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Abstract

A method of generating a video rate edge maps� and thereby segmenting an

image into regions based on the Kolmogorov�Smirnov test is presented� By

applying this test and comparing cumulative distribution functions of the

intensities in the neighbourhood of a given pixel� the pixel can be accurately

classi�ed as either an edge pixel on the boundary between regions� or as a

pixel belonging to a particular type of region� It is shown that a custom VLSI

design for this algorithm using parallel pipelined architecture is realisable�

The outline of this design is presented and then the critical path modules are

simulated�
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Designing a Video Rate Edge detection ASIC

1.  Introduction

Edge detection is a critical element in computer vision, since edges contain a major
fraction of image information. For example, according to Marr [11], stereo vision
operates not on a pair of images per se but on the tokens that arise during, or as the
results of, edge detection. The function of edge detection is to identify the boundaries of
homogeneous regions in an image based on properties such as intensity and texture.

Despite two decades of research, computer vision is only recently being exploited
by the industry. One of the major reasons is that for large images (typically ≥ 512×512
pixels) with many operating to be performed on each pixel at video rate (25 or 50 frame
per second), a huge volume of operations need to be carried out in a limited time. To
realise real-time vision systems, a trade off between algorithmic complexity and
feasible fast hardware structures is required. In general, more robust algorithms need
higher complexity operations, and therefore, there is less chance for these to be
performed in real time.

For different levels of support for computer vision, different ASIC architectures
have been proposed [4], in which, the various algorithmic properties allow realisation in
silicon having different properties of speed, power dissipation, area, and I/O
configurations. The simplest way to realise a real time edge detection chip is to use
binary images [1], with the loss of considerable information in the image. An
alternative is to use grey scale images. Many edge detection algorithms have been
developed based on the computation of the intensity gradient vector of grey images.
The Sobel and compass operators are examples. These algorithms, in general, are
sensitive to noise and speckle in the image but their computations are simple. Plessey’s
CMOS edge detector chip, the PDSP 16401, implements the compass operator for 10-
bit grey scale images. This chip supports the basic operations and also delivers a 13-bit
word that gives a measure of how sharp the edges are [2]. Kanopoulos et al [9] describe
the implementation of the Sobel operator. To overcome the inherent problems in the
gradient based operators, Lee et al [10] store the gradient amplitudes in off-chip
memories and then, in a recursive manner, detect and trace the edges.

An alternative to the use of ASIC design for edge detection, is the use of more
general purpose chips designed for image processing. For example Ruetz and Brodersen
[12] designed a set of eight chips consisting of a convolver, a sorting filter, etc. Ruff’s
implementation [13] of Canny’s edge detector operating at video rate is an example of
using these chips. His use of buffered, pipelined processors is a typical architecture in
early vision processing. Ruff demonstrated how a state-of-the-art edge operator can be
realised using special-purpose parallel hardware.

An alternative to gradient based techniques is a statistical approach, where the
distribution of intensity values in the neighbourhood of a given pixel is computed to
determine if the pixel is to be classified as an edge. In the literature, less attention has
been paid to statistical approaches. However, this method has been approached by some
researchers [3, 15]. The general scheme of statistical edge detection algorithms is
usually based on comparing two adjacent samples obtained from the image data. Then
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the following hypotheses are formulated:

H 0: Both samples belong to a homogeneous region.
H 1: The samples belong to more than one homogeneous region.

If the null hypothesis is rejected, an edge is declared between the two samples.

We have developed a new edge detection algorithm based on non-parametric
statistical methods. It has been shown [5] that this algorithm is robust in countering
additive noise, including Gaussian and impulse noise. Another advantage of this
algorithm is that the simple mathematical operations used in this algorithm, lend
themselves to a parallel pipelined architecture. In this paper, we present the algorithm
and how it can be realised as an ASIC for real time edge detector design. Real time edge
detection for 8-bit grey scale images occurring at 25 frames per second, requires a 7
MHz chip. To show that this is achievable, first, we realise the algorithm as a parallel
pipelined architecture and then design the critical path modules and simulate them prior
to realisation. It is shown that a real time edge detector chip with a good margin for
increase in speed is realistic. In the next section, the edge detection algorithm is
explained briefly, and in the following sections, the implementation of this algorithm is
detailed.

2.  The edge detection algorithm

To implement the edge detection algorithm, a 5×5 window is scanned over the
image. Since there is no a priori knowledge about the direction of edges, the window is
partitioned into two parts (X and Y samples) in four different orientations shown in
Figure 1, in order to identify an edge.

X Y

X

Y X

Y X

Y

(a) (b) (c) (d)

Figure 1.  The four orientations used for declaring edge detection

In each window, we obtain N = m + n observations X 1 ,  . . . ,  Xm and Y 1 ,  . . . ,  Yn .
Based on the Kolmogorov-Smirnov test, the null hypothesis that the X and Y samples
are from the same population against the alternative that they are from different
population is tested. For this purpose, we may write the null hypothesis as

H 0 : P (X  ≤ a) = P (Y  ≤ a), for all a.

To verify this hypothesis, the cumulative distribution function, cdf, of two samples are
compared. To achieve this, the N observations from the two samples are ordered to
form the set {Z (i) : i = 1,...,N}, where Z (1)  ≤ Z (2)  ≤  . . .  ≤ Z (N) . The statistic J is
defined as follows [7]:

J  = 
d

mn____
i =1,...,N
max

�
�
�
|Fm(Z (i)) − Gn(Z (i))|

�
�
�

(1)
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where m and n are as before, d is the greatest common divisor of m and n, and

Fm(a) = 
m

number  of  X's  ≤ a________________  and  Gn(a) = 
n

number  of  Y's  ≤ a________________

are considered to be the empirical cumulative distribution functions for two random
samples of sizes m and n from two distributions with cdf F(x) and G(y). We can
simplify the calculation of J, and eliminate sorting by partitioning the range of the N
observed data into ρ equal sub-ranges with length τ, as follows:

τ = 
ρ

Z (N)  − Z (1)__________.

Supposing ρ = 4, the following set can be defined:

θ  =  
�
�
�
  Z (1)  + τ  ,   Z (1)  + 2τ  ,   Z (1)  + 3τ  

�
�
�

(2)

With a 5×5 window divided into two equal sub-regions, and excluding the center pixel,
we get m = n = d = 12. Now Equation (2) may be rewritten as follows:

J  = 
θk ∈ θ
max

�
�
�
|Fm(θk) − Gn(θk)|

�
�
�
, (3)

where k = 0, 1, 2, and Fm(θk) and Gn(θk) are defined as follows:

Fm(θk) = number  of  X's  ≤ θk (4)

Gn(θk) = number  of  Y's  ≤ θk (5)

From Figure 1, if an edge exists in the window, at least one of the partitions is matched
with the direction of the edge and therefore, results in the greatest J. For each pair
shown in Figure 1, the statistic J is computed in parallel. Then all J’s are ordered to
form the set {J (i) : i = 1,...,4}, where J (1)  ≤  . . .  ≤ J (4) . Therefore, for the two-sided
Kolmogorov-Smirnov α-level test (viz H 0 versus the broad alternatives that H 0 is not
true)

reject  H 0  if    J (4)  ≥ j (α,m,n)
accept  H 0  if    J (4)  < j (α,m,n)

where j (α,m,n) is extracted from the Table A 23 in [7]. Due to the nondecreasing
nature of the cumulative distribution function, noise and speckle are suppressed
significantly. However, for further improved noise suppression, the first and second
greatest of the Kolmogorov-Smirnov statistics may be tested against desired thresholds.

3.  Hardware Realisation

To implement a real time edge detection chip, the Kolmogorov-Smirnov algorithm
is realised in a pipelined fashion. To obtain real-time processing, each stage has its
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time constraints which affects the architecture, logic, and technology used to realise the
chip. Therefore, we need to exploit the parallelism implicit in the algorithm to
overcome the video frame refresh constraint of 40ms per frame. The hardware
schematic of the ASIC is shown in Figure 2.
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Figure 2. The overal scheme of the hardware design

The basic principle of a pipelined operation is to buffer the minimum amount of
data and to perform all computations based on one data sample before the next input
sample arrives. Since a 5×5 window is used to implement this algorithm, four rows of
the image are stored in shift registers as shown in the right part of Figure 2. As
illustrated, the algorithm is mapped to the various stages of a pipeline. The basic
operations of each stage involve mainly addition, subtraction, comparison, and logic
decision. These operators are repeated to form the required functions.

3.1  Stage 1: Range & θ Finding

All cells (registers) are indexed by their rows and columns as Ci, j . At each frame
time (t 0), the procedure of edge detection begins within the 5×5 window centered at
C 2,2. The computation determines whether the center pixel is an edge or non-edge
element. The first step in implementing this algorithm is to calculate the range of data
within the 5×5 window and thereby calculate the θ set in Equation (2). To achieve video
rate edge detection, the θ set needs to be ready at time t 0, therefore, the computation of
the range needs to be started before t 0. This block, named Range & θ Finder, is located
at the top of Figure 2. The detailed operations of this block are shown in Figure 3.
As seen from this figure, the operations start from column 11 at time t −11, and range
calculation is completed at time t −1. At time t −1, the maximum and minimum
observations are stored in the max and min registers and then, the set θ = {θ0, θ1, θ2}
in Equation (2) is computed at time t −1 as follows:
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Figure 3. The schematic diagram of Range computaion

t −1

�
�
�
�  θ2 = max − Range  >> 2.

  θ1 = Range  >> 1 + min ;
  θ0 = Range  >> 2 + min ;

where the notation " >> i " means shift right operation of i times.

3.2  Stage 2: Comparators

In this stage, all observations within the 5×5 window at time t 0 are compared with
the set θ in parallel. Therefore, for each cell, three outputs are generated labeled γijk ,
where i = 0, ..., 4, j = 0, ..., 4, and k = 0, 1, 2, and γijk is defined as follows:

  γijk  = 
�
�
�  0      if  Cij  ≥ θk

  1      if  Cij  < θk

The output of this stage consists of 25 buses, each three bits wide.

3.3  Stage 3: Pattern Generation

By specifying γijk in the previous stage, to compute the Fm(θk) and Gn(θk) of
Equations (4) and (5) respectively, the γijk set for the two samples of X and Y are
counted (added) in parallel. The result of this counting (addition) shows how many of
the pixels of those samples are less than the θk , where k = 0, 1, 2. To compute Fm(θk)
and Gn(θk), for each orientation shown in Figure 1, the volume of operations can be
reduced significantly by using the common patterns used to compute the above two
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functions for each orientation. To achieve this, based on sub-patterns consisting of three
pixels as shown in Figure 4.a, four patterns used commonly in all partitionings in Figure
1, are constructed. These patterns are shown in Figure 4.b-e.

(a) (b) (c) (d) (e)

Figure 4. The patterns used commonly in all partitionings

3.4  Stage 4: F and G calculation

In this stage, Fm(θk) and Gn(θk) are computed in parallel. For this purpose,
depending on the type of orientation, a through d, the related patterns shown in Figure 4
are added together to generate Fm(θk) and Gn(θk).

3.5  Stage 5: |F(θk) - G(θk)| computation

According to Equation (3), the difference between the two cumulative distribution
functions needs to be computed first. At the previous stage, the cdf of each sample X
and Y is computed, and in this stage their difference is calculated using each member of
the θ set and for all four orientations. These computations are done in parallel.

3.6  Stage 6: Maximum difference calculation

According to Equation (3), the maximum difference between the two cumulative
distribution functions is the criteria for the homogeneity of the two samples. Therefore,
in this stage, the maximum differences between the cdf of the two samples is computed
for each partitioning shown in Figure 1.

3.7  Stage 7: Edge declaration

In the final stage, the responses to the different partitionings of the window are
sorted. Obviously, the partitioning with the highest response shows the direction of the
edge. In order to enhance noise suppression, we need to know the second highest
response as well. Therefore, all responses are sorted based on shuffle sorting logic, and
the first and second maximum responses are tested against the thresholds chosen at the
desired significance level. Also, the direction of the highest response gives the
direction of the edge.

4.  VLSI Implementation

The implementation takes a two phase approach. First, this algorithm was described
using a hardware description language developed in our Laboratory, named MODAL
[6, 8], and simulated with an event-driven logic simulator. Simulation tests two aspects
of the designed hardware, functional and timing. In addition to the accuracy of the
functionality of the proposed hardware, the result of this simulation shows that the
algorithm will run with a 100 MHz clock cycle, independent of the wiring delays and
other fabrication issues. The longest delay in this model corresponds to the 8-bit adder /
comparator modules, and when real delays are considered, it is clear that the speed
estimate is optimistic. In the second phase, the floor plan of the chip is presented and
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then some modules are simulated.

4.1  Floor planning

The floor plan of the chip is shown in Figure 5.
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Figure 5. The floor plan of the edge detector chip

Since the algorithm can be implemented completely in a pipelined manner, the floor
plan is straight forward. The output of each stage is directly connected to the input of
the next stage. This reduces significantly the problem of routing which is one of the
major contributors to delays in VLSI chips. In each stage, a simple module is involved
which can be repeated. This is an added advantage of designing, simulating, and testing
the chip. The use of iteration to form arrays of identical cells is an example of
exploiting of regularity in IC design which simplifies the design process [14].

Across the whole pipelined design, the worst stage with respect to timing issues is
the 8-bit adder / comparator. The rest of stages which involve a maximum of 4-bit
operations, incur less delays.

4.2  8-bit Adder / Comparator

To realize the 8-bit adder / comparator, a domino 4-bit carry look ahead circuit is
used. The two 8-bit inputs are divided up into two equal 4 bits. The input carry to the
higher significance 4-bits is generated by a domino CMOS gate. The 8-bit comparator
is realised by cascading two 4-bit domino carry look ahead circuits. The output carry of
the second stage is interpreted as the greater than or equal to (≥) signal. To realise the
comparator block shown in Figure 5, the floor plan shown in Figure 6, based on each
comparator cell is used. This block was designed and simulated using a double metal,
2µ, n-well CMOS technology. The result of the analog simulation shows a worst case
10ns signal delay time for this block. The geometric layout of this block is shown in
Figure 7. For the adder / subtractor, the domino carry look ahead circuit is used as well.
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The postscript of the geometric layout of this report (Figure 7)

requires too much memory to be placed here. If some one is

interested to get a copy of the file, please contact the authors.

Figure 7. The geometric layout of the comparator module

-8-



4.3  Investigation

The result of the simulation for the 8-bit comparator block shows a 10ns signal,
which is the slowest of the pipelined stages. To achieve an edge map for an image with
a 512×512 resolution refreshing at 25 frames per second, in real time, requires a 150ns
throughput for each pixel, which dictates a 7MHz period for the running of the chip.
The simulation of the designed circuit will easily meet this target. Migrating the design
to a state-of-the-art, sub-micron technology will provide considerable, further speed
enhancement.

5.  Conclusion

This paper presents a parallel pipelined architecture for the detection of edges in 8-
bit grey scale images with 512×512 resolution refreshing at video rate. The procedure
of edge declaration for each pixel starts as soon as the pixel values are available within
a 5×5 window surrounding the pixel. This window is partitioned so that it provides two
samples in four orientations in order to detect edges. The Kolmogorov-Smirnov test is
applied to each orientation in parallel and the first and second greatest Kolmogorov-
Smirnov statistics are compared with thresholds values determined by the desired
significance level. Since this algorithm lends itself to a parallel, pipelined hardware
implementation, and no complex operations are needed, a video rate ASIC edge
detector design is realisable. The worst case timing in the pipeline is due to the adder /
comparator module. The analog simulations of these two phase clocked modules,
realised using a double metal, n-well 2µ CMOS process shows a worst case signal delay
of less than 10ns. The presented design can produce edge maps for 512×512 images at
the desired frame rate. The critical components of this design have been scheduled for
fabrication.
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