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Abstract!

The present paper studies the problem of when a team of learning machines can
be aggregated into a single learning machine without any loss in learning power. The
main results concern aggregation ratios for vacillatory identification of languages from
texts. For a positive integer n, a machine is said to TxtFex,-identify a language L just
in case the machine converges to up to n grammars for I on any text for L. For such
identification criteria, the aggregation ratio is derived for the n = 2 case. It is shown that
the collection of languages that can be TxtFex, identified by teams with success ratio
greater than 5/6 are the same as those collections of languages that can be TxtFex,-
identified by a single machine. It is also established that 5/6 is indeed the cut-off point
by showing that there are collections of languages that can be TxtFex,-identified by a
team employing 6 machines, at least 5 of which are required to be successful, but cannot
be TxtFex,-identified by any single machine. Additionally, aggregation ratios are also
derived for finite identification of languages from positive data and for numerous criteria
involving language learning from both positive and negative data.

! A preliminary version of this paper was presented at the Fourth International Workshop on Algo-
rithmic Learning Theory, Tokyo, November 1993.



1 Introduction

The present paper investigates the problem of aggregating a team of learning machines
into a single learning machine. In other words, we are interested in finding when a team
of learning machines can be replaced by a single machine without any loss in learning
power.

A team of learning machines is essentially a multiset of learning machines. A team is
said to successfully learn a concept just in case each member of some nonempty subset
of the team learns the concept. If the size of a team is n and if at least m machines
in the team are required to be successful for the team to be successful, then the ratio
m/n is referred to as the success ratio of the team. The present paper addresses the
problem, “For what success ratios can a team be replaced by a single machine without
any loss in learning power?” The answer to this question depends on the kind of concepts
being learned and the the type of success criteria employed. For the problem of learning
recursive functions from graphs, the answer is known for the three popularly investigated
criteria of success, namely, Fin (finite identification), Ex (identification in the limit) and
Bec (behaviorally correct identification). For Ex and Be, Pitt and Smith [24] showed that
a team can be aggregated into a single machine if the success ratio of the team is greater
than 1/2. For finite function identification, Fin, it was reported in [15] that a team can
be aggregated if the success ratio of the team is greater than 2/3 (this result can also be
argued from a result of Freivalds [12] about probabilistic finite function identification).

The present paper describes aggregation results about language identification from
positive data. The main results are in the context of vacillatory identification. To
facilitate discussion of these results, we informally present some preliminaries from theory
of language learning next.

Languages are sets of sentences and a sentence is a finite object; the set of all possible
sentences can be coded into N — the set of natural numbers. Hence, languages may
be construed as subsets of V. A grammar for a language is a set of rules that accepts
(or equivalently, generates [14]) the language. Essentially, any computer program may
be viewed as a grammar. Languages for which a grammar exists are called recursively
enumerable.

A text for a language L is any infinite sequence that lists all and only the elements of
L; repetitions are permitted. A learning machine is an algorithmic device that outputs
grammars on finite initial sequences of texts. Two well studied criteria for a machine
to successfully learn a language are identification in the limit and behaviorally correct
identification. We next give an informal definition of these criteria.

A learning machine M is said to TxtEx identify a language L just in case M, fed
any text for L, converges to a correct grammar for L. This is essentially the seminal
notion of identification in the limit introduced by Gold [13] (see also Case and Lynes [7]
and Osherson and Weinstein [22]).

A learning machine M is said to TxtBc-identify L just in case M, fed any text for
L, outputs an infinite sequence of grammars such that after a finite number of incorrect



guesses, M outputs only grammars for L. This criterion was first studied by Case and
Lynes [7] and Osherson and Weinstein [22], and is also referred to as “extensional”
identification.

Osherson, Stob, and Weinstein [20] first observed that for TxtEx-identification, a
team can be aggregated if its success ratio is greater than 2/3. Hence, in matters of
aggregation, identification in the limit of languages from positive data turns out to be
similar to finite function identification. On the other hand, for TxtBc-identification, a
result from Pitt [23] can easily be used to show that a team can be aggregated if its
success ratio is greater than 1/2. Thus, TxtEx and TxtBc exhibit different behavior
with respect to aggregation.

We now present two more criteria of successful language learning, namely, finite iden-
tification and vacillatory identification.

A machine M is said to TxtFin-identify a language L just in case M, fed any text
for L, outputs only one grammar and that grammar is for L.?

We show that for TxtFin-identification, a team can be aggregated only if its success
ratio is greater than 2/3. Thus, TxtFin-identification shows similar behavior as TxtEx-
identification and finite function identification so far as aggregation is concerned.

We next consider vacillatory identification of languages from texts in which a machine
is required to converge to a finite set of grammars. This notion was studied by Osherson
and Weinstein [22] and by Case [5]. It should be noted that in the context of function
learning, vacillatory identification turns out to be the same as identification in the limit.
This was first shown by Barzdin and Podnieks [2] (see also Case and Smith [8]).

Let n be a positive integer. A learning machine M is said to TxtFex,-identify a
language L just in case M, fed any text for L, converges in the limit to a finite set, with
cardinality < n, of grammars for L. In other words, for any text T' for L, there exists a
set D of grammars of L, cardinality of D < n, such that M, fed T', outputs, after a finite
number of incorrect guesses, only grammars from D.

If the upper bound n in TxtFex,-identification is not specified and the only require-
ment is that the machine converge to some finite set of grammars for the language, then
the criteria is referred to as TxtFex,-identification.

We show that for TxtFex,-identification, a team can be aggregated if its success ratio
is greater than 1/2. It is interesting to note that in matters of aggregation TxtFex,-
identification behaves more like TxtBec-identification than like TxtEx-identification.
The problem of aggregation for TxtFex,, however, turns out to be more difficult. We
are able to answer this question for the n = 2 case, by showing that for TxtFex,-
identification, a team can be aggregated only if its success ratio is greater than 5/6.
We establish this by showing that the collections of languages that can be TxtFex,-
identified by teams with success ratios greater than 5/6 are exactly the same as those

2More formally, we will require the machine to output a symbol L (denoting ‘no conjecture yet’) on
an initial segment of the text and then it will be required to output a correct grammar for the remainder
of the text. This is only for technical convenience as it makes the learning machine total and simplifies
the proofs.



collections of languages that can be TxtFex,-identified by a single machine. Our proof
of this result involves a fairly complicated simulation argument. We also establish that
5/6 is indeed the cut-off point for TxtFex, aggregation by employing a diagonalization
argument to show that there are collections of languages that can be TxtFexs-identified
by a team of 6 machines, at least 5 of which are required to be successtul, but cannot be
TxtFexy-identified by any single machine.

The problem of aggregation becomes somewhat more manageable if we are prepared
to allow the aggregated machine to converge to extra number of grammars. In fact we
are able to show that aggregation can be achieved at success ratios just above 1/2 if the
aggregated machine is allowed to converge to extra number of grammars. For example,
for any positive integer ¢, all the collections of languages that can be TxtEx-identified
by teams of 2: + 1 machines, at least 2 + 1 of which are required to be successful, can
also be TxtFex; -identified by a single machine. More generally, using a fairly straight
simulation argument, it can be shown that all the collections of languages that can be
TxtFex;-identified by teams of 2: + 1 machines, at least ¢ 4+ 1 of which are required to
be successful, can also be TxtFex(;11).;-identified by a single machine.

In Section 3.7, we show that aggregation issues in the context of language identifica-
tion from both positive and negative data follow a pattern similar to function learning.

We now proceed formally. Section 2 records the notation and describes preliminary
notions and definitions from inductive inference literature. Our results are presented in
Section 3.

2 Preliminaries

2.1 Notation

Any unexplained recursion theoretic notation is from [26]. The symbol N denotes the set
of natural numbers, {0,1,2,3,...}. The symbol N denotes the set of positive natural
numbers, {1,2,3,...}. Unless otherwise specified, ¢, j, k, [, m, n, ¢, r, s, t, x, y, with
or without decorations®, range over N. Symbols 0, C, C, D, and D denote empty
set, subset, proper subset, superset, and proper superset, respectively. Symbols A and
S, with or without decorations, range over sets. D, P, (), and X, with or without
decorations, range over finite sets. Cardinality of a set S is denoted by card(S). We
say that card(A) < # to mean that card(A) is finite. Intuitively, the symbol, *, denotes
‘finite without any prespecified bound.” @ and b, with or without decorations, range
over N U{*}. The maximum and minimum of a set are denoted by max(-), min(-),
respectively, where max(()) = 0 and min({})) =1.

Letters f, g, h and G, with or without decorations, range over total functions with
arguments and values from N. Symbol R denotes the set of all total computable func-
tions. C and S, with or without decorations, range over subsets of R. A pair (z, j) stands
for an arbitrary, computable, one-to-one encoding of all pairs of natural numbers onto NV

3Decorations are subscripts, superscripts and the like.



[26]. Similarly, we can define (-,...,-) for encoding multiple tuples of natural numbers
onto N. By ¢ we denote a fixed acceptable programming system for the partial com-
putable functions: N — N [25, 26, 19]. By ¢; we denote the partial computable function
computed by program ¢ in the p-system. The letter, p, in some contexts, with or with-
out decorations, ranges over programs; in other contexts p ranges over total functions
with its range being construed as programs. By ® we denote an arbitrary fixed Blum
complexity measure [3, 14] for the p-system. By W, we denote domain(y;). W; is, then,
the r.e. set/language (C N) accepted (or equivalently, generated) by the @-program i.
Symbol £ will denote the set of all r.e. languages. Symbol L, with or without decora-
tions, ranges over £. Symbol £, with or without decorations, ranges over subsets of £.
We denote by W, ; the set {@ < s | ®;(x) < s}. The quantifiers ‘O\v’o’ and ‘OET’ mean ‘for all
but finitely many’ and ‘there exist infinitely many’, respectively.

2.2 Learning Machines

We first consider function learning machines.

We assume, without loss of generality, that the graph of a function is fed to a machine
in canonical order. For f € R and n € N, we let f[n] denote the finite initial segment
{(x, f(z)) | * < n}. Clearly, f]0] denotes the empty segment. SEG denotes the set of all
finite initial segments, {f[n] | f € R An € N}.

Definition 1 [13] A function learning machine is an algorithmic device which computes
a mapping from SEG into N.

We now consider language learning machines. A sequence o is a mapping from an
initial segment of N into (N U {#}). The content of a sequence o, denoted content(o),
is the set of natural numbers in the range of o. The length of o, denoted by |o|, is the
number of elements in o. For n < |o], the initial sequence of o of length n is denoted
by o[n]. Intuitively, #’s represent pauses in the presentation of data. We let o, 7, and
~, with or without decorations, range over finite sequences. SEQ denotes the set of all
finite sequences.

Definition 2 A language learning machine is an algorithmic device which computes a
mapping from SEQ into N.

The set of all finite initial segments, SEG, can be coded onto N. Also, the set of
all finite sequences of natural numbers and #’s, SEQ, can be coded onto N. Thus, in
both Definitions 1 and 2, we can view these machines as taking natural numbers as input
and emitting natural numbers as output. Henceforth, we will refer to both function-
learning machines and language-learning machines as just learning machines, or simply
as machines. We let M, with or without decorations, range over learning machines.

It should be noted that for all the identification criteria discussed in this paper, we
are assuming, without loss of generality, that the learning machines are total.



2.3 Criteria of Learning

FINITE FUNCTION IDENTIFICATION

For finite function identification only, we assume our learning machines to compute a
mapping from SEG into N U {L}. The output of machine M on evidential state o will
be denoted by M(o), where ‘M(o) =17 denotes that M does not issue any hypothesis

on o.

Definition 3 M Fin-identifies f (read: f € Fin(M)) < (3| ¢; = f) (Ing)[(V
no)[M(fln]) = ¢] A (Vn < no)[M(f[n]) =L]]. We define the class Fin =
(IM)[S C Fin(M)]}.

FuncTION IDENTIFICATION IN THE LIMIT

Definition 4 [13] M Ex-identifies f (read: f € Ex(M)) <= (3 | ¢; = f) (OVO
n)[M(f[n]) = i]. We define the class Ex ={S C R | (IM)[S C Ex(M)]}.

BEHAVIORALLY CORRECT FUNCTION IDENTIFICATION

Definition 5 [8] M Bec-identifies f (read: f € Be(M)) <= (O‘v’o n)[emsny) = fl. We
define the class Be ={S C R | (IM)[S € Bc(M)]}.

The following proposition summarizes the relationship between the various function
learning criteria.

Proposition 1 [8, 1] Fin C Ex C Be.

2.4 Language Learning

A text T for a language L is a mapping from N into (N U {#}) such that L is the set
of natural numbers in the range of T. The content of a text T, denoted content(T), is
the set of natural numbers in the range of T'. T'[n] denotes the finite initial sequence of
T with length n.
FINITE LANGUAGE IDENTIFICATION

Again as in the case of finite function identification, we assume our learning machines
to compute a mapping from SEQ into N U {L}. This assumption is for this definition
only.

Definition 6 M TxtFin-identifies L (read: L € TxtFin(M)) (V texts T for L)
(Fe | Wi = L) (Ing)[(Vn = no)[M(T[n]) =1t] A (¥n < ng)[M(T[n]) =L]]. We define the
class TxtFin = {£ C £ | (IM)[£L C TxtFin(M)]}.



2.5 Language Identification in the Limit

Definition 7 [13] M TxtEx-identifies L (read: L € TxtEx(M)) <= (V texts T for

L)y (F | W, =1) (O‘v’o n)[M(T[n]) = i]. We define the class TxtEx = {£ C & | (IM)[L C
TxtEx(M)]}.

BEHAVIORALLY CORRECT LANGUAGE IDENTIFICATION

Definition 8 [22, 7] M TxtBc-identifies L (read: L € TxtBc(M)) < (V texts

T for L) (O‘v’o )W = L]. We define the class TxtBe = {£ C & | (AM)[£L C
TxtBc(M)]}.

VACILLATORY LANGUAGE IDENTIFICATION

We now introduce the notion of a learning machine finitely converging on a text [5].
Let M be a learning machine and T' be a text. M(T') finitely-converges (written: M(T'){})
< {M(o) | o C T} is finite, otherwise we say that M(T') finitely-diverges (written:

M(T)}). I M(T)), then M(T) is defined = {i | (3 o € T)[M(c) = 1]}.

Definition 9 [22, 5] Let b € NtU{x}. M TxtFex, identifies L (read: L[ €
TxtFex,(M)) < (¥ texts T for L)(3P | card(P) < b A (Vi€ P)[W; = L)M(T)| A
M(T') = P]. We define the class TxtFex;, = {£ C £ | (IM)[£ C TxtFex,;(M)]}.

The following proposition summarizes the relationship between the various language
learning criteria.

Proposition 2 [22, 7, 5] TxtFin C TxtEx = TxtFex; C TxtFex, C --- C
TxtFex, C TxtBc.

2.6 Team Learning

A team of learning machines is essentially a multiset of learning machines. Definition 10
introduces team learning of functions and Definition 11 introduces team learning of lan-
guages.

Definition 10 [27, 21] Let I € {Fin, Ex,Bc} and let m,n € N*.

(a) A team of n machines, My, My, ..., M, is said to Team, I-identify [ (writ-
ten: f € Team'I(M;,Ma,...,M,)) just in case there exist m distinct numbers
115 12y ey Uy 1 < 2y < 2 < -++ < 2,, < n, such that each of M , M
I-identifies f.

119 VAhigy e o - im

(b) Team'I ={S C R | (IMy,IM,,...,IM,,)[S C Team, I(M;,M,,...,M,)]}.

Definition 11 Let 6 € N* U {*}. Let I € {TxtFin, TxtEx, TxtFex,, TxtBc}. Let
m,n € NT.



(a) A team of n machines {My,My,...,M,} is said to Team ' I-identify L (writ-
ten: [ € Team, I(My, My, ...,M,)) just in case there exist m distinct numbers
115 12y ey Uy 1 < 2y < 2 < -++ < 2,, < n, such that each of M , M
I-identifies L.

119 VAhigy e o - im

(b) Team'I ={L£ C &£ | (IM;,IM,,...,IM,)[L C Team'I(M,M,,...,M,)]}.

For Team'I-identification criteria, we refer to the fraction m/n as the success ratio
of the criteria.

Definition 12 A reduced fraction m/n is referred to as the aggregation ratio for the
success criteria I-identification just in case

(a) (Vi,je NT|i/j> m/n)[Team;I = 1], and
(b) I C Team,'L

In the following, for ¢ > j, we take Team;I = {0}.

3 Results

3.1 Previously Known Results

Aggregation results are known for all the function learning criteria defined in the previous
section. For finite function identification, aggregation takes place at success ratios greater
than 2/3. This result, Theorem 1(a) below, appeared in [15] and can also easily be
argued from a related result of Freivalds [12] about probabilistic finite identification.
Theorem 1(b) shows that 2/3 is the cut-off point for aggregation of Fin-identification;
a diagonalization argument using the operator recursion theorem [4] suffices to establish
this latter result.

Theorem 1 [28, 15]
(a) (Vm,n € Nt | m/n > 2/3)[Team” Fin = Fin].
(b) Fin C Team;Fin.

Pitt and Smith [24] settled the question for function identification in the limit and
behaviorally correct function identification by showing the following Theorem 2(a) which

implies that for both these criteria aggregation takes place at success ratios greater than
1/2. Theorem 2(b), due to Smith [27], shows that 1/2 is indeed the cut-off point.

Theorem 2 Let I € {Ex,Bc}.

(a) (Ym,n € Nt |m/n > 1/2)[Team”T = 1]



(b) T C Team,I.

For language learning, the result is known for TxtEx-identification and TxtBec-
identification. It was shown by Osherson, Stob, and Weinstein [20] that aggregation for
TxtEx takes place at success ratios greater than 2/3, and 2/3 is also the cut-off point
for aggregation of TxtEx-identification (see also [16, 18, 17] for extension of this result
to anomalies in the final grammar).

Theorem 3 (a) (Vm,n € Nt |m/n > 2/3)[Team! TxtEx = TxtEx]
(b) TxtEx C Team;TxtEx.

Using a result from Pitt [23], it can be shown that aggregation for TxtBc takes
place at success ratios greater than 1/2. This is Theorem 4(a) below. Part (b) of
Theorem 4 implies that 1/2 is indeed the cut-off point for aggregation of TxtBc and a
proof of this latter fact can easily be be obtained by considering a collection of single
valued total languages derived from the corresponding function learning result of Smith

(Theorem 2(b)).

Theorem 4 (a) (Vm,n € Nt | m/n > 1/2)[Team] TxtBc = TxtBc]|

(b) TxtBc C Team,TxtBe.

We now consider aggregation for TxtFin-identification and TxtFex;-identification,
be NT U {*}.

3.2 Aggregation for Finite Identification of Languages

It turns out that aggregation for finite identification of languages is no different than
aggregation for limit identification of languages. Theorem 5(a) below shows that aggre-
gation for TxtFin-identification takes place at success ratios greater than 2/3. A proof
of this result can be obtained on the lines of a proof of Theorem 1(a). Part (b) of the
following result implies that 2/3 is indeed the cut-off point for aggregation of TxtFin-
identification; a proof follows by considering a collection of single valued total languages
derived from the proof of Theorem 1(b).

Theorem 5 (a) (Vm,n | m/n > 2/3)[Team, TxtFin = TxtFin]
(b) TxtFin C Team;TxtFin.



3.3 Aggregation for Vacillatory Identification of Languages

In the present section, we consider the problem of aggregation for vacillatory identification
of languages. We first introduce some technical machinery that simplifies the description
of our proofs.

Definition 13 Let k € N and T be a text.

(a) Let n € N. Match(k,T[n]) = max({m < n | content(T'[m]) C Wi, A Wi, C
content(7T'[n])}).

(b) Match(k,T) = lim,—., Match(k, T'[n]) if the limit exists; Match(k,T) = oo other-

wise.

Intuitively, Match(k, T'[n]), measures how much W) and T[n] agree with each other.
Match is employed in the process of determining if a given grammar & is for the language
content(7"). The following simple lemma summarizes the properties of Match; its proof
is straightforward.

Lemma 1 Let k € N and T be a text.
(a) If Wy = content(T'), then Match(k,T) = oc.
(b) If Wy, # content(T'), then Match(k,T) < oc.

The next definition introduces a function that keeps track of some finite number of
grammars output by a machine on the initial segment of a text.

Definition 14 Let b € Nt U {*}. Let M be a machine and T" be a text.

(a) Let n € N. LastGramy(M, T[n]) = {M(T'[m]) | card(M(T[m/]) | m < m/ <n) <
b}.
(b) LastGramy(M,T) = lim,,—. LastGramy(M, T'[n]) (LastGram,(M,T') is undefined

if the limit does not exist).

Intuitively, for b € N, LastGram,(M, T[n]) is the set of last b distinct grammars
output by M on initial segments of T'[n]. LastGram.(M, T[n]) is the set of all distinct
grammars output by M on initial segments of T'[n].

The next definition introduces a function that keeps track of the point in the initial
segments of text where a machine undergoes a mind change with respect to TxtFex;-
identification.

Definition 15 Let b € N1 U {*}, M be a machine and T be a text.

(a) Let n € N. LastMindChange,(M, T'[n]) = max({m < n | LastGramy(M, T'[m]) #
LastGramy(M, T[m + 1])}).



(b) LastMindChange,(M, T') = lim,,_.., LastMindChange,(M, T'[n]) if the limit exists;
LastMindChange, (M, T') = co otherwise.

So, LastMindChange, (M, T') computes the last point in the text T" where machine M
undergoes a mind change with respect to TxtFex;-identification.
Finally we define:

Definition 16 Let S be a nonempty finite subset of N and T a text. Let n € V.
BestGram(S, T[n]) = least ¢ € S such that Match(z, T'[n]) is maximized.

So, BestGram(S, T'[n]) finds the best candidate grammar for content(7') from the set of
grammars S based on the data available in T'[n]. The following lemma, whose proof is
straightforward, is a useful observation about the function BestGram.

Lemma 2 Let S be a nonempty finite subset of N and T a text. If there exists ant € S
such that W; = content(T'), then for all but finitely many n, BestGram(S,T[n]) is a
grammar for content(T').

We now present our results.

3.4 Aggregation for TxtFex,

Our first result for team aggregation in the context of vacillatory identification is for
TxtFex.-identification. Theorem 6(a) below says that team aggregation for TxtFex.-
identification takes place at success ratios greater than 1/2. Theorem 6(b) confirms that
1/2 is indeed the cut-off point for aggregation of TxtFex.-identification by implying
that there are collections of languages which can be TxtFex.-identified by a team em-
ploying 2 machines at least one of which is required to be successful, but cannot be
TxtFex,-identified by any single machine. It is interesting to observe that in matters
of aggregation, TxtFex,-identification behaves more like TxtBc-identification than like
TxtEx-identification.

Theorem 6 (a) (Vi,j € NT |i/j > 1/2)[Team;TxtFeX* = TxtFex.]
(b) TxtFex, C Team;TxtFex,.

PROOF. (a) Let ¢,5 be as given in the hypothesis of the theorem. Suppose a team
of j machines, My, My, ....M;, is given. We describe a machine M such that
Team!TxtFex,(M;,M,,...,M;) C TxtFex.(M).

Let S, be the lexicographically least subset of {1,2,...,7} of cardinality ¢ such that
max({LastMindChange,(My, T[n]) | k € S, }) is minimized.

M(T[n]) is defined as follows.
M(T'[n]) = BestGram(U,es, LastGram.(M;, T'[n]), T'[n]).

We claim that if L € Team;TxtFex.(M;,M,...,M;), then [ € TxtFex.(M).
To see this suppose T' is a text for L. Suppose S is the lexicographically least subset

10



of {1,2,...,j} of cardinality ¢ such that max({LastMindChange (My,T) | k € S}) is
minimized. Note that if £ € S, then My finitely converges on T'. Clearly, lim,,_., 5, = 5.
Also, since ¢ > j/2, there exists k € S, such that LastGram.(My, T') contains a grammar
for L.

Thus, M(T') finitely converges and, for large enough n, M(T'[n]) is a grammar for L.

(b) For team function learning, we know that Team)Ex — Ex # 0 [27]. Also, since
Fex = Ex [2, 8], we have Team;Fex — Fex # (). Let S € (Team;Fex — Fex). Now, it
is easy to verify that the collection of single valued total languages represented by each
function in S witnesses Team}TxtFex, — TxtFex, # (). We omit the details. |

3.5 Pseudo-Aggregation Results

The problem of finding aggregation ratios for TxtFex;,-identification when b # * turns
out to be far more difficult. The difficulty arises in requiring the aggregated machine to
also converge to up to b grammars. In the light of these difficulties, it is worth considering
cases where the bound on the number of converged grammars for the aggregated machine
is more than the bound allowed for the team. Such a relaxation on aggregation is referred
to as “pseudo-aggregation,” and such results are presented next.

It can be shown that Tearn:;TxtEX— TxtFex, # (), but Tearn:;TxtEX C TxtFexs;.
Hence, allowing more grammars in the limit can sometimes help achieve pseudo aggre-
gation. This result can be generalized to show the following.

Theorem 7 Leti € N7,
(a) Team,!] TxtEx — TxtFex; # 0.
(b) Teamj!! TxtEx C TxtFex;,;.
The next result generalizes Theorem 7.

Theorem 8 Leti,j € N*.
(a) Team,!] TxtFex; — TxtFex(iy1).j-1 # 0.
(b) Team;!] TxtFex; C TxtFex(1)..

PROOF. A proof similar to the one used to prove Theorem 6 (a) can be employed to
establish part (b). We give a proof of part (a). Consider the following collection of
languages:
L=A{Le&]

card({z | (0,z) € L}) = (¢ 4+ 1) .

card({x | (0,z) e L} AN Wo=L)e{l,(t+1)=*j}.

11



We first show that £ € Tearné;'ilTxtFer. We describe machines, My, ..., My 41
which Team)!, TxtFex;-identify £. Suppose T is a text for L € L. Let S, = {a |
(0,2) € content(T'[n])}. Let

k x, if card(S,) >k, and x € S, and card({y < x|y € S,.}) =k;

_ b
“n = {O, otherwise.

So, w* is the k-th element in S,,, if any.

For 1 <k <i+1,let My(T[n]) = BestGram({w* | (k—1)*j < k' < kx*j},T[n]). For
i+1 < k<241, let My (T'[n]) = BestGram({w* | 0 < &' < (i+1)*5},T[n]). It is easy to
see that, if card({z | (0,2) € L} A W, = L) = (¢ +1)#j, then each of My, Ms, ..., M,
TxtFex;-identify L. On the other hand, if card({x | (0,2) € L N W, = L}) =1, then
at least one of My, My, ..., M,y and each of M, 5, ..., My;1; TxtEx-identify L. Thus,
L € Team)! TxtFex;.

We now show that £ ¢ TxtFeX(i1).j—1. Suppose by way of contradiction that
machine M TxtFex(;;1).;—i-identifies £. We then show that there exists a language in
L that M fails to TxtFex(;;1).;j—1-identify. The description of this witness proceeds in
stages and uses the multiple recursion theorem. We first give an informal idea of the
construction.

We describe languages accepted by (7 + 1) * j grammars, ky, ko, ..., kgjp1).;. At each
Stage s, the construction makes use of initial sequence oy. By the use of (¢ + 1) * j-
ary recursion theorem, we initialize oo to contain elements (0, k1), (0, k2), ..., (0, kgip1)s))-
This step ensures that the languages accepted by these grammars will be members of L.
We then proceed in stages. At each Stage s, an attempt is made to find a sequence 7
extending o, such that M undergoes a mind change on 7 with respect to TxtFex(;1).;j—1-
identification. If such an attempt is successful at every stage then each of the grammars
K1y ka,y ... k(iy1)s; will be for the same language and this language will be a member of
L. But, M will fail to converge to a set of up to (¢ + 1) * j — 1 grammars on a text
for this language and hence M will not TxtFex(;11).;_i-identify this language. If on the
other hand, an attempt to find a mind change is unsuccessful at some stage then the
construction makes sure that each of the grammars ki, ks, ..., kiy1)«; are for pairwise
distinct languages in L. Not only are these languages pairwise distinct but they are also
infinitely different from each other. Now, since the machine M gets locked to a set of no
more than (¢4 1)*j — 1 grammars on some text for each of the (¢4 1) * j languages, the
machine M will fail to TxtFex(;;1).;_1-identify at least one of these languages. We now
proceed formally.

By the (2 + 1) * j-ary recursion theorem [4] there exist grammars ki, kg, ..., K(ip1)s
such that the languages Wy, may be described as follows.

Let 09 be a sequence such that content(og) = {(0,k) | 1 <1 < (04 1)*5}. Go to
Stage 0.

Begin {Stage s}
Enumerate content(o,) in Wy, 1 <1< (04 1)*73.

12



Dovetail steps 1 and 2 below until step 1 succeeds. If and when step 1 succeeds, go
to step 3.

1. Search for a 7 D o, such that content(r) — content(cs) C {(z,y) |1 < a} and
LastGramjj1y.;—1(M, 7) # Last Gram i41).j—1 (M, 0,).
2. Let y =0.
Go to Substage 0.
Begin {Substage s’}
Enumerate (I, y) in Wy, for 1 <1< (e +1) .
Let y =y + 1.
Go to Substage s" + 1.
End {Substage s’}
3. Let 0,41 2 7 be such that content(o,41) = COHteﬂt(T)UU1glg(i+1)
Go to Stage s + 1.

End {Stage s}

«i[Wh, enumerated till now]

We now consider the following cases.

Case I: All stages halt. In this case, let L = Wy, = Wy, = ... = Wy, € L. Clearly,
T = Usos 1s a text for L. However, M on T does not finitely converge to a set of
(¢4 1)*j —1 grammars.

Case 2: Some Stage s starts but does not finish. In this case, let L; = Wy, for 1 <[ <
(¢4 1)* 3. Now, clearly L; # Ly for I £ I')1 < 1,I" < (i + 1) 4. But on all texts, T,
extending o, for each L;, LastGram(i1).j—1(M,T') = LastGram1).;—1(M, ;). Since,
LastGram(it1)«j—1(M, ;) has only (i + 1) * j — 1 grammars, there exists a language in

{Li |1 <1< (e 41) %5}, which M does not TxtFex(;11).;_1-identify. |

3.6 Aggregation for TxtFex,

The results in the previous section do not say anything about aggregation in the context
of TxtFex;-identification, when b # *. The following result shows that aggregation
for TxtFex,-identification does not take place at success ratio 2/3 and aggregation for
TxtFexs-identification does not take place at success ratio 3/4.

Theorem 9 Leti € N*. TearnjHTxtFeXi — TxtFex; # 0.

PrOOF. We prove this result as a direct consequence of the following lemma.
Lemma 3 TxtFex;,; C Teamj+1TxtFeXi.

Before we give a proof of the lemma, we show how the lemma implies the the-
orem. Suppose by way of contradiction the theorem is not true. Hence, we have
Team; , TxtFex; C TxtFex;. This, together with the lemma, implies that TxtFex;

13



- Team§+1TxtFeXi C TxtFex;. But, this yields TxtFex; = TxtFex;;; — a contra-
diction.

We now give a proof of the lemma. Suppose M is given. We describe
M1, M,, ..., M4 such that TxtFex; (M) C Team!,, TxtFex;(Mi,...,M1).

Suppose T is a text for L € TxtFex,;;1(M). Let S, = LastGram;1(M,T[n]). Let
the elements of S, be w! < w? < ... < w@dS) For card(S,) < | < i+ 1, let
w! =1+ max(5,). For 1 <k <i+ 1, let Mg(T[n]) = BestGram(S, — {w}, T[n]).

Now since M on T' converges to a set of atmost ¢ + 1 grammars, lim,,_.. S, converges
to LastGram,;1(M,T), and thus for each k, 1 <k <+ 1, lim,—o wfb converges to say
wk,

Since LastGram; (M, T') contains a grammar for L, and since each w* are distinct,
we have

(a) LastGram, (M, T) C {w* | 1 <k <41},

(b) for each k, 1 <k < i+ 1, card(LastGram; (M, T) — {w*}) < ¢, and

(c) for at least i of k’s in {1,2,...,7+ 1}, (LastGram,; (M, T) — {w"}) contains a
grammar for L.

It follows that at least z of My, ..., M;;; TxtFex;-identity L. This proves the lemma
and the theorem. |

Theorem 9 is not optimal. We consider the special case of : = 2. We are able to show
that TxtFex, aggregation takes place for success ratios greater than 5/6 as implied by
Theorems 10 and 11 below. The proof of Theorem 10 requires the following crucial
technical lemma.

Lemma 4 Suppose r,w € N are given such that r > w > 2r/5. There exist recursive
functions Gy and Gy such that, (Yp1,p2,...,p)(VL)[card({¢ |1 <e <r A W,, =L}) >
w = WG1(p17~~~7pr) =LV WG2(p17~~~7pr) = L]

PROOF. We assume without loss of generality that w < r/2 (otherwise the lemma can
be easily proved by considering the grammar which enumerates elements enumerated by
majority of p1,...,p,).

Suppose pi,...,p, are given (we assume, without loss of generality, that they are
pairwise distinct). Below, we give a procedure to enumerate two languages Ly and Lo
(the procedure depends on py,...,p,). We will then argue that

(VD) [card({¢ |1 <e<r AN W, =L}) >2w=L=1L; V L=Ls

It will be easy to see that grammars for [; and Ly can be obtained effectively from
P1y. .., pr. This will prove the lemma.

The idea of the proof is that, in successive stages, we try to construct two disjoint
groups of grammars (from pq,...,p,) of size w each. These groupings are done with
a view to group “similar” grammars together (i.e., grammars that seem to be for the
same language). The groupings eventually become correct. Some care is needed in the
construction to guard against initial misgrouping of the grammars. We guarantee this
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with the help of a number of invariants that are satisfied by the construction at the end
of each stage. We now introduce a function that, in some sense, measures the similarity
between two grammars.

Definition 17 Let i, j € N. Let n € N. Similar(i,j,n) = max({n; < n | Wi, C
Win AWijn, © Win}).

So, Similar(z, j,n) denotes the point where it appears that the languages accepted by the
two grammars differ. Following properties of Similar can easily be verified.

(a) W, =W, = lim,_., Similar(z, j,n) = oo.
(b) W; # W, = lim,—, Similar(¢, j,n) < oc.

(c) Let P be a finite subset of N. Let n € N. If m = min({Similar(z, j,n) | ¢,7 € P})
then Urep[Wr.m] € Niep[Win].

We now describe the data structure employed by the construction. The languages 14
and Ly are enumerated in stages. We let L] and L§ denote Ly and L, enumerated before
Stage s, respectively. Also, el, €2, will be a permutation of 1,2 (this is used to make
a correct correspondence between the two groups of grammars and the two languages).
The two groups of grammars before the execution of Stage s are denoted by Pl and
P2,. P1; and P2, will be disjoint subsets of {1,...,r} of size w each.

The variables used in the construction are initialized as follows. Let ng = 0, mlg =
m2o = 0. Let elg = 1 and €25 = 2. Let Plg ={1,...,w} and P2y = {w+1,...,2w}.

The following invariants are maintained by the construction.

Invariants (assuming that Stage s is executed)

H1. L3, = Uiep1 [Woimi] € Niepr [Wain.]-

H2. 12, D Usepa Wy -

H3. Uieps. [Wpim2.] € Nicpa. [Wpin.]-

HA. L2, — Useps Wpnma ] € Ly .

H5. (Vo € L7, )[card({j € {1,2,...,r} = Pl |2 € W, . }) > w/2].
H6. ml,yy > ng > ml; > m2,.

Begin {Stage s}
1. Search for n > n, such that there exist a set P C {1,...,r} of cardinality w such
that, for all ¢, 7 € P, Similar(p;, p;,n) > ns.

2. If such an n is found, let ngyy = n.

3. Let Pl C {1,...,r} be
of cardinality w such that ml,; = min({Similar(p;, pj, nst1) | 1,7 € Plgp1}) is
maximized.
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4. if card(Plsyy N Ply) > card(Plsyq N P25), then let elgy = el and €2,y = €2,
else let el;1; = €2, and €2, = el;,.
endif

5. Let P2, C {l,...,r} — Plgq be of cardinality w such that m2 , =
min({Similar(p;, p;, nsy1) | 2,5 € P2, }) is maximized.

6. if [Plypn NP1, #0 A Pl NP2, # 0] Vv [L2,,, C Uiepar,, (Wi m2:,,]] then
let P2, = P2, and m2,4y = m2],.
elsif ¢2,,; = €2, then let P2, = P2,, m2,,, = m2,.
else let P2,y = Pl,;, m2,4, = ml,.
endif

7‘ Enumera‘te UiEP15+1 [Wpi7m15+1] m Lels-l-l N

Enumerate Uiepa_,, [Wpim2.4,] 0 Lea, -
Go to stage s + 1.

End {Stage s}

We now prove that each of the invariants, H1, ..., H6, are satisfied by the con-
struction. To begin with, it is easy to verify that H2, H3, H6 are satisfied. H2 follows
from the enumeration in Step 7 of the construction. H3 is an immediate consequence of
property (c) of Similar. And, H6 follows from the definitions of m1,, m2,, and ns.

We show that H1, H4, and H5 hold by induction. We assume that H1, ..., H6 hold
for s = t. We now show that they also hold for s = ¢4 1. In the sequel, we use Hi (s = u)
to denote invariant Hez, with s replaced by u. We consider two cases.

Case 1: Plyyy N Ply # 0 and Pl NP2, # 0.

We first show that Uiepi,,, [(Wpimign] 2 L, U Ly, From H1 (s = 1), we get
Uiert.[Wpimi:] € Niep1,[Wpin.]. Hence, for each k € Ply, L., € Wy, . Let k' €
(Pliyr N PLy) (such a k" exists since Plyyy NPl # 0). Clearly, L, € W, .. But
H6 (s = t) implies that ml,y > ny hence LY, C Wy, o, C Uieplt+1[Wpi7m1t+1]-
Now, we show that L, C Uiep1,,,[Wpimi]- By H4 (s = 1), it is sufficient to prove
that Uiepz, [Wpim2.] € Uiepty, (Waimiey,]- H3 (s = t) implies that Ueps,[Wpima.] €
Niep2,[Wpin: ). Hence, for each k € P2y, Useps, [Wpim2:) C Wy n,- Let K € Pl N P2,
(such a k" exists since Plyyy N P2y # 0). Clearly, Uicpo, [Woim2.] € Wi © Wo,mien
(since H6 (s = t) implies that m1,44 > n¢). Therefore, L., C Uieplt+1[Wpi7m1t+1].

We now prove H1 (s = t+41). Step 7 in the construction ensures Uepr,,, [Wpim1,4,] C
Li‘l"il (note that this is the only place where something is enumerated in Li‘l"il in Stage

t). Now, since el;yy is either el; or €2, and Uiepr,,, [W,
Uiept, Woimia] 2 Let),, - Thus, HI (s = ¢ + 1) holds.

elyyr

To see that H4 (s = t + 1) holds, it is sufficient to observe that LiFt —

€2¢41
Uiepao [Woim2i] © LYy, ULL,, C LI (by argument in the proof of H1 (s =1 + 1)).

62t — 61t+1

To show H5 (s = t+1), we first observe that the intersection of Plyyy and @ is at most
w/2, where Q = P2, if €2, = €211, ) = P1; otherwise. This observation together with

] 2 L, UL, , we have

iymleya el
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H3 (s =1),H4 (s = 1), and H5 (s = ) imply that the number of grammars in py, ps, ..., p,
which enumerate any element in L, is at least 3w/2. Thus, H5 (s = ¢+ 1) immediately

€2¢41
follows.

Case 2: Plyyy N Pl, =0 or Pl NP2 = 0.
In this case we show that H1 (s =t 4 1) holds. There are two subcases:
Subcase a: elyq = el;.
Since elyqq = ely, it is sufficient to show that L, € Uiepi,,, [Wpim1,,] (since step 7

in the construction guarantees that Ucpi,,, (Wpimig] © Li-ll_tl-l—l)' Now, H1 (s = 1)

implies that Ll C MNiepy,[Wp ). Hence, for each k € Pl,, L, C W,, .. Also, since

elt —_—

elyyq = ely, we have Pl,yy N Pl # 0. Let &' € Pl N Pl,. Clearly, Lilt S Wy C

ka/7m1t+1 g UiEPlt.H [Wpi7m1t+1]‘
Subcase b: el = 2.

t+1
elyyr

suppose by way of contradiction, (3x)[z € L, —Uiepi,,, [Wpim1,y]]. Clearly, @ € L

61t+1 e2¢”

But, H5 (s = t) implies that (Vo € L, )[card({j € {1,2,...,7} = Pl |z € W, . }) =

62t

w/2]. But since, Pl;yy NP1, = ), there exists at least one i € Pl,yy such that €
W, mi1,, — a contradiction. Hence, L;"il = UieP1i: (Woim1ip -

We leave details of the proof of H4 and H5. It should be noted that they immediately

hold if the first if in Step 6 in the construction succeeds; otherwise they can be shown

to hold using H1 (s =t), H3 (s =), H4 (s =), and H5 (s = 1).

We now show how the invariants imply the lemma.

Again, step T in the construction guarantees that Ueps,,, [Wpm1,4.] C L Now

Suppose there is exactly one language, L, which has at least w grammars in the set
{p1,...,p:}. In this case clearly, m1; is unbounded and by H1, at least one of L; and L
is the same as L (depending on whether el takes value 1 or 2 infinitely often).

Suppose there are two distinct languages L and L’ which have at least w grammars
in the set {p1,...,p,}. It is easy to see that both ml, and m2, are unbounded and, for
all but finitely many s, [Pl N Ply, =0 vV Plgy N P2, = (]. It now follows using HI,
H3, and H5 that both L; and Ly belong to {L, L'} and are distinct.

Thus, (VL)[card({¢ |1 <i<r AN W, =L})>w=L=1L; V L=Ly. |

Theorem 10 (Vm,n | m/n > 5/6)[Team; TxtFex, = TxtFex,]

PRrROOF. This proof uses Lemma 4 presented above which shows that there exist recursive
functions Gy and Gy, such that for any set S of r grammars, (VL | card({1 € S | W, =
L}) > 2T/5)[WG1(S) =LV WG2(S) = L].

Let m,n be as described in the hypothesis of the theorem. Suppose a team of n
machines, M1, My, ..., M,,, are given. We describe a machine M that TxtFex,-identifies
any language which is Team TxtFex;-identified by the team consisting of machines
M;,M,,...,M,,.

Suppose the team consisting of machines My, My, ... M, Team TxtFex,-identifies
L. Let T' be any text for L. Without loss of generality, we assume that for 1 < j; < jo <
n, LastGramy(M;,,T) and LastGramy(M;,,T) (if defined) are disjoint (this can easily

J20
be ensured by padding). This assumption is only for the ease of presentation of the proof.
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For [ € N, let S; denote the lexicographically least subset of {1,...,n} of cardinality m
such that max({LastMindChange,(M;, T[l]) | 7 € Si}) is minimized. Note that lim;_.. .S
exists (since the team consisting of machines My, ..., M, Team TxtFex,-identifies ).
Let S == liml_m Sl.

For [ € N, let X; = ;g [LastGram,(M;, T'[l])]. Since, for each j € 5, M; converges
on T to a set of at most 2 grammars, lim;_ ., X; exists — let this limit be X. Moreover,
card(X) < 2m and at least m — (n —m) of the grammars in X are grammars for L (since
the team consisting of machines My, ..., M, Team] TxtFex,-identifies L). Thus, at
least (2m —n)/2m (which is greater than 2/5) fraction of grammars in X are for L. This,
together with Lemma 4, implies that at least one of G4 (X) and G3(X) is a grammar for
L.

Now we describe the behavior of our machine M. For n € N, M(T[n]) =
BestGram({G1(X,,), G2(X,,)}, Tn]). It is easy to see from the analysis on X above
and the property of function BestGram (Lemma 2) that M TxtFexy-identifies L. [

Theorem 11 Team TxtFex, — TxtFex, # (.

ProoF. Consider the following class of languages.
L={L|card({w <5 | (o < 1)[card({(2w,y) |y € N} NL) < oo A card({(2w +

Ly) [y e N3N L) <oo A Wax(@ul{2utea)veninry) = L1}) = 5}

We now show that £ € Team;TxtFex,. Consider a team of 6 machines
My, My, ..., M;5 such that machine M;, 0 < ¢ < 5, behaves as follows on any text
T.

Begin {M;(T'[n])}
if {y | (2¢,y) € content(T'[n])} # 0
then
let my = max({y | (2¢,y) € content(T'[n])})
else let m; = 0.
endif
if {y| (20 +1,y) € content(T'[n])} # 0
then
let my = max({y | (2¢ + 1,y) € content(T'[n])})
else let my = 0.
endif
Output BestGram(my, mq, T'[n]).

End {M;(T'[n])}

It is easy to verify that the team consisting of machines, Mgy, My, ..., Ms,
Team;TxtFex,-identifies L.
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We now show that £ € TxtFex,. Suppose by way of contradiction that M TxtFex,-
identifies £. We then show that there exists a language in £ that M fails to TxtFex,-
identify. The description of this witness proceeds in stages and uses the operator recursion
theorem [4]. The construction is somewhat on the lines of the diagonalization argument
presented in our proof of Theorem 8 (a). We give an informal description of the idea
first.

At each Stage s, the construction makes use of initial sequence o;. By the use of the
operator recursion theorem, we initialize og to “agree” with languages in £. We then
proceed in stages. At each Stage s, an attempt is made to find a sequence 7 extending
os such that M undergoes a mind change on 7 with respect to TxtFexs-identification.
If such an attempt is successful at every stage then the construction yields a language in
L for which U,en 05 1s a text and on this text M does not converge to up to 2 grammars.
If on the other hand, an attempt to find a mind change is unsuccessful at some Stage
s then the machine M has essentially locked itself to a set of up to two grammars on
all suitable extensions of ;. The construction then describes a number of languages in
L which diagonalize against the grammars on which M has become locked. We now
proceed formally.

By the operator recursion theorem, there exists a 1-1, recursive, increasing function
p, such that the languages W,;) can be described as follows.

Enumerate (7, p(7)) in W), for : <9 and j <9. Let W) denote W) enumerated
before stage s. Let Lasty(o) = LastGramy(M, o). (For ease of construction we assume
without loss of generality that Lasty(o) is always of cardinality 2). Let og be such that
content(og) = {(7,p(7)) | 7 < 9}. Go to stage 0.

Stage s

Dovetail steps 1 and 2 until, if ever, step 1 succeeds. If and when step 1 succeeds, go
to step 3.

1. Search for an extension 7 of o, such that content(r)— content(o,) C {(x,y) | * > 9},

such that Lasty(7) # Lasts (o).
2. Let my = 1 4+ max({z | (Jy)[(z,y) € W) enumerated till now |}).

Let vy = 1 + max({y | (3= < 11)[(z, p(y)) € W) enumerated till now]}).

2.1. Enumerate (10, p(r1)) in W).
Enumerate W) enumerated till now in Wiy, 2 < 9 and W1y, Woir 41y, Wor 42)-
Enumerate (my,0) in W), W2y, Wpa), Wiie) and Wy,.).
Search for a ¢ € Lasty (o), such that W, enumerates (mq,0).
It and when the search succeeds, go to step 2.2.

2.2, Enumerate (10, p(ry + 1)) in Wiy, ¢ <9 and Wi, 41y, Wi, 42)-
Enumerate (mq + 1,0) in Wys), Wyis), W), Wy, Wae41)-
Search for ¢’ € Lasty(os) — {¢q}, such that W, enumerates (mq + 1,0).
It and when the search succeeds, go to step 2.3.

2.3. Enumerate (m1,0) and (my + 1,0) in Wyo), W2y, Wiiry, Wiy, Wgr,11)-
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Search for a ¢” € Lasty(oy), such that both (mq,0) and (mq + 1,0) are enumer-
ated in W.

It and when the search succeeds go to step 2.4.

2.4. Let x € {my,mq + 1} be such that all grammars in Lasty(o,) enumerate (x,0).

Let 2’ be the only element in {my,m; + 1} — {x}.

Enumerate (10, p(ry +2)) in Wy, ¢ <9 and Wi, 4a).

Enumerate (z',0) in W), Wys) and Wy,q1).

Note that, if the search in step 1 does not succeed, then either W) and W
or Wysy and W5y are the same as W,(q).

3. Let S = content(7) U U,;<o[W,(i) enumerated till now].
Enumerate S in Wy, i_§ 9.
Let 0541 be an extension of 7 such that content(os41) = 5.
Go to stage s + 1.

End stage s

Now consider the following cases.
Case 1: All stages halt.

In this case let L = W ). It is easy to see that L € £. However, M on |, o5, a text
for L, does not converge to at most 2 grammars.
Case 2: Stage s starts but does not halt.

If the search in step 2.1 does not succeed, then let L = Wy. If the search in step
2.1 succeeds, but the search in step 2.2 fails, then let [ = Wys). If the search in step
2.1 and 2.2 succeed, but the search in step 2.3 fails, then let L = W). If the search in
step 2.1, 2.2 and 2.3 succeed, then let L = W,1). It is easy to see that in all these three
cases, L € L and L ¢ {W, | ¢ € Lasty(o,)}. Thus we have that £ Z TxtFex,(M).

Thus we have that £ ¢ TxtFex;. |

3.7 Aggregation for Language Identification from Informants

Results presented in the previous section were for language learning criteria in which
learning takes place from positive data only. In the present section, we record similar
results for learning criteria in which learning takes place from both positive and negative
data. It should be noted that the proof techniques for language learning from informants
and function learning from graphs are very similar, although identification of recursively
enumerable languages from informants differs from identification of recursive functions
because a learning machine is required to converge to a total program in identifying
recursive functions whereas a machine identifying recursively enumerable languages from
informants converges to grammars (which are semi-decision procedures).

Identification from texts is an abstraction of learning from positive data. Similarly,
learning from both positive and negative data can be abstracted as identification from
informants. The notion of informants, defined below, was first considered by Gold [13].
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Definition 18 A text [ is called an informant for a language L just in case content([/) =

{z, 1) |z € Ly U{(z,0) [z & L}.
The next definition formalizes identification in the limit from informants.

Definition 19 (a) M InfEx-identifies L (read: L € InfEx(M)) <= (V informants
I for L)(3i | W; = L)(V n)[M(I[n]) = i.

(b) InfEx = {£ C £ | (3M)[£ C InfEx(M)]}.

We leave it to the reader to similarly define InfFin, InfBc, and for each b € N U {*},
InfFex;. Also, for m,n € N* and for each I € {InfFin, InfEx, InfFex;, InfBc}, we
can define Team 'I-identification. We now present aggregation results for these new
criteria.

For finite identification from informants, team aggregation takes place at success
ratios greater than 2/3 as implied by the following results. This is not unexpected given
results about finite function identification and finite language identification from texts.

Theorem 12  (a) Suppose m,n are such that m/n > 2/3. Then Team, InfFin =
InfFin.

(b) InfFin C Team;InfFin.

PROOF. Part (b) can be obtained as a corollary to the corresponding function learning
result. For part (a), suppose My, My, ..., M, and an informant T" are given. Let sy be
the least number if any such that there exists a set S C {1,...,n} of cardinality m, such
that, for each 7 € S, M;(T[sr]) #L. Then M(T[s]) =L for s < s, and, for s > sp,
M(T'[s]) = ¢, where ¢ is such that W; = {z | card({j € S| * € W, (15,7 }) = 2m—n}. It
is easy to verify that M InfFin-identifies any language that is Team, InfFin-identified
by My, M,,...,M,. |

For identification in the limit, however, aggregation turns out to be different for
informants and texts. In fact language identification from informants behaves very much
like function learning, as aggregation for InfEx takes place at success ratios greater than
1/2. Aggregation for InfBc also takes place at success ratios greater than 1/2. These
observations are summarized in the following result.

Theorem 13 Let I € {InfEx, InfBc}.
(a) (Ym,n|m/n>1/2)[Team]'I=1].
(b) T C Team,l.

PROOF. Part (b) can be proved using the language learning analog of the proof used to
show I C TeamjI for I € {Ex,Bc}. For part (a) suppose m > n/2. Team”InfEx C
InfEx can be obtained as a corollary to Theorem 14 below (since, for m > n/2,
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Team' InfEx C InfFex,,). Essentially the proof of Team! TxtBc C TxtBc can also
be used to show that Team ' InfBe C InfBec. |
Theorem 14 can be proved using techniques similar to that used by Case and Smith

to show that Fex = Ex [8].
Theorem 14 (Vb€ N U {*})[InfFex, = InfEx].

Hence, Theorem 13 holds for vacillatory identification from informants, too.

4 Conclusion

Clearly, aggregation issues for for TxtFex;, where b # x A b > 2, are open. Only partial
results can be shown at this stage, as the combinatorial complexity of the simulation
arguments become difficult to handle. We summarize the state of art about aggregation
in the following table; the symbol ‘7’ denotes open questions.

Type of Finate || Limat Vacillatory Behaviorally
Identification 2 ‘ 3 ‘ e ‘ * Correct
Function (Graph) > 2 > s> 10sd > 1
Language (Teat) > 2 >2 >3] 7 71 >1
Language (Informant) | > 2 >L>1i>1>11>1 > 1
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