not suitable
for high-speed networks. This is because TCP was designed in the era when bandwidth
was expensive and scarce. This has resulted in high overheads, as such protocols were
designed to be robust in the face of adverse conditions. High protocol overheads were
necessary for the proper control of the transmission of data, so that better utilisation of
expensive bandwidth could be achieved. In view of the abundant availability of
bandwidth and greatly improved characteristics of optical networks, such overheads are
unnecessary and further burden the communication processing.

The next approach concerns new protocol designs that are suitable for high-speed
operation. The key to such design is to minimise protocol processing requirements and
consequently improve protocol processing speed. This has led to design of several
lightweight protocols [2, 3] that are designed to provide high-speed processing by
simplifying the protocol operation under normal data transfer phase, without
compromising on the functionality to provide reliability of data transfer. Often, these
lightweight protocols are designed for ease of implementation in hardware to further
speed up in protocol processing.

The next approach is concerned with the implementation of protocols on an
outboard hardware protocol processor platform. Such implementations can come in the
form of dedicated VLSI hardware for a specific protocol [4] or  using a general multi-
processor platform. The main advantage of a dedicated VLSI hardware solution is  the
high processing speed achievable and consequently higher throughput performance.
However, this advantage is offset by the high cost and difficulty in adapting to changing
requirements. On the other hand, implementations using general multi-processor
platform, like the transputer, offer greater flexibility and are achievable at modest cost.
Importantly, the scalability of transputer networks mean that additional processors can be
added in future if needs arise. This is a desirable feature, since it is anticipated that
transmission speed of optical media will continue to increase into multi-giga bits range.

In this paper, we will focus on applying parallelism to both transport and
presentation layers based on a message passing parallel architecture. Section 2 highlights
the different levels of parallelism possible for protocol processing. Section 3 discusses
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the protocol processing requirements. The suitability of transputer for protocol
processing is discussed in section 4. Section 5 presents a highly parallel architecture for
protocol processing using the T9000 and C104 router. In section 6, a simulation of the
proposed architecture is presented and the performance results are presented in section 7.
Finally, section 8 describes the future work and conclusions.

2. LEVELS OF PARALLELISM IN PROTOCOL PROCESSING

This section briefly describes the options that are available for parallel
implementation of protocol processing.  The levels of parallelism identified are as
follows:

i. Connection Parallelism

The highest level of parallelism that can be applied to protocol processing
design deals with connection parallelism. In order to establish a communication
link between end systems, a connection has to be set up. Parallel processing can be
applied to the established connections by dedicating each active connection to a
separate processor. This can be achieved easily since each of the active
connections operates almost independently from each other. After a connection is
established, the application is mapped to the assigned protocol processor, to which
all subsequent packets associated with that connection will be routed. The
advantage of this parallel architecture is the ease of implementation,  with minimal
synchronisation required between the parallel connections. However, this
architecture does not perform well from the point of processor utilisation, as the
processor utilisation factor is dependent on the number of connections established,
and the utilisation factor for each individual connection. One solution is to
implement a dynamically reconfigurable multi-processor network to optimise the
processor utilisation factor. Although feasible, this could make the synchronisation
between processors complex, thus introducing unnecessarily high overheads.

ii. Pipeline Parallelism

A protocol architecture based on the layering principle can exploit pipeline
parallelism. It is well known that layering in communication architecture reduces
the design complexity by organising various protocol services into separate
layers. Each of these layers operates almost independently, while providing
services to higher layers. Pipeline parallelism is concerned with assigning these
layers to separate processors. As a packet arrives, the dedicated processor
performs the necessary processing on the packet for that layer and passes the
processed packet to the next higher layer. The advantage of such parallelism is
the ease of implementation, since the layering principle adapts naturally to
pipeline parallelism. As with any pipeline parallelism, the overall throughput
achievable for an implementation is limited by the slowest layer processor.
Therefore, if a particular layer is found to be exceptionally slow (like the
presentation layer), it is important to optimise this layer to ensure overall
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performance gain. One possible solution is to apply functional parallelism on the
bottleneck layer to further speed up the processing.

iii. Functional Parallelism

Early protocols (eg. TCP) employ in-band signalling for the exchange of
information between peer protocol layer entities. With in-band signalling, the
control and data functions are combined together as a single entity.  At the
receiving end, each packet is parsed to determine the control information that is
present, so as to invoke the necessary actions to ensure correct operation. This
means that the processing of control information for each received packet is
inherently sequential, and this leads to increased processing time for the embedded
data portion. As a result, performing functional parallelism on these protocols
requires high overheads in synchronising between functional units. On the
contrary, out-of-band signalling aims to transmit the control information and data
as separate packets. Therefore, at the receiving end, a simple hardware circuit can
be built to identify different packets, which can then be routed to the
corresponding processing units. The major advantage of out-of-band signalling is
the ability to support functional parallelism efficiently. Therefore, the entire
protocol processing can be separated into several stand-alone functional units, with
minimum  interaction among the functions. The drawback of out-of-band signalling
is the increased bandwidth needed for transmission of individual control packets.
However, with a quantum increase in available bandwidth in high-speed
communication systems and the ability to support efficient functional parallel
architectures, the out-of-band signalling technique is an attractive proposition for
incorporation in future protocol designs.

iv. Packet Parallelism

The next level of parallelism in protocol processing deals with packet parallelism.
Each incoming data packet is assigned to one processor from a pool of data
packet processors, while incoming control packets are assigned to a  dedicated
control packet processor. Implementing such parallelism allows several data
packets to be processed in parallel, thereby achieving high throughput
performance. Such an architecture is particularly attractive if serial processing per
data packet is highly complex, resulting in high concurrency, while minimising
the computation cost of synchronisation between processors. Importantly, packet
parallelism is highly scalable, where additional data packet processors can be
added in future, if the need arises. This is in contrast with functional parallelism,
where parallelism is limited by the ability to isolate functions, such that each
function is essentially independent from each other.

Each option presented here can potentially increase the overall throughput
performance of protocol processing. In order to achieve maximum performance gain, it is
important to apply parallelism such that processor utilisation is maximised, while
minimising synchronisation requirements associated with parallel processing. In this
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paper, we will focus on applying both functional and packet parallelism to protocol
processing at transport and presentation layers, which are seen to be the processing
bottleneck[5].

3. PROCESSING REQUIREMENTS

3.1 Data and Control Processing

Despite the complexity of protocol processing, the entire protocol operation can
generally be grouped into two processing functions: data processing and control
processing. Data processing is concerned with the transfer of  data between
communicating end points. Typical operations may include movement of data from
memory to memory, checksumming of data packets, data packet formatting and
sequencing of data packets. On the other hand, control processing is concerned with the
management of  communicating connections and regulating of data transfer. Operations
include connection establishment and close, regulating data transfer by exchanging of
control/synchronisation information and monitoring of network connections. Generally, a
control packet would require a relatively low number of bytes to convey its control
information (of the order of 100 bytes). At the receiving end, the various control fields
are parsed and the necessary control actions are generated. In contrast, data processing
would require much higher computation with typical packet size in the excess of 2000
bytes. Any access or formatting on this data at any protocol layer will result in high
computational overheads. At the transport layer, a typical data access operation is to
compute the checksum for error detection. At the presentation layer, formatting is
required to convert the data to/from an abstract syntax representation. An example of
such a standard representation is the ISO ASN.1. If it requires one instruction per byte to
convert a data packet of 2000 bytes in size, this would require a total of 2000 instructions
to complete each packet.

3.2 Out-of-band Processing

As mentioned in the previous section, early protocols (eg. TCP) tend to multiplex both
control and data information onto a single packet. This has resulted in the difficulty of
applying functional parallelism to control and data processing. In addition, separating the
processing of control and data information using out-of-band signalling enables the end
points to synchronise less frequently. In view of the much improved error characteristics
of future networks and the complexity in control processing, it is desirable that such
processing be less frequent. Further, avoiding the generation of control information on per
packet basis1 reduces the frequency of synchronisation between data and control
processing at the receiving end. This results in higher concurrency in terms of packet
parallelism, since synchronisation between packet and control processors is less frequent.

                                               
1In TCP, an acknowledgment is generated for each received data packet.
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3.3 Data Ordering Constraints

In order to apply packet parallelism to protocol processing, we need to employ the
concept of Application Level Framing (ALF) [6]. In the OSI protocol layering, each
protocol layer appends its own protocol header onto the front of the data unit received
from the preceding layer. At the transport layer, data units from the session layer might be
segmented into smaller data units suitable for transmission to the network. At the
receiving end, these segmented data units needs to be reassembled in the correct order by
the peer transport layer, before being processed by upper layers. This segmentation of data
units at the transport layer results in the inability to apply packet parallelism to protocol
processing for higher layers, since data ordering is required. In contrast, ALF uses a single
autonomous data unit for all the processing functions required at different layers. The data
unit to be transferred is based on the application data unit, such that each unit is properly
framed and can be processed independently by upper layers to achieve high concurrency.
Segmentation and reassembly is performed at the network layer, where transport data
units are segmented into  smaller data units2 suitable for transfer over the network.

4. THE TRANSPUTER FOR PROTOCOL PROCESSING

A number of features of Occam and the transputer help make a protocol
implementation efficient both in terms of  programming effort and execution speed. This
section  highlights several desirable characteristics for protocol processing that are
inherent in the design of transputer and Occam.

i. Programmability

Although it is feasible to implement a protocol on specialised hardwired
VLSI to achieve high processing speed, this approach often results in difficulty in
adapting to changing protocol specification.  The ability of a protocol processor to
be programmable is essential, since it is envisaged that a protocol specification is
unlikely to be stable from the outset. Instead, a protocol specification can continue
to evolve as a result of further development. For example, although TCP has been
around for more than a decade, it has continued to evolve due to changing
requirements. In contrast to hardwired VLSI implementations, the transputer is a
general purpose programmable microprocessor that is designed to support efficient
parallel processing. Occam is the programming model for transputers. As such, all
transputer instruction sets are designed to provide highly efficient compilation of
programs written in Occam.

                                               
2In B-ISDN,  higher level protocol data units are segmented into ATM cells of 53 bytes.
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ii. Instruction Primitives

Although not designed specifically for protocol implementation, a number
of instruction primitives available on the transputer greatly simplifies the
programming effort and consequently results in efficient implementation.

In computer communication, timers are often used extensively in protocols
for the protection against loss of messages by monitoring the elapsed time
associated with messages. Further, timers are also used to detect failures in
communicating connections. On a processor that does not directly support the
implementation of timers, the computational overheads in managing these timers
can prove to be very high [7]. In contrast, the support in Occam for timers greatly
simplifies the implementation of timing calculations and consequently results in
higher computational efficiency.

To protect against the corruption of data messages, cyclic redundancy
checking (CRC) is often employed to check on the data integrity. The provision of
transputer to directly support byte or word CRC computation through CRC
primitive instructions results in efficient implementation. These instructions can be
used on arbitrary length serial data streams.

One way of interfacing network peripherals to the transputer is to use
external links to transfer packets from the network to the processor. The support
in Occam for definition of channel protocols allows fields to be extracted from the
received packet almost instantly, without the need to parse the entire packet.
Similarly, complex protocol structures can be constructed and transferred to the
network peripheral using the same method. The provision of such primitives
results in the ease of protocol definition and programming, while optimising
protocol execution.

iii. Fast Context Switching

Protocol processors are required to perform processing on several
connections and across multiple protocol layers. Therefore, it is important that
protocol processor provides a fast context switching mechanism to minimise the
overheads of switching between connections and protocol layers. The
incorporation of a hardware scheduler within the transputer and efficient context
switching architecture results in a sub-microsecond interrupt response time.

iv. Multiple Links Architecture

The transputer is designed with four links for interfacing to external
peripherals, as well as communicating between transputers. The provision of
multiple links supports a high degree of concurrency on the transputer by
providing multi-port access to the processor.  For example, one link can be
interfaced to the network to provide data input, while another link is interfaced to
the host to provide data output. Together with the DMA capability of each link,
concurrent data transfer without involvement of the processor is possible.
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v. Scalability

It is anticipated that the bandwidth of future networks will continue to
increase, thus, resulting in increased protocol processing requirements at the hosts.
The advent of T9000 and C104 router technology could provide a platform
necessary for the construction of a highly parallel and scalable protocol processing
system. Therefore, if the need arises, additional processors can be added to match
the required processing capacity.

5. ARCHITECTURE OVERVIEW

This section presents a highly parallel protocol processing architecture that is
based on functional and packet parallelism. The architecture is designed to support high-
speed protocol processing for transport and presentation layers using the T9000
transputer. An overview of the architecture is shown in Figure 1. All transputers are
interconnected via a C104 router chip to allow processes distributed on up to 32
transputers to communicate. The data processors are responsible for the processing of
data packets, with each processor comprising local memory for storage of incoming data
packets. The control processor is responsible for the management of connections and
regulating data transfer.

T9000
Data

Packet
Processor

0

VRAM

T9000
Data

Packet
Processor

1

VRAM

T9000
Data

Packet
Processor

2

VRAM
T9000
Control

Processor

C104
Router

Host Memory Transfer
Interface

Host
Control

Interface

Network
Interface
Adaptor

C101
DS-Link
Adaptor

Event Event Event

Figure 1 Architecture Overview

5.1 Packet Scheduling

Data packets arriving from the network are assigned to one of the data packet
processors in a deterministic fashion, based on the result of a modulo division of the
sequence number for the packet over the total number of data packet processors. For
example, if the incoming data packet contains a sequence number of 45 and the total
number of data packet processors is 10, based on the result of the modular division of 45
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over 10, the packet is assigned to data packet processor 5. While it is possible to copy the
data packet into the local memory of the assigned processor via the transputer serial link,
the large data packet size to be transferred will impose unnecessary overheads in the
copying process. Therefore, a dual-ported approach based on conventional dual-port
video RAM (VRAM) is employed. One of the advantages of using VRAMs over random
access dual-port static RAMs is its cost effectiveness. More importantly, the interfacing
between the serial access port of VRAMs and the network adapter requires minimal
arbitration logic, while enabling high-speed serial transfer rate of up to 33 MHz. For
example, consider a serial transfer width of 32 bits, a data transfer rate in the excess of 1G
bps is achievable. Once the incoming data packet has been transferred to the serial access
port of the respective VRAM, the network adapter signals the assigned processor via one
of the event interrupt pins, before transferring the data packet into the random access
memory of the VRAM for processing.

5.2 Packet Synchronisation

Packet synchronisation is required for coordinating among the data packet
processors to ensure data packet ordering. As mentioned, data packets are assigned to
processors in a deterministic fashion, with each processor managing its own data ordering.
For example, if the system consists of 10 data packet processors, then for processor 0,  the
expected data packet sequence ordering is 0, 10, 20, 30,...., while processor 1's expected
data packet sequence ordering is 1, 11, 21, 31,.... and so on. In short, each processor is
responsible for detection of its local missing, duplicate or out-of-order packets. To
synchronise the overall ordering of packets among the processors, a mechanism known as
token sequencing has been devised. When a connection is established, a token is created
on the processor that is expected to receive the first data packet. In addition, for each
connection, a table containing two fields <seq, presentation_ok> is created on each data
packet processor, where seq contains the sequence number received and presentation_ok
indicates if the corresponding packet has been processed by the presentation layer. The
basic processing model on each data packet processor is shown in Figure 2. On the receipt
of each data packet, the transport layer will check on the validity of the packet and the
sequence number information is updated in the table. Subsequently, the address of the
packet is passed to the presentation layer for processing of the data. Once the presentation
layer has completed processing the packet, it will signal the transport layer and the
presentation_ok field for that corresponding packet is updated. If the entry on the top of
the table has a sequence number equal to the token value  and the presentation processing
on the data has been completed, the processed data is transferred to the host. The token
value is then incremented and passed on to the next neighbour processor in sequence.
Thus, the simple token sequencing mechanism ensures the correct ordering of data is
presented to the host, while requiring minimum overhead in synchronising between
processors.



9

 

Transport
Processing

Presentation
Processing

Data Packet From Network

Data To Host

Token In

Token Out

Processor Node

Figure 2 Basic Processing Model  At Processor Node

5.3 State Synchronisation

A high-performance transport protocol, HTPNET [8], has been simulated on the
proposed architecture. To support functional parallelism, HTPNET employs out-of-band
signalling, in which peer-transport entities exchange data and state information using
separate packets. A state information packet is exchanged frequently so that the state
between the transmitter and receiver is synchronised.  The basic state synchronisation
mechanism is shown in Figure 3. The state information exchange is initiated periodically
by the transmitter. Each state packet sent from the transmitter is associated with a
synchronisation value that is incremented after each transmission. Similarly, data packets
that are sent before the next state exchange are associated with the next synchronisation
value in sequence. For example, if the next state exchange will contain a synchronisation
value of 20, then those data packets that are sent between synchronisation value 19 and 20
will be associated with synchronisation value 20. Periodically, a state packet is admitted
into the network which traverses the same path as the preceding data packets. When the
state packet arrives at the receiver, it is transferred to the control processor. The control
processor then initiates a state synchronisation with all the data packet processors to
request the complete state and error control information from each data packet processor.
Upon receipt of the state information from all the data packet processors, the control
processor assembles the information and also copies the received synchronisation value to
construct an outgoing state packet. Upon receipt of the return state packet, the transmitter
control processor updates the status of the transmitted data packets by comparing the
synchronisation values of the transmitted data packets with the echoed synchronisation
value. Consequently, for unacknowledged data packets whose associated synchronisation
value is less than or equal to the echoed synchronisation  value, a retransmission is
necessary.

For each received state packet at the transmitter control processor, a bit-map
containing  the status of the data packets is assembled and communicated to the data
packet processors, which perform the necessary retransmission and release of data packet
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memory.
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Figure 3   Basic State Synchronisation Operation

6. Simulation

A simulation of the proposed system has been implemented to evaluate the
performance of the architecture. A simulation tool known as NETSIM [9] has been used
for the simulation of the proposed system. The simulation program is written with the
T9000 as the target processor. Before performing the actual simulation, the processes to
be simulated on the proposed architecture were written in Occam. These processes were
compiled and tested on a single T800 transputer to verify the functionality of the program.
Although, it is possible to test on a single T800 transputer, the architecture cannot be
extended to run on multiple T800 transputers due to the limitation on the number of
external links available. However, this limitation has been eliminated with the T9000
transputer and C104 router [10, 11]. After verifying the functionality of the program, the
Occam processes were translated to equivalent C functions for execution in NETSIM. The
C104 router is not simulated, instead, links between processors are connected directly.
Omitting the simulation of C104 router should have minimal effect on the overall
performance measurement of the system, since messages passed between the processors
are short and infrequent. In addition, the high operating speed of the C104 and the DMA
capability of the transputer links further reduces the overhead of passing massages
between processors.

To simulate multiple  processes executing on a single processor, a resource facility
employing a round-robin discipline is simulated. The simulated processor will serve only
one process at a time, while suspended processes are queued. The time slice period is set
to 5120 cycles3 of the external clock. A process is permitted to run until it has completed
its action or is descheduled whilst waiting for communication from another process.
Modelling the advancement of simulation time while executing the instructions is achieved
by identifying the basic block within each process and applying the necessary delay to

                                               
3The choice of a timeslice period of 5120 cycles is based on the design of T800 transputer [13].



11

execute these blocks [12]. A basic block is defined as a sequence of instructions such that
all instructions within that block are executed in sequence until a process interaction point
is reached. Some examples of a basic block are shown in Figure 4. After executing each
basic block, the process is scheduled to delay for a time proportional to the number of
machine cycles required to execute on the target processor4. The number of instructions
required to perform presentation processing is estimated to be about 10 instructions per
byte. The serial access speed of VRAM is set to operate at 33 MHz, with a access bus
width of 32 bits.

        

-- Basic Block Starts
SEQ
  -- Sequence of Instructions
  ....
  ....
  -- Process Interaction
  a ! b
  -- Basic Block Ends

ALT
  -- Basic Block Starts
  a ? b
    SEQ
      -- Sequence of Instructions
      ....
      ....
      -- Basic Block Ends
  c ? d
    SEQ
      ....

Figure 4 Examples of Basic Block

7. PERFORMANCE RESULTS

In order to fully evaluate the performance of the system, various configurations of
the architecture are simulated. To allow ease of reconfiguring the system, processes in the
architecture are written to be generic in nature, such that the software remains unchanged
even with different processors configuration, thus making the system inherently scalable.

Figure 5 shows the performance of the system with processor speed set to 20 MHz
and network speed of 200 Mbps. The throughput increases almost linearly under low
processor configuration, while the processor's utilisation remains almost constant at 100%.
The throughput continues to increase linearly until about 12 processors, when the
processing capacity of the system is beginning to match the network capacity. Meanwhile,
the processor utilisation begins to decline with increasing number of processors. Figure 6
shows the performance of the system with processor speed of 50 MHz, while network
speed remains at 200 Mbps. As expected, due to the faster processor speed, the number of
processors required to match the network speed is reduced to about 6 processors.

                                               
4The number of machine cycles required to execute Occam programs is based on the performance figure
obtained from [14].
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Figure 5 Performance With Processor Speed of 20 MHz
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Figure 6 Performance With Processor Speed of 50 MHz

In the next configuration, the processor speed is set to 50 MHz, while varying the
network speed. Figure 7 shows that the system performed well with an increasing number
of processors as the network speed is increased. As the network speed is increased beyond
the 1 Gbps range, it is found that the system begins to saturate. Close examination reveals
that this bottleneck is caused by the saturation of the serial access speed of the VRAM,
which is able to handle up to a 1 Gbps transfer rate.
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Figure 8 shows the performance of the system with varying packet sizes, with a
processor speed of 20 MHz and network speed of 200 Mbps. The result indicates that the
system is able to track the network speed for packet sizes of 1000 and 2000 bytes.
However, for packet size of 3000 bytes, the system behaviour becomes unstable as the
number of processors increases beyond 10. This is due to the fact that the processing time
for each data packet is comparable to the periodic state synchronisation timing. Thus, for
each data packet processed, a state synchronisation update is required, resulting in high
synchronisation overheads. This result indicates that such unstable behaviour can be
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avoided by increasing the periodic state synchronisation timing or by reducing the packet
size.

8. CONCLUSION

In this paper, we have examined the use of parallelism for protocol processing to
offload the communication bottleneck caused by the development of high-speed networks.
Although not specifically designed for protocol processing, a number of features of the
transputer and Occam help make protocol implementation efficient both in terms of
programming effort and execution speed. Further, the T9000 transputer and C104 router
provide a platform with the potential to construct a highly parallel and highly scalable
protocol processing system. As a result, an efficient multi-processing architecture based
around the T9000/C104 has been presented. The system is designed to exploit a highly
parallel computing architecture, in which packet and functional parallelism are applied to
protocol processing. Synchronisation between data processors for data ordering is
achieved using a technique known as token sequencing. In addition, the architecture uses
an out-of-band signalling system based on periodic state synchronisation between end
systems.

A simulation of the architecture has been implemented and has demonstrated the
advantage of exploiting a parallel architecture for protocol processing. Importantly, the
highly scalable features of the architecture offer even greater performance potential as the
processing requirements continues to increase.

In future, further analysis on the architecture will be conducted to enable a
thorough investigation of the implications of design choices in a truly parallel environment.
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