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Abstract

We discuss the motion planning of a rectangular moving object in certain

prototypical situations arising in a ��D isothetic workspace� We have sug�

gested three possible motion strategies involving rotation and translation of

the moving object negotiating an L�shaped corridor� We have also given

simulation results to compare the three cases of the proposed motion�
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� Introduction

Motion planning is required for moving a robot from a source placement �s� to a
destination placement �d� within a workspace occupied by obstacles� Motion planning
for a mobile robot can be viewed as a two�level process� At level one� the primary
interest is in solving the FINDPATH problem� called path planning under global
constraints� The result of this level is a path description of the desired motion from s

to d� Once a path is proposed by level one� the level two performs trajectory planning

wherein local motion is decided based on local geometric properties of the workspace�
the moving object and other constraints along the speci�ed path� The output of
trajectory planning is a sequence of placements of the moving object� Normally�
trajectory planning based on local constraints does not change a path computed
by FINDPATH� since the latter would have considered all such constraints before
computing the path�

Freespace decomposition is one of the geometric methods employed to solve the
path planning problem �HWA��	� The freespace method works in two stages� In the
�rst stage� an appropriate representation scheme that captures the essential properties
of the problem environment is devised
 the second stage utilizes this representation
to solve the problem at hand� In other words� this method imposes an abstract
geometric structure upon the physical structure of obstacles and the moving object�
Generally� such a representation uses a primitive geometric shape to describe the
freespace� so that the freespace can be viewed as a collection of connected corridors of
primitive shapes� Due to the geometric simplicity of the primitive shape� corridors and
their connections may be categorized into a �nite number of prototypical situations
�MAD��	� In order to plan collision free robot motion both at FINDPATH and at
trajectory planning levels� it is essential that we understand the mechanism of moving
the robot through prototypical situations�

The problem of moving an object from one point to another inside a complex
��D and 
�D workspace has been well studied �LAT��	� However moving an object
in prototypical situations has not been given much attention� Often complex general
solutions which address global aspects of the motion planning problem are not suitable
for a simpli�ed instance of the problem� Also certain techniques for solving the general
motion planning problem� like freespace decomposition� naturally lead to subproblems
involving prototypical situations� We brie�y mention some e�orts in this direction
below�

The SOFA PROBLEM� determining the largest region �or sofa� which can be
moved through a ��D corridor was originally proposed by Moser �MOS��	� In one of
the early attempts� Goldberg �GOL��	 and Sebastian �SEB��	 considered an analytical
solution to �nd the largest sized object that can be maneuvered through a variety of
corridors� Maruyama �MAR�
	 gave an approximation method for solving the SOFA
PROBLEM for shapes which were angularly simple polygons� He used a sequence
of transformations to move the sofa through a given corridor� Howden �HOW��	
used chain representation to move the largest rectangle of a given width through
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an L�shaped corridor� His approach was applicable only when the given objective
function speci�es the generic shape� e�g�� the largest square or the widest rectangle�
but problems with Moser�s objective function� like the largest�area sofa� cannot be
tackled� Strang �STR��	 and Yap �YAP��	 have dealt with complexity theoretic
analysis of moving a rigid object through a door and its generalization� Strang studied
the motion of convex objects through a door in ��D and 
�D and tried to compute
the minimum width of the door which allows the passage of the object� Yap then
extended the work to the motion of nonconvex polygonal objects and showed that
all passages of the moving objects through the door can be reduced to a sequence of
certain elementary motions�

This paper addresses the issue of motion planning in certain prototypical situations
arising in a ��D isothetic workspace for a moving robot modelled as a rectangle�
The term isothetic means that all object boundaries are parallel to the principal
axes� An isothetic workspace is a realistic model of a controlled indoor robot world
while a rectangle is a good �rst approximation of the footprint of a mobile robot� A
rectangle is also the natural choice of a primitive shape to represent the freespace in
an isothetic workspace as it is the simplest of isothetic shapes� Ahmed and Biswas
�AHM��a	 have devised a representation for describing such a workspace� In this
representation� rectangle�based primitive corridors arise naturally and include the I��
L�� T� and X�shaped prototypical segments� In this research� we propose a solution
to the motion planning problem in such prototypical corridors� based on geometric
constraint analysis of the motion�

the rest of the paper is organized as follows� Section � describes the prototypical
situations arising in the isothetic workspace� In section 
� we identify three strategies
for motion through an L�shaped path and deal them in detail� Thereafter section �
discusses the relative merits and demerits of these models based on experimental
results and the �nal section gives concluding remarks�

� Prototypical Corridor Segments

We consider a moving object within a planar workspace containing obstacles which
are modelled as isothetic polygons� The workspace itself is bounded by an isothetic
polygon� The moving object is assumed to be a rectangle� The motion of the robot
consists of translations and rotations� The translation is restricted to the directions of
the two principal axes and the rotation is about any point on the edge of the moving
object �AHM��b	 �SOW��	�

In this setting� the freespace is modelled as overlapping rectangular regions�
�AHM��a	� Motion of an object through these regions is viewed as crossingovers
from one region to the neighbouring region� We can think of a path from one point
to another as a corridor through which the moving object manoeuvers itself� See
Figure ���� where two points s and d are connected by a corridor�
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Figure �� An Isothetic Workspace

A long corridor connecting two points can be considered as composed of corridor
segments� In the isothetic workspace with rectangular corridors� four prototypical
corridor segments may be recognized�

� Straight segment I which is horizontal or vertical

� L�segment� which has two I�segments intersecting at right angles

� T�segment� where three I�segments join in a T shape

� X�segment� consisting of four I�segments intersecting in an X shape

See Figure ��� for illustration� �

(a) I-corridor (b) L-corridor

(c) T-corridor (d) X-corridor

Figure �� Prototypical Corridors

Motion planning along the I�segment is straightforward� Once the moving object is
in the corridor� it can be moved using translation alone� The largest object which can






pass through is determined by the length and width of the corridor� Moving along
the L�segment involves translation and if necessary rotation� Rotation is con�ned
to the region where two I�segments meet� The remaining corridor segment can be
maneouvered through by translating the moving object�
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c

(a) (b)

(c) (d)

Figure 
� Motion in T� and X�corridor

The case of moving through T� and X�segments has two possibilities� First� the
motion is along the sleeve� i�e�� the moving object enters from one end of the sleeve
and exits from the other end� See path marked by arrows a and b in Figure �
�� It
is important to note that in this representation� the T� and X�segments can never
have sleeves with two varying entry and exit widths� thus� the motion in these cases
simpli�es to moving along an I�segment� In the second situation� the moving object
enters through one end of the sleeve and exits from the vest end �path marked by
arrows a and c�� It can be shown that for a convex moving object like a rectangle� this
motion can be simpli�ed to moving through an L�segment �Figure �
�b� and �
�d���
Therefore we concentrate on motion within an L�segment which can be applied to T�
and X�segments� For notational simplicity� we will use the term corridor for corridor
segment now onwards�

� Motion through L�corridor

When motion through an L�corridor comprises a sequence of translations and rota�
tions� three basic cases of such motion can be identi�ed� In CASE �� the motion
is e�ected in several steps of translation and a single step of rotation� CASE � in�
volves incremental translation and incremental rotation simultaneously about a pivot�
Lastly� in CASE 
� the object moves using incremental translation and incremental
rotation such that the moving object slides against the corridor walls� touching the
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walls at two points� unlike earlier cases where it touches the walls only at the pivot
point �AHM��b	 �SOW��	� We now consider these cases of moving through an L�
corridor in detail� In each case� we �rst consider the motion of a rigid rod through
an L�corridor and then extend it to a rectangle� We compute the maximum length of
the moving rectangle for a given width� For simplicity we �rst assume that the corri�
dor is symmetric� i�e�� its width is constant� and extend the result to an asymmetric
corridor�

It is convenient to have the following de�nitions� Referring to Figure ���� let the
four walls forming the L�corridor be de�ned as

X � f�x� �� � x � �g
Y � f��� y� � y � �g
X � � f�x�W�� � x � W�g
Y � � f�W�� y� � y � W�g
Let o be the origin and a the bendpoint of the L�corridor� Let the rectangular

moving object of length l and width w enter the corridor at the end whose width is
marked W� and exit through the end of width W� � When the corridor is symmetric�
W� � W� � W � If W� �� W�� i�e�� for an asymmetric corridor� it is assumed that
W� � W� � When the moving object degenerates to a rod then w � �� For a given w�
let lmax be de�ned as the maximum length which can pass through the corridor� Let
edges pq and mn of the moving object move close to walls Y and Y

�
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Figure �� Moving Object in an L�corridor

In general� the length of the moving object which can pass through the corridor
can be expressed by a functional relationship given by Eqn ����

lmax � f�W��W�� w� r�a� b�� ���

In other words� maximum length is a function of the widths of the entry and exit
ends of the corridor� W� and W�� width w of the moving object and a relationship
r�a� b� between bendpoint a and an arbitrarily chosen� but �xed� point b on the edge
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mn of the moving object� We choose corner m of edge mn on the moving object as
the point b� In fact r�a� b� determines the physical motion of the moving object while
transiting from the segment Y Y

�

to XX
�

� The transition involving only translation is
simple and the corresponding relationship can be de�ned easily� But the transitions
which combine both translation and rotation� and ultimately result in change of
orientation of the moving object� are more complicated� Of several ways for such
a transition to take place� we present three basic ones in the following subsections�
Later we discuss their relative importance and utility�

��� CASE �� Single rotation

In CASE �� the moving object is translated along wall Y
�

� rotated by ��o about the
pivot point a and then translated along X

�

to the exit� See Figure ���� Various
situations corresponding to corridor widths and dimensions of the moving object are
discussed below�

�� If W� � W� � W � and w � �� that is� the moving object is a rod� then the
curve traced by the endpoints of the rod is a portion of a circle due to the pivot
point being �xed at the corner a of the corridor and the midpoint of the moving
object rod� Radius of the circle is equal to l��� See Figure ���a�� The equation
of the circle is given by Eqn ����

�x�W �� � �y �W �� � l��� ���

The condition for a successful rotation is that no portion of the circle may lie
outside the corridor extents� Using simple geometry� it is easy to compute the
value of the maximum length of rod� lmax which is given by Eqn �
��

lmax � �W �
�

If W� �� W�� that is� when the corridor is asymmetric� the end points of the rod
trace a quarter each of two circles whose radii are proportional to the entry and
exit widths of the corridor� The centres of these two quarter circles are located
at the same point a� Thus lmax is the sum of two radii of the largest such circles
enclosed by the corridor and is given by Eqn ����

lmax �W� �W� ���

See Figure ���b� for the illustration of such a motion�

�� If w � � then the four corners p� q�m and n of the rectangle trace four quarter�
circles with the same centre at point a but varying radii� In order to rotate
successfully� the quarter circles traced by points p and q must lie within the
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Figure �� CASE �� Single Rotation
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corridor� Hence lmax is less than the quantity given in Eqn ��� as more space
is be required to rotate due to the width of the moving object� which will cut
down on length �Figures ���c and ��d���

If W� � W� � W then the radii of circles traced by points p and q are equal toq
�W � � w�� and therefore lmax corresponding to the largest circles within the

corridor extents can be computed as in Eqn ����

lmax � �
q
�W � � w�� ���

and in the general case when W� �� W�� lmax is given as Eqn ����

lmax �
q
�W �

�
� w�� �

q
�W �

�
� w�� ���

��� CASE �� Incremental translation and rotation

CASE � also deals with rotation of the moving object at a single pivot point but
it is combined with translation� The moving object is translated along Y

�

till one
end reaches bend point a of the corridor
 then it is rotated by making a as the pivot
point and translated simultaneously such that after ��o rotation� it is aligned along
wall X

�

� whence it is translated to the exit point� For simplicity� it is assumed that
the amount of translation is linearly proportional to the angle of rotation
 however
a nonlinear relationship between the translation and rotation may also be used to
produce certain desired e�ects in the motion� For a successful motion through the
corridor� the curves traced by the endpoints of the moving object should lie within the
corridor extents� See Figure ��� for the motion in CASE �� The details of computing
lmax are given below�

�� If W� � W� � W and w � �� that is� if moving object is a rod� then the curves
traced by the locii of endpoints m and n �or p and q� since both coincide�
determine the maximum length of rod which can pass through the corridor�
To ensure a collision�free rotation� the two curves must lie within the corridor
extents� In general� for a rod of length l� the equation of the curve traced by
point m is given by Eqns ��� and ����

x �W � �l � �l�

�
�sin� ���

y �W � �l � �l�

�
�cos� ���

where � is the angle of rotation measured from the wall Y
�

� During rotation it
varies from �o to ��o while moving object is also being translated� The amount
of translation is linearly proportional to rotation� The quantity �l�� in the
equations above is the constant of proportionality� The equation corresponding
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Figure �� CASE �� Incremental Translation and Rotation
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to endpoint n �or q� is similar since the curve traced is mirror symmetric� See
Figure ���a�� Therefore� it is su�cient in this case to deal with the curve traced
by point m� The kind of rotation envisaged ensures that the minimum value of
x in Eqn ��� is greater than �� We need to �nd the angle � at which it happens�
This angle can be obtained by equating dx

d�
� � in the general case� i�e�

�cos�� ��cos� � �sin� � � ���

Eqn ��� can be solved numerically for �� For the curve which has the largest
X�axis extent con�ned within the corridor� let this angle be denoted by �max�
In other words� �max is the angle at which placement of the rod is critical for a
collision�free motion� It is interesting to note that �max is independent of object
and corridor dimensions in this case� Now the corridor should be wide enough
to accommodate this curve which will ensure the passage of the moving object�
Hence the peak distance must �t within the corridor� i�e��

W � �l � �l

�
�max�sin�max ����

or

lmax �
W

sin�max�� � �

�
�max�

����

If W� �� W�� that is� for an asymmetric corridor� a length l corresponding to W�

�assuming W� � W�� and computed by Eqn ���� can easily pass
 however an
additional length �l can also pass through due to more space provided by W��
The locus of the point m is therefore an identically shaped curve but shifted by
�l from the previous curve� Hence the Eqns ��� and ��� must be modi�ed as

x � W� � �l ��l� �l�

�
�sin� ����

y � W� � �l��l � �l�

�
�cos� ��
�

Let �
�

max be the angle of rotation at which maximumX�axis extent of the curve
traced by the endpoint occurs
 then in order to restrict the motion within the
corridor� Eqn ���� must be maximized with respect to angle of rotation �� As
a result� Eqn ���� must be satis�ed� i�e��

W� � �l� �l

���

max

�sin�
�

max ��lsin�
�

max ����

and therefore� Eqn ���� may be used to calculate lmax � l��l� See Figure ���b�
for the illustration� The dotted lines show the extra length �l which can pass
through in an asymmetric case� Note that now �

�

max is dependent on corridor
width and size of the moving object unlike the previous case of symmetric
corridor�
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�� If w � � and W� � W� � W � i�e�� for a rectangular moving object� the length
that can pass through the corridor is less than that in the case of rod� The
locus of outer vertices p and q are now important to determine the maximum
length of the moving object that can pass through without colliding with the
walls of the corridor� For vertex p� for example� the x�coordinate is now a
quantity wcos� less than the x�coordinate of vertex m and similarly� the y�
coordinate is a quantity wsin� less than the y�coordinate of vertex m� Using
the derivation above� the equation of the locus of the point p can be written as
�see Figure ���c��

x � W � wcos�� �l � �l����sin� ����

y � W � wsin�� �l� �l����cos� ����

Using Eqns ���� and ���� the lmax can be obtained by Eqn ���� as follows�

lmax �
�W � wcos�max�

�� � ����max�sin�max
����

where �max is the angle of rotation of the moving object at which the peak of
the curve given by Eqns ���� and ���� is attained�

Similarly when W� �� W�� a length based on W� can pass as per Eqn ����
 how�
ever an additional length �l can also pass through due to extra space provided
by max�W��W��� This extended lmax can be computed as done in the case of
rod� See Figure ���d� for moving a rectangle in an asymmetric corridor�

��� CASE �� Sliding along two walls

In this method of moving through an L�corridor� the moving object is translated and
rotated simultaneously by sliding against the two walls of the corridor� When the
transition is completed� the moving object is aligned in such a way that it is ready to
be translated to the exit point� See Figure ���� Details of computing lmax for the case
of rod and rectangle in symmetric and asymmetric corridors are discussed below�

In this sliding motion� the moving object starts sliding initially with its two ends
touching two walls of the corridor� During sliding� the moving object reaches a critical
position when it touches the bendpoint a� as well as the two walls� Therefore three
points as shown in Figure ��� constrain the size of the moving object in the corridor�
Let � be the angle that the moving object makes with the X wall of the corridor�
From simple geometry� length mn can be written as follows in Eqn �����

mn �
mu

cos�
�

vn

sin�
����

Eqn ���� can be rewritten in terms of l� w�W� and W� as follows�
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l �
�W� � wsin��

cos�
�

�W� � wcos��

sin�
����

The nature of the curve de�ned by Eqn ���� is shown in Figure ��� as a set of
graphs� The X�axis shows the angle � and Y�axis shows the corresponding value of l�
We have chosen arbitrary values of W� � ��W� � � and a range of w values varying
from ��� � � � ���� Plot for w � ��� is incomplete because no moving object whose width
is greater than ��� can pass through�

Y’

exit

entry

o

a

W1

W2

X’

X

Y

m

n

q

u

vM

p

Figure �� Computing lmax for CASE 


When entering �� � ��o� or when exiting the corridor �� � �o�� the moving object
may be of in�nite length� provided the width �ts into the corridor� As the moving
object slides through the corridor� � decreases from ���o� to ��o�� Consequently�
the permissible length �rst decreases to a minimum value then it starts to increase�
As is obvious from the Figure ���� the minimum l for each w is the lmax that will
successfully slide through the corridor� To �nd this value analytically� Eqn ���� must
be minimized with respect to � by equating dl

d�
� � to obtain lmax� i�e��

�W� � wsin��sin��� �W� �wcos��cos�� � � ����

Figure ���� plots dl
d�

as a curve against � for a range ofW��W� varying from � � � � 

and w values varying from ��� � � � ���� The angle at which the curve crosses the line
dl
d�

� � �the X�axis of Figure ����� is the orientation of the moving object at which lmax

is achieved� As seen from the Figure ����a�� for a symmetric corridor� lmax is achieved
at the same angle ���o�� irrespective of the corridor�width and the length and the
width of the moving object� In the case of an asymmetric corridor� lmax depends on
corridor dimensions and the width of the moving object �Figure ����b�c��� The nature
of the plot in Figure ���� appears interesting� as the slope dl

d�
is constant for all widths

of the moving object when � � ��o� It is evident from Eqn ���� that dl
d�

depends on
corridor widths and not on dimensions of the moving object when � � ��o�
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 �W� � ��W� � ��

Eqns���� and ���� can be used to obtain lmax which can pass through a speci�c
corridor� A closed form solution for lmax is� in general� not obtainable
 so� a solution
must be obtained numerically� However� we will use Eqns���� and ���� to obtain lmax

in special cases of this motion�

�� First consider the case of moving a rod in a symmetric corridor� i�e��W� � W� �
W and w � �� Corner points p and q �or m and n� constantly touch walls Y and
X respectively� To begin with the moving object is aligned parallel to wall Y
and as the rotation progresses the endpoints keep sliding against the respective
walls such that in the end the moving object lies parallel to the wall X� See
Figure ���a�� To ensure that the entire the moving object remains within the
corridor� the curve traced such that the rod is always tangent to the curve is
important� The curve traced in this manner is called an astroid �LOC��	�

Under these conditions� Eqns���� and ���� can be rewritten as follows�

Wsin��Wcos�� lsin�cos� � � ����

W �sin��� cos��� � � ����

Substitute the value of � �� � ���� obtained from Eqn���� in Eqn���� to
obtain lmax as�

lmax � �
p
�W ��
�

�� WhenW� �� W� and w � � �Figure ���b��� the curve passes through coordinates
�W��W��� Now the general Eqns ���� and ���� can be modi�ed as follows�

W�sin��W�cos� � lsin�cos� � � ����
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W�sin
���W�cos

�� � � ����

Eqns���� and ���� can be solved to obtain lmax as�

lmax � �W
���
�

�W
���
�

���� ����


� If W� � W� � W and w �� �� that is� for moving a rectangular object in a
symmetric corridor �Figure ���c��� Eqns ���� and ���� are simpli�ed to�

W �sin�� cos�� � w � lsin�cos� � � ����

W �sin��� cos��� � w�sin��� cos��� � � ����

Substitute the value of � �� � ���� obtained from Eqn���� in Eqn���� to
obtain lmax as given by Eqn ����

lmax � ��
p
�W � w� ����

� Results

A number of interesting results may be inferred from this study� The �rst is a char�
acterization of the rotation process that may be derived from the analysis� Consider
r�a� b�� de�ned already as the distance between the bend point a and the corner m of
the moving object during the rotation� Then r�a� b� may be derived for each case� In
CASE ��

l max

angle in degrees

l

r(a,b)

O

Case 2

90

Case 3

Case 1
2
1(W - w )

2

Figure ��� Comparing r�a�b�

r�a� b� �
q
�W �

�
� w�� �
��

and thus the value of r�a� b� is constant throughout the rotation from �o to ��o� See
Figure �����
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In CASE �� the function r�a� b� is linearly decreasing as shown in Figure ����� At
the beginning of rotation when � � �� the function value is lmax corresponding to the
corridor size �W��W�� and width of the moving object w
 after the completion of the
rotation when � � ��� it linearly decreases to �l �SOW��	� This linear decrease rests
solely on the assumption that the rate of rotation is linearly proportional to the rate
of translation�

In CASE 
� r�a� b� is given by

r�a� b� �
q
�wcos� � lsin��W��� � �W� � wsin��� �
��

and is derivable from simple geometry� The nature of the curve is shown in Fig�
ure �����

The second set of observations relates to a comparison of the equations of motion
derived for the three cases of motion strategies� in order to gain insights into the
motion planning problem� We looked at two of many possible relations� which we
think are useful both for motion planning and mobile robot design� The �rst is the
relationship of lmax to the corridor widths� assuming that the width of the moving
object is �xed� The aim is to answer the question �what is the maximum length
object� of �xed width� that can pass through any corridor��� which is analogous to
the SOFA problem and its derivatives� The second is the relationship of lmax to the
width w of the moving object� assuming that the corridors are �xed but arbitrary�
The goal is an answer to the question� �given a corridor� what are the possible object
dimensions that would permit the robot to pass through the corridor��� Answers to
these questions would be of great use both in motion planning and in the design of
mobile robots which are to operate in restricted but well�known domains�

Both relationships are highlighted in the graphs of Figures ��� ����� In plotting
these graphs� the analytical forms of the motion equations that were derived in the
earlier sections were used� Note that CASEs � and 
 have convenient analytical forms�
while CASE � equations are complicated by the fact that they involve the solutions of
trigonometric equations� which themselves have no analytical solutions but must be
solved numerically� To draw the graphs� we �rst computed sets of numerical values
using the corresponding equations� These values were then plotted as graphs� as
displayed in the �gures� While plotting lmax as a function of corridor widths W� and
W�� for convenience we plot lmax against W�� keeping W� �xed when appropriate�
and varying the ratio W��W��

Figure ���� contains four graphs which show lmax for a rod w � � as a function of
corridor width� Figure ����a� illustrates motion of the rod in a symmetric L�corridor
�W� � W� � W � by plotting lmax against corridor width W � It turns out that
CASE � motion always gives the worst maximum length for any corridor width W �
In Figures ����b�c and d�� we consider motion of a rod in an L�shaped corridor� with
W� �� W�� We plot lmax against W�� with W� �xed at arbitrary values of 
���� and
��� with varying W��W�� These graphs exhibit similar behaviour� CASE � is always

��



the worst
 it degrades more and more when the corridor width increases� Of the
other cases� CASE 
 is slightly better than CASE �� though they start nearly equal
when the ratio of the corridor widths is close to �� To summarize� the maximum
length of a rod moving through an L�shaped corridor increases monotonically with
corridor width
 of the three motions� CASE � is the worst though the simplest to
execute� CASEs � and 
 give nearly the same maximum length when corridor widths
are nearly equal� As W��W� increases� CASE 
 overtakes CASE ��

Figure ��
� illustrates motion of a rectangle of �xed width w in an asymmetric
corridor� for various �xed but arbitrary values of w� lmax is plotted against W�� for a
�xed value of W� � ��� and varying the ratio W��W� from ��� to 
��� As obvious in
Figure ��
�a�� CASE � seems worst� while CASE � is better than CASE 
 as the ratio
of the corridor widths increases� In Figures ��
�b�c and d�� CASE � has a non�linear

curve� and CASE � gives good performance for low values of W��W� in Figure ��
�c�
and most of the time in Figure ��
�d�� In summary� we can say that as w increases
and tends towards a corridor dimension� CASE � gives good performance�

Figure ���� illustrates the motion of a rectangle by comparing lmax with w� for
varying corridor width W of a symmetric corridor� It is obvious that as width w
of the moving object increases� the maximum length decreases� Also� even though
CASE � starts o� worst for small w� it does well as width w increases�

Figure ���� repeats the experiment of Figure ���� for an asymmetric corridor� with
similar results�

The analysis of motion in CASE 
 gives some important insights� As already
discussed� for the angle value of ���o�� dl

d�
is independent of moving object width and

depends only on corridor widths� Since we have assumed that W� � W�� this slope is
always positive� Further� the slope is negative at � � �� so that the equation dl

d�
� �

always has a solution lying between ��o� and ���o�� which is a very useful observation�

� Conclusions

This paper deals with motion planning for a rectangular moving object in certain
prototypical situations� These prototypical situations arise due to the freespace rep�
resentation in a ��D isothethetic workspace� The solution for the L�corridor� optimized
with respect to geometric constraints on the moving object and the corridor� has been
given� All other cases may be dealt with using this solution
 see �AHM��b	 �SOW��	�

In the motion strategies suggested in this paper� CASE 
 in general is the best
for a given width� as far as motion of the largest sized object is concerned� CASE �
is close to CASE 
 when the width of the moving object is small and deteriorates
rapidly for larger widths� CASE � is the worst when the width is small but shows
improvement over CASE � and CASE 
 when moving object width becomes close to
the corridor width�

��



CASE � is obviously very simple and requires not�so�hard kinematics to achieve
the motion� But the drawback of this method is that comparatively smaller length
�when width is small� of the moving object can pass through the corridor� CASE �
and CASE 
 allow larger lengths to pass through� but the mechanism of motion is
complicated and the corresponding kinematics has demanding requirements�

Finally� the signi�cant contribution of the paper is the recognition that the the�
oretical analysis for computing the largest objects which can pass through certain
prototypical situations has to be modulated by motion type as well� Also certain
mechanisms of motion may be attractive in terms physical dimensions of the moving
object but may not be achievable due to limitations on robot kinematics�
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