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Abstract

Conceptual graphs are abstract data structures that can form the basis of a
knowledge representation system. Since their introduction by Sowa in 1984,
they have formed the core of a flourishing research effort, with applications
in databases and artificial intelligence. The basics of conceptual graph the-
ory are outlined, including the organisation of existential, finite, bipartite
directed graphs and their relationship to first order predicate logic. A defi-
nition of the basic functions defined over such graphs follows, including the
canonical formation rules and some higher order functions intended to sup-
port reasoning. With carefully designed semantic knowledge in the form of
catalogues of concepts and relations, a conceptual graph processing system
can support knowledge representation. A new evaluation of the strengths
and weaknesses of conceptual graphs with respect to a theoretical view of
knowledge representation which enumerates five roles which the represen-
tation must play: provision of a theory of intelligent reasoning, ontological
commitment, object surrogacy, provision of a practical computing medium,
and human read /writeability, is made. Finally, existing methods of using the
conceptual graphs for natural language comprehension are discussed, and a
new theory of conceptual assembly is proposed. Access to an experimental
conceptual graph processor written in Common Lisp is offered in an Ap-
pendix A.



1. What are Conceptual Graphs?

Conceptual graphs are a knowledge representation formalism invented by John Sowa
and first described in his book ‘Conceptual Structures’ (Sowa, 1984). Sowa was
dissatisfied by the shortcomings of the representation techniques of the day: he was
particularly aware of the problems involved in trying to use data structures to model
commonsense notions such as those required in natural language utterances, including
nested contexts, control of scope and types of quantifiers, and problems of individual
reference, such as representing definite articular, generic and particular concepts, sets,
and anaphoric or corefential links between concepts. Existing approaches to this
problem had tended to come to grief either a) because they were not expressive or
flexible enough to easily capture some of the things humans commonly say (as with
attempts to write first order predicate logic clauses corresponding to sentences
(Genesereth & Nilsson 1987)) or b) because purpose-built conceptual systems
usually failed to have sufficient clarity, consistency and/or extendability to be useful
as dynamic representations (even the best efforts, among them Schank’s Conceptual
Dependency Theory (Schank, 1972; Schank, 1975), were eventually understood to
be inadequate). Sowa wanted a system of knowledge representation that enjoyed both
the conciseness and computational power of logic and expressive flexibility of a
conceptual network of semantic types, without the disadvantages of either.

Drawing inspiration from the existential logic graphs of C.S. Peirce (Burks, 1960)
and on existing semantic network theory (Masterman, 1960; Findler, 1979), Sowa
created an entire conceptual representation system, describing it complete with
philosophical and psychological motivations, a set of formal definitions of the basic
components, a mathematical defence consisting of definitions and proofs showing a
system of logical semantic operations (the four canonical formation rules, and some
more complex operations), a guide to using the representations for formal reasoning,
and practical examples of their use for dealing with natural language and other kinds
of knowledge.

Practically speaking, conceptual graphs are an abstraction which is implemented by
individual researchersin different ways, usually according to the computer language
being used. The basic encoding of the graphs as data structures, together with code
implementing at least the canonical formation rules, together with support for
creating, destroying and displaying graphs, forms a conceptual graph platform, can
be a basis for developing knowledge-based systems. This report offers access to an
experimental conceptual graph code base written in Common LISP for Macintosh
computers, together with some notes about how it can be used (see Appendix A).

Since the publication of ‘ Conceptual Structures’, conceptual graphs have formed the
basis of dozens of knowledge systems including document retrieval systems (e.g.
Gardiner & Slagle, 1991; Dick, 1991), expert systems (Venk & Govind, 1990) and a
medical advisor (Schroder, 1992) as well as natural language experiments (Pazienza
& Verlardi, 1988; Bornerand & Sabah, 1990). A thriving international research effort
has continued exploring and extending the formalism (see the recent collection of
papersin Nagle, Nagle, Gerholz and Ekland, 1992). A workshop gathers annually to
discuss developments in the field. Recently there has been a substantial move in the
direction of certifying the formalism as an international standard, and the devel opment
of astandard, high accessibility, genera purpose workbench to facilitate the building
of conceptual graph based systems called PEIRCE, is under way (Ellis & Levinson,
1992)1.



2. Fundamentals of Conceptual Graph Theory.

At its most basic, a conceptual graph asserts the existence of a particular set of
ontological objects called concepts together with a set of relationships among those
concepts called relations. Formally, this assertion is represented by afinite, bipartite,
possibly cyclic, directed graph, in which the concepts and relations form two types of
nodes, and in which connections between the nodes are represented by identical
single-pointed arrows. More sophisticated than a simple semantic network, a
conceptual graph depends for its meaning on connections to a set of knowledge
resources and inferential operations. Fundamental to these are a hierarchy of
conceptual types and a (possibly structured) collection of relational types, from which
are chosen the possible nodes of a conceptual graph. A set of basic canonical
operations enforce and execute the rules of conceptual graph evolution, allowing the
creation of new graphs from old graphs.

A concept is atyped instance of some event, idea or object in the world. A concept in
a conceptual graph is a particular example of the entire class, or type, of that object.
The difference between atype class and a concept of that type in a conceptual graphis
the type-token distinction familiar to philosophers. In the standard display form?2 for
conceptua graphs, a concept is represented as a box containing atype label: - asingle
capitalised word identifying the type of this concept (Fig. 1).

The box may also contain a referent. This is a string of symbols that uniquely
identifies this particular instance of the type. Concepts without referents are called
generic types. Entries of the referent field can be complex, but in its simplest form, it
consists of either aliteral string representing a proper name such as“Mary” or in the
case of types that are not usually distinguished with proper names, a number like
#164, which may be understood as the one hundred and sixty fourth example of this
type that the system has encountered. A # symbol without a number should be
understood as a definite article e.g. [CAT:#] can be expressed in English as “the cat”
(c.f. [CAT], whichisonly the indefinite “acat”). In the display and linear forms, the
type field and the referent fields of concepts are delimited by a single semicolon.
Special syntax to support variables, quantities, sets, and coreference to other concepts
are discussed in Sections 3.3 and 3.7 of Sowa (1984).

[ora o
O

Figure 1. Conceptual graph representing a particular commonsense notion:
“Sueisquickly eatingapie.” Expressions using dyadic relations should
be understood as follows: [CON1] -> (REL) -> [CONZ2] isto be read as
the REL of a CON1 is CON2. Thus pie is the object of eat. Note
the readability of the graph.

A relation isageneric form of a particular kind of relationship into which one or more
concepts may enter. Monadic relations attach to only one concept. Examples of this
kind of relation are tense markers such as (PAST), negation (NOT), and modal



operators such as possible (PSBL). Most relations are dyadic i.e. they connect two
concepts. Examples of common dyadic relations are agent (AGNT), location (LOC)
and instrument (INSTR). A few triadic relations exist, but the only common one is
between (BETW).

In a standard semantic network, instance nodes may be explicitly linked to their type
nodes by means of an IS-A relation. Much has been written about the exact meaning
of IS-A relations (e.g. Brachman, 1983). Suffice it to say that IS-A links cannot be
used in this way in conceptual graphs, because the relationship between a type and
one of its instances is of a higher order than relations between one instance and
another. Confusing these orders can lead to logical errors. Thus the type relation, as
specified in Assumption 3.2.1, should not be confused with IS-A. Using type labels
inside concept nodes enables a clear notation to describe a particular state of affairs
without cluttering up the diagram with unnecessary semantic information. Sematic
information is supplied in a hierarchy of conceptual types. Although no such ordering
existed among the relation types in Sowa (1984), some have since advocated this
(e.g. Pazienza & Velardi, 1987).

This hiding of higher order type relations also helps to make clearer the correct
interpretation of agraph, asthat of a particular episode, event or state of affairs, rather
than some general law about relationships which hold among types. It is possible to
represent general laws using conceptual graphs, but this matter will be addressed

later. For now, consider the existence of the logic mapping operator ¢ which
guarantees that a first order predicate formula can be derived from any conceptual
graph. Assumption 3.3.2 in Sowa (1984) shows how this may be done for a graph
u::

* If u contains k generic concepts, assign a distinct variable symbol X1,Xp,....Xk tO
each one.

» For each concept ¢ of u, let identifier(c) bethe variable assignedto c if c is
genericor referent(c) if ¢ isanindividual.

* Represent each concept ¢ as a monadic predicate whose name is the same as
type(c) and whose argument is identifier(c) .

* Represent each n-adic conceptual relation r of u as an n-adic predicate whose
name is the sameastype(r). Foreach i from 1to n, let the i th argument of
the predicate be the identifier of the concept linked to the i th arc of r..

« Then ¢u hasaquantifier prefix 32 I ... 5 consisting of the conjunction of
all the predicates for the concepts and conceptual relations of u..

Using this method, the first order predicate formulafor the graph in Figure 1 becomes

IxJyIz (GIRL(Sue) A AGNT (Suex) A EAT(x) A OBJ(x,y) A PIE (y) A
MANR (x,2) A FAST (2) ).

The scopes of the existential variables quantified by 3 in the equation extend over

the entire graph. Other quantifiers (e.g.universal or negation) may apply over the
same or different parts of a graph. The scope of such quantifiers is specified by
means of a sheet of assertion, which in conceptual graph theory means a context. A
context enables conceptual graphs to be nested, making possible more complex
assertions and making the representation of natural language easier. An exampleisthe
use of a monadic relation of time to act as a tense marker in a sentence. Since



everything that happened in the event “John went to London.” occurred in the context
of time past, it would not be enough to link the monadic relation (PAST) to the
concept representing the act of going. Instead, the entire assertion of “John goes to
London” isenclosed in a context box, and that context box is then linked to (PAST):

GO —> PERSON:John
@ CITY:London

Figure 2. Conceptual graph representing the English sentence: “John
went to London”. The monadic relation (PAST) dominates the
entire assertion. Whatever implications follow from the ideathat
the action has already occurred apply to everything inside the
context box.

If conceptual relations can be linked to contexts in this way, it follows that contexts
can be nested within other contexts to an arbitrary depth. Nested contexts can be used
to represent propositions, situations and beliefs. The inclusion of contexts in
conceptual graph theory also allows for a variety of modal logic assertions, such as
possibility and necessity, to be handled.

If conceptual graphs are able to be mapped into FOPC in this way, and it is the
computational power of the logic we need, why use the graph notation at all? The
answer is that it is much easier to read and write conceptual graphs than the
corresponding logic form, particularly when the assertions become complex. Also,
many of the operations on conceptual graphs (see Section 3) are much more readily
understandable if they can be visualised as two-dimensional alterations to graph
diagrams. In practical knowledge-based computing systems, particularly those
involving the writing of many complex assertions, this fact becomes very important.

3. Operations on Conceptual Graphs.

3.1 Basic Support Functions

An elementary computer implementation of a conceptual graph system must begin
with a method of representing conceptual graphs. Primitives of this nature are
strongly dependent of the equipment and language being used, but all would include
functions which can create, store and destroy the basic elements. concepts, relations



and contexts. Methods of representation vary widely. In the Common LISP
implementation referred to in Appendix A, conceptual graphs are represented as lists
of elements, each of which is the name of an association-list storing a set of entries
needed to specify an element of that type. Other methods may be used in Prolog
implementations, such as the use of tuples. Here | only assume the existence of
functions that create, store and destroy conceptual graphs.

A practical conceptual graph system also needs some way of converting graphs
between the display and/or linear form and the internal representation form. The
methods by which this is done are highly implementation-dependent and need not
concern us here. Suffice it to say that mapping a conceptual graph expressed in
graphical display form into an internal representation and back again requires
substantial programming effort.

The ability to quickly access the type fields of relations and the type and referent fields
of concepts and contexts is clearly needed. Functions that do this, such as type(c)
and referent(c), were mentioned in the predicate logic mapping method described in
Section 2. Also needed are functions such as supertype(x,y) and subtype(X,y)
which check the type hierarchy for relationships between concepts.

An elementary function the conformity relation ::, which checks that the referent field
in aconcept matches the type field. GIRL::Sue means that it is true that the individual
Sueis of type GIRL. Thisimplies a mechanism that keeps track of which referents
were originally assigned to which types. Note that a referent will conform to all
supertypes of its original types. For example, the assertions PERSON::Sue,
ANIMATE::Sue and THING::Sue are all true. The conformity operator is needed
during certain operations which try to ater the type and referent fields of concepts, to
make sure that invalid concepts like [ GIRL:Spot] do not comeinto existence. It helps
to enforce the semantics of graphs during transformation operations.

3.2 Canonical Formation Rules

Any collection of concepts and nodes connected by arcs in the proper way is a
conceptual graph. But not al such graphs make sense. Graphs which make plausible
assertions about the world, that is, graphs which represent clusters of relationships
between concepts which we recognise as statements about the real world, are called
canonical graphs. As an intelligent system gains experience about the world, it builds
up acollection of canonical graphs. New graphs can become canonical graphsin three
ways. perception, in which a canonical graph assembled to match a sensory icon
from the outside world; formation rules, in which new canonical graphs are derived
from existing canonical graphs by means of the restrict, join, simplify and copy
rules; and insight, in which arbitrary conceptual graphs are designated as canonical,
in respect of the creative process by which new ideas can form

Assumption 3.4.3 of Sowa (1984) states that the four canonical formation rules by
which a conceptual graph w may be derived from conceptual graphs u and v
(where u and v may be the same graph) :

Restrict
For any concept ¢ in u, type(c) may be replaced by a subtype; if ¢ isgeneric, its

referent may be changed to an individual marker. These changes are permitted only if
referent(c) conformsto type(c) before and after the change.



Figure 3. illustrates the effect of the restrict rule.

PERSON:Sue EAT PIE
GRL:SUe <— EAT

Figure 3. The concept [PERSON:Sue] in the top graph may be restricted to
the concept [GIRL:Sue] because the type GIRL is a subtype of PERSON and
the referent Sue isagirl. The result is the lower graph.

PIE

Join

If aconcept c in u isidentical to aconcept d in v thenlet w be the graph
obtained by deleting d and linkingto ¢ all arcs of conceptual relations that had been
linked to d.

GR 4—4— EAT FAST
PERSON:Sue EAT PIE

GIRL

Figure 4. A join operation on the top two graphs results in the bottom graph.
Note the extra (AGNT) relation inthe final graph. Such redundant relations
are normally removed using the simplify rule (see below).



Simplify

If conceptual relations r and s inthegraph u are duplicates, then one of them may
be deleted from u together with al itsarcs. To be duplicates, the relation nodes must
be linked to the same concepts.

| GRL:Sue EAT @ FAST

Figure 5. Simplify operation on the bottom graph of Figure 4 resultsin a
graph with no redundant relations.

Copy
A new graph w isformed, which is an exact copy of u.. This means that another
representation of the old graph is formed, which happens to have exactly the same
concepts and relations, and structure connecting them. At the display level the graphs

look identical (though the graphs must be distinguished at some level in the
implementation).

| GRL:Sue EAT @ FAST

| crusue EAT FAST

Figure 6. An exact copy of the graph in Figure 5 is made. Note that the
display forms are identical, but the tokens implementing the two graphs
are different.

3.3 Higher Level Operations.

The canonical formation rules of Section 3.2 specialise graphs. A number of
generalization rules are also mentioned in Sowa (1984). The generalisation of agraph
implies the removal of some parts of a graph or the replacement of some of the type



labels in concept-nodes with more general forms on the type hierachy. Referent fields
may also be replaced with more general forms. Generalisation rules preseve the truth
of a graph, but not selectional constraints. An important generalisation rule is
projection.

Projection

If graph u is a specialisation of graph v, then there must be a subgraph u’
embedded within u that represents the original v to which additional graphs were
somehow joined during canonical formation. The subgraph u’ is caled the

projectiont of v in u.. Every relationin mv must beidentical to its correspondent
in v, but some of the concepts may have been restricted to supertypes or may have
been converted from generic to individual. Since some of the concepts might have
been removed as duplicates or joined to each other, the shape and concepts of the
projection may be different. The mapping is not necessarily one-to-one, nor unique.

The operator wt is proved to have these properties in Sowa (1984). Projection is useful
for cognitive operations in which some probe graph is to be matched to a set of target
graphs, for example when trying to identify a graph representing an appropriate
word-sense in a given context (see Nogier & Zock, 1992). An effective projection
algorithm is described by Lendaris (1992), a version of which is used in the
conceptual graph processor described in Appendix A.

Lambda Abstractions

It is possible to use conceptual graphs as frames and to instantiate the values of
variables into them by using graphs in lambda abstractions.. An n-adic lambda
abstraction consists of a canonical graph u (the body) and alist of generic concepts
a,..,an in U (thelist of formal parameters). The parameter list distinguishes the
formal parameters from other concepts in u. In effect, concepts that act as formal
parameters have variables for referents. An instantiation function can assign values to
these variables.

For example consider the lambda-abstraction

XX,y,Z [GO] -
(AGNT) -> [ANIMATE: ]
(OBJ) -> [ANIMATE: %]
(SRCE) -> [PLACE: %]
(DEST) -> [PLACE:?2)

With the formal parameters of x, y and z bound to [PERSON:John], [CITY: Parig],
and [CITY:London] respectively, then given that type restrictions and the conformity
operator are respected, the instantiated graph would be

[GO] -
(AGNT) -> [PERSON:John]
(OBJ) -> [PERSON:John]
(SRCE) -> [CITY :Parig]
(DEST) -> [PLACE:London)



Maximal Join

According to Section 3.5 of Sowa (1984) two graphs may have a common
generalisation; that is, the graphs have a common imbedded graph from which each
graph could have been derived by canonical formation. The two graphs contain
projections of the common generalisation. Given any two graphs, it is possible that
the projections of each graph will be compatible, that is, capable of being merged by
aseries of joins, possibly with additional restrictions and simplifications, except if the
merge is blocked by incompatible type labels or referents. A given merger of
compatible projections of two graphs might be able to be extended if at the boundaries
of the projection, other relations and concepts are found which could be
accommodated in the merger. This process must have a maximum limit in finite
graphs; the resulting compatible projections are maximally extended. A join on
maximally extended common projectionsis called amaximal join.

A maximal join can be visualised as one graphs overlaying another, with the
corresponding pairs of identical relations merging into one relation, and each
compatible pair of concepts forming a new concept which contains the most specific
information from the pair. Compatible subgraphs merge into a common core graph.
Incomopatible subgraphs (differing relations and unrelated concepts) branch off from
the compatible core in an additive manner (Figure 7).

PERSON:Sue EAT PIE
GR. <— EAT @ FAST
[ orusie |<—.<—| -

i

Figure 7. Maximal join of the top two graphs produces the lowest graph.
Note the preservation of the most specific informationin the merge.

A maximal join can be considered the most economical and informative collaboration
of two graphs. Thus, it isan idea way of accumulating information from a number of
small component graphs into an integrated whole. For this reason, the maximal joinis
a most important function for building up representations of sentences from
component words and phrases. Finding the global maximal join is a non-trivial
combinatorial problem. Fortunately a number of useful algorithms for tackling the
maximal-join problem are available (McGregor, 1982; Hartley, 1990; Myaeng &
Lopez-Lopez, 1991).



4. Value of Conceptual Graphs for Knowledge
Representation.

4.1 Evaluation Criteria

A knowledge representation system entails more than just a data structure.
Representation is such afundamental issue in intelligent system design that the choice
of a representation method, or formalism, has major theoretical and practical
implications for the project. Davis, Shrobe and Solovits (1993) have identified five
distinct roles that need to be played by a representation method, and which may
therefore be used as a framework for evaluating it. After a brief description of these
roles, conceptual graphs will be discussed with respect to each.

First, the representation method should form the basis of a theory of intelligent
reasoning. According to Davis, Shrobe and Solovits, such a theory rests on three
foundations: a) the representation’ s fundamental concept of reasoning, b) the set of
inference operations the representation permits and c) the set of inferences the
representation recommends. Second, a knowledge representation implies a set of
ontological commitments. Since no modelling system can capture the full richness of
the natural world, the representation must make some simplifying assumptions about
how to divide up the world. In identifying features of interest, and deciding what can
usefully be ignored, the representation makes explicit an important theoretical claim
about what exists, and thus about what can be dealt with by an intelligent system.

Third, the abstractions in a knowledge representation must act as surrogates for the
objects, events and ideas that it represents; that is, they must stand in for the real
objects, ideas or events in any interactions involving them by virtue of aresemblance,
or at least correspondence, at some level. The relationship between real objects and
their surrogates is a complex matter, but two important issues are those of how the
surrogate is coupled to it’s real counterpart (i.e. how the surrogate is generated from
perceptions, and how alterations to the surrogate will affect the real thing) and of the
fidelity of correspondence (i.e. how closely does the surrogate model the real thing:
what features does it include, omit or emphasise). Fourth, the representation must be
apragmatic and efficient medium for computation. The data structures that stand for
things and the operations that allow inferences on them must be supported by practical
computer software. Memory usage and computational tractability are important
matters, particularly in large scale projects (as intelligent systems tend to be). Finally,
the representation must be an effective method of human expression, so that human
software engineers may readily use it to communicate knowledge to their systems and
to each other. A system of notation designed without human use in mind will be
ineffective as atool for knowledge engineering.

4.2 Theory of Intelligent Reasoning

How do conceptual graphs measure up against these criteria? The conceptual graph
formalism views intelligent reasoning fundamentally as reality-preserving
manipulation of reality-describing (i.e. canonical) graphs. A basic set of canonical
graphs, originating as described in Section 3.2, may be transformed by some series
of operations into other graphs. If the given canonical formation rules are used, the
new graphs will also be canonical. The canonical formation rules enforce selectional
constraints during graph transformation, so a certain kind of logical nonsense, such
as ascribing an inanimate object as the agent of some act, will not propagate. In
themselves, however, these rules do not provide an inference mechanism, because
they do not necessarily preserve truth. Selectional constraints are not strong enough to
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prevent fallacies. Further constraints, in the form of inferential algorithms or
heuristics are needed for this. Other kinds of constraints on the nature of derivable
graphs, such as plausibility, might also be demanded. Inference, in this view,
consists of the development of ever more elaborate reality-modelling graphs through
the application of truth-preserving and/or plausibility-preserving operations.

Since conceptual graphs are equivalent to FOPC, we can use all of its symbolic
operations as a the beginnings of a formal semantics, allowing the notation to be
backed up with an operational denotation. If the operations of lambda-calculus (e.g.
as provided by links to LISP functions) are also allowed, a powerful toolbox of
operations is clearly at hand3. The formalism thus permits the use of a very large
number of potential inferential methods. Although research using conceptual graphs
for Al systems has favoured the use and development of higher order operations like
those described in Section 3.3, it generally stops short of making recommendations
about inferential methods. Many of the conceptual graph community have
backgroundsin formal logic representation, and this group is notorioudly silent on the
matter. Choices must still be made by the system builder. However, lessons have
been learned about the value of some operators. In Section 5, | will describe how the
maximal join can be used to aggregate conceptual structures representing the
meanings of sentences from fragmentary word graphs.

4.3 Ontological Commitment

The ontological commitment of a conceptual graph system is explicitly availableinits
supply of concepts and relations. The concepts are usually organised on a
generalisation lattice, in which more specific types occupy lower nodes than more
general types, and types are connected by supertype-subtype relational links to the
next highest level. Each type node is associated with a canonical graph that defines the
selectional constraints which must be observed when an instance of thistypeisbeing
manipulated. Relational types are provided in an arbitrarily organised catalogue, also
with associated constraint graphs. No prescription is made about what types should
be included, the choice being left to the system builder according to the needs of the
system. However, concepts and relations from the elementary catalogues provided in
Sowa (1984) are frequently seen in papers and electronic mail. There appears to some
dispute about whether or not to distinguish natural types from role types in the
conceptual catalogue; doing so complicates the organisation of the catalogue and the
type operations that depend on it. Failing to do so can lead to problems of placing
some common types on the simple generalisation hierarchy. Another apparent
ontological lack in the formalism is of clear guidelines about the use of referential
fieldsin concept nodes. The conformity operator :: is expected to forbid the formation
of concepts with inappropriate type-referent combinations, but no details about how
this might be done are offered. Nor is the matter of possible entries in the referent
field a closed book. Another problem is alack of good semantics for sets, though this
problem has now been tackled (Kocura, 1992). Still another unresolved issue is that
of whether relational types should be organised into a hierarchy. Here again, more
work needs to be put in before the formalism can completely fulfil the ontological
commitment role.

4.4 Adequacy of Symbolic Surrogates

Given that one accepts minimal Aristotelian, classical-Al assumptions about val ue of
symbolic representations, the assessment of conceptual graphs as useful surrogates
depends on @) the theoretical claim that concept-and-relation semantic networks can
model reality b) goodness of fit between graphs (nodes and structure) and a particular
domain and c) the quality of the method used to generate the canonical graphs. The
clamin &) has been examined and defended thoroughly in Brachman (1985), and will



not be further discussed here. The question of goodness of fit to the domain is related
to the ontological commitment role, and is likewise dependent on good choices being
made by the system builder. Good choices carve the domain at its joints, selecting
concepts and relations that capture exclusive and important features, and at an
appropriate grain size. How does one decide on these features? The process should
begin with a clear idea of the intended purpose of the system. With thisin mind, an
analysis of the domain should be performed to expose a set of aspects, discrete
entities and relationships, which can be encoded in the conceptual and relational
catalogues. Example graphs, making interesting assertions about the domain might be
sketched out to assess the adequacy of the catalogues.

For Al systems, | claim that an important guide here is a clear notion of an intelligent
agent situated within and clearly demarkated from the domain (however abstractly this
is conceived) and this leads to point c). To be causally linked to the real world, the
some concepts and relations must be able to be automatically selected or built up from
the catalogues in response to patterns or events which are distinguishable to the
agent’s perceptual apparatus, while others will be useful only by virtue of their
implications for eliciting or selecting actions from the agent’ s behavioural repertoire.
In choosing concepts for representing objects, we are bound ultimately by the
capabilities of the perceptual machinery, but for actions, we need to commit the agent
to agiven action, or sequence of actions. In natural language understanding, wordsin
the corpus may be used as a starting point, provided one is careful to avoid the trap of
mistaking the mnemonic word labels that are often used as type labels for the content
of the concept underlying the type. In practice, many choices will be made intuitively,
based on the system builder’ s own cognitive structure for the domain. Such choices
may be difficult to defend. Ultimately, the acid test for graphs representing the
domain istheir value to the agent interacting with the domain - and that is an empirical
matter.

4.4 Medium for Computation

Are conceptual graphs a effective computational medium? The existence of a number
of practical graph processors (e.g. Kocura& Ho's (1991) modular CG processor; the
X-windows toolkit GET (Wermelinger & Lopes, 1992); Pfeiffer & Hartley's CP
(1993); and the PEIRCE project’s core modules (Ellis & Levinson, 1992), to name a
few), together with amuch larger number of research programs implementing parts of
the theory (including the software described in Appendix A), testifies to the
practicality of the formalism for computational purposes. A large body of both
mathematical proof and experimental experience shows that the existing theory
performs as advertised. Whether this performance is what is needed to build
intelligent systemsis another matter.

Statements about efficiency must be restricted to individual implementations. Since
conceptual graph papers are generally couched in abstract terms to keep them from
becoming bogged down in implementation detail, data on actual efficiency israrely
offered. In the absence of appropriate benchmarks, and with attention focussed on
just getting tools running at all, questions of efficiency tend to take a back seat. In
keeping with good software engineering practice, some effort is generally made to
ensure the efficiency of proffered algorithms. The PEIRCE project, like many others,
isstill under construction and it may be some time before it can be optimised. In the
system described in Appendix A, no claim is made that the methods used are optimal,
or even particularly efficient. In some of the more complex and important functions,
such as the maximal join, this may create considerable time delays when performing
experiments.



4.5 Medium for Human Expression

Perhaps conceptual graphs fulfil the fifth role, that of a medium for human expression
and communication, best of all. Most people find the formalism very easy to learn and
use. The very readable structures, employing wordlike type labels, together with the
choice of display forms, are widely believed to help account for the popularity of the
formalism. At conferences and in the electronic forum, graphs are the lingua franca,
appearing routinely as ways of expressing complex ideas. However, while
individuals can usually make sense of graphs written by another, there appears to be
little agreement across individuals in the form of graphs expressing the same idea.
When | informally asked a small number of conference attendees to make graphs from
alist of simple sentences, | was surprised that no two graphs for a given sentence
were alike. Thisis probably due to my not being explicit enough about the concept
and relations alowed, but structural differences were apparent, too. For example,
when asked to draw a graph representing the sentence “ John and Henry gave giftsto
Kate and Mary”, one subject drew the following graph:

(PAST) -> [PROPOSITION:
[PERSON: x (){ John, Henry}] <- (AGNT) <- [GIVE.v (xy 2)] -
(OBJ) -> [GIFT:y{*}]
(RCPT) -> [PERSON:z(){ Kate, Mary}] ]

while another drew

(PAST) -> [SITUATION: [GIVE] - (AGNT) -> [PERSON:{ John, Henry}]
(OBJ) -> [GIFT:y{*}]
(BEN) -> [PERSON:{Kate, Mary}] |

With longer graphs or more complex ideas the opportunities for divergence are much
greater. Individuals clearly have different ideas about what constitutes the best
canonical graph describing a given state of affairs. This need not be a problem for
individual systems which can generate and use graphs in a consistant way, but it
could cause trouble if the graphs were used to communicate between inconsi stant
systems.

5. Using Conceptual Graphs to Model Natural Language.

5.1 Existing systems

One of the most important uses of conceptual graphsisto represent natural language
utterances. A number of systems now exist in which a graph forms a conceptual
structure, or conceptualisation, assembled from and corresponding to one or more
sentences. A good way to think about this assembly processisto consider the model-
kit analogy (Noble, 1988). This model states that natural language is like the
instructions in a construction kit in that it contains information useful for putting
together a conceptual structure. Assembly information is of two basic kinds:
information for identifying the parts, and information describing how the parts fit
together. In natural language, content words (nouns, adjectives and verbs) access
conceptual building blocks from the catalog of conceptual types, while function
words (such as determiners, adverbs and prepositions) help clarify relationships



between the building blocks. The idea of conceptual parsing is to automate the
process by contriving a procedure which selects the suitable component graphs from a
supply, and connects them together so that the correct relationships are expressed.

A group working at IBM’s Rome Scientific Centre (Velardi, Pazienza &
De' Giovanetti, 1988) has a system capable of generating surface-level conceptual
graph representations of Italian sentences from a corpus of press agency releases
about economics (about 100,000 words). It uses comprehensive catalogues of
concepts and relations (850-1000 abstract concepts in a type hierarchy and 50
relationsin asimpler relationa hierarchy) and alarge dictionary of word-senses (2000
word-sense definitions appearing as terminal nodes attached to the abstract concepts).
Word-sense definitions are sets of Prolog rules representing elementary graphs
holding &) semantic expectations and b) “pragmatic” language usage information
(Pazienza & Velardi, 1987). Thisinformation is represented as word-sense-rel ation-
concept triples. A supertype field link each word-sense to an abstract concept on the
hierarchy. Using a parse tree generated by syntactical and morphological analysis, a
semantic verification algorithm finds suitable word-senses for each word or phrase,
looks up plausible relations between them, and assembles complete conceptual
structures using the information. The semantic verification algorithm works by
replacing noun and verb markers in the parse tree with concepts selected from the
conceptual catalogue and by matching word-sense definitions to concept-relation-
concept triples in the resulting structure.

The IBM Paris Scientific Centre’s KALIPSOS system (Berard-Dugourd, Fargues &
Landau, 1988) is another large system, also implemented in Prolog, and capable of
processing French sentences. KALIPSOS uses a lexicon of word-sense graphs stored
in the form <NAME> is <CG>, where <NAME> is afunctional term comprising a
lexeme and generic syntactic graph representing the syntactical role the lexeme is
playing, and CG is a word definition graph representing important concepts and
relationships constraining the conceptual role of this sense of the lexeme. A variety of
algorithms for conceptual processing are under development, but no detailed
information on performance is yet available.

Another sizable accumulation of conceptual graph-based tools, including a natural
language parser and semantic interpreter is the Extendable Graph Processor system at
Deakin University (Garner, Lukose & Tsui, 1986). A variety of knowledge sources
are available for the use of the langauge system. These include a word-sense lexicon,
in which content words and function words are represented by short meaning-graphs,
a supply of component graphs, from which complex conceptualisations may be
assembled; default schemas, which allow elaboration of a concept or simple graph
with defaults and background information; a set of type definitions represented as
lambda abstractions; and tables representing the type hierarchy, the set of allowable
type-referent conformities and frequency of association of one concept with another.
A set of pattern correlation functions is used to limit search among the large sets of
graphs. Functions computing various correlation measures between pairs of concepts
and graphs include semantic distance, type frequency, and special conceptual
relevance, and preference functions, designed expressly to allow plausible selection
of arelevant graph to join on when more than one option is available. These measures
are computed dynamically when needed from data which is automatically updated
when the knowledge in the system is expanded. Together with a set of pattern
modification functions, these correlation functions are used by the semantic
interpreter, which is a bottom-up recursive algorithm similar to that of Sowa & Way
(1986) (see below).

What lessons may be learned from these efforts? A common feature of successful
systems is the large size of their knowledge bases. Obtaining a plentiful supply of
component graphs appears to be a costly but unavoidable requirement, particularly if
the system’ s coverage of the natural language isto be broad. A variety of approaches

14



to the representation and assembly process of the conceptual parser are used, but
since data about the performance of these systems is amost never published, it is
difficult to make comparisons between them. This regrettable tendency is not
restricted to the conceptual graph community; it appears to afflict the much of the
natural language field (a notable exception is the Message Understanding Conferences
(Lenhert & Sundheim, 1991)), and to some extent the whole artificial intelligence
discipline. Another lesson is the importance of good representational methods, since
the large number of component graphs must at present be written by hand.

5.2 Requirements for Conceptual Parsing

There are four basic requirements for a working conceptual parser. The first
requirement is a set of component graphs, the building blocks from which
conceptualisations will be formed. Second, a method allowing single words or small
phrases to elicit the appropriate component graph from the set is needed. Graphsin a
conceptual catalogue may be pointed to from word-accessed entriesin a lexicon. The
problem of lexical ambiguity needs to be addressed in this method. The third
reguirement is for mechanisms which can combine the component graphs into more
elaborate graphs. Finally, an organising principle, which can be used to guide the
process of combining the component graphs into the final conceptualisation, is
needed. The following subsections deal with each of these requirements in more
detail.

5.2.1 Component Graph Set

In conceptual graph theory, semantic knowledge consists of a conceptual catalogue
and arelational catalogue. Different ways to organise the information under each entry
are possible. Pazienza & Velardi (1987) use extended case frames, with as many as
20 relational extensions on a stem representing the word-sense. The organisation of
flexible case-frames for language representation has also been discussed in Sabah &
Vilnat (1991). These extensions encode both semantic extensions and word usage
patterns. Sowa & Way (1986) suggested that each entry in the conceptual catalogue
have the following information: the type label itself; a definition for the concept,
consisting of a lambda-abstraction (except for primitive concepts, which have no
composition); a canonical graph, representing the selectional constraints on, or
allowable attachments to, a concept of this type; and one or more schemata,
representing defaults, expectations and other background knowledge. In their system,
Sowa and Way use the canonical graphs as the building blocks in the assembly
process, with the associated schemata assisting in some way.

Since primitive concepts have no graph describing them, there is the question of how
they can be used by alanguage system. It is possible to assign single conceptual type
and relation nodes to such primitive concepts. Sowa (1990) has described a set of
heuristic rules by which mappings can be made between some expressive forms in
natural language and conceptual graphs. Among these are examples of nouns and
verbs which can often be mapped into a single concept, e.g. “lady” = [LADY] and
“dance” = [DANCE] and modal auxiliaries like “can” and “must” map into relations
(PSBL) and (OBLG).

In Al systems which have no perceptual, emotive or motor mechanisms, the value of
such ungrounded, arbitrary symbolsis often a mystery, and this can lead to criticism
and misunderstanding about artificial knowledge. Primitive symbols (those which are
not cognitive in nature) need not be meaninglessif they can stand for raw perceptual,
emotive or motor experiences. Only in Al systems which have subsystemsinvolving
these experiences can the idea of semantic primitives ever fully make sense. Primitive
concepts such as “blue” occur frequently in human language, so this issue must be



properly addressed by a natural language processing theory. The pioneers of
conceptual knowledge representation understand this, with conceptual dependency
theory having, for example, "PPs" (picture-producers) as a class of perceptual
primitives (Schank, 1972), while Sowa (1984, p.70) explicitly draws on “ percepts’
as source of graph components. However, the implications of this lesson have still
not been fully appreciated. At the very least, keeping the sensory, emotive and motor
implications of concepts firmly in mind can help with the creation of meaningful
definition graphs for non-primitive concepts, as mentioned in Section 4.

5.2.2 Lexical Access to Conceptual Building Blocks

Each word of a text should access an entry in a lexicon, which gives information
about one or more possible syntactic roles this word can play in sentences. Associated
with each role is alink to one or more entries in the semantic catalogues. Thus, the
meaning of a given word may be ambiguous, because several concepts may be
indicated. For example, in the Sowa & Way (1986) system, each lexical record has a
list of pointers to word-sense records, each of which accesses the type and canonical
graph of a conceptual catalogue entry. Although access to more than one canonical
graph per word is not an intractable problem (it is tackled in the Sowa and Way
system by trial and error at the conceptual assembly stage), it is less than desirable for
reasons of efficiency and time. Ideally, only one canonical graph, representing a
particular sense in the current context should be elicited. Human beings can
undoubtedly identify the relevant sense of a word for a given context. This can be
thought of as a gating process operating at the time of lexical access: only contextually
relevant word-senses should ever be considered as conceptua building blocks.

How can a current context be represented if the meaning of the sentence has not yet
been ascertained? In the domain of navigational directions, it is possible to reliably
identify the pragmatic class of a sentence from a superficia analysis of word patterns
(Mann, 1992). Each class can have an associated conceptual graph representing a
context for word-sense disambiguation. This graph can be compared to each of the
candidate word-sense graphs using a semantic matching algorithm (Wuwongse &
Niyomthai, 1991). This algorithm scores each pair of graphs according to an
importance scalar for concepts and the semantic distances of matching concepts on the
type hierarchy. The pair with the highest score will contain the most relevant word-
sense graph for the given context. There is at least one other, probably cheaper,
constraint which may be applied to eliminate candidate word-senses: the principle
verb in a sentence constrains the possible senses of associated noun and adverbial
phrases. A (large) table of purely linguistic information encoding these constraints can
apparently be used to obtain such economies (Winston, 1984). A lexical access
function combining these methods can be brought to bear on the lexicon to dlicit a
minimal set of component graphsin the fastest and most computationally inexpensive
way.

5.2.3 Methods of Combining Graphs.

As new information becomes available to a conceptual parser (or other system that
does reasoning by accretion of conceptual graphs) it must be combined into the
existing graph in some systematic and truth-preserving way. Two processes based on
the operations discussed in Section 3.3 are required to achieve this: incorporation and
instantiation..

1. Incorporation is used when a graph or list of graphs needs to be combined into a
whole, beginning with an initial, kernel graph. Each new graph must be maximally
joined to the evolving graph, since this is the most economical, information-
preserving join. The maximal join algorithm requires that a pair of start concepts, one



from each graph, be specified. The maximal joins must also be carried out in a
particular order (so that, for instance, the subgraphs of each noun phrase and
prepositional phrase are fully assembled before they are joined to the root verb
phrase). The pairs of start concepts and the order are provided by an organising
principle (seebelow).

2. Instantiation is used to resolve the values of variable referents in concepts in the
evolving graph. The instantiation functions takes a graph and a variable binding list
consisting of pairs. Each pair consists of a variable name and a concept. For each
pair, the function searches the graph for the named variable and tries to substitute the
concept, with its possibly more specific type and referent field, in order to maximise
the specificity of the graph. Instantiation is also the process by which referents
expressing indirect or anaphoric references may be resolved. A concept with # asits
referent triggers a search for the more specific referent of a pre-existing concept of the
sametype. Thisinformation is kept in a globally-accessible table of current concepts,
which is continuously updated as new graphs are built. If no specific information is
found in thistable, default values are used. The default information may come from
non-linguistic sources, such as visual observations; so that the concept [ROAD:#]
(“thisroad”) can be correctly identified as a specific road [ROAD:#1248] from the set
of world state observations. Because this operation may bring in defaults which could
exclude other, more appropriate specifications, it should always be carried out |ast.

5.2.4 Organising Principle

To assemble graphs correctly and reliably , the conceptual parser needs to be
informed by some kind of organising principle, which tells it how and when to
choose an incorporation or instantiation function, how to parameterise them,
including how to choose the appropriate subgraphs for each operation. In the
conceptual parsing of natural language, this organising principle appears in two
forms: a parse tree from a syntactical parser, and a theory of case role attachment.
Particularly in the early stages of assembly, an unambiguous parse tree is a valuable
guide to the order in which subgraph components should be joined.

A method like that used by Sowa & Way (1986) is used. It works as follows: for
each terminal node of a parse tree, an appropriate component graph is chosen, using
the lexical access method described above. Then following the structure of the tree,
the components are pairwise incorporated into intermediate graphs representing the
meaning of the phrasal constituents. Each intermediate graph is then joined to others,
with control ascending the parse tree and unifying the partial meanings, until the root
node is reached, and the process is complete. Where some problem, such as
ambiguity in the selection of an appropriate place to join, is encountered, the rules
identifying case role attachments in the component graphs and matching them to the
case role requirements of the evolving graph are applied in a way that maximises
satisfaction of those requirements, while accounting for as many component graphs
as possible (Figure 8).

5.3 Theory of Conceptual Assembly

A general theory of assembly of conceptual graphs from diverse information sources
would be useful not only for conceptual parsing, but also for other kinds of
processing with conceptual graphs. Only the outlines of such atheory are given here.
References will be made to the conceptual parsing process, but the overall principles
apply to other non-linguistic assembly tasks as well.
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[GO] -
(AGNT) -> [ANIMATE:?a]
(OBJ) -> [ANIMATE:?4]

Inference rule (SRCE) -> [PLACE:?s]
permits (MODL) (DEST) -> [PLACE:?d]
extension. (INST) -> [ROAD:#]
\(MODL) -> [ABSOLUTE-DIR] -> (AXIS) -> [UP]
S

No join /7\
(pass on) VP NP . [ROAD:#]
Det

Noun Adv Noun
"Go" "up" "this" "road"

I— [THING:#] L [ROAD]

[ABSOLUTE-DIR] -> (AXIS) -> [UP]
[GO] -
(AGNT) -> [ANIMATE:?a]
(OBJ) -> [ANIMATE:?a]
(SRCE) -> [PLACE:?s]
(DEST) -> [PLACE:?d]
(INST) -> [PATHWAY:?i]

Figure 8. A recursive function climbs a parse tree, incorporating each
component or intermediate conceptual graph into the evolving whole,
to form asurface level representation of the meaning of the sentence.
The presence of unspecified extensions to certain relations in the
graph at the root node, or of component graphs which are till
unaccounted for, triggers a search for rules that permit further
incorporations to be made. For example, thegraph for the adverb
“up” cannot be incorporated during treetraversal, but [GO] may be
extended with a (MODL) attachment, which can incorporate the graph.
In the absence of specific information, later processing will access
a default valuefor variable ?a (Self) and a current context value for
both ?s and the indefinite referencein [ROAD:#], but no vaue for 2d
which is at this point genuinely undefined.

The theory asserts that understanding means, in part, the ability to draw on multiple,
diverse sources information in order to build a conceptual model (here a conceptual
graph) of some state of affairs. In the case of language comprehension, information
from atext stream, alexicon, a conceptual knowledgebase, a pragmatic context, and a
table of current concept values are combined to make a surface level model of the text.
Further processing employs inferential rules to elaborate the model, and fill in any
gaps that were left from analysis of the text. Ultimately the graph is passed on to
other, different processors, depending on theroleit isto play (see Section 5.4).



Any process of conceptua assembly requires a set of conceptual building blocks to be
drawn from conceptua storage. Something of this sort is described in Sections 5.2.1
and 5.2.2. The building blocks could also be accessed by visual icons, sounds, or
other raw sensory experience. These building blocks form a kind of evidence about
some state of affairs in the world, and thus represent bottom-up input into the
conceptual assembly process. Initially, however, the building blocks are fragmentary
and disorganised, and so do not constitute a useful model of this state of affairs.

A pragmatic analysis of raw sensory experience activates one aspect of a conceptual
graph called a pragmatic context (not to be confused with the data object called a
context) which contains an overall model of the situation or task with which the
system is dealing. The activated context represents a stored preconception, or
microtheory, about one particular aspect of this situation or state of affairs which will
be the focus of this conceptualisation, influencing the assembly processin atop-down
direction. As well as constraining access to the conceptual knowledgebase (as in
lexical disambiguation), the activated pragmatic context accesses a skeletal structure,
or kernel, which will act as an armature around which the conceptua structure will
aggregate. Though generalised enough to be accessed in response to a broad range of
regularities in the sensory experience, the kernel is too vague and rudimentary to be a
useful model.

Theidea of conceptual assembly is to use one or more organising principles (Section
5.2.4) to successively attach the building blocks to the kernel in a way that respects
the pragmatic context while accounting for the maximum number of building blocks.
This collision of influences between top-down microtheories and bottom-up
perceptual influences affords powerful, reality-preserving constraints to the assembly
process and is a common feature of modern, psychologically informed cognitive
processing models (e.g. Minsky, 1986; Grossberg, 1987).

One approach to conceptual assembly would be to assign parameters or "valencies' to
all the concepts to be joined. The term valency is used by analogy with the processes
of ionic or covalent bonding in the spontaneous formation of molecules in physical
chemistry. Valency values would express the relative strengths of potential bonds
between concepts of various types. To accrete a complete conceptual graph, a
"molecular chemistry" algorithm would simply evaluate the potential joins between
the evolving graph and all competing component graphs. Each graph would be
attached using amaximal-join at the most optimal site (computed by a suitable energy-
reducing function). No ordering of joins or extrainformation would be required at the
assembly stage; the graphs would simply be mixed together like reagents in a
solution, and a complete graph would naturally form, like a compound molecule. The
chief problem with such an approach is, of course, that correctly attaching the correct
valency to each concept is potentially a difficult task, because it would be difficult to
foresee how the values would interact in an arbitrarily complex reaction. The problem
of making appropriate joins has simply been transformed into another, possibly less
tractable, form. A more structured approach, encouraging the use of general
organisational principles about how to make good joins, and affording more control
of detailsin the assembly process, is probably preferable.

Since incorporation and instantiation are the methods by which structured attachment
is achieved, the organising principles must be expressed or realised in a way that
providesi) a pairwise joining order and pairs of start concepts for the incorporation,
ii) avariable binding list for the instantiation process. In practice, the organising
principleis a procedure driven by a data structure such asatree, or by inferential rules
combining linguistic and case role semantic knowledge. This procedure will begin
with the kernel and the set of building blocks, and continue incorporating them until
as few as possible building blocks remain. The structure-following method is tried
first. If any building blocks remain, inferential rules alow the processto continue.
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Figure 9. Assembly theory calls for an organising principle, such as
an inference procedure, to successively incorporate component graphs
into an evolving whole, beginning with a pragmatically selected kernel.
Thekernel isaccessed from acontext activated by the raw sensory
data stream. The component graphs are each elicited by objects in the
stream, under the influence of the active context. When al of the
component graphs are accounted for, collected variable bindings are
instantiated into the final graph, carrying defaultsto fill any remaining

gaps.

The evolving graph “bids” for attachments, while the building block graphs “ offer”
their services in particular roles. The goal is maximal satisfaction of both parties.
Failure to account for many graphs can force another context to be tried. At the end of
the process, a variable binding list, which has been opportunistically collected during
the earlier stages, instantiates variables in the evolving graph with specific referents.
Unresolved references are handled by anaphoric reference to the previously
assembled graph, looked up in the table of current concept values or allowed to
default to vaues associated with the active pragmatic context.



5.4 Playing the Language Game

Pragmatically speaking, it is possible to imagine how different kinds of speech acts
should be handled using conceptual graphs. declarations, questions and commands
are different kinds of language usage that must be treated differently, even though
similar methods might be used to arrive at the assembled graphs. The use of the
graphs in the larger system ultimately depends on the purpose of the system, but
some general methods may apply.

Declarations could be handled by maintaining a database of graphs representing the
state of the world. Each new declaration would be represented by a graph expressing
some observation of or relationship among entities in the world. These graphs would
be asserted onto the world-state database, subject to checks for contradictions or
redundancy. Assertions would be made on the basis of sensory observation, valid
inference or apriori realisation. The inference process will be non-trivial, since an
indefinite number of inferences could follow from a given assertion. Negations would
search for the relevant matching concepts and remove them. Changes in the world
state might be handled either by altering the relevant matching concept (if the world
state was handling only the current world state) or else by time-stamping assertions (if
the world state database was keeping a history of all past states of the world) in the
manner used by Vere & Bickmore' s basic agent (1990).

Questions can be handled by representing them as existentially and universally
guantified queries of a database. The queries can be thought of as graphs with certain

parts represented by variables or The denotation operator ¢ enables appropriate
boolean and sets to be returned, supplying the missing parts, which can form the
basis of an answer (see Sowa (1984) Section 4.4). In the Conceptual Graph
Processor described in Appendix A, queries of a database of fact graphs can be made
using the function query-db, which searches a specified database for a fact which
contains a projection of the graph representing a query. If found, the resulting
projection can be interpreted as an answer to the question posed by the theory.

Commands: may be handled using conceptual graphs with [ACT]s from the
behavioural repertoire as their head concepts and some concept referring to the system
itself (such as [SELF] ) in the agentive case. Verb transition semantics are useful in
overcoming the limitations of primitive act theory for practical control of action
(Cercone & Shubert, 1975; Allen, 1978; McKevitt & Wilks, 1978). A context
expressing one or more preconditions attached to the central verb concept is checked
to seeif the implied action may be performed. Predictions about the consequences
may be inferred from a context containing postconditions. Provided that the
preconditions for an action are fulfilled and no adverse affects follow from the
predicted consequences, the world state database is updated by an appropriate set of
assertions and deletions, and then the system must perform the action in the real
world by executing an appropriate parameterised call to a demon written in the base
language. More indirectly, a command may be thought of as a goal (a conceptual
graph representing a state of the world and placed on a goal-database

Some work has also been done on the generation of well-formed sentences
expressing the meaning of conceptual graphs (e.g. Bell & Joyce, 1989; Dogru &
Slagle, 1992). This process appears in principal to somewhat simpler than the
converse, because arelatively ssmple graph traversal mechanism, with asimple lexical
choice method can produce a humanly readable, if somewhat stilted, grammatical
structure. Choosing appropriate words to express complex structures is more
difficult, and making choices among the various expressive and strategic possibilities,



such as how to choose the focus, what information to include and exclude, and how
to model the intentions and needs of a conversational partner remain important
research issues.

Notes.

1. At the time of writing (October, 1993), the first version of PEIRCE was being
released. It is accessible by anonymous ftp from a site at the Computer Science
Department, University of Queensland using the following command sequrence:

ftp ftp.cs.ug.oz.au
cd /pub/peirce

binary

get peirce.1l.tar.Z

The code is compressed in tar form. It can be converted into ASCII text using the
following commands:

uncompress peirce0.1.tar.Z
tar -xf peirce0.1.tar

It is necessary to edit the file default.mk, altering the line
-DPEIRCE_LIB_PATH="\"/homes/ged/peirce\"" $<

as appropriate to contain the name of directory where you are installing PEIRCE.
Finally, issue the make command. The source code can apparently be compiled into a

working system using most C** compilers; the AT&T C++ compiler is
recommended. For further information contact Gerard Ellis at the Computer Science
Department, University of Queensland: ged@cs.uq.oz.au.

Other official ftp sites for PEIRCE source code are

ftp.cs.su.0z.au (129.78.8.208) in the directory /pub/cg.
crl.nmsu.edu (28.123.1.18) in the directory /publ/cg

A beta-test version of code has become available for the Apple Macintosh, called
MacPeirce version 0.1. It, too, can be obtained by anonymous ftp.

The ftp host is camis.stanford.edu in the directory /efftp/pub/MacPeirce 0.1

The filename is: peirce_0.1m2.sit.Hgx. This file is a BinHexed Stuffit archive. If
you use FETCH version 2.1b4 the conversion and decompression to afolder will be
done for you automatically; the file manual .ps is a postscript manual explaining how
PEIRCE works. If you use some other ftp method, you will need Stuffit Expander
3.0 or some other such decompressor/convertor. Log on to camis as anonymous,
and use your e-mail address as your password. For further information contact Keith
E. Campbell at Stanford University: campbell @camis.stanford.edu.

2. A diagrams containing boxes and circles, like Fig. 1, issaid to be in the display
form.. This form is easy to read, but difficult to type into a computer without an
elaborate graphical interface. For this reason, graphs in many systems, including the



one provided here, are displayed in the linear form.. The display form represents
concepts like this[CAT:#143] and relations like this (LOC). The sentence ‘ The cat sat
on the mat.” would appear as

[CAT:#] ->(STAT) ->[SIT] -> (LOC) -> [MAT].

For more details about the linear form, see Sowa (1984), Section 3.2. Note that the
linear form implemented in the graph processor described in Appendix A isasdlightly
modified version of the form described by Sowa. Most of the changes are needed due
to the special uses of characters by the standard Lisp reader. The semicolon :
separating the type and referent fields in concepts and contexts has been replaced by
an exclamation mark ! .The # sign used to indicate particular referentsis replaced by
the equals sign =. To shorten graphs written in the linear form, the arrows are
expressed as less than or greater than signs (< and >). No full stops or commas may
appear. Nested clauses are terminated with a slash /, instead of a comma,, . In the
modified form, the above graph therefore looks like this:

[CAT!=] > (STAT) >[SIT] > (LOC) > [MAT]

3. The notation supports additional kinds of graph nodes, together with specialised
links, called actors, which are procedural demons able to be triggered during graph
manipulation, and which can read and write symbolsto and from other nodes. Actors
in such dataflow graphs are away of making certain operations explicit in the graphs
themselves. It is not clear that operations involving aterations in graph structure could
easily be carried out in this way, however.
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Appendix A: Quick Guide to Macintosh Common LISP
Conceptual Graph Processor.

A.l1 Basic representation of conceptual graphs in LISP

The basic constituent objects of conceptual graphs, concepts, relations and contexts,
represented as association lists. The function create generates a unique token for
each new object, and assigns an association list asits value. When atypical concept is
evaluated, the result isan alist like that shown below:

((TAG C127) (TYPE PERSON) (REFERENT John) (NOTE NIL) (ARCS (R87 R89)) )

The concept with the token name C127 is of type PERSON, has the referent John,
and is linked to the relations identified by tokens R87 and R89. The idea of
representing links using a list of connected objects is a reasonably efficient way of
navigating on graphs, but has the drawback of being difficult to use to encode
directedness, that is, it cannot be used to indicate the direction of the arrowhead on the
link. This has not proved to be a serious problem for my purposes; it could be a
problem for some applications. An inconsistency in the use of fields is that non-nil
single entries into them are stored as atoms. This implies the need for a nil-atom-or-
list test every time afield is accessed; it would have been simpler and more efficient to
alow only list entries. The NOTE field can be used to store useful information about
the concept. For example, if after parsing a sentence a concept is assigned to some
part of speech, the concept can be annotated with a marker such as VERB.

A relation object has asimpler structure, with no referent field. Relation R87 might be

((TAG R87) (TYPE AGNT) (NOTE NIL) (ARCS (C95 C128)) )

The ARCS list for relation objectsisalist of concept or context tokens.

Contexts are represented as a context object plus a set of concepts, relations or
contexts forming graphs within the context. A typical context object is shown here:

((TAG CX150) (TYPE SITUATION ) (REFERENT C108) (NOTE NIL) (ARCS (R122 R152))
(CATALOG (C108 R70 C109)) (ENVIRONMENT NIL))

Context are like concepts, except that they contain one or more graphs (possibly
containing other contexts). These are represented within the context object asalist (or
list of lists, if there is more than one included graph) of objects in the CATALOG
field. The referent field contains the name of the most important concept in the
included graph, called the head (or alist of these as appropriate). To enable contexts
to be nested, an environment field is provided, in which the name of a dominating
context may be stored.

A graph is represented as a simple list of the names (tokens) of linked concepts,
relations and contexts. For example the graph G1 might be the list

(C140 R122 C145 R123 CX150 C108 R70 C109)

This set of objects has an implicit set of links. Note that the objects appearing within
the CATALOG of context CX 150 appear on the list. Generally, the order of objectsin
agraph is not significant, but for readability it may be wise to make the catalogued
objects of a context appear after the context object containing them.



A.2 Functions supported

As explained in Section 3.1, a basic conceptual graph processor must include
functions which can create, store and destroy the basic objects: concepts, relations
and contexts. The create function generates a new token and setsthe TAG field of a
proforma association list to this token. To complete an object, values for the other
fields must be provided. Exactly how this is accomplished depends on where and
why the object is being made, but it has proved very convenient to enable graphs in
the linear form (see Note #2) to be read and converted into the list form. The function
take-graph enables this to be done. The LISP expression

(setq G1 (take-graph ‘([EAT] > (AGNT) > [CAT!=Fluff]) ))

reads the list containing graph expressed in a (modified version of the) linear form,
and builds the corresponding list containing on relation and two concepts objects.
This list then becomes the value of the variable G1. destroy-graph accepts a graph
name like G1 and unbinds each token name within the graph from it’s value, thus
freeing up memory. Graphs may be displayed in the (modified) linear form using the
function display-graph.

The contents of the various fields in an object are accessible using the function
fetch. (fetch ‘referent c127) returns the contents of the referent field of concept c127.
The ability to quickly check concepts for position on the type hierarchy is clearly
needed; the functions supertype and subtype decide if the named relationship
applies to two type labels.

The function instantiate enables the values of variables to be included in graphs
used as lambda-abstractions. All four of the canonical formation rules are
implemented in the functions copy-graph, restrict-graph, simplify graph and
join-graph.

The projection operator, 7t , is supported. The call (projection F Q) will return the
projection of Q in F, if one exists, nil otherwise. Given afact database consisting of
list of graphs and a query graph (a general graph) the call (query-db database query-
graph) will search for afact graph which contains a projection of the query.

A maximal-join operator is provided. In addition to the names of a pair of graphsto

be joined, it requires the evaluated forms of the pair of concepts, one from each
graph, on which thejoin processisto begin. For example, the call

(setq J1 (maximal-join G1 G2 C58 C69) )

generates a new graph J1 which is the result of a maximal join between graphs G1
and G2 beginning with the concept C58 from G1 and C69 from G2.

A.3 Getting started

To use the conceptual graph processor, you need:

a) aMacintosh computer withat least 5M of RAM and running Macintosh
Common LISP version 2.0.



b) a copy of the LISP Conceptual Graph Processor and Natural Language Support
source code (in Disk 1 folder CG Processor and Disk 2 folder NLU,
respectively). NLU containsa good deal of code written by Bill Wilson for
experimenting with natural language, including a chart-parser, and a large
English lexicon . NLU Experiments contains code written by Graham Mann for
conceptual graph support.

The MCL environment supports documentation boxes which can be requested for all
functions and these are complete for amost all functions. Good use of these can make
getting used to the code easier.

Load the Macintosh Common Lisp, then, evaluate the file called loadup.lsp. Thiswill
attempt to load in the entire natural language system, including a complete 30,000
lexicon and chart-parser (file charts4.Lisp), a semantic knowledge base of about 200
concepts and relations (files make-semantic and make-relational), the set of canonical
formation rules (file canonical-formation-rules.Isp) and the maximal join code (file
maximal-join.Isp). Many of the basic support functions are found in the file object-
support.Isp. It might be necessary to make some minor modifications to the files to
get them loaded (typically, path names will need to be atered). Some files |oaded by
loadup.lsp may be unneeded, and may be removed from your copy of loadup.lsp.

The LISP source codeis available on request from the software library in the Artificial
Intelligence Laboratory, University of New South Wales. Note that it is experimental
code written for experimental purposes and is not fully debugged and tested. Every
attempt has been made to make the functions work well, but no claims are made about
the reliability or efficiency of this software, and the user should take care when using
the code for new work.



