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Abstract

This paper describes a new method for colour image segmentation. The al-
gorithm is based on testing the homogeneity of pixels around a center pixel
by using statistical inference techniques. A 5 by 5 window around each pixel
is partitioned into two sub-samples in different orientations. Then the cu-
mulative distribution function of two sub-samples are compared with each
other. Based on the Kolmogorov-Smirnov statistic, the homogeneity of two
sub-samples is verified. If all pixels within the window are homogeneous,
therefore, the computed statistic for all different partitionings must verify
the homogeneity; otherwise, the homogeneity is rejected. As well, the com-
puted statistic is combined with the intensity uniformity of two adjacent
pixels to prevent oversegmented and/or undersegmented results. Moreover,
we consider how the algorithms can be effectively implemented as a real-time
hardware design.
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1 Introduction

Segmentation is a critical element in image analysis and pattern recognition. The function
of segmentation is to identify the homogeneous regions in an image based on properties
such as intensity, colour, texture, etc. Many different approaches to this problem exist,
and may be categorized as follows[1, 32]:

1. edge detection algorithms, where the focus is on the dissimilarities between two
regions.

2. grouping or forming algorithms, which are concerned with the similarities between
regions as a basis for merging.

This paper is primarily involved with region forming. There are different approaches
for region forming such as spatial clustering, region growing, and split and merge schemes.
For a complete survey of segmentation algorithms, the reader is referred to Haralick and
Shapiro[11, 32|, In this paper, we consider algorithms suited to pixel data, sequentially
digitized at video rate. Among popular methods for image segmentation, region growing
techniques are best suited to pixel stream oriented processing. In our algorithm, small
regions in the image are merged using local information. This is done by computing
similarity measures in adjacent regions. When this value lies below a given threshold, the
regions are said to be sufficiently similar and are merged.

Two problems which exist in using this method are determining which properties
are most useful as a basis for segmentation and selecting a suitable threshold. Setting
the threshold inaccurately will result in ”virtual” regions if it is set too low, or leakage
between regions if it is set too high. Such errors may compromise the further stages in an
image analysis system. Therefore, it is very important to set thresholds appropriately in
a dynamic way[32].

Accurately setting thresholds relies on using the properties involved in measuring
similarities between two regions. For this purpose, two different methods are used. In
the first method, thresholds are set by measuring some probabilistic features of regions
such as mean and variance. For example, in Gupta et al’s algorithm([8], regions are grown
based on two statistical tests. For this purpose, the variance and mean of a small pixel
group is compared with the variance and mean of already formed neighbour regions. If
the comparison satisfies a particular criterion, the candidate region is grown and the
mean and variance of that region updated. Similarly, Haralick and Shapiro[l1] propose
a statistical t-test for comparing each single pixel with its adjacent regions in a raster
fashion. If the computed statistic indicates, the new pixel is added to the region, and the
mean and variance of the region is updated. A similar idea, but in reverse, is used by
Levin and Shaheen[17] who define a statistic to avoid an increase in intensity dispersion
in a previously formed region when a candidate pixel is added to it. In these region
growing techniques, storage capacity is needed to update region properties during region
growing. This technique is less suitable for a real-time image segmentation. In addition,
if the light intensity varies linearly within a region R and we insist that the intensity be
approximately constant within the region, then there will be artificial boundaries formed
within R[29].

Due to the essential identity of edge detection and region growing[9], using edge in-
formation for region growing is another approach. For example, Yakimovsky[33] employs
the likelihood function to test the strength of the edge occurring in a local area. For this



purpose, the edge information is transferred into the data structure of regions, and then
by heuristic methods, regions are grown. This method also needs to store region prop-
erties in memory, and moreover, no distribution is presented for the calculated statistic.
Gradient information has also been used by Haralick and Dinstein[10] for growing the
regions. Generally, gradient based operators are known to be sensitive to noise.

Based on gradient relaxation techniques, Bhanu et al[4, 6] developed a segmentation
algorithm, and then fabricated it in VLSI[5]. The gradient method provides control over
the relaxation process by choosing some parameters which can be tuned to obtain the
desired segmentation results at a faster rate. Relaxation techniques may be characterised
as parallel iterative algorithms, which support the overlapped computation for each itera-
tion, and which allow the algorithm to be implemented using a real-time, parallel pipeline
design methodology. The chip fabricated by Bhanu et al classifies grey level input images
with 512 x 250 resolution into two classes at 30 frames/second. Bhanu et al state that
they believe that a chip can be developed for colour images, but they do not show how.

In this paper, we propose an image segmentation algorithm based on the region grow-
ing, and suitable for implementing in real time hardware. Due to the pixel stream oriented
approach of this algorithm, only local information is used for image segmentation. It is
known that ignoring global information about regions may affect the segmented output
strongly, but this effect may be alleviated by exploiting local edge information in order
to grow regions. The way in which the local information is interpreted affects the per-
formance of the segmentation algorithm. In our algorithm, using the edge information
in the image, regions are grown and labeled based on the probability that regions are
uniform. It is shown that by using feedback from edge information in the image to set an
adaptive threshold, leakage problems, which are a common disadvantage of region grow-
ing approaches[32, 11], are improved. This algorithm produces a segmented image with a
unique label assigned to each homogeneous region, and uses a real-time, parallel pipelined
architecture.

Colour is a primary analytical property of an image. Adding colour to the list of
region properties increases the computation cost but facilitates greater insight into the
homogeneity of regions. Various attributes of colour have been used in similar and different
segmentation approaches|7, 3, 23, 17, 28]. However, Ohta et al[28] and Ohta[27] show
that no significant difference is observed in results obtained when different sets of colour
features are used. In our algorithm, the three components of colour are used as different
spectrums of signal information, which helps to achieve a more accurate classification.

2 Region homogeneity

A commonly used definition of image segmentation[14] states that if [ is the set of all
image pixels, a segmentation of the image is a set of all connected subsets or regions

Ri, R,, ..., Ry such that:
R =1 where ROR; =0 Vi#j

P(R)=TRUE Vi



P(R;,UR;)=FALSE VR, adjacenttoR,;

where P(-) is the homogeneity predicate.

On the other hand, region growing is dependent upon identifying the factors which
enable the determination of the boundaries between groups of pixels which have similar
characteristics. Ideally, regions in an image should not require pre-processing in order for
them to be identified. Practically, however, since the illumination, the view conditions,
and the spectral reflectance function vary from point to point in a region, there is no
uniform distribution of properties throughout the image. Each of these factors may result
in similar property measures occurring in adjacent but separate regions, thereby creating
major problems for image segmentation algorithms. This means that the probability that
a measurement falls within a certain interval is a useful notion in segmentation. .P Many
techniques have been used to resolve the ambiguities inherent in classifying pixels with
overlapping properties. One method involves a functional description of the homogeneous
regions together with the use of regression functions to fit an optimal surface to the region.
The error associated with the surface fit and the correlation between adjacent surfaces
measures the homogeneity of that areal9, 30, 2, 18].

In our method, we look at homogeneity from a different perspective. Instead of func-
tional characterization of homogeneous regions, we classify pixels by examining the statis-
tics of other pixels in their neighbourhood. Specifically, we formulate the following hy-
potheses about pixels in a given neighbourhood:

Hy : All pixels in the given neighbourhood belong to one homogeneous region, or
H, : they belong to at least two different homogeneous regions.

In order to accept or reject the null hypothesis, we spatially partition the neighbourhood
of interest into two sub-regions in different orientations, and compare the cumulative dis-
tribution functions, (edf), the intensities of pixels, in each pair of pixels belonging to a
sub-region, and so accept or reject, with a confidence level, «, the truth, otherwise, of
the null hypothesis. If the null hypothesis is accepted, the center pixel in the window is
considered to be part of a homogeneous region. Figure 1 shows four such (edf),’s with
which homogeneity of the regions can be inferred. Compared to functional description
techniques, this technique has the advantage that it does not require characterization of
the regions being compared.

To compare the cdf of two adjacent sub-samples, the Kolmogorov-Smirnov test is
used. Among non-parametric statistical methods, the Kolmogorov-Smirnov test is more
suited for comparing the edf’s of small samples of populations[34], and has already been
used for region growing by Muerle and Allen[22]. The method which they use in this
test 1s not suitable for a pixel stream oriented algorithm, since they first segment the
whole image into small cells with sizes of 2 x 2,4 x 4, or 8 x 8, and compute the cdf
of each cell. Beginning with the first cell in the upper left-hand corner, the edf of each
cell is compared with its adjacent cells, and any neighbouring cell having a statistical
distribution sufficiently similar to that of the initial cell is merged with the initial cell,
and a fragment is formed. When no further adjacent cells can be found whose ¢df’s
are sufficiently similar to be merged with the fragment, the fragment is complete and is
defined as a region. The criterion of similarity used, is the absolute difference between
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Figure 1: edf in (a) and (b) come from the same population. The edf in it (¢) seems to
be similar to that in (a) and (), but it has a lower intensity range and is thus from a
different population. The edf in (d) is again different from any of the others.

two distributions. If the difference between the two edf is less than some threshold, the
adjacent cells are merged and the edf is updated. This new cell is grown to the point
that none of its neighbouring cells can merge with it. This procedure is repeated for
all unprocessed cells until all cells are processed. Another advantage of the Kolmogorv-

Smirnov test is its ability to discriminate between some kinds of textured regions. This
has been discussed by Muerle[21].

3 Testing for Homogeneity

To test the null hypothesis (which determines homogeneity), a small neighbourhood
around the pixel (a 5x5 window) is spatially partitioned into two parts in four differ-
ent orientations as shown in Figure 2. An edge is identified when the null hypothesis is
rejected.

@ (b) (© (d)

Figure 2: Partitioning the window in four different ways

In each window, let the number of pixels in the sub-regions X and Y, be m and n,
respectively. Thus we obtain N = m + n observations, being Xy, ..., X, and Y7,.... Y.
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Assuming that X and Y are mutually independent and come from populations II; and
I1, respectively, the null hypothesis may be stated as follows:

Hy: P(X <a)=P(Y <a), for all a .

To verify this hypothesis, the cumulative distribution function, cdf, of two samples are
compared. To achieve this, the N observations from the two samples are ordered to form
the set Z) 11 = 1,..., N, where Z() < Z3) < .... < Z,). The statistic J is defined as
follows[13]:

J="11 PaXN{me(i) — G Z)} (1)

where m and n are as before, d is the greatest common divisor of m and n, and

number of X's <a

m

F(a) =

and

number of Y's < a

n

Gala) =

are considered to be the empirical cumulative distribution functions for two random sam-
ples of sizes m and n from two distributions with edf F(z) and G(y).

The correctness of Equation (1) is by the virtue of Theorem 1 and an argument similar
to the proof of Theorem 4.2.18 in[31].

Theorem 1: If F,(x) is the empirical edf of a random sample of size n from a dis-
tribution with cdf F(x), then:

P( lim{ max [F,(z) — F(z)]} =0) = L

n—o0 " —oo<r<oo

Proof: See[19].
We can simplify the calculation of J, and eliminate sorting by partitioning the range
of the N observed data into p equal sub-ranges with length 7, as follows:
W) — 2
P

T =

Supposing p = 4, the following set can be defined:

O = {Z(l) + 7, Z(l) + 27’, Z(l) + 37’} (2)

With a 5x5 window divided into two equal sub-regions, and excluding the center pixel,
we get m = n = 12. Now Equation 1 may be rewritten as follows:

J = max{|F Za,) — GnZioy)|} )

€ke®



where k=0, 1, 2, and F,,(6;) and G, (8)) are defined as follows:

Fn(0r) = number of X's <6, (4)

G (0r) = number of Y's < 0 (5)

From Figure 2, if the neighbourhood around the pixel belongs to a homogeneous region,
all J’s calculated for different orientations show a relatively small value; otherwise, there
is a boundary perpendicular to the direction of the partition delivering the greatest J at
that pixel. Therefore, to select and test the greatest J, all J’s are ordered to form the set
{J@y: 1 = 1,...,4}, where Jq) < ... < Jiy).

The next Point is the difference between edge detection and region segmentation. In
region segmentation, declaration of edges even with a confidence level (a) of 1% is not
enough. This is due to the leakage problem which might happen through pixels which are
not declared as edge elements. In fact, the confidence level, o, shows the high probability
of an edge occurring, but the reverse is not true. This does not mean that all edge
elements are detected. Therefore, the interpretation of this value is important. Moreover,
there are some cases where the Kolmogorov-Smirnov test incorrectly shows a high value
of difference between two sub-samples. For example, where the homogeneous region has
a sloped surface, one of the partitions shown in Figure 2 (the one which is perpendicular
to the slope direction) may produce a large value for J. As well, this problem may arise
due to noise in the image.

To resolve these problems, the statistic J; may be combined with an estimate of in-
tensity uniformity around the pixel. For this purpose, the desired confidence level for
homogeneity around the pixel is set less than or equal to 25%. Based on this confidence
level, from Table A.23 in [13], if J; < 5, the center pixel of the window, z, is considered to
be a part of a homogeneous region. Otherwise, each pixel is compared with the pixels to
its left and above, as shown in Figure 3, and if the absolute difference in the comparison
metric is less than a user set threshold, d, they are considered homogeneous. Since the
statistic J4 shows the degree of dissimilarity of two adjacent regions, the greater the Jy,
the lower the probability of homogeneity in the window. Therefore, the intensity thresh-
old, 4, must be decreased adaptively with an increase in Jy. Considering the hardware
realisation, the function for the change is determined empiricaly. This is explained as
follows:

v 6..12— R

and
jo |67 8 9 10 11 12
(e |1 1 5 25 25 25 .25

4 Algorithm Implementation

The algorithm is implemented in three phases. In the first phase called preprocessing, the
homogeneity of adjacent pixels in each of the red, green, and blue component is tested.



Figure 3: Pixel z is compared with adjacent pixel: [is to the left and a above.

The output from the preprocessing in each component is three signals: homog, left_merge,
and above_merge, followed by the computed colour indices. For example, if the left_merge
is set, the current pixel can be merged with its left pixel; if the homog signal for the current
pixel is set, it can be merged with all its adjacent pixels. In the second phase, the output
signals from each colour component are combined to produce a unique colour identifier.
In the third phase, based on the colour identifiers, regions are grown and labeled. The
overall scheme of this algorithm is shown in Figure 9.

4.1 Phase 1: Preprocessing

An intensity value image is defined by a function Int which maps the image coordinates
to intensity values in different colour components.

Int : COORD — INTENSITY VALUFE

A homogeneous image is defined by a function homog which maps the image coordi-
nates to homogeneous signals.

homog : COORD — HOMOGENEOUS SIGNAL

A left_merged tmage is defined by a function left_merge which maps the image coordi-
nates to left_merge signals.

left merg : COORD — LEFT MFERGE SIGNAL

An above_merged image is defined as a function above_merge which maps the image
coordinates to above_merge signals.

above_merge : COORD — ABOVE_MFERGE SIGNAL

For the current pixel (z : COORD), the following Pseudo-code algorithm defines phase



for (c: ¢ € {red,green,blue}) Do
{

Do in parallel
{
for (o0: o € {four different orientations shown in Figure 2 } )
Do in parallel

{

compute J.,;

left_dist.(z) = |Int.(x) — Int.(l)|; /* :COORD*/
above_dist.(x) = |Int.(x) — Int.(a)|; /* az:COORD*/
}
Jie = maz {J.}
Do in parallel
{
if (Jac < 5)
{
set homog. ();
set left_merge.(x);
set above_merge.(x);

}

else
{
Juc) x 0) set left_merge.(x);

if (left dist.(x) < (
< p(Jye) X 0) set above_merge.(x);

if (above_dist.(x)
}
}

If J4. <5, the current pixel, z, can be merged with all its adjacent pixels, therefore,
both left_merge and above_merge signals are set; otherwise, depending on the absolute
difference intensity value between the current pixel and its adjacent pixels, either or both
of the left_ merge and above_merge signals are set. Moreover, if Jy. < 5, the pixels to its
right and below can be merged with the current pixel, z. In this case, the homog (z) is
set and can be used to determine whether the pixels to the right and below the current
pixel can be merged with it in the next steps.

4.2 Phase 2: Intersection

In the previous phase, three signals, homog, left_merge, and abovemerge, for the three
colour spaces are produced. In this phase, the relevant signals of each colour space are
ANDed to produce the unique merging identifier. For example the left_merge identifier is
produced by the ANDing of the left_merge signals of all three colour. This is shown in
Figure 9.

4.3 Phase 3: Region Growing & Labeling

In this phase, regions are grown and pixels belonging to a homogeneous region are assigned
a unique label. A labeled image is defined by a function label which maps coordinates to



labels.

label : COORD — LABEL

For this purpose, each pixel is considered as a region. A 2x2 window as shown in
Figure 3, is moved across the image in a raster fashion (left to right and top to bottom).
Neighbouring pixels are candidates for merging if the related signals are set. Therefore, a
set M, is defined containing the adjacent pixels with which the current pixel can merge.

My =A{p: (p €{a,l})N(homog(p)V(left-merge(x)A\(p = 1))V(above-merge(x)\(p = a)))}

Due to V shaped regions in the image, region labeling needs to be performed in two
passes[11]. In the second pass, the set M, is defined as follows:

M, = {p: (p € {a,1})N((homog(z)V(le ftomerge(p)A(p = 1))V (above_merge(p)A(p = a)))}

The labeling procedure may be formulated as follows:

new label M, =0 A pass 1
label(z) = label(x) My =0 A pass 2 (6)
min (label(p)) (p € My A pass 1)V (p € Mz A pass 2)

For example, in the first pass, each pixel is allowed to merge with its adjacent left
pixel, if either its left_merge signal, left_merge(x), or the homogeneous signal computed
from its left pixel, homog(l), is set. The same procedure may be carried out for merging
the current pixel with the pixel above. If the current pixel is not allowed to merge with
its adjacent pixels, a new label is assigned to it. If it is allowed to merge with one of its
adjacent pixels, the label of that pixel is assigned to the current pixel. On the other hand,
if it is allowed to merge with both its left and above pixels, the minimum label of those
two pixels is assigned to that pixel.

If the regions in the image are limited to V shaped regions in the image, the same
procedure of labeling can be used in a reverse fashion (right to left, bottom to up) in the
second pass. But, due to snaking regions in the image, the procedure of labeling is not so
simple. In this regard, some sequential connected components algorithms are presented.
Lumia’s algorithm[20] performs nearly identical operations in both passes, as well as
a reduced label equivalence table, making it attractive for a hardware implementation.
However, the equivalence table in this algorithm must still be processed between the first
and second pass of each image row, and there is the added complexity of making forward
and reverse passes over the image in a pipelined system. Recently, an alternative approach
was developed by Nicol in our Laboratory[25, 26]. This algorithm uses a linear systolic
array to modify the labels of recently visited pixels in a raster scan and so removes the
need for the label equivalence table used in the Lumia’s algorithm. We have adopted the
Nicol’s algorithm for labeling the regions.



5 Experimental Results

The absence of widely accepted mathematical models for images has made the objective
evaluation of segmentation algorithms difficult. Therefore, a subjective visual evaluation is
usually presented for the output of the algorithms[11, 27, 3]. Even though some effort has
been expended to provide an objective measurement[16], it is believed that the proposed
measurement can not be generalised, rather, the amount of useful information provided
by the segmentation algorithm to the succeeding stages of analysis is one of the best
criteria[3]. Indeed, dealing with a large number of regions (information) at the higher
levels of image analysis may be crippling for any system. Therefore, minimizing the
number of regions, whilst maintaining expected perceptual groupings in the image, can
be a very useful criterion. Another criterion may be the sensitivity of threshold setting,
which is a major issue for all segmentation algorithms. Since it is not possible to set
a universal threshold for all images, some algorithms provide a number of parameters
which may be adjusted to define suitable thresholds for particular image types. However,
setting multiple parameters to determine a threshold is particularly difficult. Robust
segmentation depends on the relative insensitivity of the threshold to small variations in
determining parameters.

For the algorithm presented in this paper, we do not present an objective evaluation
for the experimental results. However, there are some points which we emphasize, and we
believe that our algorithm has satisfied them. Firstly, this algorithm can be mapped to a
real-time, colour image segmentation design. Secondly, there is one threshold parameter,
d, which must be set for this algorithm, which is used to control the intensity uniformity.
For a constant threshold, § = 12, the experimental results are shown in Figures 4-6
without the common postprocessing procedures for removing small regions. The input
images in the first two images are 8-bit digitized images, while the third image is a 5-
bit digitized image. These results indicate a visually good segmentation in respect to
oversegmentation and undersegmentation. The constructed segmented image in Figure 4
is shown in Figure 7. To show the effect of the colour components, with the same method,
the grey input of Figure 4 is segmented and the result is shown in Figure 8. As can be
seen, most of regions are leaked.

6 Real-time hardware realisation: System overview

The block diagram of the real-time hardware architecture to what the colour segmentation
algorithm has been mapped, is shown in Figure 9. To implement this system, a custom
VLSI design for the colour preprocessor can be developed. The task of each preprocessor
component is to determine the homogeneity of each pixel with the pixel above it and to
its left. The output of each preprocessor consists of three signals, homog, left_merge, and
above_merge. The relevant signals are then combined and feed into another custom design
for growing and uniquely labeling the regions. The region labels are 14 bits in our system.

To realise this real-time system, each pixel oriented computation needs to be arrayed
in a parallel pipelined fashion. The architecture is pipelined, and with a careful design of
architecture, logic, and technology, and the exploitation of the parallelism implicit in the
algorithm, the high speed requirement of 40ms processing time per image frame (assuming
an image with 512x512 resolution at 25 frames/second) can be met.
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Figure 4: The block diagram of the image segmentation algorithm

6.1 Preprocessing Components

The pixel homogeneity determination algorithm, explained in Phasel of the algorithm
implementation in Section 4, can be mapped into a parallel pipelined architecture as
shown in Figure 10. Since a 5x5 window is used to implement this algorithm, four
rows of the image are stored in shift registers, shown in the far right in Figure 10. The
broken block in Figure 10 computes the Kolmogorov-Smirnov statistic .J, and the rest of
the design measures the intensity uniformity of adjacent pixels, and combines these to
produce the three signals, homog, left_merge, and above_merge, by using the computed
statistic Jy.

Since the algorithm can be implemented completely in a pipelined manner, the floor
plan shown in Figure 10 is straight forward. The output of each stage is directly con-
nected to the input of the next stage, which reduces significantly delays. Fach slice of the
pipeline is repeated which increases the regularity of the design. The basic operations of
each module involve mainly addition, subtraction, comparison, and logic decision. Con-
sequently, the hardware realization is straightforward and is described below:

The Range & 0 Finder module: At each pixel time (o), the procedure of computing the
statistic J begins within the 5x5 window centered at pixel Cy3, where C;,1 =0,...,4,7 =
0,...,4, denotes each cell in the window. The first step in this algorithm is to calculate the
range of data within the 5x5 window, and thereby calculating the set © in Equation (2).
To achieve video rate edge detection, § needs to be ready at time t¢, so, the computation
of the range needs to be started before ¢y. The block named Range & © Finder is located
at the top of Figure 10. Computing the range requires the comparison of two 8-bit digits
in each pixel time. At time ¢_;, in addition to the range, the maximum and minimum
observations are stored in the range, max and min registers respectively, and the set © =
By, 01, 0, is computed as follows:

0o = Range > 2 + man;
t_1 =1 6 = Range > 1 + man; (7)
0y = maxr — Range >> 2.

where the notation ” > ¢” means shift right 7 times.
The Comparator module: In this block, all observations within the 5x5 window, at
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Figure 5: The floor plan of the preprocessing component

time to, are compared with each element of § in parallel, and for each cell, three outputs
are generated labeled 7, where 1 = 0,...,4,7 = 0,....,4, and £ = 0,1, 2, and the ~;;, are
defined as follows:

1 C; < b
ik = { 2 otlilerwise. (8)
The output of this stage consists of 25 buses each of three bits wide.

The Paltern Generation module: By determining ~;;; in the previous module, to
compute Fy,(8x) and G, (0y) from Equations (4) and (5) respectively, the number of ~;;1’s
set for the two samples, X and Y, are counted (added) in parallel to determine how
many pixels in each sample are less than the 6, where & = 0,1,2. To compute F,,(0y)
and G, (0;), for each orientation shown in Figure 2, the number of operations can be
reduced by using the common patterns used to compute the above two functions, for
each orientation. To achieve this, based on sub-patterns, each consisting of three pixels
as shown in Figure 11 (a), the four patterns found commonly in all partitions shown in
Figure 2, are constructed. These patterns are shown in Figure 2 (b) — (e)

To compute F' and G in Equations (4) and (5), the appropriate patterns, each being
of three bits wide, are added to produce a 4-bit output. After this stage, computing J in
Equation (3) is limited to 4-bit operations for addition, subtraction and comparison.

12



s |0 L ] (S]] (B
aEE: M= -
- DD DD DLﬁ -

@ (b) (© (d) G
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6.2 VLSI Design

The design was undertaken in two parts. First, this algorithm was described using a hard-
ware description language, named MODAL[12, 15], and simulated with an event-driven
logic simulator, which demonstrated correct functionality and that the algorithm will run
with a 100 MHz clock cycle, independent of the wiring delays and other fabrication issues.
The longest delay in this model corresponded to the 8-bit adder/comparator modules, and
when real delays are considered, it is clear that the speed estimate is optimistic.

In the second phase, the worst case module (the 8-bit adder/comparator) was designed
and simulated. This is the critical timing element which determines the pipeline speed.
The 8-bit adder/comparator was realised using a domino 4-bit carry look ahead circuit.
The 8-bit comparator is realised by cascading two 4-bit domino carry look ahead circuits.
The output carry of the second stage is interpreted as the greater than or equal to (>)
signal. The floor plan of the comparator is shown in Figure 12. This comparator was
designed and simulated using a double metal, 24, n-well CMOS technology. The result of
the analog simulation shows a worst case 10ns computation time. The geometric layout
is shown in Figure 13.

6.3 Investigation

To achieve the preprocessing for an image with a 512x512 resolution, being refreshed
at 25 frames per second in real time requires that each pixel be processed within 150ns,
dictating an overall frequency of TMHz for the design. Simulation indicates the design will
easily meet this target. Migrating the design to a state-of-the-art sub-micron technology
will provide considerable further speed enhancement enabling the processing of images as

large as 1000x1000 at 60MHz.

6.4 Region Growing and Labeling

The input to this component consists of three signals, homog(x), left_merge(x), and above_
merge(x), where each signal indicates the potential of the merging for the current pixel.
According to the region growing and labeling principles explained as Phase 3 of the
algorithm, the schematic diagram shown in Figure 14 is the heart of the design, and
can easily perform in real-time. Assuming that a maximum of 2'* regions occur in the
segmented image, the worst delay in this subsystem occurs in the comparator module
which compare two 14-bit labels.

As explained before, labeling of the connected regions needs to be run in two pass.
For this purpose, a custom VLSI design was developed in our Laboratory by Nicol[24].
His approach has the advantage that all the label equivalence computations are localised
in each cell in a systolic array, and therefore, the speed of operation is limited only
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Figure 7: The floor planning of the comparator module

by communication delay between adjacent cells. Nicol’s implementation uniquely labels
512x512 images at 50 frames/sec. In the second pass, the same labeling procedure is run,
except that the image is scanned from bottom to top and right to left, therefore, the pixel
output from the first pass must be stored in a LIFO stack, to feed the second pass.

Our labeling algorithm is somewhat faster than Nicols’s since the the multi-valued
(14 bit) comparisons needed to determine whether the current pixel can merge with its
adjacent pixels has already been carried out in the preprocessing phase of our algorithm.

7 Conclusion

In this paper, based on the region growing approach, a new pixel stream oriented segmen-
tation algorithm for colour images suitable for mapping to a real-time hardware design
is presented. For this purpose, two properties of visualized signals, statistical distribu-
tion and intensity uniformity, in each colour space is used. First, within a 5x5 window,
using the Kolmogorov-Smirnov test, the strength of homogeneity is tested. Pixels whose
homogeneity is sufficiently high are grown without considering their intensity uniformity.
Pixels with the lower homogeneity values are merged with their adjacent pixels, if their
intensities are sufficiently similar. The result of the separate colour space computations
are combined to produce the merging signals for region growing and labeling.

Different experimental results show the effectiveness of this algorithm. Moreover, it
is shown that this algorithm is robust in its applications to various images and can be
mapped to a real-time hardware design.

This algorithm lends itself to a parallel pipelined implementation and no complex
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operations are needed. The floor plan of the preprocessing is presented and simulation
verifies its real-time performance. The worst case timing in this component is due to the
adder/comparator module, for which analog simulations of these modules, implemented
using a two phase double metal, 2 CMOS technology, demonstrate a computation time
of less than 10ns. Accounting for realistic wiring delays and other fabrication minutiae, we
estimate the design can be realised at the video rate, for 512x512 images being displayed
at 25 frames per second. The performance characterisation of the region growing and
labeling component has been investigated, and its performance will easily meet the real-
time requirements.
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(a) b)

Figure 10: (a) The original image. (b) The result of segmentation algorithm
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(t)

Figure 11: (a) The original image. (b) The result of segmentation algorithm

Figure 12: (a) The original image. (b) The result of segmentation algorithm
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Figure 13: The reconstruction of the input image after the segmentation

Figure 14: The result of image segmentation for the input grey scaled image
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