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Abstract

We discuss the motion planning of a rectangular moving object in certain
prototypical situations arising in a 2-D isothetic workspace. We have sug-
gested three possible motion strategies involving rotation and translation of
the moving object negotiating an L-shaped corridor. We have also given
simulation results to compare the three cases of the proposed motion.
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1 Introduction

Motion planning is required for moving a robot from a source placement (s) to a
destination placement (d) within a workspace occupied by obstacles. Motion planning
for a mobile robot can be viewed as a two-level process. At level one, the primary
interest is in solving the FINDPATH problem, called path planning under global
constraints. The result of this level is a path description of the desired motion from s
to d. Once a path is proposed by level one, the level two performs trajectory planning
wherein local motion is decided based on local geometric properties of the workspace,
the moving object and other constraints along the specified path. The output of
trajectory planning is a sequence of placements of the moving object. Normally,
trajectory planning based on local constraints does not change a path computed
by FINDPATH, since the latter would have considered all such constraints before
computing the path.

Freespace decomposition is one of the geometric methods employed to solve the
path planning problem [HWA92]|. The freespace method works in two stages. In the
first stage, an appropriate representation scheme that captures the essential properties
of the problem environment is devised; the second stage utilizes this representation
to solve the problem at hand. In other words, this method imposes an abstract
geometric structure upon the physical structure of obstacles and the moving object.
Generally, such a representation uses a primitive geometric shape to describe the
freespace, so that the freespace can be viewed as a collection of connected corridors of
primitive shapes. Due to the geometric simplicity of the primitive shape, corridors and
their connections may be categorized into a finite number of prototypical situations
[MADS86]. In order to plan collision free robot motion both at FINDPATH and at
trajectory planning levels, it is essential that we understand the mechanism of moving
the robot through prototypical situations.

The problem of moving an object from one point to another inside a complex
2-D and 3-D workspace has been well studied [LAT91]. However moving an object
in prototypical situations has not been given much attention. Often complex general
solutions which address global aspects of the motion planning problem are not suitable
for a simplified instance of the problem. Also certain techniques for solving the general
motion planning problem, like freespace decomposition, naturally lead to subproblems
involving prototypical situations. We briefly mention some efforts in this direction
below.

The SOFA PROBLEM, determining the largest region (or sofa) which can be
moved through a 2-D corridor was originally proposed by Moser [MOS66]. In one of
the early attempts, Goldberg [GOL69] and Sebastian [SEB70] considered an analytical
solution to find the largest sized object that can be maneuvered through a variety of
corridors. Maruyama [MART73] gave an approximation method for solving the SOFA
PROBLEM for shapes which were angularly simple polygons. He used a sequence
of transformations to move the sofa through a given corridor. Howden [HOWG6S]
used chain representation to move the largest rectangle of a given width through



an L-shaped corridor. His approach was applicable only when the given objective
function specifies the generic shape, e.g., the largest square or the widest rectangle,
but problems with Moser’s objective function, like the largest-area sofa, cannot be
tackled. Strang [STR82] and Yap [YAPS87] have dealt with complexity theoretic
analysis of moving a rigid object through a door and its generalization. Strang studied
the motion of convex objects through a door in 2-D and 3-D and tried to compute
the minimum width of the door which allows the passage of the object. Yap then
extended the work to the motion of nonconvex polygonal objects and showed that
all passages of the moving objects through the door can be reduced to a sequence of
certain elementary motions.

This paper addresses the issue of motion planning in certain prototypical situations
arising in a 2-D isothetic workspace for a moving robot modelled as a rectangle.
The term isothetic means that all object boundaries are parallel to the principal
axes. An isothetic workspace is a realistic model of a controlled indoor robot world
while a rectangle is a good first approximation of the footprint of a mobile robot. A
rectangle is also the natural choice of a primitive shape to represent the freespace in
an isothetic workspace as it is the simplest of isothetic shapes. Ahmed and Biswas
[AHM90a] have devised a representation for describing such a workspace. In this
representation, rectangle-based primitive corridors arise naturally and include the I-,
L-, T- and X-shaped prototypical segments. In this research, we propose a solution
to the motion planning problem in such prototypical corridors, based on geometric
constraint analysis of the motion.

the rest of the paper is organized as follows. Section 2 describes the prototypical
situations arising in the isothetic workspace. In section 3, we identify three strategies
for motion through an L-shaped path and deal them in detail. Thereafter section 4
discusses the relative merits and demerits of these models based on experimental
results and the final section gives concluding remarks.

2 Prototypical Corridor Segments

We consider a moving object within a planar workspace containing obstacles which
are modelled as isothetic polygons. The workspace itself is bounded by an isothetic
polygon. The moving object is assumed to be a rectangle. The motion of the robot
consists of translations and rotations. The translation is restricted to the directions of
the two principal axes and the rotation is about any point on the edge of the moving

object [AHM90b] [SOWO1].

In this setting, the freespace is modelled as overlapping rectangular regions-
[AHM90a]. Motion of an object through these regions is viewed as crossingovers
from one region to the neighbouring region. We can think of a path from one point
to another as a corridor through which the moving object manoeuvers itself. See
Figure (1), where two points s and d are connected by a corridor.
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Figure 1: An Isothetic Workspace

A long corridor connecting two points can be considered as composed of corridor
segments. In the isothetic workspace with rectangular corridors, four prototypical
corridor segments may be recognized:

o Straight segment [ which is horizontal or vertical

o L-segment, which has two [-segments intersecting at right angles

o T-segment, where three I-segments join in a T shape

o X-segment, consisting of four [-segments intersecting in an X shape

See Figure (2) for illustration. .

(&) I-corridor (b) L-corridor

(c) T-corridor (d) X-corridor
Figure 2: Prototypical Corridors

Motion planning along the I-segment is straightforward. Once the moving object is
in the corridor, it can be moved using translation alone. The largest object which can



pass through is determined by the length and width of the corridor. Moving along
the L-segment involves translation and if necessary rotation. Rotation is confined
to the region where two [-segments meet. The remaining corridor segment can be
maneouvered through by translating the moving object.

© )

Figure 3: Motion in T- and X-corridor

The case of moving through T- and X-segments has two possibilities. First, the
motion is along the sleeve, i.e., the moving object enters from one end of the sleeve
and exits from the other end. See path marked by arrows @ and b in Figure (3). It
is important to note that in this representation, the T- and X-segments can never
have sleeves with two varying entry and exit widths. thus, the motion in these cases
simplifies to moving along an [-segment. In the second situation, the moving object
enters through one end of the sleeve and exits from the vest end (path marked by
arrows a and ¢). It can be shown that for a convex moving object like a rectangle, this
motion can be simplified to moving through an L-segment (Figure (3.b) and (3.d)).
Therefore we concentrate on motion within an L-segment which can be applied to T-
and X-segments. For notational simplicity, we will use the term corridor for corridor
segment now onwards.

3 Motion through L-corridor

When motion through an L-corridor comprises a sequence of translations and rota-
tions, three basic cases of such motion can be identified. In CASE 1, the motion
is effected in several steps of translation and a single step of rotation. CASE 2 in-
volves incremental translation and incremental rotation simultaneously about a pivot.
Lastly, in CASE 3, the object moves using incremental translation and incremental
rotation such that the moving object slides against the corridor walls, touching the
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walls at two points, unlike earlier cases where it touches the walls only at the pivot
point [AHMO90b] [SOW9I1]. We now consider these cases of moving through an L-
corridor in detail. In each case, we first consider the motion of a rigid rod through
an L-corridor and then extend it to a rectangle. We compute the maximum length of
the moving rectangle for a given width. For simplicity we first assume that the corri-
dor is symmetric, i.e., its width is constant, and extend the result to an asymmetric
corridor.

It is convenient to have the following definitions. Referring to Figure (4), let the
four walls forming the L-corridor be defined as

X {(,0) : x>0}
Y o= {(0,y) : y=0}
X = {(z,Wy) : x> Wi}
Y= {(Wiy) @ oy =W}

Let o be the origin and @ the bendpoint of the L-corridor. Let the rectangular
moving object of length [ and width w enter the corridor at the end whose width is
marked Wi and exit through the end of width W5 . When the corridor is symmetric,
Wiy =Wy, =W. If Wy # W,, ie., for an asymmetric corridor, it is assumed that
Wy > W, . When the moving object degenerates to a rod then w = 0. For a given w,
let [,,4» be defined as the maximum length which can pass through the corridor. Let
edges pq and mn of the moving object move close to walls Y and Y respectively.

entry
i w
==
p m
W, I
: - I |[M¢tb
Y Y i
q n
a X
w, — exit
0 X

Figure 4: Moving Object in an L-corridor

In general, the length of the moving object which can pass through the corridor
can be expressed by a functional relationship given by Eqn (1).

lmax — f(WhW?vwvr(a?b)) (1)
In other words, maximum length is a function of the widths of the entry and exit

ends of the corridor, W; and W,, width w of the moving object and a relationship
r(a,b) between bendpoint a and an arbitrarily chosen, but fixed, point b on the edge
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mn of the moving object. We choose corner m of edge mn on the moving object as
the point b. In fact r(a, b) determines the physical motion of the moving object while
transiting from the segment YY" to X X'. The transition involving only translation is
simple and the corresponding relationship can be defined easily. But the transitions
which combine both translation and rotation, and ultimately result in change of
orientation of the moving object, are more complicated. Of several ways for such
a transition to take place, we present three basic ones in the following subsections.
Later we discuss their relative importance and utility.

3.1 CASE 1: Single rotation

In CASE 1, the moving object is translated along wall Y, rotated by 90° about the
pivot point @ and then translated along X' to the exit. See Figure (5). Various
situations corresponding to corridor widths and dimensions of the moving object are
discussed below.

1. f Wy =W, =W, and w = 0, that is, the moving object is a rod, then the
curve traced by the endpoints of the rod is a portion of a circle due to the pivot
point being fixed at the corner a of the corridor and the midpoint of the moving
object rod. Radius of the circle is equal to [/2. See Figure (5.a). The equation
of the circle is given by Eqn (2).

(x = W)+ (y —W)*=I/4 (2)

The condition for a successful rotation is that no portion of the circle may lie
outside the corridor extents. Using simple geometry, it is easy to compute the
value of the maximum length of rod, l,,,, which is given by Eqn (3).

Lnaz = 2W (3)

If Wi # W, that is, when the corridor is asymmetric, the end points of the rod
trace a quarter each of two circles whose radii are proportional to the entry and
exit widths of the corridor. The centres of these two quarter circles are located
at the same point a. Thus [,,,, 1s the sum of two radii of the largest such circles
enclosed by the corridor and is given by Eqn (4).

lmax — Wl + W2 (4)
See Figure (5.b) for the illustration of such a motion.

2. If w > 0 then the four corners p, ¢, m and n of the rectangle trace four quarter-
circles with the same centre at point a but varying radii. In order to rotate
successfully, the quarter circles traced by points p and ¢ must lie within the
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Figure 5: CASE 1: Single Rotation



corridor. Hence [,,q, is less than the quantity given in Eqn (4) as more space
is be required to rotate due to the width of the moving object, which will cut

down on length (Figures (5.c and 5.d)).

It Wy = W, = W then the radii of circles traced by points p and ¢ are equal to
v/ (W? —w?) and therefore [,,,, corresponding to the largest circles within the

corridor extents can be computed as in Eqn (5).

Imaz = 24/ (W? — w?) (5)

and in the general case when Wy # W, [, is given as Eqn (6).

s =/ (WE = w?) 4/ (W} — w?) (6)

3.2 CASE 2: Incremental translation and rotation

CASE 2 also deals with rotation of the moving object at a single pivot point but
it is combined with translation. The moving object is translated along Y~ till one
end reaches bend point a of the corridor; then it is rotated by making a as the pivot
point and translated simultaneously such that after 90° rotation, it is aligned along
wall X', whence it is translated to the exit point. For simplicity, it is assumed that
the amount of translation is linearly proportional to the angle of rotation; however
a nonlinear relationship between the translation and rotation may also be used to
produce certain desired effects in the motion. For a successful motion through the
corridor, the curves traced by the endpoints of the moving object should lie within the
corridor extents. See Figure (6) for the motion in CASE 2. The details of computing
limar are given below.

1. f Wy =W, =W and w = 0, that is, if moving object is a rod, then the curves
traced by the locii of endpoints m and n (or p and ¢, since both coincide)
determine the maximum length of rod which can pass through the corridor.
To ensure a collision-free rotation, the two curves must lie within the corridor
extents. In general, for a rod of length [, the equation of the curve traced by
point m is given by Eqns (7) and (8).

216

=W —(]- 7)5m¢ (7)
y=W+ (- #)cos (8)

where ¢ is the angle of rotation measured from the wall Y'. During rotation it
varies from 0° to 90° while moving object is also being translated. The amount
of translation is linearly proportional to rotation. The quantity 2[/7 in the
equations above is the constant of proportionality. The equation corresponding
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Figure 6:

CASE 2: Incremental Translation and Rotation
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to endpoint n (or ¢) is similar since the curve traced is mirror symmetric. See
Figure (6.a). Therefore, it is sufficient in this case to deal with the curve traced
by point m. The kind of rotation envisaged ensures that the minimum value of
x in Eqn (7) is greater than 0. We need to find the angle ¢ at which it happens.
This angle can be obtained by equating % = 0 in the general case, i.e.

Tcosp — 2¢cosp — 2sing = 0 9)

Eqn (9) can be solved numerically for ¢. For the curve which has the largest
X-axis extent confined within the corridor, let this angle be denoted by ¢4,
In other words, ¢4, is the angle at which placement of the rod is critical for a
collision-free motion. It is interesting to note that ¢,,,, 1s independent of object
and corridor dimensions in this case. Now the corridor should be wide enough
to accommodate this curve which will ensure the passage of the moving object.
Hence the peak distance must fit within the corridor, i.e.,

)
W= (l - 2;¢max)5in¢max (10)

or

w

lmax -
Sln¢max(1 - %¢max)

If Wi £ Wy, that is, for an asymmetric corridor, a length [ corresponding to W5
(assuming Wy > W3) and computed by Eqn (11) can easily pass; however an

(11)

additional length Al can also pass through due to more space provided by Wj.
The locus of the point m is therefore an identically shaped curve but shifted by
Al from the previous curve. Hence the Eqns (7) and (8) must be modified as

216

r=W;—(+Al- 7)5m¢ (12)
y=Wi+(+Al— #)cosqﬁ (13)

!

Let ¢

traced by the endpoint occurs; then in order to restrict the motion within the

nae D€ the angle of rotation at which maximum X-axis extent of the curve

corridor, Eqn (12) must be maximized with respect to angle of rotation ¢. As
a result, Eqn (14) must be satisfied, i.e.,

21
7T¢lmax

and therefore, Eqn (14) may be used to calculate l,,,,, = [+ Al. See Figure (6.b)
for the illustration. The dotted lines show the extra length Al which can pass

!

)Sin¢;nax + AlSin¢max (14)

Wy = (-

through in an asymmetric case. Note that now gblmw is dependent on corridor
width and size of the moving object unlike the previous case of symmetric
corridor.
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2. fw >0 and Wy = Wy = W, i.e., for a rectangular moving object, the length
that can pass through the corridor is less than that in the case of rod. The
locus of outer vertices p and ¢ are now important to determine the maximum
length of the moving object that can pass through without colliding with the
walls of the corridor. For vertex p, for example, the z-coordinate is now a
quantity wecos¢ less than the wz-coordinate of vertex m and similarly, the y-
coordinate is a quantity wsing less than the y-coordinate of vertex m. Using
the derivation above, the equation of the locus of the point p can be written as

(see Figure (6.c))

=W —wcosp — (I —2lo/7)sing (15)
y=W —wsing 4+ (I —2l¢p/x)cos¢ (16)
Using Eqns (15) and (16) the 4, can be obtained by Eqn (17) as follows.
; B (W — wcosdmar)
mar (1 = 2/7 Prmaz ) SN Pran

where ¢4, 1s the angle of rotation of the moving object at which the peak of
the curve given by Eqns (15) and (16) is attained.

(17)

Similarly when Wy # W, a length based on W, can pass as per Eqn (17); how-
ever an additional length Al can also pass through due to extra space provided
by max(Wy, Ws). This extended [, can be computed as done in the case of
rod. See Figure (6.d) for moving a rectangle in an asymmetric corridor.

3.3 CASE 3: Sliding along two walls

In this method of moving through an L-corridor, the moving object is translated and
rotated simultaneously by sliding against the two walls of the corridor. When the
transition is completed, the moving object is aligned in such a way that it is ready to
be translated to the exit point. See Figure (7). Details of computing [, for the case
of rod and rectangle in symmetric and asymmetric corridors are discussed below.

In this sliding motion, the moving object starts sliding initially with its two ends
touching two walls of the corridor. During sliding, the moving object reaches a critical
position when it touches the bendpoint a, as well as the two walls. Therefore three
points as shown in Figure (8) constrain the size of the moving object in the corridor.
Let ¢ be the angle that the moving object makes with the X wall of the corridor.
From simple geometry, length mn can be written as follows in Eqn (18).

mu vn

(18)

mn = ,
cosp  sing

Eqn (18) can be rewritten in terms of [,w, Wy and W, as follows.
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Figure 7: CASE 3: Sliding along Two Walls
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(W1 — wsing) N (Wy — weosg)

cos¢ stng

I = (19)

The nature of the curve defined by Eqn (19) is shown in Figure (9) as a set of
graphs. The X-axis shows the angle ¢ and Y-axis shows the corresponding value of [.
We have chosen arbitrary values of Wi = 2, W, = 1 and a range of w values varying
from 0.0...1.2. Plot for w = 1.2 is incomplete because no moving object whose width
is greater than 1.0 can pass through.

entry
Wy
-
m u
p
Y Y
M a v X
— exit
® n W2
0 q X

Figure 8: Computing /., for CASE 3

When entering (¢ = 90°) or when exiting the corridor (¢ = 0?), the moving object
may be of infinite length, provided the width fits into the corridor. As the moving
object slides through the corridor, ¢ decreases from (90°) to (0°). Consequently,
the permissible length first decreases to a minimum value then it starts to increase.
As is obvious from the Figure (9), the minimum [ for each w is the [, that will
successfully slide through the corridor. To find this value analytically, Eqn (19) must

be minimized with respect to ¢ by equating % = 0 to obtain l,,,;, i.e.,

(W1 — wsing)sin®¢ — (Wy — weosd)cos® ¢ = 0 (20)

Figure (10) plots % as a curve against ¢ for a range of W /W, varying from 1...3
and w values varying from 0.0...1.2. The angle at which the curve crosses the line
% = 0 (the X-axis of Figure (10)) is the orientation of the moving object at which /4,
is achieved. As seen from the Figure (10.a), for a symmetric corridor, 4, is achieved
at the same angle (45°), irrespective of the corridor-width and the length and the
width of the moving object. In the case of an asymmetric corridor, [,,,, depends on
corridor dimensions and the width of the moving object (Figure (10.b,c)). The nature

of the plot in Figure (10) appears interesting, as the slope % is constant for all widths

of the moving object when ¢ = 45°. It is evident from Eqn (20) that % depends on
corridor widths and not on dimensions of the moving object when ¢ = 45°.

13



0

Ssss=s=s¢<
M onnnn
PRPOOOOO

|-values

0 15 30 45 60 75 90
angle of rotation

Figure 9: [ vs Angle of Rotation for CASE 3 (W, =2, W, = 1)

Eqns(19) and (20) can be used to obtain [, which can pass through a specific
corridor. A closed form solution for /,,,; is, in general, not obtainable; so, a solution
must be obtained numerically. However, we will use Eqns(19) and (20) to obtain 4.
in special cases of this motion.

1. First consider the case of moving a rod in a symmetric corridor, i.e., Wy = W, =
W and w = 0. Corner points p and ¢ (or m and n) constantly touch walls ¥ and
X respectively. To begin with the moving object is aligned parallel to wall Y
and as the rotation progresses the endpoints keep sliding against the respective
walls such that in the end the moving object lies parallel to the wall X. See
Figure (7.a). To ensure that the entire the moving object remains within the
corridor, the curve traced such that the rod is always tangent to the curve is
important. The curve traced in this manner is called an astroid [LOCT1].

Under these conditions, Eqns(19) and (20) can be rewritten as follows:
Wsing + Weosp — [singcosp = 0 (21)
W(sin’¢ — cos’¢) = 0 (22)

Substitute the value of ¢ (¢ = 45°) obtained from Eqn(21) in Eqn(22) to
obtain [,,,, as:

Lnaz = 2V2W (23)

2. When Wy # W; and w = 0 (Figure (7.b)), the curve passes through coordinates
(W1, W3). Now the general Eqns (19) and (20) can be modified as follows:

Wising + Wacosd — lsingcosp = 0 (24)
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Figure 10: % vs ¢ (angle of rotation) for CASE 3
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Wisin®¢ — Wocos® ¢ = 0 (25)

Eqns(24) and (25) can be solved to obtain /. as:

o = (W 4 W32 (26)
3. Wy = Wy = W and w # 0, that is, for moving a rectangular object in a
symmetric corridor (Figure (7.¢)), Eqns (19) and (20) are simplified to:
W (sing + cosg) — w — lsingcosg =0 (27)
W(sin’¢ — cos’@) + w(sin’¢ — cos*¢) =0 (28)
Substitute the value of ¢ (¢ = 45°) obtained from Eqn(28) in Eqn(27) to
obtain [, as given by Eqn (29)

Loz = 2(V2W — w) (29)

4 Results

A number of interesting results may be inferred from this study. The first is a char-
acterization of the rotation process that may be derived from the analysis. Consider
r(a,b), defined already as the distance between the bend point a and the corner m of
the moving object during the rotation. Then r(a, b) may be derived for each case. In

CASE 1,

| e |-
rab) | Case3
T w3 ol
AL T Case2
|
o 90

angleindegrees ——=

Figure 11: Comparing r(a,b)

r(a,b) =/ (W? — w?) (30)

and thus the value of r(a, b) is constant throughout the rotation from 0° to 90°. See

Figure (11).
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In CASE 2, the function r(a, b) is linearly decreasing as shown in Figure (11). At
the beginning of rotation when ¢ = 0, the function value is /,,,,, corresponding to the
corridor size (Wi, W3) and width of the moving object w; after the completion of the
rotation when ¢ = 90, it linearly decreases to Al [SOW91]. This linear decrease rests
solely on the assumption that the rate of rotation is linearly proportional to the rate
of translation.

In CASE 3, r(a,b) is given by

r(a,b) = \/(wcosqb + lsing — Wy)? + (Wy — wsing)? (31)

and is derivable from simple geometry. The nature of the curve is shown in Fig-
ure (11).

The second set of observations relates to a comparison of the equations of motion
derived for the three cases of motion strategies, in order to gain insights into the
motion planning problem. We looked at two of many possible relations, which we
think are useful both for motion planning and mobile robot design. The first is the
relationship of [,,,, to the corridor widths, assuming that the width of the moving
object is fixed. The aim is to answer the question “what is the maximum length
object, of fixed width, that can pass through any corridor?”, which is analogous to
the SOFA problem and its derivatives. The second is the relationship of /,,,, to the
width w of the moving object, assuming that the corridors are fixed but arbitrary.
The goal is an answer to the question, “given a corridor, what are the possible object
dimensions that would permit the robot to pass through the corridor?”. Answers to
these questions would be of great use both in motion planning and in the design of
mobile robots which are to operate in restricted but well-known domains.

Both relationships are highlighted in the graphs of Figures (12 -15). In plotting
these graphs, the analytical forms of the motion equations that were derived in the
earlier sections were used. Note that CASEs 1 and 3 have convenient analytical forms,
while CASE 2 equations are complicated by the fact that they involve the solutions of
trigonometric equations, which themselves have no analytical solutions but must be
solved numerically. To draw the graphs, we first computed sets of numerical values
using the corresponding equations. These values were then plotted as graphs, as
displayed in the figures. While plotting /,,,, as a function of corridor widths W; and
W5, for convenience we plot [, against Wy, keeping W, fixed when appropriate,
and varying the ratio Wy /Wj.

Figure (12) contains four graphs which show [, for a rod w = 0 as a function of
corridor width. Figure (12.a) illustrates motion of the rod in a symmetric L-corridor
(W1 = Wy = W) by plotting l,., against corridor width W. It turns out that
CASE 1 motion always gives the worst maximum length for any corridor width W.
In Figures (12.b,c and d), we consider motion of a rod in an L-shaped corridor, with
Wi # Wy, We plot [, against Wi, with W, fixed at arbitrary values of 30,40 and
50, with varying Wy /W5. These graphs exhibit similar behaviour. CASE 1 is always
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the worst; it degrades more and more when the corridor width increases. Of the
other cases, CASE 3 is slightly better than CASE 2, though they start nearly equal
when the ratio of the corridor widths is close to 1. To summarize, the maximum
length of a rod moving through an L-shaped corridor increases monotonically with
corridor width; of the three motions, CASE 1 is the worst though the simplest to
execute. CASEs 2 and 3 give nearly the same maximum length when corridor widths

are nearly equal. As Wy /W5 increases, CASE 3 overtakes CASE 2.

Figure (13) illustrates motion of a rectangle of fixed width w in an asymmetric
corridor, for various fixed but arbitrary values of w. [,,,, 1s plotted against Wy, for a
fixed value of W, = 40, and varying the ratio Wi /W5 from 1.0 to 3.0. As obvious in
Figure (13.a), CASE 1 seems worst, while CASE 2 is better than CASE 3 as the ratio
of the corridor widths increases. In Figures (13.b,c and d), CASE 2 has a non-linear
curve, and CASE 1 gives good performance for low values of W /W, in Figure (13.c)
and most of the time in Figure (13.d). In summary, we can say that as w increases
and tends towards a corridor dimension, CASE 1 gives good performance.

Figure (14) illustrates the motion of a rectangle by comparing ., with w, for
varying corridor width W of a symmetric corridor. It is obvious that as width w
of the moving object increases, the maximum length decreases. Also, even though
CASE 1 starts off worst for small w, it does well as width w increases.

Figure (15) repeats the experiment of Figure (14) for an asymmetric corridor, with
similar results.

The analysis of motion in CASE 3 gives some important insights. As already

discussed, for the angle value of (45°), % is independent of moving object width and
depends only on corridor widths. Since we have assumed that Wy > W, this slope is
always positive. Further, the slope is negative at ¢ = 0, so that the equation % =0

always has a solution lying between (0°) and (45°), which is a very useful observation.

5 Conclusions

This paper deals with motion planning for a rectangular moving object in certain
prototypical situations. These prototypical situations arise due to the freespace rep-
resentation in a 2-D isothethetic workspace. The solution for the L-corridor, optimized
with respect to geometric constraints on the moving object and the corridor, has been

given. All other cases may be dealt with using this solution; see [AHM90b] [SOW91].

In the motion strategies suggested in this paper, CASE 3 in general is the best
for a given width, as far as motion of the largest sized object is concerned. CASE 2
is close to CASE 3 when the width of the moving object is small and deteriorates
rapidly for larger widths. CASE 1 is the worst when the width is small but shows
improvement over CASE 2 and CASE 3 when moving object width becomes close to
the corridor width.
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CASE 1 is obviously very simple and requires not-so-hard kinematics to achieve
the motion. But the drawback of this method is that comparatively smaller length
(when width is small) of the moving object can pass through the corridor. CASE 2
and CASE 3 allow larger lengths to pass through, but the mechanism of motion is
complicated and the corresponding kinematics has demanding requirements.

Finally, the significant contribution of the paper is the recognition that the the-
oretical analysis for computing the largest objects which can pass through certain
prototypical situations has to be modulated by motion type as well. Also certain
mechanisms of motion may be attractive in terms physical dimensions of the moving
object but may not be achievable due to limitations on robot kinematics.
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Figure 13: [, for Moving a Rectangular Object
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