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Abstract�

The present paper studies the problem of when a team of learning machines can
be aggregated into a single learning machine without any loss in learning power� The
main results concern aggregation ratios for vacillatory identi�cation of languages from
texts� For a positive integer n� a machine is said to TxtFexn�identify a language L just
in case the machine converges to up to n grammars for L on any text for L� For such
identi�cation criteria� the aggregation ratio is derived for the n � � case� It is shown that
the collection of languages that can be TxtFex� identi�ed by teams with success ratio
greater than ��� are the same as those collections of languages that can be TxtFex��
identi�ed by a single machine� It is also established that ��� is indeed the cut�o� point
by showing that there are collections of languages that can be TxtFex��identi�ed by a
team employing � machines� at least � of which are required to be successful� but cannot
be TxtFex��identi�ed by any single machine� Additionally� aggregation ratios are also
derived for �nite identi�cation of languages from positive data and for numerous criteria
involving language learning from both positive and negative data�

�A preliminary version of this paper was presented at the Fourth International Workshop on Algo�

rithmic Learning Theory � Tokyo� November �����



� Introduction

The present paper investigates the problem of aggregating a team of learning machines
into a single learning machine� In other words� we are interested in �nding when a team
of learning machines can be replaced by a single machine without any loss in learning
power�
A team of learning machines is essentially a multiset of learning machines� A team is

said to successfully learn a concept just in case each member of some nonempty subset
of the team learns the concept� If the size of a team is n and if at least m machines
in the team are required to be successful for the team to be successful� then the ratio
m�n is referred to as the success ratio of the team� The present paper addresses the
problem� 	For what success ratios can a team be replaced by a single machine without
any loss in learning power
� The answer to this question depends on the kind of concepts
being learned and the the type of success criteria employed� For the problem of learning
recursive functions from graphs� the answer is known for the three popularly investigated
criteria of success� namely� Fin ��nite identi�cation� Ex �identi�cation in the limit and
Bc �behaviorally correct identi�cation� For Ex and Bc� Pitt and Smith ���� showed that
a team can be aggregated into a single machine if the success ratio of the team is greater
than ���� For �nite function identi�cation� Fin� it was reported in ���� that a team can
be aggregated if the success ratio of the team is greater than ��� �this result can also be
argued from a result of Freivalds ���� about probabilistic �nite function identi�cation�
The present paper describes aggregation results about language identi�cation from

positive data� The main results are in the context of vacillatory identi�cation� To
facilitate discussion of these results� we informally present some preliminaries from theory
of language learning next�
Languages are sets of sentences and a sentence is a �nite object� the set of all possible

sentences can be coded into N � the set of natural numbers� Hence� languages may
be construed as subsets of N � A grammar for a language is a set of rules that accepts
�or equivalently� generates ���� the language� Essentially� any computer program may
be viewed as a grammar� Languages for which a grammar exists are called recursively
enumerable�
A text for a language L is any in�nite sequence that lists all and only the elements of

L� repetitions are permitted� A learning machine is an algorithmic device that outputs
grammars on �nite initial sequences of texts� Two well studied criteria for a machine
to successfully learn a language are identi�cation in the limit and behaviorally correct
identi�cation� We next give an informal de�nition of these criteria�
A learning machine M is said to TxtEx identify a language L just in case M� fed

any text for L� converges to a correct grammar for L� This is essentially the seminal
notion of identi�cation in the limit introduced by Gold ���� �see also Case and Lynes ���
and Osherson and Weinstein �����
A learning machineM is said to TxtBc�identify L just in case M� fed any text for

L� outputs an in�nite sequence of grammars such that after a �nite number of incorrect
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guesses� M outputs only grammars for L� This criterion was �rst studied by Case and
Lynes ��� and Osherson and Weinstein ����� and is also referred to as 	extensional�
identi�cation�
Osherson� Stob� and Weinstein ���� �rst observed that for TxtEx�identi�cation� a

team can be aggregated if its success ratio is greater than ���� Hence� in matters of
aggregation� identi�cation in the limit of languages from positive data turns out to be
similar to �nite function identi�cation� On the other hand� for TxtBc�identi�cation� a
result from Pitt ���� can easily be used to show that a team can be aggregated if its
success ratio is greater than ���� Thus� TxtEx and TxtBc exhibit di�erent behavior
with respect to aggregation�
We now present two more criteria of successful language learning� namely� �nite iden�

ti�cation and vacillatory identi�cation�
A machine M is said to TxtFin�identify a language L just in case M� fed any text

for L� outputs only one grammar and that grammar is for L��

We show that for TxtFin�identi�cation� a team can be aggregated only if its success
ratio is greater than ���� Thus� TxtFin�identi�cation shows similar behavior as TxtEx�
identi�cation and �nite function identi�cation so far as aggregation is concerned�
We next consider vacillatory identi�cation of languages from texts in which a machine

is required to converge to a �nite set of grammars� This notion was studied by Osherson
and Weinstein ���� and by Case ���� It should be noted that in the context of function
learning� vacillatory identi�cation turns out to be the same as identi�cation in the limit�
This was �rst shown by Barzdin and Podnieks ��� �see also Case and Smith ����
Let n be a positive integer� A learning machine M is said to TxtFexn�identify a

language L just in case M� fed any text for L� converges in the limit to a �nite set� with
cardinality � n� of grammars for L� In other words� for any text T for L� there exists a
set D of grammars of L� cardinality of D � n� such thatM� fed T � outputs� after a �nite
number of incorrect guesses� only grammars from D�
If the upper bound n in TxtFexn�identi�cation is not speci�ed and the only require�

ment is that the machine converge to some �nite set of grammars for the language� then
the criteria is referred to as TxtFex��identi�cation�
We show that for TxtFex��identi�cation� a team can be aggregated if its success ratio

is greater than ���� It is interesting to note that in matters of aggregation TxtFex��
identi�cation behaves more like TxtBc�identi�cation than like TxtEx�identi�cation�
The problem of aggregation for TxtFexn� however� turns out to be more di�cult� We
are able to answer this question for the n � � case� by showing that for TxtFex��
identi�cation� a team can be aggregated only if its success ratio is greater than ����
We establish this by showing that the collections of languages that can be TxtFex��
identi�ed by teams with success ratios greater than ��� are exactly the same as those

�More formally� we will require the machine to output a symbol � �denoting �no conjecture yet�� on
an initial segment of the text and then it will be required to output a correct grammar for the remainder
of the text� This is only for technical convenience as it makes the learning machine total and simpli	es
the proofs�
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collections of languages that can be TxtFex��identi�ed by a single machine� Our proof
of this result involves a fairly complicated simulation argument� We also establish that
��� is indeed the cut�o� point for TxtFex� aggregation by employing a diagonalization
argument to show that there are collections of languages that can be TxtFex��identi�ed
by a team of � machines� at least � of which are required to be successful� but cannot be
TxtFex��identi�ed by any single machine�
The problem of aggregation becomes somewhat more manageable if we are prepared

to allow the aggregated machine to converge to extra number of grammars� In fact we
are able to show that aggregation can be achieved at success ratios just above ��� if the
aggregated machine is allowed to converge to extra number of grammars� For example�
for any positive integer i� all the collections of languages that can be TxtEx�identi�ed
by teams of �i � � machines� at least i � � of which are required to be successful� can
also be TxtFexi���identi�ed by a single machine� More generally� using a fairly straight
simulation argument� it can be shown that all the collections of languages that can be
TxtFexj�identi�ed by teams of �i � � machines� at least i � � of which are required to
be successful� can also be TxtFex�i����j�identi�ed by a single machine�
In Section ���� we show that aggregation issues in the context of language identi�ca�

tion from both positive and negative data follow a pattern similar to function learning�
We now proceed formally� Section � records the notation and describes preliminary

notions and de�nitions from inductive inference literature� Our results are presented in
Section ��

� Preliminaries

��� Notation

Any unexplained recursion theoretic notation is from ����� The symbol N denotes the set
of natural numbers� f�� �� �� �� � � �g� The symbol N� denotes the set of positive natural
numbers� f�� �� �� � � �g� Unless otherwise speci�ed� i� j� k� l� m� n� q� r� s� t� x� y� with
or without decorations�� range over N � Symbols �� �� �� �� and � denote empty
set� subset� proper subset� superset� and proper superset� respectively� Symbols A and
S� with or without decorations� range over sets� D� P� Q� and X� with or without
decorations� range over �nite sets� Cardinality of a set S is denoted by card�S� We
say that card�A � � to mean that card�A is �nite� Intuitively� the symbol� �� denotes
��nite without any prespeci�ed bound�� a and b� with or without decorations� range
over N � f�g� The maximum and minimum of a set are denoted by max���min���
respectively� where max�� � � and min�� �	�
Letters f� g� h and G� with or without decorations� range over total functions with

arguments and values from N � Symbol R denotes the set of all total computable func�
tions� C and S� with or without decorations� range over subsets of R� A pair hi� ji stands
for an arbitrary� computable� one�to�one encoding of all pairs of natural numbers onto N

�Decorations are subscripts� superscripts and the like�
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����� Similarly� we can de�ne h�� � � � � �i for encoding multiple tuples of natural numbers
onto N � By � we denote a �xed acceptable programming system for the partial com�
putable functions� N 
 N ���� ��� ���� By �i we denote the partial computable function
computed by program i in the ��system� The letter� p� in some contexts� with or with�
out decorations� ranges over programs� in other contexts p ranges over total functions
with its range being construed as programs� By � we denote an arbitrary �xed Blum
complexity measure ��� ��� for the ��system� By Wi we denote domain��i� Wi is� then�
the r�e� set�language �� N accepted �or equivalently� generated by the ��program i�
Symbol E will denote the set of all r�e� languages� Symbol L� with or without decora�
tions� ranges over E� Symbol L� with or without decorations� ranges over subsets of E�

We denote by Wi�s the set fx � s j �i�x � sg� The quanti�ers �
�

�� and �
�

�� mean �for all
but �nitely many� and �there exist in�nitely many�� respectively�

��� Learning Machines

We �rst consider function learning machines�
We assume� without loss of generality� that the graph of a function is fed to a machine

in canonical order� For f  R and n  N � we let f �n� denote the �nite initial segment
f�x� f�x j x � ng� Clearly� f ��� denotes the empty segment� SEG denotes the set of all
�nite initial segments� ff �n� j f  R � n  Ng�

De�nition � ���� A function learning machine is an algorithmic device which computes
a mapping from SEG into N �

We now consider language learning machines� A sequence � is a mapping from an
initial segment of N into �N � f g� The content of a sequence �� denoted content���
is the set of natural numbers in the range of �� The length of �� denoted by j�j� is the
number of elements in �� For n � j�j� the initial sequence of � of length n is denoted
by ��n�� Intuitively�  �s represent pauses in the presentation of data� We let �� � � and
�� with or without decorations� range over �nite sequences� SEQ denotes the set of all
�nite sequences�

De�nition � A language learning machine is an algorithmic device which computes a
mapping from SEQ into N �

The set of all �nite initial segments� SEG� can be coded onto N � Also� the set of
all �nite sequences of natural numbers and  �s� SEQ� can be coded onto N � Thus� in
both De�nitions � and �� we can view these machines as taking natural numbers as input
and emitting natural numbers as output� Henceforth� we will refer to both function�
learning machines and language�learning machines as just learning machines� or simply
as machines� We let M� with or without decorations� range over learning machines�
It should be noted that for all the identi�cation criteria discussed in this paper� we

are assuming� without loss of generality� that the learning machines are total�
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��� Criteria of Learning

Finite Function Identification

For �nite function identi�cation only� we assume our learning machines to compute a
mapping from SEG into N � f�g� The output of machineM on evidential state � will
be denoted by M��� where �M�� ��� denotes that M does not issue any hypothesis
on ��

De�nition � M Fin�identi�es f �read� f  Fin�M �� ��i j �i � f ��n����n �
n��M�f �n� � i� � ��n � n��M�f �n� ����� We de�ne the class Fin � fS � R j
��M�S � Fin�M�g�

Function Identification in the Limit

De�nition � ���� M Ex�identi�es f �read� f  Ex�M �� ��i j �i � f �
�

�
n�M�f �n� � i�� We de�ne the class Ex � fS � R j ��M�S � Ex�M�g�

Behaviorally Correct Function Identification

De�nition � ��� M Bc�identi�es f �read� f  Bc�M �� �
�

� n��M�f �n�� � f �� We
de�ne the class Bc � fS � R j ��M�S � Bc�M�g�

The following proposition summarizes the relationship between the various function
learning criteria�

Proposition � ��� �� Fin � Ex � Bc�

��� Language Learning

A text T for a language L is a mapping from N into �N � f g such that L is the set
of natural numbers in the range of T � The content of a text T � denoted content�T � is
the set of natural numbers in the range of T � T �n� denotes the �nite initial sequence of
T with length n�
Finite Language Identification

Again as in the case of �nite function identi�cation� we assume our learning machines
to compute a mapping from SEQ into N � f�g� This assumption is for this de�nition
only�

De�nition � M TxtFin�identi�es L �read� L  TxtFin�M �� �� texts T for L
��i j Wi � L ��n����n � n��M�T �n� � i� � ��n � n��M�T �n� ����� We de�ne the
class TxtFin � fL � E j ��M�L � TxtFin�M�g�
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��� Language Identi�cation in the Limit

De�nition � ���� M TxtEx�identi�es L �read� L  TxtEx�M �� �� texts T for

L ��i jWi � L �
�

� n�M�T �n� � i�� We de�ne the class TxtEx � fL � E j ��M�L �
TxtEx�M�g�

Behaviorally Correct Language Identification

De�nition � ���� �� M TxtBc�identi�es L �read� L  TxtBc�M �� �� texts

T for L �
�

� n�WM�T �n�� � L�� We de�ne the class TxtBc � fL � E j ��M�L �
TxtBc�M�g�

Vacillatory Language Identification

We now introduce the notion of a learning machine �nitely converging on a text ����
LetM be a learning machine and T be a text� M�T  �nitely�converges �written� M�T �
�� fM�� j � � Tg is �nite� otherwise we say that M�T  �nitely�diverges �written�

M�T �� If M�T �� then M�T  is de�ned � fi j �
�

� � � T �M�� � i�g�

De�nition 	 ���� �� Let b  N� � f�g� M TxtFexb�identi�es L �read� L 
TxtFexb�M �� �� texts T for L��P j card�P  � b � ��i  P �Wi � L��M�T ��
M�T  � P �� We de�ne the class TxtFexb � fL � E j ��M�L � TxtFexb�M�g�

The following proposition summarizes the relationship between the various language
learning criteria�

Proposition � ���� �� �� TxtFin � TxtEx � TxtFex� � TxtFex� � � � � �
TxtFex� � TxtBc�

��� Team Learning

A team of learning machines is essentially a multiset of learning machines� De�nition ��
introduces team learning of functions and De�nition �� introduces team learning of lan�
guages�

De�nition �
 ���� ��� Let I  fFin�Ex�Bcg and let m�n  N��

�a A team of n machines� M��M�� � � � �Mn� is said to Teamm
n I�identify f �writ�

ten� f  Teamm
n I�M��M�� � � � �Mn just in case there exist m distinct numbers

i�� i�� � � � � im� � � i� � i� � � � � � im � n� such that each of Mi� �Mi�� � � � �Mim

I�identi�es f �

�b Teamm
n I � fS � R j ��M���M�� � � � ��Mn�S � Teamm

n I�M��M�� � � � �Mn�g�

De�nition �� Let b  N� � f�g� Let I  fTxtFin�TxtEx�TxtFexb�TxtBcg� Let
m�n  N��
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�a A team of n machines fM��M�� � � � �Mng is said to Team
m
n I�identify L �writ�

ten� L  Teamm
n I�M��M�� � � � �Mn just in case there exist m distinct numbers

i�� i�� � � � � im� � � i� � i� � � � � � im � n� such that each of Mi� �Mi�� � � � �Mim

I�identi�es L�

�b Teamm
n I � fL � E j ��M���M�� � � � ��Mn�L � Teamm

n I�M��M�� � � � �Mn�g�

For Teamm
n I�identi�cation criteria� we refer to the fraction m�n as the success ratio

of the criteria�

De�nition �� A reduced fraction m�n is referred to as the aggregation ratio for the
success criteria I�identi�cation just in case

�a ��i� j  N� j i�j � m�n�Teami
jI � I�� and

�b I � Teamm
n I�

In the following� for i � j� we take Teami
jI � f�g�

� Results

��� Previously Known Results

Aggregation results are known for all the function learning criteria de�ned in the previous
section� For �nite function identi�cation� aggregation takes place at success ratios greater
than ���� This result� Theorem ��a below� appeared in ���� and can also easily be
argued from a related result of Freivalds ���� about probabilistic �nite identi�cation�
Theorem ��b shows that ��� is the cut�o� point for aggregation of Fin�identi�cation�
a diagonalization argument using the operator recursion theorem ��� su�ces to establish
this latter result�

Theorem � ���� ���

�a� ��m�n  N� j m�n � ����Teamm
n Fin � Fin��

�b� Fin � Team�
�Fin�

Pitt and Smith ���� settled the question for function identi�cation in the limit and
behaviorally correct function identi�cation by showing the following Theorem ��a which
implies that for both these criteria aggregation takes place at success ratios greater than
���� Theorem ��b� due to Smith ����� shows that ��� is indeed the cut�o� point�

Theorem � Let I  fEx�Bcg�

�a� ��m�n  N� j m�n � ����Teamm
n I � I�
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�b� I � Team�
�I�

For language learning� the result is known for TxtEx�identi�cation and TxtBc�
identi�cation� It was shown by Osherson� Stob� and Weinstein ���� that aggregation for
TxtEx takes place at success ratios greater than ���� and ��� is also the cut�o� point
for aggregation of TxtEx�identi�cation �see also ���� ��� ��� for extension of this result
to anomalies in the �nal grammar�

Theorem � �a� ��m�n  N� j m�n � ����Teamm
n TxtEx � TxtEx�

�b� TxtEx � Team�
�TxtEx�

Using a result from Pitt ����� it can be shown that aggregation for TxtBc takes
place at success ratios greater than ���� This is Theorem ��a below� Part �b of
Theorem � implies that ��� is indeed the cut�o� point for aggregation of TxtBc and a
proof of this latter fact can easily be be obtained by considering a collection of single
valued total languages derived from the corresponding function learning result of Smith
�Theorem ��b�

Theorem � �a� ��m�n  N� j m�n � ����Teamm
n TxtBc � TxtBc�

�b� TxtBc � Team�
�TxtBc�

We now consider aggregation for TxtFin�identi�cation and TxtFexb�identi�cation�
b  N� � f�g�

��� Aggregation for Finite Identi�cation of Languages

It turns out that aggregation for �nite identi�cation of languages is no di�erent than
aggregation for limit identi�cation of languages� Theorem ��a below shows that aggre�
gation for TxtFin�identi�cation takes place at success ratios greater than ���� A proof
of this result can be obtained on the lines of a proof of Theorem ��a� Part �b of the
following result implies that ��� is indeed the cut�o� point for aggregation of TxtFin�
identi�cation� a proof follows by considering a collection of single valued total languages
derived from the proof of Theorem ��b�

Theorem � �a� ��m�n j m�n � ����Teamm
n TxtFin � TxtFin�

�b� TxtFin � Team�
�TxtFin�
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��� Aggregation for Vacillatory Identi�cation of Languages

In the present section� we consider the problem of aggregation for vacillatory identi�cation
of languages� We �rst introduce some technical machinery that simpli�es the description
of our proofs�

De�nition �� Let k  N and T be a text�

�a Let n  N � Match�k� T �n� � max�fm � n j content�T �m� � Wk�n � Wk�m �
content�T �n�g�

�b Match�k� T  � limn��Match�k� T �n� if the limit exists� Match�k� T  � � other�
wise�

Intuitively� Match�k� T �n�� measures how much Wk and T �n� agree with each other�
Match is employed in the process of determining if a given grammar k is for the language
content�T � The following simple lemma summarizes the properties of Match� its proof
is straightforward�

Lemma � Let k  N and T be a text�

�a� If Wk � content�T � then Match�k� T  ���

�b� If Wk �� content�T � then Match�k� T  ���

The next de�nition introduces a function that keeps track of some �nite number of
grammars output by a machine on the initial segment of a text�

De�nition �� Let b  N� � f�g� Let M be a machine and T be a text�

�a Let n  N � LastGramb�M� T �n� � fM�T �m� j card�M�T �m�� j m � m� � n �
bg�

�b LastGramb�M� T  � limn�� LastGramb�M� T �n� �LastGramb�M� T  is unde�ned
if the limit does not exist�

Intuitively� for b  N � LastGramb�M� T �n� is the set of last b distinct grammars
output by M on initial segments of T �n�� LastGram��M� T �n� is the set of all distinct
grammars output by M on initial segments of T �n��
The next de�nition introduces a function that keeps track of the point in the initial

segments of text where a machine undergoes a mind change with respect to TxtFexb�
identi�cation�

De�nition �� Let b  N� � f�g� M be a machine and T be a text�

�a Let n  N � LastMindChangeb�M� T �n� � max�fm � n j LastGramb�M� T �m� ��
LastGramb�M� T �m� ��g�
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�b LastMindChangeb�M� T  � limn�� LastMindChangeb�M� T �n� if the limit exists�
LastMindChangeb�M� T  �� otherwise�

So� LastMindChangeb�M� T  computes the last point in the text T where machine M
undergoes a mind change with respect to TxtFexb�identi�cation�
Finally we de�ne�

De�nition �� Let S be a nonempty �nite subset of N and T a text� Let n  N �
BestGram�S� T �n� � least i  S such that Match�i� T �n� is maximized�

So� BestGram�S� T �n� �nds the best candidate grammar for content�T  from the set of
grammars S based on the data available in T �n�� The following lemma� whose proof is
straightforward� is a useful observation about the function BestGram�

Lemma � Let S be a nonempty �nite subset of N and T a text� If there exists an i  S
such that Wi � content�T � then for all but �nitely many n� BestGram�S� T �n� is a
grammar for content�T �

We now present our results�

��� Aggregation for TxtFex�

Our �rst result for team aggregation in the context of vacillatory identi�cation is for
TxtFex��identi�cation� Theorem ��a below says that team aggregation for TxtFex��
identi�cation takes place at success ratios greater than ���� Theorem ��b con�rms that
��� is indeed the cut�o� point for aggregation of TxtFex��identi�cation by implying
that there are collections of languages which can be TxtFex��identi�ed by a team em�
ploying � machines at least one of which is required to be successful� but cannot be
TxtFex��identi�ed by any single machine� It is interesting to observe that in matters
of aggregation� TxtFex��identi�cation behaves more like TxtBc�identi�cation than like
TxtEx�identi�cation�

Theorem � �a� ��i� j  N� j i�j � ����Teami
jTxtFex� � TxtFex��

�b� TxtFex� � Team�
�TxtFex��

Proof� �a Let i� j be as given in the hypothesis of the theorem� Suppose a team
of j machines� M��M�� � � � �Mj� is given� We describe a machine M such that
Teami

jTxtFex��M��M�� � � � �Mj � TxtFex��M�
Let Sn be the lexicographically least subset of f�� �� � � � � jg of cardinality i such that

max�fLastMindChange��Mk� T �n� j k  Sng is minimized�
M�T �n� is de�ned as follows�

M�T �n� � BestGram�
S
j�Sn LastGram��Mj � T �n�� T �n��

We claim that if L  Teami
jTxtFex��M��M�� � � � �Mj� then L  TxtFex��M�

To see this suppose T is a text for L� Suppose S is the lexicographically least subset
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of f�� �� � � � � jg of cardinality i such that max�fLastMindChange��Mk� T  j k  Sg is
minimized� Note that if k  S� thenMk �nitely converges on T � Clearly� limn�� Sn � S�
Also� since i � j��� there exists k  S� such that LastGram��Mk� T  contains a grammar
for L�
Thus� M�T  �nitely converges and� for large enough n�M�T �n� is a grammar for L�
�b For team function learning� we know that Team�

�Ex� Ex �� � ����� Also� since
Fex � Ex ��� ��� we have Team�

�Fex� Fex �� �� Let S  �Team�
�Fex� Fex� Now� it

is easy to verify that the collection of single valued total languages represented by each
function in S witnesses Team�

�TxtFex� �TxtFex� �� �� We omit the details�

��� Pseudo�Aggregation Results

The problem of �nding aggregation ratios for TxtFexb�identi�cation when b �� � turns
out to be far more di�cult� The di�culty arises in requiring the aggregated machine to
also converge to up to b grammars� In the light of these di�culties� it is worth considering
cases where the bound on the number of converged grammars for the aggregated machine
is more than the bound allowed for the team� Such a relaxation on aggregation is referred
to as 	pseudo�aggregation�� and such results are presented next�
It can be shown that Team�

	TxtEx�TxtFex� �� �� but Team�
	TxtEx � TxtFex��

Hence� allowing more grammars in the limit can sometimes help achieve pseudo aggre�
gation� This result can be generalized to show the following�

Theorem � Let i  N��

�a� Teami��
�i��TxtEx�TxtFexi �� ��

�b� Teami��
�i��TxtEx � TxtFexi���

The next result generalizes Theorem ��

Theorem � Let i� j  N��

�a� Teami��
�i��TxtFexj �TxtFex�i����j�� �� ��

�b� Teami��
�i��TxtFexj � TxtFex�i����j�

Proof� A proof similar to the one used to prove Theorem � �a can be employed to
establish part �b� We give a proof of part �a� Consider the following collection of
languages�

L � fL  E j

card�fx j h�� xi  Lg � �i� � � j�

card�fx j h�� xi  Lg � Wx � L  f�� �i� � � jg�

g
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We �rst show that L  Teami��
�i��TxtFexj� We describe machines� M�� � � � �M�i��

which Teami��
�i��TxtFexj�identify L� Suppose T is a text for L  L� Let Sn � fx j

h�� xi  content�T �n�g� Let

wk
n �

�
x� if card�Sn � k� and x  Sn and card�fy � x j y  Sng � k�
�� otherwise�

So� wk
n is the k�th element in Sn� if any�

For � � k � i��� letMk�T �n� � BestGram�fwk�

n j �k���j � k� � k�jg� T �n�� For
i�� � k � �i��� letMk�T �n� � BestGram�fw

k�

n j � � k� � �i���jg� T �n�� It is easy to
see that� if card�fx j h�� xi  Lg � Wx � L � �i���j� then each ofM��M�� � � � �Mi��

TxtFexj�identify L� On the other hand� if card�fx j h�� xi  L � Wx � Lg � �� then
at least one ofM��M�� � � � �Mi�� and each ofMi��� � � � �M�i�� TxtEx�identify L� Thus�
L  Teami��

�i��TxtFexj�
We now show that L � TxtFex�i����j��� Suppose by way of contradiction that

machineM TxtFex�i����j���identi�es L� We then show that there exists a language in
L that M fails to TxtFex�i����j���identify� The description of this witness proceeds in
stages and uses the multiple recursion theorem� We �rst give an informal idea of the
construction�
We describe languages accepted by �i� � � j grammars� k�� k�� � � � � k�i����j� At each

Stage s� the construction makes use of initial sequence �s� By the use of �i � � � j�
ary recursion theorem� we initialize �� to contain elements h�� k�i� h�� k�i� � � � � h�� k�i����ji�
This step ensures that the languages accepted by these grammars will be members of L�
We then proceed in stages� At each Stage s� an attempt is made to �nd a sequence �
extending �s such thatM undergoes a mind change on � with respect to TxtFex�i����j���
identi�cation� If such an attempt is successful at every stage then each of the grammars
k�� k�� � � � � k�i����j will be for the same language and this language will be a member of
L� But� M will fail to converge to a set of up to �i � � � j � � grammars on a text
for this language and henceM will not TxtFex�i����j���identify this language� If on the
other hand� an attempt to �nd a mind change is unsuccessful at some stage then the
construction makes sure that each of the grammars k�� k�� � � � � k�i����j are for pairwise
distinct languages in L� Not only are these languages pairwise distinct but they are also
in�nitely di�erent from each other� Now� since the machineM gets locked to a set of no
more than �i�� � j � � grammars on some text for each of the �i�� � j languages� the
machineM will fail to TxtFex�i����j���identify at least one of these languages� We now
proceed formally�
By the �i � � � j�ary recursion theorem ��� there exist grammars k�� k�� � � � � k�i����j

such that the languages Wks may be described as follows�
Let �� be a sequence such that content��� � fh�� kli j � � l � �i � � � jg� Go to

Stage ��

Begin fStage sg

Enumerate content��s in Wkl � � � l � �i� � � j�
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Dovetail steps � and � below until step � succeeds� If and when step � succeeds� go
to step ��

�� Search for a � � �s such that content�� � content��s � fhx� yi j � � xg and

LastGram�i����j���M� �  �� LastGram�i����j���M� �s�

�� Let y � ��

Go to Substage ��

Begin fSubstage s�g

Enumerate hl� yi in Wkl � for � � l � �i� � � j�
Let y � y � ��
Go to Substage s� � ��

End fSubstage s�g

�� Let �s�� � � be such that content��s�� � content�� �
S
��l��i����j�Wkl enumerated till now�

Go to Stage s � ��

End fStage sg

We now consider the following cases�
Case �� All stages halt� In this case� let L � Wk� � Wk� � � � � � Wk�i����j  L� Clearly�
T �

S
s �s is a text for L� However� M on T does not �nitely converge to a set of

�i� � � j � � grammars�
Case �� Some Stage s starts but does not �nish� In this case� let Ll � Wkl� for � � l �
�i � � � j� Now� clearly Ll �� Ll� for l �� l�� � � l� l� � �i � � � j� But on all texts� T �
extending �s for each Ll� LastGram�i����j���M� T  � LastGram�i����j���M� �s� Since�
LastGram�i����j���M� �s has only �i � � � j � � grammars� there exists a language in
fLl j � � l � �i� � � jg� which M does not TxtFex�i����j���identify�

��� Aggregation for TxtFex


The results in the previous section do not say anything about aggregation in the context
of TxtFexb�identi�cation� when b �� �� The following result shows that aggregation
for TxtFex��identi�cation does not take place at success ratio ��� and aggregation for
TxtFex��identi�cation does not take place at success ratio ����

Theorem 	 Let i  N�� Teami
i��TxtFexi �TxtFexi �� ��

Proof� We prove this result as a direct consequence of the following lemma�

Lemma � TxtFexi�� � Teami
i��TxtFexi�

Before we give a proof of the lemma� we show how the lemma implies the the�
orem� Suppose by way of contradiction the theorem is not true� Hence� we have
Teami

i��TxtFexi � TxtFexi� This� together with the lemma� implies that TxtFexi��
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� Teami
i��TxtFexi � TxtFexi� But� this yields TxtFexi � TxtFexi�� � a contra�

diction�
We now give a proof of the lemma� Suppose M is given� We describe

M��M�� � � � �Mi�� such that TxtFexi���M � Teami
i��TxtFexi�M�� � � � �Mi���

Suppose T is a text for L  TxtFexi���M� Let Sn � LastGrami���M� T �n�� Let
the elements of Sn be w�

n � w�
n � � � � � wcard�Sn�

n � For card�Sn � l � i � �� let
wl
n � l �max�Sn� For � � k � i� �� letMk�T �n� � BestGram�Sn � fwk

ng� T �n��
Now sinceM on T converges to a set of atmost i�� grammars� limn�� Sn converges

to LastGrami���M� T � and thus for each k� � � k � i� �� limn�� wk
n converges to say

wk�
Since LastGrami���M� T  contains a grammar for L� and since each wk are distinct�

we have
�a LastGrami���M� T  � fwk j � � k � i� �g�
�b for each k� � � k � i� �� card�LastGrami���M� T � fwkg � i� and
�c for at least i of k�s in f�� �� � � � � i � �g� �LastGrami���M� T  � fwkg contains a

grammar for L�
It follows that at least i ofM�� � � � �Mi�� TxtFexi�identify L� This proves the lemma

and the theorem�
Theorem � is not optimal� We consider the special case of i � �� We are able to show

that TxtFex� aggregation takes place for success ratios greater than ��� as implied by
Theorems �� and �� below� The proof of Theorem �� requires the following crucial
technical lemma�

Lemma � Suppose r� w  N are given such that r � w � �r��� There exist recursive
functions G� and G� such that� ��p�� p�� � � � � pr��L�card�fi j � � i � r � Wpi � Lg �
w� WG��p������pr� � L � WG��p������pr� � L��

Proof� We assume without loss of generality that w � r�� �otherwise the lemma can
be easily proved by considering the grammar which enumerates elements enumerated by
majority of p�� � � � � pr�
Suppose p�� � � � � pr are given �we assume� without loss of generality� that they are

pairwise distinct� Below� we give a procedure to enumerate two languages L� and L�

�the procedure depends on p�� � � � � pr� We will then argue that

��L�card�fi j � � i � r � Wpi � Lg � w� L � L� � L � L��

It will be easy to see that grammars for L� and L� can be obtained e�ectively from
p�� � � � � pr� This will prove the lemma�
The idea of the proof is that� in successive stages� we try to construct two disjoint

groups of grammars �from p�� � � � � pr of size w each� These groupings are done with
a view to group 	similar� grammars together �i�e�� grammars that seem to be for the
same language� The groupings eventually become correct� Some care is needed in the
construction to guard against initial misgrouping of the grammars� We guarantee this
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with the help of a number of invariants that are satis�ed by the construction at the end
of each stage� We now introduce a function that� in some sense� measures the similarity
between two grammars�

De�nition �� Let i� j  N � Let n  N � Similar�i� j� n � max�fn� � n j Wi�n� �
Wj�n �Wj�n� �Wi�ng�

So� Similar�i� j� n denotes the point where it appears that the languages accepted by the
two grammars di�er� Following properties of Similar can easily be veri�ed�

�a Wi � Wj � limn�� Similar�i� j� n ���

�b Wi �� Wj � limn�� Similar�i� j� n ���

�c Let P be a �nite subset of N � Let n  N � If m � min�fSimilar�i� j� n j i� j  Pg
then �k�P �Wk�m� � �i�P �Wi�n��

We now describe the data structure employed by the construction� The languages L�

and L� are enumerated in stages� We let Ls
� and L

s
� denote L� and L� enumerated before

Stage s� respectively� Also� e�s� e�s will be a permutation of �� � �this is used to make
a correct correspondence between the two groups of grammars and the two languages�
The two groups of grammars before the execution of Stage s are denoted by P�s and
P�s� P�s and P�s will be disjoint subsets of f�� � � � � rg of size w each�
The variables used in the construction are initialized as follows� Let n� � �� m�� �

m�� � �� Let e�� � � and e�� � �� Let P�� � f�� � � � � wg and P�� � fw � �� � � � � �wg�
The following invariants are maintained by the construction�

Invariants �assuming that Stage s is executed

H�� Ls
e�s �

S
i�P�s�Wpi�m�s� �

T
i�P�s�Wpi�ns��

H�� Ls
e�s �

S
i�P�s�Wpi�m�s��

H��
S
i�P�s�Wpi�m�s� �

T
i�P�s�Wpi�ns��

H�� Ls
e�s �

S
i�P�s�Wpi�m�s� � Ls

e�s�

H�� ��x  Ls
e�s�card�fj  f�� �� � � � � rg � P�s j x  Wpj�nsg � w����

H�� m�s�� � ns � m�s � m�s�

Begin fStage sg

�� Search for n � ns such that there exist a set P � f�� � � � � rg of cardinality w such
that� for all i� j  P � Similar�pi� pj � n � ns�

�� If such an n is found� let ns�� � n�

�� Let P�s�� � f�� � � � � rg be
of cardinality w such that m�s�� � min�fSimilar�pi� pj� ns�� j i� j  P�s��g is
maximized�
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�� if card�P�s�� � P�s � card�P�s�� � P�s� then let e�s�� � e�s and e�s�� � e�s�

else let e�s�� � e�s and e�s�� � e�s�

endif

�� Let P��s�� � f�� � � � � rg � P�s�� be of cardinality w such that m��s�� �
min�fSimilar�pi� pj � ns�� j i� j  P��s��g is maximized�

�� if �P�s�� � P�s �� � � P�s�� � P�s �� �� � �Ls
e�s��

�
S
i�P��s��

�Wpi�m��s��
�� then

let P�s�� � P��s�� and m�s�� � m��s���

elsif e�s�� � e�s then let P�s�� � P�s� m�s�� � m�s�

else let P�s�� � P�s� m�s�� � m�s�

endif

�� Enumerate
S
i�P�s���Wpi�m�s��� in Le�s�� �

Enumerate
S
i�P�s���Wpi�m�s��� in Le�s�� �

Go to stage s� ��

End fStage sg

We now prove that each of the invariants� H�� � � � � H�� are satis�ed by the con�
struction� To begin with� it is easy to verify that H�� H�� H� are satis�ed� H� follows
from the enumeration in Step � of the construction� H� is an immediate consequence of
property �c of Similar� And� H� follows from the de�nitions of m�s� m�s� and ns�
We show that H�� H�� and H� hold by induction� We assume that H�� � � �� H� hold

for s � t� We now show that they also hold for s � t��� In the sequel� we use Hi �s � u
to denote invariant Hi� with s replaced by u� We consider two cases�
Case �� P�t�� � P�t �� � and P�t�� � P�t �� ��
We �rst show that

S
i�P�t���Wpi�m�t��� � Lt

e�t � Lt
e�t� From H� �s � t� we getS

i�P�t�Wpi�m�t� �
T
i�P�t�Wpi�nt �� Hence� for each k  P�t� Lt

e�t � Wpk�nt� Let k
� 

�P�t�� � P�t �such a k� exists since P�t�� � P�t �� �� Clearly� Lt
e�t � Wpk� �nt

� But
H� �s � t implies that m�t�� � nt� hence Lt

e�t � Wpk� �m�t�� �
S
i�P�t���Wpi�m�t����

Now� we show that Lt
e�t �

S
i�P�t���Wpi�m�t���� By H� �s � t� it is su�cient to prove

that
S
i�P�t�Wpi�m�t� �

S
i�P�t���Wpi�m�t���� H� �s � t implies that

S
i�P�t�Wpi�m�t� �T

i�P�t�Wpi�nt�� Hence� for each k  P�t�
S
i�P�t�Wpi�m�t� � Wpk�nt� Let k

�  P�t�� � P�t
�such a k� exists since P�t�� � P�t �� �� Clearly�

S
i�P�t�Wpi�m�t� � Wpk� �nt

� Wpk� �m�t��

�since H� �s � t implies that m�t�� � nt� Therefore� Lt
e�t
�
S
i�P�t���Wpi�m�t����

We now prove H� �s � t��� Step � in the construction ensures
S
i�P�t���Wpi�m�t��� �

Lt��
e�t�� �note that this is the only place where something is enumerated in L

t��
e�t�� in Stage

t� Now� since e�t�� is either e�t or e�t� and
S
i�P�t���Wpi�m�t��� � Lt

e�t � Lt
e�t� we haveS

i�P�t���Wpi�m�t��� � Lt��
e�t�� � Thus� H� �s � t� � holds�

To see that H� �s � t � � holds� it is su�cient to observe that Lt��
e�t�� �S

i�P�t���Wpi�m�t��� � Lt
e�t � Lt

e�t � Lt��
e�t�� �by argument in the proof of H� �s � t� ��

To show H� �s � t��� we �rst observe that the intersection of P�t�� and Q is at most
w��� where Q � P�t if e�t � e�t��� Q � P�t otherwise� This observation together with
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H� �s � t� H� �s � t� and H� �s � t imply that the number of grammars in p�� p�� � � � � pr
which enumerate any element in Lt

e�t��
is at least �w��� Thus� H� �s � t�� immediately

follows�
Case �� P�t�� � P�s � � or P�t�� � P�t � ��
In this case we show that H� �s � t� � holds� There are two subcases�

Subcase a� e�t�� � e�t�
Since e�t�� � e�t� it is su�cient to show that L

t
e�t �

S
i�P�t���Wpi�m�t�� � �since step �

in the construction guarantees that
S
i�P�t���Wpi�m�t��� � Lt��

e�t��� Now� H� �s � t
implies that Lt

e�t
�
T
i�P�t�Wpi�nt �� Hence� for each k  P�t� Lt

e�t
� Wpk�nt� Also� since

e�t�� � e�t� we have P�t�� � P�t �� �� Let k�  P�t�� � P�t� Clearly� L
t
e�t � Wpk� �nt

�
Wpk� �m�t�� �

S
i�P�t���Wpi�m�t����

Subcase b� e�t�� � e�t�
Again� step � in the construction guarantees that

S
i�P�t���Wpi�m�t��� � Lt��

e�t�� � Now

suppose by way of contradiction� ��x�x  Lt��
e�t�� �

S
i�P�t���Wpi�m�t�� ��� Clearly� x  Lt

e�t
�

But� H� �s � t implies that ��x  Lt
e�t�card�fj  f�� �� � � � � rg � P�t j x  Wpj�ntg �

w���� But since� P�t�� � P�t � �� there exists at least one i  P�t�� such that x 
Wpi�m�t�� � a contradiction� Hence� Lt��

e�t�� �
S
i�P�t���Wpi�m�t����

We leave details of the proof of H� and H�� It should be noted that they immediately
hold if the �rst if in Step � in the construction succeeds� otherwise they can be shown
to hold using H� �s � t� H� �s � t� H� �s � t� and H� �s � t�
We now show how the invariants imply the lemma�
Suppose there is exactly one language� L� which has at least w grammars in the set

fp�� � � � � prg� In this case clearly� m�s is unbounded and by H�� at least one of L� and L�

is the same as L �depending on whether e�s takes value � or � in�nitely often�
Suppose there are two distinct languages L and L� which have at least w grammars

in the set fp�� � � � � prg� It is easy to see that both m�s and m�s are unbounded and� for
all but �nitely many s� �P�s�� � P�s � � � P�s�� � P�s � ��� It now follows using H��
H�� and H� that both L� and L� belong to fL�L�g and are distinct�
Thus� ��L�card�fi j � � i � r � Wpi � Lg � w� L � L� � L � L���

Theorem �
 ��m�n j m�n � ����Teamm
n TxtFex� � TxtFex��

Proof� This proof uses Lemma � presented above which shows that there exist recursive
functions G� and G�� such that for any set S of r grammars� ��L j card�fi  S j Wi �
Lg � �r���WG��S� � L � WG��S� � L��
Let m�n be as described in the hypothesis of the theorem� Suppose a team of n

machines�M��M�� � � � �Mn� are given� We describe a machineM that TxtFex��identi�es
any language which is Teamm

n TxtFex��identi�ed by the team consisting of machines
M��M�� � � � �Mn�
Suppose the team consisting of machinesM��M�� � � � �Mn Team

m
n TxtFex��identi�es

L� Let T be any text for L� Without loss of generality� we assume that for � � j� � j� �
n� LastGram��Mj� � T  and LastGram��Mj� � T  �if de�ned are disjoint �this can easily
be ensured by padding� This assumption is only for the ease of presentation of the proof�
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For l  N � let Sl denote the lexicographically least subset of f�� � � � � ng of cardinality m
such that max�fLastMindChange��Mj� T �l� j j  Slg is minimized� Note that liml�� Sl

exists �since the team consisting of machinesM�� � � � �Mn Team
m
n TxtFex��identi�es L�

Let S � liml�� Sl�
For l  N � let Xl �

S
j�Sl
�LastGram��Mj� T �l��� Since� for each j  S� Mj converges

on T to a set of at most � grammars� liml��Xl exists � let this limit be X� Moreover�
card�X � �m and at least m� �n�m of the grammars in X are grammars for L �since
the team consisting of machines M�� � � � �Mn Teamm

n TxtFex��identi�es L� Thus� at
least ��m�n��m �which is greater than ��� fraction of grammars in X are for L� This�
together with Lemma �� implies that at least one of G��X and G��X is a grammar for
L�
Now we describe the behavior of our machine M� For n  N � M�T �n� �

BestGram�fG��Xn� G��Xng� T �n�� It is easy to see from the analysis on X above
and the property of function BestGram �Lemma � that M TxtFex��identi�es L�

Theorem �� Team	

TxtFex� �TxtFex� �� ��

Proof� Consider the following class of languages�
L � fL j card�fw � � j ��x � ��card�fh�w� yi j y  Ng � L � � � card�fh�w �

�� yi j y  Ng � L �� � Wmax�fyjfh�w�x�yijy�Ng�Lg� � L�g � �g�
We now show that L  Team	


TxtFex�� Consider a team of � machines
M��M�� � � � �M	 such that machine Mi� � � i � �� behaves as follows on any text
T �

Begin fMi�T �n�g

if fy j h�i� yi  content�T �n�g �� �

then

let m� � max�fy j h�i� yi  content�T �n�g

else let m� � ��

endif

if fy j h�i � �� yi  content�T �n�g �� �

then

let m� � max�fy j h�i � �� yi  content�T �n�g

else let m� � ��

endif

Output BestGram�m��m�� T �n��

End fMi�T �n�g

It is easy to verify that the team consisting of machines� M��M�� � � � �M	�
Team	


TxtFex��identi�es L�

��



We now show that L � TxtFex�� Suppose by way of contradiction thatMTxtFex��
identi�es L� We then show that there exists a language in L that M fails to TxtFex��
identify� The description of this witness proceeds in stages and uses the operator recursion
theorem ���� The construction is somewhat on the lines of the diagonalization argument
presented in our proof of Theorem � �a� We give an informal description of the idea
�rst�
At each Stage s� the construction makes use of initial sequence �s� By the use of the

operator recursion theorem� we initialize �� to 	agree� with languages in L� We then
proceed in stages� At each Stage s� an attempt is made to �nd a sequence � extending
�s such that M undergoes a mind change on � with respect to TxtFex��identi�cation�
If such an attempt is successful at every stage then the construction yields a language in
L for which

S
s�N �s is a text and on this textM does not converge to up to � grammars�

If on the other hand� an attempt to �nd a mind change is unsuccessful at some Stage
s then the machine M has essentially locked itself to a set of up to two grammars on
all suitable extensions of �s� The construction then describes a number of languages in
L which diagonalize against the grammars on which M has become locked� We now
proceed formally�
By the operator recursion theorem� there exists a ���� recursive� increasing function

p� such that the languages Wp�i� can be described as follows�
Enumerate hi� p�ii in Wp�j�� for i � � and j � �� Let W

s
p��� denote Wp��� enumerated

before stage s� Let Last��� � LastGram��M� �� �For ease of construction we assume
without loss of generality that Last��� is always of cardinality �� Let �� be such that
content��� � fhi� p�ii j i � �g� Go to stage ��

Stage s

Dovetail steps � and � until� if ever� step � succeeds� If and when step � succeeds� go
to step ��

�� Search for an extension � of �s such that content�� � content��s � fhx� yi j x � �g�
such that Last���  �� Last���s�

�� Let m� � � �max�fx j ��y�hx� yi  Wp��� enumerated till now �g�

Let r� � � �max�fy j ��x � ���hx� p�yi  Wp��� enumerated till now�g�

���� Enumerate h��� p�r�i in Wp����
EnumerateWp��� enumerated till now inWp�i�� i � � andWp�r���Wp�r�����Wp�r�����
Enumerate hm�� �i in Wp����Wp����Wp����Wp�
� and Wp�r���
Search for a q  Last���s� such that Wq enumerates hm�� �i�
If and when the search succeeds� go to step ����

���� Enumerate h��� p�r� � �i in Wp�i�� i � � and Wp�r�����Wp�r�����
Enumerate hm� � �� �i in Wp����Wp�	��Wp����Wp���Wp�r�����
Search for q�  Last���s� fqg� such that Wq� enumerates hm� � �� �i�
If and when the search succeeds� go to step ����

���� Enumerate hm�� �i and hm� � �� �i in Wp����Wp����Wp����Wp���Wp�r�����

��



Search for a q��  Last���s� such that both hm�� �i and hm���� �i are enumer�
ated in Wq��

If and when the search succeeds go to step ����
���� Let x  fm��m� � �g be such that all grammars in Last���s enumerate hx� �i�

Let x� be the only element in fm��m� � �g � fxg�
Enumerate h��� p�r� � �i in Wp�i�� i � � and Wp�r�����
Enumerate hx�� �i in Wp���� Wp��� and Wp�r�����
Note that� if the search in step � does not succeed� then either Wp��� and Wp�
�

or Wp��� and Wp�	� are the same as Wp����

�� Let S � content��  �
S
i��Wp�i� enumerated till now��

Enumerate S in Wp�i�� i � ��

Let �s�� be an extension of � such that content��s�� � S�

Go to stage s� ��

End stage s

Now consider the following cases�
Case �� All stages halt�
In this case let L � Wp���� It is easy to see that L  L� However�M on

S
s �s� a text

for L� does not converge to at most � grammars�
Case �� Stage s starts but does not halt�
If the search in step ��� does not succeed� then let L � Wp���� If the search in step

��� succeeds� but the search in step ��� fails� then let L � Wp���� If the search in step
��� and ��� succeed� but the search in step ��� fails� then let L � Wp���� If the search in
step ���� ��� and ��� succeed� then let L � Wp���� It is easy to see that in all these three
cases� L  L and L � fWq j q  Last���sg� Thus we have that L �� TxtFex��M�
Thus we have that L � TxtFex��

��	 Aggregation for Language Identi�cation from Informants

Results presented in the previous section were for language learning criteria in which
learning takes place from positive data only� In the present section� we record similar
results for learning criteria in which learning takes place from both positive and negative
data� It should be noted that the proof techniques for language learning from informants
and function learning from graphs are very similar� although identi�cation of recursively
enumerable languages from informants di�ers from identi�cation of recursive functions
because a learning machine is required to converge to a total program in identifying
recursive functions whereas a machine identifying recursively enumerable languages from
informants converges to grammars �which are semi�decision procedures�
Identi�cation from texts is an abstraction of learning from positive data� Similarly�

learning from both positive and negative data can be abstracted as identi�cation from
informants� The notion of informants� de�ned below� was �rst considered by Gold �����

��



De�nition �� A text I is called an informant for a language L just in case content�I �
fhx� �i j x  Lg � fhx� �i j x � Lg�

The next de�nition formalizes identi�cation in the limit from informants�

De�nition �	 �a M InfEx�identi�es L �read� L  InfEx�M �� �� informants

I for L��i j Wi � L�
�

� n�M�I�n� � i��

�b InfEx � fL � E j ��M�L � InfEx�M�g�

We leave it to the reader to similarly de�ne InfFin� InfBc� and for each b  N� � f�g�
InfFexb� Also� for m�n  N� and for each I  fInfFin� InfEx� InfFexb� InfBcg� we
can de�ne Teamm

n I�identi�cation� We now present aggregation results for these new
criteria�
For �nite identi�cation from informants� team aggregation takes place at success

ratios greater than ��� as implied by the following results� This is not unexpected given
results about �nite function identi�cation and �nite language identi�cation from texts�

Theorem �� �a� Suppose m�n are such that m�n � ���� Then Teamm
n InfFin �

InfFin�

�b� InfFin � Team�
�InfFin�

Proof� Part �b can be obtained as a corollary to the corresponding function learning
result� For part �a� suppose M��M�� � � � �Mn and an informant T are given� Let sT be
the least number if any such that there exists a set S � f�� � � � � ng of cardinality m� such
that� for each j  S� Mj�T �sT � ���� Then M�T �s� �� for s � sT � and� for s � sT �
M�T �s� � i� where i is such thatWi � fx j card�fj  S j x  WMj�T �sT ��g � �m�ng� It
is easy to verify that M InfFin�identi�es any language that is Teamm

n InfFin�identi�ed
by M��M�� � � � �Mn�
For identi�cation in the limit� however� aggregation turns out to be di�erent for

informants and texts� In fact language identi�cation from informants behaves very much
like function learning� as aggregation for InfEx takes place at success ratios greater than
���� Aggregation for InfBc also takes place at success ratios greater than ���� These
observations are summarized in the following result�

Theorem �� Let I  fInfEx� InfBcg�

�a� ��m�n j m�n � ����Teamm
n I � I��

�b� I � Team�
�I�

Proof� Part �b can be proved using the language learning analog of the proof used to
show I � Team�

�I for I  fEx�Bcg� For part �a suppose m � n��� Teamm
n InfEx �

InfEx can be obtained as a corollary to Theorem �� below �since� for m � n���

��



Teamm
n InfEx � InfFexm� Essentially the proof of Team

m
n TxtBc � TxtBc can also

be used to show that Teamm
n InfBc � InfBc�

Theorem �� can be proved using techniques similar to that used by Case and Smith
to show that Fex � Ex ����

Theorem �� ��b  N� � f�g�InfFexb � InfEx��

Hence� Theorem �� holds for vacillatory identi�cation from informants� too�

� Conclusion

Clearly� aggregation issues for for TxtFexb� where b �� � � b � �� are open� Only partial
results can be shown at this stage� as the combinatorial complexity of the simulation
arguments become di�cult to handle� We summarize the state of art about aggregation
in the following table� the symbol �
� denotes open questions�

Type of Finite Limit Vacillatory Behaviorally
Identi�cation � � � � � � Correct

Function �Graph� � �
�

� �
�

� �
�

� �
�

� �
�

� �
�

� �
�

Language �Text� � �
�

� �
�

� 	




 
 � �
�

� �
�

Language �Informant� � �
� � �

� � �
� � �

� � �
� � �

� � �
�
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