SCS&E Report 9312
November, 1993

Address Space Management Issues in the Mungi Operating
System

Kevin Elphinstone

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

| SCIENTIA

Abstract

The Mungi operating system features a single 64 bit persistent address space encompassing all
data in the system. This differs dramatically from current generation operating systems in which
each process has its own address space and persistent data is stored in a filesystem.

This report is a preliminary investigation of address space management issues raised by
adopting a single persistent address space model. Issues examined are internal and external
fragmentation of the address space, reuse versus no-reuse allocation policies, and page table
structures used to support the address space.

1 Introduction

Mungi is a single address space operating system supporting persistence[2, 6]. It features a
single 64 bit namespace encompassing all data contained in the system. Mungi does not have a
traditional file system; instead, Mungi relies on distributed persistent shared memory for storage.

Distributed persistent shared memory is similar to distributed shared memory systems, with
the addition of persistent storage (disks) to both increase the amount of shared memory available
via virtual memory techniques and provide persistent storage of data in the address space. Thus
traditional files on disk are replaced by objects in the distributed persistent address space.

A name service is provided to map names of objects to addresses of objects so the user’s
view of objects is similar to files in that they can be referred to and grouped under meaningful
names. Note that users are free to implement their own name service, as it is really the addresses
that name objects, and users may choose to store addresses of their objects in any way they
choose.

2 Internal Fragmentation

In the Mungi single address space operating system the traditional file system no longer exists.
In its place is a persistent object space that merges the files system into the single address space.
The traditional view of a file being a stream of data read from a disk is no longer valid. The
abstraction of an object in Mungi is a region of memory that can be accessed at random like
other virtual memory.

Current processor architectures provide page based memory management so detection of
how much of an object is used, and which part of an object in the case of sparse objects can only
be done with page granularity. Protection of memory is also page based. These limitations of
current architectures argues strongly for page alignment of objects and rounding of objects to
the nearest multiple of a page to simplify protection and backing store management.

When storage requests are rounded up to the nearest multiple of some storage allocation
unit, then the storage wasted by doing so is referred to as internal fragmentation. The effect
of this fragmentation on overall storage required and on individual files can be estimated by a
static analysis on a typical object distribution.

The object size distribution analysed is illustrated in Figure 1. The distribution’s source is
the actual distribution of 240000 files found on our local network of UNIX workstations. The
distribution is very similar to distributions found in other file system studies[1, 5]. It can be
argued that a typical file distribution may not be a typical object distribution. However data
on typical object distributions for single address space systems is not yet available, and given
that a typical user’s file usage patterns will not change instantaneously, current file distributions
should suffice for experimental analysis.

2.1 Storage Requirement

Different architectures support different page sizes. Internal fragmentation will vary for
different pages sizes as will overall storage requirements. Overall storage requirements were

)

(%

Files

1 10 100 1000 10000 100000 le+06 le+07 le+08
File Size (bytes)

Figure 1: Cumulative distribution of file sizes.

analysed for different page sizes to gauge the effect page size has on storage. Various allocations
unit sizes from 1 byte (the best case) to 1 Mbyte were tested with the typical file distribution. The
results in Table 1 shows the percentage extra storage required to support each of the allocation
unit sizes.

It can be seen that internal fragmentation is not significant in relation to overall storage
required until the unit size approaches 1 Kbyte, above which it soon begins to get very expensive.
This limits the choice of a suitable allocation unit size for the given distribution to around 4
Kbytes and below, unless multiple allocation unit sizes can be supported, then the smaller size
should preferably be around 2 Kbytes or less.

2.2 Summary

These results are dependent on the file distribution under study. A significantly different
distribution will change the numbers illustrated, though it is encouraging that from studies
published it seems that the typical distribution is indeed fairly typical.

However one can intuit that an increase in the proportion of smaller files will result in an
increase in overall storage requirements together with an increase in the proportion of files
wasting space and thus poorer results for a given allocation unit size. An increase in the
proportion of larger files will improve the results illustrated.

Access patterns are not taken into account here. However, if access patterns significantly
favour smaller files, then the load on system resources such as physical RAM, network bandwidth
and disk bandwidth will increase.

To summarise, efficient fine grain file (or object) support requires a fine grain allocation unit
size. To use the typical virtual memory page size of 4 Kbytes will require system structure and
policies that encourage and support larger grain objects. Fine grain object support (finer than the

Alloc. Unit | % Extra Storage
1 0
2 0.002
4 0.005
8 0.013
16 0.027
32 0.056
64 0.113
128 0.233
256 0.478
512 0.988
1024 2.009
2048 4.256
4096 9.516
8192 21.19
16384 46.67
32768 100.3
65536 212.5
131072 4415
262144 906.9
524288 1848
1048576 3737

Table 1: Storage allocation units and corresponding percentage extra storage required to support
the allocation unit size.

typical distribution illustrated) will need to be supported by higher level software by grouping
small objects within a large grain one using an arbitrary data structure.

3 External Fragmentation

Regions of memory in dynamic allocation systems can remain unused as they are too small to
fulfil storage requests. This phenomenon is termed external fragmentation. External fragmen-
tion in Mungi as a result of inter-object gaps in the address space does not result directly in
wasted physical memory or storage as available virtual memory regions are not held in memory
nor backed to disk until they are allocated. However external fragmention does indirectly effect
page table population density, and thus in a multilevel tree page table it effects the overall page
table size for a given number of allocated pages.

Memory in Mungi is persistent and so is external fragmentation. External fragmentation
cannot be aleviated by garbage collection and compaction of the address space. Moving objects
in the address space changes the objects name and potentially corrupts the internal object
structure if it contains pointers. System restart results in the same address space layout that

existed at system shutdown. Minimisation of external fragmentation can only achieved by
allocation policy, not by post allocation processing.

Knuth[4, pages 445-451] derived the Fifty Percent Rule which attempts to predict the ratio
of the equilibrium number of free blocks in relation to the equilibrium number allocated blocks
(p). The rule states the p ~ £p;, where p; is the probability of any given allocation not exactly
filling the free block. Typically allocation requests never exactly fill a free block and thus p; is
1, and the number of free blocks is approximately half the number of allocated blocks.

The situation should improve in Mungi as allocation requests are rounded up to the nearest
multiple of some allocation unit and the free blocks are also multiples of the same allocation
unit. The probability of a perfect fit in this situation should be better at the expense of increased
internal fragmentation. The question is how does the page size effect the probability of a fit
and external fragmention, and are the sizes that are appropriate to reasonable levels of internal
fragmentation also suitable for minimal external fragmention. A simulation was undertaken to
investigate the phenomena.

3.1 Simulation Description

The simulation consists of generating files using the distribution in Figure 1, and each file
generated survives a lifetime given by the lifetime distribution illustrated in Figure 2. The
lifetime distribution is taken directly from Baker’s file system studies[1] and is not correlated
with the file size distribution. The simulator generates files at a rate of approximately 350
Mbytes per simulated day; a statistic that is similar to published studies.

Each file is allocated in the single address space, followed by deallocating them after their
lifetime has expired. Files are allocated using the first fit algorithm[4, pages 437-438] and
various page sizes are used to assess their effect on p; and external fragmentation.

The simulation was run for a simulated month. The following variables were sampled at
intervals of 10 minutes simulated time.

Free blocks The number of free blocks of memory.

Allocated Blocks The number of allocated blocks of memory.

Allocations The number of allocations made so far in the simulation.

Links Searched The number of free blocks scanned before a block of the correct size is found.

Perfect Fits The number of allocations that perfectly fit the free block allocated.

3.2 Simulation Results

Figure 3 shows how the ratio of free blocks to allocated blocks varies for different page sizes.
The figure reveals the Knuth’s fifty percent rule approximately holds for the 1,2,4,8 byte case
illustrated at the top of the graph. However as the allocation unit size increases and correspond-
ingly the percentage of files less or approximately equal to the allocation unit size increases,

)

(%

Files

40

20

1 10 100 1000 10000 100000 le+06 le+07
Lifetime (seconds)

Figure 2: Cumulative distribution of file lifetime.

then the ratio of free blocks to allocated ones decreases. For the case of a 4 kilobyte page, the
number of free blocks is approximately 3% of the number of allocated blocks.

This dramatic decrease in external fragmentation with respect to allocation unit size can
be explained by referring to Figure 4. Knuth predicts the ratio of free to allocated will be
approximately 50% of the probability of allocation not fitting the free block. The figure shows
a dramatic drop in the probability of an allocation not fitting as the page size is increased. This
translates to the decrease in the number of free blocks.

The decrease in the number of free blocks has a beneficial side effect on the performance
of the first fit algorithm. Figure 5 illustrates the dramatic drop in the number of free blocks
needed to be searched for a block of sufficient size to be found, as the page size is increased.
The number of allocated blocks remains constant at approximately 12000 at the end of each
simulation run for each page size.

3.3 Summary

The simulations show that the allocation unit size has a dramatic effect on external fragmention.
While increasing the allocation unit size had a detrimental effect on internal fragmentation,
it is beneficial for external fragmentation. The implies a trade-off when selecting a suitable
allocation unit size for Mungi. The typical page size of 4 kilobytes available on most current
hardware architectures fortunately appears to be a good initial compromise, and without detailed
dynamic performance benchmarking, tuning the allocation unit size would be foolish.

0.45 b
1 byte
0.4 p
16 byte
0.35 1

0.2 b 256 byte B
0.15 b

32 kilobyte

0057\/@1\/\/‘/\/\7&\/\/\7
//\\‘7*‘“\\ e . N Nt S

0 500000 le+06 1.5e+06 2e+06 2.5e+06

Ratio of Free/Allocated Blocks
o
N
o

Figure 3: Ratio between the number of free and allocated blocks over time for various page
sizes.

4 ReuseversusNo Reuse

Simulations in section 3 were carried out using a first fit algorithm of memory allocation. First
fit can supposedly be improved by searching for a free block from the place it was last allocated
from. This is intended to prevent the clustering of a large number of small unusable free blocks
at the beginning of the address space, thus decreasing the search time to find a usable free block.
With a 64 bit address space this policy would be reduced to a policy of effectively never reusing
address space as the persistent system MONADS]3] does.

Never reusing the address space will effect the amount of address space spanned by the
amount of data in it, and hence will effect the population density of the page table and size.
Simulations were carried out to investigate the effect of reuse versus no reuse on page table size.

4.1 Simulation Description

The simulation was carried out using a 6-level tree page table indexed as illustrated in figure 6. In
section 3.1, files were generated, allocated, and de-allocated. To compare reuse to no reuse, the
same files were allocated into two address spaces with separate page tables, one address space
using a no reuse policy and one address space using first fit. The page size for the simulation
was 4 kilobytes.

4.2 Simulation Results

The simulation was run for 3 months simulation time generating 40 gigabytes of data of which
500 megabytes was still allocated at the end of the simulation time. Figure 7 illustrates how the

e S S S— R S————
1 byte

0.97\'\,\\/\/\w,

16 byte
0.7 A
0.6 1 256 byte]
-4 _ 4 kilobyte 1
0.3 | 1
0.2 p

32 kilobyte

Probability
o
v

0 500000 le+06 1.5e+06 2e+06 2.5e+06

Figure 4: Probability of a given allocation not perfectly fitting the free block size, for various
page sizes.

page table size varies during the life of the simulation.

At the end of the simulation the first fit policy produced a page table size of 1.2 megabytes
which represents 0.2% of the data the page table maps. For the no reuse case the page table was
35 megabytes which is 7% of the size of the data mapped, an increase of 30 times the page table
size for the first fitted address space.

The reason for the dramatic difference in page table size is the difference in the population
density of the tables. Both tables map the same amount of data, however the span of the tables
vary greatly. The upper bound of pages mapped obviously tracks the amount of data generated
for the no reuse case, where as the upper bound for the first fit case tracks only 10% above the
amount of data mapped. Hence for the no reuse case, the page table size will increase with time.
As can be seen from Figure 8, the data is concentrated in the upper region of the address space
with a long tail of older allocated data leading back to the beginning of the address space. This
situation will not change much as time goes by, except that the tail will get longer and thus page
table size worsen.

The first fit case stored the data in a comparatively small region at the beginning of the
address space, and hence has a much smaller page table. The efficiency of the page table as
time continues will depend on external fragmentation of the data, but this is small due to the 4
kilobyte allocation unit size, and will never be as bad as the no reuse case.

43 Summary

A multilevel tree structure efficiently supports page table type mappings only in co-operation
with a suitable allocation policy. Multilevel trees work best when the mapping density is high
in allocated regions of the address space and the first fit policy does provide a high density of

10000

1000

256 byte

4 kilobyte
10 |

Average free blocks searched

-

[32 kilobyte

0 500000 le+06 1.5e+06 2e+06 2.5e+06
Time (secs)

Figure 5: The average number of free blocks searched before a block of sufficient size is found,
for various page sizes.

Level

63-57|56-48|47-39| 38-30, 29-21|20-12| 11-0

Figure 6: The division of bits for indexing the various levels of the page table.

mappings.

A no reuse policy does not provide a dense mapping of data and thus is not suited to use with
a multilevel tree page table. If a no reuse policy was required, other data structures would be
needed, probably based on hashing. However it is unlikely that it would be significantly better
than a multilevel tree if the mappings are as densely populated as they are using first fit policy
in the above situation.

5 PageTablelndexing

Mungi divides the address space up into partitions managed by the different machines on the
network[2]. The upper nine bits' of an address is used to indicate the address space partition an
object was allocated from, and is termed the address-space partitionidentifier (API). This leaves
36000 terabytes of address space per partition. It is unlikely that a machine will have anywhere

INine bits was chosen for this example, however it will be closer to 10 or 12 bits in the real system.

le+08

le+07

1e+06

bytes

|
100000 Mr

10000

0 le+06 2e+06 3e+06 4e+06 Se+06 6e+06 7e+06 8e+06

Figure 7: The page table size over the simulation time for no resue (top) and first fit (bottom)
allocation policies.

near this amount of physical storage so an address space partition will be mostly empty due to
the limited amount of storage a node can physically provide.

Each machine allocates objects out of its own partitions which leads to the situation where
the overall address space consists of large memory partitions with objects allocated starting from
the beginning of each partition, and moving towards the end. Each machine will have it own
page table that maps local data, and remote data recently referenced locally. This scenario gives
rise to a possible optimisation of the page table by modifying the indexing of the 6-level tree.

The optimisation relies on the fact that the middle bits of an address of a page are less
actively used than the upper (API) bits. If the middle bits are used to index higher levels in the
tree, then the tree should have reduced fan-out for a given amount of storage allocated. The API
of an address changes depending on the origin of the object the address refers to. In an actively
mobile distributed system the API bits will not tend to a particular constant, and hence should
be used to index lower levels in the tree to reduce fan-out.

5.1 Simulation Description

To see the effect of the optimisation a simulation was carried out comparing the indexing
arrangement of section 4.1 with an optimised arrangement. For the case study partitions were
only active for approximately the first 600 megabytes. This number corresponds approximately
to the lower 30 bits of the address space. These bits were used to index the lowest levels of the
page table. The bits above 30 to the API were inactive and thus used to index the top levels of
the page table, leaving the API bits to index the middle level. Figure 9 illustrates the optimised
indexing arrangement.

Two network configurations were tried, one with 32 nodes and one with 256 nodes. The ratio

6e+08

5e+08 /

4e+08 (

bytes

3e+08

2e+08

le+08

0 5e+09 le+l0 1.5e+10 2e+10 2.5e+10 3e+l0 3.5e+10 4e+10
Address

Figure 8: The cumulative spread of data in the address space for first fit (solid line) and no reuse
(broken line).

of remote to local mappings was varied between 0% and 100% in increments of 10%, where
0% represents the case where all the data is under the single local API, and 100% represents the
case where all the data was spread evenly between all remote node APIs.

Level

54-48| 47-39|38-30| 63-55/ 29-21|20-12| 11-0

Figure 9: Optimised page table indexing.

The two page tables were built for each configuration which mapped the same amount of
data which was approximately 600 megabytes.

5.2 Simulation Results

The results of the simulations are shown in Figure 10. The page table grows in all four cases
as the remoteness of data increases, as remoteness effectively increases the span in the address
space of the data being mapped. The normally indexed page table is larger than the optimised
one for both the 32 node and 256 node case. The optimised page table was the same size as
the normal one for the case of 0% remote data mapped. However for 100% remote data, the
optimised page table was 2.0% smaller than the normal page table for the 32 node case and 3.1%
smaller for the 256 node case. This marginal improvement is the best that can be expected for

10

the case studied as the “busiest” bits are all indexing the lowest levels of the tree. In a sparser
and regular address space layout a greater improvement would be expected, however we do not
believe this will be the case in Mungi.

2e+07

1.8e+07 32 Node —

Opt. 32 Node ----
256 Node -~

1.6e+07 FOpt. 256 Node

1.4e+07

1.2e+07

1le+07

bytes

8e+06 [
6e+06

ses06 F/

2e+06 [;

0
0 2 4 6 8 10
Percent remote (tens of %)

Figure 10: Graph of page table size versus percentage remotely mapped data, for normal and
optimised indexing in the 32 node and 256 node cases.

5.3 Summary

As discussed in section 4.3, multilevel tree page tables work best when heavily populated. If
a particular policy allocates so as spread data in the address space in a regular manner, then
the indexing of the levels in the page table can be changed to achieve a denser population. A
denser tree is achieved by indexing higher levels of the tree with relatively constant bits and
lower levels of the tree with highly random ones.

6 Conclusion

Basic issues of address space management in Mungi have been examined. Preliminary inves-
tigation indicates that internal fragmentation should not be a problem on current architectures.
External fragmentation of the address space is controllable provided a reuse of address space
policy is used. This leads to a densely populated address space and hence densely populated
multi-level tree page tables. Multi-level tree page tables can be further compacted by using
indexing that suits the address space layout.

11

7 Further Work

Multi-level page tables are not efficient if the address space is sparsely populated. Sparse address
spaces can be discouraged via allocation policy, but not prevented. Hash based page tables need
to be investigated to determine suitability for both sparse and densely populated address spaces.

References

[1] Mary G. Baker, John H. Hartman, Michael D. Kupfer, Ken W. Shirriff, and John K.
Ousterhout. Measurement of a Distributed File System. 13th ACM Symposiumon Operating
Systems Principles, October 1991.

[2] Gernot Heiser, Kevin Elphinstone, Stephen Russell, and Graham R. Hellestrand. A Dis-
tributed Single Address-Space Operating System Supporting Persistence. Technical Report
9302, School of Computer Science and Engineering, The University of New South Wales,
March 1993.

[3] Frans Alexander Henskens. A Capability-Based Persistent Distributed Shared Memory.
Technical Report 462, Basser Department of Computer Science, University of Sydney,
Australia, March 1993.

[4] Donald Knuth. The Art of Computer Programming, volume 1. Addison-Wesley, 1968.

[5] John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, and James G.
Thompson. A Trace-Driven Analysis of the UNIX 4.2 BSD File System. 10th ACM
Symposium on Operating Systems Principles, 1985.

[6] Stephen Russell, Alan Skea, Kevin Elphinstone, Gernot Heiser, Keith Burston, lan Gorton,
and Graham Hellestrand. Distribution + Persistence = Global Virtual Memory. In Int’l
Workshop on Object-Orientation in Operating Systems, volume 2, pages 96-99, Dourdan,
France, 1992. IEEE.

12

