SCS&E Report 9309
July, 1993

Using CSP+T to Describe a Timing Constrained
Stop-and-Wait Protocol

John J. Zic

SCHOOL OF COMPUTER SCIENCE AND ENGINEERING
THE UNIVERSITY OF NEW SOUTH WALES

| SCIENTIA

Abstract

This paper presents a novel description of a time-constrained stop and wait
protocol using an extended CSP model. The timing constraints examined
include the usual message transit delay, as well as message input rate limi-
tations and message timeouts.

The extended CSP model used for this example is based on associating
finite time intervals with each event the process engages. These time intervals
in turn are functions over a set of markers events.

1 Introduction

A complex system, whether it be a chemical plant control system, a fly-by-wire aircraft
control system, a data communications suite, or a piece of medical electronics needs to be
carefully and methodically developed. Rigourous design, specification and implementation
techniques should be used in order to ensure that the product finally delivered is functionally
correct for its given specification, and that the specification itself captures accurately the
understanding of the product design.

To achieve this rigour requires the use of some of the many types of Formal Description
Techniques, such as LOTOS [2], VDM [8], Z [20], Petri Nets [13], Estelle [7], the observational
congruence model of CCS [11, 12] and the failures model of CSP [6]. Typically these Formal
Description Techniques (or FDTs) specify system behaviour by using mathematical systems
of Logic, Set Theory, or Process Algebras with rules enabling the correct construction of
a system. Furthermore, a FDT also includes construction and reduction rules allowing the
system to be broken into subcomponents.

These specifications (expressed in a FDT) are deliberately abstract from any particular
implementation. This gives the implementor freedom to choose between varying implemen-
tations according to their own knowledge and skills.

The FDTs mentioned all deal only with functionality, ignoring performance. In partic-
ular, time is not discussed. There are many examples in communication systems software
where speed is essential, and so must be mentioned in a specification. The requirements
include maximum processing delay for any particular message, minimum spacing between
successive transmissions to prevent flooding, and even conditional demands (e.g. “if packets
are received too quickly, send a choke”). Specifying a system’s temporal characteristics re-
quires extensions to the above mentioned FDTs. Amongst the earliest proposed extensions
were to the Petri Nets to develop the Timed Transition Petri Nets [14] and (less commonly)
Timed Place Petri Nets [4, 19]. More recently, the 7 specification language has been extended
to allow the use of continuous real functions to model timed histories [10], and Hoare’s CSP
has been extended (by several workers [15, 3, 17, 9]) to allow real-time system specifications.

This paper presents another set of extensions to CSP, which allow succinct real-time
specifications often displaying similar structures to the untimed specifications. The motiva-
tion for these extensions was that it was found that other Timed CSP models could describe
some simple systems only with difficulty, and the resulting process description seemed un-
natural [22]. For example, a (multi-place) buffer which has differing input and output rates,
and provides each message with a specific delay could not be easily expressed in any existing
technique. This was a result of each model being able to specify only delays between any
two successive events within a sequential process. In order to allow description of the above
system, the specification technique must be able to specify delays between arbitrary events in
the process execution. As will be demonstrated, the proposed description technique (called
CSP+T) achieves this latter requirement.

The paper is divided as follows. First a brief introduction to the CSP+T is presented,
including a discussion on the algebraic extensions as well as the traces model. Next, an alge-
braic description is developed. Following this, the relevant timing constraints are described
and formalised in some detail. These timing constraints are developed independently of the
algebra and hence any particular algebraic implementation. A proof outline follows, which,
when a full trace semantics for the algebra is developed, will be able to demonstrate the
correctness of the implementation and the component specifications. The paper concludes

with some issues which are concerns for current and future work.

2 A brief introduction to CSP+T

2.1 Overview

Hoare’s Communicating Sequential Processes (CSP) is a well-known formalism for describing
sets of communicating concurrent processes and their interactions. CSP can be divided
into two distinct but related parts. First, the traces model allows non-constructive process
descriptions of one or more deterministic processes. Second, the algebra allows constructive
process descriptions. These two are closely tied together by a complete semantics which
allows one to show that a particular algebraic description formally satisfies its specification
expressed in the traces model.

However, neither the traces model nor the algebra can be used to describe the timing
properties of any process, since it was never intended to do so. The basic premise of CSP is
that it allows description of a process’ behaviour in terms of the sets of sequences of observed
events. Sequencing information on its own does not carry any timing information.

The author in [24] proposed some extensions to both the algebra and the traces model
which would allow the description of process timing properties. A summary of this work is
now presented which will serve as an introduction to the notation and concepts used in the
example.

2.2 The Algebra

The CSP+T syntax is a superset of the basic untimed deterministic CSP syntax presented
by Hoare [6]. The syntactic extensions and a partial trace semantics are presented in the
author’s thesis, and will not be reproduced here. A computational semantics for the algebra
is the subject of continuing research.

The fundamental changes to the untimed algebra are that:

¢ A new event operator M is introduced so that writing ev M var; means that the time
at which the event ev is observed in a process execution is recorded in the variable
var;. The events associated with this operator are called marker events. Variables
used in conjunction with this operator are called marker variables. The scope of all
such variables is restricted to being solely within a single sequential process definition,
with the exception that if the process definition involves calling other processes (eg
mutually recursively, plain recursion, or other process calls within a process body), that
variable may be used by these processes. Outside of these cases, the marker cannot be
used by other processes.

e Each event is associated with a time interval. This time interval expresses the time
since the preceding event that the current event is enabled. Relative expressions are
introduced to express constraints that depend on the time of events other than the
most recent. These expressions use marker variables.

e Each process definition requires that it is instantiated before it can execute. As such, a
special process instantiation event denoted by “x” is introduced into both the algebra
and the traces model.

o Only deterministic processes can be described in the algebra.

Consider the following clock (presented in [6]):
CLOCK = tick — CLOCK

This clock engages in a single event: tick, and it does so forever. However, this clock only
gives us sequencing information. We cannot say anything about the temporal relationships
between tick events.

Suppose that this clock is meant to engage in a tick event every time unit. The process
may be specified by using enabling intervals in one of two methods. Both methods have
enabling intervals that may be open, closed or half-open, with [0, c0) representing the least
specified enabling period (for an event that can occur at any time).

The first method uses an enabling interval of [1, 1] on each tick event.

CLK = [1,1].tick — CLK

This means that a tick event occurs precisely one time unit after the immediately pre-
ceding tick provided that this process is isolated. An isolated process is a process which is
either:

e the only executing process within an environment, or

o if there are one or more other processes executing within the environment along with
the CLOCK process, that all events from these other processes are hidden from the
environment (and consequently, the CLOCK process).

The reason for requiring process isolation is that it is possible that the preceding event
(to the tick) may have been due to another process, in which case the clock’s timing will no
longer be regular. This example shows that if the function representing the enabling interval
does not explicitly mention any specific marker variables, then the event timing is defined
strictly in terms of the immediately preceding event time. This is the usual timing that other
Timed CSP algebras adopt (by defining successive interevent delays).

The need for process isolation is reason to bring in the second method, where the enabling
interval associated with the tick event is dependent solely upon the preceding tick time. This
is achieved by specifying the enabling interval in terms of the marker variable associated with
the tick event:

CLK = [rel(1,v),rel(1,v)].tick XM v — CLK

where rel is defined as follows: if the preceding event occurred at some absolute time {y
and the value held in a variable v is z, then the expression rel(z, v) denotes z + v — f. This
expression is defined to allow the expression of a single enabling interval in terms of several
different different marker variables.

Besides the event-based extensions, some basic processes are also defined: STOP, the
“broken” process; SKIP, the successfully terminating process; and DELAY (n), which also
terminates successfully, but only after the specified period n has elapsed since process instan-
tiation. Each of these processes, as all other processes, requires that it be instantiated prior
to attempting to be executed. This implies that each process engages in at least a process
instantiation event (denoted by %), and that the timed traces of even the STOP process are
not empty—they must include the x event. Other than this difference, the semantic meaning

of these processes is similar to the Reed-Roscoe Timed CSP processes STOP, SKIP, and
WAIT n, respectively. [15, 16, 17]

Additionally, this paper denotes a process alphabet by Fv, and the set of interconnecting
channels is denoted by Ch

2.3 The Traces Model

The traces model is extended by associating a time stamp (drawn from the set of positive
real numbers, R;) with each event in the process’ execution, so that the process may be
characterised by the set of finite length sequences of pairs called timed traces. For example,
a timed trace

((0.%), ((0.5).a), (1., ((1.21).c))

records that the process was instantiated at time 0, then an event ¢ was observed at time
0.5, event b at time 1, and event ¢ at time 1.21.

Definition 1 A timed event is written as a pair, (t.e), where t € Ry, and e is an arbitrary
event taken from the untimed process alphabet. Event times are absolute with respect to an
observer’s system clock.

There is no restriction on the minimum event separation in CSP+T. However, the model
does require that sequence of times in any timed trace must not decrease. That is, any timed
trace must be monotonic in time.

Definition 2 (Event monotonicity) If the sequence of event time stamps is a monotoni-
cally nondecreasing sequence taken from the set of positive real numbers Ry, then the sequence
1s monotonic in time.

Notice that this definition does not exclude timed traces which may have events with
identical time stamps, but which are ordered by the sequencing information (perhaps defined
in the algebra). This means that timed traces such as (0.a,0.b) is regarded as distinct from
one such as (0.5,0.a).

2.3.1 Timed executions and traces

It was found that the most common method for describing process evolution in the algebra
was in terms of relative timings, rather than absolute timings. Accordingly, the timed
traces model accommodates this by dividing a set of timed traces into a (special) singleton
instantiation event (written x) and the set of timed sequences called timed executions. Since
these timed executions are affected by the values of the process’ variables, we incorporate
these into the specification of a process’ timed executions by listing all the variables and
their currently bound values in the process in an association list. An empty association list
is written as [] and a singleton association list with variable v; with a value #; as [v; = #].
In general, an association list of n values is written as [vy = ¢, v = t3,..., v, = t,] where
each variable name is distinct, but each value does not have to be distinct. Two or more
variables can be bound to the same value, e.g. [v; =), v = v3 = vy = b3].

Definition 3 (Timed Executions) For a process expression P, the set of timed execu-
tions observable when the wvariable values are given by an association list A and process
instantiation occurs at time st is written

evec(P, A, st).

Further, since process expressions now involve explicitly named variables (and seldom
if ever use subscription) the usual manner of providing process specifications exclusively in
terms of the trace properties cannot be used alone. Typical specifications therefore consist
of the conjunction of the trace properties and a set of predicates on the variable values used
explicitly.

The entire set of timed traces of any process may be considered to be a union over all
possible instantiation times of the process executions, each prefixed with an instantiation
event at the appropriate time.

Definition 4 (Timed traces) For all instantiation times st:

timedtraces(P) = J{z | 2 = () V (hdz = (st.x) A tlz € exec(P, A, st))}

As an example, consider a bell that is instantiated, then goes ding after waiting for a
period given by a variable z, and then goes dong 1 time unit after that, and can then perform
clack at any time thereafter. If the value of z is 5 and the process was instantiated at time
0, the execution set is given by exec(bell,[z = 5],0) and includes many sequences:

((5.ding), (6.dong), (8.clack)),

((5.ding), (6.dong), (11.clack)),

and even

((5.ding), (6.dong)),

since it is possible that the observer will cease recording events while the process is still
running. This set is represented usually by a declarative description, rather than by listing
its members since there is a possibility that the set of process executions may be infinite,
despite each member being finite. It is preferable to write exec(bell, [x = xo], st) to represent
the union of {(((st + 2p).ding), ((st + x0 + 1).dong), (y.clack)) | y > st + xo + 1} together
with all the prefixes of members of this set (including the null execution, ()).

However, timed executions such as ((6.ding), (8.dong)) and ((7.ding)) cannot occur. The
bell must engage the ding event only at time 5, and the dong event exactly one time unit
after that, that is, at time 6.

As pointed out earlier, the author has some partial trace semantics for the algebra (which
for the sake of brevity are not presented here). Work is currently in progress to ensure that
the trace semantics is complete.

We now move on from the outline of the CSP+T formalism to presenting the protocol
proper.

~

mn) out
Userl Service P

User2

/

Figure 1: Service diagram

3 The protocol

The following example shows how the proposed extensions to CSP allow the components
of a simple communication system to be described. In this example, there is a unidirec-
tional message transfer between two agents Userl and User2 via a communication service
P (refer to Figure 1). However, the service itself must be implemented using unreliable
communication links and so a service protocol is required to ensure that as far as the users
are concerned, they have a reliable communication link between them. This is done by the
use of an unbounded sequence number stop and wait protocol with an appropriate timeout
mechanism.

Let P be a protocol service process, with {in, out} the channels connecting the two user
entities (Userl, User2) to the service.

First consider the untimed characteristics of this service.

Any message sent by Userl will be eventually received in the correct order by User2.
The usual buffer condition applies for any timed trace of the system ¢:

Protocol-spec &
t]out <t]in.

This says that the sequence of contents of messages on the out channel form a prefix of
the sequence of contents of messages on the in channel.

Further requirements might be put on the service in that it must meet the following
real-time specifications as well:

o Average throughput of THRU messages per second which may be expressed as a pred-
icate Thru-spec,

e Message input rate of R messages per second (given by a predicate Input-rate) and

e each message sent through the system will encounter a transit delay laying within a
range of values [7in, Timar] (Which may be expressed as a predicate T'D-spec)

The complete system behaviour is then the conjunction of these timed predicates ! and the
untimed predicate:

!These predicates are not given in this paper for the sake of brevity. They are available from the author
if required.

Protocol-spec N\ Input-rate N Thru-spec N TD-spec.

There are many implementations that will meet the above specification, each being se-
lected on the resources available to the implementor. There are some resources that preclude
any implementation using these resources ever meeting this specification since they do not
possess satisfactory timing properties. In this well studied example, it is common to assume
that the underlying connections between processes may only nondeterministically lose mes-
sages; a typical (and quite common) implementation for unreliable channels is that there
is a nondeterministic choice made on whether to accept input messages or whether to lose
them. However, as the proposed CSP+T allows descriptions of only deterministic processes,
the usual unreliable buffer descriptions cannot be used. For the purposes of this example, it
is assumed that the unreliable channels may be described by a fair, deterministic message
loss mechanism. The usual nondeterministic behaviour in such a system is rejected since it
leads to the possibility that nothing can be said about the system timing which, after all,
defeats the purpose of introducing timing at all.

We now turn our attention to a description of the service provider processes.

3.1 Overall view of the service provider processes

The system provider process is composed of a transmitter process TX, a forward and reverse
channel FWD and REV respectively, and a receiver RX. These component processes are
interconnected as shown in Figure 2 and operate in a parallel composition to produce the
required service P = TX || FWD || RX || REV. Messages are sent from the Userl client
to the transmitter TX. The transmitter then forwards the message onto the buffer FWD,
representing an unreliable channel with a finite message delay.

The receiver, on correct reception of a message, will pass it on to the User2 process and
send the transmitter an acknowledgment message via the reverse channel. If the acknowl-
edgment sent by the receiver on the reverse channel does not reach the transmitter within a
specific time, the transmitter resends the current message. This is repeated until the correct
acknowledgment is received.

To ensure that the service correctly reassembles the messages at the receiver (including
removal of any duplicate messages), each service message is labelled with a sequence number
taken from the set of natural numbers Ny = {1,2,3,...}. This is done in the transmitter.
Thus each event sent on by the transmitter to the channel and on to the receiver (and vice
versa) is a 4-tuple (t.seq.ch.ev) where t € Ry denotes the time at which the message ev
is observed, seq € Nj is the sequence number associated with the message, ch € Ch is
the channel name (drawn from the set of channel names for this system) that the message
appears upon.

Fach of the component processes is now described. We commence with the simplest (the
channel), then proceed on to the receiver, and finally the most complex (the transmitter).
The overall system is then placed in a parallel composition to provide the service required.

3.2 The channel processes

The forward and reverse channels are implemented using a single type of buffer with the
channel names appropriately relabelled. Call the basic buffer process LB (for lossy buffer).
LB has a single input in and a single output out. Thus the forward and reverse buffers are:

@rvice P \

WD

out

\
RX User?
/

Userl TX

\REV

- /

Figure 2: An implementation of the service process

FWD = LB[in/f1, out/f2]
REV = LB[in/rl, out/r2].

The LB process either inputs a message on the left, and outputs the message after
a specific delay, or it inputs the message and loses it. The message loss mechanism is
deterministic and is determined by some coin tossing experiment, with two outcomes: head
and tail.? This coin toss immediately follows any input event (and hence the enabling interval
is set to e = [0, 0]). Should the coin toss turn up a head, the message is delayed before passing
onto the output channel. Conversely, if the coin toss produces a tail, that received message
is lost.

A suitable simple implementation for LB using an enabling interval specified as a function
of the marker event in?z) on the input and output events is:

c.head — F.out'lz — X)

_ CE.inte W inTi ;
LB =uX - -Fanlz znsze—>(| ctail — X

where

Fy={s|s=rel(D,inTime)}.

3.3 The receiver process

The receiver operates as follows. If a message is received on its input at any time, and it
is in the correct order, it is stripped of its sequence number and passed onto the client. An
acknowledgment is sent back to the transmitter process via the reverse channel, indicating
that the expected (in sequence) message was correctly received. Should the message appear
out of sequence, it is discarded and an acknowledgment is sent back with the sequence
number of the last correctly received message. The sequence number (se in the following
descriptions) increments only if a correct message that is in sequence is received. Each of
these actions are assumed to occur immediately following the reception, and so each event’s
enabling interval is e.

2This paper deliberately abstracts out the way in which these two events are generated.

RX = se:=0; RXS
TO-CLIENT-AND-ACK
RXS = 2% — 4 (GetSeq(z) = se)
RESEND-ACK
The TO-CLIENT-AND-ACK process outputs an acknowledgment and the message is
output to the client, then increments the expected sequence number.

TO-CLIENT-AND-ACK =
(e.rll(se.ack) — c.out! Getlvent(z) — ¢.(se: = se + 1); RXS)

The RESEND-ACK process retransmits an acknowledgment with the current sequence
number.

RESEND-ACK = e.r2!(se.ack) — RXS

3.4 The transmitter process

The transmitter process implementation is based on the following untimed transmitter, UTX .
The transmitter can either accept inputs from the client process and queue them for delivery,
accept acknowledgments from the reverse channel, or send messages to the receiver via the
forward channel by removing them from the message queue. Clearly it cannot be expected
to do anything else except accept inputs from the client if there are no messages queued for
delivery.

UrxX =
seq:=0;.5: = ();
(in?x — USTORE; X)
£5=0 %
ity — USTORE; X
pX -

| r27y — UW(y)
| timeout — out!(hdS) — X
| TD-exceeded — STOP

UTX starts with the initial value of the message sequence number being zero (seq = 0),
which is incremented each time a message is successfully enqueued for transmission (the
queue is represented by the variable 5). Messages from the Userl client are queued by
the transmitter’s internal buffer, after having been tagged with their appropriate sequence
number. This is done by the USTORF process:

USTORE = seq: = seq + 1;5: = 57 ((seq.x)).

If there is nothing queued to be sent on, then the only possible action that the process
may engage is the further input of a new message from the Userl client. However, if it
is not empty, then it may either input a new message and store it, or it may output the
head of the queue of messages to be sent off. Should the latter be chosen, the transmitter
must firstly wait for an acknowledgment message to be received before proceeding to do
anything else. If the acknowledgment arrives and is in the correct sequence, then the current
message is removed from the queue, and the process is ready to either input a new message
or output the new head of the queue. If the acknowledgment comes back with an incorrect
sequence number or a timeout is indicated, the current message is resent and the queue is
not shortened. The UW process is used to implement this.

UW(z)= (S:=(t19));0ut!(hdS) — X
4 GetSeq(z) = GetSeq(hd S)
fll(hdS) — X

Using this untimed transmitter as a basis, we formulate the timed transmitter by finding
suitably “interesting” events for use as markers.

First, the transmitter may timeout. This occurs if the time difference between the sending
of a message on the forward channel and the reception of its corresponding acknowledgment
on the reverse channel is greater than the expected message round-trip time. The timeout
mechanism occurs only because there has been an excessive time period from the transmission
of the message; it is not dependent upon the time at which the message acknowledgment is
received. This means that the marker event is the transmission of the message.

Further, the transmitter can accept input messages at a specific rate of R messages per
unit time. Thus input messages need to be separated by a time difference of 1/R. Secondly,
there is the possibility that a message may take longer than the specified transit delay, in
which case the transmitter is deemed to be “dead”, and thus behave as STOP. In both of
these cases the marker event is the client input.

In summary, the marker events are the

e client input and
e output the sequence numbered message onto the forward channel.

We now need to consider the event enabling intervals. As mentioned earlier, the timeout
needs an enabling interval expressed as a function of the time at which the current message
was sent forward onto the channel. Secondly, the client input events need an enabling interval
expressed as a function of previous input events. Third, acknowledgments are expected to
occur within a specific time of the forward message transmission. Finally, the transmitted
will break should the transit delay be excessive: this is determined from the time at which
the client message was accepted by the transmitter.

Thus the timed transmitter process adds relative enabling intervals to each of the choice
events in the above UTX as well as appropriate marker variables to the input and output
events. The USTORE and UW processes are now the timed processes STORFE and W:

TX =
seq: = 0;
S:=)
(Ey.in?e X inTime — STORE; X)
£95=0*
Eyoin?z WanTime — STORF; X
| Ep.r2ly — W(y)
| Es.timeout — out!(hd S) — X
| Fy.TD-exceeded — STOP

The STORF process stores incoming messages as time and event pairs, with the sequence
number is incremented each time a new message is enqueued.

STORE = e.(seq: = seq + 1);e.(S: = 57 (inTime.seq.z))

pX -

10

The W process has a similar structure to the untimed UW process.

W(z)= e.(S:=tl9);e.fllGetlvent(hd S) X outTime — X
4 GetSeq(z) = GetSeq(hd S)
e.f1!GetEvent(hd) M outTime — X

The enabling conditions for the input, output, reception of an acknowledgment and
timeout are, respectively:

e The input is enabled subject to the requirement that inputs be spaced at R messages
per time unit. This means that the time difference between successive inputs must be
1/R.

Fy=A{r|r=rel(1/R,inTime)}

o After each message has been sent, the process expects to receive an acknowledgment
within the round-trip time for a message

by = { t‘ rel(2 X Toyin, outTime) < t < rel(2 X (Tpay), out Time) }

e The timeout period occurs at the end of the acknowledgment period, and excludes
it. It occurs also if the age of the oldest message in the message queue exceeds some
fraction of the transit delay, but is still less than the transit delay:

s = rel(2 X (Tp45), outTime) V
rel(koge X (Tpax), hd times)
<5<
rel(7az, hd times)

By =

e The transmitter breaks once the oldest message’s age exceeds the transit delay:

Fy={u|u> rel(T,z,hd times)}.

4 Required timing relationships

We now turn our focues from describing the system algebraically to capturing the timing
relationships in the timed traces model. The timing requirements developed are independent
of any particular algebraic implementation, and attempt to capture the essential invariant
timing relationships which hold during the system’s execution.

The following formalisations of each of the service components’ timing requirements as-
sume that s, t and u are arbitrary timed traces of a process, with ey, e; and so on representing
distinct events.

4.1 Channels
Both FWD and REV share the timing characteristics of LB. The timed trace specification
for this process is the conjunction of

HEAD &
s (ti.head) u = lasts = ty.in.e; A ((u=()) V (hdu = (&1 + D).out.eq))

and

TAIL &
s (t.tail) u = lasts = f.in.eg A((u=()) V (hdu = t;.in.e3.))

11

4.2 Receiver

The receiver as presented in Section 3.3 has the following untimed behaviour. Any client
output message implies several conditions have been satisfied. First, an output with value
e1 should be observed only if the last event on the input channel was an e;. Second, there
should only have been one such message received before being output. This ensures that there
are no repeated messages passed onto the client. Third, the first event in any subsequent
process trace will either be empty or will have a new message (with the sequence number
incremented) coming in on the receiver input channel.
Formalising this discussion, then:

ouT &
sT(out.ey)” t = Getlvent(last(s|f2)) = e A
(last(s] f2)) = in (butlast(s|f2)) A
(u=)V StripTime(hd u) = (seq + 1).f2.e3)
When an acknowledgment is lost for a particular message ev with sequence number seq,
any trace will be a prefix of the sequence (seq.f2.e, seq.rl.ack)™ for some n:

LOST-ACK &
dn € Ny - out.ev = int = StripTime*(t) < (seq.f2.ev, seq.rl.ack)”

Neither of these two specifications mentions any explicit timings restrictions. Introducing
the timing specifications strengthens the receiver specification.

Should an out-of-sequence message be received, the resulting acknowledgment is sent as
soon as possible with no output message.

UNEXPECTED-MESSAGE-TIMING &
(out.ev —in t A GetEvent(last(t | rl)) = ack =
GetTime(last(t] rl)) — GetTime(last (¢] f2)) = ¢

If a message is correctly received, the message is output and the acknowledgment sent as
soon as possible after this message is received:

EXPECTED-MESSAGE-TIMING &
lastt = out.ev = timeof(lastt) — timeof (lastbutlast (¢ | rl)) = ¢

The receiver specification is the conjunction of the timed and untimed specifications:

OUT ANLOST-ACK AN UNEXPECTED-MESSAGE-TIMING A
FEXPECTED-MESSAGE-TIMING
4.3 Transmitter

The transmitter is the most complex of any of the service components. Its function is
to ensure the correct sequencing of messages, possibly buffering incoming messages, and
addressing the problems of timeout and message acknowledgment.

We first consider the untimed transmitter behaviour.

4.3.1 The untimed constraints

Let €4, represent an arbitrary timed execution of the transmitter process, with ey | f1 = f1,
e 72 =12 and ey | in = in.

12

It is possible that due to the transmitter timing out, a message may be resent a number of
(consecutive) times onto the forward f1 channel. That is, the messages on the f1 channel, if
stripped of their timing and sequencing information and with any repeat sequences flattened,
forms a prefix order on that of the messages already input on the in channel:

squash(GetEvent*(f1)) < in.

The sequence numbers in the messages sent on channels f1 and r2 are just incrementing
sequences of numbers drawn from Ny, with the sequences on f1 consisting of a finite number
of repeats of any particular sequence number. Applying a sequence flattening function squash
to any arbitrary channel trace f1, results in a totally ordered sequence of numbers from Nj.

squash(GetSeq*(f1)) < [1,2,3,...].

Similarly, the sequence numbers on the reverse channel r2 also form a totally ordered
sequence of numbers from Nj.

squash(GetSeq*(r2)) <[1,2,3,...].

Thirdly, the acknowledgment sequence numbers are 1-prefixes of those messages sent
forward on the f1 channel (with repeats flattened once again). Only one acknowledgment is
expected per message (or group of repeating messages), since the repeats are generated due
to missed acknowledgments.

squash(GetSeq*(r2)) <! squash(GetSeq*(f1))

Should the current message’s acknowledgment not arrive prior to the timeout period, the
current message is resent on the forward channel f1.

Ju, v in GetEvent(eyy) -
(u™ (timeout) v A v #()) = lastu =hdv

Notice that none of these statements deal with the timing constraints—they are identical
to the untimed specifications since the times are removed from each event. Asin the receiver,
introducing the timing constraints on input message rate, timeout period value and transit
delay strengthen the transmitter specification.

4.3.2 The timing constraints

The input message rate may be defined as an ensemble measure. For any timed input
sequence, the time difference between the first and the last event of this sequence will be the
length of the sequence divided by constant, R..

MR-spec’ &
timeof (last in) — timeof (hd in)) = #in/R
Alternatively, the message rate may have been defined as a time difference between two
successive inputs. For all ¢ < timedtraces(TX),
MR-spec &
timeof (hd tt) — timeof (hdtltt) = 1/R.
We adopt the latter definition (MR-Spec)for simplicity, even though the ISO has used
the ensemble measure in its Quality of Service specification [1].

The timeout value is dependent upon two factors. First, the timeout must be set so to
be greater than the maximum expected single return trip time if one assumes that there

13

is no message loss. The time between the transmission of a message and the time its ac-
knowledgment is received must be at least the maximum expected single return trip time
(message forward and acknowledgment back). Second, a timeout may occur if the oldest
message in the queue of messages is older than some fraction of the expected transit delay.
Once a message ages past the specified transit time, the transmitter signals TD-exceeded
and breaks. This action of deliberately breaking a connection and then reconnecting is done
in some protocols since it may lead to an improvement in the service quality. Each of these
two factors is now considered in detail.

A good estimate of the round trip time for the transmitter will ensure that a message is
correctly received. If a poor estimate is chosen, the protocol throughput tends to zero as the
timeout period approaches the round trip time. Choosing a static range of values simplifies
the model, however, if the network topology changes, these values need to be adjusted. A
dynamic estimate of the round trip time may be possible in some networks, or, as pointed
out by Zhang [21], impossible in others where there is the possibility of message loss or
reordering. The choice must be made on an engineering basis, and each network and service
characterised separately.

This example considers that no messages from Userl to User2 will experience delays
outside the specified range [7,,in, Tmaz]- The channels provide a fraction & of this delay.
Thus, setting the timeout value to be the sum of the maximum of the forward and reverse
message delays. Since they are equal, the maximum expected (single) round trip time is of
the order of 2 X 7,4z -

A typical timed execution where the transmitter times out due to the message acknowl-
edgment not being received within specified period would be

(....trm.fla, tong.r2.ack, t3.ng.f 1.0, ta.timeout, t5.ny.f 1.0).

For this process, the time difference between the first message (@) being sent and the
reception of the acknowledgment of the first message occurred within the timeout period. The
process then proceeded to transmit the second message (with sequence number ny = ny +1),
however there was no acknowledgment received within the timeout period. Once the timeout
event has occurred, the transmitter can immediately resend the message (5 =).

The second factor affecting the timeout is excessive message age. This is a direct result of
the messages being queued from the Userl client, and not being passed on to the User2 client
due to excessive repeats within the service trying to recover from lost messages. Thus, in
order to ensure that the transmitter tries to clear the oldest messages as quickly as possible,
it engages a timeout event once the age of the oldest message exceeds some fraction of the
transit delay. The channel used in this example is purely deterministic. Recall the channel
gives both alternatives, one which provides for a delay of D, and another which causes
message loss. This allows a simple way of determining the age of a message. The age of a
message is proportional to the sum of the number of lost messages and acknowledgments.
This is done by counting the number of tail events due to the forward buffer, and adding it
to the number of tail events due to the reverse buffer. In reality, message loss mechanisms
are probabilistic, and it may not be possible to count special loss events such as tail above .
Thus determining the best value for this fraction needs knowledge of the underlying channel
characteristics: typically expected error rate probabilities, distributions of channel delays
and other probabilistic notions. Unfortunately CSP4+T has no formalism for describing
these mechanisms at present, although work is in progress to allow such descriptions.

Formalising this discussion:

14

Timeout-spec &
u” (T.timeout) v =
(v={)V
(1 — GetTime(last (u | out)) = 2 X Tpgs) V
(kage X (Trmag) < (17— GetTime(last (u] in)) < Tpin) A
GetTime(hd (v | out)) = 7 A
GetEvent(last(u | out)) = Getlvent(hd (v] out))).

Since all acknowledgments lie in the range determined by the expected round trip times:

Ack-expected-spec &
u” (tyck -s€qy.12.ack) =
(last u = T.5€q,.f1.msg) A (2 X Tpin < (T — taer) < 2 X (Tnas))

In conclusion, the service is deemed unusable if any messages are queued for more than
the specified transit delay. The transmitter engages the T'D-exceeded event and breaks:

Break-service-spec &
s (r.TD-exceeded) N TD-exceeded—ins =
(1 — GetTime(last s | in)) > Tnog-

It should be noted here that a timeout cannot occur during the time that the transmitter
is expecting an acknowledgment. Similarly, it cannot be expecting an acknowledgment during
the timeout period. This should be kept in mind when selecting a value for k...

The conjunction of all of these specifications gives us the specification for the whole
transmitter.

5 Discussion and conclusions

As the aim of this paper was to demonstrate that complex timing relationships may be
readily expressed in the CSP+T algebra, the final stage of showing that the above algebraic
implementations and timed trace specifications do behave as required is not demonstrated.
Indeed, it cannot be demonstrated yet since any proof requires a complete compositional
trace semantics, as well as rules and reductions within the algebra. As mentioned earlier,
this is the subject of ongoing research by the author.

However, a generalised proof tactic may be as follows. In order to demonstrate the system
trace description does satisfy the specification requirement expressed as the conjunction

Protocol-spec A Input-rate N Thru-spec A TD-spec

the proof task would be divided into three stages.

First the composition of the untimed component specifications would be shown to behave
as a buffer. Each of the timed component specifications would then be shown to satisfy each of
Input-rate, Thru-spec and TD-spec respectively. Third, each process component (expressed
in the algebra) needs to be shown to meet its respective component specification. Once
done, the composition of the processes can be shown to indeed meet the required timing
constraints on the protocol.

Besides completing the formal semantics for the extensions, there are some issues that
need to be addressed in future work. Notably, the process semantics of parallel and inter-
leaved composition allow processes to produce non-causal traces. This indicates that the
complete semantics for these two operations requires some additional features, such as a

15

latest possible time for any next action indicator. The enabling intervals provide a means
for describing process actions (process “birth”) whereas the latter feature allows description
of process failure (or “death”).

Second, the model presented allows for purely deterministic process descriptions.

Finally (and related to the above) if this method is to be adopted for use in a more
general performance specification, the enabling interval functions need to allow stochastic
functions of marker variables. For example, it may be necessary to specify that an event
occurs with a specific probability distribution over a given time interval since some preceding
event. In addition to this probabilistic extension, the algebra may need to incorporate
probabilistic choice. This was proposed informally by the author in [23]. Lowe [9] and
Seidel [18] have developed two differing semantic models for a probabilistic CSP using such
an operator. Hansson [5] also has defined a probabilistic choice operator in his Timed
Probabilistic Calculus of Communicating Systems (TPCCS).

In conclusion, the addition of marker variables and event enabling intervals is felt to
increase the expressive power of the CSP algebra, allowing processes to carry over their
untimed structure to their timed versions. This is attractive since it allows a degree of
economy in process descriptions which other methods (relying purely on delay operations or
processes) cannot offer.

A Timed trace operations

A general (binary) relation R on two real numbers is defined by
R:RyxRi—B
R(z,y) & =zRy

Examples of R are the usual relations “<”, “=" etc.

The head of a trace is changed from Hoare’s notation ¢y to hd tf, and similarly, the tail
of a trace is written as tl ¢t rather than ¢t'.

hd Ry x Ev* — Ry X Fv
hd (tt) & i

tl 1Ry X Fvo* — Ry x Fo*
t(t) &
The timeof and eventof functions are the first and second projections of a timed event:

timeof Ry x Fv — R4

timeof(e) £ projl(e)

eventof :Ry X Fv — Ev

eventof(e) £ proj2(e)

16

The last event of a timed trace is obtained by applying the last function.
last : (Ry x Ev)* — Ry x Bv
last (tt) L hdit

where @ represents the reverse of a, as usual.
The function butlast returns a list with the last element removed:

butlast : (Ry x Fv)* — (R4 X Ev)*

butlast (tr) A tltr

A sequence such as (a, a,a, b, ¢, c,d) may have the runs of consecutive symbols replaced
by a single symbol from that run by the squash function. In this case,

squash({a,a,a,b,c,c,d)) = (a,b,c,d).
The function is defined by the recursive formulae:
squash({)) = ()

squash((a)~ 1) = § S7uash(l) if hdl = a

(a)” squash(l) ifhdl # a

As in CSP, (t | A) denotes the trace restriction of a timed trace ¢ to the set of (timed)
events in the set A. For example,

((0.a),(1.5),(3.0),(4.¢)) [{(0.a),(4.c)} = ((0.a),(4.c))

Events are removed from a trace when they are disjoint from the restriction set times:

((0.a), (1.b),(3.b), (4.¢)) | {(1.0),(1.0),(9.¢)} = ((1.b)).

If the events in A have no explicit time attached to them, then the trace restriction keeps
any of those events in the trace despite their times.

((0.a),(1.5),(3.0),(4.¢)) [{b} = ((1.0),(3.D))

It is quite common to have events on a particular channel in a system which are explicitly
labelled with a sequence number taken from the set of natural numbers. The following
functions are defined for such sequenced timed events.

The following functions rename the first,second and third projection functions on timed,
sequenced, channel events.

GetTime :Ry x Ny X Bv — R4
GetTime(z) £ projl(z)

GetSeq :R4 x Ny x Ch x EFv — Ny
GetSeq(z) £ proj2(z)

GetEvent :Ry X Ny X Fv — Ev
GetFvent(z) £ proj3(z)

17

StripTime 1Ry x Ny X v — Ny X Fv
StripTime(z) & proj2(z).proj3 ()

References

[1]

[10]

[11]

[12]

ISO/TC 97/SC 16/ WG 6. Information Processing Systems — Open Systems Intercon-
nection — Transport Service Definition — Connectionless mode transmission. Standard

150-8072-1986-Addendum1, ISO, 1986.

Ed. Brinksma. An Introduction to LOTOS. In H. Rudin and C.H. West, editors,
Protocol Specification, Testing, and Verification, VII. Flsevier Science Publishers B.V.,
Amsterdam, May 1987.

Jim Davies and Steve Schneider. An Introduction to Timed CSP. Technical monograph

PRG-75, Oxford University Computing Laboratory, Programming Research Group, 11
Keble Rd Oxford OX1 3QD England, August 1989.

Y.W. Han. Performance evaluation of a digital system using a Petri Net like approach.
In Proceedings of the National Flectronics Conference, volume 32, pages 166172, Oct
1978.

Hans A. Hansson. Time and Probability in Formal Design of Distributed Systems. PhD
thesis, Department of Computer Science, Uppsala University, September 1991.

C.A.R. Hoare. Communicating Sequential Processes. International Series in Computer
Science. Prentice-Hall International (UK) Ltd, 66 Wood Lane End, Hemel Hempstead,
Hertfordshire HP2 4RG UK, 1985.

I1SO. Information Processing Systems - Open Systems Interconnection - Estelle, a For-
mal Description Technique based on an Extended State Transition Model. Standard
DIS 9074, ISO, Geneva, July 1987.

CLff B. Jones. Systematic Software Development Using VDM. International Series in
Computer Science. Prentice-Hall International (UK) Ltd, 66 Wood Lane End, Hemel
Hempstead, Hertfordshire HP2 4RG UK, 1986.

Gavin Lowe. Prioritized and probabilistic models of timed CSP. Technical Report PRG-
TR-24-91, Programming Research Group, Oxford University Computing Laboratory, 11
Keble Rd Oxford 0x1 3QD, 1991.

Brendan Mahony and Ian Hayes. Using continous real functions to model timed histories.
Technical report, Department of Computer Science, University of Queensland 4072,
1991.

R. Milner. A Calculus of Communicating Systems, volume 92 of Lecture Notes in Com-
puter Science. Springer-Verlag, Berlin—Heidelberg—New York, 1980.

Robin Milner. Communication and Concurrency. International Series in Computer
Science. Prentice-Hall International (UK) Ltd, 66 Wood Lane End, Hemel Hempstead,
Hertfordshire HP2 4RG UK, 1989.

18

[13] J.L. Peterson. Petri Net Theory and the modelling of systems. Prentice-Hall, Inc.,
Eaglewood Cliffs, NJ 7632, 1981.

[14] C. Ramchandani. Analysis of asynchronous concurrent systems by Timed Petri Nets.
PhD thesis, MIT, September 1973.

[15] G.M. Reed and A.W. Roscoe. A Timed Model for Communicating Sequential Processes.
In Automata, Languages, and Programming , 13th Intl. Collogium Proceedings, Lecture
Notes in Computer Science, Berlin—Heidelberg—-New York, 1986. Springer-Verlag.

[16] A.W. Roscoe. Two papers on csp. Technical Monograph PRG-67, Oxford University
Computing Laboratory, Programming Research Group, 8-11 Keble Rd Oxford OX1
3QD, July 1988.

[17] Steve Schneider. Correctness and Communication in Real-time Systems. Technical
Monograph PRG-84, Oxford University Computing Laboratory, Programming Research
Group, 8-11 Keble Rd Oxford OX1 3QD, March 1990.

[18] Karen Seidel. Probabilistic Communicating Processes. PhD thesis, Oxford University,
Oxford OX1 3QD, UK, 1992.

[19] J. Sifakis. Use of Petri Nets for performance evaluation. In Beilner and Gelenbe, editors,
Measuring, Modelling and Fvaluating Computer Systems. North Holland, 1977.

[20] J.M. Spivey. The Z notation: a reference manual. Prenctice-Hall International, 1989.

[21] Lixia Zhang. Why TCP timers don’t work well. In SIGCOMM ’86 Symposium Commu-
nications Architectures and Protocols, volume 16 of Computer Communication Review,
pages 397-405, 11 West 42nd St, New York NY10036, August 1986. SIGCOMM, ACM.

[22] John J. Zic. Exercises in real-time buffer specification. Submitted for publication to the

ACM LOPLAS, Feb 1993.

[23] John J. Zic. Extensions to Communicating Sequential Processes to allow protocol per-
formance specification. In SIGCOMM °87 Workshop on Frontiers in Computer Com-
munication Technology, volume 17 of Computer Communication Review, 11 West 42nd

St, New York NY10036, August 1987. SIGCOMM, ACM.

[24] John J. Zic. CSP+T: a formalism for describing real-time systems. PhD thesis, Basser
Department of Computer Science, University of Sydney, NSW 2006, July 1991.

19

